DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES

THE PROBLEM OF MISSING DATA IN
REGRESSION ANALYSIS

by
Neslihan DEMIREL

February, 2007
IZMiR



THE PROBLEM OF MISSING DATA IN
REGRESSION ANALYSIS

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Statistics Program

by
Neslihan DEMIREL

February, 2007
IZMIR



Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “THE PROBLEM OF MISSING DATA IN
REGRESSION ANALYSIS” completed by NESLIHAN DEMIREL under
supervision of PROF. DR. SERDAR KURT and we certify that in our opinion it is

fully adequate, in scope and in quality, as a thesis for the degree of Doctor of

Philosophy.

Prof. Dr. Serdar KURT

Supervisor

Prof. Dr. ismihan BAYRAMOGLU Assoc. Prof. Dr. Halil ORUC

Thesis Committee Member Thesis Committee Member

Prof. Dr. Giilay KIROGLU Assoc. Prof. Dr. C. Cengiz CELIKOGLU

Examining Committee Member Examining Committee Member

Prof. Dr. Cahit HELVACI
Director
Graduate School of Natural and Applied Sciences

il



ACKNOWLEDGEMENTS

Above all, I would like to thank to my dissertation chair Prof. Dr. Serdar Kurt,
who has been supporting my scientific career as my supervisor since 2000, in which I
started my master’s thesis with him. Not only has he been invaluable for the
development of both my master’s and my PhD thesis, but it has always been a great
pleasure to work with him. If it hadn’t been for his true mentorship and academic

guidance this dissertation would not have been written.

I am very thankful to members of my committee who generously contributed me;
namely to Prof. Dr. Ismihan Bayramoglu for the contributions and perspectives and
to Assoc. Prof. Dr. Halil Orug for his suggesting me many helpful revisions. Their
effect certainly improved my perspective, and I hope that I have carried out their

very helpful suggestions in this dissertation.

Special thanks to all my friends, especially my roommate Selma Giirler who
intimately and promptly shared her experiences, Alper Vahaplar for his infinite
patience and help throughout the work of my dissertation and Ugras Erdogan who
helped me for preparing the C# code. I am very thankful to Ayse Ovgii Kinay for her
encouragement and support. Finally I am deeply appreciative of the contributions to

Seyda Eraslan and Pelin Sulha.

I wish to utter my special appreciation to my parents, Zuhal and Nihat Ortabas,
who have unfailingly supported me through all my life and for taking care of my
education. My sister, Nihan Ozesen has provided constant encouragement and
positive attitudes, which I will never forget for good. Lastly, I owe a debt a gratitude
to my husband, Hakan Demirel who lived up to his part of the bargain to do

whatever he could and more to help me throughout my dissertation.

Neslihan DEMIREL

il



THE PROBLEM OF MISSING DATA IN REGRESSION ANALYSIS

ABSTRACT

The subject of missing data analysis consists of a data matrix in which some of
the values in the matrix are not observed. Missing data analysis is one of the most
important topics in applied statistics. It destroys the randomness of the sample and

causes serious bias in the parameter estimates.

The regression analysis is one of the most important procedures used for
estimation in multivariate statistical analysis. For this reason, in this study, missing
data mechanism designed by missing at random (MAR) for independent variable in
regression analysis simulation study is performed for the data set. When missing data
can be ignored, model based methods such as EM algorithm, multiple imputation
method and protective estimator are compared. In this thesis, C# code is improved to
calculate of the protective regression coefficients, standard error of regression

coefficients and mean square error.

Keywords : Missing data, Regression analysis, EM algorithm, Multiple imputation,

Protective estimator.
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REGRESYON COZUMLEMESINDE KAYIP VERi SORUNU

(0Y/

Kayip veri c¢Oziimlemesinin konusu veri matrisindeki baz1 degerlerin
gozlenmemis olmasidir. Kayip veri ¢oziimlemesi 6zellikle uygulamali istatistigin ¢ok
onemli konularindan birini olusturmaktadir. Kayip veriyi yok saymak, drneklemin
rasgeleligini bozarak yanli parametre tahminleri elde edilmesine neden

olabilmektedir.

Regresyon coziimlemesi, tahmin amach kullanilan 6nemli ¢ok degiskenli
istatistiksel coOziimlemelerin basinda gelmektedir. Bu nedenle bu calismada,
regresyon coOziimlemesinde, bagimsiz degiskende kayip veri mekanizmasi rassal
kayip (MAR) olacak sekilde, veri seti iizerinde benzetim ¢alismas1 yapilmistir. Kayip
veri goz ardi edilebilir oldugunda model esasli yontemler arasinda yer alan, EM
algoritmasi, ¢oklu atif ve gelistirilen koruyucu kestirim yontemleri karsilagtirmali
olarak incelenmistir. Bu calismada, koruyucu kestirim Kkatsayilari, regresyon
katsayilarin standart hatalar1 ve hata kareler ortalamasim hesaplamak iizere C# kodu

gelistirilmistir.

Anahtar sozciikler : Kayip veri, Regresyon ¢oziimlemesi, EM algoritmasi, Coklu

atif, Koruyucu kestirim
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CHAPTER ONE
INTRODUCTION AND LITERATURE REVIEW

Twenty four years ago Greenlees et al. (1982) wrote that “there is a large
literature on the problem of parameter estimation, but with few exceptions this
literature treats the case in which the missing values are missing at random”.
Although substantial advances have been made, this statement continues to be valid.

(Pastor, 2003)

In the last twenty years, many researchers have assessed the requirements of
different methods for the analysis of incomplete data, showing that single imputation
(unconditional or conditional mean, stochastic regression, hot deck, artificial neural
networks, etc.), complete-case or listwise analysis, available-case or pairwise
analysis, maximum likelihood (Expectation Maximisation (EM) algorithm, Structural
Equation Modelling (SEM), Raw Maximum Likelihood (RML)) and multiple
imputation (MI) methods require, for generalizable results, that the missing values be
missing completely at random or at least missing at random (Little and Rubin, 1987;
Little and Rubin, 1989; Navarro and Losilla, 2000; Rubin, 1987; Schafer, 1997;
Simonoff, 1988). In the estimation of an explanatory linear regression model, many
studies have shown that the best procedures (less biased and more efficient) for the
treatment of incomplete data with missing values completely at random or missing at
random are maximum likelihood estimation and multiple imputation (Gold and
Bentler, 2000; Graham et al., 1994; Graham et al., 1996; Othuon, 1999). Graham et
al. (1996) showed the superiority of Maximum Likelihood and Multiple Imputation
in the analysis of incomplete data with nonrandom missing values obtained with
planned missing value patterns. Graham et al. (1997) and Wothke (1998) also
suggest the use of these techniques even when the missing values are not at random,
since they produce less biased results than other traditional approaches. Kromrey and
Hines (1994) investigated the effects of nonrandom missing data in one of the two
variables acting as predictors in a linear regression model. Hippel (2004) investigated
biases in SPSS 12.0 missing value analysis when normally distributed values are

missing at random.



The study of missing data is one of the most important topics in applied statistics,
especially in survey problem and medical and biological data. Standard statistical

methods are designed for rectangular data sets.

Variables
Yu Y o Vi
Yor Yo v Vo k variables measured for each of n units
Cases y _ : Do (cases, observations, subjects).
v Ya Y o Vi . .
. L . i=12,...,n j=12,...,k
_ynl ynZ ynk_

The subject of this analysis is such a data matrix when some of the values in the
matrix are not observed. Standard methods are not directly applicable if there is
missing data (nonresponse), i.e. some y, values in the matrix are not observed.
Complete case analysis treat missingness by omitting cases with any variables
missing. This is occasionally appropriate, but more often leads to inefficiency and
biased estimation. The aim is clarify the limitations of complete case analysis and to

suggest improved methods of analysis which take missingness into account.

1.1 Sources of Missing Data

Two main sources of missing data can be distinguished.

Item nonresponse (some but not all variables missing for a case): refusal, don't

know, interviewer error, equipment failure, response out of range and edited out.
Unit nonresponse (all variables missing): refusal, not at home, not contacted.
Sometimes missingness may be deliberate, i.e. under the control of the researcher.

Example is double sampling where some variables are measured for all cases in the

sample but some only for a smaller subsample. Typically this is done to reduce costs.



Sampling itself leads to missingness in the sense that variables are not recorded
for units not sampled. However, this is under the control of the sampler and is not

normally thought of as missingness.

Assume that missingness hides a well-defined, meaningful true value e.g., "Don't
know' to a question about income is missingness. "Don't know' to a question on
political views may be missingness (refusal) but may also indicate lack of opinion;
unclear whether to treat as missing value. Some case-variable combinations are never
observed because they are not applicable; e.g., prostate cancer incidence for women,

length of current employment for unemployed.

1.2 Missing Data Pattern

1.2.1 Univariate Missingness

The missingness is confined to a single variable. (?: missing)
Yo Yoo o ?
Yo Yoo o ?
Vi Yo o ?

_ynl yn2 T ?_

1.2.2  Unit Nonresponse

All variables missing for some cases but we may have background variables.

Yu Yoo o i
Yor Yoo 0 Yu
Ya Yo 1777

: : 77?7 7

_ynl yn2 ()()() ()



1.2.3 Monotone Missing Data

Longitudinal studies collect information on a set of cases repeatedly over time.

The subject are drop out prior to the end of the study and do not return.

Y Yoo o Y
Yoo Y 0 Y
Ya Yo .- ?
: : 72?7 7
_ynl ynZ {7{7{7 {7 _

1.3 Missing Data Mechanisms

A different issue concerns the mechanisms that lead to missing data is related to
the underlying values of the variables in the data set. Missing-data mechanisms are
crucial since the properties of missing data methods depend very strongly on the
nature of the dependencies in these mechanisms. The crucial role of the mechanism
in the analysis of data with missing values was largely ignored until the concept was
formalized in the theory of Rubin (1976), through the simple device of treating the

missing data indicators as random variables and assigning them a distribution.

Let Y =(y;) denote an (n x k) rectangular data set without missing values, with
ithrow y, =(y;,...,y;) where (y;) is the value of variable Y; for subject i. With
missing data, define the missing data indicator matrix R = (rij), such that r =1 if
y; present and r; =0 if y, is missing. The matrix R then defines the pattern of

missing data. The missing data mechanism is characterized by the conditional
distribution of R given Y, say f(R|Y,¢) where ¢ denotes unknown parameters. If
missingness does not depend on the values of the data Y, missing or observed, that
is, if

F(RIY,9)=f(RI|¢) forall Y and ¢,



then the data are called missing completely at random (MCAR). This assumption
does not mean that the pattern itself is random, but rather that missingness does not

depend on the data values.

Let Y, denote the observed components or entries of ¥ and Y, the missing

mis
components. An assumption less restrictive than MCAR is that missingness depends

only on the components Y, of Y that are observed, and not on the components that

are missing. That is,

f(RIY,¢)=f(RIY, ,¢) forall Y . and ¢.

mis
In this case, the missing data mechanism is than called missing at random (MAR).

The mechanism is called not missing at random (NMAR) if the distribution of R

depends on the missing values in the data matrix Y.

Perhaps the simplest data structure is a univariate random sample for which some
units are missing. Let ¥ =(y,,...,y,)" where y, denotes the value of a random
variable for unit i, and let R=(R,,...,R,)" where R, =1 for units that are observed
and R, =0 for units that are missing. Suppose the joint distribution of (y,,R,) is

independent across units, so in particular the probability that a unit is observed does

not depend on the values of Y or R for other units. Then,
fR16,0)=fY10) f(RIY,9) =[] SO O] f(R 1y, 9)
i=1 i=1

where f(y,16) denotes the density of y, indexed by unknown parameters &, and
f(R; 'y, @) is the density of a Bernoulli distribution for the binary indicator R, with
the probability Pr(R, =01 y,,#) that y, is missing. If missingness is independent of

Y, thatis if f(R, =01y,,¢)=¢, a constant that does not depend on y,, then the



missing data mechanism is MCAR (or in this case equivalently MAR). If the

mechanism depends on y,, then the mechanism is NMAR since it depends on y,

that are missing.

1.3.1 Missing Completely at Rrandom

Data elements are missing for reasons that are unrelated to any chracateristics or
responses for the subject, including the value of the missing data, where it to be
known. Examples, include missing laboratory measurements because of a dropped
test tube (if it was not dropped because of knowledge of any measurements) and a
survey in which a subject omitted her response to a question for reasons unrelated to

the response she would have made or to any other of her chracteristics.

1.3.2 Missing at Random

Data elements are not missing at random, but the probability that a value is
missing depends on values of variables that were actually measured. As an example,
consider a survey in which females are less likely to provide their personal income in
general (but the likelihood of responding is independent of her actual income). If we
know the sex of every subject and have income levels for some of the females,
unbiased sex-specific income estimates can be made. That is because the incomes we

do have for some of the females are a random sample of all females incomes.

1.3.3 Not Missing at Random

Elements are more likely to be missing if their true values of the variable in
question are systematically higher or lower. In an interview this situation can be
given as an example of not missing at random mechanism when subjects with lower

income levels or very high incomes are less likely to provide their personal income.

These distinctions of mechanisms are important, because when missing data

mechanism is MCAR unbiased estimates will be produced even with rather primitive



analysis methods. When missing data mechanism is MAR, unbiased estimates will
be produced if a model and estimation technique is used that renders the missingness
mechanism ignorable. When missing data mechanism is NMAR, an analysis method
must be used that includes both a model for the observed data, and a model for the
missingness mechanism. For missing data that are MCAR or MAR, general
modeling software is available, that produces unbiased using all the available

information. For missing data that are NMAR, there are no easy solutions.

Often, however, it is impossible to eliminate completely missing data. Then we
need to use missing data estimation methods which base estimation on the observed

(non-rectangular) data only. Rests of the chapters are about such methods.

1.4 Thesis Outline

This thesis consists of six chapters that investigate missing data estimation
methods. We first present some important subjects of missing data such as
introduction to missing data, sources of missing data, missing data pattern and
missing data mechanisms. Chapter 2 presents missing data methods. Because of the
missing data mechanism is assumed as MAR, Expectation Maximization (EM)
algorithm and Multiple Imputation (MI) methods which are the model-based
methods will be examined. In Chapter 3, we present a simulation study to compare
MI and EM algorithm. In Chapter 4, the Protective Estimator (PE) is proposed when
the missing data mechanism is MAR for the linear regression parameters. Chapter 5
presents simulation study to compare the estimates obtained using the complete cases
(CC), EM algorithm (EM), proposed Protective Estimator (PE) and Multiple
Imputation (MI) for various imputations. Finally in Chapter 6 conclusions of this

thesis will be given.



CHAPTER TWO
MISSING DATA METHODS

The literature on the analysis of partially missing data is comparatively recent.
Review papers include Afifi and Elashoff (1966), Hartley and Hocking (1971),
Orchard and Woodbury (1972), Dempster, Laird and Rubin (1977), Little and Rubin
(1983), Little and Schenker (1994), and Little (1997). Methods proposed in this

literature can be usefully grouped into the following categories:
2.1 Methods Based on Completely Recorded Units

When some variables are not recorded for some of the units, it can be done to
discard incompletely recorded units and to analyze only with complete data. This is
generally easy to carry out and may be satisfactory with small amounts of missing

data. But it can lead to serious biases, however, and it is not usually very efficient.
2.2  Weighting Methods

To give weights to observed cases, so that they represent not only themselves but
also “similar' missing cases. Randomization inferences from sample survey data
without nonresponse commonly weight sampled units by their design weights, which

are inversely proportional to their probabilities of selection. For example, let y, be

the value of a variable Y for unit i on the population. Then the population mean is
n n -1

often estimated by Horvitz-Thompson estimator: (Z T lyij{z T, lj , where the
i=1 i=1

sums over sampled units, and 7, is known probability of inclusion in the sample for

unit i. Weighting procedures for nonresponse modify the weights in an attempt to

adjust for nonresponse as if it were part of the sample design. The resultant estimator

is replaced by Z(ﬂ'l D, )_l y; Z(iri D, )_l where the sums are now over sampled
i=1 i=1

units that respond, and p, is an estimate of the probability of response for unit i,



usually the proportion of responding units in a subclass of the sample. (Little, R. J.

A., & Rubin, D. B. (2002)).

2.3 Imputation-Based Methods

“Impute' (fill in) values for the missing cases to create a rectangular data set and
use it for analysis. Need to be careful with the choice of the imputation model.
Commonly used procedures for imputation include; Hot deck imputation, which
involves substituting individual values drawn from “similar” responding units. Hot
deck imputation is common in survey practice and can involve very elaborate
schemes for selecting units that are similar for imputation. Mean imputation, where
means from the responding units in the sample are substituted. The means may be
formed within cells or classes analogous to the weighting classes. Mean imputation
then leads to estimates similar to those found by weighting, provided the sampling
weights are constant within weighting classes. Regression imputation replaces
missing values from a regression of the missing item on items observed for the unit,
usually calculated from units with both observed and missing variables present.
Mean imputation can be regarded as a special case of regression imputation where
the predictor variables are dummy indicator variables for the cell within which the

means are imputed. Multiple Imputation is a subject of model-based methods.

2.4 Model-Based Methods

In Maximum Likelihood estimation of the observed data (nonrectangular),
likelihood is based on statistical models for the complete data and the nonresponse.
Theoretically it is the most satisfying approach, because it is based on, and can rely
on, general likelihood-theory methods and results. Disadvantage is computational
complexity in some cases. Dependence on model assumptions may also be regarded
as a disadvantage; however, note that other missing data methods also make
assumptions, even though they may be implicit rather then explicit as in model-based

methods.
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In this thesis, missing data mechanism will be assumed as MAR. That is the
missing data mechanism does not depend on the set of missing values though it may
possibly depend on the set of observed values. Then the missing data mechanism is
said to be ignorable (Little and Rubin, 1987). Little (1992) suggests that model-based
methods, such as Maximum Likelihood (ML), Bayesian methods and Multiple
Imputation are best among the current methods for dealing with missing values. For

that reason MI and EM algorithm will be examined in this study.

2.4.1 EM Algorithm

General missing data patterns can be handled by a method called the EM
algorithm. (Dempster, Laird, & Rubin, 1977). EM algorithm is a very general
iterative algorithm. It is called EM because each iteration of the EM algorithm
consists two steps: an expectation (E) and a maximization (M) step. These two steps

are repeated as:

1. Replace missing values by estimated values.

2. Estimate parameters.

3. Re-estimate the missing values assuming the new parameter estimates are
correct.

4. Re-estimate parameters.

and so forth, iterating until convergence.

Many multivariate statistical analysis, including multiple linear regression are
based on the initial summary of the data matrix into the sample mean and covariance
matrix of the variables. Thus the efficient estimation of these quantities for an
arbitrary pattern of missing values is a particularly important problem. ML
estimation of the mean and covariance matrix from an incomplete multivariate
normal sample is discussed, assuming the missing data mechanism is ignorable.
Although the assumption of multivariate normality may appear restrictive, the

methods can provide consistent estimates under weaker assumptions about the
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underlying distribution. Furthermore, the normality will be relaxed in linear

regression.

Suppose that (Y1,Y»,....Y,) have a k-variate normal distribution with mean
M=, M, .. 1,) and covariance matrix z:(aﬂ). Y=Y,ps, Yiis), where Y

represents a random sample of size n on (Y1,Y2,...,Yx), Yops the set of observed values,
and Y,,;; the missing data. It follows that,

Yobs = (yobs,l ’ yobs,Z EARA yobs,n )

where y,»s; represents the set of variables observed for observation i, i=1,2,...,n. The

loglikelihood based on observed data is then:

Zobs,i

1 n 1 n _
L(IU,Z | Yobs) = const — E zln - Ez (yobs,i - luobs,i )T Zollvs,i (yobs,i - luobs,i ) (2 1)
i=1 i=1

where x4, . and X are the mean and covariance matrix of the observed

obs,i

components of Y for observation i .

To derive the EM algorithm for maximizing Equation (2.1), note that the
hypothetical complete data Y belong to the regular exponential family with

sufficient statistics,

S:(Zy,j J=12,...k; Zly,.jy,., j,l:1,2,...,kj.

At the " iteration of EM, let 8 = (1,2 denote the current estimates of the

parameters. The E step of the algorithm consists in calculating,

E(Z yij |Yahs’0(t)) = Zyi(jt) j= l,...,k
i=l i=1
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and
EQ y;yy1Y,,.0") = Z(y;” v el jl=l..k (2.2)
i=1
where
O = Vi Jif y; 1s observed; 2.3)
v E(y; | Y»0") Lif y; is missing;
and

o 0 Jif y; or y, are observed;

jli —

- . . (2.4)
COV(Y;> Vi | Yoisi»0) iy, and y, are missing;

Missing values yj; are thus replaced by the conditional mean of y; given the set of
values, y,»s; observed for that observation. These conditional means and the nonzero
conditional covariances are easily found from the current parameter estimates by
sweeping the augmented covariance matrix so that the variables y,,; are predictors

in the regression equation and the remaining variables are outcome variables.

The M step of the EM algorithm is straightforward. The new estimates 8" of
the parameters will be estimated. (Little, R. J. A., & Rubin, D. B. (2002)). That is,

= Zy(’) j=1. (2.5)

(+) _ (t+1) (t+1)
O-jl E(Zyljyxll obr) lll

Z[(y(t) t+l) )(y(t) lul(t+l) )+ C%x)] j,l =1,...k

2.4.2 Multiple Imputation

In the EM algorithm the missing values are “imputed” in the E-step and complete
data methods are applied on the M-step. Thus the EM algorithm besides providing

MLEs of parameters also provides estimates for the missing values. Although ML
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represents a major advance over conventional approaches to missing data, it has its
limitations. ML theory and software are readily available for linear models and log-
linear models, but beyond that, either theory or software is generally lacking.
Although these imputed values may be good for the limited purpose of point
estimation, using them for other purposes like testing hypothesis may not be suitable.
The method of Multiple Imputation (MI) is a solution to this problem. (McLachlan,
G.J., Krishnan, T. (1997)). It has the same optimal properties as ML, but removes
some of these limitations. More specifically, MI, when used correctly, produces
estimates that are consistent, asymptotically efficient, and asymptotically normal
when data are MAR. Unlike ML, MI can be used with virtually for any kind of data
and any kind of model, and the analysis can be done with modified conventional
software. Of course MI has its own drawbacks. It can be cumbersome to implement
and it is easy to do it the wrong way. Both of these problems can be substantially
alleviated by using good software to do the imputations. A more fundamental
drawback is that MI produces different estimates (hopefully, only slightly different)
every time you use it. That can lead to awkward situations in which different
researchers get different numbers from the same data using the same methods.

(Allison, 2002)

Instead of imputing a single value for each missing value, MI is a technique
designed to handle missing data, which fills in the missing values several times, and
then creating several completed data sets for analysis. Each data set is analyzed
separately using techniques designed for complete data, and the results are then
combined in such a way that the variability due to imputation may be incorporated.
In the notation of Rubin, let Y, be the set of observed values and Y, , be the set of

missing values. Then the posterior density of a population quantity  can be written

as

hQ1Y,,) = [2(Q1Y,,.Y,) f (¥, 1Y,)dY,, (2.6)



14

where f(.)is the posterior density of the missing values and g(.) is the complete

data posterior density of . Therefore, multiple imputations are simulated draws

from the posterior distribution of the missing data.

The values of complete data statistics Q and U calculated on the s completed

data sets are Ql ,...,QAS and U,,...,U,. The repeated-imputation estimate is

— 1A
Qs =— Ql (27)
$ =1
and the associated variance-covariance of Q, is
— s+1
I,=U,+——B, (2.8)
s
where
U, = 1 ZU , within-imputation variability (2.9)
$ =1
and

B, = Ll (z 0,-0.)0,-0.) J between-imputation variability. (2.10)
S—=1\=

The large s repeated-imputation inference treats (Q—Q,) as a normal

distribution with variance-covariance matrix 7, . Letting s = o, we have

(Q-0.) ~ N(O,T.) @2.11)

where T = U. . +B_ . (Atkinson & Cheng, (2000)). (2.12)



CHAPTER 3
A SIMULATION STUDY COMPARING EM and MI

Atkinson and Cheng (2000) have a simulation study to compare EM algorithm
and Multiple Imputation. In their study, X matrix generated from the multivariate
normal distribution with dimension p=4 and 10%, 20%, 30% and 40% of the element
of X matrix be randomly missing with sample sizes n=100 and n=200. Additional to
Atkinson and Cheng (2000), Demirel and Kurt (2005) carried out to verify the
characteristics of the EM algorithm and MI when the assumption is not valid. In this

study, X matrix generated from the multivariate normal distribution MN(O, I p).

All parameters of regression coefficients are assigned to 1, and &~ N(0,1) . Once the

data are generated, let 12%, 24% and 36% of the elements of the X matrix be
randomly missing. Two kinds of data are generated: symmetric and skewed with
sample size n=100 and dimension p=4. The statistical criteria to compare the
methods are the regression coefficients and Mean Square Error (MSE) of regression

model. For these purposes the following steps were followed:

Symmetric population is generated.
A sample of size n=100 is selected from the population.
12% of X matrix be randomly missing.
Apply 2, 5 and 10 repeat imputations and EM algorithm to sampled data.
The regression coefficients and MSE are computed.
Step 2,3,4 and 5 are repeated for n=300.
Step 2,3,4,5 and 6 are repeated for missing proportions 24% and 36%.

A o R A e

Step 2,3,4,5,6 and 7 are repeated for skewed population.

The data are generated and the elements of the X matrix be randomly missing
with Minitab package program. Multiple imputations are applied by using SOLAS
and EM algorithms are applied by using SPSS. After these methods the missing
values are estimated so the full data are analyzed, the regression coefficients and

MSE are recorded. The results are summarized in Table 3.1.

15



Table 3.1 The mean of regression coefficients, standard errors of regression coefficients and MSE of

the model for symmetric data with n=300 repeats.

Prop. of ~ ~ ~ ~
P E(By) E(B) E(By) E(By)
Missing Methods Standard Error
S, S, S, S,
Values % ( by ) ( I ) ( b ) ( b ) of MSE
100234 | 0.89951 | 0.89484 | 0.89360
MI(2) 0.2679
(0.11360) | (0.13070) | (0.13485) | (0.11900)
100614 | 090321 | 088632 | 0.88617
MI(5) 0.2636
(0.12378) | (0.14728) | (0.14077) | (0.14478)
12% 100861 | 0.88136 | 0.88074 | 0.89486
MI(10) 0.3066
(0.11324) | (0.14065) | (0.14200) | (0.13295)
099596 | 097504 | 097468 | 0.97649
EM 0.2036
(0.09739) | (0.11040) | (0.10519) | (0.10353)
101883 | 0.77319 | 0.75485 | 0.75536
MI(2) 0.3489
(0.13665) | (0.16179) | (0.15405) | (0.17101)
101902 | 0.77400 | 0.74761 | 0.78096
MI(5) 0.3433
e (0.13837) | (0.16151) | (0.16345) | (0.15766)
(o}
101577 | 075798 | 074450 | 0.76661
MI(10) 0.3591
(0.14104) | (0.15866) | (0.17125) | (0.16511)
101670 | 0.76839 | 0.75050 | 0.76876
EM 0.6803
(0.12940) | (0.25075) | (0.26198) | (0.25945)
102200 | 0.65712 | 0.64930 | 0.66161
MI(2) 0.3673
(0.14122) | (0.17048) | (0.16580) | (0.17325)
102815 | 0.65937 | 064781 | 0.65456
MI(5) 0.4222
‘o (0.14659) | (0.16465) | (0.16662) | (0.18045)
(o}
1.03076 | 0.65609 | 0.64791 | 0.64215
MI(10) 0.4154
(0.14862) | (0.17962) | (0.18280) | (0.17473)
101221 | 0.76841 | 0.76253 | 0.77451
EM 0.3391
(0.13198) | (0.14844) | (0.14292) | (0.15264)

The population regression coefficients are 1 so when the Table 3.1 is examined,
EM algorithm is given the minimum MSE and mean of the ,3 ; are close to 1 when

the missing proportion 12% and 36%. MI(5) is given the minimum MSE when
missing proportion 24%. Atkinson and Cheng (2000) found that MI values are closer
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to 1 than EM algorithm. In their studies, the imputations repeated 5 and 10 times in

MI have better results than do only two imputations. In our study it is obtained that
mean of ,BO values are bigger than 1, the mean of ﬁl,ﬁz and ,33 values are smaller

than 1. The results of multiple imputations methods are similar but the 5 repeat

multiple imputations is the best in this study.

Table 3.2 The mean of regression coefficients, standard errors of regression coefficients and MSE of

the mode for skewed data with n=300 repeats.

Prop. of 5 A 5 5
o0 EBy | EB) | EB) | EBy)
Missing Methods Standard Error
S, S, S, S .
Values % (53 (55 (55, (55, of MSE
0.98865 0.92644 0.88079 0.85505
MI(2) 0.3788
(0.11860) | (0.14967) | (0.14408) | (0.14429)
0.98816 0.92963 0.87729 0.84995
MI(5) 0.3843
129 (0.11946) | (0.15634) | (0.14150) | (0.14253)
(%
0.98227 0.92023 0.88627 0.85671
MI(10) 0.3734
(0.11797) | (0.15610) | (0.13554) | (0.14329)
0.99248 0.96604 0.90449 0.88561
EM 0.3499
(0.11086) | (0.13602) | (0.13278) | (0.12704)
0.99684 0.79486 0.76363 0.75197
MI(2) 0.4417
(0.14136) | (0.16362) | (0.15342) | (0.16239)
0.99279 0.80806 0.75760 0.75450
MI(5) 0.4479
549, (0.13227) | (0.17032) | (0.16906) | (0.18137)
0
1.00350 0.81109 0.76535 0.74960
MI(10) 0.4391
(0.12876) | (0.18312) | (0.16704) | (0.16559)
0.995387 0.77138 0.73023 0.729011
EM 0.8214
(0.14343) | (0.34559) | (0.32510) | (0.30076)
0.98886 0.67761 0.66218 0.64490
MI(2) 0.5248
(0.14097) | (0.19223) | (0.19182) | (0.18511)
0.98766 0.68323 0.66941 0.64564
MI(5) 0.4848
260 (0.15672) | (0.20389) | (0.18420) | (0.19014)
(%
0.99866 0.66894 0.65555 0.63507
MI(10) 0.5589
(0.14883) | (0.20154) | (0.20469) | (0.19116)
0.98744 0.80658 0.78319 0.76185
EM 0.4572
(0.14389) | (0.15471) | (0.14598) | (0.15699)
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The population regression coefficients are 1 so when the Table 3.2 is examined,
EM algorithm is given the minimum MSE and mean of the ,B ; are close to 1 when
the missing proportion 12% and 36%. MI(10) is given the minimum MSE when
missing proportion 24%. It is obtained that mean of ,3 ; values are smaller than 1 for

skewed data. The results of multiple imputations methods are similar but the 10

repeat multiple imputations is the best.

As a result, the statistical criteria to compare the methods are the expected values
of regression coefficients values close to 1, standard error of regression coefficients

and MSE are given the minimum. EM algorithm is given the minimum mean square
error and mean of the ﬁi are close to 1 when the missing proportion 12% and 36%

for symmetric and skewed data. MI(5) is given the minimum MSE when missing
proportion 24% for symmetric data and for skewed data MI(10) is given.
Consequently, when the assumption is not valid, EM algorithm is not affected, but

imputations should be increased for Multiple Imputation.



CHAPTER FOUR
PROTECTIVE ESTIMATOR

4.1 Introduction

Lipsitz, S.R., Molenberghs, G., Fitzmaurice, G.M. and Ibrahim, J.G. (2004)
propose a method for estimating the regression parameters in a linear regression
model for Gaussian data when the outcome variable is missing for some subjects and
missingness is thought to be nonignorable. That missingness is restricted to the
outcome variable and that the independent variables are fully observed. Although
maximum likelihood estimation of the regression parameters is possible once joint
models for outcome variable and the nonignorable missing data mechanism have
been specified, these models are fundamentally nonidentifiable unless unverifiable
modeling assumptions are imposed. In their study rather than explicitly modeling the
nonignorable missingness mechanism, they consider the use of a “protective”
estimator of the regression parameters. To implement the proposed method, it is
necessary to assume that the outcome variable and one of the independent variables
have an approximate bivariate normal distribution, conditional on the remaining
independent variables. In addition, it is assumed that the missing data mechanism is
conditionally independent of this independent variable, given the outcome variable
and the remaining independent variables; the latter is referred to as the “protective”
assumption. A method of moments approach is used to obtain the protective
estimator of the regression parameters; the jackknife method is used to estimate the

variance.

In this study, the protective estimator is proposed when the missing data
mechanism is MAR. To implement the proposed method, it is necessary to assume
that the outcome variable and one of the independent variable have approximate
bivariate normal distributions, conditional on the remaining independent variable.
That missing data is restricted to the independent variable and that the outcome

variable and the remaining independent variable are fully observed. A method of

19
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moments approach is used to obtain the protective estimator of the regression

parameters and the variance.
4.2 Notation and Maximum Likelihood

Consider a linear regression model with » independent subjects, i =1,2,...,n. Let
Y. denote the outcome variable for the ith subject and let X i i=12,..,n,

j=12,..., pdenote a nxp matrix of independent variables.

X X X1 X1p
Xop Xy Xoj Xap
X. = '
v X X Xij Xip
_xnl an xnj T xnp i

The primary interest is the estimation of the vector of regression coefficients [

for the linear regression model
u=Elr]=xp @1

Note that maximum likelihood estimation of A (and o) requires specification of

the conditional distribution of y, givenx,. It is assumed that y, given x; is normal

i)
f(yilxi,ﬂ,O'Z): ! e 2[ c j “4.2)

o217

where o = Var[Yi Ixi] and u;, = 4,(f) is given by Equation 4.1. However, since
X, can be missing, also define the indicator random variable R, which equals 1 if
X, is observed and O if X, is missing. With missing data mechanism is MAR,

propose using the joint distribution (y,,r | x,) to estimate 5, that is,
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[y x, e .0%) = f(3 1%, 8,0°) f (1 1x,.,.)
where « is the parameter vector of the ‘missing data mechanism’ f(r, | x,, y,,&) .

4.3 Protective Estimator

To develop the protective estimator we must assume that one of the independent

variables, say x;,, has a normal distribution. In particular, we partition x, into
x =[x,,x,], and assume that f(y,x,|x,) has a bivariate normal distribution.
Next, consider the distribution of (y,,x,,) given x,, when no data are missing. The

density f(y,,x;, |x, ) is given by

: 6,+6x, 2
e o)
; Yot ViXi; )\ O, Oy

Then, in terms of the parameters in Equation (4.3), the regression model

H; = E[Yi|xi’:8]: B, + Bx] is given by,

E(Yi|xi): (00 +6,x;, )+L&(xu Yo~ V1% )

0,05 Oy,
O O O
:(0( - 122 70]"' 122 Xil +(91 - 122 71}6;'2
4.4)
05 05 05 4.
= B, + Bixy + Brx,

where

()
:30 :90_0__122 Yo

22
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O
B, =—%5
2
()
ﬂz_ 1 122 Vi
O

Further, the conditional variance is

o2 o2
Var(Yi|xil s Xin ) = 0-121 (1 - ,02 ) = 0-121 (1 ) 122 J = 0-121 - _122 4.5)
010 2

In the presence of missing at random of x,, if the parameters

(00,6’,,70,}/1,0'121,0',2,0'222) in Equation (4.3) can be consistently estimated, they can

be substituted in Equation (4.4) to consistently estimate the regression parameters of

interest. The protective estimator of S uses the conditional distributions of f (yt.|xt.2)
and f (xi1|yi,xi2) to estimate these parameters. Since x,, and y, are both fully

observed, it is straightforward to estimate f (y,.|xi2) using all observations.

From an examination of Equation (4.3), note that the conditional mean of Y,

given x,, is

E[v|x,,6]=6, +6,x, (4.6)
with conditional variance

Vvl l=0} @.7)

Since there are no missing data on Y, or x,,, (490,491,0']2]) can be consistently

estimated using ordinary least squares, where the outcome variable is Y, and the
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regression model is given by Equation (4.6). Suppose we denote the ordinary least

squares estimate of these parameters by (90,91,6'121). Estimation of the remaining

parameters, (70, 7,0, ,0'222) can be based on the conditional distribution f (xl. ]| Vi X, )

However, since x;, is observed when r, =1, it is not straightforward to estimate

f (xl.1| Y ,xiz) unless missing at random mechanism of x,,.

However, the missing data mechanism is called missing at random (MAR)
(Rubin, 1976) that the missing data mechanism does not depend on the set of missing
values though it may possibly depend on the set of observed values. If the
missingness mechanism does not depend on the parameters of the model, this
assumption is called distinct. Moreover, if both MAR and distinctness hold, then the
missing data mechanism is said to be ignorable (Little and Rubin, 1987). So, it is

possible to estimate the relationships between X, and other variables only when

X, is observed (R, = I). Consider the density

f('xil|yi’xi2’Ri :1): f(xil|yi"xi2) (4.8)

The result in Equation (4.8) implies that the complete cases (R, =/) can be used

to consistently estimate the parameters of the conditional distribution of X, given

(¥isXin)-

In particular

O (o3
E[Xil|yi’xi2 = (70 + 71’@2)"‘(#}(&}(% -6, _elxi2)
0,10, \ Oy

O, O, O,
:(70__12290j+_122)’i+(71__12291}61'2 4.9)

11 11 11

=@+ oy, +9,x,
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where

(o) (o)
¢1:_122 ¢o:70__12290:70_¢190
0 0

(o)
@, =7, _0__12291 =7,—9,6,

11
Also, the conditional variance is given by

2

O O
Var(X |y, x,)= 0% (1- p* )= 052(1 ——J R (4.10)
0-110-22 11

Then the parameters [¢0,¢1,¢2,Var(X l.1| VisXi )] can be estimated, based on the
complete cases, via ordinary least squares regression with outcome variable X, and

independent variables [yt.,xl.2 . Given the ordinary least squares estimates
[&0,&,(52,Var(X“|yi,xi2)} from the latter regression model, and the estimate
(90,91,6'121) from the regression model in Equation (4.6), (70,71,0'222,0'12) can be
estimated as follows,

7o =0, + 96, 7 =0,+9,6,
From an examination of the residual variance in Equation (4.10), note that

2
0-_122=O'222 —Var[Xi1|yi’xi2]

11

so that

- 0-122/0-121 _ 0-122/0-121 _ oy _Var[Xil|yi’xi2

2
o,/oh 4 @,

0-12



then o,, can be estimated using

A
A2
05 _Var[Xil|yi’xi2

612 =
9
and
" 6-12
¢1 = 20

0, can be estimated using

A N A A2
62%.2 = Var[Xil|yi’xi2]+6-12¢l zvar[Xil|yi’xi2]+ 7122
1

Then, the protective estimator of 3’ =[4,,,,5,] in Equation (4.4) is given by

where 770 = 4’;0 +¢;100

then 3, =6,- 5,4, +06,)

B _%n
1 A2
0
A~ A 6—12 R
:32:91_ ) 14
O,

22

where 771 = éz + ¢?1 él
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then ﬁAZ = él _ﬁ,\l (¢2\2 + élél )

When the assumptions about the missing data mechanism and the specification of

f (yl.,xi 1|xi2) are correct, results from method of moments can be used to show that

ﬁ’ is consistent and has an asymptotic multivariate normal distribution, with mean
vector £ and a covariance matrix that can be consistently estimated using the
Equation (4.9). Because X matrix is a complicated function of

[¢0,¢1,¢2,Var(X 1.1|yi,)ci2 )] and ordinary least squares regression is computationally

demanding.



CHAPTER FIVE
APPLICATION

5.1 Introduction

Computer simulation studies are considered for investigating attrition bias as
unavailable data in field studies is known by the investigator. This information
allows the computation of the correct parameter estimates and a direct comparison of
the true and observed estimates. In other words, the correct distribution of the data
and the attrition mechanisms are comprehended because they were formed by
investigator. In this respect, simulation studies allow us to understand of impact that

methods used to account for attrition on our real-world results.

In this chapter, simulation study will be given a modest to compare the estimates
obtained using the complete cases (CC), EM algorithm (EM), proposed protective

estimate (PE) and Multiple Imputation (MI) from 1 to 10 repeat imputations.
5.2 Simulation Study

In the simulation study, there are two covariates ( X, X, ). The distribution of Y
given (x,,,x;,) is assumed to be normal with mean 4, = E(Yl.|xl.,,xl.2):l+xl., +x,
and variance 2, so that 8 =(4,,5,,5,)=(1,1,1). The variance-covariance matrix and

the correlation matrix of the data are given in Table 5.1.

Table 5.1 Covariance and Correlation Coefficients Between Variables

Covariance Matrix =~ N Correlation Matrix
Y X1 X2 Y X1 X2
2,11963 1,00000
1,06161 1,00696 0,72666 1,00000
1,05101 0,05333 0,99681 0,72306 0,05323 1,00000

27
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In the simulation study, once the data are generated. Because of the missing data
mechanism MAR, the missingness of X, depends on Y. Two different types of
missing data are formed. In type 1, the absolute value of Y is taken first, and then
X, corresponding the minimum values of Y (min(lYl)) are missing.
In type 2, the absolute value of Y is taken first, and then X, corresponding the
maximum values of Y (max(IYl)) are missing. Note that in both cases, the

proportion of missing values are let 6%, 9%, 12% and 15% respectively. For each of
n=50, n=75 and n=100, this process is performed 500 times. The plan of simulation

study is given Table 5.2.

Table 5.2 The plan of simulation study

Missing at random .
MAR Proportion of
Sample size L missing values Methods
X, 1s missing,
(%)
where ...
CC, EM, PE,
6%
MI(1)...MI(10)
CC, EM, PE,
9%
. MI(1)...MI(10)
n=50, 75,100 min(l Y I), max(lY I)
CC, EM, PE,
12%
MI(1)...MI(10)
CC, EM, PE,
15%
MI(1)...MI(10)

In this simulation study, Multiple Imputations are applied by using SOLAS and
EM algorithms are applied by using SPSS. Complete Case analysis are applied by
using Minitab. Macro program is written for Protective Estimator by using Minitab

commands. The macro program is given in Appendix A.

The simulation study results are given in the following tables.
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Table 5.3 Summary of results when missing proportion 6% and n=50

min(l Y I) max(l Y I)
Methods EBo) | EB) | EBy) E(MSE) EBy) | EB) | EBy) E(MSE)

E(S;) | ESy) | ESy) ES,) | EGSy) | ESy)
| ooi0s | oo0s | ooios | *9™83 | Golos | oonz | oorna | 000486
PE | gooo7 | oooos | 0ooss | %952 | oo | oo0so | oooss | 0055
| 40| Ll Ty | 0ot | Lo |00 |
M) | g0t | oo | ootos | ®®5%2 | oolos | ootos | ootos | “0059
MIO | gooos | 0009 | oo | “%™6* | oooo | 00102 | ootos | O0%486
ey || o | om0y | Lt | 000 |11
o | o | om0 | o | gom | 2 | o | o
o | ot | e | e o | gty | e | | o
o | | L o | 00 | O 0 |
oy | s | | oo | s |y | 098 | 110w
MI® | gooos | 0009 | ootoo | “™9° | ooior | ootoss | oot | %03
MIO) | Goior | ootoz | oot | %% | oooss | ootor | ootor | %0%7
MIAO | yooos | oo | o009 | O%%* | Gooss | oo | oooss | 0004

As for Table 5.3, PE and EM give the lowest MSE as for the missing data
corresponding to minimum Y values. PE gives the lowest MSE as for the missing
data corresponding to maximum Y values. EM is following this method. In relation
to this, the smallest values in standard errors of coefficients (.S, ) are obtained from
these two methods. At the same time, despite the fact that /3’ , coefficient at MI(10),
,3 , coefficient at MI(5) and ,3 , coefficient at MI(3) are found approximately
1.When the nearness of ,3 i coefficients to 1 is considered, it is observed that PE
gives the better results. MI(4) maximizes the MSE and § 5 a8 for the missing data
corresponding to minimum Y values. As for the missing data corresponding to

maximum Y values, MI(3) maximizes the MSE, but CC maximizes S E
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Table 5.4 Summary of results when missing proportion 9% and n=50

min(1Y ) max(lY 1)
Methods 5((5,{3? )) 5((51 )) 5((5,{32 )) E(MSE) lf((ff) )) 5((51 )) 5((52 )) E(MSE)

0 G B 0 By B,
cC | oot | ootos | ootos | %86 | goios | sons | oorry | 00473
PE | oot | 0oooe | 0o0or | 000935 | 0ooor | oioobs | oooss | 000423
|yt [ 502 IO | oo | 000 | 0T 401 g
MIO | Goror | ooro> | oows | %1 | aolo> | ootos | cotos | 000502
MIQ) | Gotos | ootor | ootos | “0% | goios | oot | ooios | “00513
AR AR
o | S | 1ome | 3 | oo | 520 | 02% | 028 [ oo
MIG) | Gooos | oooos | votor | 0% | 5aey | oonor | oooes | O
MI® | gorrs | oons | votis | %% | sotos | ootos | oot | 00566
MID | goos | ootos | ootos | 52 | goror | ootor | oots | 0500
MI®) | gotos | ooim | ooi2 | “0577 | aoios | ool | oo | 200563
MIO) | oot | ootio | vorn | °%5% | goros | oo | ootos | %5
| 0 | Lo | 0w | o | o8 | 101 | 100 | oo

As for Table 5.4, PE and EM give the lowest average of MSE. In relation to this,

the smallest values of S 5 are obtained from these two methods. For both cases,

J

MI(4) is the closest result to these two methods. When the nearness of ,3 i

coefficients to 1 for the missing data corresponding to maximum Y is considered, it
is observed that PE gives the better results. For both cases, MI(6) maximizes the

MSE and the standard errors of regression coefficients.



Table 5.5 Summary of results when missing proportion 12% and n=50
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min(l Y I) max(l Y )
Methods 5((5 f) )) ;fl )) 5((52 )) E(MSE) 5((5 f) )) ;E(fl )) 1?((5 2 )) E(MSE)

Bo B B Bo B B
| ool | ootos | 00107 | ™78 | Gorio | oorz | oora | 000478
e | g gy | Lo
EM | 00093 | 00004 | oo00s | O%418 | 55005 | oooos | o005 | 000419
MO | o0os | 0oto0 | ootor | ®477 | o0t | ootos | ootos | 000505
MO | g0ios | ootos | oot0s | %@ | Gotos | ootos | ootos | 005
MI® | g0l | 00103 | oot0d | O%%% | 0010 | ootos | ootos | 090512
MO | Gooos | 0009 | 00096 | %8 | Gooss | oioows | oooor | 00438
MIS) | 5o | oooos | oooss | %% | Goosr | oooor | ooom | 0%
MI® | Gorts | ootis | ootta | %% | oois | connt | oot | 000583
MO | o0 | ooioa | ootos | ®%510 | oror | ootor | ootos | 0048
MI®) | goios | ooint | oot | %97 | ooio9 | ooro | oorn | 0057
MIO) | goios | oornt | oont | %58 | gGios | oorto | ootio | 00063
MO | o007 | ooods | oooss | %5 | oooos | oiooss | ooopy | 000452

As for Table 5.5, PE gives the lowest average of MSE. The closest result to this

method is obtained from EM. In relation to this, the smallest values of S 5 are

J

obtained from these two methods. The closest result to these two methods for both

cases is obtained from MI(4). When the nearness of ,3 ; coefficients to 1 is

considered for the missing data corresponding to maximum Y values, it is observed

that PE gives the better results. For both cases, MI(6) maximizes the MSE. MI(6)

maximizes standard errors of regression coefficients as for the missing data

corresponding to minimum Y values. CC maximizes standard errors of regression

coefficients as for the missing data corresponding to maximum Y values.
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Table 5.6 Summary of results when missing proportion 15% and n=50

min(l Y I) max(lY )
Methods 5((&35) )) 5( (Sﬂl )) 5((&3? )) E(MSE) 5((&35) )) é'?( (Sﬂl )) 5( (fz )) E(MSE)

Bo By B, Bo B B,
cc | oono | oors | ootos | *81 | oris | oorso | oorss | 0040
| L[ HOT O e | SO |10 0080 |
EM | gooos | oooss | 00093 | O%% | oooor | oioosn | oooos | 000405
MIO) | Gowe | ooton | oot | %7 | gorco | ootos | ooton | 00047
MIC) | got00 | ootor | ootor | % | gonss | ootoo | aoton | 000468
MI) | goo9s | ooose | 00096 | %0 | oooss | oioose | ooosr | 0004
MI® | o000 | ootor | ootoo | O%%F | Goor | opooso | ooos | 000453
MIS) | gons | oonts | oot | %% | goris | ooris | aot | 00067
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o | 0 ORS00y | OO0 |08

As for Table 5.6, PE gives the lowest average of MSE. The closest result to this

method is obtained from EM. In relation to this, the smallest values of S 5 are

J

obtained from PE. As for the missing data corresponding to maximum Y values, ,3 i

coefficients are found approximately 1 at the method of PE. For both cases, MI(5)
maximizes the MSE. MI(5) maximizes standard errors of regression coefficients as
for the missing data corresponding to minimum Y values. CC maximize standard
errors of regression coefficients as for the missing data corresponding to maximum

Y values.
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Table 5.7 Summary of results when missing proportion 6% and n=75

min(l Y I) max(l Y I)
. EBy) | EB) | EBy) EMSE) EBy) | EB) | EBy) ESE)

E(Sﬁo ) E(Sﬁ1 ) E(S’B2 ) E(Sﬁ’o) E(S/;’l ) E(S,Bz )
co | ame ] ame T oo | e | g | o
e | b | ao |y | oo | gy | poor |y | o
EM | goors | ooore | ooors | 9952 | gm0 | owoso | owoso | 000455
MIO) | oom | ooos2 | ooosr | 9% | ooss | oooss | oooss | 000505
MO | oo | 0oose | 0008t | “9515 | goosa | oooss | oooss | 00508
MIG) | gooss | oooss | o0ooss | O™ | oooss | oooss | oooss | 00513
MG | oo | oooso | oooso | %9 | oooso | oooso | ooost | 0463
M) | Cooso | ooost | ooost | “%%7 | olost | ooost | oo | 000476
MO | goosr | oooss | oooss | “%5% | o005 | oooss | oooss | 005
MIO) | gooss | oooss | oooss | ©%5% | 00053 | 0083 | oooss | 000501
MI®) | gooss | ooose | 0008 | ™57 | oooss | ooosr | ooogs | 00540
MO | yoes | oooss | ooose | %% | gooss | oooss | ooosr | O
MO | oo | ooost | ooom | %% | ooosi | ooose | ooose | 07T

As for Table 5.7, PE and EM give the lowest average of MSE. In relation to this,

the smallest values of S, are obtained from these two methods. The closest result to

these two methods for both cases is obtained from MI(4). When the nearness of ,3 i

coefficients to 1 is considered, as for the missing data corresponding to minimum Y
values, it is observed that MI(8) and as for the missing data corresponding to
maximum Y values, it is observed that CC gives the better results. For both cases,
MI(6) maximizes the MSE. MI(6) maximizes standard errors of regression
coefficients as for the missing data corresponding to minimum Y values. CC
maximizes standard errors of regression coefficients as for the missing data

corresponding to maximum Y values.
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Table 5.8 Summary of results when missing proportion 9% and n=75

min(lY 1) max(1Y 1)
s | ") b6, | By | O b5 By | Es. | EM)
Bo b by By b £,

CC | gooss | oooss | 0oose | “*0 | oooss | oooss | oooss | 000481
PE | goorr | ooors | ooors | %3 | oo | oo | ooms | 000433
B | ooom | ooos | oooms | % | ooom | ooors | oo | 0004
MIO | gooso | ooost | ooos2 | %72 | gooss | oooss | ooosa | 000!
MIO | goost | ooos2 | ooos2 | %8 | ooost | ooos2 | ooosi | 000480
MIG) | oo | oo | oooso | %9 | oo | oonso | ooor | 00045
M | Goost | ooos2 | ooos2 | ™77 | Qooso | ooost | ooost | 000!
MO | gooss | 0000 | 00091 | %% | oioos | oiooso | oooso | OO
MI® | gooso | ooost | ooos2 | % | g0 | oiooso | oooso | 00040
MIO) | oooss | oooss | oooss | %5 | oooss | oooss | oooss | 005!
MI®) | oo | ooost | ooosi | %6 | goomo | nooso | ooom | 00468
MIO) | Goor | soost | oooss | %6 | Goomo | nooso | ooom | 00!
MIGO) | gooso | noosi | oo | %S | om0 | ooost | ooost | 00473

As for Table 5.8, PE and EM give the lowest MSE. In relation to this, the smallest

values of S ; are obtained from these two methods. The closest result to these two

J

methods for both cases is obtained from MI(3). When the nearness of ,3 i

coefficients to 1 is considered, as for the missing data corresponding to minimum Y
values, it is observed that MI(8) and as for the missing data corresponding to
maximum Y values, it is observed that PE gives the better results. For both cases,
MI(5) maximizes the MSE. MI(5) maximizes standard errors of regression
coefficients as for the missing data corresponding to minimum Y values. CC
maximizes standard errors of regression coefficients as for the missing data

corresponding to maximum Y values.
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Table 5.9 Summary of results when missing proportion 12% and n=75

min(l Y I) max(1Y )
Hethot EE((Sﬁ g zf(ff ) If((f ”) | s 5((5 " If((f ) If((f ”) | s

Po p 2 Ao B £,
| | o | s oo | oy | o | G |
e | bt | o | oy om0 | e | 1 | o
R AE A AL
oy | gt | o |0 s | 03 | 0 | | o
ey | g2 | ot | 8 | onen | 12 | 408 | 1081 | o
oy | L8 |y | 30 | osomn | S8 | 9% | 2% | oo
o | 02 | 05 | B2 | | 029 | 02 | 2% | oo
wo | gt | b | e oo | b | b | o2 | o
o | ot | oms | Lo | g 0o | 00 | o
| o | |0 o | 50 |
| Qe | 1008 | 1 | e | 0 | 08 | 0071 | o
oy | 0 | 0 | K | o | 02 | 00 | 0 | o
o | 0 | | am | | 40 | 0 | % |

As for Table 5.9, PE gives the lowest MSE as for the missing data corresponding
to minimum Y values. EM is following this method. In relation to this, the smallest

values of S 5, are obtained from these two methods. PE and EM give the lowest MSE

as for the missing data corresponding to maximum Y values. In relation to this, the

smallest values of S 5 are obtained from these two methods. When the nearness of

,3 ; coefficients to 1 is considered as for the missing data corresponding to maximum

Y values, it is observed that PE gives the better results. MI(10) maximizes the MSE

and S 5 s for the missing data corresponding to minimum Y values. As for the

missing data corresponding to maximum Y values, MI(10) maximizes the MSE, but

CC maximizes S 5

J
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Table 5.10 Summary of results when missing proportion 15% and n=75

min(lY |) max(l Y I)
ethode EBy) | EB) | EBy) EMSE) EBy) | EB) | EBy EMSE)

E(Sﬁo ) E(Sﬁ1 ) E(S[;,Z) E(Sﬁ’o) E(S,Bl ) E(S,Bz )
| o00m | oooss | oooss | 000485 | 0oosr | 0ote | oojos | 000450
PE | goms | ooore | 0oors | “412 | gooms | ooos | ooote | 00408
e | ot | e | L oo | bt | L]0t | oo
MO | st | oooss | 000m | ®%475 | gooso | ooost | ooost | 000472
MO | oon | ooos | ooos | P97 | gioss | oooss | oooss | 00517
MG | Gooso | ooost | ooost | %96 | oooss | ooosa | oooss | 00577
MIG) | o8 | ooos | 0oom | O | olom | oooss | ooosy | 000563
MIG) | COos0 | oooso | ooost | 964 | Ooose | 0ooss | oooss | 000540
MO | oooso | ooost | ooost | 0461 | 000 | gooe | oooso | 00047
MO | Goso | ooost | ooost | 0466 | 000 | goomt | ooost | 000467
MI® | Googs | 000 | 000 | “O50 | oooso | ooosi | ooost | 000468
MO | Gooes | oooss | oo0ss | %% | ooost | ooost | oooss | 00480
MO | 5009 | ooos | 0009 | 097 | Goorr | ooors | ooore | 0000

As for Table 5.10, PE gives the lowest MSE as for the missing data corresponding
to minimum Y values. EM is following this method. In relation to this, the smallest

values of S 5 are obtained from PE. PE and EM give the lowest MSE as for the

missing data corresponding to maximum Y values. In relation to this, the smallest

values of S, are obtained from these two methods. When the nearness of B i

coefficients to 1 is considered, as for the missing data corresponding to minimum Y
values, it is observed that MI(2) and as for the missing data corresponding to
maximum Y values, it is observed that PE gives the better results. MI(10) maximizes

the MSE and § 5, a8 for the missing data corresponding to minimum Y values. As for

the missing data corresponding to maximum Y values, MI(4) maximizes the MSE,

but CC maximizes S 5 -



Table 5.11 Summary of results when missing proportion 6% and n=100
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min(lY |) max(l Y I)
ethode EBo) | EB) | EBD | g | BB | EGD | EB) | g

E(Sﬁo ) E(S’B1 ) E(S[;,Z) E(Sﬁo ) E(S[;,I ) E(S,Bz )
cc | oo | goors | oooos | T | cons | Goons | ooo | 00047
PE | gosr | oooss | 000w | “%8 | gooss | oo | oooes | 0%
BM | gosr | oooes | oo000r | “48 | Gooes | oooso | ooss | 0958
IO | 0070 | oo | o0 | 96 | oo | ooors | ooon | 00049
MO | oot | oot | ooow | “%% | oo | oo | ooora | 090502
MI®) | oo | ooont | o007 | ®%88 | goona | ooon2 | ooora | 000504
MG | o0 | oo | oo | “%7 | Gooro | oooro | oooro | 090484
MG | om0 | 000t | oooor | 997 | 0000 | oo | ooom | 000486
MO | goss | 000 | 00007 | “%57 | goos | oo | oooss | 068
MO | 50068 | oo06s | 00007 | “%%55 | 60060 | 0006 | oooes | 000465
MI® | goor0 | oooro | oooor | “7 | ooom | ooort | ooont | 007
oy | L0 | LS | ey | o | g | oot | | ooes
MO | o7 | goon | oooos | ©%50 | ooors | ooors | ooors | %005

As for Table 5.11, PE and EM give the lowest MSE . In relation to this, the

smallest values of S,

B;

are obtained from these two methods. The closest result to

these two methods for both cases is obtained from MI(7). When the nearness of ,3 i

coefficients to 1 is considered, as for the missing data corresponding to minimum Y

values, it isn’t observed any method, but for the missing data corresponding to

maximum Y values, it is observed that CC gives the better results. For both cases,

MI(10) maximizes the mean square error and CC maximizes the standard errors of

regression coefficients.
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Table 5.12 Summary of results when missing proportion 9% and n=100

min(l Y I) max(l Y I)
. EBy) | EB) | EB) EMSE) EBy) | EB) | EBy EMSE)

E(Sﬁo ) E(Sﬁ1 ) E(S’B2 ) E(SEO ) E(S,Bl ) E(S,Bz )
| oo | ooors | ooors | %981 | 0005 | ooost | oooss | 000483
o | 000 LI 0N gy | RO e |00
EM | ooer | oooes | oooes | "% | oooer | oo0s7 | oooss | 004
MO | gor | ooort | oo0m | O%%72 | goor0 | coon | ooon | 000480
MO | G000 | oot | oo0r0 | “%4 | goon | ooon | ooor | 000490
MI®) | gooes | oooes | 00069 | *9¥%° | 0ooss | oooro | ooorn | OO
M) | 000 | ooon | ooor | %040 | 0000 | oot | ooor | 000467
MIS) | ooms | oo0rs | o078 | %952 | oooss | oooss | oooro | 0!
MO | gom | oo | ooont | %90 | goe | ooes | oooro | 000463
M) | g0 | ooon | ooor | %0485 | gooe | oo | ooons | 000471
MI®) | ooon | ooors | ooont | ®%*9 | ooor | ooor | ooors | 00513
MO | G706 | o000 | 0o0m0 | %% | ooom | ooont | ooors | 00!
MO | ot | oo | oo | ®0%% | goors | ooors | ooore | O0548

As for Table 5.12, PE gives the lowest MSE as for the missing data corresponding
to minimum Y values. EM is following this method. In relation to this, the smallest

values of S, are obtained from PE. PE and EM give the lowest MSE as for the

missing data corresponding to maximum Y values. In relation to this, the smallest

values of S 5 are obtained from these two methods. When the nearness of ,B i
J

coefficients to 1 is considered, it isn’t observed any method for both cases. MI(5)

maximizes the MSE and S 5 as for the missing data corresponding to minimum Y

J

values. MI(10) maximizes the MSE and CC maximizes S j as for the missing data

corresponding to maximum Y values.
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Table 5.13 Summary of results when missing proportion 12% and n=100

min(l Y I) max(l Y I)
. EBy) | EB) | EBy) EMSE) EBy) | EB) | EBy) EMSE)
E(Sﬁo ) E(S’B1 ) E(S’B2 ) E(Sﬁ’o) E(S[;,I ) E(S,Bz )
cc | Gooms | coors | voms | 08 | Goon | oooms | ooom | 000
o | g | ase | o oaner | b s | 0o | oonus
EM | ooosr | 0006r | 00067 | “%2 | ooose | ooose | 0ooss | 043
MO | o0 | o000 | 000t | “%%77 | gooe | o000 | oooro | 000474
MO | 00070 | ooont | ooon | 298 | ooo% | oom | ooors | 000501
wio | oot | b | e | ooosae | oot | St | 0o | oause
w | oot | oot | oot | oonsr | bt | | | oonss
MO | 5o | ooors | ooora | 090518 | 00003 | Doors | ooors | 000519
MO | G0 | ooom | 00010 | **0 | gooss | oooes | ooos | %40
MIO) | gooes | oooe | 0000 | %45 | gouss | ooor | oooss | %O%70
v | aor | aom |y oonars |y || o
MO | gion | doon | ooon | %485 | o | ooor | ooorr | 00048
o | binie oo oot oansy | gooet | Biese | o | oo

As for Table 5.13, PE give the lowest MSE as for the missing data corresponding
to minimum Y values. EM is following this method. In relation to this, the smallest

values of S 5 are obtained from PE. PE and EM give the lowest MSE as for the

missing data corresponding to maximum Y values. In relation to this, the smallest

values of S, are obtained from these two methods. When the nearness of B i

coefficients to 1 is considered, it isn’t observed any method for both cases. MI(3) and
MI(4) maximize the MSE as for the missing data corresponding to minimum Y
values and MI(4) maximizes MSE as for the missing data corresponding to

maximum Y values. For both cases, CC maximizes S 5
J
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Table 5.14 Summary of results when missing proportion 15% and n=100

min(lY |) max(l Y I)
ethode EBy) | EB) | EBy) EMSE) EBy) | EB) | EBy) ESE)

E(Sﬁo ) E(Sﬁ1 ) E(S’B2 ) E(Sﬁ’o) E(S,Bl ) E(Sﬁ’z)
| Goorr | oo | oo0rs | "985 | o00s0 | 00090 | ooogo | 000488
PE | gooes | 0ooes | ooo6s | 008 | 0ooes | oooes | 0ooes | 00412
EM | goo6s | 00063 | ooose | 43 | ooes | 0looes | ooves | 000415
M) | 0500 | oooro | oooro | 09476 | goom | ooont | ooor | 000491
MO | oo | oo | oot | "6 | 000 | ooors | ooone | 000522
o | S | aoee | paenn | ooesss | g | hoos | B | oooss
MG | oo | oo | 0oom | “%9° | Toono | oo | ooono | 09470
MIG) | oz | oot | ooore | %% | oo | oo | oooro | 0%
MO | 500 | ooors | ooors | 0921 | 0ooss | ooss | ooors | 000533
MO | o000 | oo | oog | 00004 | o001 0S| goon | 00043
MI® | 006 | 000 | 000 | "% | o071 | 00071 | ooors | 0043
MO | o0 | oo | oooe | “O8 | oo | oooro | oooro | 0%
o | oo | oo | b | 000450 | oo | voom | e | 00

As for Table 5.14, PE gives the lowest MSE. In relation to this, the smallest

values of S 5 are obtained from this method. The closest result to this method is

J

obtained from EM. When the nearness of ,3 i coefficients to 1 is considered, as for

the missing data corresponding to minimum Y values, it isn’t observed any method
and as for the missing data corresponding to maximum Y values, it is observed that
MI(5) and MI(8) give the better results. MI(5) maximizes the MSE as for the missing
data corresponding to minimum Y values and MI(6) maximizes the MSE as for the

missing data corresponding to maximum Y values. For both cases, CC maximizes

the Sﬁ,j.

The matrix plots of mean square error are given from Figure 5.1 to 5.6.
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Matrix Plot of MSE_50_min(|Y|); %
%

0,007

- 0,006

(IY))
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- 0,005

= [-e-PE

- 0,004

Figure 5.1 The plot of MSE values for min(l Y I) when n=50

According to the matrix plot in Figure 5.1, EM and PE give the lowest MSE.
MI(2), MI(3), MI(6), MI(8) and MI(9) give the parallel results for different missing
proportions. MI(5) and MI(7) give the worst results respectively when missing

proportion is 15%. MI(1), MI(4) and MI(10) are similar to CC.

Matrix Plot of MSE_50_max(|Y|); %
%
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1 1 1 1 0!007
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T3 L0004

Figure 5.2 The plot of MSE values for max(IY |) when n=50

As for Figure 5.2, EM and PE give the lowest MSE. MI1(2), MI(3), MI(6), MI(8)
and MI(9) give the similar results. MI(5) and MI(7) give the worst results when
missing proportion is 15%. On the other hand, closest results are obtained from CC,

MI(1), MI(4) and MI(10).
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Matrix Plot of MSE_75_min(|Y(); %
%
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Figure 5.3 The plot of MSE values for min(1Y [) when n=75

According to the matrix plot in Figure 5.3, EM and PE give the lowest MSE.
MI(8) and MI(10) give the worst results at missing proportions of 12% and 15%.
MI(5) and MI(7) give the worst results when missing proportion is 9%. The other

methods are resemble each other.
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Figure 5.4 The plot of MSE values for max(IY |) when n=75

According to the matrix plot in Figure 5.4, EM and PE give the lowest MSE.
MI(5) and MI(7) give the worst results when missing proportion is 9%. MI(8) and
MI(10) give the worst results at missing proportion of 12%. MI(1) and MI(9) are

similar to CC.
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Matrix Plot of MSE_100_min(|Y|); %
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Figure 5.5 The plot of MSE values for min(l Y I) when n=100

According to the matrix plot in Figure 5.5, PE gives the lowest MSE. MI(3) and
MI(4) give the worst results at missing proportion of 12%. MI(5) give the worst

result when missing proportions are 9% and 15% . There is a resemblance between

the remaining methods.
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Figure 5.6 The plot of MSE values for max(l Y [) when n=100

According to the matrix plot in Figure 5.6, EM and PE give the lowest MSE.
MI(10) gives the worst results when missing proportions are 6% and 9%. On the
contrary MI(10) gives the closest result to PE and EM at missing proportions of 12%
and 15%. Whereas CC and MI(1) give the closest results.
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Matrix plots of S 5 are given from Figure 5.7 to Figure 5.12. Matrix plots of §,

0

and S 5, are given in Appendix C.

Matrix Plot of E(Sb1)_50_min(|Y]); %
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Figure 5.7 The plot of E(Sﬁ ) values for min(lY I) when n=50
1

As for Figure 5.7, the smallest values of S 5 are obtained from PE and EM. MI(6)

gives the worst results when missing proportions are 9% and 12%. MI(5) gives the

worst result at missing proportion of 15%.

Matrix Plot of E(Sb1)_50_max(|Y|); %
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Figure 5.8 The plot of E(S J; ) values for max(IY ) when n=50
1



45

As for Figure 5.8, the smallest values of S 5 are obtained from PE and EM. CC

gives the worst results for all missing proportions.

Matrix Plot of E(Sb1)_75_min(|Y|); %

%
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Figure 5.9 The plot of E(S F; ) values for min(IY |) when n=75
1

As for Figure 5.9, the smallest values of § 5 are obtained from PE and EM.

1

MI(S) gives the worst result when missing proportion is 9%. MI(10) gives the worst

results at missing proportions of 12% and 15%.

Matrix Plot of E(Sb1)_75_max(|Y|); %

e
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=

r 0,008

Figure 5.10 The plot of E(S'B ) values for max(|Y l) when n=75
1

As for Figure 5.10, the smallest values of S 5 are obtained from PE and EM. CC

gives the worst results for all missing proportions.
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Matrix Plot of E(Sb1)_100_min(|Y]); %
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Figure 5.11 The plot of E(Sﬁ ) values for min(IY [) when n=100
1

As for Figure 5.11, the smallest values of S 5 are obtained from PE followed by

EM. MI(5) gives the worst result when missing proportions are 9% and 15%. CC

gives the worst result at missing proportion of 12%.

Matrix Plot of E(Sb1)_100_max(|Y|); %
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Figure 5.12 The plot of E(Sﬁ ) values for max(lY ) when n=100
1

As for Figure 5.12, the smallest values of S, are obtained from PE and EM. CC

gives the worst results for all missing proportions.
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Matrix plots of E( ﬁ’l) are given from Figure 5.13 to Figure 5.18. Matrix plots of
E(,BO) and £ (,32) are given in Appendix D.

Matrix Plot of E(b1)_50_min(|Y|); %
%

- 1,010 method
—o— CC
—B— EM
Mi(1)
- 1,005 —A - MI(10)
MIQ2)
—4— MI®)
—v— Mi4)
——+- MI(5)
—X - MI@)
MI(7)
—&— MI@8)
MI(9)
-4- PE

(YD)

_min

- 1,000 7

b1)_50

- 0,995 et

- 0,990

Figure 5.13 The plot of E([?l) values for min(lY [) when n=50

As for Figure 5.13, B , coefficient at MI(1) and MI(3) are found approximately as
1. PE, EM and CC are alike among themselves. MI(6) gives the worst results at

missing proportions of 9%, 12% and 15%.

Matrix Plot of E(b1)_50 max(|Y|); %
%

- 1,010 method
—e— CC
—B- EM
MI(1)
- 1,005 —aA - MI(10)
MI@)
—4— MI@)
—v- M)
- MI(5)
— - MI(6)
MI(7)
—e— Mi(8)
MI(©)
w |-4-PE

(M)

- 1,000

. 50_max

o
8
a
(b1)

- 0,990

Figure 5.14 The plot of E([fl) values for max(lY [) when n=50

As for Figure 5.14, B , coefficient at PE is found approximately as 1. MI(5) gives

the worst results at missing proportions of 9%, 12% and 15%.
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Matrix Plot of E(b1)_75_min(|Y[); %

%
6 9 12 15

- 1,010 —m EM

- 1,005

(IY1)

- 1,000

)_75_min
%
\
=z
SIS TES

E(b1)_75
=
©

- 0,995

r 0,990

Figure 5.15 The plot of E(Bl) values for min(/Y'I) when n=75

As for Figure 5.15, all methods except MI(9) give the parallel results for B J
coefficient found approximately as 1. MI(9) gives the worst results at missing

proportions of 12% and 15%.

Matrix Plot of E(b1)_75_max(|Y|); %

%
6 9 12 15

method
—e— CC
F1010 | g ey
Mi(1)
—aA - MI(10)
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—v— Mi4)
- MI)
—% - MI()
MI(7)
—o— MI@8)
MI(9)
0,99 iy |-4- PE

L 1,005 _

(Y]

- 1,000

75_max

(b1)

- 0,990

Figure 5.16 The plot of E([fl) values for max(lY |) when n=75

As for Figure 5.16, B , coefficient at PE is found approximately as 1. There is an
alikeness between the PE, EM and CC. MI(2) and MI(5) give the worst results at

missing proportion of 15%.
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Matrix Plot of E(b1)_100_min(|Y|); %

%
6 9 12 15

1,010

- 1,005 MI@2)

- 1,000

E(b1)_100_min(|Y])

- 0,995

Figure 5.17 The plot of E(,[?l) values for min(lY I) when n=100

As for Figure 5.17, all methods except MI(3) give the similar results for ,3 ;
coefficient found approximately as 1. MI(3) gives the worst result at missing

proportions of 12% and 15%.

Matrix Plot of E(b1)_100_max(|Y|); %

%
6 9 12 15

1,010

- 1,005 _ MI@)

- 1,000

E(b1)_100_max(]Y|
£
S

- 0,995

Figure 5.18 The plot of E(ﬁl) values for max(lY |) when n=100

As for Figure 5.18, ,3 , coefficient at PE is found approximately as 1. MI(9) gives
the worst result at missing proportion of 9% and MI(2) gives the worst result at

missing proportion of 12%.
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CHAPTER SIX
CONCLUSIONS

Missing data represent a general problem in many scientific fields. Records
coming from surveys, physical experiments, and a secondary sources often show
some missing data. The impact of the missing data on the results of statistical
analysis depends on the mechanism that made the data to be missing and the way in
which the data analyst deals with them. In scientific literature this problem has been
investigated only recently and almost always with reference to population surveys,

market research and census problem.

In this thesis, missing data mechanism are assumed as MAR. That is the missing
data mechanism does not depend on the set of missing values though it may possibly
depend on the set of observed values. Then the missing data mechanism is said to be
ignorable (Little and Rubin, 1987). The current methods for dealing with missing
values such as MI and EM algorithm are chosen from the model-based methods. In
this thesis, two different simulation study are applied. The first is conducted to
compare with the methods MI and EM algorithm. Before the second simulation
study, we consider the protective estimator which is used method of moments
approach to obtain the regression parameters and the variance. In addition, a
simulation study is carried out to verify the characteristics of the MI, EM algorithm

and PE.

From the first simulation study, when X matrix generated from the multivariate

normal distribution MN(O,I,) and all parameters of regression coefficients are

assigned to 1 with &~N(0,1), we have seen that EM algorithm is given the

minimum mean square error and mean of the S, are close to 1 when the missing

proportion 12% and 36% for symmetric and skewed data. MI(5) is given the
minimum MSE when missing proportion 24% for symmetric data and for skewed
data MI(10) is given. Consequently, when the assumption is not valid, EM algorithm

is not affected, but imputations should be increased for Multiple Imputation.
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In the second simulation study, it is necessary to assume that the outcome
variable and one of the independent variable have approximate bivariate normal
distributions, conditional on the remaining independent variable. That missing data is
restricted to the independent variable and that the outcome variable and the

remaining independent variable are fully observed.
In this study, C# code is named as PEA that is improved to calculate of the
protective regression coefficients, standard error of regression coefficients and mean

square error. The link of this programme is http:/kisi.deu.edu.tr/neslihan.ortabas/.

General results for the methods which give the best consequences are summarized

from Table 6.1 to 6.4.

Table 6.1 Summary of results for which methods give the lowest MSE for min(l Y )

Missing proportion
Sample size 6% 9% 12% 15%
n=50 EM, PE EM, PE PE PE
n=75 EM, PE EM, PE PE PE
n=100 EM, PE PE PE PE

According to Table 6.1, PE and EM give the lowest average of MSE as for the
missing data corresponding to minimum Y values. When the missing proportion and
sample size increase, PE gives the lower average of MSE than EM. As a result it can

be said that PE is the best for all cases.

Table 6.2 Summary of results for which methods give the lowest MSE for max(l1Y I)

Missing proportion
Sample size 6% 9% 12% 15%
n=50 PE EM, PE PE PE
n=75 EM, PE EM, PE EM, PE EM, PE
n=100 EM, PE EM, PE EM, PE PE
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According to Table 6.2, PE and EM give the lowest average of MSE as for the
missing data corresponding to maximum Y values. Again for this criteria PE is the

best for all cases.

Table 6.3 Summary of results for which methods give ,3 1 coefficients nearly 1 for max(lY I)

Missing proportion
Sample size 6% 9% 12% 15%
n=50 MI(5), MI(7) | MI), MI(3) MI(1), MI(3) | MI(8),MI(10)
n=75 MI(1), MI(3) | MI(7), MI(8) MI(5) MI(2)
n=100 MI(2) MI(7) MI(5) MI(5)

As regards the results in Table 6.3, ﬁ’ , coefficients are found approximately 1 at

the method of MI as for the missing data corresponding to minimum Y values.

Table 6.4 Summary of results for which methods give ,B , coefficients nearly 1 for min(1Y I)

Missing proportion
Sample size 6% 9% 12% 15%
n=50 CC, MI(6) CC, PE PE PE, MI(10)
n=75 CcC CC, PE PE, MI(6) PE
n=100 CC, PE CC, MI(6) PE, MI(6) PE, MI(8)

As regards the results in Table 6.4, ,3 , coefficients are found approximately 1 at

the methods of CC and PE as for the missing data corresponding to maximum Y

values. In general it can be said that PE is the best approximately all cases.

In the light of the results obtained from the given tables and figures, the
following generalizations may be made: The MSE and standard errors of coefficients

decreases as the size of the sample increases. As for the missing data corresponding
to minimum Y values when the nearness of ,3 ; coefficients to 1 are taken into
account it is close at MI, far at CC. As for the missing data corresponding to

maximum Y values as regards the nearness of ,B ; coefficients to 1 it is close at PE,
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far at MI. In multiple imputation, a very small value of imputations 2 and 3 are given
the best results for standard errors of coefficients. Other imputations such as 5,6,7 are
given inconsistent results. In multiple imputation, a very small value of imputations
are usually suffice. When the nearness of ﬁ’ , coefficients to 1 is considered, PE

method gives the better results than EM method. Most of the time PE and EM
methods are given parallel results, but when the missing proportion increases PE

gives the better results than EM.

As a result, PE method is the only method among the methods that have been

explored. It gives the lowest average of MSE as for the missing data corresponding
to minimum Y values when the missing proportion and sample size increase. ﬁ’ .

coefficients are found approximately 1 at the method of PE as for the missing data

corresponding to maximum Y values. As for the missing data corresponding to
minimum Y values when the nearness of ,3 ; coefficients to 1 are taken into account

PE gives the consistent results.



54

REFERENCES

Affifi, A.A., & Elashoff, R.M. (1996). Missing observations in multivariate statistics:
Review of the literature, J. Am. Statist. Assoc. 61,595-604

Allison, P. D. (2002). Missing data, Sage Publications, USA.

Atkinson, A.C., & Cheng, T-C. (2000). On robust linear regression with incomplete
data. Computational Statistics & Data Analysis, 33, 361-380.

Demirel, N., & Kurt, S. (2005). RegresyonCoziimlemesinde Kayip Veri Sorunu.
Istatistik Arastirma Dergisi (4), In press

Dempster, A.P., Laird, N.M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B (Methodological) , Vol.39, No.1, 1-38.

Gold, M. S., & Bentler, P. M. (2000). Treatment of missing data: A Monte Carlo
comparison of RBHDI, iterative stochastic regression imputation, and

expectation-maximization. Structural Equation Modelling 7, 319-355.

Graham, J. W., Hofer, S. M., & Piccinin, A. M. (1994). Analysis with missing data in
drug prevention research. In L. M. Collins & L. A. Seitz (eds). Advances in Data
Analysis for Prevention Intervention Research. NIDA Research Monograph.

Series (#142), Washington, DC: National Institute on Drug Abuse.

Graham, J. W., Hofer, S. M., & Mackinnon, D. P. (1996). Maximizing the usefulness
of data obtained with planned missing value patterns: an application of maximum

likelihood procedures. Multivariate Behavioral Research 31: 197-218.



55

Graham, J. W., Hofer, S. M., Donaldson, S. 1., MacKinnon, D. P., & Schafer, J. L.
(1997), Analysis with missing data in prevention research. In K. Bryant, M.
Windle & S. West (eds). The Science of Prevention: Methodological Advances
from Alcohol and Substance Abuse Research. Washington, DC: American

Psychological Association.

Greenlees, W.S., Reece, J.S., & Zieschang, K.D. (1982). Imputation of missing
values when the probability of response depends on the variable being imputed. J.

Am Statist. Assoc. 77,251-261

Hartley, H. O., & Hocking, R.R. (1971) The analysis of incomplete data. Biometrics
27, 783-808.

Hippel, P. T. V. (2004). Biases in SPSS 12.0 Missing Value Analysis, The American
Statisticion, May 2004, Vol.58, No.2.

Kromrey, J. D., & Hines, C. V. (1994). Nonrandomly missing data in multiple
regression: An empirical comparison of common missing-data treatments.

Educational and Psychological Measurement 54: 573-593.

Lipsitz, S.R., Molenberghs, G., Fitzmaurice, G.M., & Ibrahim, J.G. (2004).
Protective estimator for linear regression with nonignorably missing Gaussian

outcomes. Statistical Modeling,4,3-17.

Little, RJ.A., & Rubin, D.B. (1983). Incomplete data. Encyclopedia of the

Statistical Sciences 4, 46-53.

Little, R.J.A., & Rubin, D.B. (1987). Statistical analysis with missing data. John
Wiley & Sons, Inc., USA.

Little, Roderick J. A., & Donald B. Rubin (1989). The analysis of social science data
with missing values. Sociological Methods and Research 18: 292-326.



56

Little, R.J.A., (1992). Regression with missing X’s : A review. Journal of American
Statistical Association, Vol.87, No.420, 1227-1237

Little, R.J.A., & Schenker, N. (1994). Missing data. In Handbook for Statistical
Modeling in the Social and Behavioral Sciences (G. Arminger, C.C. Clogg and
M.E. Sobel, eds.) pp.39-75. New York:

Little, R.J.A (1997). Biostatistical analysis with missing data. Encyclopedia of
Biostatistics (P.Armitage and T. Calton, eds.) London: Wiley.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. (2nd
ed.). A John Wiley & Sons, Inc. USA.

McLachlan, G.J., & Krishnan, T. (1997). The EM algorithm and extensions. John
Wiley & Sons, Inc., USA.

Navarro, J. B., & Losilla, J. M. (2000). Analysis of incomplete data with artificial

neural networks: A simulation study. Psicothema 12: 503-510.

Orchard, T., & Woodbury, M.A. (1972). A missing information principle: theory and
applications. Proc. 6" Berkeley Symposium on Math. Statist. and Prob. 1,697-715.

Othuon, L. O. (1999). The accuracy of parameter estimates and coverage probability
of population values in regression models upon different treatments of
systematically missing data. Dissertation Abstracts International Section A 59:

4359.

Pastor, J.B.N. (2003). Methods for the analysis of explanatory linear regression
models with missing data not at random. Quality &Quantity, 37, 363-376.

Rubin, D.B. (1976). Inference and missing data. Biometrika, Vol.63, 581-592.



57

Rubin, D.B. (1987). Multiple imputation for nonresponse in surveys. New York,
Wiley.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. Chapman & Hall,
USA

Simonoff, J. S. (1988). Regression diagnostics to detect non-random missingness in

linear regression. Technometrics 30: 205-214.

Wothke, W. (1998). Longitudinal and multi-group modelling with missing data. In T.
D. Little, K. U. Schnabel & J. Baumert (eds). Modeling Longitudinal and Multiple
Group Data: Practical Issues, Applied Approaches and Specific Examples.

Mahwah, NJ: Lawrence Erlbaum Associates.



58

APPENDICES

APPENDIX A - Minitab Macro Program for Protective Estimator

We can extend Minitab’s capabilities by writing macros that do sets of Minitab
commands for us, or that create new Minitab commands. Minitab macro capabilities
fall into two categories. Execs were created for earlier releases of Minitab, but
Minitab now has a more robust programming language that allows us to create
%macros, which are more powerful and flexible than Execs. There are two kinds of
J%macros: global macros, which are simple and local macros, a more sophisticated
form of macro that allows much more flexibility. Global and local macros share
many qualities; they are both invoked by typing %, they end in the file extension of

MAC, and they can use many of the same macro statements.

Protective.mac is created for calculated protective regression coefficients,
standard error of regression coefficients and mean square error. This program is

executed 500 times by itself.

PROTECTIVE.MAC

gmacro
protective

retrieve 'C:\Documents and Settings\Desktop\statistics.mtw' # This is an empty
worksheet for saving coeffcients after the program is finished.

retrieve 'C:\Documents and Settings\Desktop\data.mtw' # This is the data worksheet.
it has 500 different data sets.

letkl=1
let k2=3
let k3=2

while k1<1500
while k2<1500
while k3<1500

regress ckl 1 ck2; # Regress Y on X, for the first data set.
coefficients c1510; # Stores the coefficients in c1510. (coefficients are 6, and

6,)
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mse k100. # Stores the mean square error in k100. (k100=07, )

regress ck3 2 ckl ck2; # Regress X; on Y and X, for the first data set.

coefficients c1511; # Stores the coefficients in c1511. (coefficients are ¢,
¢,and ¢,)

mse k101. # Stores the mean square error( Gil‘yxz ) as k101.

let k102=k100*c1511(2) # Stores 0, = 0'121¢1 as k102

let k103=k101+((k102#%2)/k100) ~ # Stores 02, = (02 . + 05 /0%) ask103

let k104=c1511(1)+c1511(2)*c1510(1) # Stores 7, = @, + 3,6, as k104
let k105=c1511(3)+c1511(2)*c1510(2) # Stores 7, = @, + ¢,,6, as k105

let k106=k102/k103 # Stores f3, = 6,,/63, askl106

let k107=c1510(1)-k106*k 104 # Stores 3, =6, — p.7, as k107
let k108=c1510(2)-k106*k105 # Stores f3, =6, — B,7, ask108
copy k107 k106 k108 c1512 # Stores the coefficients in c1512.

(coefficients are ,30, ﬁl and ,32)

do k4=92:100 # X has a nine missing observation
let ck3(k4)=c1511(1)+c1511(2)*ck1(k4)+c1511(3)*ck2(k4) # X; is imputed
enddo

set c1509

100(1)

end

copy ¢1509 ck3 ck2 m1 # Stores X matrix as m1
transpose m1 m2 # Stores X' matrix as m2
multiply m2 m1 m3 # Stores X' X matrix as m3
inverse m3 m4 # Stores (XTX)’1 matrix as m4

let c1513=c1512(1)+c1512(2)*ck3+c1512(3)*ck2 # Stores fl ascl513

let c1514=ck1-c1513 # Stores e, =Y, —Yi ascl514
let c1515=c1514**2 # Stores e; as c1515

let k109=(sum(c1515)/(count(c1515)-3)) # Stores MSE as k109



multiply k109 m4 m5

copy m5 c¢1520-c1522

let k110=sqrt(c1520(1))
let k111=sqrt(c1521(2))
let k112=sqrt(c1522(3))

copy k107 k106 k108 c1525

copy k109 c1527
let k115=sqrt(k109)
copy k115 c1528

copy k110-k112 c1526

name c1525 'coef’
name c1527 'mse’
name c1528 'S’
name c1526 's_coef’

copy c¢1525 ¢1526 c1527 c1528;

after "statistics.mtw";
varnames.

worksheet "data.mtw"
let k1=k1+3

let k2=k2+3

let k3=k3+3

print k1-k3

endwhile

endwhile

endwhile

endmacro

# Stores MSE"‘(XTX)’1 as m5

# Stores S/;, as k110
# Stores S/;, askl11
# Stores S/Ez as k112

# Stores the coefficients in
c1525. (coefficients are ,30, ﬁ’l and ﬁ’z)

# Stores MSE in c1527
# Stores S as k115
# Stores S in c1528

# Stores S, in c1526

# The program is run for the 2. data
set and then 3. it goes to 500.

60
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APPENDIX B - C# Code for Protective Estimator

C# (pronounced C sharp) is a programming language designed for building a wide
range of enterprise applications that run on the .NET Framework. An evolution of
Microsoft C and Microsoft C++, C# is simple, modern, type safe, and object
oriented. C# code is compiled as managed code, which means it benefits from the
services of the common language runtime. These services include language
interoperability, garbage collection, enhanced security, and improved versioning

support.

ASP.NET is a set of web application development technologies marketed by
Microsoft. Programmers can use it to build dynamic web sites, web applications and

XML web services.

Microsoft .NET is an umbrella term that applies to a wide collection of products
and technologies from Microsoft. Most have in common a dependence on the

Microsoft .NET Framework, a component of the Windows operating system.

In this thesis, C# code is named as PEA that is improved to calculate of the
protective regression coefficients, standard error of regression coefficients and mean

square error. The link of this programme is http:/kisi.deu.edu.tr/neslihan.ortabas/.
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Matrix Plot of E(Sbo) 50 min(|Y|); %
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Matrix Plot of E(Sb2)_50_min(|Y|); %
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Matrix Plot of E(Sb0)_75_min(|Y|); %

%
6 9 12 15

- 0,010

- 0,009

- 0,008

E(Sb0)_75_min(]Y])

methods
—— CC
—B— EM

—A - MI(10)
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Matrix Plot of E(Sb2)_75_min(|Y|); %
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Matrix Plot of E(Sb0)_100_min(|Y|); %
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Matrix Plot of E(Sb2)_100_min(|Y|); %
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Matrix Plot of E(b0)_50 _min(]Y|); %
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Matrix Plot of E(b2)_50_min(|Y|); %
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Matrix Plot of E(b0)_75_min(|Y]); %
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Matrix Plot of E(b2)_75_min(|Y|); %
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Matrix Plot of E(b0)_100_min(|Y|); %
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Matrix Plot of E(b2)_100_min(|Y|); %
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Matrix Plot of E(b2)_100_max(|Y]); %
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