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ABSTRACT

This Ph. D. thesis deals with the proper classes Complraioq and Supplpitod
of R-modules determined by complement (closed) and supplement submodules,
and related proper classes like Neatraog and CoNeatraoq, determined by neat
and coneat submodules for a ring R. CoNeatraoq is injectively generated by
modules with zero radical and contains Supplrated. A submodule A of a module
B is coneat in B if and only if there exists a submodule K < B such that
A+ K = Band ANK < RadA. For a semilocal ring R, CoNeatraoq is
injectively generated by all (semi-)simple R-modules and equals Supplpioq if
R is left perfect. Supplpa.a-coprojectives are only projectives if Rad R = 0.
For a Dedekind domain W, Complw.-aoeg-coprojectives are only torsion-free W-
modules. The inductive closure of the proper class Supplzioq i8 Complzasoq for
the ring Z of integers. For a Dedekind domain W, Complw.mod = Neaty. Mod 18
projectively, injectively and flatly generated by all simple W-modules. c-injective
modules over a Dedekind domain are direct summands of a direct product of
homogeneous semisimple modules and of injective envelopes of cyclic modules.
For a Dedekind domain W, every supplement in a W-module is a complement; if
W is not & field, Supplw-pod & CoNeatw-poq C Complyy_poq, Where the second
inclusion is an equality if and only if Rad W # 0. A finitely generated torsion
submodule of a module over a Dedekind domain is a complement if and only if it
is a supplement. In a torsion module over a Dedekind domain, neat submodules
and coneat submodules coincide. For a Dedekind domain W, if Rad W = 0 and
W is not a field, then the functors Extsuppiy . seq 304 Extconreat poq aT€ DOt fac-
torizable as W-Mod x W-Mod Bxtw, W-Mod ;. W-Mod for any functor H.
Key words: Complement, supplement, closed submodule, neat, coneat, c-injec-
tive, proper class, coprojective, coinjective, factorizable Ext, inductive closure,

flatly generated, injectively generated, projectively generated.
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OZET

Bu doktora tezinde, bir R halkas: i¢in R-modiillerde, tamamlayan (kapali) ve
tiimleyen alt modiiller araciligiyla tammlanan Complpatod ve Supplpatoq 0z si-
niflan ile bunlarla, ilgili diizenli ve kodiizenli alt modiillerle tanimlanan Neatgatoq
ve CoNeatpaoq gibi 6z simiflan incelenmektedir. CoNeatrasoq radikali sifir olan
tiim modiiller tarafindan injektif olarak lretilir ve Supplgaoq’u igerir. Bir B
modiiliiniin A alt modiilii, B’de kodiizenlidir ancak ve ancak B’nin bir K alt
modiili i¢gin, A+ K = B ve AN K < RadA ise. Yari-yerel bir R halkasi
igin, CoNeatppoq tim (yari-)basit modiiller tarafindan injektif olarak {iretilir
ve eger R sol milkemmel bir halka ise Supplrmod’a esittir. Eger Rad R = 0 ise
Supplroq-koprojektifier sadece projektiflerdir. Bir Dedekind tamlik bolgesi W
icin, Complw_amoq-koprojektifler sadece burulmasiz W-modillerdir. Tamsayilar
halkast Z igin, Supplzmoeq’un direkt limite gore kapanigi Complzaeq’dur. Bir
Dedekind tamlik bélgesi W icin, Comply-aoq = N eatyy.aoq tim basit W-modiil-
ler tarafindan projektif, injektif ve diiz olarak iretilir. Bir Dedekind tamlik
bolgesi lizerindeki c-injektif modiiller, homojen yari-basit modiillerin ve devirli
modiillerin injektif biirtimlerinin direkt ¢arpiminin direkt toplam terimidir. Bir
Dedekind tamlik bolgesi W igin, bir W-modiildeki her tiimleyen tamamlayandir;
eger W Dbir cisim degilse, Supplw-moa & CoNeatw poa C Comply_pmoq saglamr
ve ikinci igerme egitliktir ancak ve ancak Rad W s 0 ise. Bir Dedekind tamlik
bolgesi tizerindeki bir modiiliin sonlu iiretilmig burulmali bir alt modiilii tamam-
layandir ancak ve ancak tiimleyen ise. Bir Dedekind tamlik bolgesi lizerindeki
burulmali bir modiilde, diizenli alt modiiller ve kodiizenli alt modiiller aynidir.
Bir Dedekind tamlik bolgesi W igin, Extsupply ses V€ EXtcoNeaty aoq funktorlar,
hi¢bir H funktoru igin, W-Mod x W-Mod Bt W-Mod —Z>W-Mod seklinde
pargalanamaz, eger Rad W = 0 ve W bir cisim degil ise.

Anahtar Sozciikler: tamamlayan, tlimleyen, kapali alt modiil, diizenli, kodiizen-
li, c-injektif, 6z sinif, koprojektif, koinjektif, parcalanabilir Ext, direkt limite gore

kapanig, diiz olarak {iretilmis, injektif olarak {iretilmis, projektif olarak tiretilmis.
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NOTATION

an associative ring with unit unless otherwise stated

the ring of integers, the set of all positive integers

the field of rational numbers

the Priifer (divisible) group for the prime p

a (commutative) Dedekind domain

left R-module

the categories of left R-modules, right R-modules

the categeory of abelian groups (Z-modules)

the category of all M-subgenerated modules (i.e. all sub-
modules of all M-generated modules) for a module M
isomorphic

all R-module homomorphisms from M to N

all f € Hompg(M, N) such that Im(f) is small in N

all f € Homg(M, N) such that Im(f) is in Rad(N)

the tensor product of the right R-module M and the left
R-module N

the kernel of the map f

the image of the map f

the injective envelope (hull) of a module M
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the radical of the R-module M

the Jacobson radical of the ring R

the uniform dimension (=Goldie dimension) of M

the hollow dimension (=dual Goldie dimension) of M

= {r € R|rX = 0} = the left annihilator of a subset X of
a left R-module M

= {r € R|Xr = 0} = the right annihilator of a subset X
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a proper class of R-modules

A is a P-submodule of B, i.e. the inclusion monomorphism
A — B is a P-monomorphism

all P-projective modules

the proper class of R-modules projectively generated by a
class M of R-modules

all P-injective modules

the proper class of R-modules injectively generated by a
class M of R-modules

all P-flat right R-modules

the proper class of R-modules flatly generated by a class
M of right R-modules

the inductive closure of a proper class P

Extp(C, A) = Extp(C, A) is the subgroup of Extp(C, A)
consisting of equivalence classes of short exact sequences
in P starting with the R-module A and ending with the
R-module C

the smallest proper class of R-modules consisting of only
splitting short exact sequences of R-modules

the largest proper class of R-modules consisting of all short
exact sequences of R-modules (absolute purity)

the proper class of pure-exact sequences of abelian groups
the proper class of neat-exact sequences of abelian groups
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For a suitable abelian category A like R-Mod, Z-Mod = Ab
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the proper class of complements in the abelian category A
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CHAPTER ONE
INTRODUCTION

In this introductory chapter, we will give the motivating ideas for our thesis
problems and summarize what we have done. To explain these problems and
results, we will summarize what proper classes are in Section 1.3; for some more
details, see Chapter 2. What is assumed as preliminary notions is sketched in
Section 1.2. See Section 1.1 for the definition of complement and supplement. In
Section 1.9, we will summarize the main results of this thesis. The other sections
of this chapter summarize the motivating ideas and related concepts some of
which are explained in more detail in the following chapters: Neat subgroups
(Section 1.4), C-rings of Renault (Section 1.5), complements and supplements in
modules over Dedekind domains (Section 1.6), c-injective modules (Section 1.7),

extending(CS) modules and lifting modules (Section 1.8).

We deal with complements (closed submodules) and supplements in unital R-
modules for an associative ring R with unity using relative homological algebra
via the known two dual proper classes of short exact sequences of R~-modules and
R-module homomorphisms, Complraeq and Supplr.mod, and related other proper
- classes like Neatratoq and CoNeatritog- Complriod [Supplrated] consists of all

short exact sequences

0—>A—LsB2.0— 0

of R-modules and R-module homomorphisms such that Im(f) is a complement

[resp. supplement] in B. Neatgmod [CoNeatraoa] consists of all short exact se-

1



quences of R-modules and R-module homomorphisms with respect to which every

simple module is projective [resp. every module with zero radical is injective].

We seek for the projectives, injectives, coprojectives, coinjectives with respect
to these proper classes. When does these proper classes have enough projectives?
Enough injectives? In Chapter 3, we deal with these proper classes for an arbitrary
ring R. Firstly, we search for the results when R is the ring of integers, i.e.
for abelian groups, in Chapter 4, since these form the motivating ideas for our
research. The next step is to generalize these results for the case R = W, a
Dedekind domain in Chapter 5. The results for some other classes of rings have
been collected in Section 3.8. Some problems for complements and supplements
can be interpreted in terms of homological algebra using these proper classes of

complements and supplements and their relations with other proper classes.

1.1 Complements and supplements

We try to understand a module through its submodules, or better to say through
its relation with its submodules. More precisely, let R denote an associative ring
with unity, B be an R-module and let K be a submodule of B. It would be best
if K is a direct summand of B, that is if there exists another submodule A of B

such that B = K @ A; that means,
B=K+A ad KnA=0.

When K is not a direct summand, we hope at least to retain one of these condi-

tions. These give rise to two concepts: complement and supplement.

If A is a submodule of B such that B = K+ A (that is the above first condition
for direct sum holds) and A is minémal with respect to this property (that is there
is no submodule A of B such that A & Abut still B= K + A), then A is called



a supplement of K in B and K is said to have a supplement in B. Equivalently,
K+ A = B and KN A is small (=superfluous) in A (which is denoted by
KNA <« A, meaning that for no proper submodule X of A, KNA+X = A). K
need not have a supplement. If a module B is such that every submodule of it has
a supplement, then it is called a supplemented module. For the definitions and
related properties see Wisbauer (1991, §41). In a series of papers from 1974, H.
Zoschinger considered the class of supplemented modules (Zoschinger, 1974a,b,c,
1976, 1978, 1979a,b, 1980, 1981, 1982a,b, 1986, 1994). In recent years, the research
on related concepts has regained interest; see Talebi & Vanaja (2004), Kosan &
Harmanci (2004), Nebiyev & Pancar (2003), Orhan (2003), Kuratomi (2003),
Keskin Tiitlincii & Orhan (2003), Idelhadj & Tribak (2003b,a), Giingéroglu &
Keskin Tiitiincii (2003), Alizade & Biiyiikagik (2003), Tuganbaev (2002), Talebi
& Vanaja (2002), Ozcan (2002), Keskin (2002b,a), Ganesan & Vanaja (2002),
Oshiro (2001), Keskin & Xue (2001), Alizade et al. (2001), Smith (2000b), Keskin
(2000b,a), Lomp (1999), Keskin et al. (1999), Harmanc: et al. (1999), Oshiro
& Wisbauer (1995), Xin (1994), Vanaja (1993), Liu (1992), Al-Khazzi & Smith
(1991), Baba & Harada (1990), Fieldhouse (1985), Oshiro (1984b,a), Inoue (1983),
Hausen & Johnson (1983b,a), Hausen (1982).

If A is a submodule of B such that K N A = 0 (that is the above second
condition for direct sum holds) and A is mazimal with respect to this property
(that is there is no submodule A of B such that A 2 A but still K N4 = 0),
then A is called a complement of K in B and K is said to have a complement
in B. By Zorn’s Lemma, it is seen that K always has a complement in B (unlike
the case for supplements). In fact, by Zorn’s Lemma, we know that if we have a
submodule A’ of B such that A’ N K = 0, then there exists a complement A of
K in B such that A D A’. See the monograph Dung et al. (1994) for a survey of

results in the related concepts.

We deal with the collection of submodules each of which is a complement of
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some submodule or supplement of some submodule. A submodule A of a module
B is said to be a complement in B if A is a complement of some submodule of
B; shortly, we also say that A is a complement submodule of B in this case and
denote this by A <_B. It is said that A is closed in B if A has no proper essential
extension in B, that is, there exists no submodule A4 of B such that A & Aand A
is essential in A (which is denoted by A < A and meaning that for every nonzero
submodule X of A, we have ANX # 0). We also say in this case that A is a closed
submodule and it is known that closed submodules and complement submodules
in a module coincide (see Dung et al. (1994, §1)). So the “” in the notation
A <_B can be interpreted as complement or closed. Dually, a submodule A of a
module B is said to be a supplement in B if A is a supplement of some submodule
of B; shortly, we also say that A is a supplement submodule of B in this case and
denote this by A <.B.

1.2 Preliminaries, terminology and notation

Throughout this thesis, by a ring we mean an associative ring with unity; R will
denote such a general ring, unless otherwise stated. So, if nothing is said about
R in the statement of a theorem, proposition, etc., then that means R is just
an arbitrary ring. We consider unital left R-modules; R-module will mean left
R-module. R-Mod denotes the category of all left R-modules. Mod-R denotes
the category of right R-modules. Z denotes the ring of integers. Ab, or Z-Mod,
denotes the category of abelian groups (Z-modules). Group will mean abelian
group only. We denote a (commutative) Dedekind domain by W, see Section
5.1. Integral domain, or shortly domain, will mean a nonzero ring without zero
divisors, not necessarily commutative. But following the general convention a
principal ideal domain (shortly PID) will mean a commutative domain in which

every ideal is principal, i.e. generated by one element. Also a Dedekind domain



is assumed to be commutative as usual.

All definitions not given here can be found in Anderson & Fuller (1992), Wis-
bauer (1991), Dung et al. (1994) and Fuchs (1970).

The notation we use have been given on pages (zi-ziii) just before this chapter.
There is also an index in the end and the page number of the definition of a term

in the indez, if it exists, has been written in boldface.

We do not delve into the details of definitions of every term in modules, rings
and homological algebra. Essentially, we accept fundamentals of module theory,
categories, pullback and pushout, the Hom and tensor (®) functors, projective
modules, injective modules, flat modules, homology functor, projective and injec-
tive resolutions, derived functors, the functor Extp = Ext} : R:~Modx R-Mod —
Ab, the functors Ext}, : R:-Mod x R-Mod — Ab (n € Z*), projective dimen-
sion of a module, injective dimension of a module, Goldie dimension (uniform

dimension), dual Goldie dimension (hollow dimension) are known.

For more details in homological algebra see the books Alizade & Pancar (1999),
Rotman (1979), Cartan & Eilenberg (1956) and Maclane (1963). For modules and
rings see the books Anderson & Fuller (1992), Lam (2001, 1999) and Facchini
(1998). For abelian groups, see Fuchs (1970). For relative homological algebra,
our main references are the books Maclane (1963) and Enochs & Jenda (2000) and
the article Sklyarenko (1978). We will explain most of the terms and summarize

the necessary concepts.

The book Wisbauer (1991) gives the concepts in module theory relative to
the category o[M] for a module M. This category o[M] is the full subcategory
of R-Mod consisting of all M-subgenerated modules, that is all submodules of

M-generated modules, where a module N is said to be an M-generated module



if there exists an R-module epimorhism f : @, M — N for some index
set A. This category reflects the properties of the module M. For example,
o[R] = R-Mod, where the ring R is considered as a left R-module.

1.3 Proper classes of R-modules for a ring R

Let P be a class of short exact sequences of R-modules and R-module homomor-

phisms. If a short exact sequence

0—>A-—L>Bs0— >0 (1.3.1)

belongs to P, then f is said to be a P-monomorphism and g is said to be a
P-epimorphism (both are said to be P-proper and the short exact sequence is

said to be a P-proper short exact sequence.).

The class P is said to be proper (in the sense of Buchsbaum) if it satisfies
the following conditions (see Buschbaum (1959), Maclane (1963, Ch. 12, §4),
Stenstrom (1967a, §2) and Sklyarenko (1978, Introduction)):

1. If a short exact sequence [E is in P, then P contains evefy short exact

sequence isomorphic to E .
2. P contains all splitting short exact sequences.

3. The composite of two P-monomorphisms is a P-monomorphism if this com-
posite is defined. The composite of two P-epimorphisms is a P-epimorphism

if this composite is defined.

4. If g and f are monomorphisms, and g o f is a P-monomorphism, then f
is a P-monomorphism. If g and f are epimorphisms, and g o f is a P-

epimorphism, then g is a P-epimorphism.
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An important example for proper classes in abelian groups is Purezamoq: The
proper class of all short exact sequences (1.3.1) of abelian groups and abelian
group homomorphisms such that Im(f) is a pure subgroup of B, where a subgroup
A of a group B is pure in B if ANnB = nA for all integers n (see Fuchs (1970,
§26-30) for the important notion of purity in abelian groups). The short exact
sequences in Purezaoq are called pure-ezact sequences of abelian groups. The
proper class Purezamoq forms one of the origins of relative homological algebra,; it
is the reason why a proper class is also called purity (as in Mishina & Skornyakov
(1976), Generalov (1972, 1978, 1983)).

The smallest proper class of R-modules consists of only splitting short exact
sequences of R-modules which we denote by Splitpa.qa-The largest proper class
of R-modules consists of all short exact sequences of R-modules which we denote

by Abspaoeq (absolute purity).

For a proper class P of R-modules, call a submodule A of a module B a P-
submodule of B, if the inclusion monomorphism i4 : A — B, i4(a) = @, a € A,

is a P-monomorphism. We denote this by A <,B.

Denote by P a proper class of R-modules. An R-module M is said to be
P-projective [P-injective)] if it is projective [injective] with respect to all short
exact sequences in P, that is, Hom(M, E) [Hom(E, M)] is exact for every E in P.
Denote all P-projective [P-injective] modules by w(P) [¢(P)]. For a given class
M of modules, denote by 77*(M) [t7*(M)] the largest proper class P for which
each M € M is P-projective [P-injective]; it is called the proper class projectively
generated [injectively generated] by M. When the ring R is not commutative,
we must be careful with the sides for the tensor product analogues of above.
Remember that by an R-module, we mean a left R-module. A right R-module
M is said to be P-flat if M ® E is exact for every E in P. Denote all P-flat
right R-modules by 7(P). For a given class M of right R-modules, denote by



771(M) the largest proper class P of (left) R-modules for which each M € M
is P-flat; it is called the proper class flatly generated by the class M of right R-
modules. When the ring R is commutative, there is no need to mention the sides
of the modules since a right R-module may also be considered as a left R-module
and vice versa. An R-module C is said to be P-coprojective if every short exact
sequence of R-modules and B-module homomorphisms of the form (1.3.1) ending
with C is in the proper class P. An R-module A is said to be P-coinjective if every
short exact sequence of R-modules and R-module homomorphisms of the form
(1.3.1) starting with A is in the proper class P. See Sklyarenko (1978, §1-3,8-9)

for these concepts in relative homological algebra in categories of modules.

A proper class P of R-modules is said to have enough projectives [enough
injectives) if for every R-module M, there exists a P-projective P [resp. a P-
injective I] with a P-epimorphism P — M [rep. a P-monomorphism M — I].
A proper class P of R-modules with enough projectives [enough injectives] is also

said to be a projective proper class [resp. injective proper class].

For a proper class P and R-modules A4, C, denote by Ext%(C, A) or just by
Extp(C, A), the equivalence classes of all short exact sequences in P which start
with A and end with C, i.e. a short exact sequence in P of the form (1.3.1).
This turns out to be a subgroup of Extg(C, A) and a bifunctor Extp : R-Mod x
R-Mod — Ab is obtained which is a subfunctor of Ext}, (see Maclane (1963,
Ch. 12, §4-5)).

A proper class P is said to be inductively closed if for every direct system
{E;(i € I);nl(i < §)} in P, the direct limit E = UmE; is also in P (see Fedin
(1983) and Sklyarenko (1978, §8)). Asin Fedin (1983), for a proper class P, denote
by ﬁ, the smallest inductively closed proper class containing P; it is called the

inductive closure of P.



1.4 Motivating ideas from abelian groups

The classes Complraoq and Supplraoq defined in the introduction to this chapter
really form proper classes as has been shown more generally by Generalov (1978,
Theorem 1), Generalov (1983, Theorem 1), Stenstrém (1967b, Proposition 4 and
Remark after Proposition 6). In Stenstrém (1967b), following the terminology
in abelian groups, the term ‘high’ is used instead of complements and ‘low’ for
supplements. Generalov (1978, 1983) use the terminology ‘high’ and ‘cohigh’
for complements and supplements, and give more general definitions for proper
classes of complements and supplements related to another given proper class
(motivated by the considerations as pure-high extensions and neat-high extensions
in Harrison et al. (1963)); ‘weak purity’ in Generalov (1978) is what we denote
by Complramoq- See also Erdogan (2004, Theorem 2.7.15 and Theorem 3.1.2) for

the proofs of Complraeq and Supplpameq being proper classes.

A subgroup A of a group B is said to be neat in B if ANpB = pA for all
prime numbers p (see Fuchs (1970, §31); the notion of neat subgroup has been
introduced in Honda (1956, pp. 42-43)). This is a weaker condition than being
a pure subgroup. What is important for us is that neat subgroups of an abelian
group coincide with complements in that group. Denote by N eatz o4, the proper

class of all short exact sequences

0—>A—>B2.0— >0

of abelian groups and abelian group homomorphisms where Im(f) is a neat sub-
group of B; call such short exact sequences neat-ezact sequences of abelian groups
(like the terminology for pure-exact sequences). The following result is one of
the motivations for us to deal with complements and its dual supplements: The

proper class Complzamod = Neatzumoq is projectively generated, flatly generated
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and injectively generated by simple groups Z/pZ, p prime number:

Complgpes = Neatzuoa = 1 ({Z/pZ)p prime})
= 77Y{Z/pZ|p prime}) = , "} ({Z/pZ]|p prime}).

(see Theorem 4.1.1)

The second equality Neatzamos = 7 ({Z/pZ|p prime}) was the motivation to

define for any ring R, as said in the introduction to this chapter,
Neatpiod aef- 77 ({all simple R-modules})
= 7 Y{R/P|P maximal left ideal of R}),

following Stenstrom (1967a, 9.6) (and Stenstrom (1967b, §3)). For a submodule
A of an R-module B, say that A is a neat submodule of B, or say that A is neat in
B, if A is a Neatgmoda-submodule, and denote this shortly by A <,.B. We always
have Complraoq C Neatraoq for any ring R (by Stenstrom (1967b, Proposition
5)) (see Theorem 3.1.1, Corollary 3.2.7).

1.5 C-rings of Renault and torsion-free covering

modules of Enochs

If R is a commutative Noetherian ring in which every nonzero prime ideal is
maximal, then

Complaioq = Neatprmods

by Stenstrém (1967b, Corollary to Proposition 8) (see Proposition 3.3.1).

Generalov (1978, Theorem 5) gives a characterization of this equality in terms

of the ring R (see Theorem 3.3.2):

Complraod = Neatramod if and only if R is a left C-ring.
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The notion of C-ring has been introduced by Renault (1964): A ring R is
said to be a left C-ring if for every (left) R-module B and for every essential
proper submodule A of B, Soc(B/A) # 0, that is B/A has a simple submodule.
Equivalently, for every essential left ideal I of R, there exist r € R such that the
left annihilator Annk(r +I) = {s € R|s(r +I) = 0} = {s € R|sr € I} of the
element r + I in the left R-module R/I is a maximal left ideal of R. Similarly
right C-rings are defined. For example, a commutative Noetherian ring in which
every nonzero prime ideal is maximal is a C-ring. So, of course, in particular a

Dedekind domain and therefore a PID is also a C-ring. See Section 3.3.

A commutative domain R is a C-ring if and only if every nonzero torsion
module has a simple submodule (see Proposition 3.3.9) and such rings have been

considered in Enochs & Jenda (2000, §4.4). See Enochs & Jenda (2000, Theorem

4.4.1) related to torsion-free covering modules.

1.6 Complements and supplements in modules

over Dedekind domains

Generalov (1983, Corollary 1 and 6) gives the following interesting result (the
equality from Generalov (1978, Theorem 5) as a Dedekind domain is a C-ring):
For a Dedekind domain W,

Supplw-pmoa S Complw.-mod = Neatw-mod,

where the inclusion is strict if W is not a field. So if A is a supplement in an W-
module B where W is a Dedekind domain, then A is a complement (see Theorem
5.2.1). As in abelian groups (Theorem 4.1.1), Complw.pea is both projectively
generated, injectively generated and flatly generated (see Theorem 5.2.2): The

following five proper classes of W-modules are equal for a Dedekind domain W:
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=

. Complw_mod,

. Neatw.mod df:f'w_l({W/ P|P maximal ideal of W}),

N

w

TT{ MM € W-Mod and PM = 0 for some maximal ideal P of W}),

4. 771({W/P|P maximal ideal of W})

ot

. The proper class of all short exact sequences

E: 0—>A—1>B-9>0—>0

of W-modules and W-module homomorphisms such that for every maximal

ideal P of W,
A'NPB = PA, where A’ = Im(f)

(or ANPB = PA when A is identified with its image and f is taken as the

inclusion homomorphism).

One of the main steps in the proof is the equality of the second, third and fifth
proper classes and these follow from Nunke (1959, Lemmas 4.4, 5.2 and Theorem
5.1).

Another consequence of Nunke (1959, Theorem 5.1) is that for a Dedekind
domain W, and W-modules A, C,

EXtcomPlW~Mod (07 A) = EXtNeatW_Mod (07 A) = Rad (EXtW(O, A)).

(see Theorem 5.2.3). So in abelian groups, for the proper class C = Complzmod =

Neatzmod,
Extc(C,4) = (] pExt(C,A).

p prime

(Fuchs (1970, Exercise 53.4)).
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1.7 c-injectivity

Let X and M be R-modules. The module X is called M-c-injective if, for every
closed submodule A of M, every homomorphism f : A — X can be lifted to M,
i.e. there exists a homomorphism f . M —> X such that f la=f:

A<, M
/

il /s
o
X
A module M is called self-c-injective if M is M-c-injective. For a discussion of

c-injectivity and related problems see Santa-Clara & Smith (2000), Smith (2000a)
and Santa-Clara & Smith (2004).

We say that an R-module X is c-injective if it is M-c-injective for every R-
module M. This is just Complr.a-injectives since closed submodules and com-
plement submodules of a module coincide. Santa-Clara & Smith (2004, Theorem
6) shows that for a Dedekind domain W, every direct product of simple W-

modules is self-c-injective.

An R-module M is said to be a homogenous (isotypic) semisimple R-module
if M is a semisimple R-module whose simple submodules are all isomorphic, that
is, M = @, S» for some index set A and simple submodules Sx of M such that
for some maximal left ideal P of R, Sy = R/P for every A € A.

Santa-Clara & Smith (2004, after Theorem 6) has also noted that: for a
Dedekind domain W, if M is a direct product of homogeneous semisimple W-
modules, then M is self-c-injective and any simple W-module is M-c-injective.
We will see that all these mentioned self-c-injective modules over a Dedekind do-
main are c-injective and we are able to describe c-injective modules by the general

theorems for injectively generated proper classes since for a Dedekind domain W,



14

Complw_pmoq is injectively generated by homogenous semisimple W-modules.

1.8 Extending(CS) modules and lifting modules

A module M is said to be an extending module or CS-module if every closed
(=complement) submodule is a direct summand. The “CS” here is for “com-
plements are summands”. See the monograph Dung et al. (1994) on extending

modules.

A module M is amply supplemented if for all submodules U and V' of M such
that U + V = M, there is a supplement V' of U in M such that V' < V. See
(Wisbauer, 1991, §41, before 41.7).

Dualizing extending modules, a module M is said to be a lifting module if M is
amply supplemented and every supplement in M is a direct summand. See Lomp
(1996, Ch. 4) for lifting modules, its equivalent definitions. For the property in
the definition we gave, see Wisbauer (1991, 41.12).

For which rings R, all R-modules are extending (CS)? Similarly, for which
rings R, all R-modules are lifting? The answer to these extreme cases is known
and will be summarized in the theorem below. Since these conditions are for all
R-modules, these extreme cases are in fact extreme cases for the proper classes
Complamod and Supplpaeg. All R-modules are extending (CS) if and only if
Complaios = Splitraeq. All R-modules are lifting if and only if all R-modules
are amply supplemented and Supplraoed = SPlitrmod- All R-modules are (am-
ply) supplemented if and only if R is a left perfect ring by characterization of left
perfect rings in Wisbauer (1991, 43.9). A ring R is said to be left perfect if every
left R-module M has a projective cover, that is, an epimorphism f: P — M
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from a projective module P onto M with Ker(f) small in P. So, all R-modules
are lifting if and only if R is left perfect and Supplpitod = Splitpaieq- In fact,
these extreme ends have been considered more generally in the category o[M] for
a module M. As is seen from the theorem below, we have the equivalence of left
and right conditions. A module M is said to be uniserial if its submodules are
linearly ordered by inclusion. A module is said to be serial if it is a direct sum of
uniserial modules. A ring R is said to be a left serial ring if the left R-module R
is a serial module. Similarly, right serial rings are defined. See Wisbauer (1991,

§55) for serial modules and rings.

Theorem 1.8.1. (by Dung et al. (1994, 13.5) and Oshiro & Wisbauer (1995,
Corollary 2.5)) For a ring R, the following are equivalent:

(i) Complpaoq = SPlitramoq (all left R-modules are extending (CS)),
(1) Complpmoar = Splitpmogr (all right R-modules are extending (CS)),

(i) R is left perfect and Supplros = Solitpamod (all left R-modules are lift-
ing),

(iv) R is right perfect and Supplpmodr = Splitmoar (all right R-modules are
lifting),

(v) Ewery (cyclic) left R-module is the direct sum of an injective module and a

semisimple module,

(vi) Every left R-module is the direct sum of a projective module and a semisim-

ple module,
(vii) Every left R-module is a direct sum of modules of length < 2,
(viii) The right handed versions of (v)-(vii),

(iz) R is (left and right) artinian serial and J? = 0 for the Jacobson radical J
of R.
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1.9 Main results of this thesis

1.9.1 The proper class CoNeatpiiod

We have,

Neatppoa = = +({all semisimple R-modules})

7 ({M|Soc M = M, M an R-module}),

i

where Soc M is the socle of M, that is the sum of all simple submodules of
M. Dualizing this, we have defined the proper class CoN eatraoq s said in the
introduction to this chapter by

CoNeatrmoq = ¢+ ({all R-modules with zero radical})
=1 ({M|Rad M = 0, M an R-module}).
If A is a CoN eatpaoq-submodule of an R-module B, denote this by A <_,,B and

say that A is a coneat submodule of B, or that the submodule A of the module

B is coneat in B.

For any ring R (see Proposition 3.4.1),

Supplaimes C CoNeatraoqg € ¢ 2({ all (semi-)simple R-modules}).

Being a coneat submodule is like being a supplement: For a submodule A of a

module B, A is coneat in B if and only if there exists a submodule K < B such

that
A+K=B and ANK<RadA

(Proposition 3.4.2). So, when Rad A « A, A is coneat in B if and only if it is a
supplement in B. See Theorem 3.5.5 for a description of Extconeatpuoq(C A) for
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given R-modules A, C, like the description for Extsyppip ....(C; A) in Generalov

(1983, Corollary 3).

For a semilocal ring R,
CoNeatrpoq = ¢ ({all (semi-)simple R-modules}),
and for a left perfect ring R,
Supplpaod = CoNeatpprog = ¢~ *({all (semi-)simple .R-modules})

(Theorem 3.8.7 and Corollary 3.8.8).

1.9.2 Coinjective and coprojective modules with respect

to Complppmoq and Supplrrod

The injective envelope of a module is constructed by embedding that module into
an injective module and taking a maximal essential extension in that injective
module. It is already known from this construction that Complgaeq-coinjective
modules are only injective modules. Dually, if the ring R has zero Jacobson rad-
ical, then Supplriog-coprojective modules are only projective modules (Theo-
rem 3.7.2). Similarly, Co-N eatpaog-coprojective modules are also only projective
modules if Rad R = 0 (Theorem 3.7.3).

For a left C-ring R, an R module M is injective if and only if Exth(S, M) =0
for all simple R-modules S (Proposition 3.7.4).
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1.9.3 Results in abelian groups

A supplement in an abelian group is a complement (Theorem 4.1.4). For a finite
subgroup A of a group B, A is a complement in B if and only if it is a supplement
in B (Theorem 4.3.1).

To every proper class P, we have a relative Extp functor and for the proper
class Supplzaoq, this functor behaves badly unlike Complzag: The functor
Extsuppiza,g 18 not factorizable as Z-Mod x Z—Mod—%Ab—H>Ab for any

functor H : Ab — Ab on the category of abelian groups (Theorem 4.5.3).

The inductive closure of the proper class Supplzaoq is flatly generated by all
simple abelian groups (Z/pZ, p prime), so it is equal to Complzsos = Neatzmod
(Theorem 4.4.4).

The proper class CoNeatgaoq is strictly between Supplyaoq and Complzaod
(Theorem 4.6.5). Like Extsuppiy 1104, the functor Extegaveaty pi0q 18 70t factorizable
as Z-Mod x Z—ModﬂAb—Ii»Ab for any functor H : Ab — Ab on the
category of abelian groups (Theorem 4.6.7). For a finite subgroup A of a group
B, A is neat in B if and only if it is coneat in B (Theorem 4.6.6). For a torsion

group B, neat subgroups and coneat subgroups coincide (Theorem 4.6.8).

Complz poa-coinjectives are only injective (divisible) abelian groups.
Supplzmoq-coinjectives are also only injective (divisible) abelian groups.
Supplz smoq-coprojectives are only free abelian groups. Complzaoeq-coprojectives

are only torsion-free abelian groups (Theorem 4.7.1).
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1.9.4 Results in modules over Dedekind domains

Let W be a Dedekind domain.

In Section 1.6, it has been noted that, the proper class Comply_aoq is both
projectively generated, injectively generated and flatly generated (see Theorem
5.2.2). In particular, we can describe Complw.amoq-injective modules by Propo-
sition 2.4.4 for proper classes injectively generated by a class of modules closed
under taking submodules, since for a Dedekind domain W, Complw.moq equals

the injectively generated proper class
TH{M|M € W-Mod and PM = 0 for some maximal ideal P of W})

If for a module M, PM = 0 and P is a maximal ideal in W (so W/P is a field),
then M may be considered as a W/P-vector space. If its dimension is «, then
it is isomorphic to a direct sum of o copies of W/P. Hence it is a homogenous

(isotypic) semisimple W-module. Thus,
Complw-pmoa = ¢ *({M|M is a homogeneous semisimple W-module }).

Hence, for a Dedekind domain W, every direct summand of a direct product
of homogeneous semisimple W-modules and of injective envelopes of cyclic W-
modules are c-injective (i.e. Complw.mog-injective) and these are the only c-
injective W-modules (Theorem 5.2.4).

Like in abelian groups, Complyw-soq = N eatw.pod is also injectively generated
by all simple W-modules (Proposition 5.2.5).

As has been noted in Section 1.6, Supplwsods & Complw moeq. A partial
converse is the following: A finitely generated torsion submodule of a W-module

is a complement if and only if it is a supplement (Theorem 5.3.1).

For a Dedekind domain W which is not a field,
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(i) If RadW =0, then

Supplw-pmoa & CoN eatw-pmod & Neatw-mos = Complwpmod,

(ii) If Rad W # 0, then
Supplw-pmod & CoNeatw pod = N eatw.pod = COmplw pmods

(Theorem 5.4.6).

For a Dedekind domain W, if RadW = 0 and W is not a field, then the

functors Extsuppiy. poq 304 Exteonreaty uoa af€ not factorizable as

FExtw

W-Mod x W-Mod —%W-Mod —2>W-Mod

for any functor H : W-Mod — W-Mod (Theorem 5.4.8).

Like in abelian groups, for a torsion W-module B, neat submodules and coneat

submodules coincide (Theorem 5.4.9).

Comply-mog-coinjectives are only injective W-modules. Supplw-aog-coinjec-
tives are also only injective W-modules. If RadW = 0, then SupplW_M;,d-
coprojectives are only projective W-modules. Complw._moq-coprojectives are only

torsion-free W-modules (Theorem 5.5.1).



CHAPTER TWO
PROPER CLASSES

We will not see the general definition of proper classes in an abelian category
as in Maclane (1963, Ch. 12) since our main investigations are in the proper
classes of modules. The definition of proper classes and related terminology have
been summarized in Section 1.3 in the first chapter. In Section 2.2, we review
the definitions, which have been given in Section 1.3, for projectives, injectives,
coprojectives, coinjectives with respect to a proper class, using diagrams and Extp
with respect to a proper class P mentioned in Section 2.1. In the other sections of
this chapter, we have summarized the results that we refer frequently for proper
classes of R-modules which are projectively generated or injectively generated or
flatly generated. In the last Section 2.6, coinjective and coprojective moduleé
with respect to a projectively or injectively generated proper class is described.

Our summary is from the survey Sklyarenko (1978).

2.1 Extp with respect to a proper class P

The functor Ext%, n € ZTU{0}: In the proper class Absg.a04, there are enough
injectives and enough projectives. So every module has a projective resolution and
an injective resolution. Thus for given R-modules A, C we can take an injective

resolution

0—s Ao B2 % F,

21
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which is an exact sequence with all Ey, Ey, F, . .. injective and define for each n €
Z+ U {0}, Ext™(C, A) = Ker(Hom(C, d,,))/ Im(Hom(C, d,—1)), that is Ext"(C, —)
is the nf-right derived functor of the functor Hom(C, —) : R-Mod — Ab (we
set d_; = 0, so that Ext®(C, A) & Hom(C, A)). This group Ext"(C, A)-is well-
defined, it is up to isomorphism independent of the choice of the injective resolu-
tion and in fact can also be defined using projective resolutions. The functor Ext
remedies the inexactness of the functor Hom. See for example Alizade & Pancar

(1999), Rotman (1979), Maclane (1963) and Cartan & Eilenberg (1956).

The functor Ext}: There is an alternative definition of Ext} using the so

called Baer sum. Let A and C be R-modules. T'wo short exact sequences

E:0—>A—tsB 90— 20 and E:0—eAt>B-2s0— >0

of R-modules and R-module homomorphisms starting with A and ending with C

are said to be equivalent if we have a commutative diagram

0—>A-1sB-2ec—>p
1Al wl 1cl
0—>A-Lop-LsCc—s0

with some R-module homomorphism 7/ : B — B’, where 14 : A — A and
lg : C —» C are identity maps. Denote by [E] the equivalence class of the
short exact sequence E. Exth(C,A) consists of all equivalence classes of short
exact sequences of R-modules and R-module homomorphisms starting with A and
ending with C. The addition in Ext;(C, A) is given by Baer sum. A bifunctor
Eztl : RMod x R-Mod — Ab is obtained along these lines. Denote Exth
shortly by Extz. See Maclane (1963, Ch. III).

Let A,C be R-modules. E €€ Extz(C, A) means that E is an element of an
element of the group Extr(C, A), that is the equivalence class [E] € Extr(C, A),

so it just means that E is a short exact sequence of R-modules starting with A
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and ending with C. If the underlying ring R is fixed, we just write Ext(C, A)
instead of Extr(C, A) when there is no ambiguity.

Note that when the ring R is commutative, Extg(C, A) has a natural R-
module structure for R-modules A,C. So, we have in this case a bifunctor
Ezt} : RMod X R-Mod — R-Mod.

The functor Ext%,: In a proper class P, we may not have enough injectives
and enough projectives, so it is not possible in this case to use derived functors
to give relative versions of Ext. But the alternative definition of Ext} may be

used in this case.

For a proper class P and R-modules A, C, denote by Exty(C, A) or shortly by
Extp(C, A), the equivalence classes of all short exact sequences in P which start
with A and end with C. This turns out to be a subgroup of Extg(C, A) and a
bifunctor Ext} : R-Mod x R-Mod — Ab is obtained which is a subfunctor of
Ext}h. See Maclane (1963, Ch. 12, §4-5). Alternatively, using such a subfunctor

will help to define a proper class.

The functor Ext%, n € Z* U {0}: Similar to the construction for Extp, by

considering long extensions

0 A B By XX B, o 0

with a suitable equivalence relation and addition gives us & bifunctor Extp :

R-Mod x R-Mod — Ab. See Maclane (1963, Ch. 12, §4-5).

Using these functors Ext, the global dimension of a proper class P is defined
as the smallest nonnegative integer n such that Ext®™(C, A) = 0 for all modules
A, C, but Ext}(C, A) # 0 for some modules A, C, if of course such an n exits;

otherwise it is set oo.
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2.2 Projectives, injectives, coprojectives and co-

injectives with respect to a proper class

Take a short exact sequence

E: 0—A->B 90— 50

of R-modules and R-module homomorphisms.

An R-module M is said to be projective with respect to the short exzact se-
quence [E, or with respect to the epimorphism g if any of the following equivalent

conditions holds:

1. every diagram

E: 0 AfB‘gC’ 0
N
&\\T”
M

where the first row is E and v : M — C is an R-module homomorphism
can be embedded in a commutative diagram by choosing an R-module ho-
momorphism 4 : M — B; that is, for every homomorphism v : M — C,

there exits a homomorphism 4 : M — B such that goy = 1.

2. The sequence
Hom(M,E): 0—= Hom(M, A)—> Hom(M, B)—2> Hom(M, C)—=0
is exact.

Dually, an R-module M is said to be injective with respect to the short ez-

act sequence E, or with respect to the monomorphism g if any of the following

equivalent conditions holds:
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1. every diagram

E: 0 Af/BgC' 0
ai’
s é
M

where the first row is E and o : A — M is an R-module homomorphism
can be embedded in a commutative diagram by choosing an R-module ho-
momorphism & : B — M; that is, for every homomorphism o : A — M,

there exists a homomorphism & : B — M such that &o f = a.

2. The sequence
Hom(E, M): 0— Hom(C, M)—L> Hom(B, M)~ Hom(A, M)—=0

is exact.

Denote by P a proper class of R-modules.

The following definitions have been given in Section 1.3. An R-module M is
said to be P-projective [P-injective] if it is projective [injective] with respect to
all short exact sequences in P. Denote all P-projective [P-injective] modules by
7(P) [(P)]. An R-module C is said to be P-coprojective if every short exact

sequence of R-modules and R-module homomorphisms of the form

E: 0—sA->B2s0—>0

ending with C is in the proper class P. An R-module A is said to be P-coinjective
if every short exact sequence of R-modules and R-module homomorphisms of the

form
E: 0—A-SsB2-0—>0

starting with A is in the proper class P.

Using the functor Extp, the P-projectives, P-injectives, P-coprojectives, P-
coinjectives are simply described as extreme ends for the subgroup Extp(C, A) <

Extr(C, A) being 0 or the whole of Extz(C, A):



26

1. An R -module C is P-projective if and only if
Extp(C, A) = 0 for all R-modules A.

2. An R -module C' is P-coprojective if and only if
Extp(C, A) = Extg(C, A) for all R-modules A.

3. An R -module A is P-injective if and only if
Extp(C, A) = 0 for all R-modules C.

4. An R -module A is P-coinjective if and only if
Extp(C, A) = Extg(C, A) for all R-modules C.

2.3 Projectively generated proper classes

For a given class M of modules, denote by 7—1(M) the class of all short exact
sequences E of R-modules and R-module homomorphisms such that Hom (M, E)
is exact for all M € M, that is,

7Y M) = {E € Absppoq| Hom(M, E) is exact for all M € M}.

n~1(M) is the largest proper class P for which each M € M is P-projective. It
is called the proper class projectively generated by M.

For a proper class P, the projective closure of P is the proper class 7~ (7 (P))
which contains P. If the projective closure of P is equal to itself, then it is said to

be projectively closed, and that occurs if and only if it is projectively generated.

A proper class P of R-modules is said to have enough projectives if for every
R-module M, there exists a P-projective P with a P-epimorphism P — M. A
proper class P of R-modules with enough projectives is also said to be a projective

proper class.
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Proposition 2.3.1. (Sklyarenko, 1978, Proposition 1.1) Every projective proper

class is projectively generated.

Let P be a proper class of R-modules. Direct sums of P-projective modules is

P-projective. Direct summand of an P-projective module is P-projective.

A proper class P is called [[-closed if for every collection {Ej}aea in P, the

product E = H E, is in P, too.
A€A

Proposition 2.3.2. (Sklyarenko, 1978, Proposition 1.2) Every projectively gen-

erated proper class is [[-closed.

A subclass M of a class M of modules is called a projective basis for M if
every module in M is a direct summand of a direct sum of modules in M and of

free modules.

Proposition 2.3.3. (Sklyarenko, 1978, Proposition 2.1) If M is a set, then the
proper class =1 (M) is projective, and M is a projective basis for the class of all

‘P-projective modules.

Even when M is not a set but:

Proposition 2.3.4. (Sklyarenko, 1978, Proposition 2.3) If M is a class of mod-
ules closed under passage to factor modules, then the proper class (M) is

projective, and M is a projective basis for the class of all P-projective modules.
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2.4 Injectively generated proper classes

For a given class M of modules, denote by +~1(M) the class of all short exact
sequences E of R-modules and R-module homomorphisms such that Hom(E, M)
is exact for all M € M, that is,

M) = {E € Absppod| Hom(E, M) is exact for all M € M}.

t"1(M) is the largest proper class P for which each M € M is P-injective. It is
called the proper class injectively generated by M.

For a proper class P, the injective closure of P is the proper class ¢71(¢(P))
which contains P. If the injective closure of P is equal to itself, then it is said to

be injectively closed, and that occurs if and only if it is injectively generated.

A proper class P of R-modules is said to have enough injectives if for every
R-module M, there exists a P-injective I with a P-monomorphism M — . A
proper class P of R-modules with enough injectives is also said to be an injective

proper class.

Proposition 2.4.1. (Sklyarenko, 1978, Proposition 8.1) Every injective proper

class is injectively generated.

Let P be a proper class of R-modules. Direct product of P-injective modules

is P-injective. Direct summand of an P-injective module is P-injective.

A proper class P is called @®-closed if for every collection {Ejx}rea in P, the

direct sum E = @]EA is in P, too.
A€A

Proposition 2.4.2. (Sklyarenko, 1978, Proposition 1.2) Every injectively gener-

ated proper class is ®-closed.
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An injective module is called elementary if it coincides with the injective en-
velope of some cyclic submodule. Such modules form a set and every injective
module can be embedded in a direct product of elementary injective modules

(Sklyarenko, 1978, Lemma 3.1).

A subclass M of a class M of modules is called an injective basis for M if
every module in M is a direct summand of a direct product of modules in M

and of certain elementary injective modules.

Proposition 2.4.3. (Sklyarenko, 1978, Proposition 8.3) If M is a set, then the
proper class .7+ (M) is injective, and M is an injective basis for the class of all

P-injective modules.

Even when M is not a set but:

Proposition 2.4.4. (Sklyarenko, 1978, Proposition 3.4) If M is a class of mod-
ules closed under taking submodules, then the proper class c™*(M) is injective,

and M is an injective basis for the class of all P-injective modules.

2.5 Flatly generated proper classes

When the ring R is not commutative, we must be careful with the sides for the
tensor product analogues of projectives and injectives with respect to a proper

class. Remember that by an R-module, we mean a left R-module.

Take a short exact sequence

E: 0—sA—2>B24-0—>0

of R-modules and R-module homomorphisms. We say that a right R-module M
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is flat with respect to the short exact sequence E, or with respect to the monomor-

phism g if
M®E: 0—-Me AT e B M @ C—>0

is exact.
Denote by P a proper class of R-modules.

A right R-module M is said to be P-flat if M is flat with respect to every short
exact sequence E € P, that is, M ® E is exact for every E in P. Denote all P-flat
right R-modules by 7(P). The class of all such modules is closed under direct
sums, direct limits, and direct summands. Hence it is natural to define a basis
for P-flat modules as a family from which each such module can be obtained by

these operations.

For a given class M of right R-modules, denote by 77(M) the class of all
short exact sequences E of R-modules and R-module homomorphisms such that

M ®E is exact for all M € M:
77 HM) = {E € Abspmo|M QE is exact for all M € M}.

771(M) is the largest proper class P of (left) R-modules for which each M € M
is P-flat. It is called the proper class flatly generated by the class M of right

R-modules.

When the ring R is commutative, there is no need to mention the sides of the
modules since a right R-module may also be considered as a left R-module and

vice versa.

Let M be a finitely presented R-module, that is, M & F/G for some finitely
generated free R-module F' and some finitely generated submodule G of F. So,
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we have a short exact sequence

0 G F M 0

Any short exact sequence

0 H F M 0

where F' is a finitely generated free module and H is a finitely generated module

is called a free presentation of M. An exact sequence

F” F M 0

where F' and F” are finitely generated free modules is also called a free presen-

tation of M. More generally, an exact sequence

PPt M0

where P, and P; are finitely generated projective modules will be called a presen-

tation of M. Apply Hom(—, R) to this presentation:
0—> Hom(M, R)—%> Hom(Py, R)——> Hom(P}, R)

Fill the right side of this sequence of right R-modules by the module F° :=
Hom(Py, R)/ Im(f*) to obtain the exact sequence

Hom(Py, R)—— Hom (P, R)—2>F° = Hom(P,, R)/ Im(f*)—=0, (2.5.1)

where o is the canonical epimorphism. For a finitely generated projective R-
module P, Hom(P, R) is a finitely generated projective right R-module. So
Hom(Py, R) and Hom(P;, R) are finitely generated projective modules, hence the
exact sequence (2.5.1) is a presentation for the finitely presented right module
F9 Note that the correspondence F — F©° is not one-to-one, for it depends
on the presentation of F. Also F can be interpreted as (F°)° (by taking a free
presentation of F). See Sklyarenko (1978, §5).
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Proposition 2.5.1. (Sklyarenko, 1978, Corollary 5.1) For any finitely presented
module F and any short exact sequence . of R-modules, the sequence Hom(F,E)

is exact if and only if the sequence F° @ E is ezact.

Using this:

Theorem 2.5.2. (Sklyarenko, 1978, Theorem 8.3) Let M be a set of finitely
presented R-modules. Associate with each F € M, the right R-module F° and
let M° be the set of all these F°. We may assume that (M°)° = M. Then

M) =7"Y(M®)  and TTHM) = 77I(MO)

Proposition 2.5.3. (Sklyarenko, 1978, Lemma 5.1) For any short exact sequence
E of R-modules, any right R-module M, the sequence M @ E s ezact if and only
if the sequence Hom(M,E*) is exact, where E* := Homgz(E, Q/Z).

A proper class P is said to be inductively closed if for every direct system
{E;(i € I);7l(i < 7)} in P, the direct limit E = UmE; is also in P (see Fedin
(1983) and Sklyarenko (1978, §8)). As in Fedin (1983), for a proper class P, denote
by ’ﬁ, the smallest inductively closed proper class containing ’P;.it is called the

inductive closure of P.

Since tensor product and direct limit commutes, a flatly generated proper class

is inductively closed; moreover:

Theorem 2.5.4. (Sklyarenko, 1978, Theorem 8.1) For a given class M of right
R-modules, the proper class T—1(M) is inductively closed. It is injectively gener-
ated, and if M is a set, then it is an injective proper class. A short ezact sequence
E belongs to T-(M) if and only if E* € m~1(M), where E* := Homgz(E, Q/Z).
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2.6 Coinjective and coprojective modules with
respect to a projectively or injectively gen-

erated proper class

Throughout this section let P be a proper class of R-modules.

Proposition 2.6.1. (Sklyarenko, 1978, Proposition 9.1) The intersection of the
classes of all P-projective modules and P-coprojective modules coincides with the

class of all projective R-modules.

Proposition 2.6.2. (Sklyarenko, 1978, Proposition 9.2) The intersection of the
classes of all P-injective modules and P-coinjective modules is the class of all

injective R-modules.

Proposition 2.6.3. (Sklyarenko, 1978, Proposition 9.3)

(i) If P is injectively closed, then every direct sum of P-coinjective modules is

P-coinjective.

(it) If P is [[-closed, then every product of P-coinjective modules is P-coinjec-

tive.

(i) If P is @-closed, then every direct sum of P-coprojective modules is P-

coprojective.

Proposition 2.6.4. (Sklyarenko, 1978, Proposition 9.4) If P is injectively gen-
erated, then for an R-module C, the condition ExtL(C, J) = 0 for all P-injective

J is equivalent to C being P-coprojective. -

More directly:

Proposition 2.6.5. If P = 1 1(M) for a class M of modules, then for an R-
module C, the condition Exth(C, M) = 0 for all M € M is equivalent to C, being

‘P-coprojective.
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Proof. Suppose C is a P-coprojective module. Let M € M. Take an element
[E] € Exth(C, M):

E: 0—M B o 0

Since C is P-coprojective, E € P. Then E splits because M, being an element of
M, is P-injective as P = 1~ (M). Hence [E] = 0 as required. Thus Ext,(C, M) =
0.

Conversely, suppose for an R-module C, Exty(C, M) = 0 for all M € M.
Take any short exact sequence E of R-modules ending with C:

E: 0 A B C 0

Applying Hom(—, M), we obtain the following exact sequence by the long exact

sequence connecting Hom and Ext:
0— Hom(C, M)~ Hom(B, M)— Hom(A, M)— ExthL(C, M) =0
So Hom(E, M) is exact for every M € M. This means E € .7}(M) = P. O

Proposition 2.6.6. (Sklyarenko, 1978, Proposition 9.5) If P is projectively gen-
erated, then for an R-module A, the condition ExthL(P, A) = 0 for all P-projective

P is equivalent to A being P-coinjective.

More directly:

Proposition 2.6.7. If P = 7=1(M) for a class M of modules, then for an R-
module A, the condition Extyr(M, A) = 0 for all M € M is equivalent to A being

P-coinjective.

Proof. Suppose A is a P-coinjective module. Let M € M. Take an element
[E] € ExtL(M, A):
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Since A is P-coinjective, E € P. Then E splits because M, being an element of M,
is P-projective as P = 7~1(M). Hence [E] = 0 as required. Thus Exty(M, 4) =
0.

Conversely, suppose for an R-module A, Exth(M, A) = 0 for all M € M. Take

any short exact sequence [E of R-modules starting with A:

E: 0 A B C 0

Applying Hom(M, —), we obtain the following exact sequence by the long exact

sequence connecting Hom and Ext:
0—> Hom(M, A)— Hom(M, B)— Hom(M, C)— Extx(M, A) = 0

So Hom (M, E) is exact for every M € M. This means E € 771(M) = P. 0



CHAPTER THREE
THE PROPER CLASSES RELATED TO
COMPLEMENTS AND SUPPLEMENTS

The proper classes Complgimod, SUpPlrMod, Neataioq and CoNeatriog of
R-modules can be defined more generally in suitable abelian categories (Section
3.1). In fact, we will not deal with general abelian categories; our main focus
is on the category R-Mod for an arbitrary ring R. The proper class Neatgrioq
contains the proper class Complraog (Section 3.2). Equality holds if and only if R
is a left C-ring (Section 3.3). Examples for C-rings and some properties of them
are given in Section 3.3. The injectively generated proper class CoNeatgatod
defined dually to Neatraoq contains Supplrpatoq; & submodule A of a module
B is coneat in B if and only if there exists a submodule K < B such that
A+K - B and ANK < Rad A, which is a weakened form of being a supplement
(Section 3.4). For R-modules A and C, Extconeatnioq(CyA) has been described
in Section 3.5 like the description of Extsuppipa..(C,A) in Generalov (1983). In
a module with finite uniform dimension (=Goldie dimension), there is a criterion
for a submodule to be a complement via its uniform dimension, and in a module
with finite hollow dimension (=dual Goldie dimension), there is a criterion for a
submodule to be a supplement via its hollow dimension (Section 3.6). It is well
known that Complr.aeg-coinjective modules are only injective modules; dually, if
Rad R = 0, Supplramod-coprojective modules are only projective modules (Section
3.7). Properties of Supplramoq and CoNeatpiiog Over some rings like left quasi-

duo rings, left max rings, semilocal rings and left perfect rings are dealt with in

36
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Section 3.8.

3.1 Comply, Supply, Neat, and CoNeat, for a

suitable abelian category A

Let A be an abelian category (see for example Maclane (1963, Ch. 9, §1-2), or
Enochs & Jenda (2000, §1.3) for the definition of abelian categories).

The class Compl 4 consists of all short exact sequences

0—=A—L>B—2-0—>0 (3.1.1)

in A such that A is a complement of some subobject K of B, that is ANK =0

and K is maximal with respect to this.

The class Neat 4 consists of all short exact sequences (3.1.1) in A such that
every simple object is a relative projective for it, where an object S is called

simple if it has no subobjects except 0 and S, denoted by,
Neats =17 ({S € A|S simple}).

Theorem 3.1.1. (Stenstrém, 1967b, Propositons 4-6) Let A be an abelian cate-
gory in which every object M has an injective envelope E(M) (for any subobject
L of M, E(L) is considered as a well-defined subobject of E(M)). Then:

(i) Compl and Neat, form proper classes.
(i) Comply C Neat 4.

(iii) If M is a class of objects in A such that for every A # 0 in A, there exists
a monomorphism M — A for some M # 0 in M, then

731 (M) C Compl .
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Stenstrom (1967b, Remark after Proposition 6) points out that the proper
class Suppl4 can also be defined. Similarly CoNeat4 may be defined. But as we

said in the introduction, we will not deal with these generalizations.

3.2 The proper class Neatriiod

We will firstly see an element wise criterion for being a N eatgaog-submodule
like in abelian groups. In abelian groups, for a subgroup A of the group B,
the inclusion A — B is a 7 1({Z/pZ|p prime})-monomorphism if and only if
ANpB = pA for all prime numbers p, i.e. A is a neat subgroup of B. This result

holds because:

Proposition 3.2.1. (by Warfield (1969, Proposition 2)) For an element r in o

ring R, the following are equivalent for a short exact sequence

E:  0—>A-4.B 2. 0- ,0

of R-modules and R-module homomorphisms where A is a submodule of B and

i4 s the inclusion map:

(i) Hom(R/Rr, B)—2>Hom(R/Rr,C) is epic (i.e. R/Rr is projective relative
to the short ezact sequence E)

lp/~r®ia

(i) R/[rRQ A

short ezact sequence E)

R/rR® B is monic (i.e. R/rR is flat relative to the

(iii) ANrB =rA.

The equivalence of the last two assertions for the principal right ideal R holds
for any right ideal I:
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Proposition 3.2.2. (Sklyarenko, 1978, Lemma 6.1) Let A be a submodule of an
R-module B and i4 : A — B be the inclusion map. For a right ideal I of R,
ANIB = IA if and only if

1r/1®ia

R/II®A R/I® B

18 Monic.

For a not necessarily principal ideal I of R, a criterion for R/I to be projective
with respect to a short exact sequence is obtained using the following elementary

lemma:

Lemma 3.2.3. (see for example Fuchs & Salce (2001, Lemma 1.8.4) or Ski-
yarenko (1978, Lemma 1.2, without proof)) Suppose

0 A B—>(C 0

1 F

0 Ay By Cy 0

is a commutative diagram of modules and module homomorphisms with exact
rows. Then, B can be lifted to a homomorphism Cy — B if and only if o can be
extended to a map By — A, that is, there exists B : Cy — B such that go B=8

if and only if there exists & : By — A such that G o f; = a:

0 A

f1

Proposition 3.2.4. For a left ideal I in o ring R, the following are equivalent

for a short exact sequence

E: 0—A4B 90— >0

of R-modules and R-module homomorphisms where A is a submodule of B and

i4 18 the inclusion map:
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(i) Hom(R/I, B)—>Hom(R/I,C) is epic (i.e. R/I is projective relative to

the short exact sequence E)

() For every b € B, if Ib < A, then there ezists a € A such that I(b—a) = 0.

Proof. (i)=-(ii): Let b € B be such that /b < A. Then we can define a.: [ — A
by a(r) =rbforeach r € I, asrb € A for r € I. Also define o/ : R — B by
o(r) =rbforeach r € R. Then a(r) =o/(r)forallr € I. Let fy: I — R
be the inclusion map and g; : R — R/I be the canonical epimorphism. Define
B : R/I — C by B(r +1I) = g(c/(r)). Since, by our hypothesis (i), R/I is
projective with respect to E, there exists B : R/I — B such that go g = 5.
Then by Lemma, 3.2.3, there exists & : R — A such that Go f; = a:

0—=A-4-B-—2 . 0

%, .. O
aT Oa T"" ,3 Tﬁ

0 I = R/I 0

Let a = @&(1) € A. Then, for each r € I,
rb = a(r) = &(fi(r)) = a(r) = ra(l) = ra.

So,r(b—a)=0forall r € I, i.e. I(b —a) =0 as required.

(i)=>(i): Let 8 : R/I — C be a given homomorphism. Let f; : I — R be
the inclusion map aﬁd g1 : R — R/I be the canonical epimorphism. Since R is
projective, there exists o : R — B such that god =fog;. Sod/(I) <Kerg=
Im(is) = A, hence we can define o : I — A by a(r) = o/(r) for each r € I. Let
b= c/(1). Then for each r € R, o/(r) =rb. So, a(I) = Ib < A and hence, by our
hypothesis (ii), there exists a € A such that I(b— a) = 0, that is, for each r € I,
rb = ra. Define & : R — A by &(r) = ra for each r € R. Then & o f; = a, and
by Lemma 3.2.3, there exists a homomorphism B : R/I — B such that go 8 =B,
see just the above diagram. This proves that Hom(R/I, B)—Z> Hom(R/I,C) is
epic. (]
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With this criterion we observe that:

Corollary 3.2.5. For a short ezact sequence

E: 0—A-%>B-2>0— 0

of R-modules where A is a submodule of B and 14 is the inclusion map, the

following are equivalent:

(i) E € Neatppea = X ({R/P|P mazimal left ideal of R}),

(i) For every mazimal left ideal P of R, for every b € B, if Pb < A, then there
ezists a € A such that P(b— a) = 0.

Proposition 3.2.6. Let A be a complement of a submodule K in the R-module
B and P be a maximal left ideal of R. If Pb < A for someb € B, thenbec A® K,
sob=a+k for somea € A, k€ K and

P(b—a)=0.

Proof. If b € A, we are done. Assume b€ A. Asb¢ A, A+ Rb z A, so since A

is a complement of K in B,
0#(A+Rb)NK.
Hence there exist some o’ € A,u € R, k' € K such that
0#d +ub=F.

Here u can not be in P because otherwise ub € A which would imply 0 # &' =
a +ube AN K =0, a contradiction. So necessarily v ¢ P. Then, since P is a
maximal ideal of R,

P+ Ru=R.

So p+ su =1 for some p € P, s € R. Hence:

b=1b= (p+su)b=pb+sub = sub=">b—pb.
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Since o’ + ub = k', multiplying by s, we obtain

' R et !
sa’+ sub =8k = b=-—sd+ pb + k' €c Ad K.
=b—pb cA cA €K
Sob=a+k for some a € A, k € K. For each g € P,

gb = gqa + gk = qb=qa and 0 = gk as we have direct sum A G K
o S S
€A €A €K
So we obtain gk = 0 for every ¢ € P, hence Pk = 0, where b~a =k € K and

a € A O

This proposition also gives a proof of Theorem 3.1.1-(ii) for R-modules:
Corollary 3.2.7. (Stenstrom, 1967b, by Proposition 5) For any ring R,
Complrpod C N eat ratod-

Proof. Another proof may be given just by showing that every short exact se-

quence

E: 0—A-J1sB-4-5—>0
in Complgaoq splits if S is a simple module. Without loss of generality, assume
A is a submodule of B and f is the inclusion homomorphism. Since A is a
complement in B, it is closed there and since B/A &2 S # 0, A is a proper closed
submodule of B. So A is not essential in B, hence there exists a nonzero module
K in B such that AN K = 0. Since K # 0, there exists 0 # k € K which is
not in A as AN K = 0. Since B/A & § is simple, it is generated by any nonzero
element. Hence B/A = R(k + A), which implies B = A + Rk. Since AN K =0,
AN Rk =0, too. So, B= A ® Rk, and the sequence I splits. O

3.3 C-rings

Proposition 3.3.1. (Stenstrém, 19676, Corollary to Proposition 8) If R s a
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commutative Noetherian ring in which every nonzero prime tdeal is mazimal,
then

Complrmos = Neatgatod-

Generalov (1978) gives a characterization of this equality in terms of the ring
R: Equality holds if and only if R is a left C-ring. The notion of C-ring has been
introduced by Renault (1964): A ring R is said to be a left C-ring if for every (left)
R-module B and for every essential proper submodule A of B, Soc(B/A) # 0,
that is B/A has a simple submodule. Similarly right C-rings are defined.

Theorem 3.3.2. (by Generalov (1978, Theorem 5)) For a ring R,
Complraod = N eatrmod if and only if R is a left C-ring.

Proof. (=): Let B be an R-module and A an essential proper submodule of B.
So A is not closed in B as it has a proper essential extension, so not a complement
in B (as complement submodules and closed submodules are the samé). Since
Complrieq = N eat paod, this shows that A is not a Neatpaoa-submodule of B.
Then by Corollary 3.2.5, there exists a maximal left ideal P of R and an element
b € B such that Pb < A but P(b—a) # 0 for every a € A. Then the cyclic
submodule R(b+ A) of B/A is simple as R(b+ A) = R/P since Pb< A, b¢g A
(because if b were in A, then P(b—b) = 0 would hold, contradicting P(b—a) # 0
for every o € A) and P is a maximal left ideal of R.

(<): Let B be an R-module and A a Neatgiog-submodule of B. Let K be
a complement of A in B and let A’ be a complement of K in B containing A.
Then it is easily seen that A < A’. Suppose for the contrary that A # A’. Since
R is a C-ring, there exists a simple submodule S of A’/A. Say S = R(a’+ A) for
some a' € A’. As S is simple, S & R/P for some maximal left ideal P of R. Then
Pa’ < A. Since A is a Neatgaog-submodule of B, there exists a € A such that
P(a' — a) = 0 by Corollary 3.2.5. Consider the cyclic submodule R(a’ — a) of A".

Since S = R(a' + A) = R((a’ — a) + A) is simple (so nonzero), we cannot have
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Ra—a)=0. As A< A, R(d’—a)NA#0. Let I = {r € R|r(a' —a) € A}.
Then R(a’—a)NA = I(a’—a). Since P(a'—a) =0< A, P<I<R Sol=Por
I = R as P is a maximal left ideal of R. But both cases leads to a contradiction:
If I =P,then0+# R(a'—a)NA=Pld —a)=0. If I = R, then 1 € I implies
d—a=1(a"—a) € A, s00+# S = R((a' —a)+ A) = 0. This contradiction shows

that we must have A = A’, hence A is a complement in B. O

So for a left C-ring R, we know Complgamoa-projectives by Proposition 2.3.4
for projectively generated classes (by classes of modules closed under passage to

factor modules):

Corollary 3.3.3. If R is a C-ring, then a module A is in w(Complpaoed) =
m(Neatramod) if and only if A is a direct summand of a direct sum of free modules

and simple modules.

Before giving examples of C-rings, let’s firstly give equivalent conditions for

being a C-ring:

Proposition 3.3.4. (by Renault (1964, Proposition 1.2)) For a ring R, the fol-

lowing are equivalent:
(i) R is a left C-ring,
(ii) For every essential proper left ideal I of R, Soc(R/I) # 0,

(iii) For every essential proper left ideal I of R, there exist r € R such that the
left annihilator Annby(r + 1) = {s € R|s(r +I) = 0} = {s € R|sr € I} of
the element r + I in the left R-module R/I is a mazimal left ideal of R.

Proof. (i)&(ii) is Renault (1964, Proposition 1.2).
(ii)=>(iii): Since Soc(R/I) # 0, there exists a simple (cyclic) submodule S =
R(r+1) of R/I for some r € R. Since S = R(r +I) = R/ Annk(r +I) is simple,
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Annk(r + I) is a maximal left ideal of R.
(it))=(ii): R(r+I) = R/ Annk(r+1I) is a simple submodule of R/ since Annl(r+
I) is a maximal left ideal of R. So Soc(R/I) # 0. O

A ring R is said to be left semi-artinian if Soc(R/I) # 0 for every proper left
ideal I of R. So a left semi-artinian ring is clearly a left C-ring by Proposition
3.3.4.

Left Noetherian C-rings are:

Proposition 3.3.5. (Renault, 1964, Corollary to Theorem 1.2) For a left Noethe-

rian ring R, the following are equivalent:
(i) R is a left C-ring,

(ii) For every essential (proper) left ideal I of R, the left R-module R/I has
finite length.

A Dedekind domain is a C-ring (see Proposition 5.1.6). So a PID is also a
C-ring. More generally:

Proposition 3.3.6. A commutative Noetherian ring in which every Nonzero

prime ideal is mazimal is a C-ring.

Proof. Let R be such a ring. By Proposition 3.3.5, we need to show that for every
essential proper ideal I of R, the R-module R/I has finite length. A module has
finite length if and only if it is Noetherian and Artinian. So, R/ has finite length
if and only if it is Noetherian and Artinian. R/I is Noetherian as R is so. Note
that we have assumed that R is commutative, so R/ is also a commutative ring.
Clearly, R/I is a Noetherian ring. Similarly, R/I is Artinian as a left E-module
if and only R/I is Artinian as a commutative ring. By, for example Atiyah &

Macdonald (1969, Theorem 8.5), a commutative ring is Artinian if and only if it
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is Noetherian and its Krull dimension is 0 (i.e. every prime ideal is maximal).
I # 0 since I is an essential ideal of R. Every prime ideal of R/I is of the form
P/I where P is a prime ideal of R such that 0 # I < P. Since we assume that
every nonzero prime ideal is maximal, P must be a maximal ideal of R. This
shows that R/I has Krull dimension 0. Since it is also Noetherian, it is Artinian

as required. O

A Dedekind domain is a commutative hereditary (and Noetherian) domain.
If we take a hereditary Noetherian ring which is not necessarily commutative
or a domain but the hereditary and Noetherian conditions are left and right

symmetric, then such a ring is also a left (and right) C-ring:

Proposition 3.3.7. (McConnell & Robson, 2001, 5.4.5 Proposition) Let R be
a left and right Noetherian, and, left and right hereditary ring. Then for every
essential (proper) left ideal I of R, the left R-module R/I has finite length.

So, by Proposition 3.3.5,

Corollary 3.3.8. A left and right Noetherian, and, left and right hereditary ring
is a left (and right) C-ring.

For commutative domains:

Proposition 3.3.9. A commutative domain R is a C-ring if and only if every

nonzero torsion R-module has a simple submodule.

Proof. Firstly, note that in a commutative domain R, every nonzero ideal is
essential.

(=): Let M be a nonzero torsion module. Since M # 0, there exists 0 # m € M.
Since M is torsion, there exits 0 # r € R such that rm = 0. So, Rm = R/I for

some nonzero proper ideal I of R, namely I = {s € R|sm = 0}. Hence Rm has
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a simple submodule since Soc(R/I) # 0 as R is a C-ring (by Proposition 3.3.4).
(«<): By Proposition 3.3.4, it suffices to show that Soc(R/I) # 0 for every nonzero
proper ideal I of R. This follows since R/I is a torsion module, so has a simple
submodule. O

Commutative domains R such that every nonzero torsion R-module has a
simple submodule have been considered in Enochs & Jenda (2000, §4.4). See
page 58 for Enochs & Jenda (2000, (1)<(3) in Theorem 4.4.1).

Proposition 3.3.10. (by Enochs & Jenda (2000, Remark 4.4.2))

(i) If R is a commutative Noetherian domain which is not a field, then R is a
C-ring if and only if its Krull dimension is 1, that is every nonzero prime

ideal is mazimal.

(it) If R is a commutative local domain with mazimal ideal M, then R is a
C-ring if and only if for every sequence (a;)32, of elements of M and every

ideal I < R, a1a5...a, € I for somen > 1.

3.4 The proper class Co-Neatpitod

Generalov (1983) gives some results for the proper class Supplratoq to be injective
and not to be injective. For a left maz ring R (that is a ring in which every
(left) R-module has small radical, equivalently every R-module has a maximal
submodule), Supplrpaod is injective by Generalov (1983, Theorem 4). A ring R
is said to be a left B-domain if it is a left duo ring (that is, all of its left ideals
are two-sided ideals) which is a left hereditary domain. For example a PID or a
Dedekind domain is a B-domain. For a B-domain R which is not a division ring,

Supplrmod is not an injective proper class by Generalov (1983, Proposition 5),
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that is does not have enough Supplpaes-injectives. Generalov (1983, Corollary 6)
uses this to prove that for a Dedekind domain W which is not a field, the inclusion
Supplw-mod g Complw_pmoq is strict. Over a left Noetherian left hereditary ring
R, Generalov (1983, Theorems 5-6) describes Supplgaog-injective modules. The
proper class Co-N eat paoq, defined in Section 1.9.1, will help in dealing with these

results also:
CoNeatppos = ¢ ({M|Rad M = 0, M an R-module}).

Firstly, the proper class CoNeatrmoq is an injectively generated proper class

containing Supplraod:
Proposition 3.4.1. For any ring R,
Supplrpos € CoNeatrppoq C ¢ ({all (semi-)simple R-modules})

Proof. Let M be an R-module such that Rad M = 0. To prove the first inclusion

it suffices to show that any short exact sequence

E: 0—>M—>B20—>0

in Supplraoq splits. Since E € Supplpmod, Im(f), call it M’, is a supplement in
B; so there exists a submodule K of B such that M’ is a supplement of K in B,

hence
M+K=Band MnNnK<« M

AAsMNK < M, MNK CRadM 2 RadM =0, so MNK = 0. Thus
B = M'@® K, hence the sequence E splits.
The last inclusion holds since for a semisimple module M, Rad M = 0. O

The criterion for being a coneat submodule is like being a supplement in the

following weaker sense:

Proposition 3.4.2. For a submodule A of a module B, the following are equiv-

alent:
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(i) A is coneat in B,
(i) There exists a submodule K < B such that (K > Rad A and,)

A+K=B and ANK =RadA.

(iii) There exists a submodule K < B such that

A+K=B and ANK <RadA.

Proof. Let E be the following short exact sequence of R-modules:

E: 0—>A-%-B—2.B/A— 0,

where 44 is the inclusion homomorphism and g is the natural epimorphism.

(i)=(ii): Since A/Rad A has zero radical, it is injective with respect to the
short exact sequence E € CoNeatraoq, 50 the natural epimorphism ¢ : A —
A/Rad A can be extended to a map h: B — A/Rad A:

0 A—4 ~B— > B/A—>0

Ve
al -
7
L7 h

A/Rad A
So this h induces a homomorphism &' : B/Rad A — A/ Rad A such that

h'(a+Rad A) = a + Rad A.

Hence the short exact sequence

0—A/Rad A—%>B/Rad A—B/A——0

splits, where ¢/, is the inclusion homomorphism, and we obtain for some submod-
ule K of B containing Rad A

B/Rad A= A/Rad A® K/Rad A.

So A+ K=Band ANK = Rad A.

(ii)=-(iii) is trivial.



50

(iii)=-(ii) follows by taking K + Rad A instead of K.
(ii)=>(i): We have,

B/Rad A= A/Rad A® K/Rad A.

This gives us a homomorphism h : B — A/Rad A such that h(a) = a + Rad A
for every a € A.

To show that E is in CoNeatraog, We must show that every module M
with Rad M = 0 is injective with respect to the short exact sequence E. So let
f: A — M Dbe a given homomorphism, where Rad M = 0. Then f(Rad A) <
Rad(f(A)) < Rad M = 0, hence Rad A < Ker(f), so the map f factors through
the canonical epimorphism o : A — A/Rad A: f = f’ o o for some homomor-
phism f’: A/JRad A — M. But then we can use the above homomorphism
h:B — A/Rad A to define the map ' : B — M as b’ = f’ o h which satisfies

h|a = f: Follow the commutative diagram:

t4 B BJ/A——=0

A Ve
\ £7h

f A/Rad A
I-//f,

M

CoNeatpaoq is an injective proper class (i.e. it has enough injectives) by
Proposition 2.4.4 since {M|Rad M = 0, M an R-module} is a class of modules

closed under taking submodules, or more directly:

Proposition 3.4.3. Given an R-module A, denote by E(A) the injective envelope
of A. Then the monomorphism
f:A — E(A)®(A/RadA)
z — (z,z+RadA)
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is a CoN eatpaoq-monomorphism and E(A)® (A/ Rad A) is CoN eat g aoq-injec-

tive.

Proof. Like in the proof of Proposition 3.4.2, (iii)=-(i), since from the module
B :=E(A) @ (A/Rad A), we clearly have a projection B — A/ Rad A and any
map A — M, with Rad M = 0, factors through A — A/ Rad A. ]

Corollary 3.4.4. An R-module M is CoN eatrpmog-injective if and only if it is a
direct summand of a module of the form E® A, where E is an injective R-module
and A is an R-module with Rad A = 0.

Proof. (<) is clear since a module with zero radical is CoN eatgaoq-injective,
and injective modules are of course CoN eatgpaog-injective.

(=): By Proposition 3.4.3, we can embed any R-module M as a CoNeatrmod-
submodule into a CoNeatpaog-injective module of the form E & A; where F is

an injective B-module and A is an R-module with Rad A = 0:
M< ,E®A and E®AisCoNeatgmoa-injective.

If M is a CoNeatgpog-injective R-module, then M is a direct summand of £ @
A. [

Proposition 3.4.5. Let A be a submodule of a module B and suppose
Rad A K A.
Then, A is coneat in B if and only if it is a supplement in B.

Proof. (<) always holds by Proposition 3.4.1. Conversely, suppose A is coneat
in B. Then by Proposition 3.4.2, there exist a submodule K of B such that

A+K=B and ANK =RadA.

Since Rad A € A, AN K « A, so that A is a supplement (of K) in B. O
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Corollary 3.4.6. Let A be a submodule of a module B.
Suppose A is finitely generated or Rad A = 0.

Then, A is coneat in B if and only if it is a supplement in B.

Proof. Follows from Proposition 3.4.5, since when A is finitely generated, Rad A <«
A (and when Rad A = 0, Rad A < A clearly). a

3.5 Extconeat R-Mod

Generalov (1983, Proposition 2, Lemma 4, Theorem 2, Corollaries 2-4) has de-
scribed the subgroup Extsyppigiwe(C)A) of Extg(C, A) for R-modules A,C as

follows:

Theorem 3.5.1. (Generalov, 1983, Corollary 3) Given R-modules A and C, take
a short exzact sequence E of R-modules and R-module homomorphisms such that
E ends with C and its middle term is projective, that is, E €€ Extg(C, H) for

some R-module H such that

E: 0—sH-1sP- 2.0 0,

where P is a projective module. Then,
EXtSUpleMod(O) A) = Ag (HOIIE;;(H ) A)) )

where
Homp(H, A) = {a € Homp(H, 4)| Im(c) < A},

and

Ag : Homp(H,A) — Extg(C,A)

a — [oF]
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is the connecting homomorphism sending each o: € Hompg(H, A) to the equivalence

class of the pushout olE of E along a:

E: (P P I S
Y
GE: O0—>A-->0——>C—>0

Since being a coneat submodule criterion is like being a supplement (Propo-
sition 3.4.2), following similar steps as in Generalov (1983), we will describe
Im&

Exteoneatpaes(C:A). Instead of Homg(H, A), the following will appear for any
R-modules H and A:

Im<Rad

HOHa (H, A) = {a € Homp(H, A)| Im(c) < Rad A}.

Proposition 3.5.2. Given R-modules A and C, and any R-module H, toke a
short ezact sequence E €€ Extgr(C, H), say,

E: 0—>H-L-G—4>C—>0.
Consider the connecting homomorphism Ag : Homg(H, A) — Extg(C, A) cor-

responding to this short exact sequence E. Then,

Im<Rad

Ag (HomR (H, 4)) < Bxtcontsatnps(C: A):

Im<Rad

Proof. Let o € Hompy (H, A) and consider the pushout olE of E along a:

E: 0 H G 0
| e
ok : 0 A—>B—>C 0
f g

For simplicity, let us suppose that H and A are submodules of G and B, and f, f/

are inclusion homomorphisms. By properties of the pushout, we see that

A+B@G)=B and AnNBG) = a(H).
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Since Im(a) < Rad A, we have for K := §(G) < B,
A+K=B and ANK=ca(H)<RadA.
Then, by Proposition 3.4.2, A is coneat in B. O

Proposition 3.5.3. Given R-modules A and C, and any R-modules H and H’,
let E €€ Extg(C, H) and E' €€ Extg(C, H") be such that

E: 0—>H-1-G-2+C—0,

E: 0—H-1eg-L 00,

and ' is projective with respect to the short ezact sequence E.

Consider the connecting homomorphisms Ag : Homg(H, A) — Extg(C, A) and
Ag : Homp(H', A) — Extg(C, A) corresponding to these short exact sequences
E and E'. Then:

Im<Rad

Ax (Hé‘i‘ﬁ;“(ﬂ, A)) < Ag (HomR (H’,A)) .

If G is also projective with respect to the short exact sequence E', then

Im<Rad

As (B (7, A)) = Ag (HomR :d A)) .

Im<Rad

Proof. Take a € Homp (H, A) and consider the pushout aE of E along a. As G’
is projective with respect to E, the first two rows in the following diagram have

been filled commutatively by the maps 8 and 7:

B - 0—p Lo -Lec—sg
I
E: 0 g T g ‘c]* 0
ol : 0 A e C 0
g

Im<Rad

Then for o = a0 3, & € Homy (H’,A). By commutativity of the diagram, olE
is a pushout of E’ along o/; so oE and o'E’ are equivalent short exact sequences,

hence
Ag(a) = [oE] = [¢'E] = Ar ().
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The last claim of the lemma follows by changing the roles of E and E'. a

Proposition 3.5.4. For R-modules A and C,

Exteoneatnmes(GA) = | Au (HOHL (H, 4)),
H<Rad A,
[]E] €Extg (C:H )

where the union is over all submodules H of Rad A and all representative short
ezact sequences B of elements of Extg(C, H), and for each such short ezact se-
quence E, Ag : Homp(H, A) — Extg(C, A) is the connecting homomorphism

corresponding to E.

Proof. ‘2’ follows from Proposition 3.5.2. To prove the converse, let E; €€
Extconeatnaos(Cs A):

E,: 0—sA—1sB24o0— 0

For simplicity, suppose A is a submodule of B and f is the inclusion homomor-
phism. As A is coneat in B, by Proposition 3.4.2, there exits a submodule K of
B such that

A+ K=B and ANK <RadA.

Let H=ANK. Then H < Rad A and since
K/H=K/ANK = (A+K)/[A=B/A=C,

we obtain a short exact sequence E €€ Extr(C, H), and the following commuta-

tive diagram:

E. 0o—H-To kLo —0
I
E,=daE: 0 A ! B—>C 0

where the maps o : H — A and 8 : K — B are inclusion homomorphisms. This

means E; is a pushout of [E along a, so [E;] = Ag(e); since o(H) = H < Rad 4,

Im<Rad

a € Homy (H,A) as required. O
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From the last two propositions, we obtain:

Theorem 3.5.5. Given R-modules A and C, take a short exact sequence E of
R-modules and R-module homomorphisms such that E ends with C and its middle

term is projective, that is, E €€ Extg(C, H) for some R-module H such that

E: 0—>H-1sp 9.0 -0,

where P is a projective module. Then,
Exteoeatnpoa(Cs 4) = O (Hotg (H, 4))

where Ag : Homg(H, A) — Extg(C, A) is the connecting homomorphism corre-

sponding to E (as for example described in Theorem 3.5.1).

3.6 Criterion for complements and supplements
via Goldie dimension (uniform dimension)
and dual Goldie dimension (hollow dimen-

sion)

For Goldie dimension (uniform dimension) and dual Goldie dimension (hollow
dimension), see for example (Facchini, 1998, §2.6-2.8) or Lomp (1996, Chapters
2-3). We denote the uniform dimension and hollow dimension of a module M by

u.dim M and h.dim M respectively.

When considering complements in modules with finite uniform dimension (Goldie

dimension), we have the following criterion:

Theorem 3.6.1. (Dung et al., 1994, 5.10 (1)) Let B be a module with finite

uniform dimension (Goldie dimension) (denoted by u.dim B < o0). Then a
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submodule A of B is a complement in B (closed in B) if and only if A and B/A

have finite uniform dimension and

u.dim B = u.dim A + u. dim(B/A).

Dually for supplements in modules with finite hollow dimension, we have:

Theorem 3.6.2. (Lomp, 1996, Corollary 3.2.3) Let B be a module with finite
hollow dimension (dual Goldie dimension) (denoted by h.dim B < o). Then a
submodule A of B is a supplement in B if and only if A and B/A have finite

hollow dimension and

h.dim B = h. dim A + h. dim(B/A).

3.7 Coinjectives and coprojectives with respect

to Complriioqa and Supplriod

In Erdogan (2004), Complrmod-coinjective modules have been called absolutely
complement modules and Complramoeq-coprojective modules have been called ab-
solutely co-complement modules. Similarly, Supplraeqa-coinjective modules have
been called absolutely supplement modules and Supplratoa-coprojective modules
have been called absolutely co-supplement modules in Erdogan (2004). For some

properties of these modules, see Erdogan (2004, Chapters 3-4).

Remember the construction of an injective envelope of a module. It is seen
from this construction that a module is injective if and only if it has no proper
essential extension, that is, it is a closed submodule of every module containing it
(see for example Maclane (1963, Proposition II1.11.2)). Since closed submodules

and complement submodules of a module coincide, that means the following:
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Theorem 3.7.1. (by Erdodan (2004, Proposition 4.1.4)) Complgamod-coinjective

modules are only injective modules.

Dually, Supplroeq-coprojectives are only projectives if the ring R has zero

Jacobson radical:

Theorem 3.7.2. If Rad R = 0, then Supplra.q-coprojective modules are only

projective modules.

Proof. Suppose M is a Supplrmoq-coprojective module. There exists an epimor-
phism g : F — M from a free module F'. So, for H := Ker g and f the inclusion

homomorphism, we obtain the following short exact sequence

E: O—s>H-1oF 2opf—sp

Since M is Supplpaoa-coprojective, E is in Supplpatoq. So, H is a supplement
in F. Clearly, Rad H < Rad F. Since Rad F' = JF for J := Rad R, the Jacobson
radical of R (by for example Lam (2001, Proposition 24.6-(3))), we obtain that
Rad F =0 as J = 0 by our assumption. Hence Rad H = 0. Then the short exact
sequence E € Supplramoq splits since modules with zero radical are Supplpatod-
injective by Proposition 3.4.1. Then, F & H @ M, and so M is also a projective
module. O

This proof, in fact, gives the following:

Theorem 3.7.3. If Rad R = 0, then CoNeatraoq-coprojective modules are only

projective modules.

In Enochs & Jenda (2000, (1)<>(3) in Theorem 4.4.1), it is shown that for a

commutative domain R, the following are equivalent:

(i) Every torsion R-module has a simple submodule,



59

(ii) A module E is injective if and only if Exth(S, E) = 0 for all simple modules
S.

By Proposition 3.3.9, the first condition is equivalent to R being C-ring. The

following result generalizes (i)=>(ii) above:

Proposition 3.7.4. For a left C-ring R, an R module M 1is injective if and only
if Exth(S, M) = 0 for all simple R-modules S.

Proof. Since R is a C-ring, by Theorem 3.3.2, the proper class Complraog is
projectively generated by all simple modules:

Complppod = Neatamog = ™ ({R/P|P maximal left ideal of R})

Let A be an R-module. By Proposition 2.6.7, A is Complgaoeq-coinjective if
and only if Exth(S, A) = 0 for all simple modules S. By Theorem 3.7.1, A is

Complg moeq-coinjective if and only if A is injective. O

3.8  Supplpreg and CoNeatppi,g OVer some classes

of rings

A ring R is said to be a left quasi-duo ring if each mazimal left ideal is a two-sided

ideal.

Lemma 3.8.1. (Generalov, 1988, Lemma 3) Let R be a left quasi-duo ring. Then

for each module M,
RedM = () PM,

P < gR

mae.

where the intersection is over all mazimal left ideals of R.
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Proposition'3.8.2. Let R be a left quasi-duo ring. Then,
CoNeatrmos C 77 ({R/P|P mazimal left ideal of R})

Proof. The proof is the proof in Generalov (1983, Proposition 1) where it has

been shown that
Supplpmos € 77 H({R/P|P maximal left ideal of R}).
Take a short exact sequence E € CoNeatraiod:

E: 0—sA—1sB 90— >0

Without loss of generality, suppose that A is a submodule of B and f is the
inclusion homomorphism. So A is a coneat submodule of the module B. By
Proposition 3.2.2, to end the proof it suffices to show that ANPB = PA for each
maximal left ideal P of R.

As A <,,,B, by Proposition 3.4.2, there exists a submodule K of B such that
A+ K =B and AN K < Rad A. Then,

ANPB

ANPA+K)<ANn(PA+PK)=PA+ANPK
< PA+ANK<PA+RadA=PA,

where the last equality follows from Lemma 3.8.1, since each maximal left ideal
is assumed to be a two-sided ideal. So AN PB < PA, and since the converse is

clear, we obtain AN PB = PA as required. a

A ring R is a left maz ring R if Rad M <« M for all (left) R-modules M,

equivalently every R-module M has a maximal submodule.
Proposition 3.8.3. For a left maz ring R, Supplraoed = CoN eatgaod-

Proof. Follows from Proposition 3.4.5. O

Proposition 3.8.4. (Generalov, 1983, Proposition 4) Let R be a ring that can
be embedded in an R-module S such that Rad S = R. Then:
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(1) For each module M, there exists a module H such that Rad H = M.

(it) If, in addition, the R-module S/ R is semisimple, then an essential extension
H of the module M such that H/M 1is a semisimple module can be taken
such that Rad H = M.

A module M is said to be a small module if it is a small submodule of a module
containing it, equivalently if it is a small submodule of its injective envelope. See

Leonard (1966) for small modules.

A ring R is said to be a left small ring if R, considered as a (left) R-module,
is a small R-module, equivalently R is small in its injective envelope E(R). It is
noted in Lomp (2000, Proposition 3.3) that a ring R is left small, if and only if,
Rad E = E for every injective R-module E, if and only if, Rad E(R) = E(R).

Proposition 3.8.5. (Generalov, 1983, Corollary 5) If R is a ring that can be
embedded in an R-module S such that Rad S = R and S/R is a semisimple R-
module (and R 1is essential in S), then R is a left small ring, so RadE = E
for every injective R-module E and in particular no injective R-module is finitely

generated.

Proposition 3.8.6. A left quasi-duo domain which is not a division ring is a left

small ring.

Proof. Let R be left quasi-duo domain which is not a division ring and E be
an injective R-module. Since E is injective, it is also a divisible R-module (by
for example Cohn (2002, Proposition 4.7.8)). Since R is not a division ring, any
maximal left ideal P of R is nonzero and so PE = E as F is divisible. By Lemma
3.8.1,

RadE= (| PE= ()| E=E.

P < gpR P < grR

mak. mazx.
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A ring R is said to be semilocal if R/ Rad R is a semisimple ring, that is a left
(and right) semisimple R-module. See for example (Lam, 2001, §20). Such rings
are also called as rings semisimple modulo its radical as in Anderson & Fuller
(1992, in §15, pp. 170-172).

Theorem 3.8.7. If R is a semilocal ring, then
CoNeatraos = ¢ ({all (semi-)simple R-modules}).

Proof. For any ring R, the left side is contained in the right side by Proposition
3.4.1. We prove equality for a semilocal ring B. By Anderson & Fuller (1992,
Corollary 15.18), for every R-module A, A/Rad A is semisimple. So every R-
module M with Rad M = 0 is semisimple. Conversely, every semisimple R-

module has zero radical (for any ring R). Hence,
{M|Rad M = 0, M an R-module} = { all semisimple R-modules }.
So,

CoNeatrmos = t*({M|Rad M =0, M an R-module})
= 7 }({ all semisimple R-modules }).

The reason for the equality
1({all semisimple R-modules}) = :~*({all simple R-modules})

comes from the characterization of semilocal rings in Anderson & Fuller (1992,
Proposition 15.17): every product of simple left R-modules is semisimple. Denote
"1 ({all semisimple R-modules}) shortly by P and ¢~*({all simple R-modules})
shortly by P’. Clearly P C P’. Conversely, it suffices to show that every semisim-
ple R-module M is injective with respect to the proper class P’. Since M is a
semisimple R-module, M = @, Sx for some index set A and simple submod-
ules Sy of M. Then M < N := [],c Sx. The right side NV is also a semisimple
R-module (by Anderson & Fuller (1992, Proposition 15.17)). So its submodule M
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is a direct summand of N. But N, being a product of simple modules which are
injective with respect to the proper class P’, is injective with respect to proper

class P’. Then so is its direct summand M as required. [

By characterization of left perfect rings as in for example Anderson & Fuller
(1992, Theorem 28.4), a ring R is left perfect if and only if R is a semilocal left

max ring. So:

Corollary 3.8.8. For a left perfect ring R,
Supplrmoq = CoNeatpatoq = ¢ ({all (semi-)simple R-modules}).

Proof. Since a left perfect ring R is a semilocal left max ring, the result follows

from Theorem 3.8.7 and Proposition 3.8.3. O



CHAPTER FOUR
COMPLEMENTS AND SUPPLEMENTS
IN ABELIAN GROUPS

The proper class N eatzaoq is one of the motivating ideas for the proper classes
we are dealing with (Section 4.1). We will see in Section 4.1 that a supplement
in an abelian group is a complement (neat) in that group. In a finitely generated
abelian group, there is a criterion for a subgroup to be a complement via uniform
dimension, and in a finite abelian group, there is a criterion for a subgroup to be
a supplement via hollow dimension (Section 4.2). In Section 4.3, we will see that
finite subgroups which are complements are supplements. The inductive closure of
the proper class Supplzatoq is Complz g = N eatzaoq (Section 4.4). The functor
Extsuppizioe 18 1ot factorizable (Section 4.5). The proper class CoNeatzaoq is
strictly between Supplzaoq and Complzaoa = Neatzaoa (Sections 4.3 and 4.6).
We will also see in Section 4.6 that for a torsion group, neat subgroups and coneat
subgroups coincide. Complz si.4-coprojectives are only torsion-free abelian groups

(Section 4.7).

64
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4.1 The proper class Neatzpod

As mentioned in the first chapter, the following result is one of the motivations

for us to deal with complements and its dual supplements:

Theorem 4.1.1. The proper class Complgpoq = Neatzioq 48 projectively gen-
erated, flatly generated and injectively generated by simple groups Z/pZ, p prime

number:

Complgpmos = Neatzaos = 7 ({Z/pZ|p prime})
= 7' ({Z/pZlp prime}) = o ({Z/pZlp prime}).

Proof. The first equality has been pointed out in Harrison et al. (1963, after
Definition 3 in §4); more generally, the equality of the first and third proper classes
above will follow from Stenstrém (1967b, Corollary to Proposition 8) or Generalov
(1978, Theorem 5). The second and third equalities follow from Proposition 3.2.1,
since this proposition gives for the ring Z and prime number p that for & short

exact sequence

E: 0—>A—L-B2-0—>0 (4.1.1)

of abelian groups and homomorphisms, Hom(Z/pZ,E) is exact if and only if
Z/pZ ® E is exact if and only if Im(f) NpB = pIm(f), i.e. Im(f) is a neat
subgroup of B.

So, it remains only to prove Neatzmos = ¢~ ({Z/pZ|p prime}). (C) part
follows from Harrison et al. (1963, Lemma 4 in §4 ) (as it implies in particular
that every simple group Z/pZ (p prime), is Neatzmoq-injective); as proved there,
this follows because if a simple group Z/pZ is neat in a group, then it is pure
there, so being of bounded order, it is a direct summand. The proof of (D) part
(and also (C) part) is done in Bilhan (1995, Theorem 7). To prove the (2) (as
in Bithan (1995, Theorem 7)), take a short exact sequence E of the form (4.1.1)
in t7Y({Z/pZ]|p prime}), where we can suppose without loss of generality that A
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is a subgroup of B and f is the inclusion map. Suppose for the contrary E is not
in Neatzaoq, i-6. A is not a neat subgroup of B. Hence, there exists a prime
number p such that A N pB = pA, so there exists an element a € (ANpB) \ pA.
By Zorn’s lemma, the collection of subgroups {D < A|pA < D and a & D} (# 0
as it contains A N pB) has a maximal element with respect to inclusion, say M.
So, pA < M, a ¢ M and M is maximal with respect to this property. Since,
p(A/M) = 0, A/M is a direct sum of simple groups each isomorphic to Z/pZ.
By maximality of M, this sum must consist of just one term, i.e. A/M = Z/pZ.
Since E € +"Y({Z/qZ|q prime}), A/M is injective with respect to the short exact
sequence [E, hence for the canonical epimorphism ¢ : A — A/M, there exists a
homomorphism % : B — A/M such that ¢ o f = o, so ¥(z) = z + M for all
z € A. But then we have,

0#a+M=1v(a) e p(ANpB) < P(pB) = py(B) < p(A/M) =0,

which gives the required contradiction. [

So in this case we know Complzaoeq-projectives and Complyzaoq-injectives as
it is given gemerally for projectively generated and injectively generated proper

classes:

Corollary 4.1.2. A group A is in m(Complzmea) = T(Neatzroad) if and only
if A is a (direct summand of a) direct sum of cyclic groups of infinite order or

prime order.

Proof. For such a projectively generated class, we know by Proposition 2.3.3 or
2.3.4 that a group is a relative projective for the proper class Complzaoqg =
Neatzpoq if it is a direct summand of a direct sum of cyclic groups of infinite
order or prime order. By a special theorem for abelian groups, Fuchs (1970,
Theorem 18.1), a direct summand of a direct sum of cyclic groups (of prime order
or infinite order) must be again a direct sum of cyclic groups. We can assume

that in this direct sum, finite cyclic groups have also been expanded as a direct



67

sum of cyclic groups of prime power order. But in our case these cyclic groups

must again have prime order or must be of infinite order. O

For a torsion group A4,

A= P 4,

P prime

where for each prime p, A, is the p-primary component of A consisting of all
elements of A whose order is a power of the prime p (see for example Fuchs
(1970, Theorem 8.4)).

A cocyclic group is a group isomorphic to Z/p*Z, p prime number and k €
Z* or the Priifer (divisible) group Zye, p prime (see Fuchs (1970, §3) for this
notion dual to cyclic). The Prifer group Zy~ is the abelian group generated by
a sequence of elements cg, ¢y, ¢y, ... such that pe, = ¢,_; for every n € Z* and

pcg = 0. Its subgroups form a chain:
0<Zcy<Zcy <Zcy <+ <Ulicp—y <Lty <+ Lo,

where each subgroup Zc, & Z/p""Z is a cyclic group of order p"*!. The Priifer
group Zye is isomorphic to the p-primary component of the torsion group Q/Z;
this p-primary component is generated by all z% +Z, ke Z":

Q/z= P @z, =P (G Z(;},;+Z)) = P Zpo

p prime p-primary component p prime \k=1 prime

(see for example Fuchs (1970, Example 2 after Theorem 8.4 at p. 43)). The
injective envelope of Z/p*Z is Zyeo for any prime p and k € Z*.

Proposition 4.1.3. (Harrison et al., 1963, Lemma 4 in §4) A group A is in

{Complypod) = t(Neatzmod), if and only if, A is a direct summand of direct

product of cyclic groups of prime order (& Z/pZ, p prime) and of infinite cocyclic

groups (= Zpe, p prime), and of groups isomorphic to Q, if and only i,
A=Deo [] T,

p prime
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where D is a divisible subgroup of A and for each prime p, the subgroups T, of
A satisfies pT, = 0 (so each Ty is a direct sum of simple groups isomorphic to
Z[pZ)-

Proof. Proposition 2.4.3 gives the general description of relative injectives for a
proper class injectively generated by a set of modules (or by Proposition 2.4.4).
In our case, an elementary injective Z-module is the injective envelope (=divisible
hull) of a cyclic group. The divisible hull of the infinite cyclic group Z is Q. A
finite cyclic group is a finite direct sum of cyclic groups of prime power order,
so its divisible hull is the finite direct sum of the injective hulls of those cyclic
groups of prime power order, which are infinite cocyclic groups. This proves the
first ‘if and only if’.

The last statement gives the characterization of neat-injective abelian groups
(i.e. Neatzpmoa-injective abelian groups) given by Harrison et al. (1963, Lemma 4
in §4). Note, of course that, it gives much more information about the structure

of neat-injective abelian groups. O

An interesting result for abelian groups with a one line proof using proper

classes, but a direct proof of which seems not available, is that:

Theorem 4.1.4. A supplement in an abelian group is a complement:
Supplzmod € Complz mod-

Proof. Supplzmoed C ¢ ({Z/pZ|p prime}) = Neatzroda = Complzpoa

Here the first inclusion follows from Proposition 3.4.1. O

Proposition 4.1.5. (Fuchs, 1970, Ezercise 53.4) (by Nunke (1959, Theorem
5.1), see Theorem 5.2.8) For the proper class C = Complg poq = Neatzmod,

Exte(C,4) = [ pExt(C,A).

p prime
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4.2 Complements and supplements in abelian
groups via uniform dimension and hollow

dimension

In a finitely generated abelian group, to determine whether a (finitely generated)
subgroup is a complement or not, we can use the criterion Theorem 3.6.1 for
complements in modules with finite uniform dimension. A finitely generated
abelian group, being a direct sum of cyclic groups of infinite or prime power
order, has finite uniform dimension which is the number of summands in such
a direct sum decomposition because u.dimZ = 1 = u.dimZ/p*Z for a prime
number p and k € Z*, and u. dim is additive on finite direct sums. So a subgroup
A of a finitely generated abelian group is a complement if and only if u.dim B =

u.dim A + u. dim B/A, or in terms of short exact sequences:

Proposition 4.2.1. For a finitely generated abelian group B, a short eract se-

quence

0 A B C 0

of abelian groups and homomorphisms is in Complz s = Neatzamoq if and only
if
u.dim B = u.dim A + u. dim C.

For cyclic groups of prime power order, h. dim Z/p*Z = 1 for p prime and & €
Z*, but h.dimZ = oco. Z/p*Z, being a uniserial Z-module, is both uniform and
hollow but Z, although uniform, does not have finite hollow dimension. Among
finitely generated abelian groups only the torsion ones (i.e. finite groups) has
finite hollow dimension which is the number of summands in its decomposition

as a direct sum of cyclic groups of prime power order. So, by Theorem 3.6.2:
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Corollary 4.2.2. For a finite abelian group B, a short ezact sequence

0 A B o 0

of abelian groups and homomorphisms is in Supplzamoeq if and only if

h.dimB=h.dimA +h.dimC.

4.3 Finite subgroups which are complements are

supplements

We look for some converse results to Theorem 4.1.4, that is when is a complement
also a supplement? We will give an example of a complement in a finitely gener-
ated abelian group which is not a supplement. We will see that finite subgroups

of a group which are complements in that group are also supplements.

Firstly, let us take a finite nonzero p-group A, where p is a prime number.
By the fundamental theorem for the structure of the finitely generated abelian
groups, we know that A is isomorphic to a finite direct sum of cyclic groups of
order a power of p: For some positive integers n, k1, ka, . . . , kn,

n
Az P/

i=1
Then considered as a Z-module, Rad A is the Frattini subgroup of A and as 4 is
a p-group, for a prime q # p, g4 = A, so

RadA= [ ¢4 =pA

g prime

Hence,

A/Rad A = é(Z/pkiZ) /(L[ = é 7./ 9.

3=1 i=1
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is a finite direct sum of simple modules. Suppose A is a neat subgroup of a group
B, so we have a neat monomorphism (inclusion map) 0 — A — B, i.e. the

short exact sequence

E: 0—>A—>B—>B/A—>0

is in Complzaog = Neatgaog. Since A/Rad A is a finite direct sum of simple
groups, it is injective with respect to the short exact sequence E by Theorem 4.1.1.
Thus there exists a homomorphism h : B — A/ Rad A such that ho{ = o, that
is, h(a) =a+Rad A for all ¢ € A:

0 A——>B—>B/A—0
| A
A/Rad A

Here ¢ is the inclusion map and o is the canonical epimorphism. So this 4 induces a
homomorphism %’ : B/ Rad A — A/ Rad A such that h'(a+Rad 4) = a+Rad 4,

hence the short exact sequence

0—>A/Rad A-"*~B/Rad A—>B/A—0
splits and we obtain for some subgroup A’ of B containing Rad A
B/Rad A= A/Rad A® A’/ Rad A.

So A+ A = Band ANA = RadA. As A = @I, Z/p%7Z, RadA = pA =
@, pZ/P"Z and as for i = 1,2,...,n, pZ/p%Z < Z/p*7Z, we obtain Rad A <«
A. Hence AN A’ < A, so A is a supplement of A’ in B. The above argument
gives that if a complement in an abelian group is a finite p-group, then it is a

supplement. Of course, the same argument works for any finite group.

Theorem 4.3.1. Let A be a finite subgroup of an abelian group B. Then A is a

complement in B if and only if it is a supplement in B.

Proof. (<) always holds (for any subgroup A) by Theorem 4.1.4. Conversely

suppose A # 0 is a complement in B. The proof goes as the same with the
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arguments given for a p-group before the theorem. We only need to show that
A/Rad A is a direct sum of simple groups and Rad A <« A. But these are clear,
since A, being a finite group, is a finite direct sum of cyclic groups of prime power
order. W

In the proof of this theorem, note that as A, being finite, is finitely generated,
we clearly have Rad A <« A. But to have that A/Rad A is a direct sum of
simple groups, being finitely generated is not enough; for example, the group Z
is finitely generated, RadZ = 0 <« Z, but Z/RadZ = Z is not a direct sum
of simple abelian groups. Really, we can not generalize this theorem to include

finitely generated abelian groups as the following example shows.

Example 4.3.2. The following short exact sequence of abelian groups is in

Complyaoq = Neatzog but it is not in CoNeatzaiod, 50 also not in Supplzpod:

E: 0—>Z—1>(Z)pZ) ® Z—~7/p?Z—0

where f(k) = k- (—1+pZ,p), k € Z, and g(a+ pZ,b) = (pa+0b) +p*Z, a,b € Z.
Firstly, E is in Complzaeq by Corollary 4.2.1, as

w.dim((Z/pZ) ® Z) = 2 = 1+ 1 = u.dim(Z) + v. dim(Z/p*Z).

It is not in CoNeatzuog because if it were, then it would split as Rad(Z) = 0.
But we cannot have this since it would imply (Z/pZ) ® Z = Z @ (Z/p*Z) which
cannot hold by the uniqueness of the cyclic factors of infinite or prime power
order in a finitely generated abelian group up to isomorphism.

In fact, this example is obtained through the following considerations which
make it clear. Denote Complzatog, Supplzaoq and CoN eatzaoq shortly by C, S
and cN respectively. Ext(Z/p*Z, Z) = Z/p*Z (see for example Fuchs (1970, §52)
for details on elementary properties of Extz). By Proposition 4.1.5,

Extc(Z/p*Z, L) = Rad(Ext(Z/p*Z, 7)) = Rad(Z/p*L) = pZ[p°Z # 0.
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But Extey(Z/p*Z, Z) = 0 because any short exact sequence

0—>Z—> B—7/p?Z—0

in e\ splits since RadZ = 0. Note that, since Supplzioqg S CoNeatzpig by
Proposition 3.4.1, Exts(Z/p*Z,Z) = 0, too. So a short exact sequence

E €€ Extc(Z/p*Z,Z) = pZ/p*Z # 0

which is not splitting (i.e. the equivalence class of which is a nonzero element in
Extc(Z/p*Z,Z)) will give the example we look for. In fact, in the isomorphism
Ext(Z/p*Z,Z) = 7./p*Z, a generator for the cyclic group Ext(Z/p?Z, Z) of order

p? can be taken as the equivalence class [F] of the following short exact sequence

F: 0—2Z—>Z—>Z[p*Z—>0

where u is multiplication by p? and v is the canonical epimorphism. The example
E above is in the equivalence class p[F] whose representative can be taken as the

short exact sequence denoted by pF which is obtained by pushout:

F: 0 7 “ % 2 Z/p*L.—(
|
h | |
f Y g Y
E=pF: 0-->Z-=>(Z/pL)®ZL->>Z[p*Z-—->0

where h : Z — Z is multiplication by p, i.e. h(k) = pk, k € Z, and f,g are

found to be given as in the beginning of the example by pushout computations.

Corollary 4.3.3. CoNeatzpos & Complzaoq and Supplz.pod & Complygpod-

Proof. Supplzpeq € CoNeatzaos C 1 H{Z/pZlp prime}) = Complz poa-
The first two inclusions follow from Proposition 3.4.1 and the last equality follows
from Theorem 4.1.1. The second inclusion is strict by the previous Example

4.3.2. a
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4.4 The inductive closure of the proper class

Supplzpod is Complzpods = N eatzpod

We will use the following two lemmas in proving this claim; these lemmas say
that each Z/p"Z, p prime and integer n > 2, and the Priifer group Zy~ are not
flat with respect to the proper class Supplzamod, i-e. not in 7(Supplzpoq). In the
proofs of these lemmas, we use elementary properties of tensor product of abelian
groups; for these properties, see for example Fuchs (1970, §59-60). We use the

following natural isomorphism a few times:

Proposition 4.4.1. (Fuchs, 1970, §59, property H) For every positive integer m

and abelian group C, we have a natural isomorphism
Y :C®(Z/mZ) — C/mC
such that for k € Z and c € C,
P(c® (k+ mZ)) = ke +mC.

Lemma 4.4.2. Let p be a prime number and n > 2 an integer. Z/p™Z is not

flat with respect to following short exact sequence in Supplzsod:
E:  0——Z/p"Z—~(2/pZ) ® (Z/p*L)—1/p"Z—>0,
where

flk+9"2) = (k+0Z, kp™ ' +p™'2), kE€LZ,
gla+pZ,b+p*'Z) = (b—ap" ) +2"Z, a,bELZ.

Proof. Firstly, E is in Complz ameq by Proposition 4.2.1, as

w. dim((Z/pZ) @ (Z/p"'Z)) = 2 = u. dim(Z/p"Z) + u. dim(Z/p"Z).
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As Z/p"Z is finite, this sequence E is in Supplzaoq by Theorem 4.3.1. Tensoring
E with Z/p™Z, we do not obtain a monomorphism f ® lz/mz (Where lz/pmgz :

Z[p"Z — Z/p™Z is the identity map). Because, the element
(1+2"Z)® (p+p"Z) # 0 in (Z/p"Z) ® (Z/p"Z)
as it corresponds, under the natural isomorphism
(Z/p"Z) ® (Z/p"L) = Z[p"Z,

to the element p + p"Z 5 0 in Z/p"Z as n. > 2 (see Proposition 4.4.1). But

(f ® lagpmz) (1 +2"Z) ® (p +p"Z)) = (1 + pZ,p" " + ™" Z) ® (p + p"Z)
= (14+9%,0) ® (p+p"Z) + (0,p"* +p*"'Z) ® (p + p"Z)
= (p+pZ,0) ® (1 +p"Z) + (0,1 + p*'Z) ® (p" + p"Z)
=0® (1+p"Z)+ (0,1 +p™'Z)®0=0+0=0

O

We want to find a Supplz aeg-monomorphism with respect to which Zye is not
flat. Since Supplziea € Complzsmoed = Neatzmod, we must search it through
Neatzpoq-monomorphisms. It is known that there are enough neat-injectives;
more precisely it is shown in Harrison et al. (1963, Lemma 5) that for a group X,

if we embed X into a divisible group D, then the homomorphism

X — De [] X/pX)

p prime

z - (z (33+PX)pprime)

is a Meatzptos-monomorphism and D @ [T, e (X/pX) is Neatzmos-injective.

Motivated by such considerations the following example is found:

Lemma 4.4.3. Let p be a prime. Denote by Q all rational numbers and by Qy

the additive subgroup of Q consisting all rational numbers whose denominators
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are relatively prime to p. Then the monomorphism

[ Qp—"(@@(@p/p@p)
f(z)=(z,z+pQp), z€Q

18 a Supplz moda-monomorphism and the Prifer group Zy- is not flat with respect

to this monomorphism.

Proof. Denote by Q®), the subgroup of Q consisting of all rational numbers whose
denominators are powers of the prime p. Observe that Q, + Q® = Q and
Q,NQP =2Z.

Also note that pQ, +Z = Q,: For a/b € Qp, a,b € Z, b # 0, p 1 b, as the
greatest common divisor of p and b is 1, there exits u,v € Z such that pu+bv ~ 1,
so a/b = p(ua/b) + va € pQ, + Z.

Our claim is that Im(f) is a supplement of Q® & 0 in Q & (Q,/pQy).

1. Im(f) + (Q® @ 0) = Q& (Qp/2Qy).
Really for an element (y,z +pQ,) € Q@ (Qp/pQy), where y € Q, 2z € Qp,
as Qp+Q(p) =Q,y =u+vfor some u € Q, and v € QW®. Since
Q, =pQ +Z, u =pu +k and z = pz’ + n for some v',2’ € Q, and
k,n € Z. So, z + pQ, = n + pQ, = (pu’ + n) + pQy, hence,

(y, 2 +pQp) = (pv' + 7, (pu' + 1) +pQp) +(v+ & — 1,0+ pQp)
=f(pu/+n)
is in Im(f) + (Q® @ 0) as v+ k —n € QP since Z C Q® and v € Q@.

2. Im(f) N (Q® ©0) = [(pQ,) NQP] ® 0 = (pZ) ® 0 < Im(/)
where the smallness in the end is obtained as follows:
Rad(Q) = [ 9Q=7Q
g prime
as Q, is ¢-divisible for each prime ¢ # p and pZ < pQ,, being a cyclic
subgroup of the radical, is small in Q,; hence, f(pZ) < f(Qp) = Im(f).
But f(pZ) =pZ & 0.



77

To prove that Zye is not flat with respect to this Supplz poq-monomorphism, we
will show that Qp ® Zyw is not 0, while (Q @ (Qp/pQp)) & Zyeo = 0.

[Q® (Qp/PQp)] ® Zipe = (Q® Zye) © [(Qp/PpQyp) ® Zipeo] = 0
because Q®Zy = 0 as Q is divisible and Zye is torsion, and (Q,/pQp) @Zpe = 0

as Qp/pQy is torsion and Zpe is divisible.

To prove that Qp ® Zy» # 0, we will show that the element 1 ® ¢ # 0 in
Qp ® Zyw, where we consider Z,-~ to be generated by a sequence of elements
Co, C1,Cg, - - . such that pcg = 0 and pe, = c,—1 for each integer n > 1 (look at
page 67 for the Priifer (divisible) group Zpe). Suppose for the contrary that
1®cy =0 in Q, ® Zyw. Then by properties of tensor product (see for example
Fuchs (1970, Exercise 59.7), or Atiyah & Macdonald (1969, Corollary 2.13)),
we know that there exists a finitely generated subgroup A < @, and a finitely
generated subgroup B < Zpe such that 1 € A, ¢ € Band 1 ® ¢y =01in A® B,
so also 1® ¢y =0 in Q, ® B. Since B # 0 is finitely generated, B = Zc,, for some
integer n > 0, so B & Z/p™+*Z. Note that under this isomorphism ¢, corresponds

to 1 +p"*1Z and cq = p"c, corresponds to p™ + p"t'Z. We have then,
Q® B Q, ® (Z/p""'Z) = Qp/p" ' Qy,

where the second isomorphism is the natural isomorphism as described in Propo-
sition 4.4.1. Under these isomorphisms 1 ® ¢ = 0 in Q, ® B corresponds to
" +p"1Q, in Qp/p"Q, which is not zero and this gives the required contra-
diction. O

Theorem 4.4.4. The inductive closure of the proper class Supplzsod s

Complzmod = Ne€atz pod-

Proof. Denote Complzaoq shortly by C and Supplzateq shortly by S. Let S be the
inductive closure of S. By a remarkable theorem for abelian groups (Manovcev

(1975), Kuz’'minov (1976), Sklyarenko (1981), Sklyarenko (1978, Theorem 8.2
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(without proof))), every inductively closed proper class of abelian groups is flatly

generated by some subcollection 2 of
{Z/p*Z|p prime and k € Z*} U {Zyw|p prime}

So the inductively closed class S = 7~1(Q2) for some such collection . To show
that S = C , it will suffice to show that in the collection 2, we can have only
Z/pZ, p prime. But that follows from the previous lemmas as each Z/p"Z, p
prime and integer n > 2, and Zy~ are not in 7(S), so also are not in (8).
Since C is inductively closed (as it is flatly generated by {Z/pZ|p prime}, by
Theorem 4.1.1) and § € C by Theorem 5.2.1, we have ScC C, so, of course, all
Z/pZ for each prime p is in £} and we obtain that Q = {Z/pZ|p prime}. Hence

~

§=r1q)=cC. O

4.5 The functor Extsyy, ., is not factorizable

For a proper class P of R-modules, let us say that Extp is factorizable as
RMod x R-Mod =% Ab— Ab,

if it is a composition H o Extp for some functor H : Ab — Ab: the diagram

Eztp

RMod x RMod ———— > Ab
% %
Ab

is commutative, that is, for all R-modules 4,C,

Eti(C, A) = H(EXtR(O, A))

When the ring R is commutative, since the functor Extp can be considered to

have range R-Mod, we say that Extp is factorizable as

Eztp

R-Mod x R-Mod — R-Mod — R-Mod ,
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if it is a composition H o Extg for some functor H : R-Mod — R-Mod: the

diagram
R:Mod x R-Mod Eatp R-Mod
% /
R-Mod

is commutative, that is, for all R-modules A, C,

Extp(C, A) = H(Extgr(C, A)).

For the ring R = Z, since we identify the categories Ab and Z-Mod, both the
above two definitions coincide so that for a proper class P of Z-modules (abelian

groups), we just say that Extp is factorizable in the above cases.

Example 4.5.1. Let U : Ab — Ab be the Ulm functor which associates to each
abelian group A, its Ulm subgroup U(A) = ﬂ nA. Extpyres ..., 15 denoted by

n=1

Pext in Fuchs (1970, §53) and by Nunke (1959, Theorem 5.1), it is shown that
for abelian groups A, C,

Extpure o (Cr A) = Pext(C, A) = (| nExtz(C, A) = U(Extz(C; 4)).

n=1

Thus, Extpyre, .4 18 factorizable.

Example 4.5.2. Denote Complzpog = Neatzaoq shortly by C. Consider the
functor Rad : Ab — Ab which associates with each abelian group A, its Frattini
subgroup (which is its radical as Z-module and which equals) Rad(A) = ﬂ pA.

p prime

Then by Proposition 4.1.5, since

EXtc(O, A) = n pEth(C, A) = Ra’d(EXtZ(O; A)):

p prime

Exte is factorizable.

But the proper classes Supplzaoq behaves badly in this sense:
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Theorem 4.5.3. The functor Extsuppi, 4,4 %5 DOt factorizable as

Exty, H

Z-Mod x Z-Mod — Ab —— Ab

for any functor H : Ab — Ab on the category of abelian groups.

Proof. Denote Complz ioq and Supplzieq shortly by C and S respectively. Sup-
pose for the contrary that Exts is factorizable, so that there exits a functor
H : Ab — Ab such that for all abelian groups A4, C,

Exts(C, A) = H(Extz(C, A)).

In Example 4.3.2, we have found that Exts(Z/p*Z,Z) = 0. As Ext(Z/p’Z,Z) =
Z/p*Z, this implies that H(Z/p?Z) = 0. But also Ext(Z/p*Z, Z/p*Z) = Z[p*Z
and as Z/p?Z is a finite group, by Theorem 4.3.1,

Exts(Z/p’Z,Z/p*Z) = Extc(Z/p*Z,7/0°Z)
= Rad(Extz(Z/p’Z, Z/p"Z)) = p(Z[p*Z) # 0.

So in this case H(Z/p*Z) must be nonzero. This contradiction ends the proof. I

4.6 The proper class CoNeatziioq

The proper class CoN eatzaiog is between Supplzaoq and Complz aroq:

Proposition 4.6.1.

Supplzsoq C CoNeatzaoa C ¢ ({Z/pZ)p prime})

= N eatz mod = COmply pmod

Proof. The first two inclusions follow from Proposition 3.4.1. The last two equal-

ities follow from Theorem 4.1.1. O
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The above inclusions are strict. To prove this, we will follow mainly the proofs
in Generalov (1983, Theorems 6-7, Propositions 4-5) for the particular ring Z,
which simplifies some steps and for which some missing steps in Generalov (1983,
proofs of Theorem 6 and Proposition 5) are easily done. After two lemmas, we
will give an example of a CoN eatzaioq-monomorphism which is not a Supplzrod-

monomorphism.

Lemma 4.6.2. (by Generalov (1983, Theorem 7, Proposition 4, Corollary 5))
For the submodule S := z Z% < Q of the Z-module Q of rational numbers,

P prime
we have:

(i) S/Z = Soc(Q/Z) is a semisimple Z-module.

(ii) Rad S = Z.
(iii) For the countably generated free Z-module F := @ Z, take the Z-module
ieZt
A= @ S. Then Rad A= F and A/Rad A is a semisimple Z-module.
i€zt

Proof. (i) See page 67 for the decomposition of Q/Z; from this decomposition,
it is seen that Soc(Q/Z) = S/Z.

(ii) Since S/Z is semisimple, Rad(S/Z) = 0. Hence Rad S < Z clearly. For any
prime ¢, ¢S = q }: Z% > qZ% =7Z. SoRad S = ﬂ qS > 7Z. Thus,

p prime g prime

Rad S =Z.

(iti) Rad A = @,ez+ RedS = @yps Z = F and A/Rad A = @, 4:(S/Z) is

semisimple. 0

Lemma 4.6.3. (Leonard, 1966, after Corollary to Theorem 2, p. 528) The count-
ably generated free Z-module F := @ Z is not a small Z-module.

i€Z+
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Proof. Since the Z-module Q is countably generated, there exists an epimorphism
g : F — Q from the free Z-module F := @Z. Let H := Kerg. Then

iczZt

F/H = Q.

By Leonard (1966, Lemma 6), F' is not a small Z-module since F/H ~Qisa
nonzero injective module (also pointed out in Leonard (1966, after Corollary to
Theorem 2, p. 528)). In fact, this is simply because if F' is a small module,
then F' is small in its injective envelope E(F') by Leonard (1966, Theorem 1). So,
the quotient module F/H is small in E(F)/H. But since F/H = Q is injective,
F/H is a direct summand of E(F)/H which contradicts with F/H being small
in E(F)/H. O

Example 4.6.4. (by Generalov (1983, Proposition 5)) Consider the Z-modules
F=@Pz<A=Ps<PQ=E®4),
i€Z+ ieZ+t iez+
where § = z Z% < Q, Rad A = F and E(A) denotes the injective envelope

p prime

of A. Then the monomorphism

f:A — E(A)® (A/RadA)
z + (z,z+RadA)

is a CoN eaty p.qg-monomorphism but not a Supplzaeq-monomorphism. So
Supplzmod # CoNeatz o

Proof. By Lemma 4.6.2, Rad A = F. By Proposition 3.4.3, f is a CoNeatzaoq-
monomorphism and E(A) @ (A/ Rad A) is CoNeatzmog-injective.

Suppose for the contrary that f is a Supplzateg-monomorphism.

Let M := f(A) and N := E(A) ® (A/Rad A). Then M is a supplement in V.
That means there exits a submodule X < N such that

M+K=N ad MNKKLKM.
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Let C:=MnNK. Since C <K M, C <RadM =Rad f(A) ®RadA=F,s0 C
is also a free Z-module and rank of the free Z-module C is at most |Z*|. Since C
is a small module, C cannot have rank |Z*| because otherwise C = @ Z=F,

i€zt
but F is not a small module by Lemma 4.6.3. Hence C is necessarily a free module

of finite rank.
AsC <k M,

C <Rad M < Rad N = Rad(E(A) ® (A/Rad A)) = Rad E(A) < E(A4).
So,

(B(4)/CY® (A/Rad A) = (E(A)®(A/RadA))/C=N/C=(M+K)/C
= (M/C)® (K/C)

Since the left side is CoNeatzaog-injective, so is the direct summand M/C of
the right side. Hence by Corollary 3.4.4, M/C is a direct summand of a module
of the form El @ A;, where F; is an injective Z-module and A; is a Z-module
such that Rad A; = 0. So there exists a submodule X of E; @ A; such that
(M/C)® X = E; & A;. Then, since radical of an injective (divisible) Z-module

is itself, we obtain that
((Rad M)/C)®Rad X = (Rad(M/C))®Rad X = Rad E;®Rad A; = E1®0 = E.

So Rad M/C is an injective module as it is a direct summand of an injective
module.

But Rad M 2 F'is a free Z-module of rank |Z*| and C is a finitely generated
free submodule of Rad M. Let {zx|k € Z"} be a basis for the free Z-module
Rad M and {y1,%2,...,Yn} & basis for C' (where n is the rank of free module C).
Express each y; in terms of the basis elements z, k € Z™, for Rad M. Let F; be
the submodule of the free Z-module Rad M spanned by the finitely many basis
elements z; which occur with a nonzero coefficient in the expansion of at least

one ¥;, 2 =1,2,...,n. Then F; is finitely generated. Let Fy be the submodule of
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the free Z-module Rad M spanned by the remaining zx’s. Then Rad M = F1 @ F;
and F, # 0 as Rad M is not finitely generated. Since C < Fj,

This implies that F is also an injective Z-module since Rad M/C is so. But a

nonzero free Z-module is not injective. This contradiction ends the proof. O

Theorem 4.6.5. Supplzsod & CoNeatzatod & Complyz pod

Proof. The inclusions follow from Proposition 4.6.1. Example 4.6.4 shows that
the first inclusion is strict and Example 4.3.2 shows that the second inclusion is

strict. 0]

Theorem 4.6.6. A finite subgroup A of a group B is coneat in B if and only if

it 45 neat in B.

Proof. As A is a finite group, it has small radical. So it is coneat in B if and only
if it is a supplement in B if and only if it is a complement in B if and only if it
is neat in B, by Corollary 3.4.6, Theorem 4.3.1 and Theorem 4.1.1. Ol

Theorem 4.6.7. Extconeatz g %5 DOt factorizable as

Exty H
—

Z-Mod x Z-Mod — Ab Ab
for any functor H : Ab — Ab on the category of abelian groups.

Proof. We use Example 4.3.2 as in the proof of Theorem 4.5.3. The proof goes
as the same lines in that proof. Denote CoNeatzaoq shortly by cA. Only note
that, with the notation in that proof, Exten(Z/9*Z,Z) = 0 since RadZ = 0, and

Exten (Z/p*Z, Z/*Z) = Extc(Z/p*Z, Z/p*Z),

by Theorem 4.6.6, as Z/p*Z is a finite group and neat subgroups are complement
subgroups (by Theorem 4.1.1). O
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For a torsion group B, neat subgroups and coneat subgroups coincide:

Theorem 4.6.8. Let B be a torsion group, and A any subgroup of B. Then A

is neat in B if and only if A is coneat in B.

Proof. (<) always holds (for any W-module B) by Corollary 4.3.3. Conversely,
suppose A isneat in B. To show that A is coneat in B, we must show that for every
module M with Rad M = 0, any homomorphism f : A — M can be extended
to B. Since B is a torsion group, so is its subgroup A, hence f(A) is also a torsion
group. So, without loss of generality, we may suppose that M is also a torsion
group. Decompose A, B and M into their p-primary components: A = (P, Ap,
B =@, B, and M = P, M, where the index p runs through all prime numbers
(see page 67 for p-primary components of a torsion group). For each prime p, let
[+ Ap — Mj, be the restriction of f to A,, with range restricted to M, also (note
that f(Ap) < Mp). Since 0 = Rad M = P, Rad M, = P, pM,, we have pM, = 0
for each prime p. So, each M, is a neat-injective abelian group by Proposition
4.1.3. Suppose each A, is neat in B,. Then there exists f, : B, — M, extending
fo i Ap — My Define f : B — M, by f(3°,b,) = 3, fo(by) for each
Zp b, € GBZ, B, = B where b, € B, for every prime p. Then f: B — M is the

required homomorphism extending f: A — M:

A= EBpAp <c GBpo =B
=0,h| T,
M =@, M,

Thus, it only remains to show that each A, is neat in B,. One can show this either
directly, or it follows since N eatzoq is a proper class: A, is neat in A as it is a
direct summand of A4, and A is neat in B. So, 4, is neat in B as the composition
of two N eatgaog-monomorphisms is a N eatzaog-monomorphism by proper class
axioms. Since A, < B, < B, we have that the composition A, < B, < B of
inclusion monomorphisms is a Neatzaoq-monomorphism, so the first inclusion
monomorphism A, — B, must also be a Neatzrog-monomorphism by proper

class axioms. |
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4.7 Coinjectives and coprojectives with respect

to Complzpoq and Supplzaod

By Theorem 3.7.1, we already know that Complzaeq-coinjectives are only injec-
tive (divisible) abelian groups. By Theorem 3.7.2, as RadZ = 0, Supplz.mod-
coprojectives are only projective abelian groups, so free abelian groups. Since
Supplzmods C Complzaod, Supplz mod-coinjectives are also only injective (divisi-

ble) abelian groups.

Theorem 4.7.1. Complg poq-coprojectives are only torsion-free abelian groups.

Proof. Firstly, each torsion-free abelian group C is Complz aeq-coprojective be-

cause every short exact sequence

E: 0—sA—J>B—9%>0—>0

of abelian groups is in Purezaoq (see for example Fuchs (1970, §26, property (d),
p. 114)). Since pure subgroups are neat, we obtain that the short exact sequence
E is in Neatzmoq = Complzmoa (equality by Theorem 4.1.1).

Conversely suppose C is a Complzamoea-coprojective abelian group. Since the
proper class

Complgmoq = ¢ ({Z/pZlp prime})

is injectively generated by simple abelian groups (by Theorem 4.1.1), we know
that an abelian group C' is Complz poq-coprojective if and only if Exty (C, T) = 0
for all simple abelian groups 7' by Proposition 2.6.5. Suppose for the contrary
that C' is not torsion-free. Hence there exists 0 # ¢ € C' which has a finite order.
Without loss of generality we can assume that ¢ has prime order, say for a prime
p, we have pc = 0 and ¢ # 0. Then S = Zc & Z/pZ is a simple abelian group.

Consider the short exact sequence

0—=8—L>0—L>C/S—>0
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where f is the inclusion homomorphism and g is the natural epimorphism. By
the long exact sequence connecting Hom and Ext, we have the following exact

sequence:
...—Ext3(C, S) = 0— Ext(S, §) = 0— Ext2(C/S, S) = 0— ...

Here Ext;(C, S) = 0 because C is Complgaeq-coprojective and Ext3(C/S, S) =
0 since Ext% = 0 as Z is a hereditary ring. Thus the above exact sequence
implies that Ext} (S, S) = 0 which is the required contradiction since Ext}(S, S) &
Exty(Z/pZ,Z/pZ) = Z/pZ by, for example, Fuchs (1970, §52, property (D)). O



CHAPTER FIVE
COMPLEMENTS AND SUPPLEMENTS IN

MODULES OVER DEDEKIND DOMAINS

Throughout this chapter W denotes a (commutative) Dedekind domain.

In Section 5.1, we summarize the main properties of Dedekind domains we will
use. c-injective modules over Dedekind domains are described in Section 5.2. We
will see that finitely generated torsion complement submodules are supplements
in modules over Dedekind domains in Section 5.3. For a Dedekind domain W

which is not a field, we will see in Section 5.4 that

(i) If Rad W = 0, then

”

Supply-pod & CoNeatw-moa & Neatw-mos = Comply amod-
(ii) If Rad W # 0, then

Supplw-pod & CoNeatw.pmos = Neatw. poa = Comply moa-

In this Section 5.4, we will also see that like in abelian groups, if Rad W = 0 and

W is not a field, then Extsugply jos 804 Exteoneatsy aoq 2T€ not factorizable as

Ezty

W-Mod x W-Mod —% W-Mod —> W-Mod

83
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for any functor H : W-Mod — W-Mod. Like in abelian groups, in a torsion
W-module, neat submodules and coneat submodules coincide. In Section 5.5, it

is shown that Complw_aeq-coprojectives are only torsion-free W-modules.

5.1 Dedekind domains

We summarize the main facts that we use for Dedekind domains from Cohn (2002,
§10.5-6) and Berrick & Keating (2000, Ch. 5-6).

Let R be a commutative domain and K be its field of fractions. By a fractional

ideal I of R, we understand an R-submodule of the R-module K such that
Rz<I< Ru forsome z,u € K\ {0}.

An ordinary ideal I of R is a fractional ideal if and only if it is nonzero. The
nonzero ideals of R are called integral ideals of R. Multiplication of fractional
ideals can be defined as for usual ideals. With this multiplication, the set of
fractional ideals turns out to be a monoid with identity element R. For each

fractional ideal I, we can define an “inverse”:
(R:I)={q € K|¢I C R}.
(R : 1) is also a fractional ideal and satisfies
I(R:I)CR.

But here equality need not hold. If it does hold, then I is said to be invertible
and we also write I~! instead of (R : I). An ideal in R is invertible if and only
if it is a nonzero projective R-module. An element of K is said to be integral
over R if it is a root of a monic polynomial in R[X]. A commutative domain R
is integrally closed if the elements of K which are integral over R are just the

elements of R.
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A commutative domain satisfying any of the equivalent conditions in the fol-

lowing theorem is said to be a Dedekind domain:

Theorem 5.1.1. (by Cohn (2002, Propositions 10.5.1,4,6)) For a commutative
domain R, the following are equivalent:

(i) The set of fractional ideals of R is a group under multiplication,
(it) Every fractional ideal of R is invertible,
(i11) Every integral ideal of R is invertible,
(iv) Every ideal of R is projective,

(v) R is Noetherian, integrally closed and every monzero prime ideal of R is

mazimal,
(vi) Every nonzero prime ideal of R is invertible,

(vii) Every integral ideal of R can be expressed uniquely as a finite product of

mazimal ideals,

(viti) Every integral ideal of R can be ezpressed as a finite product of prime ideals,

Note that by the above theorem, a Dedekind domain is always Noetherian.

Theorem 5.1.2. (Cohn, 2002, Theorem 10.6.8) Any finitely generated torsion
module M over a Dedekind domain W is a direct sum of cyclic W-modules: for

somen € Z* and nonzero ideals I, ..., I, in W,

A=2W/L)e...e (W/L), L>L>...> 1,

and this decomposition is unique up to isomorphism.

Using this theorem, we give a proof of the following result to review primary

decomposition of finitely generated torsion modules over Dedekind domains like
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in abelian groups. For the complete description of finitely generated modules over
Dedekind domains and their invariants see for example Berrick & Keating (2000,
Theorem 6.3.23).

Proposition 5.1.3. Let A be a finitely generated torsion W-module, where W is
a Dedekind domain. Then A/ Rad A is a finitely generated semisimple W-module
and RadA <K A

Proof. Let A be a finitely generated torsion W-module.
As A is finitely generated, we have Rad A <« A. We also show this more
directly below.

Consider any nonzero ideal I in W. Since W is a Dedekind domain,
I'=P*.....PF

for distinct maximal ideals Pi,..., P in W and 74,...,7, € Z*. Then

k

W/I = P(W/P)

i=1

as P[*,..., P;* are pairwise comaximal ideals. So

k k k .
Rad(W/I) = (P Rad(W/P*) = @ R(W/F[*) < @D(W/F*) = (W/1I)

i=1 i=1 i=1
since W/ P/ is a uniserial W-module because for a maximal ideal P and r € Z*,
the W-submodules of W/P" form the following chain:

0< P /P <...< P?/P" < P/P" < W/P",
(so Rad(W/P") = P/P" « W/P"). Since
(W/P")/Rad(W/P") = (W/P")/(P/P") = W/P

is simple,
k

(W/I)/ Rad(W/I) = @)(W/F}*)/ Rad(W/F[*)

i=1
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is also a finitely generated semisimple W-module.
Turning back to A, as A is a finitely generated torsion W-module, it is a direct
sum of finitely many cyclic W-modules by Theorem 5.1.2: for some n € Z* and

nonzero ideals I,...,[, in W,

A2 (W/L)®...0 (W/IL).

So,
Rad A D Rad(W/L) < W/, = A and
i=1 i=1
A/Rad A = @(W/Ii)/(Ra,d(W/Ii)).
=1
Hence A/ Rad A is also a finitely generated semisimple W-module. O

Proposition 5.1.4. (by Cohn (2002, Proposition 10.6.9)) Any torsion W -module
M over a Dedekind domain W is a direct sum of its primary parts in a unique

way:

where for each nonzero prime ideal P of W (so P is a mazimal ideal of W),
Mp = {z € M|P"z =0 for somen € Z*}

is the P-primary part of the W-module M.

For a nonzero prime ideal P of a Dedekind domain W, we say that a W-module
M is P-primary if M = Mp.

Proposition 5.1.5. Let W be a Dedekind domain, P be a nonzero prime ideal

of W and M be a P-primary W-module. Then Rad M = PM.

Proof. Let @ be a maximal ideal of W and suppose @ # P. Let m € M. Since M

is P-primary, P*"m = 0 for some n € Z*. Since P™ ,¢_ @ and Q is a maximal ideal,
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Pr+Q=W. So, Wm=P'm+Qm=0+Qm = Qm, hence m € Wm = Qm.
Thus M < QM, so QM = M for every maximal ideal @) # P. Hence, By Lemma
3.8.1,

RadM = ()| QM=PM.

Q< wW

mazx.

O

Proposition 5.1.6. Any nonzero torsion module over a Dedekind domain has a

simple submodule, so any Dedekind domain is a C-ring.

Proof. Let M be a nonzero torsion module over a Dedekind domain W. Then by
Proposition 5.1.4,

where for each nonzero maximal ideal P of W, Mp is the P-primary part of M.
Since M # 0, there exists a nonzero maximal ideal P such that Mp # 0. So there
exits 0 % m € Mp. Since m € M, there exits a smallest n € Z* U {0} such that
P™m = 0 but P"'m # 0 (where we take P® = W). Then for the submodule
A:=P"m=#0of M, PA=0. Hence A is a nonzero (homogenous) semisimple
W-module (see page 19), so has a simple submodule. This also shows that W is
a C-ring by Proposition 3.3.9. O

Proposition 5.1.7. Let W be a Dedekind domain which is not a field. For an
injective W-module £, Rad E = E.

Proof. Since FE is injective, it is also a divisible W-module (by for example Cohn
(2002, Proposition 4.7.8)). Since W is not a fleld, any maximal ideal P of W is
nonzero and so PE = F as F is divisible. By Lemma 3.8.1,

RadE= (| PE= (] E=E.
P < wW P < wW

max. maz.
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Theorem 5.1.8. (by Kaplansky (1958, Theorem 8) and Kaplansky (1952, The-
orem 2-(b)), or by Fuchs & Salce (2001, Theorem VI.1.14)) Projective modules

over Dedekind domains which are not finitely generated are free.

Proposition 5.1.9. For a Dedekind domain W which is not a field, the following

are equivalent:
(i) RadW +# 0,
(i) W is semilocal,
(1) W has only finitely many mazimal ideals,

(iv) W is a PID with only finitely many mazimal ideals.

Proof. By Lam (2001, Proposition 20.2), a commutative ring is semilocal if and
only if it has finitely many maximal ideals. This shows (ii)<>(iii). By Cohn (2002,
Proposition 10.6.2), a Dedekind domain with finitely many prime ideals is a PID.
This proves (iii)<>(iv). It remains to show (i)<>(iii).

(i)=>(iil): Since W is a Dedekind domain, the nonzero ideal Rad W can be ex-
pressed uniquely as a finite product of maximal ideals by Theorem 5.1.1-(vii):
For some n € Z* and maximal ideals P;, Ps,..., P, of W,

RadW = P R,... P,
For any maximal ideal P of W, since Rad W < P, we have
PO PP... F,.

Then, for example by Sharp (2000, Lemma 3.55), P D P, forsome j € {1,2,...,n}.
Since P and P; are maximal ideals, we obtain P = P;. Hence {Py, P,..., P} is
the set of all maximal ideals of W. So, W has finitely many maximal ideals.
(iii)=>(i): If W has finitely many maximal ideals Py, P,..., P, for some n € Z7,
then

RadW=PNRN..NP,2AP...P #0,

as each P; is nonzero since W is not a field. O
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Proposition 5.1.10. (Fuchs & Salce, 2001, Exercise 1.5.5-(c)) For a commuta-
tive domain R, an ideal J of R and any R-module M,

Extr(JY/R,M) = M/JM,
if J is an invertible ideal.

Corollary 5.1.11. For a Dedekind domain W, a nonzero ideal J of W and any
W -module M,
Extw (W/J,M) = M/JM

Proof. Since W is a Dedekind domain, the nonzero ideal J of W is invertible. So,
the result follows from Proposition 5.1.10 since J~!/W = W/J by Nunke (1959,
Lemma 4.4). O

5.2 c-injective modules over Dedekind domains

Generalov (1983) gives the following interesting result (the equality from Gener-
alov (1978, Theorem 5)):

Theorem 5.2.1. (Generalov, 1983, Corollaries 1 and 6) For a Dedekind domain
w,

Supplw.pmoa C Complw .o = N eatw mod-
where the inclusion is strict if W is not a field. So if A is a supplement in an

W -module B where W is a Dedekind domain, then A is a complement.

As in abelian groups (Theorem 4.1.1), Complw.aoq is both projectively gener-

ated, injectively genérated and flatly generated:

Theorem 5.2.2. The following five proper classes of W-modules are equal for a

Dedekind domain W:
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(1) Complw mod,

(it) Neatw pmod gt ({W/P|P mazimal ideal of W}),
(i) M {M|M € W-Mod and PM = 0 for some mazimal ideal P of W}),
(w) 77X ({W/P|P mazimal ideal of W})

(v) The proper class of all short ezact sequences

E: 0—A—1sB-2.0— 0 (5.2.1)

of W-modules and W -module homomorphisms such that for every mazimal

ideal P of W,
A'NPB=PA, where A' = Im/(f)

(or ANPB = PA when A is identified with its image and f is taken as the

inclusion homomorphism,).

Proof. The equality of the first two classes follows by Proposition 3.3.1 or Theo-
rem 3.3.2.

The equality of the last two proper classes follows from, for example, Skl-
yarenko (1978, Lemma 6.1) (see Proposition 3.2.2).

The equality 6f the second and fifth proper classes follows from Nunke (1959,
Lemmas 4.4 and 5.2).

The equality of the third and fifth proper classes follows from Nunke (1959,
Theorem 5.1) as pointed out in Generalov (1983, Corollary 1): Take a short exact
sequence E in the third proper class above, of the form (5.2.1) where without loss
of generality A is identified with its image in B and f is taken as the inclusion
homomorphism. For a maximal ideal P in W, since A/PA is a module such that
P(A/PA) = 0, it is injective with respect to E, so it is trivial over A/PA in
the sense defined in Nunke (1959, before Theorem 5.1); hence by that theorem,
ANPB = PA. So E is in the last proper class. Conversely, to show that the last
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proper class is contained in the third proper class, it suffices to show that any
short exact sequence E in the last proper class above, of the form (5.2.1), where
without loss of generality A is identified with its image in B and f is taken as the
inclusion homomorphism, is splitting if A is a module such that PA = 0 for some
maximal ideal P of W. By Nunke (1959, Theorem 5.1), as AN PB = PA, E is
trivial over A/PA = A/0 = A, which means the existence of amap ¢p: B — A
such that ¥(a) = a for all a € A, hence E is splitting as required. O

Another consequence of Nunke (1959, Theorem 5.1) is:

Theorem 5.2.3. For a Dedekind domain W, and W -modules A, C,
EXtComplW,Mod(C7 A) = ExXt Meatw atoa (0, A) — Rad(Eth(C, A))

Proof. Complw._pmoq = Neatw-poq by Theorem 5.2.2. Take a short exact sequence
E in Comply_pmod, of the form (5.2.1) where without loss of generality A is identi-
fied with its image in B and f is taken as the inclusion homomorphism. For each
maximal ideal P in W, by the previous Theorem 5.2.2, AN PB = PA, hence
by Nunke (1959, Theorem 5.1), the equivalence class [[E] of the short exact se-
quence E is in PExt(C, A). Thus [E] € ﬂ PExt(C, A) = Rad(Ext(C, 4)),
P < W
mexmal

where the last equality follows from, for example, Generalov (1983, Lemma 3)
(see Lemma 3.8.1). O

We can describe c-injective modules over Dedekind domains (which are then

also self-c-injective):

Theorem 5.2.4. For a Dedekind domain W, since Complyy_mod S injectively
generated by homogenous semisimple W -modules, every c-injective-module is a
direct summand of a direct product of homogeneous semisimple W-modules and

of injective envelopes of cyclic W-modules.
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Proof. By Proposition 2.4.4, Complw.sod-injectives are given as above since by

Theorem 5.2.2, Complw-moq €quals the injectively generated proper class

v"Y({M|M is a homogenous semisimple W-module}).

Like in abelian groups, the proper class Complw_aoq is injectively generated

by simple W-modules:

Proposition 5.2.5. For a Dedekind domain W,
Complyypoq = ¢ *({W/P|P mazimal ideal of W}).
Proof. Denote Complymeq shortly by C:
C =Y ({M|M is a homogenous semisimple W-module}).
Let C’ be the proper class
C' = "} ({W/P|P maximal ideal of W}).

Clearly C C C'. Conversely, it suffices to show that every homogenous semisimple
W-module M is injective with respect to the proper class C’. Since M is a
homogenous semisimple W-module, M = ), S) for some index set A and
simple submodules Sy of M such that for some maximal left ideal P of R, Sy &
R/P for every A € A. Then M < N := [[ 45 Since PN = 0, N may
be considered as a vector space over the field W/P. If o is the dimension of
the W/ P-vector space N, then N is isomorphic to a direct sum of o copies of
W/P. So N is a homogenous semisimple W-module. Since N is semisimple, its
submodule M is a direct summand of N. But N = [],., Sx, being a product of
simple modules which are injective with respect to the proper class C', is injective

with respect to proper class C'. Then so is its direct summand M as required. O
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Proposition 5.2.6. For o Dedekind domain W,
Supplw moq € CoNeatw moa € N eatw.sod = Complw_Mod-
Proof. By Proposition 3.4.1, Supplw-aeq € CoNeatyao0q- By Proposition 3.8.2,
CoNeatppoa € T ({W/P|P maximal ideal of W}).

By Theorem 5.2.2, the right side equals Neatw_aoq = Complw-sod- O

Like in abelian groups, we have:

Theorem 5.2.7. If R is a PID, then

Complpmoas = Neatrpiog =7 ({R/Rplp prime element of R})
= 717Y{R/Rp|p prime element of R})
= o *({R/Rplp prime element of R}).

Proof. By Theorem 5.2.2 and Proposition 5.2.5. O

By Proposition 3.2.1 for principal left ideals, we obtain:

Theorem 5.2.8. If R is a ring in which each mazimal left ideal is a principal
left ideal (that is a left ideal generated by one element), then Neatramoq is flatly

generated also:

Neatppos = 7 ({R/Rplp € R such that Rp is a mazimal left ideal of R})
. = 7 Y{R/pR|p € R such that Rp is a mazimal left ideal of R})
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5.3 Finitely generated torsion complement sub-
modules are supplements in modules over

Dedekind domains

We look for some converse results to Theorem 5.2.1, that is, when is a comple-
ment also a supplement? For finitely generated torsion modules over a Dedekind

domain, we obtain by generalizing Theorem 4.3.1 in abelian groups :

Theorem 5.3.1. Let W be a Dedekind domain. Take a W-module B and a
submodule A < B. Suppose A is a finitely generated torsion W-module. Then A

is a complement in B if and only if A is a supplement in B.

Proof. (<) always holds (for any submodule A) by Theorem 5.2.1. Conversely
suppose A # 0 is a complement in B. The proof goes as the same with the
arguments given for a p-group before Theorem 4.3.1 for abelian groups. We only

need to show the following:

(i) A/Rad A is a finitely generated semisimple W-module, so by Theorem
5.2.2, it is injective with respect to the inclusion map A — B which is

a Complw_poq-monomorphism.

(ii) Rad A < A.

These follow from Proposition 5.1.3. O

Generalizing Proposition 4.2.1 and Proposition 4.2.2 for modules over Dedekind
domains using uniform dimension and hollow dimension, we obtain a weaker form
of the previous theorem. However its proof might suggest another way for a gen-

eralization over some other class of rings:
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Theorem 5.3.2. Let W be a Dedekind domain, B be a finitely generated torsion
W -module and A o submodule of B. Then A is a complement in B if and only if

A is o supplement in B.

Proof. From the proof of Proposition 5.1.3, it is seen that a finitely generated
torsion W-module is a direct sum of finitely many W-modules of the form W/P"
(P a maximal ideal) which are both hollow and uniform, so have uniform di-
mension 1 and hollow dimension 1. As these dimensions are additive on finite
direct sums (see Dung et al. (1994, 5.8 (2)) and Lomp (1996, 3.1.10 (1))), we see
that a finitely generated torsion W-module has the same finite hollow dimension
and uniform dimension. So the result follows from Theorems 3.6.1 and 3.6.2 as
submodules and quotient modules of a finitely generated torsion W-module are

also finitely generated torsion W-modules. O

We can not generalize this result to include finitely generated modules which
are not torsion even in abelian groups as has been shown by Example 4.3.2. Also
this gives a proof of the strict inclusion in Theorem 5.2.1 for the case W = Z by

an example.

5.4 The proper class Co-N eaty.pmoq for a Dedekind

domain W

Throughout this section, let W be a Dedekind domain and suppose it is not a

field to exclude the trivial cases.

We will show that if Rad W = 0, then the proper class CoN eatw.aoq is strictly
between Supplyw-smog and Complw pog- When Rad W s 0, still Supplw-poq #
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CoNeatw pmoq, but CoNeatw.poq = Neatw-pos = Comply_rog. To prove that
Supplw_pmod g CoNeatw-pmoq, we will follow mainly the proofs in Generalov
(1983, Theorems 6-7, Propositions 4-5) for the Dedekind domain W, which sim-
plifies some steps and for which some missing steps in Generalov (1983, proofs of
Theorem 6 and Proposition 5) can be done. After two lemmas, we give an example

of a CoN eaty . pmoq-monomorphism which is not a Supply.smoeq-monomorphism.

Lemma 5.4.1. (by Generalov (1983, Theorem 7, Proposition 4, Corollary 5)) Let
W be a Dedekind domain which is not a field and @ the field of fractions of W.
Let S < @ be the submodule of the W-module @ such that S/W = Soc(Q/W).
Then:

(i) Rad S =W and S/W is a semisimple W -module,

(it) For a free W-module F' := GB W for some index set A, take the W-module
AeA
A= @ S. Then Rad A = F and A/ Rad A is a semisimple W-module.
AeA

Proof. (i) Since S/W = Soc(Q/W), it is clearly semisimple. So Rad(S/W) =
0. Hence Rad S < W.
Let P be a maximal ideal of W. Since W is not a field, P # 0. So
P is an invertible ideal, that is, for the submodule P7! < @, PP7! =
W. Hence P! is a homogenous semisimple W-module with each simple
submodule isomorphic to W/P (see page 19). So, the quotient P~!/W is
also semisimple. Hence P~1/W < Soc(Q/W) = S/W, which implies that
P1<8. So

W =PP'<PS.

Then, by Lemma 3.8.1,

Rad S = ﬂ PS>W.

P < gpR

max.

Thus, Rad S = W.
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(i) Rad A = @,  RadS = @, W = F and A/Rad A = @,,(S/W) is

semisimple. ~ O

Lemma 5.4.2. (by Leonard (1966, Lemma 6)) Let W be a Dedekind domain
which is not a field and Q) the field of fractions of W There exists an epimorphism

g: F — Q from a free W-module F := @W for some index set A. The free
AeA
W-module I = @W is not a small W-module, and so the index set A is

‘ _ deA
necessarily infinite.

Proof. Let H :=Kerg. Then F/H = Q). By Leonard (1966, Lemma 6), F’ is not
a small W-module since F/H = @ is a nonzero injective module. In fact, this is
simply because if F' is a small module, then F is small in its injective envelope
E(F') by Leonard (1966, Theorem 1). So, the quotient module F/H is small in
E(F)/H. But since F/H = @ is injective, F//H is a direct summand of E(F)/H
which contradicts with F'/H being small in E(F)/H.

Since @ is injective, Rad @ = @ by Proposition 5.1.7. So the finitely generated
submodule W of Rad @ = @ is small in Q. If the index set A were finite, then

W <« @ would imply F = @ W< @ @ so that F would be a small module. O
AeA AeA

Example 5.4.3. (by Generalov (1983, Proposition 5)) Let W be a Dedekind
domain which is not a field and @ the field of fractions of W. Consider the
W -modules
F=(PW=RadA<A:=PS<PQ=E4A),
Ach Aeh AEA

where,

(i) S < @ is the W-module given as in Lemma 5.4.1 such that S/W =
Soc(Q/W),

(ii) the free W-module F' := EB W is as in Lemma 5.4.2 for some infinite index

Ach
set A such that there exists an epimorphism g: F — @),
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(iii) E(A) denotes the injective envelope of A.

Then the monomorphism
f:A — E(A)®(A4/RadA)
z +— (z,z+RadA)

is a CoNeatw_poq-monomorphism but not a Supply.moeq-monomorphism. So

Supplw-moa 7 CoN eatw-pod.

Proof. By Lemma. 5.4.1, Rad A = F. By Proposition 3.4.3, f is a CoNeatw_ptoq-
monomorphism and E(A) & (4/ Rad A) is CoNeatw. pmog-injective.

Suppose for the contrary that f is a Supplw.meq-monomorphism.

Let M := f(A) and N := E(A) ® (A/Rad A). Then M is a supplement in N.
That means there exits a submodule KX < N such that

M+K=N ad MNK<KM.

Let C:= M NK. Since C « M, C <RadM = Rad f(A) *RadA = F, so
C is also a projective W-module. Suppose C' is not finitely generated. Then by
Theorem 5.1.8, C' is free. So, rank of C is at most |A|, the rank of F. But, rank
of C cannot be |A| because then C = F would be a small module, contradicting
that F is not a small module by Lemma 5.4.2. Since rank of C is strictly less
than A, C has a basis whose cardinality is strictly less than A. Thus C has a
generating set whose whose cardinality is strictly less than A, if C' is not finitely
generated. But that is also true if C is finitely generated since A is an infinite
set. So, in any case, C has a generating set Y = {y,|y € T'} for some index set I"
such that |T'] < |A|.

AsC <k M,

C < Rad M < Rad N = Rad(E(4) @ (A/ Rad A)) = Rad E(4) < E(A).

So,

IR

(E(4)/C) @ (A/Rad A) (E(4) ® (A/Rad A))/C =N/C =M+ K)/C

(M/C) e (K/C)

R
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Since the left side is CoNeatyw.pmoa-injective, so is the direct summand M/C of
the right side. Hence by Corollary 3.4.4, M/C is a direct summand of a module
of the form E; @ A;, where E; is an injective W-module and A; is a W-module
such that Rad A; = 0. So there exists a submodule X of E; & A; such that
(M/Cy® X = E; ® A;. Then, since radical of an injective W-module is equal to
itself (by Proposition 5.1.7), we obtain that

((Rad M)/C)®Rad X = (Rad(M/C))®Rad X = Rad E;®Rad 4; = E100 = B

So Rad M/C is an injective module as it is a direct summand of an injective
module.

But Rad M & F is a free W-module of rank |A| and C has a generating set
Y = {y,|v € T} with [T'| < [A|. Let {zA|A € A} be a basis for the free W-module
Rad M. Express each y, in terms of the basis elements xy, A € A, for Rad M. Let
F, be the submodule of the free W-module Rad M spanned by the basis elements
z, which occur with a nonzero coefficient in the expansion of at least one y,,
v € T'. Then Fj has rank < |I'|. Let F be the submodule of the free W-module
Rad M spanned by the remaining z,’s. Then Rad M = F; @ F; and F; # 0 as
we have strict inequality for the cardinalities: |I'| < |A[. Since C < Fj,

Rad M/C = (F/C) @ Fs.

This implies that F; is also an injective W-module since Rad M/C is so. But a
nonzero free W-module is not injective, because radical of an injective W-module
is equal to itself (by Proposition 5.1.7) but a nonzero free module has proper
radical (more generally any nonzero projective module has proper radical, see for
example Anderson & Fuller (1992, Proposition 17.14)). This contradiction ends
the proof. O

For a Dedekind domain W which is not a field, CoNeatw-soq = Complw-mod
only when Rad W # 0:
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Lemma 5.4.4. Let W be a Dedekind domain such that Rad W # 0. Then
CoNeatw oq = Neatw -mod = Complyw -rod-

Proof. The second equality holds for any Dedekind domain W by Theorem 5.2.2.
Suppose Rad W # 0. Then by Proposition 5.1.9, W is a semilocal ring. So by
Theorem 3.8.7,

CoNeatw.poq = ¢ ({all simple W-modules}).
By Proposition 5.2.5,
¢ 1({all simple W-modules}) = Comply-moa-
[

Lemma 5.4.5. Let W be a Dedekind domain which is not a field such that
RadW = 0. For any mazimal ideal P in W, tﬁere exits a short exact se-
quence E €€ Exty (W/P?, W) which is in Neatw.moa = Comply poq but not in

CoNeatw mod, and hence not in Supplw-mod-

Proof. By Corollary 5.1.11, for the ideal J = P? we obtain
Extu (W/P?%, W) = Extw (W/J, W) & Exty (J"L/W, W) = W/JW = W/P?

Denote Complw-pmod, SUPPlw-moq a0d CoNeatw moq by C, S and e respectively.
By Theorem 5.2.3,

Extc(W/P% W) = Rad(Extw (W/P2, W)) = Rad(W/P?) = P/P? #0.

But Exts(W/P2, W) < Extn(W/P%,W) = 0 since RadW = 0 by our as-
sumption (the < follows from Proposition 3.4.1). Take a nonzero element [E| €
Exte(W/P2,W). Then E is in Complw.pmoq but not in CoNeatw. pod- O

Theorem 5.4.6. Let W be a Dedekind domain which is not o field.
(i) If Rad W =0, then

Supplw moa & CoNeatw moa & Neatw moa = Comply pmoq-
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(it) If Rad W # 0, then
Supplw mod & CoNeatw.pmos = Neatw.pod = Complypod-
Proof. By Proposition 5.2.6,
Supplw-moa C CoNeatw. pmoa € Neatw pmod = Complw_pmod.
By Example 5.4.3, Supplw.stoq 7 CoN eatw-mod.

(i) If Rad W = 0, then CoNeatw.ptoq # N eatw.poa = COMPly. poq by Lemma
5.4.5.

(ii) If RadW # 0, then by Lemma 5.4.4, CoNeatw.pmoa = Neatw.moa =

Complw-moa-
tl

Theorem 5.4.7. Let W be a Dedekind domain. Take a W-module B and a

submodule A < B. Suppose A is a finitely generated torsion W-module. Then A

is neat in B if and only if A is coneat in B.

Proof. By Theorem 5.4.6, we already have CoNeatw-pods & Complw.pmod. So
(«=) holds for any W-module A. Conversely, if A is a finitely generated torsion
W-module and A is neat in B, then by Theorem 5.3.1, A is a supplement in
B, hence A is coneat in B since Supply.aoq S CoN ealw-Mod by Proposition
3.4.1. o

Like in abelian groups, Extcompiy. r.q 1S factorizable as

Extwy

W-Mod x W-Mod —% W-Mod 2% W-Mod

by Theorem 5.2.3, but:
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Theorem. 5.4.8. Let W be a Dedekind domain which is not a field such that
Rad W = 0. Then the functors Extsuppiy smea 078 EXteoneatyy poq 7€ DOt factor-

izable as
Exty

W-Mod x W-Mod ~=% W -Mod ~2> W -Mod
for any functor H : W-Mod — W-Mod.

Proof. Denote Complw-mod, Supplw-poq and CoNeatw.poq by C, S and cN
respectively.
Suppose for the contrary that Exts is factorizable as

Bxty

W-Mod x W-Mod 2% W-Mod 2+ W-Mod

for some functor H : W-Mod — W-Mod. So for all W-modules A and C,
Exts(C, A) = H(Extw(C, A)). Let P be a maximal ideal of W. In the proof of

Lemma 5.4.5, we have found that

Extw (W/P?, W) 2 W/P* and Exts(W/P? W) =0.
This implies that H(W/P?) & H(Extw(W/P?,W)) = Exts(W/P?,W) = 0,
hence H(W/P?) = 0. But also Exty (W/P?,W/P?) = W/P? by Corollary 5.1.11.

By Theorem 5.3.1, since W/P? is a finitely generated torsion W-module, we

obtain
Exts(W/P?,W/P*) = Ext.(W/P?,W/P?)
= Rad(Exty (W/P?, W/P?)) = P(W/P?) = P/P?# 0.
So in this case H(W/P?) & H(Extw(W/P?, W/P?)) = Exts(W/P? W/P?) =
P/P? £ 0. This contradiction shows that Extsupply. e 18 not factorizable.

Similarly, Extea is not factorizable. In the above proof, just replace S by cV.
Note that Exten(W/P? W) = 0 since Rad W = 0, and

Exton (W/ P2, W/ P?) = Extc(W/P?, W/P?)

14
by Theorem 5.4.7 as W/ P? is a finitely generated torsion W-module and
Neatw.-pmoq = Complw-aoq by Theorem 5.2.2. O
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Like in abelian groups, for a torsion W-module B, neat submodules and coneat

submodules coincide:

Theorem 5.4.9. Let W be a Dedekind domain. Let B be a torsion W-module,
and A any submodule of B. Then A is neat in B if and only if A is coneat in B.

Proof. (<) always holds (for any module B) by Proposition 5.2.6. Conversely,
suppose A is neat in B. To exclude the trivial cases suppose that W is not a field,
so its maximal ideals are nonzero. To show that A is coneat in B, we must show
that for every W-module M with Rad M = 0, any homomorphism f: A — M
can be extended to B. Since B is a torsion W-module, so is its submodule
A, hence f(A) is also a torsion W-module. So, without loss of generality, we
may suppose that M is also a torsion W-module. Decompose A, B and M into
their P-primary parts by Proposition 5.1.4: A = @ Ap, B = @pBp and
M = @, Mp, where the index P runs through all nonzero prime ideals of W,
hence P runs through all maximal ideals of W. For each maximal ideal P of W,
let fp : Ap — Mp be the restriction of f to Ap, with range restricted to Mp
also (note that f(Ap) < Mp). Since 0 = RadM = @DpRadMp = P PMp
by Proposition 5.1.5, we have PMp = 0 for each maximal ideal P. So, each
Mp is a Neatw.-mqq-injective module by Theorem 5.2.2. Suppose each Ap is
neat in Bp. Then there exists fp : Bp — Mp extending fp : Ap — Mp.
Define f: B — M, by f(Xpbp) = Y.p fr(bp) for each >"pbp € PpBp = B
where bp € Bp for every maximal ideal P. Then f: B — M is the required

homomorphism extending f: A — M:

A= EBPAP Sc'eaPBP =B
f=@p fPl e 3"=/69p fr
M=@p 7%1’
Thus, it only remains to show that each Ap is neat in Bp which follows since
Neatw.moq is a proper class: Ap is neat in A as it is a direct summand of 4,
and A is neat in B. So, Ap is neat in B as the composition of two Neatw. aod-

monomorphisms is a Neaty_soq-monomorphism by proper class axioms. Since
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Ap < Bp < B, we have that the composition Ap «— Bp — B of inclusion
monomorphisms is a N eaty.poq-monomorphism, so the first inclusion monomor-
phism Ap < Bp must also be a Neatw_aoq-monomorphism by proper class

axioms. O

5.0 Coinjectives and coprojectives with respect

to Complw_poq and Supplyw-stod

By Theorem 3.7.1, we already know that Complw.amoed-coinjectives are only in-
jective W-modules and by Theorem 3.7.2, if RadW = 0, then Supplw. stod-
coprojectives are only projective W-modules. Since Supplw-aoa C Complw . pod,

Supplw_moq-coinjectives are also only injective W-modules.

Theorem 5.5.1. For a Dedekind domain W, Comply _amoq-coprojectives are only

torsion-free W -modules.

Proof. Firstly, each torsion-free W-module C is Comply . pmoq-coprojective because

every short exact sequence

E: 0—>A—1+B—2>C—0
of W-modules is in Comply_a0q: By Theorem 5.2.2,
Complw-poqs = Neatw.pog = 7 -({W/P|P maximal ideal of W})

So, it suffices to show that every simple module W/P, where P is a maximal
ideal of W, is projective with respect to [E. But that is clear since the image
of a homomorphism « : W/P — C is torsion as W/P is torsion, so there is
no homomorphism W/P —— C except the zero homomorphism which of course

extends to W/P — B as the zero homomorphism.
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Conversely suppose C' is a Complw.pmoq-coprojective W-module. Since the proper

class
Comply.pmoq = ¢ ({W/P|P maximal ideal of W})

is injectively generated by all simple W-modules (by Proposition 5.2.5), we know
that a W-module C is Comply_p0q-coprojective if and only if Exty, (C,S) = 0
for all simple W-modules S by Proposition 2.6.5. Suppose for the contrary that
C is not torsion-free. Hence there exists 0 # ¢ € C such that Ic = 0 for some
nonzero ideal I of W. Consider the submodule We of C. Since We is a torsion
module, it has a simple submodule S by Proposition 5.1.6. Say S = W/P for

some maximal ideal P of W. Consider the short exact sequence

0—>S—L>C—2>C/S—>0

where f is the inclusion homomorphism and g is the natural epimorphism. By
the long exact sequence connecting Hom and Ext, we have the following exact

sequence:
...—> Ext},(C, §) = 0—> Ext}, (S, S) = 0— Ext,(C/S, 5) = 0—...

Here Ext,(C, S) = 0 because C is Comply-moa-coprojective and Ext%,(C/S, S) =
0 since Ext}, = 0 as W is a hereditary ring. Thus the above exact sequence im-
plies that Ext, (S, S) = 0 which is the required contradiction since Exti; (S, S) &
Exty,(W/P,W/P) = W/P # 0 by Corollary 5.1.11. O
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— in a module (<), 15
— submodule (<), 15
CoNeat, in an abelian category A, 37
CoNeatRMod, 1, 15, 47
cornecting homomorphism Ag, 52
coprojective with respect to a proper class (P-coprojective), 2, 7, 24, 25
C-ring, 10, 42
CS-module, 13

Dedekind domain, 89

derived functor, 5, 21

@-closed proper class, 27

direct summand, 2

domain, 4

dual Goldie dimension (=hollow dimension), 5, 55
duo ring, 46

[E], equivalence class of a short exact sequence E, 21
E €€ Extg(C, A), 21
elementary injective module, 28
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proper class having — injectives, 2, 8, 27
proper class having — projectives, 2, 7, 25
equivalent short exact sequences, 21
essential (), 3
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Extp = Ext}, 5, 21
Exty, 20
Extg, 5
Extp = Ext%, with respect to a proper class P, 8, see Section 2.1, 22
Ext% with respect to a proper class P, 22
factorizable Extp, 77, 78
extending module, 13

finitely presented module, 29

flat
— module, 5
— with respect to a monomorphism, 29
— with respect to a proper class (P-flat), 7, 29
— with respect to a short exact sequence, 29
7(P), all P-flat modules, 7, 29
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fractional ideal of a commutative domain, 88
free presentation of a finitely presented module, 30

global dimension of a proper class, 22
Goldie dimension (=uniform dimension), 5, 55

high submodule, 8
hollow dimension (=dual Goldie dimension), 5, 55
Hom

Hom functor, 5

Homop » 52

Homy, 51
homogenous semisimple module, 13, 18
homological algebra, 5

homology functor, 5

inductively closed proper class, 8, 31
injective
— basis for a class of modules, 28
— closure of a proper class, 27
— dimension of a module, 5
— module, 5
— proper class, 8, 27
— resolution, 5, 20
— with respect to a monomorphism, 23
— with respect to a proper class (P-injective), 2, 7, 24
— with respect to a short exact sequence, 2, 23
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integral domain, 4
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invertible fractional ideal of a commutative domain, 88
isotypic semisimple module, 13, 18

lifting module, 13
low submodule, 8

M-generated module, 5



M-subgenerated module, 5
max ring, 46, 59

neat
~ subgroup of an abelian group, 9
enough neat-injective abelian groups, 74
- in a module (<, ), 9
‘— submodule (<,), 9
neat-exact sequences of abelian groups, 9
neat-injective abelian group, 67
Neat, in an abelian category A, 36
NeatR—./Vlod; 17 9
Neatgpod, 9

neat-high extensions, 8

P, a proper class of R-modules, see Section 1.3, Chapter 2
p-primary component of a torsion group, 66
P-primary module over a Dedekind domain, 91
P-primary part of a module over a Dedekind domain, 91
perfect ring, 14, 62
[ I-closed proper class, 26
PID, 4
presentation of a finitely presented module, 30
principal ideal domain (PID), 4
projective
~ basis for a class of modules, 26
— closure of a proper class, 25
— cover of a module, 14
~ dimension of a module, 5
~ module, 5
~ proper class, 8, 25
~ resolution, 5, 20
— with respect to a proper class (P-projective), 2, 7, 24
— with respect to a short exact sequence, 2, 23
— with respect to an epimorphism, 23
projectively closed proper class, 25
proper class having enough projectives, 2, 7, 25
7(P), all P-projective modules, 7, 24, 25
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proper class, 1, 5-8, 20-31
— of R-modules, 6
P, a proper class of R-modules, see Section 1.3, Chapter 2
— having enough injectives, 2, 8, 27
— having enough projectives, 2, 7, 25
coinjective with respect to a ~ (P-coinjective), 2, 7, 24, 25
coprojective with respect to a — (P-coprojective), 2, 7, 24, 25
@-closed —, 27
Extp = Ext}, with respect to a —, 8, see Section 2.1, 22
Ext% with respect to a —, 22
flat with respect to a — (P-flat), 7, 29
7(P), all P-flat modules, 7, 29
771(M), the — flatly generated by a class M of modules, 7, 29
global dimension of a —, 22
inductively closed —, 8, 31
injective —, 8, 27
injective closure of a —, 27
injective with respect to a — (P-injective), 2, 7, 24
injectively closed —, 27
(P), all P-injective modules, 7, 24, 25
1"H(M), the - injectively generated by a class M of modules, 7, 27
P-epimorphism, 6
‘P-monomorphism, 6
P-proper monomorphisms and epimorphisms, 6
P-proper short exact sequence, 6
P-submodule (<,), 7
[I-closed —, 26
projective —, 8, 25
projective closure of a —, 25
projective with respect to a — (P-projective), 2, 7, 24
projectively closed —, 25
7w(P), all P-projective modules, 7, 24, 25
n~Y(M), the — projectively generated by a class M of modules, 7, 25
Priifer group Zpe, 66
pullback, 5
pure
— subgroup of an abelian group, 6
pure-exact sequences of abelian groups, 6
Purezmod, 6
pure-high extensions, 8
purity, 6
pushout, 5, 52
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quasi-duo ring, 58
relative homological algebra, 1, 5-7

semi-artinian ring, 44

semilocal ring, 60

serial module, 14

serial ring, 14

oM], 5

small (<), 3

small module, 60

small ring, 60

Splitrrod; 6

superfluous (), 3

supplement
— in a module, 4
— of a submodule in a module, 3
— submodule of a module (<), 4
have a — in a module, 3
Suppl 4 in an abelian category A, 37
supplemented module, 3

Supp lR-Modu 1

Tensor (®) functor, 5
torsion-free covering modules, 10

uniform dimension (=Goldie dimension), 5, 55
uniserial module, 14

weak purity, 8



