
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

FORMAL METHODS AND PROGRAMMING

TOOLS FOR MODELING ANT COLONIES

by

Emine EKİN

February, 2006

İZMİR

FORMAL METHODS AND PROGRAMMING

TOOLS FOR MODELING ANT COLONIES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Computer Engineering

by

Emine EKİN

February, 2006

İZMİR

 ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “FORMAL METHODS AND

PROGRAMMING TOOLS FOR MODELING ANT COLONIES ” completed

by Emine EKİN under supervision of Prof. Dr. Tatyana YAKHNO and we certify

that in our opinion it is fully adequate, in scope and in quality, as a thesis for the

degree of Doctor of Philosophy.

Prof. Dr. Tatyana YAKHNO

Supervisor

Prof. Dr. İrem ÖZKARAHAN Prof.Dr. Cüneyt GÜZELİŞ

Committee Member Committee Member

 Prof. Dr. Fazlı CAN Prof. Dr. Alp KUT

Jury Member Jury Member

Prof.Dr. Cahit HELVACI

Director

Graduate School of Natural and Applied Sciences

 iii

ACKNOWLEDGEMENTS

I appreciate Prof. Dr. Tatyana YAKHNO, for her supervision, support,

contribution, care, and patience despite all my obstinacy. She led me to understand

who I want to be.

I would like to thank to committee members Prof. Dr. İrem ÖZKARAHAN, and

Prof. Dr. Cüneyt GÜZELİŞ, for their valuable comments, suggestions during the

whole work.

I also want to thank to Prof. Dr. Fazlı CAN, who is one of the final committee

members, for his comments on the document, encouraging me for the further studies.

My thanks also go to Prof. Dr. Alp KUT, who is final committee member as well, for

his remarks on the document.

There is a special friend, who listened me, sometimes cooked for me, encouraged,

convinced, and forced me in achieving the completion, so, I would like to express my

heartfelt thanks to Berna. Thanks to Çağdaş as well, for his contribution particularly

on early development phases, and for continuing moral support. I want to also thank

to all other friends, for their patience on waiting the completion of this study; to the

students for their interest on ants.

I extend my thanks to all members of Department of Computer Engineering for

their understandings during the whole work.

Finally, I would like to express my special gratitude to my brother Yalçın who

always supports me for everything I need, and also my parents, Beşri and Eşe, just

because being my parents, taking care of me from hundreds of kilometers away.

Emine EKİN

 iv

FORMAL METHODS AND PROGRAMMING TOOLS FOR MODELING

ANT COLONIES

ABSTRACT

Nature inspired algorithms have growing up interest in the area of optimization,

and the class of ant colony optimization algorithms is one of the recently developed

instances of such algorithms. Ant Colony Optimization, ACO, algorithms rely on the

basic behavior of ants that is known as foraging behavior, which helps the ant

colonies to find the shortest path among a number of possible choices. This is

achieved by laying down a chemical substance, called pheromone, on the ground

while moving; and preference of the paths with high pheromone level by the

successor ants. This type of behavior is also called social behavior in more abstract

level, and covers many biological phenomena.

There are two directions in dealing with the social behavior observed in ant

colonies; one is transferring the idea to solve optimization problems, leading to the

ant colony algorithms, and the other one is formal modeling of the behavior followed

with a proper verification schema for better understanding of the relationship

between the local interactions of individuals in colonies, and the global dynamical

behavior of the colony. Through formal modeling, and a proper verification approach

not only social behavior, but various aspects of ant behavior can be investigated.

In this thesis, we have followed both directions. There are some applications

developed employing ACO algorithms for solving a real world problem, and a

problem from operations research area. In addition, the application developed for

Traveling Salesman Problem serves for better understanding of the algorithm.

However, much of the efforts have been spent for formal modeling, verification, and

developing an automated modeling tool.

Among a variety of formal modeling languages, Weighted Synchronized Calculus

of Communicating Systems, WSCCS, has been chosen which is a probabilistic state

based transition process algebra. However, modeling itself brings no insight unless it

 v

is combined with a verification schema. Verification aims to confirm the correctness

of the abstract model against its specification, and also to bring front the properties of

colony being studied via asking some questions to the model. Model checking is a

technique of verification, and concerns to verify the model for a given property.

In order to verify the correctness of the model, model checking approach has been

employed. Since model checking can be performed via temporal logics, probabilistic

Computation Tree Logic is another issue dealt with which is then extended to be able

to cover the notion of action.

Combining the model checking and formal modeling by WSCCS can be

accomplished through transforming the model into a discrete state space with

corresponding transitions. Therefore, Labeled Kripke Transition Systems (LKTS) is

another formalism introduced, and extended to wrap the probability and action in its

state transitions.

The main achievements addressed in the thesis are: the ACO applications

developed to solve optimization problems, an investigation of WSCCS for modeling

ant colonies, extending the CTL and LKTS such that both systems allow representing

probabilistic action occurrences which is the most important property of WSCCS,

designing a model checking schema that permits to query the model for probabilistic

action occurrences, and implementing a tool in order to automate the whole process.

Keywords: Ant Colony Optimization (ACO), social behavior, Weighted

Synchronized Calculus of Communicating Systems (WSCCS), model checking,

probabilistic computation tree logic (PCTL), labeled Kripke transition systems

(LKTS).

 vi

KARINCA KOLONİLERİNİN MODELLENMESİ İÇİN BİÇİMSEL

YÖNTEMLER VE PROGRAMLAMA ARAÇLARI

ÖZ

Eniyileştime problemlerinin çözümünde doğadan esinlenerek geliştirilen

algoritmalar giderek artan bir yere sahiptir. Karınca kolonisi eniyileştirme

algoritmaları da doğa kaynaklı algoritmaların yakın dönemde geliştirilen

örneklerinden biridir. Karınca kolonisi algoritmaları, karıncaların yiyecek arama

sürecindeki olası bir çok yol arasından en kısa olanı bulabilme yeteneği baz alınarak

geliştirilmiştir. Bu yetenek hareket eden karıncaların yeryüzüne kimyasal bir madde

bırakmaları, ve takipçilerinin de bu maddeyi algılayarak daha yoğun madde olan

yolları tercih etmeleri olarak açıklanabilir. Birçok biyolojik sistemde de görülen bu

davranış sosyal davranış olarak isimlendirilmektedir.

Karınca kolonilerinde görülen sosyal davranış iki ayrı inceleme alanı ile karşımıza

çıkar. Birincisi, bu davranışın eniyiliştirme problemlerinin çözümünde

kullanılabilecek algoritmalar tarafından taklit edilmesi, diğeri ise koloni içindeki

bireylerin davranışları ile bunun koloni üzerindeki etkilerinin araştırılmasına ve daha

iyi anlaşılmasına yönelik olarak geliştirilen biçimsel modelleme yöntemleri. Biçimsel

modellemenin avantajı uygun bir doğrulama yöntemi ile birleştirildiğinde yalnızca

sosyal davranışın değil, karınca kolonilerinin birçok özelliklerinin

araştırılabilmesidir.

Bu tezde, her iki alanda da çalışmalar yapılmıştır. Karınca kolonisi en iyileştirme

algoritmaları kullanılarak gerçek hayattan, ve yöneylem araştırması alanından alınan

problemler çözülmüş benzer eniyiliştirme algoritmaları ile karşılaştırmaları

verilmiştir. Ayrıca gezgin satıcı problemi için geliştirilen uygulama ile algoritmanın

temel özelliklerinin, parametrelerin birbirlerilerine olan etkilerinin anlaşılması

sağlanmıştır. Ancak, asıl içerik biçimsel modelleme, doğrulama, ve ikisini birleştiren

bir modelleme aracının geliştirilmesi üzerine yoğunlaşmıştır.

Birçok biçimsel modelleme dili arasından olasılıksal olarak durumlar arası geçişe

olanak sağlayan bir işlem cebri olan Bağlantılı Çalışan Sistemler için Ağırlıklı

 vii

Eşlemeli Hesap “Weighted Synchronized Calculus of Communicating Systems”

(WSCCS) seçilmiştir. Ancak, modelleme, doğrulama ile birleştirilmediği sürece

incelemesi yapılan sistem hakkında herhangi bir yargıda bulunmamıza olanak

sağlamaz. Doğrulama işlemi, oluşturulan soyut modelin sistem tanımı ile

karşılaştırılarak teyit edilmesidir. Ayrıca, model üzerinde yapılabilen bazı

sorgulamalar sayesinde sistemin özellikleri de incelenebilir. Model denetimi bir

doğrulama yöntemi olup verilen bir özelliği sistemin sağlayıp sağlamadığının

araştırılmasıdır.

Doğrulama yöntemi olarak seçilen model denetimi yaklaşımı ancak zamana bağlı

mantık “temporal logics” ile yapılabildiği için, olasılıksal hesap ağacı mantığı

“probabilistic Computational Tree Logic” (pCTL), bu tezde incelenen, ve karınca

kolonilerinin toplu davranışlarını da kapsayabilmesi için genişletilen diğer bir

biçimsel yöntemdir.

Son olarak WSCCS modelleme ile model doğrulama işleminin birleştirilmesi için

geliştirilen modellerin ilgili geçişlerle birlikte ayrık durum uzayına dönüştürülmesi

zorunludur. “Labeled Kripke Transition Systems” ayrık durum uzayı biçimselliği

olarak tanıtılmış, ancak durum geçişlerinde olasılık ve eylemlerin temsil edilebilmesi

için tanımı genişletilmiştir.

Bu tezde elde edilen başlıca kazanımlar; karınca kolonisi algoritmalarının

eniyileştirme problemlerinin çözümünde kullanılması için geliştirilen uygulamalar;

karınca kolonilerinin modellemesinde kullanılmak üzere WSCCS dilinin detaylı

incelenmesi; CTL zamana bağlı mantığı ve LKTS ayrık durum uzayı

biçimselliklerinin WSCCS dilinin temel özelliği olan olasılığa bağlı faaliyetleri

desteklemek üzere genişletilmesi; modeller üzerinde yine olasılığa ve eyleme bağlı

sorgulamalar yapabilmek üzere bir model denetleme şemasının tasarlanması; ve tüm

bu işlemleri otomatik olarak yapabilmek için bir yazılım aracının geliştirilmesi

olarak sayılabilir.

 viii

Anahtar Kelimeler: Karınca Kolonisi Optimizasyonu, sosyal davranış, Bağlantılı

Çalışan Sistemler için Ağırlıklı Eşlemeli Hesap, model denetleme, olasılıksal

hesaplama ağacı mantığı, etiketli Kripke geçiş sistemleri.

 ix

CONTENTS Page

THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT ..iv

ÖZ ...vi

CHAPTER ONE

INTRODUCTION ..1

1.1 Introduction...1

1.2 Real Ants’ Behaviors...2

1.2.1 Bridge Experiment to Observe Pheromone Following....................3

1.3 Formal Modeling of Systems...4

1.3.1 Why Modeling is Required? ..4

1.3.2 The Need for Modeling Ant Colonies ..5

1.3.3 How Modeling is Performed? ..5

1.4 Classification of Modeling Languages ..6

1.5 Existing Modeling Languages & Available Tools..................................9

1.5.1 Cellular Automata..9

1.5.2 Cellular Automata Tools..10

1.5.3 Petri Nets...11

1.5.4 Petri Nets Tools ...12

1.5.5 Process Algebra ...14

1.6 Structure of the Thesis...15

CHAPTER TWO..

ANT COLONY OPTIMIZATION ALGORITHMS...17

2.1 Historical Background...17

2.2 Artificial Ants ...18

2.3 Traveling Salesman Problem ...20

2.4 Different Classes of ACO Algorithms ...20

2.4.1 Ant System-AS..21

2.4.1.1 Tour Construction ..21

2.4.1.2 Trail Update Mechanism..22

 x

Page

2.4.2 Other AS-Like Algorithms...24

2.4.3 Ant-Q Algorithm ...25

2.4.3.1 Solution Construction...25

2.4.3.2 Trail Update Mechanism..26

2.4.4 Ant Colony System- ACS ..26

2.5 Local Search to Improve the Performance of ACO Algorithms............27

2.6 Application Areas of ACO Algorithms..29

2.6.1 Quadratic Assignment Problem-QAP...29

2.6.2 Sequential Ordering Problem-SOP...30

2.6.3 Single Machine Total Tardiness Problem-SMTTP31

2.6.3.1 Trail Update...32

2.6.4 Single Machine Total Weighted Tardiness Problem-SMTWTP....33

2.6.4.1 Trail Updating..35

2.6.5 Routing Problems ..35

2.6.5.1 Solution Construction...35

2.6.5.2 Trail Updating..36

CHAPTER THREE

CASE STUDIES ON ACO ALGORITHMS ...38

3.1 TSP Application ..38

3.1.1 Parameter Settings ...39

3.1.1.1 Learning Rate versus Evaporation Coefficient..........................39

3.1.1.2 Heuristic Information versus Learning Rate (β vs q0).............41

3.1.1.3 Heuristic Information versus Evaporation Rate(β vs ρ).........43

3.1.1.4 Pheromone Strength versus Evaporation(α vs ρ)...................44

3.1.2 Conclusions ...45

3.2 2D Projected Map Application ..45

3.2.1 Modifications on ACO Algorithm..47

3.2.1.1 Moving Strategy ..48

3.2.1.2 Trail Update Mechanism..50

3.2.2 Experimental Results ...51

3.3 SMTTP Application ..53

 xi

Page

3.4 Problem Sets ...54

3.4.1 Problem Set 1 ..54

3.4.2 Problem Set 2 ..54

3.4.3 Results for Problem Set 1...56

3.4.4 Results for Problem Set 2...56

CHAPTER FOUR

WEIGHTED SYNCHRONISED CALCULUS OF COMMUNICATING

 SYSTEMS ..60

4.1 WSCCS as a Multi Agent System Modeling Language........................60

4.2 Why to Model Ant Colonies by WSCCS? ...61

4.3 Definition of the Calculus..62

4.3.1 Action Performing (.)...63

4.3.2 Weighing an Action (:) ..63

4.3.3 Choice between Actions (+)...64

4.3.4 Parallel Composition of Agents (×)..66

4.3.5 Restriction on the Actions to be Performed (<)66

4.3.6 Communication ...67

4.3.7 Prioritization of Action(s) in an Agent Expression69

4.3.8 Renaming Actions in an Agent Expression (()E Ef Act)70

4.3.9 Fixing an Agent (fix) ...71

4.4 WSCCS Semantics ..72

4.5 Congruence and Equational Theory ...74

4.5.1 Proof by Equational Theory ...75

CHAPTER FIVE

FORMAL VERIFICATION ..76

5.1 Introduction...76

5.2 Verification by Theorem Proving ..77

5.3 Verification by Model Checking..79

5.3.1 History of Model Checking..80

5.3.2 Model Checking Approaches ...82

5.4 Discrete State Space Modeling ..84

 xii

Page

5.4.1 Labeled Transition Systems ...84

5.4.2 Kripke Structures...87

5.4.3 Labeled Kripke Transition Systems..88

5.5 Temporal Logics ...89

5.5.1 Linear Time Temporal Logic versus Branching Time Logics.......90

5.6 Computation Tree Logic, CTL...92

5.6.1 Computation Tree ..92

5.6.2 Syntax of CTL...93

5.6.3 Semantics ..94

CHAPTER SIX

DESIGN OF WSCCS++ ...99

6.1 Introduction...99

6.2 Available Tools for Process Algebra..99

6.3 Architecture of WSCCS++ ..101

6.4 Lexical Analyzer—Lexer— for WSCCS++.......................................103

6.4.1 Tokens in WSCCS++ ..104

6.4.2 Lexical Analysis Approach ..105

6.4.3 WSCCS Example ..106

6.5 Syntax Analyzer—Parser for WSCCS ...106

6.5.1 Parsing Method..107

6.5.2 Abstract Syntax Tree Creation within WSCCS++109

6.6 Extracting Propositional Variables...110

6.7 Defining the Property ..111

6.7.1 Definition of pCTL..112

6.7.2 Expressive Power of pCTL ..114

6.7.3 Entering the Property ...115

6.8 Lexical and Syntax Analysis of the Property......................................117

6.8.1 Tokens for pCTL ...117

6.8.2 Lexical Analyzer –Lexer– for pCTL ..118

6.8.3 Syntax Analyzer —Parser— for pCTL118

6.8.4 An Example Formula and its AST ...121

 xiii

Page

6.9 Constructing State Transition Graph..122

6.9.1 Labeled Kripke Transition Systems* for WSCCS++..................122

6.9.2 Generating LKTS* Graphs ..123

6.9.2.1 Composing Initial State..124

6.9.2.2 Determining the State Space...124

6.9.3 Graph Generator of WSCCS++..128

6.10 Model Checking in WSCCS++..134

6.10.1 Paths, Calculating Probabilities on Paths....................................135

6.10.1.1 The Satisfaction Relation, Semantics of pCTL......................136

6.10.2 WSCCS Example ..138

6.11 Conclusion ..139

CHAPTER SEVEN

WSCCS CASE STUDIES...140

7.1 Conflicting Actions ...140

7.2 Two Ant Colonies in Life Game..141

7.2.1 WSCCS++ Demo ..143

7.2.2 Generating LKTS* Graph ..144

7.2.2.1 Extract Set of Propositional Variables144

7.2.2.2 Form the Initial State from Sys Agent145

7.2.2.3 Discovering Successors of Initial State...................................145

7.2.2.4 Visualizing State Space in WSCCS++....................................148

7.2.3 Formulating the Property ...148

7.2.3.1 Submitting the Property to WSCCS++ Model Checking

Component ..149

7.2.4 Executing the Property...151

CHAPTER EIGHT

CONCLUSIONS, CONTRIBUTIONS, FUTURE WORK152

8.1 Summary & Contributions Inline...152

8.2 Future Works...154

REFERENCES ...155

 xiv

Page

APPENDIX A

THE LANGUAGE OF WSCCS...173

A.1. WSCCS Syntax ...173

A.2 WSCCS Operational Semantics...175

A.3 Congruence and Equational Theory ...177

A.3.1 Congruence via Bisimilarity...178

A.3.1.1 Direct Bisimulation ...178

A.3.1.2 Relative Bisimulation ..179

A.3.2 Equational Theory ...180

 1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

How do the actions and interactions of individuals lead to dynamics of the

population which they make up? The researchers working in several areas are

interested in answering this question very often to gain benefit. For biologists, the

answer is important because they attempt to understand the rules of living organisms.

However, from a computer scientist’s point of view, understanding such a

relationship has introduced a new family of algorithms known as nature inspired

algorithms. Also, the field of artificial life concerns to deal with such systems, and

build up computer simulations of living organisms.

The idea studied in the thesis has been borrowed from the behavior of biological

systems so called social insects, particularly ant colonies. The behavior of an ant

colony is often studied as if it were a single entity or “super organism”. This super

organism may perform a variety of complex tasks as nest building, food foraging, or

reproduction. The reason behind calling ants as social insects is that, while any ant

cannot perform any of these complex tasks, when they are gathered as colony they

can carry out any task. The assumptions took us figuring out that, either each ant

exhibit a remarkable intelligence or that the colony has a collective intelligence

above and beyond that the ants composing the colony.

The idea of collective intelligence, which is also called social behavior, has been

directed the computer scientists in two ways: (i) Copying the behavior in a proper

form for solving some certain types of problems, leading to the Ant Colony

Optimization Algorithms, (ii) Modeling the behavior for a better understanding of

the relationship between individual interactions and the global behavior of colony.

2

The organization of this chapter is as follows: The behavior of real ant colonies

which constitutes the basics of the thesis is introduced first. Explaining the necessity

of modeling, particularly modeling ant colonies, and a brief definition of formal

modeling, the languages involved in modeling and realizing colonies have been

presented. A number of computer tools for modeling languages have also been

mentioned.

1.2 Real Ants’ Behaviors

The ants in nature are known to be blind; therefore they are not able to perform

any task individually. However, they exhibit some certain type of behavior which

allows them to survive as a colony. This type of behavior is known as social

behavior, and is observed on social insects, i.e., insects living in colonies. Social

behavior is nothing but the behavior where the survival of the colony is more

important than survival of any individual. That is, ants are social insects, and their

behavior is directed towards to the survival of the colony rather than that of any

individual belonging to the colony.

The fact that ants are social insects, and in turn show social behavior can be best

observed while they are looking for food, i.e., the foraging behavior, particularly how

they can form the shortest path from their nest to the food source. Observations

figured out that the basis of this ability is a kind of chemical substance called

pheromone (Dorigo & Gambardella, 1997b). Basically, an ant moving around or

looking for food, or transporting food to the nest, deposits some pheromone trail on

the path it follows. If an ant perceives pheromone trail while moving around, it is

tempted to follow that previously followed path. While moving along that path, it

leaves a pheromone trail increasing the existing one. The emerging behavior is a

form of autocatalytic or positive feedback behavior (Dorigo, Maniezzo & Colorni,

1991; Ekin & Yakhno, 2001; Yakhno & Ekin, 2002). The probability of choosing a

path is affected by the pheromone trail laid down on the path. Thus, the more ants

follow a path, the more attractive that path becomes for the rest of ants. Furthermore,

since the probability of an ant choosing a path increases with the number of ants that

have already chosen that path, at the end, almost all ants will choose to follow the

3

shortest path, even if each ant’s decision always remains probabilistic (Bonabeau,

Dorigo, & Theraulaz, 1999).

1.2.1 Bridge Experiment to Observe Pheromone Following

To observe pheromone trail laying and following behavior of some ant species has

been investigated in controlled experiments known as double bridge experiments by

Bonabeau, Dorigo, & Theraulaz, 1999; Deneubourg, Aron, Goss, & Pasteels, 1990;

and Goss, Aron, Deneubourg, & Pasteels, 1989. A similar experiment has been taken

from Dorigo & Gambardella, 1997b. The main idea in the experiment is that, if an

obstacle appears on regular path of an ant colony, Figure 1.1B, in some amount of

time they construct another path around the shorter side of the obstacle, Figure 1.1D.

Figure 1.1 Obstacle experiment from Dorigo & Gambardella, 1997b.

In Figure 1.1A, ants are moving on a straight line on both directions and following

pheromone trail, probably carrying food from food source to nest, or going to the

food source. In Figure1.1B, an obstacle has been put that breaks the straight line, and

interrupts the pheromone. Then, the ants those are just in front of the obstacle cannot

continue following pheromone trail, thus they decide either turning right or left

randomly Figure1.1C. No matter whether an ant turns left or right, it deposits

pheromone on the path it follows. Clearly, the ants those selecting the shorter side

arrives the food/nest depending on their directions, and when they attempt to turn

back there is a high probability to select the path with pheromone. As a result, the

ants those selecting the shorter path will rapidly reconstitute the pheromone trail as

4

compared to the ants selecting the longer path. Hence, the shorter path will be

preferred by more ants, and will deposit more pheromone in turn. Due to this positive

feedback behavior, in some amount of time, all ants prefer the shorter path, Fig1.1D.

1.3 Formal Modeling of Systems

1.3.1 Why Modeling is Required?

Advantage of modeling lies in easiness and safeness of understanding and

manipulating a model before realizing the system in question. In other words, models

are created as an aid for predicting and understanding any phenomena.

Figure 1.1 Systems modeling.

Any system, which has components working in parallel, communicating with each

other and with the environment is considered as a distributed computing system.

Biological systems, banking systems, air flight control systems, etc. are all

distributed computing systems. It is known that concurrent systems carry a much

higher risk for unexpected and unintended behavior. In order to assure that such a

designed system is functioning properly we need to be able to verify and analyze it

against specifications of its intended behavior (Figure 1.1). Since a formal model

systematically describes the structure and behavior of systems in an abstract manner,

it helps system analysis. By manipulating the model, it is hoped that new knowledge

about the modeled system can be obtained without the danger, cost, or inconvenience

of manipulating the real system itself. However, modeling is not only required in

system analysis and design field, but in study all aspects of systems, especially

biological systems.

5

1.3.2 The Need for Modeling Ant Colonies

We have concentrated on social insect colonies, particularly Ant System; and

attempted to formalize ant system behavior.

The behavior of real ants introduced above has been extracted from a series of

experiments with real ants on laboratories. However, such experiments are

sometimes unable to be performed, and difficult to realize in any other environment.

Formal modeling, then, plays an important role by creating abstract models of

colonies to both observe the behavior of colonies and answering some philosophical

questions regarding the behavior including the keywords “why”, “when”, and “how”.

Combining the abstract model with analysis completes the treatment.

Another reason for modeling ant systems is the common behaviors of ant systems

with some other insects. These behaviors are, reproduction, adapting to the

environment, performing the actions independent from other agents, and social

behavior. Social behavior, is nothing but an emergent property, and states that, the

system itself performs more than the sum of its components.

1.3.3 How Modeling is Performed?

Most modeling uses mathematics. The important features of many physical

phenomena can be described numerically and the relations between these features

described by equations or inequalities. Particularly in the natural sciences and

engineering, properties such as mass, position, momentum, acceleration, and

forces are describable by mathematical equations. To successfully utilize the

modeling approach, however, requires knowledge of both the modeled

phenomena and the properties of the modeling technique. Thus, mathematics has

been developed as a science in part because of its usefulness in modeling the

phenomena of other sciences. For example, the differential calculus was

developed in direct response to the need for a means of modeling continuously

changing properties, such as position, velocity, and acceleration in physics

(Peterson, 1981).

6

Deciding the modeling language to be used strongly depends on the system that is

going to be modeled.

Ant System is considered as a multi agent system and is a distributed computing

system. The term “behavior of a system” corresponds to the “process” in modeling

context, and the “behavior of the components” corresponds to “action”. And if the

action is a communication with another component, it is going to be called

“interaction”.

A model of a Multi Agent System, particularly Ant System should be able to

represent the following properties:

• The actions of agents, and the consequences of the environment against

these actions,

• The functioning of an agent, with regard to both its observable behavior

and its internal changes,

• The interaction of agents with each other, and, in particular different types

of communication,

• The evolution of the system itself. This property is extremely important in

modeling Ant Systems since they exhibit social behavior as a colony.

The language for modeling distributed computing systems should allow formal

specification of individual components making up the system, and provide means for

proving properties of component interactions. There are many traditional and

recently developed modeling techniques satisfying these requirements. Also, the

language should allow formalizing the aforementioned common properties of social

insects, e.g. reproduction, adapting to the environment, being capable of performing

actions independently.

1.4 Classification of Modeling Languages

In order to build up a formal model of any multi agent system various formalisms

are required. All formalisms together must satisfy the requirements of the modeling

in terms of aforementioned functional properties, behavioral properties, and

7

structural properties. Ferber, 1999 divides the languages involved in modeling multi

agent systems into five classes.

Figure 1.2 The languages involved in realization of any Multi Agent System.

Figure 1.2 shows various languages those are used to design and develop a multi

agent system modeling tools. On the most abstract level, L5 class languages appear

where L1 class languages are usually the traditional programming languages as C++,

Java, or Smalltalk.

Type L5: Specification Languages: Languages belonging to this class were

developed from mathematics, thus have a meta perspective over the modeling task.

L5 class languages are used to define what is intended by multi agent system by the

notions of action and interaction.

Type L4: Knowledge Representation Languages: This class essentially contains

AI- based logic languages which have syntax and semantics to make inference. The

language that is an element of L4 class is used to describe the resources of an agent,

the information an agent store; which are later used to make reasoning to decide the

actions to be performed. Rule- based and blackboard-based languages are examples

of this class, where Prolog (Clocksin & Mellish, 2003) and CLIPS, which is

developed in 1985 for NASA are well-known instances of rule-based languages.

Languages for the structured representation of the knowledge such as semantic nets

are also considered as L4-type languages.

Type L3: Behavior Description Languages: Any language in L3 describes what is

happening in multi agent system in an abstract manner. The examples of this class

8

are mainly production rule-based, those are arising from automata or from distributed

systems. Petri Nets (Petri, 1962) is a well-known example of L3 class language.

Since one must be sure that any multi agent system being modeled must be

complete and consistent in its component’s actions, and those actions are defined by

an instance of L3 class, this class is probably the most important layer in designing a

multi agent system.

Type L2: Agent Communication Languages: The languages in this class provide a

basis to define the interactions between the agents by means of information

exchange. Involving agent communication languages, the system allows its

heterogeneous agents to coordinate their actions, and cooperate for a common goal.

Knowledge Query and Manipulation Language, KQML is a well-known L2 class

language (Finin, Weber, Wiederhold, Genesereth, Genesereth, McKay, McGuire,

Pelavin, Shapiro & Beck, 1993).

Type L1: Implementation Languages: They are used to programming a multi

agent system, and expected to be able to cover all the computing structures of both

the agents and the environment, all the behavioral properties of the multi agent

system including inter-agent and inter-environment actions, the activities of

transmitting and receiving messages. The languages most frequently used as

implementation language are Lisp, C/C++, Java, Prolog, or Smalltalk.

A large number of formal modeling techniques exist in designing multi-agent

systems; however, two classes can be distinguished: algebraic models, which tend to

describe agents in mathematical notion, and which are L5 type languages; and

operative models, which use structures which are a priori more related to computing.

These are L3 type languages. The former are fundamental, since they determine all

further developments in multi agent system by defining the basics.

The previously listed properties of Ant System are refined below so as to decide

the language class that is used to model the property:

9

• L3 and L5 type languages are involved in modeling the actions of agents,

and the consequences of the environment against these actions,

• Modeling the functioning of an agent, with regard to both its observable

behavior and its internal changes makes use of L3 and perhaps L5 type

languages,

• The interaction of agents with each other, and, in particular different types

of communication involves L2 and L3 type languages,

• The evolution of the system itself. This property is extremely important in

modeling Ant Systems since they exhibit social behavior as a colony, and

L5 type languages are used to model the evolution of the whole system.

All these languages are obviously related to each other, although need not to be

similar.

1.5 Existing Modeling Languages & Available Tools

The languages which are capable of modeling distributed systems with mentioned

properties are Cellular Automata, Petri Nets, and Process Algebra.

1.5.1 Cellular Automata

A cellular automaton is a discrete model studied in computability theory,

mathematics, and theoretical biology. It consists of an infinite, regular grid of cells,

each in one of a finite number of states. The grid can be in any finite number of

dimensions. Time is also discrete, and the state of a cell at time t is a function of the

state of a finite number of cells called the neighborhood at time t-1. These neighbors

are a selection of cells relative to some specified, and do not change (Though the cell

itself may be in its neighborhood, it is not usually considered a neighbor). Every cell

has the same rule for updating, based on the values in this neighborhood. Each time

the rules are applied to the whole grid, a new generation is produced. Applying these

rules as many times as desired, the evolution of a population is observed. (Wolfram,

1984; Toffoli & Margolus, 1987).

10

Cellular automata (CA) were originally conceived by Ulam & von Neumann in

the 1940s to provide a formal framework for investigating the behavior of complex,

extended systems (von Neumann, 1966). Over the years CAs have been applied to

the study of general phenomenological aspects of the world, including

communication, computation, construction, growth, reproduction, competition, and

evolution (see, e.g., Burks, 1970; Smith, 1969; Toffoli & Margolus, 1987; Perrier,

Sipper & Zahnd, 1996). One of the most well-known CA rules, the “game of life”

was conceived by Conway in the late 1960s (Gardner, 1970; Gardner, 1971) and was

shown by him to be computation universal (Berlekamp et al., 1982).

The systematic study of CAs was pioneered by Wolfram and studied extensively

by him (Wolfram, 1983; Wolfram, 1984a; Wolfram, 1984b). He investigated CAs

and their relationships to dynamical systems, identifying the qualitative subclasses of

CA behavior, with analogs in the field of dynamical systems.

In summary, Cellular Automata provide a bottom up modeling in discrete state

space. However, cellular automata are best suited to understanding spatial dynamics,

and often confound with the interactions between individuals. Thus, cellular

automata do not meet the requirements of modeling the following properties of Ant

System: (i) actions of an agent independent from other agents (ii) reproduction (iii)

different types of communication between different types of agents.

1.5.2 Cellular Automata Tools

It has usage in Public Key Cryptography (Wolfram, 1985). Almost all tools for

CA are Java™ based, and therefore available to public. The tools differ in the

neighborhood structures they support, the population size, and the transition function.

Conway’s Game of Life: One of the most popular CA applications. The Game of

Life is not a typical computer game. It is a 'cellular automaton', and was invented by

Cambridge mathematician John Conway. It consists of a collection of cells which,

11

based on a few mathematical rules, can live, die or multiply. Depending on the initial

conditions, the cells form various patterns throughout the course of the game.

CelLab for Windows: A rare Windows® application, allowing the users to enter

their own rules, and select one of predefined neighborhood structures. The

experiment can be saved to execute later again.

EvoCellLab, Modern Cellular Automata are other free Java™ softwares for

evolving and designing cellular automata.

1.5.3 Petri Nets

Petri Nets may seem to be a powerful alternative in modeling distributed systems,

since they are specifically designed to model concurrent systems with interacting

components. Petri Nets have been developed from the early work of Carl Adam Petri

in his doctoral dissertation (Petri, 1962), in which the basis of theory of

communication between asynchronous components was formulated. He was

primarily focused on describing causal relationships between events. After the work

of Petri C.A., the Computation Structures Group at Massachusetts Institute of

Technology (M.I.T.), USA, made enormous effort on Petri Nets. The use and study

of Petri nets has spread widely in the late 70’s. There are several extension proposed

to make Petri Nets more powerful in designing systems.

Roughly speaking, a Petri Net has four components: a set of places, P; a set of

transitions which is a disjoint set from places, T; an input function, I, that maps a

transition to a bag of places, known as input places of the transition; output function,

O, which maps a transition to a bag of places, known as output places of the

transition. It can be seen as a directed multigraph where places and transitions depict

the nodes, and the input / output functions draw the incoming and outgoing directed

edges of the nodes. Note that, in a multigraph, there can be more than one directed

edge from a transition to a place or vice versa.

12

Executing, or running up a Petri Net means, enabling the transitions to get fired,

which are controlled by tokens. Tokens are assigned to and can be thought to reside

in the places of a Petri net. The number and position of tokens may change during the

execution of a Petri net in a way that a transition fires by removing tokens from its

input places and creating new tokens which are distributed to its output places. The

key point is that in order to fire a transition, or, enable a transition, each of its input

places has at least as many tokens in it as arcs from the place to the transition.

Multiple tokens are needed for multiple input arcs. After firing the transition all of its

enabling tokens are removed from its input places and then deposited into each of its

output places one token for each arc from the transition to the place. Multiple tokens

are produced for multiple output arcs. Transition firings can continue as long as there

exists at least one enabled transition. When there are no enabled transitions, the

execution halts.

Although Petri Nets are well-studied and widely used formalisms in modeling

concurrently communicating systems, there are some difficulties using Petri Nets in

modeling Ant Systems: (i) synchronous behavior, (ii) reproduction of the agents, (iii)

adapting the environment (iv) social behavior.

1.5.4 Petri Nets Tools

Petri Nets are one of the most studied subjects in the area of computer science,

both its formal development and application development sides. Thus there is huge

number of Petri Nets tools available.

The tools can be classified by availability (free versus commercial), by the

environments they are working on (SunOS, MacOS, MS Windows, Java etc.), by the

Petri Net type they are supporting (colored Petri Nets, Timed Petri Nets, high-level

Petri Nets, stochastic Petri Nets etc.), by the components they make use of

(graphical editor, model checking, animation, saving as bitmap, code generation,

etc.).

13

Petri Net Kernel: There is no restricted Petri Net type; rather, the Petri net type

can be specified by the programmer.

Predator: Stochastic Petri Nets can be modeled by Predator, but it has advantage

of loading analysis modules dynamically, which means enabling users to write their

own analysis modules.

YAWL: YAWL (Yet Another Workflow Language) is a workflow language /

workflow management system based on Petri nets and a rigorous analysis of existing

workflow management systems and workflow languages. Unlike traditional systems

and (high-level) Petri nets it provides direct support for most of the workflow

patterns. YAWL supports the control-flow perspective and the data perspective and

is based on a web-based infrastructure.

Maria: Works on any platform on which C++ is supported. High-level Petri Nets,

Place/Transition Nets, Modular high-level nets and any Labeled state transition

systems can be designed by Maria. It is a reachability analyzer and a Linear Time

Logic (LTL) based model checker, capable of handling tens of millions of reachable

states and enabled transitions. Maria also includes a distributed algorithm for

checking safety properties. The algorithm can be executed on multi-processor

computers as well as on workstations in TCP/IP networks.

The Model-Checking Kit: It is a collection of programs which allow to model a

finite-state system using a variety of modeling languages, and verify it using a

variety of checkers, including deadlock-checkers, reachability analyzer, and model-

checkers for the temporal logics CTL and LTL. The checkers are taken from

different existing tools like SMV. They use state-of-the-art techniques to avoid the

state explosion problem, such as symbolic model checking and partial orders. The

most interesting feature of the Kit is that independently of the description language

chosen by the user all checkers can be applied to the same model. It is not necessary

to model the system in different modeling languages.

14

Petri Net Toolbox: Works with MATLAB® 6.0 or later. It can be used for

simulation, analysis, and design of discrete event systems, based on Petri Net

models. Five types of Petri Net models are accepted: untimed, transition-timed,

place-timed, stochastic, and generalized stochastic nets. The timed nets can be

deterministic or stochastic. Places may have finite or infinite capacity. Priorities or

probabilities can be assigned to conflicting transitions. A graphical user interface

(GUI) allows you to draw, store, and retrieve Petri Net models, as well as to start the

procedures for simulation, analysis, and design. All the procedures available in the

Petri Net Toolbox are implemented as M-files and are designed in a modular fashion

to start from the GUI.

Simulaworks: Runs on Windows® 2000, XP operating system. It is a general

purpose simulator, which supports an open set of simulation languages and AI

techniques. SimulaWorks can be used to construct various system types like control

loops, signal processing, logic and hardware circuits, manufacturing systems,

production lines, traffic systems, complicated algebraic calculation, optimization and

search problems, state diagrams and even graphs, presentation using graphics, run-

able flow charts, etc. Also sometimes hybrid system of those systems can be

simulated, like control and signal processing, etc. Many libraries such as Control,

Mathematics, GPSS, Petri Nets, Active Flow Chart, Smart Draw, Hardware/Logic

are implemented within Simulaworks.

1.5.5 Process Algebra

There is another class of techniques for modeling distributed computing systems,

especially biological systems, Process Algebra. It means algebraic/axiomatic

approach while talking about behavior. (L5 type language) Historically, process

algebras have developed as formal descriptions of complex computer systems,

especially those involving communicating, concurrently executing components. The

crucial idea in definition of Process Algebra is the algebraic structures of the

concurrent processes. It uses a state based approach with labeled transitions, where

states and transitions correspond to agents and actions respectively. The finite state

15

space difficulty arisen in Petri Nets is overcome with aggregation of the states, which

is a result of algebraic structures of processes in Process Algebra.

There are many examples of Process Algebra. Milner’s Calculus of

Communicating Systems, CCS, is one of the well known process algebras (Milner,

1989). Hoare’s Calculus of Sequential Processes, CSP, is another cornerstone in

Process Algebra (Hoare, 1978). Both CCS and CSP have several extensions. Another

example process algebra which is more recently developed is Hillston’s Performance

Evaluation Process Algebra, PEPA (Hillston, 1996). Since we are interested in

concurrently communicating systems rather than sequentially operating systems,

CCS is more appropriate for modeling ant system behavior.

CCS uses the notions of agents, and actions, and proven to be very successful in

modeling distributed computing systems. It is completely nondeterministic in the

sense that given a choice between two actions, there is no mechanism, probabilistic,

or otherwise, by which to choose between them. It also makes no attempt to

synchronize the actions of agents acting in parallel. This makes CCS powerful when

determining whether or not a series of actions will always or never occur. But it

cannot determine their likelihood or time till occurrence. Synchronous CCS, SCCS,

was developed to model systems where agents are synchronized (Milner, 1983).

Finally, Weighted SCCS, denoted by WSCCS, adds further notions of priority and

probability of actions to SCCS (Tofts, 1994). Neither CCS nor its mentioned variants

accounts for time explicitly. Instead, synchronization scheme, which is introduced in

SCCS, assumes actions occur at each tick of a global discrete time clock.

Stochasticity has been attached into these discrete time algebras, which is used to

predict the system behavior. For example the model underlying WSCCS is a discrete

time Markov chain, and PEPA is based on continuous Markovian processes.

1.6 Structure of the Thesis

The main goal of the study is to investigate behaviors of real ant colonies, using

the idea in solving optimization problems, developing a formalism for modeling and

16

analyzing the behavior and a implementing computer tool to automate analysis. The

content of the thesis is constructed according to this outline.

In Chapter 2, the class of Ant Colony Optimization Algorithms, and its state of the

art application areas are described, where

In Chapter 3, the applications of traveling salesman problem, 2D map problem,

and single machine total tardiness problem have been presented.

Chapter 4 is devoted to informal explanation of the selected formal modeling

language, WSCCS, whose formal definition is provided in Appendix A.

Chapter 5 is a literature survey chapter and gives the formal verification

definition, several approaches of formal verification. Detailed information on model

checking, which is the verification technique employed in analysis of models, and

several formalisms involved in model checking approach such as computation tree

logic, discrete state space systems are other issues addressed in Chapter 5.

Chapter 6 is the longest chapter since it combines all previous formal notions to

make up a complete system for modeling, and verifying ant colonies, and relating

those formalisms with software development in order to automate whole task. It also

explains how each formalism is enlarged so that it covers basic behavior of ants.

In Chapter 7, some detailed examples of ant colony models have been

demonstrated to show various aspects of WSCCS, model checking, and computation

tree logic together with the results obtained from WSCCS++.

The thesis completes with the conclusions drawn from particularly Chapter 3 and

Chapter 6.

 17

CHAPTER TWO

ANT COLONY OPTIMIZATION ALGORITHMS

2.1 Historical Background

One of the main directions of this thesis is to investigate the stigmergetic model of

communication in general, particularly, foraging behavior of ants. Ant Colony

Optimization (ACO) algorithms were first introduced by (Dorigo, 1992), in his

doctoral dissertation, and are a class of probabilistic techniques for solving

combinatorial optimization problems which can be reduced to finding cost efficient

paths on graphs.

As the name suggests, ACO algorithms have been inspired by the behavior of real

ants. The idea behind is that, although the real ants are blind, they can construct the

shortest paths from their nest to the food sources. The ant colonies accomplish this

task by using a collective decision making strategy (Colorni, Dorigo & Maniezzo,

1992), which has been successfully applied to several NP-complete (Garey &

Johnson, 1979) optimization problems ranging from Traveling Salesman Problem to

Telecommunication Routing Problems (Bullnheimer, Hartl & Strauss, 1999; Colorni,

Dorigo & Maniezzo, 1992; Colorni, Dorigo, Maniezzo & Trubian, 1994; Costa &

Hertz, 1997; Dorigo & Gambardella, 1997a; Gambardella, Taillard & Dorigo, 1999;

Schoonderwoerd, Holland, Bruten & Rothkrantz, 1997).

The first ACO algorithm, called Ant System (AS), has been applied on Traveling

Salesman Problem, TSP (Dorigo, Maniezzo & Colorni, 1991; Dorigo, Maniezzo &

Colorni, 1996; Lin, 1965), which is a well known NP-complete problem. Starting

with the Ant System algorithm, several improvements have been proposed and

applied on TSP again (Gambardella & Dorigo, 1996; Stützle & Hoos, 1998).

Although the promising results have been obtained by AS and its variants, the

algorithm was not superior over some other well-known metaheuristics, such as Tabu

18

Search (Glover & Laguna, 1996; Osman & Kelly, (Eds.), 1996). However, it has

shown that ACO algorithms are as good as some other general purpose heuristics, for

example evolutionary computation (Fogel, 1993). Further studies on obtaining the

ACO algorithms with better computational performances have resulted in successful

applications of ACO algorithms in a variety of fields.

In the following sections, the artificial ants constituting the basics ACO

algorithms are introduced first. After describing the Traveling Salesman Problem, on

which ACO algorithms are defined, the subsequent sections contain definitions of

some well-known and successful ACO algorithms, the techniques used to improve

the performance of ACO algorithms, and the application areas of ACO algorithms in

the literature.

2.2 Artificial Ants

In ACO, the main idea is the indirect communication based on pheromone trails

of a colony of ants.

Artificial Ant System is a distributed system in which an artificial ant is defined as

a simple computational agent that iteratively constructs solutions for the problem to

solve. Partial problem solutions are seen as states and each ant moves from one state

to another, corresponding to more complete partial solution (Dorigo, Maniezzo &

Colorni, 1996; Ferber, 1999). The pheromone trail they leave is a kind of distributed

numeric information that is modified by the ants to reflect their solution quality.

There are three properties transferred from real ants to artificial ants (Dorigo &

Gambardella, 1997b):

1. The preference of paths with higher pheromone level.

2. The higher growth on the amount of trail on shorter paths.

3. The trail based communication among ants.

19

The artificial ants (agents) also have some extra abilities to make them useful for

solving combinatorial optimization problems.

1. They live in a discrete time environment; and at each time unit they make a

movement corresponding to the problem definition.

2. They are not completely blind; they are given the ability of knowing the

problem definition, and the objective function.

3. The artificial ants have some memory to keep some details related with the

problem. They are also able to make some simple computations.

Artificial ants choose the action in the search space using a probabilistic action

choice rule, which is determined by the objective function of the given problem.

For each artificial agent, the probability of moving one state to another depends

on combination of two values (Dorigo, Maniezzo & Colorni, 1996):

1. The attractiveness of the move, as computed by some heuristics indicating a

priori desirability of that move.

2. The trail level of the move, indicating how proficient it has been in the past to

make that particular move; it represents therefore a posteriori of the

desirability of that move.

Randomly select initial positions for ants

For each ant:

 Perform

 Move to next state

 Update ant memory

 Update trail on visited edge(local update-optional)

 Until goal state is reached

End For

Global trail updating

Figure 2.1 The general framework for ACO algorithms.

20

Figure 2.1 depicts the most general ACO algorithm. There are two main steps:

solution construction, and trail updating. While examining any ACO algorithm, it is

necessary to clarify both parts.

2.3 Traveling Salesman Problem

Traveling Salesman Problem (TSP) is a well-known NP-complete problem and is

almost a standard test problem for the metaheuristics, which are heuristic methods

for solving a very general class of computational problems by combining user given

black-box procedures — usually heuristics themselves — in an efficient way, in the

area of combinatorial optimization. Informally TSP can be defined as following:

given a set of cities and the costs of traveling from one city to another, finding the

cheapest round trip route that visits each city exactly once, and returning the initial

city (Papadimitriou & Steiglitz, 1982).

From the formal side, it is a complete graph with (),G V E= such that V is a

finite set of nodes, representing the cities; E is the finite set of edges, fully

connecting the nodes in V; a cost function, ijd , giving the distance between the cities

i and j, for each (),i j E∈ . The problem is to find the minimal cost Hamiltonian

circuit of the graph, where Hamiltonian circuit is a closed tour visiting each node

exactly once with a cost value calculated by summing up all the distances composing

the tour. Note that the distances between two cities need not to be symmetric.

If ij jid d= , then the TSP instance is called “symmetric TSP”, otherwise it is called

“asymmetric TSP”.

2.4 Different Classes of ACO Algorithms

We have classified ACO algorithms into two according to the solution

construction rules.

• Ant System (AS) based algorithms: The instances of this class are Ant

Density, Ant Quantity, Ant Cycle algorithms, which are direct variants of

the one known as AS (Dorigo, 1992; Dorigo, Maniezzo & Colorni, 1991);

Elitist Ant (Dorigo, 1992; Dorigo, Maniezzo, & Colorni, 1996), MAX-

21

MIN AS (Stützle & Hoos, 1997; Stützle & Hoos, 1998), Rank Based

Version of AS (Bullnheimer, Hartl & Strauss, 1999). All members of this

class employ the same random transition rule, which explores the edges

rather than exploiting the pheromone information. However, the trail

updating schemas are different.

• Q-Learning based algorithms: Ant-Q (Gambardella & Dorigo, 1995) and

Ant Colony System (ACS) (Dorigo & Gambardella, 1997) are the two

examples of Q-learning based algorithms. State transition rule of this class

is known as pseudo-random proportional since it depends on a learning

parameter, which enables to balance the exploitation of previously

accumulated information and the exploration of new edges. The difference

between Ant-Q and ACS appears in trail updating rules.

2.4.1 Ant System-AS

Ant System was the first ACO algorithm (Dorigo, 1992; Dorigo, Maniezzo &

Colorni, 1991). Its importance relies on being a prototype for the further ACO

algorithms with successful applications. When AS was first introduced its application

was the TSP. There are three different AS algorithms:

• ant-density,

• ant-quantity,

• ant-cycle.

The algorithms differ in pheromone update mechanisms.

2.4.1.1 Tour Construction

In AS, ants are simple agents, initially positioned on random cities. The priori

desirability of the moves, which is a heuristic information depending on the problem,

are computed by the Euclidian distances between two cities, where posteriori

desirability is the pheromone level on the edge being passed. Consider the following

formula which gives the probability of selecting city j, which is not visited before,

being at city i by the ant k at time step t :

22

()
()

() []
 if

*

*
k
i

ij ijk k

ij i

il il

l N

t
p t j N

t

α β

α β

∈

   τ η   = ∈
τ η  ∑

 (Eq.2.1)

()ij tτ : the pheromone level between cities i and j at time t.

ijη : the heuristic information on moving from i to j, which is inversely

proportional with the distance between i and j. 1ij ijdη =

k

iN : being on i, the set of unvisited cities for the ant k.

,α β : two parameters determining the relative influence of pheromone trail and

heuristic information respectively.

Parameters ,α β affect the probability of selecting city j as following: Let 0α = ,

then the probability becomes proportional to ijη , meaning that the closest cities are

more likely to be selected. In this case, the AS algorithm corresponds to a stochastic

greedy algorithm (Cormen, Leiserson & Rivest, 1990). When 0β = , only the

pheromone accumulation is at work, and this leads to a rapid emergence of a

stagnation behavior (Dorigo, Maniezzo & Colorni, 1996), which is the case all ants

following the same path and construct the same solution, and resulting in suboptimal

solutions.

The tour construction phase ends when all ants iteratively constructs theirs tours.

2.4.1.2 Trail Update Mechanism

There are two different types of trail updating independent from the ACO

algorithm in use. First one is local trail updating. Local trail updating is applied in

tour construction phase, after selecting city, and is optional. Second one is global

trail updating. Global trail updating is common in all ACO algorithms, although

different formulas appear in different algorithms.

23

Global Trail Updating. By the Eq.2.2, the pheromone levels on edges, those are

used in the solutions by some ants, are updated.

() () () ()
1

1 1 * *
m

k

ij ij ij

k

t t tτ ρ τ ρ τ
=

+ = − + ∆∑ (Eq.2.2)

()1ij tτ + : the pheromone value on edge (i,j) to be used in next iteration, i.e.,

(t+1);

()ij tτ : the pheromone value on edge (i,j) after recently finished iteration;

ρ : evaporation coefficient. As in biological counterpart, the pheromone level

decreases in time, and the parameter 0 1ρ≤ < controls this evaporation. In

other words, it helps to forget “bad” experience. Assume an edge (r,s) is not

used in any solutions, in this case, the pheromone deposited on (r,s)

decreases exponentially;

()
1

m
k

ij

k

tτ
=

∆∑ : the total change in amount of pheromone level on edge (i,j) that is

caused by being used in solution of ant k. Calculation of this amount differs

by the algorithm used, that is Ant-Cycle, Ant-Density, Ant-Quantity.

• Ant Density: a unit of pheromone quantity is left on the edge (i,j) every

time an ant uses the edge (i,j).

()
, if ant k uses the edge (i,j)

 otherwise
k

ij t


∆τ = 


1

0,
, (Eq.2.3)

• Ant Quantity: a quantity that is inversely proportional to distance between

i and j is deposited on the edge (i,j), i.e., the shorter the edge is, the

more pheromone trail is deposits.

()
 if ant k uses the edge (i,j)

 , otherwise

k
ijij

dt




∆τ = 



1
,

0

, (Eq.2.4)

24

• Ant Cycle: a quantity that is proportional to the solution quality is

deposited on the edge (i,j), i.e., the shorter the tour is, the more

pheromone its edges receive.

()
, if ant k uses edge (i,j)

, otherwise

k k
ij t L




∆τ = 


1

0

 (Eq.2.5)

kL : The length of the tour constructed by ant k.

Local Trail Updating. The update rules defined for Ant-Quantity and Ant-Density

algorithms may also be used as local trail updating rules. The only difference is that,

if local update is at work, the rules are applied after each state transition.

2.4.2 Other AS-Like Algorithms

After introduction AS and its three variants, several other algorithms based on AS

were proposed. The algorithm called Elitist Ants was introduced in (Dorigo, 1992;

Dorigo, Maniezzo, & Colorni, 1996). This algorithm allows only the ant, which

constructs the shortest tour, to update the pheromone levels on its edges.

MAX-MIN Ant System is also a direct improvement over AS (Stützle & Hoos,

1997; Stützle & Hoos, 1998). In MAX-MIN approach, only the ant which constructs

the shortest tour updates the pheromone trails belonging to its edges, as in elitist

strategy. The difference is on the values of pheromone levels. The pheromone level

on each edge is initialized with a value,
maxτ , and the changes are restricted to the

interval []min max,τ τ . Setting these explicit limits on trail levels confines the range of

possible values of the probability of selecting an edge, and in turn helps to avoid

stagnation behavior, which is one if the reasons of poor results of AS algorithms.

Bullnheimer, Hartl & Strauss (1999) proposed another modification of AS, called

Rank-Based version of AS, ASRank. In ASRank algorithm ants are sorted according to

their solution quality, and a prefixed number of ants are allowed to update the trail

strengths in proportion with their order.

25

2.4.3 Ant-Q Algorithm

Ant-Q algorithm is a Q-learning based ACO algorithm proposed in (Gambardella

& Dorigo, 1995). Q-learning is a reinforcement learning algorithm that works by

estimating the values of state-action pairs (Watkins & Dayan, 1992). State transition

rule differs from the AS based approaches as shown in Section 2.4.3.1. Trail update

mechanism is similar to those of aforementioned algorithms, only the ant

constructing the cheapest tour is allowed global trail updating, while local updating is

applied by all ants. Although the update formula itself is similar to those of priori

algorithms, the pheromone quantity to be added is calculated according to the Q-

learning algorithm.

2.4.3.1 Solution Construction

Being on a city i, to select the next city to move to, there are two options decided

by learning parameter, and a random number: first case favors transitions towards the

nodes connected by short edges and with large amount of pheromone, that is

exploitation of the good solutions. Second transition rule is same as that of AS based

approaches, and helps to explore the probable good solutions, and therefore avoiding

early stagnation behavior.

() () 0

0

arg max * q q

 q>q

k
i

ij il
l N

ijv

V

α β
τ η

∈

   ≤   = 


 , (Eq.2.6)

where:

arg max stands for the argument of the maximum, that is, the value of the given

argument for which the value of the given expression attains its maximum

value. This is well-defined only if the maximum is reached at a single value;

q is a random number uniformly distributed in [0,1];

q0 is a learning parameter, 00 1q≤ ≤ , such that, the higher the q0 is, the smaller

the probability of making a random choice;

26

V is a random variable which is calculated as:

() ()
() ()

*
 if

*

 0 otherwise

k
i

ij ij k

i
k

il ilij
l N

j N
p

α β

α β

τ η

τ η
∈


 ∈

= 



∑ . (Eq.2.7)

2.4.3.2 Trail Update Mechanism

() () () ()(1) 1 * * *max
j

best

ij ij ij jz
z N

t t t tτ ρ τ ρ τ γ τ
∈

 
+ = − + ∆ + 

 
 (Eq.2.8)

The formula is composed of a reinforcement term, and of the evaporated

evaluation of the next state. In general, the reinforcement term τ∆ can be either

local, or global, i.e., calculated when all ants finish their tour, and calculated by the

Eq.2.9:

()1 if i,j shortest tour

0 otherwise
best

ij

L
τ

 ∈
∆ = 


 (Eq.2.9)

where
bestL is the shortest tour length.

2.4.4 Ant Colony System- ACS

ACS is based on Ant-Q algorithms, uses the same state transition and trail

updating rules except the amount of pheromone trail to be added in trail updating

rule (Eq.2.10):

() () () ()1 1 * * best

ij ij ijt t tτ ρ τ ρ τ+ = − + ∆ (Eq.2.10)

 Since the computational effort for ACS update rule is less than that of Ant-Q,

ACS algorithm is more preferable in applications of ACO algorithms.

27

2.5 Local Search to Improve the Performance of ACO Algorithms

One of the most usual techniques to improve the performance of ACO algorithms

is the use of local search techniques (Bullnheimer, Hartl & Strauss, 1999; Maniezzo

& Colorni, 1999). This approach entails employing a local optimization technique to

refine the solutions obtained after one or several iterations. In spite of using local

search procedures usually improve the efficacy of the ACO algorithm; it increases

the number of evaluations at each iteration and therefore the runtime of the learning

method, thus loosing efficiency.

Local search algorithms start with a complete solution and attempts to generate a

better solution in an appropriately defined neighborhood of the initial solution. In its

most basic version, known as iterative improvement, the algorithm searches the

neighborhood for an improving solution. If such a solution is found, it replaces the

current solution and local search continues. These steps are repeated until no

improving neighborhood solution is found anymore in the neighborhood of the

current solution and the algorithm ends in a local optimum. When the problem size

and in turn the neighborhood of the solution gets larger, this iterative improvement

algorithm becomes poor in both solution quality, and computation time.

The choice of appropriate neighborhood structure is crucial for the performance of

local search algorithm and has to be decided according to the problem. A

neighborhood structure defines the set of solutions those can be reached from the

current solution in one step of the local search algorithm. The followings are

different neighborhood structures that might be used for different problems

producing different effectiveness.

• An example neighborhood for the TSP is k-opt, in which neighbor

solutions differ by at most k edges. Figure 2.2 demonstrates an example 2-

opt neighborhood, where 2-opt local search algorithm systematically test

for the whether the current tour can be improved by replacing two edges.

28

Figure 2.2 Schematic illustration of the 2-opt algorithm.

• Another local search technique involves interchanging the adjacent pairs

in any sequence, and yielding the neighborhood of size n-1, where the

number of elements in the sequence is n. This schema is known as

adjacent pairwise interchange, API. The neighborhood generated by this

way is relatively small and easy to generate, but it also limits the number

of new choices to look at, so there is a tradeoff. If the current sequence

were 1, 2, 3, ,…, n, then the API neighborhood of the solution would be

exactly as following.

2, 1, 3, 4,…, n-2, n-1, n (interchange 1 and 2)

1, 3, 2, 4,…, n-2, n-1, n (interchange 2 and 3)

……….

1, 2, 3, 4,…, n-1, n-2, n (interchange n-1 and n-2)

1, 2, 3, 4,…, n-1, n, n-2 (interchange n-2 and n)

• Interchanging not only the adjacent pairs, but all possible pairs causes a

different neighborhood structure to be obtained. This method is known as

general pairwise interchange, GPI. The neighborhood size is ()1 / 2n n −

for an initial sequence of size n. GPI generates a larger neighborhood than

API, however, the number of new choices to look at is increased, meaning

that the tradeoff exists in GPI as well.

• There are two other local search techniques closely related with each

other. In the first one, the jobs in the sequence are shifted circularly one

position left. This is repeated as the number of jobs. If an improvement on

the solution quality is met, the algorithm halts and returns the new

sequence. Otherwise, a different neighbor structure, in which all possible

29

jobs k inserted into first position and each (k-1) jobs are moved one back

position, has been employed. If any improvement occurs, the procedure is

terminated.

Application of local search varies by problem and independent from the ACO

algorithm in use. The local search might be carried out by the best ant only, or by all

ants after each iteration. The global trail updating rule works on the solution obtained

with local search.

2.6 Application Areas of ACO Algorithms

The applications of ACO algorithms can be divided into two distinct classes: the

static problems, and the dynamic problems. The former one defines the set of

problems whose definition is fixed and does not change over time. ACO algorithms

were first applied on the problems belonging to this class, such as TSP, quadratic

assignment problem, sequential ordering problem, vehicle routing problems, shop

scheduling problems, graph coloring problems, etc. Since any static combinatorial

optimization problem must be converted to TSP (Sipser, 1996), providing an

appropriate heuristic function, the algorithms developed for TSP can be adopted for

solving other static problems.

The latter kinds of problems are the problems, whose characteristics are changed

while being solved. Any network routing problems fall into this class, i.e., circuit-

switched network routing, packet-switched network routing. And the algorithms

developed for solving dynamic problems are the most recent improvements on ACO

algorithms.

2.6.1 Quadratic Assignment Problem-QAP

QAP concerns assigning a set of n facilities to n locations so that the cost of

assignment, which is a function of the way performing the assignment, is minimized.

Some real world applications of QAP are planning the buildings on a land,

arrangement of departments in hospitals, minimizing the total wire length in

electronic circuits, and ordering the associated data in magnetic tapes. QAP is the

30

first problem attempted to be solved with AS-like approaches, since it is directly

mapped onto TSP. (Maniezzo, Colorni & Dorigo, 1994; Gambardella, Taillard &

Dorigo, 1999).

Maniezzo, Colorni & Dorigo (1994) has applied the AS algorithm on QAP, AS-

QAP, and obtained the results of approximately the same quality with other

metaheuritics, such as simulated annealing. More recently, Maniezzo & Colorni

(1999) and Gambardella, Taillard & Dorigo (1999) developed two variants of AS-

QAP, added a local optimizing feature. The resulting algorithms compared to other

metaheuristics were performed better for almost all test cases.

More advanced ACO algorithms were also applied to QAP. In (Stützle & Hoos,

1998), MAX-MIN ant system for QAP was described. The HAS-QAP algorithm

defined in (Gambardella, Taillard & Dorigo, 1999) was tested on some real world

problems, and known to be the best performing algorithms for the problems of this

class.

2.6.2 Sequential Ordering Problem-SOP

Sequential Ordering Problem is defined as, finding minimal weight Hamiltonian

path satisfying the precedence constraints among nodes on a weighted graph. Real

world problems associated with SOP are single vehicle routing with predefined pick-

up and delivery nodes, production planning and transportation in flexible

manufacturing systems. SOP corresponds to Asymmetric TSP, and therefore was

attacked by the researchers since the beginning of the development of first ACO

algorithms.

Gambardella & Dorigo (1997) has proposed a method, Hybrid Ant System for

solving SOP, which was an extension of ACS algorithm. The HAS-SOP algorithm

has been tested on a huge number of problem sets, and compared with a number of

heuristics, and in all cases, HAS-SOP algorithm has been evaluated as the best-

performing algorithm in terms of both solution quality and computation time.

31

2.6.3 Single Machine Total Tardiness Problem-SMTTP

SMTTP is a well known NP-complete problem from Operations Research, and

has been attacked by several exact solution algorithms (Della Croce, Tadei, Baracco,

& Grosso, 1996; Fisher, 1976; Lawler,1977; Szwarc & Mukhopadhyay, 1996), as

well as heuristic algorithms (Fry, Vicens, Macleod & Fernandez,1989; Potts & Van

Wassenhove, 1991; Wilkerson & Irwin, 1971).

It is a permutation problem as all other static combinatorial optimization

problems, and defined as following: sorting N jobs each of which has processing time

pi, and due date di, with subject to minimize the tardiness T, i.e., in case of late

delivery, the time between delivering the job and its due date. Other important

properties of the problem are: all jobs to be sorted are available at starting time, the

machine is available for processing all jobs, once a job is started to be processed, it is

completed without interruption, i.e., no preemption, and each job has equal

importance.

Eq.2.11 defines the objective function for a set of N jobs, in terms of processing

times and due dates. Note that, if a job is finished before its due date, it is not taken

into account.

1 1

max(0,)
N i

j i

i j

T p d
= =

= −∑ ∑ (Eq.2.11)

As in QAP, and SOP, it is necessary to provide a heuristic function that is used to

guide the ants together with the pheromone information. There are some well known

heuristic functions for SMTTP in the literature (Morton & Pentico, 1993). EDD is

the most primitive heuristic function, that sorts the jobs according to ascending due

dates. ijη stands for the heuristic information where the last scheduled job is i, and j

is one of the jobs to be sorted.

EDD: 1ij jdη = (Eq.2.12)

32

Since EDD rule is so poor in performance, it is modified in a way that, once a job

is scheduled, all the remaining jobs are resorted in ascending fashion iteratively

according to the modified due dates (MDD), see the Eq.2.13.

MDD:
1

max(,)ij

j jp d
η

ϕ
=

+
 (Eq.2.13)

where ϕ is the total processing time of all scheduled jobs.

Another alternative incorporating heuristic function is the Shortest Processing

Time, (SPT), which sorts the jobs according to the processing times in ascending

fashion. SPT generates feasible results in cases where all the jobs are late even in

optimal solution.

SPT: 1ij jpη = (Eq.2.14)

2.6.3.1 Trail Update

The global trail update rule is same as any ACO algorithm, except the trail

intensity to be added.

() () () ()1 1 * *ij ij ijt t tτ ρ τ ρ τ+ = − + ∆ (Eq.2.15)

() *1ij t Tτ∆ = (Eq.2.16)

T* is the minimum total tardiness in current iteration.

Besides global update rule, a local trail update also employed to improve the

performance. Selecting a job to be appended to the current partial solution, the rules

in Eq.2.17 and Eq.2.18 update corresponding pheromone trail.

() () () 01 1 * *ij ijt tτ ρ τ ρ τ+ = − + (Eq.2.17)

33

0

1

* EDDn T
τ = (Eq.2.18)

TEDD is the total tardiness of the solution generated according to the EDD rule.

2.6.4 Single Machine Total Weighted Tardiness Problem-SMTWTP

The Single Machine Total Weighted Tardiness Problem is the generalized form of

SMTTP (Morton & Pentico, 1993). In addition to the processing times and due dates,

some weight values are assigned for each job, and the total tardiness is calculated by

summing up the time exceeding the due date multiplied by weight value.

Eq.3.19 defines the objective function for SMTWTP. It is same as that of SMTTP

except the tardiness for each job is multiplied by its corresponding weight value.

1 1

*max(0,)
N i

i j i

i j

T w p d
= =

 
= − 

 
∑ ∑ (Eq.2.19)

Since SMTWTP is NP-complete, several heuristics have been proposed for its

solution, such as Earliest Due Date or Apparent Urgency (Abdul-Razaq, Potts & Van

Wassenhove, 1990; Potts & Van Wassenhove, 1991), and metaheuristics like

Simulated Annealing (Potts & Van Wassenhove, 1991), Tabu Search, and Genetic

Algorithms (Crauwels, Potts & Van Wassenhove, 1998).

Although the heuristics functions given for SMTTP can be used for SMTWTP,

since they do not involve weight term, some other heuristics with weight information

are preferred while solving SMTWTP with ACO algorithms.

Among many others, four problem specific heuristic functions are examined in

this research since they are known to be computationally efficient relative to the rest.

The first is Weighted Shortest Processing Time which sorts the jobs according to the

i iw p .

34

WSPT: j

ij

j

w

p
η = (Eq.2.20)

The second rule, called AR, was derived by Alidaee & Ramakrishnan, 1996; k is a

look ahead parameter that relates the number of critical jobs, and nearly critical jobs,

and p is the average processing time of all jobs, and t is the current time.

AR:
()max ,0

* 1
*

j jj

ij

j

d t pw

p k p
η

 − −
= + 

  

 (Eq.2.21)

Third rule is a variant of exponential function, termed MRV, developed by

(Morton, Rachamadugu & Vepsalainen, 1984). In Eq.2.22, t is current time, p is the

average processing time of the job not scheduled yet, k is a look ahead parameter as

in AR rule.

MRV:

()max ,0

**
j jd t p

k p

ij jw eη

− −
−

= (Eq.2.22)

A basic modification on MRV which is a combination of WSPT and AR yields

another rule, which is well known Apparent Urgency rule (Potts & Van Wassenhove,

1991).

AU:

()max ,0

**
j jd t p

j k p

ij

j

w
e

p
η

− −
−

= (Eq.2.23)

35

2.6.4.1 Trail Updating

To update the trails after each iteration, Eq.2.15, and Eq.2.16 are used. As for the

local updating, Eq.2.17 and Eq.2.24 is used, where WSPTT is the total weighted

tardiness of the sequence generated by the WSPT rule.

0

1

* WSPTn T
τ = (Eq.2.24)

2.6.5 Routing Problems

A very successful application of ACO on dynamic problems is AntNet (Di Caro

& Dorigo, 1998a; Di Caro & Dorigo, 1998b). AntNet was applied to routing in

packet-switched networks like Internet.

Routing problems are basically defined as, given a graph representing a

communications network, finding the minimum cost path between each pair of

nodes. Note that, although the definition seems to be analogous to TSP definition, the

problem becomes extremely difficult when the costs on the edges are time-varying

stochastic variables, which is the problem tackled by the AntNet.

2.6.5.1 Solution Construction

In AntNet, each ant searches for a minimum cost path between a pair of given

nodes of the network. To achieve this goal, ants are initially positioned onto each

network node (s), and move to randomly chosen destination nodes (d), i.e., starting

from the node s, each ant moves to d by hopping from one node to another. As in all

ACO approaches, deciding the next node to hop is based on a probabilistic action

choice rule which is a function of local pheromone and heuristic information.

In ACO approaches designed for solving static problems the pheromone trails are

associated to edges, however in AntNet, trails are associated to arc-destination pairs.

The idea behind is the following: An edge might be useful while traveling to a node

36

x, but the same edge is very likely improper while traveling to another node y.

Formally speaking, each (i,j) directed edge has n-1 trail values attached to it

where n is the number of nodes in the graph. Each edge also has an associated

heuristic information independent from the target node. The heuristic function

employed is another difference of AntNet from static ACO applications.

1

i

ij

ij

il

l N

q

q
η

∈

= −
∑

 (Eq.2.25)

where ijq is the length of the queue (in bits) waiting in channel from i to j.

The channels with shorter queue will have a higher heuristic value.

In static problems the goal is to minimize the cost, which is usually the tour length

and closely related to the heuristic function. However, in telecommunications routing

problems the objective is to minimize the arrival time of the packets, and the

heuristic function given in Eq.2.25 has no time component, and therefore is not used

in cost calculation. Instead, since ants are using same channels as packages and

experiencing same time delays, the time elapsed while moving from s to d,
sdT , is

considered as a measure of solution quality.

2.6.5.2 Trail Updating

After an ant, say k, completed its path, to deposit pheromone it moves back to its

source node along the same path, using a high priority queue in order to allow a fast

propagation of the collected information.

() () () ()1 1 * * k

ijd ijdt t tτ ρ τ ρ τ+ = − + ∆ (Eq.2.26)

After the pheromone trail on the visited edges has been updated, the pheromone

value of all the outgoing connections of the same node i, relative to the d,

37

evaporates in such a way that the pheromone values are normalized and can continue

to be usable as probabilities.

() () ()()1 ,k

ijd ijd i
t t t j Nτ τ τ= + ∆ ∀ ∈ (Eq.2.27)

where iN is the neighbors of the node i.

AntNet is the most well known application of ACO algorithms for dynamic

problems. It was compared to the many state-of-the-art algorithms on a large set of

problems under a variety of traffic conditions. More details can be found in (Di Caro

& Dorigo , 1998b).

 38

CHAPTER THREE

CASE STUDIES ON ACO ALGORITHMS

3.1 TSP Application

The application has been developed for Microsoft Windows® platform on a

Pentium 4, 1.4GHz PC using Borland C++ Builder 6.0 Development Environment.

Since the TSP is the first problem on which ACO was applied, we have developed an

application on TSP to appraise parameter settings for further works.

All the tests reported in this section are based, where not otherwise stated, on the

Eil51 problem, which is a 51-cities problem described in TSPLIB (Reinelt, 1991).

All the tests have been carried out for 100 cycles with 10 ants and averaged over five

trials.

ACS has been selected as it is known to be the most beneficial algorithm for static

problems. In ACS, there are four parameters affecting the solution quality. They are:

• α : Pheromone coefficient, relative influence of pheromone information.

0 1α≤ ≤ , increment rate is 0.1;

• β : Heuristic coefficient, defines the relative influence of the heuristic

function on probability.

0 1β≤ ≤ , increment rate is 0.1;

• ρ : Evaporation coefficient, level of pheromone that disappears in time,

and correspondingly, level of pheromone that will be added.

0 1ρ≤ < , increment rate is 0.1;

• 0q : Learning rate, the smaller learning rates yield in making decisions

probabilistically.

0 0 1q≤ ≤ , increment rate is 0.1.

39

Three distinct groups of tests were performed. In first group, it has been intended

to obtain the best appropriate parameter settings. Second group was used to decide

the update mechanism to be applied; either global best update or iteration best

update, and the in last group of tests, the results of ACO algorithm with the

parameters found in first tests have been compared and contrasted with some other

well-known heuristics.

3.1.1 Parameter Settings

Almost all applications in the literature the parameters mentioned above are given

trivially. What we have intended to accomplish here is not only to obtain the set of

best fitting values, but also to observe how they infer each other.

In all figures a representsα , b represents β , and r represents ρ .

2.6.5.3 Learning Rate versus Evaporation Coefficient

Setting heuristic and pheromone coefficients to some constant values, the

relationship between learning rate and evaporation coefficient has been observed.

400

600

800

1000

1200

1400

C
o

s
t

q0=0 q0=0.3 q0=0.6 q0=0.9

r=0

r=0.2

r=0.4

r=0.6

r=0.8

Figure 3.1 The performance of learning rate vs evaporation

coefficient for 0, 0α β= = .

40

In Figure 3.1, all ρ values exhibit the approximately the same behavior against

the values of q0. However, learning rate variations result in quite important changes

on solution qualities. So, if neither heuristic nor pheromone information is in use,

learning rate determines the solution quality. Figure 3.2 shows another view for the

same settings which is clearer in determining the inference between learning rate and

evaporation.

400

600

800

1000

1200

1400

r=0 r=0.1 r=0.2 r=0.3 r=0.4 r=0.5 r=0.6 r=0.7 r=0.8 r=0.9

q0=0 q0=0.1 q0=0.2 q0=0.3 q0=0.4 q0=0.5

q0=0.6 q0=0.7 q0=0.8 q0=0.9 q0=1

Figure 3.2 The behavior of learning rate against evaporation for 0, 0α β= = .

From Figure 3.2, it can be concluded that, setting the learning rate to the upper

bound causes the solutions to stuck in local optimum, which is a solution optimal

within a neighboring set of solutions. The reason behind is, for 0 1q = , no

probabilistic decision is allowed, only the state which has the shortest edge, and

largest pheromone strength is chosen. In addition, all solutions generated for 0 1q =

are same since neither heuristic nor pheromone information is involved. However for

small values of q0, it was expected to obtain more probabilistic results, which is not

the case. The reason is, settings of the other two parameters, 0, 0α β= = , disallows

using any kind of pheromone and / or heuristic information, i.e., distance.

41

400

500

600

700

800

900

1000

r=0 r=0.1 r=0.2 r=0.3 r=0.4 r=0.5 r=0.6 r=0.7 r=0.8 r=0.9

Figure 3.3 The behavior of learning rate against evaporation for 1, 1α β= = (The legend is

same as that of Figure 3.2).

 Figure 3.3 shows the behavior of learning rate against evaporation coefficient

when using all available information of both heuristic and pheromone strength with

equal weight. There are some important points to be emphasized: the maximum

value of cost has decreased; for 0 1q = , there is a slight variation on solutions; and,

there is a certain breakpoint for almost all values of q0, at 0.2ρ ≈ . While the

solution qualities are getting better until this point, they tend to get worse for the

larger evaporation rates.

2.6.5.4 Heuristic Information versus Learning Rate (β vs q0)

In this group, the effect of pheromone strength and evaporation rate has been set

to fixed values. This class of tests are vital in the sense that, pheromone strength and

evaporation rate are closely related to each other, and setting them to some fixed

values, it is possible to acquire how the other two parameters are functioning.

42

400

600

800

1000

1200

1400

b=0 b=0.1 b=0.2 b=0.3 b=0.4 b=0.5 b=0.6 b=0.7 b=0.8 b=0.9 b=1

q0=0 q0=0.1 q0=0.2 q0=0.3 q0=0.4 q0=0.5

q0=0.6 q0=0.7 q0=0.8 q0=0.9 q0=1

Figure 3.4 The behavior of learning rate against heuristic information for 0, 0ρ α= = .

400

500

600

700

800

900

1000

b=0 b=0.1 b=0.2 b=0.3 b=0.4 b=0.5 b=0.6 b=0.7 b=0.8 b=0.9 b=1

Figure 3.5 The behavior of learning rate against heuristic information for 0.9, 1ρ α= = .

For the initial values of evaporation and pheromone coefficients, meaning that no

pheromone addition and using no heuristic; all learning rate values exhibit the same

behavior, and heuristic information usage does not affect the solution quality (Figure

3.4). On the other hand, when evaporation ratio is set to 0.9, meaning that loosing

almost all available pheromone information, and adding some amount reflecting only

current solution quality (using a little amount of previously deposited pheromone),

and using the heuristic information without empowering, we obtain a certain

breakpoint on pheromone evolution at 0.2β ≈ .

43

2.6.5.5 Heuristic Information versus Evaporation Rate(β vs ρ)

800

900

1000

1100

1200

1300

1400

b=0 b=0.1 b=0.2 b=0.3 b=0.4 b=0.5 b=0.6 b=0.7 b=0.8 b=0.9 b=1

r=0 r=0.1 r=0.2 r=0.3 r=0.4 r=0.5

r=0.6 r=0.7 r=0.8 r=0.9

Figure 3.6 The function of ρ against β for 0, 0 0qα = = .

450

455

460

465

470

475

480

485

490

b=0 b=0.1 b=0.2 b=0.3 b=0.4 b=0.5 b=0.6 b=0.7 b=0.8 b=0.9 b=1

Figure 3.7 The function of ρ against β for 1, 0 1qα = = .

In Figure 3.6, when no pheromone in use, and all solutions are generated by

probabilistic action choice rule; the behavior of 0ρ = and 0.1ρ = are same, and has

no change in solution qualities, while other ρ values are operating similarly, but

having different minimal breakpoints on different heuristic usages. When pheromone

strength is used without empowering, and all solutions are directed towards

exploitation, all ρ values except 0, behave in a similar fashion, and there is a slight

breakpoint at 0.2β ≈ .

44

2.6.5.6 Pheromone Strength versus Evaporation(α vs ρ)

1000

1050

1100

1150

1200

1250

1300

1350

1400

r=0 r=0.1 r=0.2 r=0.3 r=0.4 r=0.5 r=0.6 r=0.7 r=0.8 r=0.9

a=0 a=0.1 a=0.2 a=0.3 a=0.4 a=0.5

a=0.6 a=0.7 a=0.8 a=0.9 a=1

Figure 3.8 The function of α against ρ for 0, 0 0qβ = = .

450

455

460

465

470

475

480

485

r=0 r=0.1 r=0.2 r=0.3 r=0.4 r=0.5 r=0.6 r=0.7 r=0.8 r=0.9

Figure 3.9 The function of α against ρ for 1, 0 1qβ = = .

In Figure 3.8, all pheromone values are operating similarly, although there are

slight differences, there is no contribution at all (there is not heuristic information

involved). However, in Figure 3.9, when using all available heuristic information, it

can be observed that the costs start to get increase when evaporation increases.

45

3.1.2 Conclusions

The conclusions extracted from tests can be figured out as following:

• Learning rate parameter dominates all others, meaning that, for the values

close to the upper limit of its range, all the solutions generated starts to be

the same independent from other parameter settings, which is an undesired

situation. Note that, this is not a stagnation behavior, because stagnation is

such a behavior that, in early iterations each ant acts autonomously, and in

later iterations they impose to generate approximate and probably the same

solutions because of the pheromone effect. However, for the large values

of learning parameter, this is not the case. All ants, starting from the first

iteration propagated the same solutions.

• As long as evaporation is higher than pheromone increment, pheromone

effect does not make any contributions on the solution quality. Therefore,

the pheromone coefficient should be greater than the evaporation ratio.

• It is better to use the heuristic information as much as possible, however,

since pheromone strength is carrying much more information about the

solution qualities, heuristic usage should not dominate over pheromone. If

such a situation occurs, the behavior of ants gets closer to stochastic search

as defined in ACO algorithms.

3.2 2D Projected Map Application

The problem is similar to the well-known TSP, and an application from pipeline

and network design (Ekin & Yakhno, 2001; Yakhno & Ekin, 2002). There is a

landscape containing some obstacles like mountain ranges, hills, rivers etc., which

increases the cost of laying a highway on. Then this map is projected onto a 2

dimensional plane. The projected map contains certain polygons with their costs,

which corresponds to the obstacles on the landscape. There is an initial position,

which can be considered as the starting city in TSP, and a final position, which is the

starting city again in TSP. The problem is to find the minimum cost path on this

projected map, from initial position to the final position, which is similar to finding

the shortest closed tour in TSP. Figure 3.10 demonstrates an example map with 9

46

polygons. The cost each polygon is marked as an integer inside of the polygon. The

initial point is marked with “+”, and the destination point is marked with “*”.

Figure 3.10 An example map with 7

polygons.

While applying ACO algorithms on these kinds of problems, the point that should

be considered first is the specification of the map. To specify the map in an

appropriate way, we used 2 dimensional coordinate spaces, translated the map to

origin and defined as the following:

outerMostPolygon(Left_Bottom_Coord, Right_Top_Coord)

polygon(Left_Bottom_Coord, Right_Top_Coord, Cost_Of_Polygon)

initialPosition(coord)

finalPosition(coord)

The OuterMostPolygon defines the limits of the map, and since it is not a real

polygon having a cost, it does not have Cost_Of_Polygon property. However, to

prevent the ants to go out of the map, a virtual cost is assigned to the

OuterMostPolygon. This cost is considered only when moving along the

OuterMostPolygon’ s borders.

A cost assigned to a polygon defines the cost of moving from one point to another

in that polygon. There are some special cases while calculating the cost while

moving from NA, to NB. Suppose that there are two neighboring polygons PA, PB.

 *

100 50

+

70

40 80

40 10

47

1: NA is in PA, NB is on border of PA and PB. Then

 Cost_Of_Moving NA _to_ NB = cost_Of_ PA

2: NA is on border of PA and PB, NB is in PB. Then

 Cost_Of_Moving NA_to_ NB = cost _Of_ PB

3: NA and NB are both on the border of two polygons.

 Cost_Of_Moving NA_to_NB = averageOf(cost_Of_PA , cost_Of_PB)

4: NA and NB are both in the PA, they are not on a straight line, but on a diagonal.

 Cost_Of_Moving NA_to_NB = sqrt(2) * cost_Of_PA

Calculating the costs of all possible traveling directions, the map becomes a 3-

dimensional cost matrix. Being on x,y, the first dimension keeps the axis of current

position (x), second keeps ordinate of current position (y), and the last dimension

keeps the costs of moving one of eight possible neighbor nodes.

3.2.1 Modifications on ACO Algorithm

Applying ACS algorithm on defined problem, a number of ants having memory to

remember the visited nodes, are placed on the initial position on the map, then

attempt to construct the solution by moving from one node to another. The main

algorithm of modified ACS is:

For a numberOfCycles

 Randomly select initial positions for ants

 while all ants are neither in trap nor in final state

 For each ant:

 Move to next state

 Update ant memory

 local update-optional

 End

 End

 Global trail updating

End

Figure 3.11 Modified ACO algorithm.

48

2.6.5.7 Moving Strategy

The moving strategy is as following:

Figure 3.12 Being on node

A(i, j), possible nodes to

move to.

An ant being on node A(i,j) can move eight nodes which are indexed as in

Figure 3.12. The index value, i, and j, correspond to z, x, and y respectively in the

below cost matrix, which is the definition of the problem.

cos xyz xyzts C→ (Eq.3.1)

The coordinates of indexed nodes are calculated as the following:

)1,1(3

)1,(2

)1,1(1

),1(0

+−→

+→

++→

+→

ji

ji

ji

ji

)1,1(7

)1,(6

)1,1(5

),1(4

−+→

−→

−−→

−→

ji

ji

ji

ji

 (Eq.3.2)

Selecting any of these nodes depends on a probability that combines the cost of

that possible move, and the pheromone trail level on that edge, if any. Ants

probabilistically choose the node, which has lower cost and higher pheromone level.

8

6
5

4

3 2 1

A

7

49

The probability of selecting node k being on (i,j), in the cycle of h,

_

* 1/
 if k is not visited

* 1/

0 otherwise

h

ijk ijk

hh

ijm ijmijk

all m

W C

W CP

α β

α β

      


   =    



∑ (Eq.3.3)

]][][[zyxW is the matrix that keeps pheromone trails and has the same structure

that of Eq.3.1. α and β are two parameters that determines the relative influence of

cost and pheromone levels. Setting α to 0, causes the pheromone trails not to be

considered by ants, they choose the node, which has cheapest cost. However, setting

β to 0 results in moving towards the higher pheromone trail regardless of cost.

According to Eq.3.3, each ant moves step by step in each time unit. At this point,

computer simulations showed that, using this simple probabilistic rule, many of the

ants go trap states, in which there is no unvisited node to move to, before reaching

the final position.

 In the problem definition, since there is no predefined paths, an ant does not

know where to move to reach the final state, and this behavior corresponds to search

state of real ant’s behavior, which is not modeled in AS. Therefore, the ants walk

around randomly if there is no deposited pheromone trail, and they may go into trap

node.

To decrease the probability of going into a neighbor that causes the ant to stop

searching, we propose to check how many available (not visited) neighbors the node

that the ant plans to move has. But, this primitive heuristic does not guarantee not to

move into dead configurations. The ants somehow should be directed towards the

final position, and they should be encouraged selecting the neighbor which makes

them closer to final position in terms of distance. In order to obtain this type of

50

heuristic information, the Euclidian distance between the possible next node and the

final position is calculated and added to the probability function as a posteriori

knowledge.

The resulting probability function of selecting node k being on (i,j), in the cycle of
h is:

[]

[] []
_

* 1/ * * 1/
 if k is not visited

* 1/ * * 1/

0 otherwise

h

ijk ijk k kf

hh

ijm ijm m kmijk

all m

W C aN dist

W C aN distP

α β λδ

α β δ λ

          


   =    



∑ (Eq.3.4)

kaN and maN are the number of unvisited neighbors of node k and m

respectively. kfdist is the Euclidian distance between the node k and the final

position. δ and λ the two parameters defining the effect of the available neighbor

and distance heuristics.

According to Eq.3.4, all ants are expected to reach the goal state after a transition

phase. However, there is still a chance, which takes them into dead states. Therefore,

instead of checking if all ants are reached the final state, also their position is

controlled whether it is a trap state or not, to detect if current cycle is ended or not.

When an ant is realized to be in trap state, it is killed in that specific cycle, which

means, it stops searching for further movements. When all ants are in either trap state

or final state, the solution is found, and the trail update mechanism is triggered.

2.6.5.8 Trail Update Mechanism

When the end of a cycle condition is met, the pheromone trails on each connected

two nodes are updated. While updating pheromone trails, the evaporation

characteristic of real pheromone trails is considered as a first step.

() () ()1 1 * 1lW t W t ρ+ = + − (Eq.3.5)

ρ is the evaporation coefficient.

51

The ants those are either in final state or in a trap state are at the end of cycle. The

solutions constructed by the ants are said to be either complete solution or partial

solution, with respect to the state the solution ends. The partial solutions, list of

nodes that causes ants to fall into trap state, are punished, whereas the complete

solutions, the paths reaching the final state, are rewarded.

() () ()
for all ants_m

1 1l m

ijk ijk ijkW t W t W t+ = + + ∆∑ (Eq.3.6)

ijkW is the pheromone trail level on edge between nodes (i, j) and the neighbor

indexed by k. m

ijkW∆ is the pheromone trail deposited by ant k, on each edge it

visited, calculated as following:

()
()

1 if ant m visits edge (i,j)-k, complete solution

1 if ant m visits edge (i,j)-k, partial solution

0 if ant m does not use edge (i,j)-k

m

m m

ijk

Cost t

W PCost t




∆ = −



 (Eq.3.7)

The amounts of pheromone trail on all visited edges, including the ones that are

part of partial solutions are updated according to Eq.3.7. By Eq.3.7, the cheaper the

tour is, the more pheromone trail its edges receive, and more likely to be chosen in

following iterations. Unlikely, the possibility of selecting edges included in partial

solutions decreases. And for the last case, if an edge is not chosen by ants, its

associated pheromone trail decreases exponentially.

3.2.2 Experimental Results

We have followed ACS algorithm with proposed modifications in which all ants

update pheromone trails after each move, i.e. local trail updating, where just the ant

that generates the best solution in each iteration is allowed for global trail updating.

The test includes small number of ants, and small number of cycles. All presented

results are average of five trials on each set.

52

Table 3.1 The percentage of ants that can construct solutions for different δ and λ values. This test

is performed with 1 ant and for 1 cycle. Costs are average costs.

 λ =0 λ =1 λ =2 λ =5

 Solution Cost Solution Cost Solution Cost Solution Cost

δ =0 %0 0 %60 5852 %80 1952 %100 1573

δ =1 %40 3263 %20 1955 %40 1509 %100 1508

δ =2 %80 1989 %80 936 %80 1035 %100 858

δ =5 %20 751 %60 1187 %100 1588 %100 753

Table 3.1 shows that, if no heuristic is used to direct an ant towards the final

position, it is not able to reach that position. Since no ACO specific information is

used for this test, the improvements on the path costs show that, those heuristics are

useful not only for guiding the ants but may also for optimization process.

Table 3.2 Number of ants=5, number of cycles=5, α=1, β=1, ρ=0. 9. The costs are average costs.

 λ =0 λ =1 λ =2 λ =5

 Solution Cost Solution Cost Solution Cost Solution Cost

δ =0 12% 2562 28% 2100 57.6% 1651 89.6% 1040

δ =1 16% 1708 44% 1634 63.2% 1243 96.8% 922

δ =2 28% 1740 50.5% 1453 76% 1259 96% 845

In Table 3.2, the effects of δ and λ can be evaluated more clear. Increasing

λ causes more ants to be alive and also cheaper cost. Nevertheless, this cheaper cost

effect is more likely occurs just because of the specified problem, that is, problem

specific.

As the last experiment, remaining all parameters same as Table 3.2, 100 ants

employed for 10 cycles the system. In this test the minimum cost of the path from

initial position to final is found as 518.

53

3.3 SMTTP Application

We have followed ACS algorithm in which all ants update pheromone trails after

each move, i.e. local trail updating, where just the ant that generates the best solution

in each iteration is allowed for global trail updating.

In generic ACO algorithm, ants are initialized with assigning some randomly

chosen nodes. The randomization makes no distinction between the generated

solutions qualities. However, it is not the case in SMTTP problem. In order to

generate feasible solutions more quickly, ants should find the “best” job to be

scheduled first. Selecting the first job to be scheduled can be managed in several

ways, such as the job with the shortest processing time, or the job with the longest

processing time, or the job with the earliest due date, etc. In the tests we have

performed, the job with the earliest due date is assigned as the first job in the

schedule for all ants.

Another point in SMTTP application is local search. ACO algorithms have been

proven to be very successful if combined with a local search procedure. The

procedure has applied on iteration best solutions generated by the ants before

updating the trail intensities. Circular shifting which was defined in Section 3.5 has

been used as for the local search method.

MDD heuristic was used in action choice rule. The tests were performed with the

following parameters:

{ }

0, 3, 0.9, 0.5, 0 0.5

5000

20,40,60,80,100

G L q

nofCycles

nofAnts

α β ρ ρ= = = = =

=

∈

Almost for all problems, the solutions generated by cooperative work of 100 ants

were the best among all others.

54

3.4 Problem Sets

Two different problem sets have been experimented in this study.

3.4.1 Problem Set 1

Problems Set 1 was taken from (Baker,1974). Set 1 contains 16 problems each of

which has 8 jobs.

3.4.2 Problem Set 2

This set contains 800 problems created by the method suggested in (Potts & Van

Wassenhove, 1982). The method generates problems with various degrees of

difficulty by means of two factors, tardiness factor (TF), and range of due dates

(RDD).

1

max

1

1 1

n

j

j avg

n

j

j

d
d

TF
C

n p

=

=

= − = −

∑

∑
 (Eq.3.8)

TF indicates the tightness of the due dates, and the difference between average

due dates and the completion time of possible longest job. For small values of TF,

the jobs get looser, which is the case that EDD rule creates optimal schedule. On the

other hand, if all jobs are subject to be completed at starting time, i.e., 0avgd = , then

TF=1.

max min

max

d d
RDD

C

−
= (Eq.3.9)

If all jobs are to be completed at the same date, then RDD=0. One can conclude

that, small values of RDD indicates that the jobs should be finished in a short time,

where larger RDD means there is more time to process jobs.

55

For each problem, processing times for n jobs are generated from a uniform

distribution [1,1000]. Computing the total processing time P, the due dates are

calculated from a uniform distribution defined as:

() ()[1 2 , 1 2]P TF RDD P TF RDD− − − + (Eq.3.10)

The problems have been generated with the following characteristics:

{ }

{ }

{ }

0.2,0.4,0.6,0.8

0.2,0.4,0.6,0.8

20, 40,60,80,100

TF

RDD

N

∈

∈

∈

For each problem size, there are 16 different difficulty levels, and for each

problem having different size and difficulty level, 10 problems were generated,

yielding 800 problems in total.

56

3.4.3 Results for Problem Set 1

Table 3.3 Results for the set of problems taken from literature.

TF,RDD API Best PSK Best SA Best ACO

(0.2, 0.2) 755 1 765 0 755 1 755

(0.2, 0.4) 668 1 668 1 668 1 668

(0.2, 0.6) 378 1 378 1 378 1 378

(0.2, 0.8) 708 0 711 0 675 1 675

(0.4, 0.2) 364 1 364 1 364 1 364

(0.4, 0.4) 478 1 478 1 478 1 478

(0.4, 0.6) 820 1 820 1 820 1 820

(0.4, 0.8) 1364 0 1364 0 1360 1 1364

(0.6, 0.2) 63 1 63 1 63 1 63

(0.6, 0.4) 1300 1 1300 1 1300 1 1300

(0.6, 0.6) 662 1 662 1 662 1 662

(0.6, 0.8) 531 1 531 1 531 1 531

(0.8, 0.2) 271 1 271 1 271 1 271

(0.8, 0.4) 936 1 936 1 936 1 936

(0.8, 0.6) 708 1 708 1 708 1 711

(0.8, 0.8) 1285 0 1285 0 1280 1 1285

Total 11291 13 11304 12 11249 16 11261

Table 3.3 has no significant contribution on performances of the metaheuristic

algorithms since each problem set contains very small number of jobs, i.e. 8 jobs.

Therefore we have performed similar experiments on problem sets containing more

jobs.

3.4.4 Results for Problem Set 2

Table 3.4 summarizes the outcomes of the experiments. It also shows that how

many times each algorithm performed best, compared to the others for the problems

of size 100. The numerical results in Table 3.4 for API, PSK, and SA heuristics were

provided by Bilge Bilgen from Dept. of Industrial Engineering, DEU (Bilgen &

Özkarahan, 2002).

57

There are three important elements of SA algorithm and has been used with the

following settings:

• Initial sequence: EDD rule has used to create the initial schedule.

• Neighborhood searching structure: General Pairwise Interchange, GPI, in

which all possible pairs are exchanged, except the problems for N=80.

Adjacent Pairwise Interchange, API, is the neighborhood structure in

N=80 problem set.

• Cooling strategy: Total number of iterations is 100, 2 is the initial

temperature. At iteration 50, the temperature is lowered by factor 0.25.

Table 3.4 Results for the for problems of N=100. API refers to Adjacent Pairwise Interchange

technique as the main algorithm, and PSK means Panwalkar-Smith-Koulamas heuristic. (Panwalkar,

Smith, & Koulamas, 1993).

TF,RDD API Best PSK Best SA Best ACO

(0.2, 0.2) 22783 3 22783 3 21835 9 21824

(0.2, 0.4) 258 10 258 10 258 10 258

(0.2, 0.6) 0 10 0 10 0 10 0

(0.2, 0.8) 0 10 0 10 0 10 0

(0.4, 0.2) 189877 1 189877 1 182500 10 185517

(0.4, 0.4) 126295 3 126262 3 124600 9 123720

(0.4, 0.6) 67305 4 67256 4 66450 6 66206

(0.4, 0.8) 5790 8 5790 8 5808 8 5760

(0.6, 0.2) 509251 0 510224 0 483650 10 502780

(0.6, 0.4) 435224 1 435224 1 430590 9 432963

(0.6, 0.6) 364665 4 364613 4 363580 7 363365

(0.6, 0.8) 296823 8 296813 8 302175 3 297878

(0.8, 0.2) 991931 0 992052 0 965190 10 981721

(0.8, 0.4) 953567 9 953544 10 958410 2 955985

(0.8, 0.6) 939036 9 939023 10 943315 3 942852

(0.8, 0.8) 969283 9 969283 3 974550 3 973845

Avg. 367005.5 367062.6 363931.9 365917.1

In Table 3.4, considering the average total tardiness values in the last row, the

results reveals that, both SA and ACO algorithms perform better than the other

heuristic algorithms and ACO and SA should be preferred to the other two methods.

58

If we compare SA versus ACO, it can be said that those two metaheuristics with the

identified parameter settings, and for these data sets, are competing which each other.

Table 3.5 Results for the problem sets of the sizes 20, 40, 60, 80. No local search has been employed

for the problems of size 80 in ACO algorithms, while for SA, API has been used as local search

technique.

TF,RDD N=20 N=40 N=60 N=80

 SA ACO SA ACO SA ACO SA ACO

(0.2, 0.2) 1508 1491 4527 4480 9285 9206 16220 155299

(0.2, 0.4) 331 331 326 325 451 449 471 466

(0.2, 0.6) 55 55 0 0 0 0 0 0

(0.2, 0.8) 182 182 0 0 0 0 0 0

(0.4, 0.2) 9160 9156 32410 32414 63800 64308 126000 113010

(0.4, 0.4) 6201 6192 19450 18832 44180 44012 85670 75676

(0.4, 0.6) 4090 4070 10705 10634 18103 17988 39300 35657

(0.4, 0.8) 2275 2258 2902 2891 8912 8766 8901 7875

(0.6, 0.2) 21120 21124 83640 83986 179800 183851 429900 299429

(0.6, 0.4) 19000 19000 66610 66553 145400 144936 381900 264987

(0.6, 0.6) 20721 20730 63120 63002 131040 130778 283700 204506

(0.6, 0.8) 18490 18608 58230 58247 115190 113906 295100 208442

(0.8, 0.2) 45720 42776 153650 154663 359200 362076 923500 626824

(0.8, 0.4) 43790 45056 145000 145111 335400 334742 915900 573505

(0.8, 0.6) 39220 39319 175600 176350 360400 360763 904200 582975

(0.8, 0.8) 42980 43069 163200 163902 341900 341340 872900 590533

Avg. 17177.7 17088.6 61210.6 61336.9 132066.3 132320.1 330228.9 233699

Tables 3.5 shows and compares the results of SA and ACO for the problem sets of

size 20, 40, 60, 80. The results are interesting in the point that for the problems of

size 80, ACO always outperforms SA although no local search was employed in

ACO. The reason is, instead of GPI, API technique was employed for SA with the

previous parameter settings. Therefore, one can conclude that, the neighborhood

structure is quite important, and if GPI were used for ACO algorithms, the results

would have been outperform for other sets as well. See Table 3.6 demonstrating the

results of ACO algorithm for the problem set 80 with and without local search

technique of circular shifting.

59

Table 3.6, ACO results for N=80, with and without neighborhood search.

TF,RDD Without Local Search With Local Search

(0.2, 0.2) 155299 155256

(0.2, 0.4) 466 466

(0.2, 0.6) 0 0

(0.2, 0.8) 0 0

(0.4, 0.2) 113010 111482

(0.4, 0.4) 75676 75113

(0.4, 0.6) 35657 35552

(0.4, 0.8) 7875 7837

(0.6, 0.2) 299429 297298

(0.6, 0.4) 264987 263097

(0.6, 0.6) 204506 203291

(0.6, 0.8) 208442 207728

(0.8, 0.2) 626824 621962

(0.8, 0.4) 573505 571696

(0.8, 0.6) 582975 581652

(0.8, 0.8) 590533 588501

Avg. 233699 232558.2

 60

CHAPTER FOUR

WEIGHTED SYNCHRONISED CALCULUS OF COMMUNICATING

SYSTEMS

4.1 WSCCS as a Multi Agent System Modeling Language

WSCCS is known to be very efficient in modeling biological systems, particularly

social insect colonies, rather than its predecessors, i.e., CCS, SCCS. But the range is

not limited with biological systems. Any distributed computing system can be

modeled by WSCCS. For example, problems from Operations Research, such as a

problem involving first come first served based resource allocation system, or a

problem of probabilistic task allocation falls into domain of problems that can be

modeled using WSCCS. Modeling computer systems is also in concern of WSCCS.

WSCCS was first introduced by Tofts, 1994. It appears as an extension of

Milner’s Synchronized Calculus of Communicating Systems, SCCS (Milner, 1989).

The first improvement over CCS is the synchronization of actions of the agents,

which helps a clear understanding the expression of communication between agents.

However, the synchronization extension does not remove the possibility of

asynchronous action occurrence, since the calculus is still CCS. Adding weight,

priority information to the synchronized CCS actually causes a major change over

CCS. The new formalism is not completely nondeterministic, since the weights, and

probabilities are used to compute the choice of an action to be performed. However,

it is not completely deterministic either. For the two actions having same probability

to be chosen, again a nondeterministic action choice rule works.

When modeling in WSCCS, each individual ant is thought as an autonomous

computer program. Each program changes its state both according to weight rules,

and through communication with other programs. An ant in WSCCS is described by

listing all agents which comprise its possible states of behavior, and the weight that

61

actions occur to change the agent. Composing the agents in parallel and allowing

them to communicate with each other, the entire model of ant colonies is obtained.

In the rest of the chapter, the reason behind employing WSCCS as a language for

modeling Ant Colonies rather than other languages is explained first. Then the

language constructs, semantics, and equational theory are presented.

4.2 Why to Model Ant Colonies by WSCCS?

The difficulties in modeling Ant Systems using Cellular Automata, and Petri Nets

has been mentioned before. The main characteristics of WSCCS allow us to defeat

those problems.

In Cellular Automata approach, it is not permitted to model the individuals

independently, i.e. all agents subject to perform the same set of rules. Therefore only

the colony level behavior can be observed. In WSCCS each agent is defined uniquely

in its own actions, and if an agent is communicating with either the environment or

with another agent a new agent, which is an aggregation of the communicating ones

is defined. By this way all the difficulties arising in Cellular Automata approach can

be solved.

The main reason for not preferring Petri Nets is its asynchronous behavior, since

we are attempting to model synchronous systems. WSCCS is synchronized. Another

reason is reproduction behavior. Reproduction is a primitive behavior of any

biological system, means that some new agents might be added to the colony with its

own set of actions during execution. However, in Petri Nets, once a system is

modeled and execution is started, no new rules and / or agents can be added. WSCCS

accomplishes the behavior as following: Any different types of possible agent are

defined before the system begins execution, and during its run, a number of agents

can created according to their definitions. The important point is, only the definitions

of agents exist, the number of actually running agents is unknown.

62

4.3 Definition of the Calculus

WSCCS is a language for modeling the behavior of concurrent communicating

systems hence it offers mechanisms to formalize these behaviors. Besides, it is also

expected to offer means for expressing alternative actions, the probabilistic action

choice rules, and actions occurring sequentially. Furthermore one should be able to

verify the system which is supported by equational reasoning.

The language of WSCCS contains three basic classes of objects:

• Agents,

• Actions,

• Weights.

And there are several operations defined on these objects:

• Action performing (. - dot),

• Weighing an action (:),

• Choice between actions (+),

• Parallel composition of agents (×),

• Restriction on the actions to be performed (<),

• Communication between agents,

• Prioritization of action in an agent expression (prio),

• Renaming an action (()E Ef Act),

• Fixing an agent (fix).

The subsequent sections introduce the syntactical rules of WSCCS along with

several examples, although the full syntax is attached to the Appendix A.

63

4.3.1 Action Performing (.)

This rule indicates that an agent (it might be defined implicitly or explicitly)

performs the action act, and becomes another agent. In other words, from one state,

with a transition act, it reaches another state.

• .act E : current agent is implicit. It performs the action act, and becomes the

agent E.

• .
def

P act E≡ : current agent is explicit, P.

4.3.2 Weighing an Action (:)

WSCCS is a probabilistic calculus, thus occurrence of an action is biased by

means of weight. The reason behind calling the bias term as weight instead of

probability is that, weights can be interpreted as probabilistic specifications via the

concept of relative frequencies. Usage of weights also allows giving priorities to

some actions. In addition, weights are operationally more convenient to use, because

one does not have to ensure that they normalize to any particular value.

The weight term which is denoted by k

iw nw= , where iw is known to be the

weight of an action, contains two components in form of multiplication which is

usually omitted:

• n Z
+∈ is the relative frequency of occurrence of an action with which the

weight is associated,

• k N∈ k
w gives the action’s priority.

Weights are attached to the actions by the operator : (colon) as following:

• 6 :w a the weight of action a is 6w , where 6 is the relative frequency of

action a , and w is the priority. Note that 1k = for this example.

64

• 2 : b the weight of action b is 2 , where the relative frequency is 2 ,

and there is no priority assigned to the action b , since there is no

component of w , note that this case holds for 0k = . That means, 0
nw is

denoted by n.

A relative frequency expression, e , is formed with the following syntax, where k

ranging over a set of variable names, and c ranging over a fixed set, N or R .

*e k c e e e e→ +

Moreover the following assumptions are used for relative frequency expressions,

where e and f are relative frequency expressions:

e f f e+ = + (Eq.4.1)

() ()e f g e f g+ + = + + (Eq.4.2)

* *e f f e= (Eq.4.3)

() ()* * * *e f g e f g= (Eq.4.4)

()* * *e f g e f e g+ = + (Eq.4.5)

That means, both addition and multiplication are commutative, and associative;

multiplication is distributive over addition.

4.3.3 Choice between Actions (+)

At any given time, an agent may have several actions, and only one of them can

be performed. + operator indicates there are several choices in actions of an agent.

These actions can be given with weights, where the weight expression might contain

either a relative frequency component, or a priority component, or both of them.

When an agent is able to perform more than one action at any time, the actions

whose priorities are equal to the highest priority may occur. The probability of

65

actions with equal weights is then determined by their relative frequency. An agent

performs an action with a probability according to the actions weight and become a

different agent.

6 : . 4 : . 2 : #.
def

EX w a A w b B C≡ + + (Ex.4.1)

The agent EX has three choices in its actions, and only one can be performed.

6w,4w,2 are weights, where 6, 4, and 2 gives the relative frequencies; and 1
w , 1

w ,

0
w are the priorities of actions a, b, and # respectively. A,B,C are agents. The +

operator indicates a choice between actions.

It is worth to mention here that, relative frequencies are used to compute the

probability of occurrence of action. Consider another agent 2EX to explain how the

relative frequencies are involved in probability:

2 : . : . : . : .
def

a b c dEX n a A n b B n c C n d D≡ + + + (Ex.4.2)

an , bn , cn , dn are constants,

a , b , c , d are actions,

A , B , C , D are resulting agents of corresponding actions.

[]

[]

[]

[]

/

/

/

/

2

2

2

2

a

b

c

d

a n n

b n n

c n n

d n n

EX A

EX B

EX C

EX D

→

→

→

→

 All presumptive transitions for the agent EX2.

The first transition means that, the agent 2EX may perform the action a with

the probability []/an n where a b c dn n n n n= + + + , sum of all relative frequencies,

and becomes agent A . The rest of the transitions are construed at the same way.

66

Normalizing all the transition weights, i.e., setting the sum to 1, probabilities for

each transition are obtained.

4.3.4 Parallel Composition of Agents (×)

This is a core operation of any distributed computing system. It states that, the

agents are acting concurrently. They may either communicate, or work

independently. The agents are synchronized in this type of activity, which means, at

each global time step, each agent must perform an action.

In the following primitive example, there are two ants, ant1, ant2, working in

parallel. It is not clear whether they are communicating or not.

1 2ant ant×

If the concurrently acting agents have more than one weighted actions to be

performed, the following set of rules are applied on weights. Assume that 'k k> .

' 'k k k k k
nw mw mw nw nw+ = + = (Eq.4.6)

()k k k k k
nw mw mw nw n m w+ = + = + (Eq.4.7)

' ' '* * ()k k k k k k
nw mw mw nw nm w

+= = (Eq.4.8)

4.3.5 Restriction on the Actions to be Performed (<)

Applying the restriction operator to an agent expression, only the actions

appearing at right hand side of the operator are permitted.

{ }3 6 : . 4 : . 2 : #. 3 : #. #
def

EX w a A w b B C D≡ + + + < (Ex.4.3)

In Ex.4.3, the agent 3EX has three choices in its actions, { }, , #, #a b , and it is

restricted to perform only the unit action, # . There are two options:

67

2 : #. or 3 : #.C D

The probability of actions with equal weights is determined by the relative

frequencies. In this example, although the actions to be performed are same, #, the

resulting agent is different.

Suppose that E1 performs an action a and becomes F1 (Ex.4.4), and concurrently

E2 performs the complementary action !a, and becomes F2 (Ex.4.5). They are

working in parallel, and limited to perform jointly only the action a (Ex.4.6), which

is not possible. Because, E1 performs a, and at the same time E2 performs !a by the

definition of parallel composition. And the resulting action becomes again #, which

is not allowed by the restriction operator. Then it is said that this 1 2E E× agent

deadlocks under the restriction of environment level action being a , that means it is

equivalent to agent 0.

1 1.
def

E a F≡ (Ex.4.4)

2 2! .
def

E a F≡ (Ex.4.5)

{ } { }1 2 1 2. ! .E E a a F a F a× < ≡ × < (Ex.4.6)

4.3.6 Communication

There are two basic requirements to achieve communication between two agents:

(i) parallel composition of agents, (ii) observing unit action by the environment.

The agents willing to communicate must work in parallel. Thus, parallel

composition forms the basis of communication.

Another issue in describing communication by WSCCS is the notion of

complementary actions. The complementary actions are nothing but the two actions

such that being performed by some agents concurrently, the resulting action that may

be observed from the environment is the unit action, or identity action, denoted by #.

68

Communication is such a behavior that it cannot be observed by the environment,

meaning that either both agents performed unit actions, or they communicated

through performing complementary actions.

Restriction is an indirect requisite in communication, which is essential when the

agents, who are planned to communicate, have more than one action to be

performed. Restriction is used to force the agents to communicate by disallowing the

occurrence of the actions which are not complementing each other. We can prevent

the agents to communicate using restriction operator as well.

With the agents defined in Ex.4.4, and Ex.4.5, assume that, they are working in

parallel, with no restriction at all (Ex.4.7). It is expected these two agents to

communicate.

1 1.
def

E a F≡ (Ex.4.4)

2 2! .
def

E a F≡ (Ex.4.5)

1 2 1 2. ! .E E a F a F× ≡ × (Ex.4.7)

By the expression (Ex.4.7) 1 2E E× performs #, since ! #a a× = . There is no need

to force the communication. However, in the following example, where '
2E has more

actions to be performed, if the communication is planned, restriction operator should

be employed.

'
2 2 3! . 2 : .

def

E a F w c F≡ + (Ex.4.8)

()'
1 2 1 2 3. ! . 2 : .E E a F a F w c F× ≡ × + (Ex.4.9)

Ex.4.9 defines the parallel acting 1E and '
2E agents. There are two possible

directions in action performing such that:

69

()'
1 2 1 2 3

1 2 1 3

1 2

. ! . 2 : .

. ! . . 2 : .

E E a F a F w c F

a F a F a F w c F

× ≡ × +

≡ × + ×
14243 1442443

If Part 1 is chosen, communication occurs, where Part 2 involves only parallel

action performing behavior. Assume that, we want 1E and '
2E agents to

communicate always. Then, the '
2E agent must be prohibited to perform action c , in

other words, the environment level action must be forced to unit action, # , as

following:

{ } () { }

{ }

() () () { }

'
1 2 1 2 3

1 2 1 3

1 2 1 3

1 2

. ! . 2 : .

 . ! . . 2 : . #

 #. 2 : . #

E E a F a F w c F

a F a F a F w c F

F F w a c F F

× < ≡ × + <

≡ × + × <

≡ × + × × <
14243 144424443

There is no way for Part 2 to happen because of the restriction.

4.3.7 Prioritization of Action(s) in an Agent Expression

This operator, ()prio E , is used to extract the prioritized parts of the agent

expression E. Prioritization disables considering relative frequencies, and in turn

probabilistic choice. Consider the example (Ex.4.10):

6 : . 4 : . 2 : #.
def

EX w a A w b B C≡ + + (Ex.4.10)

If we apply the prioritization operator on the agent EX , the following result is

obtained, such that the actions those do not have priority are ignored.

() ()6 : . 4 : . 2 : #.

6 : . 4 : .

prio EX prio w a A w b B C

w a A w b B

≡ + +

≡ +

70

After prioritization an agent, the actions those have the priority equal to the

highest priority may occur.

4.3.8 Renaming Actions in an Agent Expression (()E Ef Act)

The actions in the agent expression E that is pointed by the function, ()E Ef Act ,

are renamed. The renaming function does not affect the unit action, #, and applying

the function on a complementary action produces the same result as applying the

function on the regular action and taking its complement. That is:

()

() ()

:

#

, ! !

E
f Act Act

f

a Act f a f a

→

=

∀ ∈ =

Where Act denotes the set of actions of the agent.

Assume that we have two agents, EX , and 3EX which are previously defined.

The following is an example of renaming the actions in agent EX .

{ }

 6 : . 4 : . 2 : #.

3 6 : . 4 : . 2 : #. 3 : #. #

def

def

EX w a A w b B C

EX w a A w b B C D

≡ + +

≡ + + + <

()

()

_

_

EX

EX

f a new a

f b new b

=

=

Renaming function does not affect the other agents’ actions even if they have

common action(s). So, the agents become:

{ }

 6 : _ . 4 : _ . 2 : #.

3 6 : . 4 : . 2 : #. 3 : #. #

def

def

EX w new a A w new b B C

EX w a A w b B C D

≡ + +

≡ + + + <

71

4.3.9 Fixing an Agent (fix)

This operation is used to avoid recursive agent definitions by choosing any

component from a family of agent definitions depicted inside the operator.

{ }():j i ifix X E i I= ∈

See below example:

(): #. 1 : #.
def

A p P p A≡ + − (Ex.4.11)

1: #.
def

P P≡ (Ex.4.12)

This definition does not satisfy the syntactical rules of WSCCS in two ways. First,

the weights are not integers. This problem can be overcome by multiplying both

weights by a constant c, which must exist as long as p is a rational number. The

second problem is, both agents are defined recursively, meaning that the agent

labels A , and P appear on both sides of the definitions. To tackle with this difficulty,

the fixing operator is used.

A family of recursively defined expressions, F, is defined, then the agents A and

P are set to the elements of this family.

()

{ }

()

()

1 1

2 2

1 2

1

2

* : # . * 1 : # .

1 : # .

,

d e f

d e f

A c p P c p A

A A

F A A

A f i x F

P f i x F

≡ + −

≡

=

=

=

Figure 4.1 Non-recursive definitions of agents A , and

P .

72

Although the fixing operation is essential for describing agents those are

convenient to semantics, this non-recursive forms are not widely used while dealing

with the applications of WSCCS (Sumpter, 2000).

4.4 WSCCS Semantics

The semantics of WSCCS, as well as any formal language, define how to decide

the validness of any given series of actions. For each syntactically correct agent

expression, proof trees are generated according to the semantic rules formally given

in Appendix A.2.

In the following example, there exist two types of agents, A and B performing

different actions with different weight and/or priorities. And the property to be

checked is whether or not these two agents performing some actions while working

concurrently. In other words, to explore the validness of A B× agent performing

the given action.

Ex.4.13 and Ex.4.14 define the two agents A and B.

: . :! .
def

A p a C q b D≡ + (Ex.4.13)

: . :! .
def

B x b T y a R≡ + (Ex.4.14)

Figure 5.2 demonstrates assuring the syntactical correctness of given agent

definition A. Proving that the agent definitions are correct, the question is to show

that
#

A B C R× → × is a valid transition.

73

wi:E wi:E+

E E: :wi wi

p q

Act Agt. Act Agt.

a C !b D

E

Figure 4.2 The derivation tree of agent A. The definition of

B is checked in the same way.

Below, all possible transitions of A B× are listed, and only one of them would

be occurred. (Multiplication of actions, that is concurrently occurring actions, is

denoted usually by juxtaposition, which is omitted in examples. Also the

multiplication symbol which exists between weights is omitted.)

() ()

() ()

() ()

: . :! . : . :! .

: . : . : . :! .

:! . : . :! . :! .

A B p a C q b D x b T y a R

p a C x b T p a C y a R

q b D x b T q b D y a R

× ≡ + × +

≡ × +

× + ×≡

× +

Applying the multiplication rule for weights:

() ()

() ()

: . . : . ! .

: ! . . : ! . ! .

A B px a C b T py a C a R

qx b D b T qy b D a R

× ≡ × + × +

× + ×≡

74

Then applying transitional semantics, the proof tree in Figure 4.3 is obtained for

the weighted choice of (): . ! .py a C a R× . The probability of occurrence of this choice

is:

()/py px py qx qy+ + + .

 by rule A1 by rule A1

 by rule A2
!

#

. ! .

. ! .

a a

a C C a R R

a C a R C R

∧
→ →

× → ×

Figure 4.3 Proof tree for
#

A B C R× → ×

4.5 Congruence and Equational Theory

There are two ways two decide whether two agents are equal, or similar. First

technique, called congruence involves comparing the two agents in algebraic context,

using direct bisimulation, or relative bisimulation; whereas the second one employs

equational theory which is based on formal techniques to make the comparison at

syntactical level. Consider the example agents in Figure 4.4. It is possible to show

the congruence of X and Y agents by demonstrating that both making the same

transitions, then one can say that relative bisimulation exists between the two.

Alternatively, using equational theory, evidence is provided for their equivalence

(Figure 4.5).

() () { }

() ()() { }2

:! . 1: #. : . 1: #. #

: #. 1: #. #

~

def

def

r

X w a A R w a A P

Y w A A R P

X Y

≡ + × + <

≡ × + × <

Figure 4.4 X and Y agents, and relative bisimulation

between them.

75

4.5.1 Proof by Equational Theory

() () { }:! . 1: #. : . 1: #. #
def

X w a A R w a A P≡ + × + <

() ()

() () { }

() ()

() () { } ()

() () () ()

() () () () { }

2

2

:! . : . :! . 1: #.

1: #. : . 1: #. 1: #. # (by Exp4)

: ! . . : ! . #.

: #. . 1: #. #. # by multiplication of weights

: ! . : ! # .

: # . 1: # # . # (by E

def

X

X

X

w a A w a A w a A P

R w a A R P

w a A a A w a A P

w R a A R P

w a a A A w

X

a A P

w a R A

X

X R P

= × + × +

× + × <

= × + × +

× + × <

= × × + × × +

× × + × × <

≡

=

=

() ()

() () { }

() () { }

2

2

xp1)

: #. :! .

: . 1: #. # (by multiplication of actions)

: #. 1: #. # (by Res1)

Y

w A A w a A P

w a

X

R A R P

A

X

w AX R P

= × + × +

× + × <

= × + × <

=

144444424444443

Figure 4.5 Proof for ~
r

X Y by equational theory. The rules Exp4, Exp1, Res1 are

defined in Appendix A.

 76

CHAPTER FIVE

FORMAL VERIFICATION

5.1 Introduction

It is clear that while systems are becoming more complex, the criticality of

ensuring their correct operations is also increasing. To be able to build up any system

secure and reliable, one must be sure that the system to be realized is operating

correctly in all senses. In context of hardware and software systems, the act of

proving or disproving the correctness of an abstract model that will be realized

against its formal specifications is called verification. Here, specification refers to

some property of the system expressed in temporal logic.

There are roughly two approaches to formal verification. The first approach is

model checking, which consists in a systematic and always automatic exploration of

the entire mathematical model. Usually this consists into exploring all of states and

transitions in the model, by using smart and domain-specific abstraction techniques

to consider whole bunches of states in a single operation and reduce computing time.

The second approach is theorem proving. It consists in using a formal version of

mathematical reasoning about the system. This is usually only partially automated

and is driven by the user's understanding of the system to validate.

The rest of the chapter is organized as follows: The two techniques of verification,

theorem proving and model checking are introduced first. Then discrete state space

modeling languages and property modeling languages – temporal logics- are

expounded as the required formalisms in model checking.

77

5.2 Verification by Theorem Proving

Theorem proving is a technique where both the system and its desired properties

expressed as mathematical logic formulas. The logic is given by a formal system,

which defines a set of axioms and a set of inference rules. Then, theorem proving is

the process of finding the proof of property from the axioms of the system by

applying inference rules. Steps in the proof appeal to the axioms and rules, and

possibly derived definitions and intermediate lemmas. Although the proof could be

constructed by hand, since systems becoming large and complex, it is not reasonable.

Hence, there has been a great effort on developing theorem provers with various

degree of automation, and also proof checkers have been proposed to confirm the

correctness of the proof. Another way is the interactive theorem prover. By

definition, it requires human assistance which causes the process to be slow, and

error-prone.

The initial attempts on obtaining automated theorem provers appeared in 60s.

Gilmore (1960), Wang (1960a), and Prawitz, Prawitz, & Voghera (1960) presented

theorem provers for the full first-order predicate calculus. Although this

mechanization constituted an important proof of concept, the practical utility of the

theorem provers was limited. Robinson (1965) introduced the principle of resolution,

and it was a central point for the development of automated theorem provers till the

end of 70s. Despite this great effort, all the early theorem provers suffered from the

same limitation that had plagued the previous generation of mechanical proof

procedures: the combinatorial explosion of the proof search space.

The 70s also witnessed the appearance of logic programming, originally attributed

to (Colmerauer & Roussel, 1992; Kowalski , 1988). Colmerauer and colleagues

implemented a specialized resolution based theorem prover called PROLOG (stands

for the French “PROgrammation en LOGique”) which implemented Kowalski’s

78

procedural interpretation of Horn clause logic1. The result was not only an automated

theorem prover, but a programming language, which is still widely used.

Otter (Wos, Overbeek & Boyle, 1992), SETHEO (Letz, Schumann & Bayerl,

1992), and PTTP (Stickel, 1986) are the state-of-the art automated theorem provers

developed during 70s and early 80s, which are known to be able to solve many

benchmark problems with extremely high inference rates, and efficient use of

storage.

Resolution based methods generate proofs that are not readily understood by

human users. This disadvantage, as well as the difficulties in combining the

resolution with other nonlogical inference techniques such as induction, led to

studying other approaches, such as allowing human interaction, an inserting some

heuristic algorithms.

Robert Boyer and Strother Moore have introduced a series of theorem provers that

use heuristics to develop proofs by induction and rewriting. The NQTHM series of

provers (Boyer & Moore 1979, 1988) and its successor ACL2 (Kaufmann & Moore,

1994, 1996) are highly automated, but still requiring user guidance to accomplish

difficult proofs. Though, the Boyer-Moore prover has been used to prove program

and hardware correctness (Bevier, Hunt, Moore & Young,1989; Hunt, 1987), as well

as mathematical theorems including Gödel’s incompleteness theorem, which has

appeared in PhD. dissertation of Shankar (Shankar, 1994). Shankar has also

proposed another theorem prover, PVS (Shankar, 1993; Shankar, Owre, & Rushby,

1993). Shankar (1994) claimed that there is no sharp distinction between theorem

provers and proof checkers but instead, it is defined by the intended use of the

system, or the degree of automation.

1 A clause is said to be Horn clause if it has at most one positive literal. For example,

() () ()P x Q x R x¬ ∧ ¬ ∨ .

79

There are some certain systems known to be “proof checker”. Automath (van

Benthem Jutting, 1979), and LCF that refers to Logic for Computable Functions

(Gordon, Milner, & Wadsworth, 1979) are the two proof checker in the early years of

the field. LCF has been used to verify program properties and to check the

correctness of unification algorithm. Several well-known algorithms / applications

have evolved from LCF, including HOL (Gordon & Melham, 1993), Nuprl

(Constable, 1986), and Isabelle (Paulson, 1988). HOL (Higher order logic) is a

widely used system with extensive libraries that is employed primarily for

verification of hardware and real time systems. Nuprl is based constructive type

theory, and has been primarily used as research and teaching tool in the areas of

constructive mathematics, hardware verification, software engineering. Isabelle is a

generic, interactive theorem prover based on the typed lambda calculus, supports

proof in any logic whose inference rules can be expressed as Horn clauses. Isabelle

also represents a synthesis between two largely distinctions in area of automated

reasoning: resolution based theorem proving and interactive theorem proving. Coq is

another proof checker tool proposed in (Dowek, Felty, Herbelin, & Huet, 1993)

which is useful for formalizing and verifying hard problems in mathematics and

program verification.

5.3 Verification by Model Checking

Model checking is a widely used verification technique that is model-based,

automated, using a property verification approach, mainly useful for verifying

concurrent and reactive systems, typically in a post development stage. The overall

behavior of a distributed system is modeled as a transition system, whose states

represent the global states of the distributed system, and whose transition relation

gives the possible evolutions of the system. It can be checked whether such a

transition system is a model of a temporal logic formula.

In contrast to the theorem proving model checking is completely automatic and

fast. Model checking is used to check partial specifications; therefore it can provide

useful information about a system’s behavior without checking the whole system.

Above all, model checking outputs counterexample if the given property doesn’t

80

hold by the model, which usually represents the subtle errors in design, and thus can

be used to help in debugging.

5.3.1 History of Model Checking

Two general approaches in model checking are used in practice today. The first,

temporal model checking, is a technique proposed by (Clarke & Emerson, 1981), and

by (Queille & Sifakis, 1982). In this approach, specifications expressed as temporal

logic formulas, and systems are modeled as finite state transition systems. Then with

an efficient search procedure, the problem is to check whether the given finite state

transition meets the given model of specification.

In the second approach, automata based model checking, both the specification

and the system are given as automata and a comparison is performed to evaluate

whether or not the behavior of the system conforms to that of specification. Different

notions of conformance have been explores, including language inclusion (Har’el &

Kurshan, 1990; Kurshan, 1994), refinement orderings (Cleaveland, Parrow & Stefen,

1993; Roscoe, 1994), and observational equivalence (Cleaveland, Parrow & Stefen,

1993; Fernandez, Garavel, Kerbrat, Mateescu, Mounier & Sighireanu, 1996). Vardi

& Wolper (1986) demonstrated how the temporal logic based model checking could

be combined with automata based model checking.

The technique suffers from state explosion; so, until 90s model checking was only

used for finite state models. Hence, some infinite state spaces can have finite

representations, which can be used for different verification methods. For example,

Burkart & Steffen, 1994 presented an algorithm for the model checking of

alternation-free mu-calculus (Bradfield & Stirling, 2001), which is a modal logic, on

pushdown processes. The published methods study restricted process algebras such

that the infinite transition graphs are pushdown-automata graphs.

Model checking is an appealing direction in verification. The Model Checking

Group at Carnegie Mellon University (CMU) has developed a number of model

checkers for several systems, such as CV, which is a model checker for VHDL;

81

CSML and MCB, a language for supporting compositional description of the finite

state machines, and model checking of CTL; SMV a symbolic model checker for

CTL which employed Binary Decision Diagrams (BDD) first; and a tool which

combines model checking and theorem proving features, SyMP. Edmund M. Clarke,

who is first suggested temporal logic based model checking, and currently a member

of Model Checking Group at CMU have had enormous effort on model checking and

proposed model checking algorithms for a wide range of problems including finite

state concurrent systems (Clarke & Grumberg, 1987), sequential circuits (Clarke,

Burch, Long, McMillan,& Dill, 1994), models with large states (Burch, Clarke,

McMillan, Dill, & Hwang, 1990), protocol verification (Clarke & Kurshan, 1996).

There are some other well-known and successful model checking tools. The SPIN

(Gerth, Peled, Vardi, & Wolper,1995; Holzmann, 1991) uses partial order reduction

to overcome state space explosion, and a linear time temporal logic for property

specification. SPIN is mostly used in modeling communication protocols. The

Concurrency Workbench-CW- (Cleaveland, Parrow & Stefen, 1993) verifies CCS

processes for properties expressed in µ -calculus. Another tool The Concurrency

Workbench of the New Century (CWB-NC), (Cleaveland & Sims, 1996) provides

users with a number of different languages to specify and to verify the finite state

concurrent systems. CWB-NC uses CTL as property specification language. And

Java Pathfinder, which is a model checker for Java bytecode programs.

Model checking is now powerful enough that is becoming widely used in

industry. As an example, in 1995 civil engineers at North Caroline State University

used the CWB-NC to analyze the timing properties of distributed active structure

control system. The system under study was designed to make buildings more

resistant to earthquakes. The system was first modeled by CCS language, which

consisted of approximately 192.12*10 states and therefore could not be analyzed by

hand, or even by semiautomatic theorem provers. They have used the features of

CWB-NC constructing a much smaller system automatically so that the timing

properties could be analyzed.

82

Other successful industrial sized case studies in model checking are too long to

list. The proof for model checking is the future of verification is that industry is

building their own model checkers, or by simply using the existing ones.

5.3.2 Model Checking Approaches

Model checking is a highly automated verification technique. Informally, a model

checker is a procedure that decides whether a given model M satisfies a given logic

formula φ , abbreviated |M φ= . M is an abstract model of the system in question,

usually a discrete state space model, in our work, and φ , typically drawn from a

temporal or modal logic specifies a desirable property. The model checker then

attempts to figure out whether the model enjoys the given property.

There are two main directions in which model checking problem can be specified:

(i) Global Model Checking, (ii) Local Model Checking.

Global Model Checking: Assumes that the global state space of the transition system

is already constructed, and considering every state of the transition system attempts

to decide whether each state meets the specification. This leads to state explosion

problem. Indeed for most systems of practical interest, to construct the complete

global state space is not reasonable, since it is too large.

Local Model Checking: Considers whether a certain state in state space meets the

given property. In contrast to global model checking, local model checking must

determine the modelhood of a single state.

Obviously, the solution of global model checking problem comprises of local

model checking of all states, thus the two problems are closely related although have

different application areas. Verifying properties of hardware systems is a classical

application of model checking, which is usually considered as local model checking

problem because of the state space growth. Therefore, another means of local model

checking is fighting the state explosion problem.

83

Global model checking, on the other hand, is more useful for problems as data-

flow analysis. Such applications use structures those are rather small in comparison

to those arising in verification activities, and thus the state explosion problem holds

less importance.

Model checking can be implemented by several different approaches, some well-

known examples are temporal model checking, automata theoretic model checking,

and tableu based model checking. Temporal model checking and automata based

model checking was briefly defined in Section 5.3.1.

Tableu based methods are composite methods and, they attempt to solve local

model checking problem by subgoaling. Main idea behind is, if a proof tree can be

constructed that witnesses that the given state has the property. Otherwise, if no

proof tree is found, then it is disproof of the given state does not hold the property.

This methods deal with only a small fraction of state space, and therefore a good way

to fight with state explosion.

Figure 5.1 demonstrates the approaches along the axes of temporal logic involved,

and the type of problem that is suitable, i.e. global or local.

 Temporal Logic Problem Type

 Branching Linear Global Local

Temporal model checking X X

Automata theoretic model

checking
 X X X

Tableu based model checking X X X

Figure 5.1 Classification of Model Checking Approaches (Müller-Olm,

Schmidt & Steffen, 1999).

The model checking technique to be employed strongly depends on the problem

to be checked. Also, the properties to be questioned are important to form the

problem as either local or global.

84

5.4 Discrete State Space Modeling

Formal reasoning about systems having discrete state spaces involves two steps:

(i) Building a formal model of this state changing system which describes, in

particular, functioning of the system, or some abstraction thereof, and (ii) Using a

kind of logic to specify and verify properties of the system.

Usually, a discrete state space system is characterized by the following properties:

• At each particular time moment, the system is in a particular state;

• This state can be characterized by the values of some variables called the

state variables.

• There is a notion of an action, and actions may result in a state change of

the system, that is a change of the value of some variables. These actions

are usually called as transitions.

When building a formal model of systems with discrete state spaces, one can use

different levels of abstractions of the real system for the above properties depending

on the level of details interested in. In the following subsections we are going to

introduce three ways of modeling discrete state spaces all of which are connected to

the constructing graphs representing the state space of the transition system being

investigated: (i) Labeled transition systems, where the edges -transitions- of the

graph are labeled with single actions; (ii) Kripke structures, where the nodes – states-

are labeled with a set of atomic propositions, (iii) and a combination of the two

techniques Labeled Kripke Transition Systems, where both nodes and edges are

decorated with labels.

5.4.1 Labeled Transition Systems

We first introduce the ingredients in the model of labeled transition system (LTS)

informally, and then provide its formal definition.

85

In the model of labeled transition systems, agents are represented by nodes of

graphs and performing an action is understood as moving along an edge, labeled with

action name that goes out of that state. Therefore, a labeled transition system consists

of a set of states (or agents), a set of labels (or actions), and a transition relation →

describing changes in agent states: if an agent p can perform an action a and

become an agent 'p , we write '
a

p p→ . Sometimes an agent is singled out as the

initial agent in the labeled transition system under consideration. Formally speaking:

A labeled transition system is a triplet (), ,M S Act= → , where:

• S is a finite non-empty set, called the states of M, ranged over by s ,

p S∈ is the initial state;

• Act is a set of actions, ranged over by a ;

• S Act S→⊆ × × is a transition relation, for every a Act∈ . As usual, we

shall use the more suggestive notation '
a

s s→ instead of (), , 's a s ∈→ , and

write
a

s → (read “ s refuses a ”) if and only if '
a

s s→ for no state 's .

The definition of labeled transition systems allow situations such as, starting from

the initial state if defined, some states may never be reached. This motivates us to

introduce the notion of reachable states. We say that a state 'p in the transition

system is reachable from p if and only if there exists a path from p to 'p . The set

of such states is called the set of reachable states. Before dealing with the formal

definition of reachable states, it is necessary to introduce the extended transition

relation.

The transition relation can be extended to the elements of *
Act (the set of all

finite strings over Act including the empty string λ) The definition is as follows:

86

− ,s s s S
λ

→ ∀ ∈ ,

− '
aw

s s→ if and only if there is t S∈ such that
a

s t→ and '
w

t s→ , for every

*, ' , , and s s S a Act w Act∈ ∈ ∈ . Note that this inductive definition states

that, extended transition relation is a reflexive and transitive closure of its

original version.

In other words, if 1 2... nw a a a= for 1 2, ,..., na a a Act∈ then we write '
w

s s→

whenever there exist states 1 1,..., ns s S− ∈ such that:

3 11 2 4

1 2 3 1... '
n na a aa a a

ns s s s s s
−

−→ → → → → → .

Then, reachable states of a transition system can be defined as follows:

Let (), ,T S Act= → be a labeled transition system, and let p S∈ be its initial

state. It is said that 'p S∈ is reachable in transition systemT if and only if '
w

p p→ .

The set of reachable states contains all states reachable in T .

coin

coffee tea

coin coin

coffee tea

(a) (b)

Figure 5.2 Labeled transition systems for two different coffee / tea

vending machines.

87

Figure 5.2 presents labeled transition system for two different vending machines

offering tea and coffee. Both machines serve tea or coffee after inserting a coin, but

from the customer’s point of view, the machine in (a) should be avoided since it

decides internally serving whether tea or coffee. In contrast the machine in (b) leaves

the decision to the customer.

5.4.2 Kripke Structures

In Kripke Structures, states are described by the values of atomic propositions

only (Kripke, 1963). The definition of Kripke structures is as follows:

Let V be a set of propositional variables. A Kripke Structure over V is a tuple

(), , ,M S I L= → , where:

• S is a finite non-empty set, called the states of M,

• I S⊆ is a finite non-empty set of states, called the set of initial values of

M,

• S S→⊆ × is a set of pairs of states, called the transition relation of M,

• : 2V
L S → is a function, called labeling function of M.

Any Kripke structure can be considered as a directed graph whose nodes are the

states and labeled by sets of propositional variables which are true in current states

(basic local properties), labeling function assigns the propositional variables of each

state. The edges of the graph are the elements of transition relation: there is an edge

from s to 's if and only if (), 's s ∈→ , or in more common notation 's s→ , where

both s S∈ and 's S∈ . Such a graph is called the state transition graph of the Kripke

Structure.

Figure 5.3 demonstrates an example Kripke structure whose propositions take the

form of variable number= ; the structure represents the states that arise while the

program’s components , x and y , trade two resources back and forth.

88

Figure 5.3 An example Kripke

Structure. Note that the transitions are

unspecified.

5.4.3 Labeled Kripke Transition Systems

Labeled Kripke Transition Systems (LKTS) takes its name since it is a

combination of Kripke structures and Labeled Transition Systems. Therefore, both

the nodes and edges are annotated with agents’ and actions’ labels respectively.

Let V be a set of propositional variables. A LKTS over V is a tuple

(), , ,M S Act L= → , where:

• S is a finite non-empty set, called the states of M,

• Act is a set of actions, ranged over by a ;

• S Act S→⊆ × × is the transition relation,

• : 2V
L S → is a function, called labeling function of M.

By this definition, LKTS generalizes both Labeled Transition Systems and Kripke

Structures: A Kripke Structure is a LKTS with an empty set of actions, Act , and a

Labeled Transition System is a LKTS with a trivial interpretation.

Figure 5.4 represents the LKTS graph for the below code:

z:=0, i:=0 //assignments

while not_equal(i,y) // propositional variable

 z := z+x

 i := i+1

end.

89

(a) (b)

Figure 5.4 Two examples of labeled Kripke transition system graphs.

Both Figure 5.4(a) and Figure 5.4(b) label the edges with the program phrases.

The LKTS in Figure 5.4 (a) uses properties that are logical propositions of the form

;variable := expression . The system in Figure 5.4 (b) uses the variables of the

program as the state variables.

5.5 Temporal Logics

In logic, the term temporal logic, which is sometimes also refer to tense logic, is

used to describe any system of rules and symbolism for representing, and reasoning

about, propositions qualified in terms of time. In a system of temporal logic, various

temporal operators, or so called “modalities” are provided to describe and reason

about how the truth values of assertions vary over time. Typical temporal operators

include sometimes P which is true now if it becomes true in future, always Q which

is true now if Q is always true in future.

Although it was first studied by Aristotle, temporal logic introduced by Arthur

Prior (Prior 1957, 1967, 1969), and is thoroughly described in (Rescher & Urquhart,

1971). Temporal logic has been proposed as applying both to specification and

verification of program behavior, and to the specification of system behavior. The

first application for using temporal logic to describe program behavior came from

Pnueli (Pnueli, 1977, 1981, 1985a). Lamport, 1983; 1986 published research on

90

specifying concurrent systems with temporal logic. Clarke is a well known scientist

in the area and has many publications on applying temporal logic on finite state

concurrent documents (Bradfield & Stirling, 2001; Clarke, Emerson, & Sistla, 1986;

Clarke & Grumberg , 1987).

Temporal logic can be classified along several axes: propositional versus first

order, global versus compositional, points versus interval, past versus future,

branching versus linear (Emerson, 1990). In the following, the linear time and

branching time temporal logic will be compared briefly.

5.5.1 Linear Time Temporal Logic versus Branching Time Logics

Concerning a concurrent system by means of temporal logic, there are two ways

regarding the time. One is the classical view of time, linear time. At each time step,

there is one possible future moment. The other possibility is that time has branching,

tree-like nature. At each moment, time may split into alternate branches representing

different futures.

The modalities of temporal logic reflect the properties of time assumed in

semantics. Therefore, the modalities in linear time temporal logic used to describe

the events along a single time line. In contrast, the branching time temporal logic

modalities reflect the branching nature of time by allowing quantification over

possible futures.

In general, linear time temporal logic is used to check whether a given system

satisfies a given property such that starting from a given state, if all paths satisfy the

property. For example, in a labeled transition system, two states that generate the

same language satisfy the same linear time properties. On the other hand, branching

time logics describe properties depending on the branching structure of the model at

hand. Two states generating the same language by using different branching

structures can often be distinguished by a branching time formulae. Both approaches

have been applied to program reasoning, and it is a matter of property to be queried

as to decide whether branching or linear time temporal logic is to be employed

91

(Emerson & Halpern, 1986; Lamport, 1980; Pnueli, 1985b). Due to the greater

selectivity, branching time logics are often better in analyzing concurrent systems.

Linear time logics are preferred when only path properties are of interest.

Several branching time temporal logics introduced with several properties,

advantageous, and disadvantageous, and for several applications. Among many

variants of branching time logics, we’ll exemplify Hennessy-Milner logic, and µ -

calculus since they are cornerstones in the area, and computation tree logic will be

introduced in detail that is best appropriate to model WSCCS state space.

Hennessy-Milner Logic (HML): It is a simple modal logic introduced by

Hennessy and Milner in (Hennessy & Milner, 1985; Milner, 1989). HML is

interpreted over labeled transition systems and able to express properties for a

limited depth, therefore it has limited usage in area of verification, particularly in

model checking. However, it forms the core of other branching time logics, which

are known to be more powerful and efficient in model checking.

Modal µ -calculus: It is a very small, yet expressive branching time logic that

extends HML by fixpoint operators (Kozen, 1983). µ -calculus is also interpreted on

labeled transition systems. The fixpoint operators provided with µ -calculus are “at

least” and “greatest” operators. It is a logic, although much studied and also widely

used in model checking applications (Andersen, Stirling, & Winskel, 1994; Bradfield

& Stirling, 2001; Cleaveland, Klein, & Steffen, 1992; Stirling & Walker, 1989), has

a reputation for being hard and difficult to understand compared to, say, computation

tree logic. µ -calculus also has relationships with some other formalisms, in

particular automata, and games. Much of this work may seem to be of mathematical

interest; however, it is also of practical interest since automata have been used for

model checking and, recently games have also been found to have uses in tools.

(Kaviola,1995; Stirling, 1995)

92

5.6 Computation Tree Logic, CTL

CTL was introduced in Clarke & Emerson (1981) and also known to be the first

temporal logic for which an efficient model checking procedure was proposed

(Clarke, Emerson, & Sistla, 1986). CTL is interpreted with respect to the states of the

transition systems.

The branching time temporal logic CTL can conveniently express all interesting

properties of the system under study and allows one to verify these properties in

polynomial time proportional with the size of the number of the nodes in state

transition system. The notion of computation tree is introduced first, then in the

following the syntax and semantics of CTL is presented as follows along with several

examples.

5.6.1 Computation Tree

CTL formulas describe properties of computation trees that show all possible

execution paths in the transition system. A state transition graph of Kripke structure

is converted to a computation tree by designating a particular state in a Kripke

structure as the initial state, and unwinding the structure into an infinite tree with the

designated state at the root.

More formally, let (), , ,M S I L= → be a Kripke structure model with s S∈ . A

path is an infinite sequence of states ()0 1 2, , ,...s s s such that 1, i ii s s +∀ → .

The initial state is important since the propositional variables which are true in

that state define the initial conditions of given model. Therefore, the initial state is

unique in any system, and cannot be changed.

93

(a) (b)

Figure 5.5 (a) Transition graph of Kripke structure , (b) Infinite computation tree of

(a). The labels on the nodes represent propositions those are true on current node,

and 0s is the initial state.

5.6.2 Syntax of CTL

The objects in CTL are a set of propositional variables, say V , which are the

propositional variables of the state transition system under study. The operators are

borrowed from propositional logic, and ∧ , or ∨ , negation ¬ , and implication ⇒ .

There are two modalities regarding the paths, or so called path quantifiers, which are

very similar to the quantifiers in Boolean formulas, but quantifying paths instead of

formulas: (i) for all paths A ,and (ii) some path E . There is a list of operators,

temporal operators, referring to the path under investigation. Note that path

quantifiers and temporal operators are compound in CTL, which means there is never

an isolated path quantifier or an isolated temporal operator. Let , Vφ Ψ ∈ . Then:

• Xφ : refers to the “evaluate the value of φ ” at next state in the path, Next,

• Fφ : φ holds for some state on the path, Finally,

• Gφ : φ holds for all states on the path, Globally,

• (),U φ Ψ : φ holds on the path at least until Ψ holds. Until.

94

CTL formulas can be categorized as state formulas, and path formulas. φ is a

CTL state formula, then CTL formulas are defined inductively as following:

• Any propositional variable Vφ ∈ is a CTL formula.

• The constants True and False are CTL formulas.

• If φ and Ψ are state formulas then

o φ¬ ,

o φ ∨ Ψ , φ ∧ Ψ , φ ⇒ Ψ ,

 are also state formulas, and

o ()EX φ , ()AX φ ,

o ()EF φ , ()AF φ ,

o ()EG φ , ()AG φ ,

o (),EU φ Ψ , (),AU φ Ψ .

are path formulas of CTL.

In any CTL formula, the unary operators have the highest priority, ∧ , and ∨ are

bound next, the binary path modalities have the lowest priority.

5.6.3 Semantics

Let (), , ,M S I L= → be a Kripke structure model for CTL, with s S∈ , and ,φ Ψ

are CTL formulas. The standard notation has been used to represent truth in a

structure: 0, |M s φ= means that the formula φ holds at state 0s in model M.

Understanding the model M, it is simply written as: 0 |s φ= . Then the satisfaction

relation 0 |s φ= is inductively defined by:

1. 0 |s True= and 0 |s False≠ , s S∀ ∈ ,

2. 0 |s p= iff ()0p L s∈ ,

3. 0 |s φ= ¬ iff 0 |s φ≠ in other words ()0 |s φ¬ = ,

4. 0 |s φ= ∧ Ψ iff 0 0| |s sφ= ∧ = Ψ ,

5. 0 |s φ= ∨ Ψ iff 0 0| |s sφ= ∨ = Ψ ,

95

6. 0 |s φ= ⇒ Ψ iff 0 0| |s sφ≠ ∨ = Ψ ,

7. ()0 |s AX φ= iff for all states 1s such that 1s s→ , 1 |s φ=

8. ()0 |s EX φ= iff for some 1s such that 1s s→ , 1 |s φ=

9. ()0 |s AG φ= iff for all paths 1 2, , ...s s s we have |is φ= for all i,

10. ()0 |s EG φ= iff there exists a path 1 2, , ...s s s such that , |iM s φ= for some i,

11. ()0 |s AF φ= iff for all paths 1 2, , ...s s s , and for some i, |is φ= ,

12. ()0 |s EF φ= iff there exists a path 1 2, , ...s s s such that for some i, |is φ= ,

13. ()0 | ,s AU φ= Ψ iff for all paths 1 2, , ...s s s

()()0 | 0 |i ji i s j j i s φ∃ ≥ ∧ = Ψ ∧ ∀ ≤ < ⇒ = ,

14. ()0 | ,s EU φ= Ψ iff there is a path 1 2, , ...s s s

()()0 | 0 |i ii i s j j i s φ∃ ≥ ∧ = Ψ ∧ ∀ ≤ < ⇒ =

The following abbreviations which are used to translate F modalities into U

modalities, and G modalities into duals of F modalities, are also useful in CTL

formulas:

• () (),AF AU Trueφ φ≡ , means that φ holds in future along from every

path originating from 0s ,

• () (),EF EU Trueφ φ≡ , means that there exists a path emanating from 0s

to a state at which φ holds.

• () ()EG AFφ φ≡ ¬ ¬ , means that there exist some path from 0s such that

φ holds at every state on the path.

• () ()AG EFφ φ≡ ¬ ¬ , means that φ holds every state on every path

originating from 0s .

Moreover, each of the eight temporal operators can be expressed in terms of three

operators EX , EG , and EU :

96

• () ()AX EXφ φ≡ ¬ ¬

• () ()AG EFφ φ≡ ¬ ¬

• () ()AF EGφ φ≡ ¬ ¬

• () (),EF EU Trueφ φ≡

• () ()() (), ,AU EU EGφ φΨ ≡ ¬ ¬Ψ ¬ ∧ ¬Ψ ∧ ¬ ¬Ψ

The semantics of CTL completes with the following recursive definitions of

Globally, Finally, and Until temporal operators.

• () ()()AG AX AGφ φ φ≡ ∧ , () ()()EG EX EGφ φ φ≡ ∧

• () ()()AF AX AFφ φ φ≡ ∨ , () ()()EF EX EFφ φ φ≡ ∨

• () ()()(), ,AU AX AUφ φ φΨ ≡ Ψ ∨ ∧ Ψ
,

• () ()()(), ,EU EX EUφ φ φΨ ≡ Ψ ∨ ∧ Ψ .

On Figure 5.6 four modalities of CTL have been demonstrated.

• (a) : ()|s AG r true= = , because, ()AG r means the proposition r is true

in all paths (A), and in all states of path (G).

• (b): ()0 |s AF r= is true, ()AF r means, the proposition r is true in all

paths (A), and in some states of the path (F)

• (c): ()0 |s EF r= searches some paths (E), and some state on paths (F)

on which r is true. The formula evaluates true.

• (d): ()0 |s EG r= , to be true, there must be some path (E), on which r is

true on all states (G) on the path.

97

(a) ()0 |s AG r= (b) ()0 |s AF r=

(c) ()0 |s EF r= (d) ()0 |s EG r=

Figure 5.6 Four most widely used operators of CTL. Red nodes indicate

that the proposition r is true on the node, and
0

s is the initial state.

Example

The computation tree (Figure 5.7) and some CTL formulas are presented. The

CTL formulas are evaluated by the semantics rules.

98

p,q

q,r r

p,q r

q,r r

r

r

s0

s1 s2

s0 s2 s2

s2s1 s2

Figure 5.7 An infinite computation tree for a

given model M, 0s is the root of the tree.

• , 0 |M s p q= ∧ , True, since both p and q are propositional variables of state

0s ,

• , 0 |M s r= ¬ , True,

• , 0 |M s True= , True,

• (), 0 |M s EX q r= ∧ , True,

• (), 0 |M s AX q r= ¬ ∧ , True,

• (), 0 |M s EF p r= ¬ ∧ True,

• (), 0 |M s EG r= , False,

• (), 2 |M s EG r= ,True,

• (), 2 |M s AG r= True,

• (), 0 |M s AF r= ,True,

• ()(), 0 | ,M s EU p q r= ∧ , True,

• (), 0 | ,M s AU p r= , True.

 99

CHAPTER SIX

DESIGN OF WSCCS++

6.1 Introduction

One clear benefit to the biological modeling research community of using process

algebras are the software tools available for such systems (see e.g. PEPA and

Concurrency Workbench of New Century for CCS and SCCS). Such tools enable

models to be specified using an appropriate algebra, performing model checking and

then simulated. Additional functions such as graphical output of simulation results,

and theorem proving may also be supported.

The WSCCS++, the modeling tool we have developed, makes use of some early

phases of a compiler, as lexical analysis and syntax analysis, however omits some

core units as preprocessing, or type-checking. Also some further phases regarding

executable code generation are replaced with model checking, and a text based

simulation of the results.

This chapter firstly introduces available tools different process algebras. Then

following sections explains every module in architecture of WSCCS++ in level order

and in details.

6.2 Available Tools for Process Algebra

Process algebras have been mentioned and exemplified previously in this text.

Among many others, Calculus of Communicating Systems (CCS), Calculus of

Sequential Processes (CSP), Performance Evaluation Process Algebra (PEPA), and

extensions of CCS such as Synchronized Calculus of Communicating Systems

(SCCS), and Weighted Synchronized Calculus of Communicating Systems

(WSCCS), which is the language for which we intended to develop a tool, were

introduced as being cornerstones of Process Algebraic languages.

100

• The PEPA Workbench: The PEPA Workbench is available in two editions,

one for ML and the other for Java. The ML version of the PEPA Workbench

transforms PEPA descriptions into a form suitable for solution by another

solution tool (these include Maple, Matlab and Mathematica). The Java

version of the PEPA Workbench can solve models without the need for a

separate solution tool. PEPAroni is a discrete-event simulator for PEPA.

• The Edinburgh Concurrency Workbench (CWB): Both the tool running on

Unix and source code is public and presented in (Cleaveland, Parrow, &

Stefen, 1993). It offers a text-based user interface. The languages supported by

CWB are CCS, and SCCS. The main goal that CWB achieved is to

incorporate verification methods of equivalence checking, preorder checking,

and model checking based on µ -calculus. Processes are interpreted as labeled

transition graphs. CWB has been applied to verifying communication

protocols of Alternating Bit Protocol, the CSMA/CD protocol, and mutual

exclusion algorithms.

• Concurrency Workbench of the New Century (CWB-NC): Cleaveland &

Sims, (1996) presented CWB-NC which is actually a successor of CWB.

CWB-NC is also freely available. The latest version has been released in 2000

with the following additional features:

− Runs on Win32, RedHat Linux, and Solaris 2.x environments,

− Tcl/Tk based graphical user interface, and interactive simulation of

systems,

− Prioritized CCS, Timed CCS, CSP, and LOTOS (Bolognesi, & Brinksma,

1989) are also supported,

− Reachability analysis,

− Bisimulation and observational equivalence checking,

− CTL based model checking.

The connection phase of the UNI (Version 3.0) protocol used in ATM

networks was formalized in CCS and verified with CWB-NC. The largest

finite-state machine handled in the course of the analysis contained about

60,000 reachable states. The timing behavior of an active-structure control

101

system was analyzed. The functional behavior of different variations of a

railway signaling system was also analyzed. The language used to define the

system borrowed constructs from several different process algebras, while the

system's requirements were specified using µ -calculus and GCTL*

formulas. The functional behavior of the SCSI-2 Bus Protocol was analyzed

with CWB-NC as well.

• Process Algebra Compiler (PAC): PAC is the latest descendant of CWB-

NC. (Sims, 1999). PAC runs with CWB-NC in its core, and is a tool that eases

the task of changing the design language accepted by CWB-NC. That is, PAC

is nothing but a front-end generator for CWB-NC.

• The Timing and Probability Workbench (TPWB): Fredlund (1994)

presented the workbench, which was designed to deal with timed probabilistic

CCS, called TPCCS. The tool was essentially providing three features: (i)

simulation of TPCCS models, (ii) strong bisimilation equivalence checking to

determine whether or not two TPCCS specifications are equal, (ii) model

checking based on TPCTL (Timed Probabilistic CTL).

6.3 Architecture of WSCCS++

The WSCCS has been successfully applied to the several biological systems

especially social insect colonies (Sumpter, 2000; Tofts, 1991). However, this

approach has never been widely adopted, probably because it is not easily accessible

to those unfamiliar with the techniques of computer science. This is unfortunate,

since WSCCS provides natural ways to formalize much of the modeling work which

is currently conducted on social insects. Therefore, developing a modeling tool for

WSCCS increases the utilization of calculus even for the biological experts.

WSCCS++ is proposed to help the researchers in modeling distributed systems,

particularly biological systems; to checking the syntactical rules as well as the

semantic structure of the model. The tool also offers means to apply prioritization

and renaming operators. This part of the tool covers information related only with the

definition of the model. It gives no insight about its behavior. However, after

102

checking the model specification against the grammar of WSCCS, the user is able to

analyze how the model works.

The difficulty arose while applying and integrating the formal background

introduced in Chapter 5 is that, WSCCS is a probabilistic transition based language,

and none of those systems deal with probability. Thus, to each module except the

lexical and syntactical analysis, some solution for probabilistic analysis has been

added.

Figure 6.1 is the full architectural diagram of WSCCS++, and the rest of this

chapter explains each layer of WSCCS++ in detail.

103

 UI

 Model Checking pCTL Semantics

 Lexical & Syntactical

 Analysis of Property

pCTL

Syntax

Model (written in WSCCS

language)

The property to be

questioned

 Construct State Transition Graph

WSCCS Syntax
 Lexical &

Syntactical

 Analysis Extracting

Propositional

Variables

A set of abstract

syntax trees

A set of

propositional

variables, actions

WSCCS Semantics

State transition graph

Property

 UI Counterexample

or

Execution path

LKTS* Syntax

Figure 6.1 Detailed architectural diagram for WSCCS++.

6.4 Lexical Analyzer—Lexer— for WSCCS++

The first step in any compiler like program is to separate the input text into logical

pieces, i.e. strings, called tokens, and checking these strings against their definition

supplied by the designer. Thus, the input of the Lexer is a stream of characters, and

the output is a stream of tokens.

What is called a token depends on the language at hand, but in general each token

is a substring of source program that is to be treated a single unit. The form of the

token to be recognized by lexical analyzer is specified by regular expression. Using

104

these regular expressions, lexical analyzer examines the source text, and generates

the list of tokens as output.

6.4.1 Tokens in WSCCS++

There are two major groups of tokens. The first group is the specific strings,

language keywords. The name of the token for these strings is “keyword”. These

keywords were added to the language by the designer, in order to distinguish the

agent declaration of the source text.

Any model written in WSCCS Model Simulator looks like:

The Definition block introduces several strings to be used in WSCCS model

definition. The core part in source text is the Expression block, since this part holds

agents’ definitions. Note that the language is planned to be a case sensitive language,

meaning that “Define” and “define” are different tokens. The following is the list

of keywords appearing in the WSCCS Model Simulator,

Define, as, agent, action, variable, End, Expression.

The second token class contains the strings inside the Expression block, and the

operators. Depending on the block the token appears, one of the following token

types is assigned: operator, digits, variable, action, and agent. Notice that

variable, action, and agent tokens appear as keywords as well. Those keywords

and token names are intentionally chosen to be the same.

The strings in Define block are identified as variable, action, and agent.

However, these strings are not placed in the output sequence. Instead, they are stored

Define;

{list of agents} as agent;

{list of actions} as action;

{list of variables} as variable;

End;

Expression;

{agent_expressions};

…

End;

105

in a table to help extracting the strings in the Expression block. Each logical

element in block is fetched from table, and gets the related token name. If it does not

appear in table, it can be either an operator, or digit(s). The list of operators enabled

to make use of in the source text is listed in the grammar. It is worth to mention here

that, there is no token as weight. Because, the weight value might be given as an

arithmetical expression. In this case, the token that is to be identified as weight

contains more than one logical unit forcing the definition of the token. The solution

is to define some variables that will appear in the weight expressions.

To accomplish the token extraction task, the form of each token type must be

clearly specified. The following is the list of structures of tokens by type, presented

as regular expression.

• Token: keyword

Keyword = (Define + as + agent + action + variable + End +

Expression)

• Token: agent

agent = (_ + λ) letter (letter + digit)*

• Token: action

action = # + (! + λ + _ + ^)letter(letter + digit)*

• Token: variable

variable = (_ + λ) letter (letter + digit)*

• Token: digit

digit = (1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)*

• Token: operator

operator = (~+ - + (+) + * + | + / + . + , + \ + < + { + }

+ . + :)

6.4.2 Lexical Analysis Approach

Regular expressions are convenient for specifying lexical tokens, a formalism is

required that can be implemented as a computer program. For this purpose we can

use finite automata. A finite automaton has a finite set of states; edges lead from one

state to another, and each edge is labeled with a symbol. One state is the start state,

106

and certain of the states are distinguished as final states. If there is only one move

from one state to another with a certain symbol, the automaton is called a

Deterministic Finite Automaton, DFA; otherwise Nondeterministic Finite

Automaton, NFA (Sipser, 1996).

For each token type, a distinct DFA is designed; which are altogether serving as a

lexical analyzer. Te output of a typical lexical analyzer is a stream of tokens each of

which holding the type and value of token. Figure 6.4 demonstrates the token stream

of only one agent.

6.4.3 WSCCS Example

The following is a source code of a model written in WSCCS ++ Editor. The

example is taken from Section 5.6.1. Figure 6.2 contains some part of the output of

the Lexer.

(Model 6.1)

Figure 6.2 The token stream for the Active agent in Model 6.1

6.5 Syntax Analyzer—Parser for WSCCS

The syntax analyzer is usually called as parser. The parser receives the output of

the lexical analyzer as input, and has two functions: checking its input, whether the

token pattern is permitted by the grammar of language, WSCCS. It also imposes on

the tokens a tree structure that is used by the subsequent phases.

Define;

Active, Passive, Colony, as agent;

p,q, as variable;

End;

Expression;

Active = (p:#.Passive) ~ (q:#.Active);

Passive = 1:#.Passive;

Colony = (Active | Active)| (Passive | Passive);
End;

107

Before dealing with the parsing method we applied, it is necessary to clarify what

is expected as the output of the parser. It is a list of parse trees one for each agent

definition. These trees have the following properties:

• Leaf nodes are labeled with terminals, i.e., agent names, action names,

operators, etc. Inner nodes are marked with nonterminals, i.e., implicit or

explicit agent expressions.

• The root of the tree is labeled with the starting symbol of the grammar, i.e.

E.

• The terminals labeling the leaf nodes correspond to the input token stream,

in the same order as they occur in the input.

6.5.1 Parsing Method

From the tokens, to generate the resulting structure which will be used for context

handling, there are some well-known parsing techniques in the theory of formal

languages. One is bottom-up parsing, and the other one is top-down parsing. Both

methods involve recursive parsing of the tokens from either left to right or right to

left. They differ in generating the result whether in the first step, or last step. A parser

is implemented as a push-down automaton (Sipser, 1996).

Almost all programming languages, as well as most other formal languages used

for describing the syntax of complex file types, can be specified using formalisms

known as context free grammars, CFG (Sipser, 1996). Another issue related with

grammars is, the need for unambiguous CFGs. Ambiguity means, given a CFG, and

a string, creating two distinct derivation trees. Since the derivation tree corresponds

to the abstract syntax tree that is going to be the output of the parser, ambiguous

CFGs causes some sentences to be interpreted in different ways, i.e., uncertainty in

precedence rules of operators, which is an undesired side effect. The formal grammar

of WSCCS given in Appendix A is rearranged in such a way that no ambiguity

exists.

108

Top-Down Parsing: Top down parsing relies on a grammar’s determinism

property to work. Parser begins with creating the root of the tree, which is known to

be labeled with starting symbol. Then the lower nodes are constructed in pre-order,

which means the top of any subtree is constructed before its children. The process

continues recursively for all subtrees till the first terminal matches the leftmost child.

This matching does not happen accidentally: the parser chooses the alternatives of

the higher nodes precisely to obtain this match. In summary, the main task of top-

down parser is to pick up the correct alternative for nonterminals.

Bottom-Up Parsing: The bottom up parsing method constructs the nodes in post

order: the root of the tree constructed in the last step after all of its subtrees have

been constructed.

A bottom up parser always constructs the node that is top of the first complete

subtree it meets when it is scanning from left to right through the incoming token

stream, where a complete subtree is a tree all of whose children have already been

constructed. Tokens are considered as leaves, or from another point of view, subtrees

of height 1, and the nodes representing the tokens are created as they are met. The

new subtree must be a part of the complete parse tree, but an obvious problem is that

the parse tree is unknown.

In summary, the main task of a bottom up parser is to predict the root of all

subtrees whose children are already created repeatedly.

Figure 6.3 A bottom-up parser constructing its

first, second, and third nodes (Grune, Bal,

Jacobs, & Langendoen, 2001).

109

In Figure 6.3 the large dot (3) indicated the node that is created last, the black dots

represents the already constructed nodes. Note that there is no unknown branch of

any subtree, except the leaves t1, and t2.

6.5.2 Abstract Syntax Tree Creation within WSCCS++

A LR parser with look ahead of two has been designed for parsing the sentences,

where each sentence refers to an agent, written in WSCCS grammar as designed in

Appendix A.

The output of parser is a set of parse trees with general definition in 6.3. (Figure

6.4) However, as these parse trees are used in semantic analysis; some modifications

have been performed in order to remove the information used in parsing, but

redundant in semantic analysis. The resulting form of the tree is called as an abstract

syntax tree (AST).

Figure 6.4 Parse tree for the Active agent in Model 6.1. The bold

faced nodes correspond to the token stream, except parentheses.

The inner nodes are variables of the grammar.

Figure 6.4 demonstrates an example parse tree which is the result of parsing. It is

obvious that it retains all information including details that only the parser requires.

After all, the crucial property of the agent Active is that, it has two weighted choices

110

in its actions. Any other information can be considered as superfluous as semantic

analysis is concerned in the further steps. On the other hand, an AST captures the

syntactic structure of the expression in a much clear form. Figure 6.5 depicts the

AST of the same agent as Figure 6.4.

Figure 6.5 Abstract Syntax Tree of the

Active agent, with A representing

Active, and P representing Passive

agents.

In obtaining AST, there are two options: pruning the parse tree in a way that, from

root to leaves in each level, the children of a parent is examined. The child defining

the semantic behavior of the parent (an operator) is moved to the upper level. The

rest of the children are cut, except the ones with children. If any node has only one

child (agent, action, or weight-variable), it is moved to upper level.

The second way is not to generate parse tree, but instead creating the AST while

parsing. This method seems more attractive than the first one. However, it is

essential to output error messages which point the user where the error is and to

allow him/her to correct the mistake. Generating AST without parse tree disallows

certain error checking. From this point of view, both parse trees, and abstract syntax

trees are required.

6.6 Extracting Propositional Variables

The set of propositional variables is required in both creating state transition

system, which appears as next step, and questioning the model, which is the main

objective.

111

One needs to decide what the propositions should be while the available

information is limited with the model itself, and the output of parser, which is a set of

abstract syntax trees, one for each agent. Then, typically each agent can be treated as

a propositional variable, meaning that every agent satisfies True, and no agent

satisfies False.

Concerning Model 6.1, the set of propositions is { },V A P= (Active and Passive)

6.7 Defining the Property

There are two inputs of the WSCCS++, the model written in WSCCS language,

and the property to be checked against the model. The model checking on

probabilistic systems is performed via probabilistic temporal logics, and almost all

temporal logics have probabilistic extensions. Hence, the specification language of

the input query is a kind of branching time temporal logic with probability, time, and

the notion of “action” extensions to handle probabilistic systems, called pCTL.

The user is allowed to enter the property only after parsing of the model, and

propositional variable extraction phases are completed, since the property includes

terms which are outputs of priori phases. To introduce the property to the system, we

have provided an environment in which user do not have to type, but to select the

components from existing lists. The benefits of this structure are that, the user does

not have to be aware of the syntax of underlying input language, and creation of error

free sentences. The operators provided by the pCTL language which is a static set,

and the operands supplied by the WSCCS model which is a dynamically generated

set are offered to user in a proper form, which is essentially the syntax of the pCTL.

Thereafter, by choosing operators and operands from the proposed lists, the

syntactically correct input property is constituted.

Although the user does not have to deal with the syntax of the property definition

language directly while defining the property, still has to be familiar with the

operators, and their meanings. Therefore the language of pCTL is presented first,

although the semantics is left to the Model Checking section.

112

6.7.1 Definition of pCTL

The probabilistic computational tree logic, PCTL, has been introduced in

(Hansson & Jonsson, 1989). The PCTL deals with discrete time as well. Time and

probability components allow to formulate queries such as “does the model satisfies

the property p within 3 steps with a probability of at least pr”.

The main difference between PCTL and CTL is the quantification over paths,

CTL allows universal ()A and existential ()E quantification over paths, i.e. one can

state that a property should hold for all paths, or some computation paths

respectively. It is not possible to state that a property should hold for a certain

portion of computations, e.g. for at least 50% of the computations. In PCTL, on the

other hand, arbitrary probabilities can be assigned to path formulas, thus obtaining a

more general quantification over paths.

In this work, we are not only concerning whether or not a given property is hold

in some states or paths, but also the global behavior of the system. That means, one

might be able to ask “does the model satisfy the property p within 3 time steps with a

probability pr while the system perform the action a finally (or a serious of actions)”.

Interestingly performing the action a in last step, or performing a serious of actions

correspond to the interpreting F-Finally- and G-Globally- operators on paths

respectively. Consequently, we have added the notions of “action” and “series of

actions” in state formulas concerning probabilities of PCTL. The latest temporal

logic is called pCTL.

The following is the definition of pCTL:

Assume V is a set of propositional variables ranged over f , and a is either an

action, a Act∈ , or a sequence of actions of form 0 1. ... na a a each ia Act∈ . The set of

pCTL formulas is divided into path formulas and state formulas as in CTL, which are

inductively defined as follows:

113

• Every f V∈ is a state formula,

• If φ and Ψ are state formulas then, so are

o φ¬ ,

o φ ∧ Ψ ,

o φ ∨ Ψ ,

are state formulas as well, called “basic state formulas”.

• If φ and Ψ are state formulas and t is a nonnegative integer or ∞ , then

o (),tAU φ≤ Ψ , both Ψ will be true within t time steps and, φ will

be true from now on, until Ψ becomes true.

o (),tEU φ≤ Ψ , either φ will remain true for at least t time steps, or

that both Ψ become true within t time units and that φ will be true

from now on until Ψ becomes true.

are also path formulas, called “basic path formulas”.

• If φ is a path formula and p is a real number with 0 1p≤ ≤ , then

o []
p

φ
≥

, for a given state s, φ holds for a path from s with a

probability at least p;

o []
p

φ
>

 for a given state s, φ holds for a path from s with a

probability greater than p;

o [].
p

G a φ
≥

, for a given state s, φ holds for a path from s, with

sequence of action labelings a , and with a probability at least p;

o [].
p

G a φ
>

 for a given state s, φ holds for a path from s with

sequence of action labelings a , and with a probability greater

than p;

o [].
p

F a φ
≥

, for a given state s, φ holds for a path from s, with the

last action a , and with a probability at least p;

o [].
p

F a φ
>

 for a given state s, φ holds for a path from s with the

last action a , and with a probability greater than p;

114

are state formulas, called “probabilistic state formulas”.

For the formulas exemplified as follows we prefer to use its equal notation:

() (), ,t t

p
p

EU EUφ φ≤ ≤
≥≥

 Ψ ≡ Ψ 

6.7.2 Expressive Power of pCTL

There are temporal operators which appear in CTL, but have not mentioned in

pCTL. That is, X –Next– , F–Finally–, and G–Globally–. The reason is that, they are

operators concerning paths, and in pCTL path is included in the satisfaction relation

itself with “time” component. Therefore, all traditional CTL operators can be written

in term of U-Until- operator.

() (),t t

p pG EU falseφ φ≤ ≤
≥ ≥≡

means that the formula φ holds during t time units with a probability of at least p.

() (),t t

p pF AU trueφ φ≤ ≤
≥ ≥≡

means that the formula φ holds within t time units with a probability of at least p.

One may concern continuously operating system, rather than defining an upper

limit on time. In this case, the following expressions are used to express the

properties. Note that, addition of the universal and existential quantifiers to the left

hand side, handled with the probabilities on the right hand side.

() ()1 ,AG EU falseφ φ≤∞
≥≡ : ()AG φ means that φ is always true (in all states that

can reached with probability of 1),

() ()1 ,AF AU trueφ φ≤∞
≥≡ : ()AF φ means that a state where φ is true will

eventually be reached with probability 1,

115

() ()0 ,EG EU falseφ φ≤∞
>≡ : ()EG φ means that there is a nonzero probability for

φ to be true always in time,

() ()0 ,EF AU trueφ φ≤∞
>≡ : ()EF φ means that there is a state where φ holds which

can be reached with nonzero probability.

Actually, pCTL is superset of CTL, therefore all CTL operators can be written in

terms of pCTL operators, with an unlimited time, and probability of 1.

6.7.3 Entering the Property

There exists a three layered construction schema in correspondence with the

syntax of pCTL. That is, the probabilistic state formulas, which have the most

complex form, may contain basic path formulas. And basic path formulas are

composed of basic state formulas. Consequently, basic state formulas are generated

from propositional variables first, Figure 6.6, then if required basic path formulas,

Figure 6.7, and probabilistic formulas, Figure 6.8, are made up.

Figure 6.6 Making up basic pCTL state formulas.

By this way, basic state formulas can be formed in any complexity with the

precedence rules, such that, negation has the highest priority, then conjunction, and

disjunction is processed. That means, whenever conjunction operator is met in the

sequence, its immediate left and right neighbors are associated as its operands. For

example, the below formula

116

p q r s∨ ∧ ¬ ∨

is interpreted as:

()p q r s∨ ∧ ¬ ∨

Similarly:

()

()

()

p q r p q r

p q r p q r

p q r p q r

∧ ¬ ∨ = ∧ ¬ ∨

∧ ∧ ¬ = ∧ ∧ ¬

∨ ∧ = ∨ ∧

However, if one wants to define a formula as

() ()p q r s∨ ∧ ¬ ∨

it is also possible with a level of abstraction. Namely, both left and right hand side

subformulas of “and” are defined, and saved, and automatically added to state

formula list. Then, they can be combined with conjunction operator.

Figure 6.7 Generating the basic pCTL path formulas.

In Figure 6.7 the state formulas can be selected from a list which consists of both

propositional variables, and the basic state formulas generated by Figure 6.6.

With this three layered schema, one can define as complex sentences as desired.

Completing the definition of the property, it is necessary to generate abstract syntax

tree to be able to apply semantic rules in further steps, which is performed by parser.

117

Figure 6.8 Creating probabilistic state formulas of pCTL with or

without action constraints on paths.

6.8 Lexical and Syntax Analysis of the Property

The input of any parser is a sequence of tokens produced by lexical analyzer;

therefore before lexing and parsing the sentence, the token types must be defined

first, and the token stream consisting of token-value pairs must be generated by the

lexer.

6.8.1 Tokens for pCTL

The token types of pCTL are decided according to the syntactical rules. There are

two groups of token types; one concerns the operators, whereas the other is for

operands. The following list contains the token types, and the value sets:

• Token = basic_state_op

basic_state_op = (not + and + or)

• Token = path_op

path_op = (AU + EU)

• Token = pr_identifier

pr_identifier = (≥ + >)

118

• Token = action_identifier

action_identifier = (G + F)

• Token = basic_state_var

basic_state_var = {set of propositional variables}

Note that, this propositional variable set is an output of WSCCS parser.

• Token = min_time

min_time: nonnegative integer value

• Token = action_str

action_str = action(.action)*

where action is ranged over the set of actions is an output of WSCCS

parser.

• Token = pr_value

pr_value: real number in []0,1 interval

Also, three abstract token types are provided in order to distinguish path, state and

probabilistic state formulas constructed, path_formula_token(PFT),

state_formula_token (SFT), probabilistic_state_formula_token (PSFT).

The values of these tokens are a stream of token-value pairs of path formulas, state

formulas, or probabilistic path formulas respectively.

6.8.2 Lexical Analyzer –Lexer– for pCTL

The task of a lexer was defined as separating the input text into logical parts, and

assigning a token type for each of those parts. The environment used for defining the

pCTL sentences is not a typed one, instead offers the logical units which are already

tokenized. Therefore, there is no separate unit as lexer.

6.8.3 Syntax Analyzer —Parser— for pCTL

We have followed a different parsing approach than that of WSCCS parsing. The

reason is that, the input of pCTL parser is one statement at a time, where WSCCS

may contain unlimited number of statements. Also, the three layered property

definition schema performs almost all tasks that parser supposed to, by providing

abstraction in each layer.

119

AST Creation for Basic State Formulas: Bottom up parsing from left to right with

three units of look ahead information has been employed.

a. The idea behind subtree creation for “not” is, whenever “not” is met, read

next token, make it a child of “not”,

b. In case of reading either propositional variable or an abstract token pointing

“SFT”, a corresponding node is created or root of the “SFT” is taken into

consideration. The subsequent token of a propositional variable can be

either “and” or “or”.

c. If read token is “and” its node is immediately created. There must be a free

node which is read just before “and”, that node is connected as a child of

“and”. Then, the next token in the stream is read. It must be either a

propositional variable or a “SFT”. This token is also connected to the “and”

as the second child.

d. If the read token is “or”, in order to preserve precedence order, three more

tokens are read to check whether an “and” operator exists (Third look

ahead value is used in case the first read one is “not” operator). If “and”

exists, its corresponding subtree is created first by using rule (c), then the

subtree is connected as a child of previously constructed “or” node.

Figure 6.9 shows creation order of nodes for the formula below. The numbers

under the symbols denote the reading order of corresponding token.

1 2 3 4 5 6 7 8

p q r s∨ ¬ ∧ ∨

120

p

q

r

s

1

2

3

4

5

6

7

8

SFT

Figure 6.9 AST of given formula, the

numbers next to the nodes indicate

the creation order.

AST Creation for Basic Path Formulas: There are two different operators

involved in path formulas EU, and AU. Both are treated as ternary operators with

one operand specifying time, and the two operands specifying state formula.

Therefore, AST creation for basic path formulas is relatively simple as compared to

the state formulas. The important point here is the ordering of state formulas. The

syntax of pCTL imposes us to keep track of whether one of the state formulas holds

before the other. Therefore, any path formula of the form (),tAU φ≤ Ψ or

(),tEU φ≤ Ψ result in ASTs as in Figure 6.10, with SFT being a root of the state

formula subtree.

Path

op

SFT min

time

SFT

1

2 3 4

PFT

Figure 6.10 AST for path formulas,

the numbers next to nodes indicate

the creation order.

121

AST Creation for Probabilistic State Formulas: Probabilistic state formulas

contain a basic path formula, a probability identifier denoting “at least” or “greater

than” cases, a probability value, and if desired an action or a sequence of actions.

So, there are two possible outcomes for probabilistic state formulas, the AST with

action(s), and the tree without actions, Figure 6.11(a) and Figure 6.11(b)

respectively.

pr

ident.

BPF
pr

value

act.

ident.

action

str.

 (a) (b)

Figure 6.11 AST s for probabilistic state formulas with action or

action sequence (a), and without actions (b).

6.8.4 An Example Formula and its AST

Let the set of propositional variables be { },A P , the set of actions be { },x y , and

let the pCTL formula be a probabilistic path formula given as following:

()20
0.5, and F x . ,A A P EUφ φ≤

≥= ¬ Ψ = ∨ Ψ

The formula means that, with a probability at least 0.5, and the action to be

performed in last step being x :

• either φ will be true during at least 20 time steps, or

• Ψ will become true within 20 time steps, and φ will be true before Ψ .

The corresponding AST is drawn as in Figure 6.12.

122

Figure 6.12 Full detailed AST of the formula.

6.9 Constructing State Transition Graph

In constructing state transition graph of models, there are three options: Kripke

structures, labeled transition system, and a combination of two, labeled Kripke

transition systems. The system of labeled Kripke transitions helps us in creation of

state transition system in current work. Because, in WSCCS formalism, there are

states whose contents must be identified in state graph clearly. The transition relation

between states is described by both the actions, and the probabilities of action

occurrences. We proposed the Labeled Kripke Transition System* (LKTS*), that

relates the probabilities and actions with the transitions between states.

In the following subsections, the LKTS* is introduced first. After explaining

construction of LKTS* graphs algebraically along with an example, the graph

generator of WSCCS++ is presented.

6.9.1 Labeled Kripke Transition Systems* for WSCCS++

To obtain the LKTS of any model M, states of M, the set of actions, the transition

relation, and labeling of M should be clearly identified.

The starting state, say 0s , is identified by the system definition, that means, the

propositional variables of corresponding running agents appearing initially in the

123

system would be true at 0s . Then the definition of each agent gives the transition

relation; which is a combination of a probability, and an action to a successor state.

So, we propose a different transition relation than that of previously defined LKTS as

following:

The transition relation of a LKTS (), , ,M S Act L= → was defined in (Chapter

5.4.3) as:

• S Act S→⊆ × × , where S is set of states, and Act is a set of actions.

Instead of this transition relation, we suggested to use the following one in order

to be able to show all possible transitions on a single graph, and call this transition

system as LKTS*, (), , , ,M S Act W L= → , where W is a set of weight expressions of

the form k
nw . Then the transition relation is formed as:

• ():S W Act S→⊆ × × , S is a set of states, Act is a set of actions, and W is

the set of weight expressions, which is treated as probability as defined in

(Chapter 4.2.2). In more common notation, we prefer to write :W ActS S→

Basically, the original rule is the Least Relation of WSCCS, if weight is used

instead of action, it relates to Least Multi-Relation of WSCCS. What we have done is

to combine the two relations into one.

6.9.2 Generating LKTS* Graphs

The necessary inputs to obtain the LKTS* graphs are, the set of propositional

variables, the set of each agent definitions, the definition of LKTS* transition rule,

and the sets of semantic, equational rules of WSCCS.

124

2.6.5.9 Composing Initial State

The global system agent definition holds the propositional variables of initial

state.

Example

As an example, consider the Model 6.1 which is rewritten below. The agents were

defined as2:

Active = (p:#.Passive) ~ (q:#.Active);

Passive = 1:#.Passive;

Colony = (Active | Active)| (Passive | Passive);

The set of propositional variables for this model was extracted as:

{ },V A P=

with A representing Active and P representing Passive agents.

The last requirement is the global system agent. Assume that “Colony” is

specified as global agent. The definition of “Colony” contains the concurrently

running agents { , , , }Active Active Passive Passive .Thus, the labeling of initial state 0s

is formed as following.

() { }0 , , ,L s A A P P=

2.6.5.10 Determining the State Space

Once the initial state is composed of from propositional variables, which is

essentially the list of running agents when the system is started to execute, the rest of

the states –agents– can be obtained by applying the equational rules of WSCCS on

running agents. In other words, the list of agents that might appear at any time in the

system is determined by calculating all possible transitions.

2 Some novel operators of WSCCS are replaced with some other operators in WSCCS++ editor, so

that the user can easily type, and to remove overlapping semantics.

+ operator in weighted choice is replaced with ~

× operator in parallel composition is replaced with |

125

The set of Equational Rules helps algebraically to figure out the set of applicable

actions and/or the set of agents as outcomes. The example demonstrates how the

rules are applied by hand, and the evolution of states.

The following steps are used to compose the neighborhood of a single state, which

is involved in local model checking. However, if global model checking is to be

performed, then the steps repeated until no new state is found, and results in global

state space of the system.

Step 1: Replace the agents with the definitions:

()

() () ()

| | | : #. : #.

: #. : #. 1: #. 1: #.

Active Active Passive Passive p Active q Passive

p Active q Passive Passive Passive

= + ×

+ × ×

Step 2: Applying Exp4 Rule given in Appendix A, which explains parallel

composition of agents with weighted action choice rules, all possible behaviors of the

system in one time step are obtained.

()

()

()

()

* *1*1: #. #. #. #.

 * *1*1: #. #. #. #.

 * *1*1: #. #. #. #.

 * *1*1: #. #. #. #.

p p Active Active Passive Passive

p q Active Passive Passive Passive

q p Passive Active Passive Passive

q q Passive Passive Passive Passive

= × × × +

× × × +

× × × +

× × ×

Step 3: There exist 4 choices, it is necessary to calculate the probability of choosing

each branch by using multiplication / addition rules of weight expressions.

()

() ()

() ()

()

2

2

: #. #. #. #.

 * : #. #. #. #.

 * : #. #. #. #.

 : #. #. #. #.

p Active Active Passive Passive

p q Active Passive Passive Passive

q p Passive Active Passive Passive

q Passive Passive Passive Passive

= × × × +

× × × +

× × × +

× × ×

126

Step 4: Next step is to evaluate the action sequence to be performed by each branch,

which is defined in Exp1:

()

() ()

() ()

()

2

2

: ####.

 * : ####.

 * : ####.

 : ####.

p Active Active Passive Passive

p q Active Passive Passive Passive

q p Passive Active Passive Passive

q Passive Passive Passive Passive

= × × × +

× × × +

× × × +

× × ×

Step 5: By definition of # action, performing # actions concurrently by a number of

agents yields in # action again.

()

() ()

() ()

()

2

2

: #.

 * : #.

 * : #.

 : #.

p Active Active Passive Passive

p q Active Passive Passive Passive

q p Passive Active Passive Passive

q Passive Passive Passive Passive

= × × × +

× × × +

× × × +

× × ×

Step 6: * *p q q p= by the rules of multiplying weights, and rule Exp3 is applied on

the agents following the probabilities in branches, which says the parallel

composition operator is commutative.

()

() ()

() ()

()

2

2

: #.

 * : #.

 * : #.

 : #.

p Active Active Passive Passive

p q Active Passive Passive Passive

p q Active Passive Passive Passive

q Passive Passive Passive Passive

= × × × +

× × × +

× × × +

× × ×

Step 7: There are two weighted choices having same action to be performed, and

same set of resulting agents. Applying the weight addition rule we obtain the

complete set of possible transitions for the initial configuration of system.

()

() ()

()

2

2

: #.

 2 * : #.

 : #.

p Active Active Passive Passive

p q Active Passive Passive Passive

q Passive Passive Passive Passive

= × × × +

× × × +

× × ×

127

Step 8: In the last step, the new states, if any, are constructed by extracting the list of

agents from the list of transitions that the current system may perform. The

operational semantic rules of WSCCS serve for extracting agents from transitions.

Using W1 rule, which deals with weighted choice, followed by A1 rule that is used

to evaluate the result of action performing, we come up with the subsequent agents:

Let the whole transition be T :

()

() ()

()

2

2

: #.

 2 * : #.

 : #.

T p Active Active Passive Passive

p q Active Passive Passive Passive

q Passive Passive Passive Passive

= × × × +

× × × +

× × ×

Applying W1 and A1 yields:

() ()
() ()

() ()

22

2

22

/ :#

2 / :#

/ :#

p p q

pq p q

q p q

T Active Active Passive Passive

T Active Passive Passive Passive

T Passive Passive Passive Passive

+

+

+

→ × × ×

→ × × ×

→ × × ×

The result is nothing but the transition rules of LKTS* graph structure with T

representing the initial configuration; except, instead of the propositional variables,

the agents appearing on transitions. Now, one can easily substitute the agents with

their corresponding propositional variables, where T is substituted with initial state,

0s , as below:

() ()
() ()

() ()

22

2

22

/ :#
0

2 / :#
0

/ :#
0

p p q

pq p q

q p q

s A A P P

s A P P P

s P P P P

+

+

+

→ × × ×

→ × × ×

→ × × ×

We have obtained 2 new states. The labeling of states, and the transitions:

() { }

() { }
1

2

, , ,

, , ,

L s A P P P

L s P P P P

=

=

128

()

()

()

22

2

22

:#
0 0

2* * :#
0 1

:#
0 2

p p q

p q p q

q p q

s s

s s

s s

+

+

+

  →

   →

  →

Repeating the process until all possible states are determined, the following

complete set of states and transitions are reached:

{ }0 1 2, ,S s s s=

()

()

()

22

2

22

:#
0 0

2* * :#
0 1

:#
0 2

p p q

p q p q

q p q

s s

s s

s s

+

+

+

  →

   →

  →

()

()

:#
1 1

:#

1 2

1:#
2 2

p p q

q p q

s s

s s

s s

+

+

→

→

→

The LKTS* transition graph can be drawn as Figure 6.13.

s0

s2s1

() :#22
qpp +

() :#2 2
qppq + () :#22

qpq +

() :#qpp + :#1

() :#qpq +

Figure 6.13 The LKTS* transition graph belonging

to the Model 6.1

6.9.3 Graph Generator of WSCCS++

The inputs of the graph generator are a set of propositional variables, a set of

abstract syntax trees –one for each agent definition such that one is identified as

129

global system agent. The required rule sets are operations on weights, equational and

operational semantics of WSCCS, and the definition of LKTS*. The output is a

graph structure which is stored as a matrix with states in its rows and columns, and

the pair :w act as values whenever a transition exists between a pair of states.

According to the design of WSCCS++, each agent has equal importance by

definition, which means, the global system agent has no different notion in input text.

However, it is specified by the user while submitting the property. This global

system agent corresponds to initial state of transition graph.

The labeling of initial state as well as other states is performed as following:

Labeling the states:

Check the abstract syntax tree of agent

If the root is parallel composition operator

 Find all its children,

Associate them with propositional variables

Add propositional variable into current state’s labels.

Otherwise, add the propositional variable of agent under question

The challenging tasks in generating state transition graphs are how to apply the

equational rules then semantic rules on given agent definitions, and in which order to

apply. The ordering of applying the rules mainly decided by each agent’s AST. That

is, the operator on top of AST points the equational rule to be carried out.

Fundamentally, the example presented in 6.9.2.2 gives the main idea on

implementing the rules. Therefore, we’ll use the same steps and figure out the

realization schema for the rules used in example.

The basic idea during all steps is to make up the computation branches in of the

normal forms, which are, action performing as in .a P , or weighted action performing

as : .w a P .

130

Step 1: Regardless of the autonomous behavior of each agent, the global agent (in

case of local model checking, the agent specified by the user) is examined first. It

comprises of a list of agents acting in parallel with parallel composition operator on

top of its AST. So, for each agent, a copy of its AST is created, corresponding to the

task of substituting the agent names with their definitions. The result is a number of

agents in the environment, acting concurrently.

Steps 2 - 3: The following algorithm executes Exp4 Rule, which assumes all agents

are to perform a weighted choice, hence have (+) on root of corresponding ASTs.

Check the root node of each AST in the environment.

For all ASTi with root being (+)

find the number of its children, say num_ASTi

 Endif

 For any AST having (+) on the root, say ASTj

Find kj, as _ : and j i

i

k num AST i N i j= ∈ ≠∏ , where N is

the total number of (+) rooted ASTs in the environment

 Create kj number of copies of each child of ASTi

 EndFor

The Exp2 rule can be attached to this procedure with the following subroutine:

For any AST having (.) on its root, say ASTj

Find kj, as _ :j i

i

k num AST i N= ∈∏ , where N is the number of

the total number of (+) rooted ASTs in the environment

Create kj number of copies of each child of ASTj

EndFor

The total number of copies of children is calculated as:

n : total number of agents

im : number of children for agent i

_ where i is ranging over n
n

i

i

copy children m
 

=  
 
∏

131

Furthermore, for each ASTj with mj children, there exist mi number of sets each

of which has kj number of same subtrees, resulting in
i

i

m
 
 
 
∏ number of new

parallel acting agents.

.

.

.

Agent1

childset11

childsetm1

.

.

.

Agent2

childset12

childsetm2

…...
.

.

.

Agentn

childset1n

childsetmn

Figure 6.14 Current situation of working environment, and carrying out

Cartesian product.

Making up new parallel acting agents is nothing but computing Cartesian products

of all agents’ subsets such that each product is generating a new parallel acting agent

(Figure 6.14). In order to clarify the recently constructed agents, the temporary AST

of one computation branch is shown in Figure 6.16, where in Figure 6.15 the ASTs

for Active and Passive agents has been redrawn in (a) and (b) respectively.

 (a) (b)

Figure 6.15 (a) AST of Active agent. (b) AST of Passive agents.

132

Figure 6.16 One computation branch of working

example.

To complete the evaluation of Exp 4 and/or Exp2, all recently generated

computation branches are connected with a weighted choice operator (+), indicating

that, initializing with n agents, each of which has mi choices in its actions, there

exists
1

n

i

i

m
=

∏ distinct computation paths, and each computation path consists of n

components. However, (+) operator expects all of its children to be weight indicators

(:) on top. Therefore, the computation branches as in Figure 6.16 should be

reformed.

All weights of any branch need to be multiplied which later on gives the

probability of choosing that path, before making them a whole.

For all recently generated (|) ASTs, define a probability pr,

 For all subtrees

 Take weight on left child, multiply with pr

 Connect right subtree to (|)

 Destroy the subtree

 EndFor

 Create a node with weight indicator (:) on root

 Create a node for with pr, connect to (:) as left child

 Connect (|) as right child

EndFor

Creating a (+) rooted AST, connecting all (:) AST as children finalizes steps 2 & 3.

133

Steps 4-5-6: Evaluating the global behavior of each computation branch:

For all (:) subtrees of (+) rooted AST obtained earlier,

 Move to right child, with (|) on top.

Create a node that will contain action sequence

For all subtrees of (|)

 Take action from left child

 Add to action sequence

 Connect right child to (|)

 Destroy subtree

End for

Evaluate the result of action sequence - corresponds to Step 5

 Create a new node for action performing (.) on top

 Connect action sequence as left child

 Connect (|) subtree as left child

 Connect (.) subtree as right child of (:)

Steps 4-5-6 yield in AST of the form in Figure 6.17. Only one of the computation

branches shown in detail.

+

::

p
2

.

#

:: ::

|

A A P P

Figure 6.17 Current AST of the global

system.

134

Steps 7-8: Discovering new states of LKTS*, and computing their transitions

relations is nothing but traversing the AST.

For all subtrees of (+)

 Take right child as weight

 Move to left child

 Take its left child as action sequence

Move to right child which is (|)

Call state labeling routine.

If a new state is detected, create a transition from current

 state, and assign the weight: action pair as transition label.

End For

The generation of complete LKTS* graph ends with repeatedly applying the steps

until no new state is detected.

6.10 Model Checking in WSCCS++

Model checking in its general definition considers whether or not a model satisfies

a given property. However, there are three typical questions usually considered in

model checking:

• Safety properties: can be checked on finite traces, and concern questions

such as whether the system in invariant / deadlock free. That is, if a model

is guaranteed to be safe, then “something bad never happens”.

• Liveness properties: can be checked on infinite traces, the questions of

whether the system is fair, or responds some actions are considered as

liveness properties. In general, if a model satisfies liveness property, then

“something good will eventually happen”.

• Fairness properties: can be checked on infinite traces, and require that

certain states be reached or certain conditions happen repeatedly. A

fairness condition consisting of a set of states imposes that only the

transitions that include that set of states be checked against a property.

Basically model checking is nothing but an algorithm such that against a given

property, traversing the tree, i.e. temporal logic based model checking, or moving on

135

transition graph and constructing a path, i.e. automata based model checking.

Temporal logic based model checking has been employed in WSCCS++, since

automata based techniques suffer from state space explosion.

In traditional model checking approaches the queries that might be submitted to

the model are exact queries, such as the one stated in liveness property, “something

bad never happens”. Although the meaning of “bad” changes by the system, the

treatment is similar. The answer is typically “yes”, or “no”. Therefore, the temporal

logics mentioned in Chapter 5.6 to accomplish the processing of the query on a tree

do not take into account the probabilities.

In a general probabilistic system the questions are formed in following manner: (i)

the property to be checked, and (ii) the probability of holding the property. In other

words:

• What is the probability of φ is satisfied by M? The answer will be a certain

real value in [0,1] ,

• Does M satisfies φ with a probability p ? The answer will be “yes” or “no”

with a certain real value or interval in [0,1] .

6.10.1 Paths, Calculating Probabilities on Paths

pCTL formulas are interpreted over LKTS* structures in current work. A

specified initial state is associated with the structure. In order to interpret the

formulas of pCTL, it is necessary to specify the path, and probability measure of a

path.

Given a LKTS* structure (), , , ,M S Act W L= → , a path π from a state 0s in a

structure is defined as an infinite sequence of states

 0 1: : :1:
0 1n nw a w a w aw a

ns s s−→ → → →

136

with 0s being the first state of the path, and
ia ranging over Act . The nth state

ns

of π is denoted []nπ , and a prefix of π of length n is denoted nπ� , i.e.,

0 1: :1:
0 1 ... nw a w aw a

nn s s sπ −= → → →�

For each LKTS* structure, and for each state 0s , we define the probability

measure
mpr on every path initialized with 0s .

 ()0 1

1
: :1:

0 1
0

... n

n
w a w aw a

m n i

i

pr n s s s wπ −

−

=

= → → → = ∏�

where multiplication holds the rules of WSCCS weight expression multiplication

(because they are treated as probabilities as previously defined).

The serious of actions for nπ� , ()acs nπ� , is nothing but the sequential

composition of the actions as in WSCCS.

() 0 1 1. ... nacs n a a aπ −=�

2.6.5.11 The Satisfaction Relation, Semantics of pCTL

The truth value of a pCTL formula φ for a LKTS* structure M is given as

, |M s φ=

which intuitively means that , the state formula φ is true at state s . However, in

order to define the satisfaction relation for states, it is helpful to use another

satisfaction relation which is actually concerns paths:

, |M π φ≡

137

which means that, the path π satisfies the path formula φ in structure M. The

relations , |M s φ= and , |M π φ≡ are inductively defined as follows:

1. | , |iM M sφ φ= ≡ = with i
s is the initial state of structure M.

2. , |M s f= iff ()f L s∈ ,

3. , |M s φ= ¬ iff , |M s φ≠ in other words (), |M s φ¬ = ,

4. , |M s φ= ∧ Ψ iff , | , |M s M sφ= ∧ = Ψ ,

5. , |M s φ= ∨ Ψ iff , | , |M s M sφ= ∨ = Ψ ,

6. , |M s φ= ⇒ Ψ iff , | , |M s M sφ= ¬ ∨ = Ψ ,

7. (), | ,tM AUπ φ≤≡ Ψ iff there exists an i t≤ such that [], |M iπ = Ψ and

[](): 0 : , |j j i M iπ φ∀ ≤ < = ,

8. (), | ,tM EUπ φ≤≡ Ψ iff either (), | ,tM AUπ φ≤≡ Ψ or,

[](): 0 : , |j j t M jπ φ∀ ≤ ≤ =

9. [], |
p

M s φ
≥

= iff the mpr measure of the set of paths π starting in s for

which , |M π φ≡ is at least p.

10. [], |
p

M s φ
>

= iff the mpr measure of the set of paths π starting in s for

which , |M π φ≡ is greater than p.

11. [], | .
p

M s G a φ
≥

= iff the mpr measure is at least p for the set of paths π

starting in s for which , |M π φ≡ , and ()acs π = a .

12. [], | .
p

M s G a φ
>

= iff the mpr measure is greater than p for the set of

paths π starting in s for which , |M π φ≡ , and ()acs π = a .

13. [], | .
p

M s F a φ
≥

= iff the mpr measure is at least p for the set of paths π

starting in s for which , |M π φ≡ , and ()[]lastacs sπ = a , where

()[]lastacs sπ indexes the last action in the path formula π .

14. [], | .
p

M s F a φ
>

= iff the mpr measure is greater than p for the set of

paths π starting in s for which , |M π φ≡ , and ()[]lastacs sπ = a .

138

6.10.2 WSCCS Example

Working on Model 6.1, we have obtained LKTS* graph, and its unfolded

computation tree. The following examples will be processed on the same example.

Now, we attempt to formulate some queries, however, since the model is so

primitive in the sense that there is action other than # , and once an agent turns out to

Passive there is no chance to become Active again, the types of queries is very

limited.

• Is it possible to have a state having 4 Active agents?

First formulate the propositional formula φ to define 4 active agents in same

state such that:

A A A Aφ = ∧ ∧ ∧

Deciding the path quantifier to be used is given explicitly in verbal form, “is

there any state on any path”, corresponding to existential quantifier with

“Finally” operator. Thus:

() (),EF AU trueφ φ≤∞≡

And the last requirement is to decide the probability which is interpreted as

“greater than zero”.

()0 ,AU true φ≤∞
>

Then the satisfaction query is:

()0 0,M s AU A A A A
≤∞

>= ∧ ∧ ∧

This relation corresponds to the semantic rule 10. In order to find the result, we

suggest an algorithm that first checks the state space, which is finite.

() { }

() { }

() { }
1

2

0 , , ,

, , ,

, , ,

L s A A P P

L s A P P P

L s P P P P

=

=

=

139

Since there is no state containing 4 A propositions, the answer for

()0 0,M s AU A A A A
≤∞

>= ∧ ∧ ∧ will be “No”.

6.11 Conclusion

There exist several modeling and reasoning software tools for different kinds of

modeling languages, as well as process algebraic languages. However, none of the

known process algebra tools gives support for WSCCS. This chapter introduces the

WSCCS++, which is a tool developed for modeling in WSCCS and reasoning

models written in WSCCS language.

The theoretical background given in Chapter 5 is extended in a way that,

probabilities of action occurrences and paths can be questioned as model checking

relations.

 140

CHAPTER SEVEN

WSCCS CASE STUDIES

7.1 Conflicting Actions

Consider the below A and B agents, and the colony definition. Agent A may

perform actions either a or b, where performing a is prioritized over performing b.

Agent B performs the complementary actions !a, or !b, such that performing !b is

prioritized over performing !a. Whenever these two agents working in parallel, as in

Colony agent, they are expected to communicate over the channels either a-!a or b-

!b. But, this is not the case, because of the prioritization of the actions.

: . 1: .
def

A w a X b Y≡ +

1:! . :! .
def

B a Z w b T≡ +

{ },
def

Colony A B Act a b≡ × < −

At first glance, Colony definition may seem to be conflicting, since one of the

agents desires to perform one action, whilst the other agent desires to perform the

other action’s complement. The followings are all of the possible transitions of A B× :

() ()

() () () ()

() () () ()
2

: . 1: . 1:! . :! .

: . 1:! . : . :! .

1: . 1:! . 1: . :! .

: #. : .! . 1: .

^

^

! . : #.^

def

A B w a X b Y a Z w b T

w a X a Z w a X w b T

bY a Z b Y

A B

A B w bT

w X Z w a b X T b a Y Z w YB TA

× ≡ + × +

= × + × +

× + ×

= × + × + × + ×

≡

Applying the restriction operator, { },Act a b< − , which means the terms containing

neither action a, nor action b, we obtain the resulting transitions.

 { } { } { }, : #. , : #. ,A B Act a b w X Z Act a b w Y T Act a b× < − = × < − + × < −

141

7.2 Two Ant Colonies in Life Game

In this scenario, it is assumed that there are two colonies of ants, A and B, playing

the game of “stay alive”. The winner colony may be awarded by some resource.

Each colony may contain different types and number of ants. The idea is to observe

how the system and its components, ants, evolve in time. In other more abstract

words, which team wins the game. Although several design choices are possible, it is

assumed that, there is a leader, and a medical expert and a number of worker ants in

each team at the beginning. The behavior of each agent is listed below.

• Leader: It controls, and coordinates the colony. It has the ability to fight, and

distributes this ability among teammates. Or it might be shot by the other

team’s “Fighter”. Then it becomes a “Wounded Ant”, or it remains as it is.

Definitions the Leaders of colony A, and B:

4 : . 1:! . 5 : #.
def

LeaderA w giveFightA LeaderA shootBWoundedA LeaderA≡ + +

4 : . 1:! . 5 : #.
def

LeaderB w giveFightB LeaderB shootAWoundedB LeaderB≡ + +

There are two “giveFight” actions with A and B suffixes. It was necessary to

distinguish who would be given the ability. If there were no such suffixes,

each team member might be benefited. Note that the three behaviors given in

verbal description are defined in the same order. Since the primary job of

leaders is to distribute its abilities among its teams’, this action is prioritized.

• Medical Expert: It applies treatment to the teammates when they are

wounded. It cannot fight, thus it is not able to shoot. However, it might be

shot, or just walks around doing nothing.

: . 1:! . 1: #.
def

MedA w treatA MedA shootBWoundedA MedA≡ + +

: . 1:! . 1: #.
def

MedB w treatB MedB shootAWoundedB MedB≡ + +

• Worker: It does not have any extra ability as long as fighting capability is not

given to him by the team “Leader”. Then it becomes another agent, “Fighter”.

142

Or, the “Worker” might be shot by the other team’s “Fighter”. Then it

becomes a “Wounded Ant”.

ker 4 :! . 4 :! . 2 : #. ker
def

Wor A giveFightA FighterA shootB WoundedA Wor A≡ + +

ker 4 :! . 4 :! . 2 : #. ker
def

Wor B giveFightB FighterB shootAWoundedB Wor B≡ + +

• Fighter: It can shoot an ant of the other team. If the target is “Worker”, or

“Leader”, or “Medical Expert” it succeeds, and causes them to get wounded.

: . 1:! . 1: #.
def

FighterA w shootA FighterA shootBWoundedA FighterA≡ + +

: . 1:! . 1: #.
def

FighterB w shootB FighterB shootAWoundedB FighterB≡ + +

• Wounded Ant: Once the ant is shot by other team’s “Fighter” ant, it becomes

a “Wounded Ant”, and waits for the treatment from the team’s “Medical

Expert”.

1: #. 1:! . ker
def

WoundedA WoundedA treatAWor A≡ +

1: #. 1:! . ker
def

WoundedB WoundedB treatBWor B≡ +

Defining all agents individually, it is crucial to describe the concurrently running

agents, and the communication between them if exists. Since there is no restriction

on number of running agents of any type, and of any colony, only the interacting

agent behaviors will be identified. The following lists such agent activities.

• “Leader” distributes its fighting ability,

{ }ker #LeaderA Wor A× < , { }ker #LeaderB Wor B× <

• “Fighter” of a colony shoots,

{ } { }

{ } { }

{ } { }

{ }

#

ker # ker #

#

#

FighterA LeaderA FighterB LeaderB

FighterA Wor A FighterB Wor B

FighterA MedA FighterB MedB

FighterA FighterB

× < × <

× < × <

× < × <

× <

 ,

 ,

 ,

Note that in the latter case, it is not clear whether “FighterA” or “FighterB”

will die. It is a nondeterministic choice.

143

• “Medical Expert” applies treatment,

 { }#MedA WoundedA× < , { }#MedB WoundedB× <

TeamA andTeamB defines the initial team configurations. It is assumed that there

are three “Worker” ants, a “Leader”, and a “Medical Expert” in each team at the

beginning. Colony is the whole system definition which consists of two teams given.

{ }

ker ker ker

ker ker ker

#

TeamA LeaderA Wor A Wor A Wor A MedA

TeamB LeaderB Wor B Wor B Wor B MedB

Colony TeamA TeamB

≡ × × × ×

≡ × × × ×

= × <

7.2.1 WSCCS++ Demo

The following Figure 7.1 is the main entrance of the WSCCS++, and Figure 7.2 is

screenshot of the model definition editor with the described model written after

compilation.

Figure 7.1 Main Window of the

WSCCS++.

144

Figure 7.2 Model definition, and the result of compilation in WSCCS++.

7.2.2 Generating LKTS* Graph

2.6.5.12 Extract Set of Propositional Variables

Given the definitions of agents, extract the set of propositional variables first, such

that, each agent has a corresponding variable described as:

LeaderA�LA, LeaderB �LB,

MedA � MA, MedB �MB,

kerWor A� WA, kerWor B � WB,

FighterA � FA, FighterB � FB

WoundedA � WNA, WoundedB �WNB

TeamA�TA, TeamB � TB

Notice that, TA and TB are abstract variables since both TeamA and TeamB are

abstractions for a number of parallel acting agents, called teams. Therefore, they can

be reduced to set of conjunctions of related propositional variables:

145

TA LA WA WA WA MA= ∧ ∧ ∧ ∧ ,

TB LB WB WB WB MB= ∧ ∧ ∧ ∧

2.6.5.13 Form the Initial State from Sys Agent

{ }#
def

Colony TeamA TeamB≡ × <

Substituting the TeamA and TeamB with actually running agents:

{ }
ker ker ker

#
ker ker ker

LeaderA Wor A Wor A Wor A MedA
Colony

LeaderB Wor B Wor B Wor B MedB

× × × × × 
= < 

× × × × 

Colony relates to initial state 0s , therefore, the labeling function of 0s , is as

follows:

() { }0 , , , , , , , , , ,L s LA LA WA WA WA MA LB WB WB WB MB=

2.6.5.14 Discovering Successors of Initial State

Replace each agent appearing in Colony with its definition:

4 : . 1:! . 5 : #.

4 :! . 4 :! . 2 : #. ker

4 :! . 4 :! . 2 : #. ker

4 :! . 4 :!

w giveFightA LeaderA shootBWoundedA LeaderA

giveFightA FighterA shootBWoundedA Wor A

giveFightA FighterA shootBWoundedA Wor A

giveFightA FighterA shootB

Colony

+ + ×

+ + ×

+ + ×

+

=

. 2 : #. ker

: . 1:! . 1: #.

4 : . 1:! . 5 : #.

4 :! . 4 :! . 2 : #. ker

4 :! . 4 :!

WoundedA Wor A

w treatA MedA shootBWoundedA MedA

w giveFightB LeaderB shootAWoundedB LeaderB

giveFightB FighterB shootAWoundedB Wor B

giveFightB FighterB sho

+ ×

+ + ×

+ + ×

+ + ×

+

{ }#

. 2 : #. ker

4 :! . 4 :! . 2 : #. ker

: . 1:! . 1: #.

otAWoundedB Wor B

giveFightB FighterB shootAWoundedB Wor B

w treatB MedB shootAWoundedA MedB

 
 
 
 
 
 
 
  <
 
 
 
 + ×
 

+ + × 
 + + 

Apply Exp4 rule of Equational rule set, since the computation tree too large, only

one initial branch of it will be demonstrated here, although full result is shown later.

146

8 4
1 4 : . ! .

! . ! .

. .

! . ! .

! . .

Colony w giveFightA LeaderA giveFightA FighterA

giveFightA FighterA giveFightA FighterA

treatA MedA giveFightB LeaderB

giveFightB FighterB giveFightB FighterB

giveFightB FighterB treatB MedB

= × ×

× ×

× ×

× ×

×

8 4

! ! !

4 : ! ! .

!

giveFightA giveFightA giveFightA giveFightA

w treatA giveFightB giveFightB giveFightB

giveFightB treatB

LeaderA FighterA FighterA FighterA MedA

LeaderB FighterB FighterB FighterB M

× × × 
 

= × × × × × 
 × 

× × × × ×

× × × × edB

 
 
 

Although this branch is highly prioritized, and very likely be chosen to be

performed, this is not the case. See the action happenings which needs to evaluate #

action.

The parallel occurrence of actions yields the following result:

! ! !

! !

!

! !

 ! !

giveFightA giveFightA giveFightA giveFightA

treatA giveFightB giveFightB giveFightB

giveFightB treatB

treatA giveFightA giveFightA

treatB giveFightB giveFightB

⇒ × × ×

× × × × ×

×

= × × × × ×

× ×

Since the resulting global behavior is not equal to the one given in restriction set,

this branch of cannot be performed, and is not included in state space.

The following is the complete one step computation branches of Colony agent.

6 2

4

4

ker ker
4 *9 : #.

ker ker

ker ker
4 *30 : #.

ker ker ker

4 *30 : #.

Colony

LeaderA FighterA Wor A Wor A MedA LeaderB
w

FighterB Wor B Wor B MedB

LeaderA FighterA Wor A Wor A MedA LeaderB
w

Wor B Wor B Wor B MedB

Lea
w

=

× × × × × 
+ 

× × × × 

× × × × × 
+ 

× × × × 

ker ker ker

ker ker

ker ker ker
1600 : #.

ker ker ker

derA Wor A Wor A Wor A MedA LeaderB

FighterB Wor B Wor B MedB

LeaderA Wor A Wor A Wor A MedA LeaderB

Wor B Wor B Wor B MedB

× × × × × 
+ 

× × × × 

× × × × × 
+ 

× × × × 

From the set of possible evolutions above, only the one with the highest priority

may occur (Chapter 4.3.3), which has the weight value of 6 24 *9w .

147

Hence, there is only one new state and its labeling evolved from one step

transition is:

() { }1 , , , , , , , , ,L s LA FA WA WA MA LB FB WB WB MB=

1:#
0 1s s→

In order to demonstrate, how solution is constructed in case of equal priorities,

one more step is established from 1s . Among a large number potential of transitions

having priorities, the following set has captured since each member has the highest

priority.

()

()

7 44 : # . //this path will be called s
2

6 44 * 2 : #
k

LeaderA FighterA FighterA WoundedA MedA
w

LeaderB FighterB FighterB WoundedB MedB

LeaderA FighterA FighterA WoundedA MedA
w

LeaderB FighterB FighterB Wor

× × × × ×
+

× × × ×

× × × × ×

× × ×

 
 
 

()

()

//this path will be called s
3er

ker6 44 * 2 : # . //this path will be called s
4

6 44 : # .

B WoundedB

LeaderA FighterA FighterA Wor A WoundedA
w

LeaderB FighterB FighterB WoundedB MedB

LeaderA FighterA F
w

+
×

× × × × ×
+

× × × ×

× ×

 
 
 

 
 
 

ker
//this path will be called s

5ker

ighterA Wor A WoundedA

LeaderB FighterB FighterB Wor B WoundedB

× × ×
+

× × × ×

 
 
 

Notice that, each weighted choice has priority of 4. Then the choice between them

becomes a probabilistic process such that relative frequencies lead to the

probabilities.

Recently set up states, labelings, and LKTS* transitions:

() { }

() { }

() { }

() { }

2

3

4

5

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

L s LA FA FA WNA MA LB FB FB WNB MB

L s LA FA FA WNA MA LB FB FB WB WNB

L s LA FA FA WA WNA LB FB FB WNB MB

L s LA FA FA WA WNA LB FB FB WB WNB

=

=

=

=

4 / 9:#
1 2

2 / 9:#
1 3

2 / 9:#
1 4

1/9:#
1 5

s s

s s

s s

s s

→

→

→

→

148

The other successor states are determined in the same way, which is not

reasonable performing by hand, and constructs a basis for why an automation tool is

required.

2.6.5.15 Visualizing State Space in WSCCS++

Usually, generating and visualizing the entire state space is not a reasonable task

because of the state space explosion. However, WSCCS offers the user to view the

initial state space, and step by step transitions on demand. The Figure 7.3 is such an

example screenshot.

Figure 7.3 Viewing state spaces for each step on demand.

7.2.3 Formulating the Property

Formulating model checking questions is achieved by expressing the property

verbally first:

“Is there any path on which team B wins?”

From the designer’s of view, winning of a team is decided by the all members of

other teams’ get wounded. Therefore, the question is actually, “is there any path,

such that all members of team A get wounded before team B”

The propositional formulas are:

LB MB WB FBφ = ∨ ∨ ∨ --there is a member of team B, who is not wounded.

149

()WNA LA MA FA WAΨ = ∧ ¬ ∧ ∧ ∧ -- there is a wounded A, and no other

member of team A exists.

Assigning number of time steps that the property is required to be satisfied, say 3,

and a probability value, we obtain the complete formula as:

()3
0.8 ,AU φ≥ Ψ

Notice that, the property does not include an action or action sequence, the reason

behind is, the global system is restricted to perform only # action at any time,

2.6.5.16 Submitting the Property to WSCCS++ Model Checking Component

As mentioned in Chapter 6, WSCCS++ offers an environment to describe the

property in which the user does not have to type anything, but selects both operators,

and associated operands from the presented lists. Though the figures 7.4 to 7.6, the

property definition editor screenshots has been shown.

Figure 7.4 Defining basic state formulas in WSCCS++.

150

Figure 7.5 Describing basic path formulas which are based on state

formulas. In case of noninteger number of time steps, an error message is

displayed.

Figure 7.6 Entering probabilistic path formulas.

Figure 7.7 Model checking control panel.

151

7.2.4 Executing the Property

Given the definition of whole system, and the property, the following result is

obtained. Notice that we have chosen to see the entire state space of 3 steps using the

control panel.

Figure 7.8 The result of the property processed by WSCCS++.

 152

CHAPTER EIGHT

CONCLUSIONS, CONTRIBUTIONS, FUTURE WORK

8.1 Summary & Contributions Inline

Most of the topics discussed throughout the dissertation are formal treatments

ranging from modeling an ant colony behavior to parsing a sentence written in a

temporal logic language.

Ant colony optimization algorithms (ACO) for solving combinatorial optimization

problems involve the idea behind the ability of ants constructing shortest paths. We

have used the same inspiration in order to solve thee different problems and figuring

out different results:

(i) Traveling Salesman Problem: To understand the relationship between the

parameters of ant colony optimization algorithm,

(ii) Single Machine Total Tardiness Problem: To compare and contrast the

efficiency of the ACO with some well-known heuristics in the area.

(iii) 2D projected map problem: The problem was a real world problem, which

can be defined as finding minimum distance path on a three dimensional

landscape, and an application from pipeline design. However, we have

used the 2D projection of the map in order to test ACO algorithms

robustness on a new type of problem. We have proposed several

modifications on novel ACO algorithms in order to improve the

performance.

Starting from Chapter 4, the treatment on ACO has been changed. The main goal

was, answering how we could deepen the understanding of the relationship between

the members of a colony and the colony itself, which later on asserted as modeling

and verification. Formal modeling is a very popular topic in theoretical computer

153

science and has very diverse applications including biological systems. Therefore,

we have moved to the formal modeling of ant colony behavior instead of using it.

We have chosen one of recently developed process algebra, WSCCS, in order to

establish formal models of ant colonies, since it has shown to be a very successful

language in modeling biological systems.

Having a formal at hand brings no insight if one cannot examine the model.

Therefore, we have again made a move to the notion of verification. Verification

concerns proving or disproving the correctness of an abstract model against its

formal specifications and is also one of the popular subjects in the area, both from

software engineering side, and theoretical side.

Model checking which is a verification approach involves the overall behavior of

model such that it is converted to a transition system, whose states represent the

global states of the distributed system, and whose transition relation gives the

possible evolutions of the system. Then it can be checked whether such transition

system is a model of a temporal logic formula.

Although there is no considerable modification on novel syntax and semantics of

WSCCS, to be able to benefit from every aspect of WSCCS we have proposed

several extensions on formalisms involved in model checking as following:

(i) Utilization of Probabilistic Computation Tree Logic (PCTL) for the

formulas of model checking, broadening its syntax and semantics so that

one can formulate the queries including actions, yielding a new branching

time logic, pCTL.

(ii) Made use of Labeled Kripke Transition Systems (LKTS), on which pCTL

is to be interpreted; extending the definition of transition relation to cover

the notion of probability, new transition system is LKTS*.

154

Incorporating all mentioned formalisms, a complete modeling and verification

schema has been constructed.

The need for automated tools of verification has been started to arise when the

systems getting more complex, which means, in turn a large increase in state space.

Such systems are almost impossible be managed by hand because of likely errors.

Therefore, we have offered a software tool, called WSCCS++, that lets the user to

design his/her own model, to compile the model according to the syntactical rules of

WSCCS, and perform model checking on the model as proposed.

8.2 Future Works

In correspondence with the two directions in dealing with the ant colony behavior

in dissertation, there are different paths in future works as well. First one concerns

ACO algorithms. Extending ACO algorithms for solving some interesting problems,

for instance, Multimedia Information Retrieval problems, or improving ACO

algorithms for solving big-sized combinatorial problems can be enumerated as

possible future forks related with ACO algorithms.

The second path concerns modeling ant colony behavior. Modeling biological

systems and attempting to extract some useful behavioral information is such an

interesting area that one needs to be close both the biological face, and formal face-

computer science. Thus, this dissertation can be expanded in both aspects. For

instance, honey bees and termites are also known to be social insects. Modeling

termites with the offered WSCCS++ tool would be an appealing exercise.

On the other hand, from the formal point of view, the model checking and/or

verification approaches might be improved in order to decrease time requirements to

handle large state spaces.

155

REFERENCES

Abdul-Razaq T.S., Potts C.N., & Van Wassenhove L.N. (1990). A survey of

algorithms for the single machine total weighted tardiness scheduling problem.

Discrete Applied Mathematics, 26: 235-253, 1990.

Alidaee B. & Ramakrishnan K.R. (1996). A computational experiment of COVERT-

AU class of rules for single machine tardiness scheduling problem. Computers

and Industrial Engineering, vol.30, no. 2, pp.201-209.

Andersen H., Stirling C., & Winskel G. (1994). A compositional proof system for the

modal mu-calculus. In Proceedings of 9
th

 LICS. IEEE Computer Society Press.

Baker K.R. (1974). Introduction to sequencing and scheduling, New York: John

Wiley.

Bevier R.W., Hunt W.A., Moore J.S., & Young W.D. (1989). An approach to

systems verification. Journal of Automated Reasoning, 5(4):411-428.

Biberstein O., Buchs D., & Guelfi N. (2001). Object-oriented nets with algebraic

specifications: The CO-OPN/2 formalism, Advances in Petri Nets on Object-

Orientation, G. Agha and F. De Cindio and G. Rozenberg (Eds.), LNCS: 2001,

Springer Verlag, pp. 70-127.

Bilgen B., & Özkarahan I. (2002). Simulated annealing technique for single machine

scheduling problem, Proceedings of The 30
th

 International Conference on

Computers and Industrial Engineering, pp. 95-100, Tinos Island, Greece.

Bolognesi, T. & Brinksma E. (1989). Introduction to the ISO specification language

LOTOS, in: P. H. J. van Eijk, C. A. Vissers & M. Diaz, editors, The Formal

Description Technique LOTOS, Elsevier Science Publishers North-Holland, pp.

23-73.

156

Bonabeau E., Dorigo M., & Theraulaz G. (1999). Swarm intelligence: From natural

to artificial systems New York: Oxford University Press.

Boyer R. S., & Moore J. S. (1979). A Computational Logic, New York: Academic

Press.

Boyer R. S., & Moore J. S. (1988). A Computational Logic handbook, New York:

Academic Press.

Bradfield J., & Stirling C. (2001). Modal logics and mu-calculi: An introduction. In

J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebra.

Elsevier.

Bullnheimer B., Hartl R.F., & Strauss C. (1999). Applying the ant system to the

vehicle routing problem. In: Voss S., Martello S., Osman I.H., Roucairol C. (eds.),

Meta-Heuristics: Advances and Trends in Local Search Paradigms for

Optimization, Kluwer:Boston.

Bullnheimer B., Hartl R.F., & Strauss C. (1999). A new rank based version of the ant

system: A computational study. Central European Journal for Operations

Research and Economics, 7(1),25-38.

Burch J. R., Clarke E. M., McMillan K. L, Dill D. L., & Hwang.L.J. (1990).

Symbolic model checking: 2010 states and beyond. In 5th Annual IEEE

Symposium on Logic in Computer Science, pp. 428-439, Philadelphia, PA,

Burkart O., & Steffen B. (1994). Pushdown processes: Parallel composition and

model checking. CONCUR’94, LNCS: 836. pp 98-113.

Burks A. (ed.) (1970). Essays on cellular automata. University of Illinois Press,

Urbana, Illinois.

157

CelLab for Windows (n.d) Retrieved Feb 7, 2006 from

http://www.fourmilab.ch/cellab/manual/clabwin.html

Clarke E.M., & Emerson E.A. (1981). Design and synthesis of synchronization

skeletons using branching time temporal logic. Proceedings of IBM Logics of

Programs Workshop, LNCS vol. 131, pp. 52-71.

Clarke E.M., & Grumberg O. (1987). Research on automatic verification of finite

state concurrent systems. Ann. Rev. Computer Science (2):269-290.

Clarke E.M., & Kurshan R. (1996). Computer aided verification. IEEE Spectrum

33,6 pp.61-67.

Clarke E.M., Burch J., Long D., McMillan K.,& Dill D. (1994). Symbolic model

checking for sequential circuit verification. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 13, No. 4, pp. 401-424.

Clarke E.M., Emerson E.A., & Sistla A.P. (1986). Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transactions

on Programming Languages and Systems. 8(2): 244-263.

Cleaveland R. & Sims S. (1996). The NCSU concurrency workbench, Proceedings

of the 8
th

 International Conference on Computer Aided Verification. LNCS vol.

1102.

Cleaveland R., Klein M., & Steffen B. (1992). Faster model checking for the modal

mu-calculus. Proceedings of Computer Aided Verification (CAV’92), Bochmann

G.V. & Probst D.K. eds. LNCS vol. 663. pp. 410-422

Cleaveland R., Parrow J., & Stefen B. (1993). The concurrency workbench: A

semantics based tool for the verification of concurrent systems. ACM

Transactions on Programming Languages and Systems (15) 1. pp. 36-72.

158

CLIPS: A NASA Developed Expert System Tool, (1987). NASA Technical Briefs.

Clocksin W.F., & Mellish C.S. (2003). Programming in prolog : Using the ISO

standard (5th ed.) Heidelberg: Springer.

Colmerauer A., & Roussel P. (1992). The birth of Prolog. Retrieved Feb 1, 2006

from http://www.lim.univ-mrs.fr/~colmer/ArchivesPublications/HistoireProlog/

Colorni A., Dorigo M., & Maniezzo V. (1992). Distributed optimization by ant

colonies., F.Varela & P.Bourgine (Eds.) Proceedings of the First European

Conference on Artificial Life, (134-142). Paris, France: Elsevier Publishing.

Colorni A., Dorigo M., Maniezzo V., & Trubian M. (1994). Ant system for job-shop

scheduling. JORBEL - Belgian Journal of Operations Research, Statistics and

Computer Science, 34(1):39-53.

Constable R.L. (1986). Implementing mathematics with the NURPL proof

development system, Prentice-Hall.

Cormen T., Leiserson C., & Rivest R. (1990). Introduction to algorithms. MIT Press.

Costa D., & Hertz A. (1997). Ants can color graphs. Journal of the Operational

Research Society, 48, 295-305.

CPN-AMI: Home Page, (n.d.) Retrieved Feb 7, 2006 from http://www-

src.lip6.fr/logiciels/mars/CPNAMI/ .

Cpntools (n.d) Retrieved Feb 7, 2006 from

http://wiki.daimi.au.dk/cpntools/cpntools.wiki .

159

Crauwels H.A.J., Potts C.N., & Van Wassenhove L.N. (1998). Local search

heuristics for the single machine total weighted tardiness scheduling problems.

INFORMS Journal On Computing, 10(3): 341-350.

CSML and MCB (n.d) Retrieved Feb 2, 2006 from

http://www.cs.cmu.edu/~modelcheck/csml.html

CV: Introduction (n.d) Retrieved Feb 2, 2006 from

http://www.cs.cmu.edu/~cmuvhdl/

Della Croce F., Tadei R., Baracco P., & Grosso A. (1996). A new decomposition

approach for the single machine total tardiness scheduling problem, Journal of the

Operations Research Society, 49. pp. 1101-1106.

Deneubourg J.-L., Aron S., Goss S., & Pasteels J. M. (1990). The self-organizing

exploratory patterns of the Argentine ant. Journal of Insect Behaviour 3: 159-168.

Di Caro G., & Dorigo M. (1998). Ant colonies for adaptive routing in packet-

switched communication networks. Proceedings of PPSN-V, Fifth International

Conference on Parallel Problem Solving from Nature, LNCS, vol. 1498. pp. 673-

698.

Di Caro G., & Dorigo M. (1998). AntNet: Distributed stigmergetic control for

communication networks. Journal of Artificial Intelligence Research, 9:317-365.

Dorigo M., & Gambardella L.M. (1997). Ant colonies for the traveling salesman

problem. BioSystems, 43:73-81.

Dorigo M., & Gambardella L.M. (1997). Ant colony system: A cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Computation, 1(1):53-66.

160

Dorigo M. (1992) Optimization, learning, and algorithms, (In Italian) Politecnico di

Milano, Italy, Ph.D. Thesis.

Dorigo M., Maniezzo V., & Colorni A. (1991). Positive feedback as a search

strategy. Dip. Eletronica, Politecnico di Milano, Tech. Rep. 91-016.

Dorigo M., Maniezzo V., & Colorni A. (1996). The ant system: Optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics – Part B, 26(1): 29-42.

Dowek G., Felty A., Herbelin H, & Huet G. (1993). The COQ proof assistant user’s

guide. Technical Report 154, Inria-Rocquencourt.

Ekin E., & Yakhno T. (2001). A case study of adapting ant system to optimization

problems. Proceedings of TAINN’2001, Turkish Symposium on Artificial

Intelligence and Neural Networks. TRNC.

Elseaidy W., Cleaveland R., & Baugh J. (1996). Modeling and verifying active

structural control systems. Proceedings of the 1994 Real Time Systems

Symposium.

Emerson E.A. (1990). Temporal and modal logic. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume B: Formal Models and

Semantics, chapter 14, pages 996–1072. Elsevier Science.

Emerson E.A.,& Halpern J.Y. (1986). ‘Sometimes’ and ‘not never’ revisited: On

branching time versus linear time temporal logic. JACM, vol. 33, no.1, pp.151-

178.

EvoCellLab-KyberWiki (n.d) Retrieved Feb 7, 2006 from

http://kybkreis.org/wiki/index.php/EvoCell

161

Ferber J. (1999). Multi agent systems an introduction to distributed artificial

intelligence (J. Ferber, trans.) New York: Addison Wesley. (Original work

published 1995)

Fernandez J.C., Garavel H., Kerbrat A., Mateescu R., Mounier L., & Sighireanu M.

(1996). CADP (CÆSAR/ALDEBARAN development package): A protocol

validation and verification toolbox. Proceedings of the 8
th

 International

Conference on Computer-Aided Verification, LNCS vol. 1102.

Finin T., Weber J., Wiederhold G., Genesereth M., Genesereth M., McKay D.,

McGuire J., Pelavin R., Shapiro ., & Beck C. (1993). Specification of the KQML

agent-communication language plus example agent policies and architectures. The

DARPA Knowledge Sharing Initiative External Interfaces Working Group

Fisher M.L. (1976). A dual algorithm for the one-machine scheduling problem.

Mathematical Programming, 11. pp. 293, 297.

Fogel D. (1993). Applying evolutionary programming to selected traveling salesman

problems, Cybernetics and Systems: An International Journal, vol. 24, pp. 27–36.

Fredlund L. (1994). The timing and probability workbench: A tool for analyzing

timed processes. Technical Report, Department of Computer Systems, Uppsala

University.

Fry T.D., Vicens L., Macleod K., & Fernandez S. (1989). A heuristic solution

procedure to minimize T on a single machine, Journal of the Operational

Research Society, 40. pp. 293-297.

Gambardella L. M. & Dorigo M. (1997). HAS-SOP: An hybrid ant system for the

sequential ordering problem. Technical Report. No. IDSIA 97-11, IDSIA,

Lugano, Switzerland.

162

Gambardella L. M., Taillard E., & Dorigo M. (1999). Ant colonies for the quadratic

assignment problem. Journal of the Operational Research Society, 50:167-176.

Gambardella L.M., & Dorigo M. (1995). Ant-Q: A reinforcement learning approach

to the traveling salesman problem. Proceedings of ML-95, Twelfth International

Conference on Machine Learning, Morgan Kauffman, 252-260.

Gambardella L.M., & Dorigo M. (1996). Solving symmetric and asymmetric TSPs

by ant colonies. Proceedings of IEEE International Conference on Evolutionary

Computation (ICEC’96) pp. 622-627. IEEE Press 1996.

Gardner, M. (1970). The fantastic combinations of John Conway's new solitaire

game “life”. Scientific American, vol. 223, no. 4, pp 120-123.

Gardner, M. (1971). On cellular automata, self-reproduction, the garden of Eden and

the game “life”. Scientific American, vol. 224, no. 2, pp 112-117.

Garey M.R., & Johnson D.S. (1979). Computers and intractability: A guide to the

theory of NP-Completeness, San Francisco, CA: Freeman.

Gerth R., Peled D., Vardi M.Y., & Wolper P. (1995). Simple on-the-fly automatic

verification of linear temporal logic. Proceedings of IFIP/WG 6.1 Symposium On

Protocol Specification, Testing and Verification.

Gilmore P.C. (1960). A Proof Method for Quantification Theory: Its justification and

realization. IBM Journal of Research and Development, 4:28-35.

Glover, F. & Laguna, M. (1996). Tabu search. Dordrecht, Netherlands: Kluwer.

Gordon M. J. C., & Melham T. F. (1993). editors. Introduction to HOL: A theorem

proving environment for higher-order logic. Cambridge University Press,

Cambridge, UK.

163

Gordon M. J., Milner A. J., & Wadsworth C. P. (1979). Edinburgh LCF: A

mechanized logic of computation, LNCS vol. 78.

Goss S., Aron S., Deneubourg J.-L.,& Pasteels J. M. (1989). Self-organized shortcuts

in the Argentine Ant Naturwissenchaften 76 579-581.

Grune D., Bal H.E., Jacobs C.J.H., & Langendoen K.G. (2001). Modern compiler

design. London: John Wiley & Sons.

Hansson H. A., & Jonsson B. (1989). A framework for reasoning about time and

reliability. Proceedings of 10th IEEE Real -Time Systems Symposium, pp. 102–

111, Santa Monica, Ca.,IEEE Computer Society Press.

Har’el Z., & Kurshan R.P. (1990). Software for analytical development of

communications protocols. AT&T Bell Laboratories Technical Journal 69, 1, 45-

59.

Hennessy M.C.B., & Milner R. (1985). Algebraic laws for nondeterminism and

concurrency. Journal of the ACM, 32, pp. 137-161.

Hillston J. (1996). A compositional approach to performance modeling. Ph.D.

Thesis, Cambridge University Press, Cambridge.

Hoare C.A.R. (1978). Communicating sequential processes, Communications ACM

21 (8) 666–677.

Holzmann G. (1991). Design and validation of computer protocols. New Jersey:

Prentice-Hall, Englewood Cliffs.

Hunt W.A. (1987). The mechanical verification of a microprocessor design.

Technical Report 6, Computational Logic Incorporated, Austin, TX.

164

INA: Integrated Net Analyzer Version 2.2 (Description, Manual, Download, …)(n.d)

Retrieved Feb 7, 2006 from http://www.informatik.hu-berlin.de/~starke/ina.html

Java Pathfinder (n.d) Retrieved Feb , 2006 from http://javapathfinder.sourceforge.net

John Conway’s Game of Life (n.d) Retrieved Feb 7, 2006 from

http://www.bitstorm.org/gameoflife/

Kasami T. (1965). An efficient recognition and syntax-analysis algorithm for

context-free languages. Scientific report AFCRL-65-758, Air Force Cambridge

Research Lab, Bedford, MA.

Kaufmann M., & Moore J.S. (1994). Design goals for ACL2. Technical Report 101,

Computational Logic, Inc, Austin, Texas.

Kaufmann M., & Moore J.S. (1996). ACL2: An industrial strength version of

NQTHM. Proceedings of COMPASS’96, The Eleventh Annual Conference on

Computer Assurence, pp. 23-24, Gaithersburg, MD.

Kaviola R. (1995). On modal mu-calculus and Büchi tree automata. Inf. Proc. Letters

54, 17-22.

Kowalski R.A. (1988). The early years of logic programming. Communications of

the ACM, 31(1):38-42.

Kozen D. (1983). Results on the propositional mu-calculus. Theoretical Computer

Science, 27, pp. 333-354.

Kripke S. (1963). Semantical analysis of modal logic. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik, 9:67-96.

165

Kurshan R.P. (1994). Computer aided verification coordinating processes, Princeton

University Press.

Lamport L. (1980). Sometimes is sometimes “not never”—on the temporal logic of

programs, Proceedings of 7
th

 Annual Symposium on Principles of Programming

Languages, pp. 174-185.

Lamport L. (1983). What good is temporal logic. Information Processing 83:657-

668.

Lamport L. (1986). A simple approach to specifying concurrent systems. Technical

Report, DEC.

Larsen K.G., & Skou A. (1989). Bisimulation through probabilistic testing,

Proceedings of POPL’1989.

Lawler E.L. (1977). A pseudopolynomial algorithm for sequencing jobs to minimize

total tardiness. Annals of Discrete Mathematics, 1. pp 331-342.

Letz R., Schumann J., & Bayerl S. (1992). SETHEO: A high-performance theorem

prover. Journal of Automated Reasoning, 8(2):183-212.

Lin S. (1965). Computer solutions of the traveling salesman problem. Bell Systems

Journal, vol. 44, pp. 2245–2269.

Maniezzo V. & Colorni A. (1999). The ant system applied to the quadratic

assignment problem. IEEE Transactions in Knowledge and Data Engineering,

Volume 11 Issue 5 pages 769-778.

Maniezzo V., Colorni A., & Dorigo M. (1994). The ant system applied to the

quadratic assignment problem. Tech. Rep. IRIDIA/94-28, Université Libre de

Bruxelles, Belgium.

166

Maziero C.A (2000). The ARP Tool, Retrieved Feb 7, 2006 , from

http://www.ppgia.pucpr.br/~maziero/diversos/petri/arp.html.

Milner R. (1989). Communication and concurrency Prentice Hall PTR.

Milner R. (1983). Calculi for synchrony and asynchrony, Theoretical Computer

Science 25 267–310.

Modern cellular automata-live color cellular automata (n.d) Retrieved Feb 7, 2006

from http://www.collidoscope.com/modernca/

Morton T.E., & Pentico D.W. (1993). Heuristic scheduling systems with applications

to production systems and project management. NY: John Wiley and Sons.

Morton T.E., Rachamadugu K.R., & Vepsalainen A.P.J. (1984). Accurate myopic

heuristics for tardiness scheduling. Carnegie Mellon University, Working Paper,

W.P., 36-83-84.

Müller-Olm M., Schmidt D., & Steffen B. (1999). Model-checking a tutorial

introduction. Cortesi a. & File G. Editors, SAS’99, LNCS vol. 1694, pp. 330-354.

Osman I. H. & Kelly, J. P. (Eds.) (1996). Meta-heuristics: theory and applications.

Dordrecht, Netherlands: Kluwer.

Panwalkar S.S., Smith M. L., & Koulamas C.P. (1993). A heuristic for the single

machine tardiness problem. European Journal of Operational Research 70, 304-

310.

Papadimitriou C.H., & Steiglitz K. (1982). Combinatorial optimization algorithms

and complexity. New Jersey: Prentice-Hall.

167

Paulson L. C. (1988). Isabelle: The next seven hundred theorem provers. In E. Lusk

and R. Overbeek, editors. Proceedings of 9th International Conference on

Automated Deduction (CADE), Argonne, IL, LNCS vol. 310, pp. 772-773.

Perrier J.Y., Sipper M., & Zahnd J. (1996). Toward a viable, self-reproducing

universal computer. Physica D, vol. 97, pp 335-352.

Peterson L. (1981). Petri net theory and the modelling of systems, Prentice-Hall,

Englewood Cliffs, New Jersey.

Petri C.A. (1962). Kommunikation mit automaten, (Communicating with

automata)(in German) Ph.D Thesis, Technical University Darmstadt, Germany.

Pnueli A. (1985a). Applications of temporal logic to the specification and

verification of reactive systems: A survey of current trends. LNCS vol. 224. 510-

584.

Pnueli A. (1985b). Linear and branching structures in the semantics and logics of

reactive systems. Proceedings of the 12
th

 ICALP, pp. 15-32.

Pnueli A. (1977). The temporal logic of programs. Proceedings of the 18th IEEE

Smposium on the Foundations of Computer Science (FOCS-77), pp. 46–57. IEEE

Computer Society Press.

Pnueli A. (1981). A temporal logic of concurrent programs. Theoretical Computer

Science, 13:45-60.

Potts C.N., & Van Wassenhove L.N. (1982). A decomposition algorithm for the

single machine total tardiness problem. Operations Research Letters 11 177-181.

Potts C.N., & Van Wassenhove L.N. (1991). Single machine tardiness sequencing

heuristics, IIE Transactions, 23, pp. 346-354.

168

Prawitz D., Prawitz H., & Voghera N. (1960). A mechanical proof procedure and its

realization in an electronic computer. Journal of the ACM, 7:102-128.

Prior A. N. (1957). Time and modality, Oxford: Clarendon Press.

Prior A. N. (1967). Past, present and future, Oxford: Clarendon Press.

Prior A. N. (1969) Papers on time and tense, Oxford: Clarendon Press

QPN (n.d) Retrieved Feb 7, 2006 from http://ls4-www.informatik.uni-

dortmund.de/QPN/ .

Queille J., & Sifakis J. (1982). Specification and verification of concurrent systems

in CÆSAR. In Proceedings of Fifth ISP.

Reinelt G. (1991). TSPLIB A traveling salesman problem library. ORSA Journal on

Computing, 3:376- 384.

Rescher N., & Urquhart A. (1971). Temporal logic. Springer-Verlag, Wien, New

York.

Robinson J. A. (1965). A machine-oriented logic based on the resolution principle.

Journal of the ACM, 12(1):23-41.

Roscoe A. (1994). Model checking CSP. A.Roscoe (Ed.) A Classical Mind: Essays

in Honour of C.A.R. Hoare, Prentice Hall.

Schoonderwoerd R., Holland O., Bruten J., & Rothkrantz L. (1997). Ant-based load

balancing in telecommunications networks. Adaptive Behavior, 5(2):169-207.

169

Shankar N. (1993). Abstract datatypes in PVS. Technical Report SRI-CSL- 93-9,

Computer Science Laboratory, SRI International, Menlo Park, CA.

Shankar N. (1994). Metamathematics, machines, and Gödel's proof. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge,

UK.

Shankar N., Owre S., & Rushby J. M. (1993). The PVS proof checker: A Reference

Manual. Computer Science Laboratory, SRI International, Menlo Park, CA.

Sims S. (1999). The process algebra compiler user's manual. Reactive Systems, Inc.

Sipser M. (1996). Introduction to the theory of computation, Course Technology.

Smith A. (1969). Cellular automata theory. Technical Report 2, Stanford Electronic

Lab., Stanford University.

Stickel M. E. (1986). A prolog technology theorem prover. J. H. Siekmann. (Ed.),

8th International Conference on Automated Deduction (CADE), LNCS:230, pp.

573- 587, Oxford, England: Springer-Verlag.

Stirling C., & Walker D. (1989). Local model checking in the modal mu-calculus. J.

Diaz, & F. Orejas (Ed.) Proceedings of TAPSOFT’89 LNCS: 351, pp. 369-383.

Stirling C. (1995). Local model checking games. Proceedings of Concur’95 LNCS

vol. 962, pp. 1-11.

Stützle T., & Hoos H. (1997). Improvements on the ant system: Introducing MAX-

MIN system. Proceedings of the International Conference on Artificial Neural

Networks and Neural Networks, Springer Verlag, pp. 245-249.

170

Stützle T., & Hoos H. (1998). MAX-MIN ant system and local search for

combinatorial optimization problems. S. Voss, S. Martello, I.H. Osman, & C.

Roucairol, (Ed.), Meta-Heuristics: Advances and trends in Local search

paradigms for optimization, pp. 313-329. Boston: Kluwer.

Sumpter D.J.T. (2000). From bee to society: An agent based investigation of honey

bee colonies. PhD Thesis. University of Manchester, Institute Science and

Technology, Manchester.

SyMP: Symbolic Model prover (n.d.) Retrieved Feb 2, 2006 from

http://www.cs.cmu.edu/~modelcheck/symp.html

Szwarc W., & Mukhopadhyay S. (1996). Decomposition of the single machine total

tardiness problem, Operations Research Letters 19, pp. 243-250.

The SMV System (n.d) Retrieved Feb 2, 2006 from

http://www.cs.cmu.edu/~modelcheck/smv.html

Toffoli T., & Margolus N. (1987). Cellular automata machines. The MIT Press,

Cambridge, Massachusetts.

Tofts C. (1994). Processes with probabilities, priority and time. Formal Aspects of

Computing, 6. (5), 536-564.

van Benthem Jutting L. S. (1979). Checking Landau's 'Grundlagen' in the Automath

System. Technical report, Mathematical Centre, Amsterdam, Mathematical Centre

Tracts.

Vardi M.Y., & Wolper P. (1986). An automata-theoretic approach to automatic

program verification. In Proceedings of Logics in Computer Science.

171

von Neumann, J. (1966). Theory of self-reproducing automata. University of Illinois

Press, Illinois. Edited and completed by A. W. Burks.

Wang H. (1960a). Proving theorems by pattern recognition. Communications of the

ACM, 4(3):229-243.

Watkins C.J.C.H., & Dayan P. (1992). Q-Learning. Machine Learning, 8:279-292.

Wilkerson L.J., & Irwin J.D. (1971). An improved algorithm for scheduling

independent tasks, AIIE Transactions, 3, pp. 239-245.

WinPeSim (n.d) Retrieved Feb 7, 2006 from http://www.winpesim.de/

Wolfram S., (1985) Cryptography with Cellular Automata, CRYPTO'85.

Wolfram S. (1983). Statistical mechanics of cellular automata. Reviews of Modern

Physics, vol. 55, no. 3, pp 601-644.

Wolfram S. (1984). Universality and complexity in cellular automata. Physica D,

vol. 10, pp 1 - 35.

Wolfram S. (1984a). Cellular automata as models of complexity. Nature, vol. 311,

pp 419-424.

Wolfram S. (1984b). Universality and complexity in cellular automata. Physica D,

vol. 10, pp 1-35.

Wolfram S. (2002). A new kind of science, Champaign. IL: Wolfram Media.

Wos L., Overbeek R., Lusk E., & Boyle J. (1992). Automated reasoning:

Introduction and applications., New York: McGraw-Hill, Second edition.

172

Yakhno T., & Ekin E. (2002). Ant systems: Another alternative for optimization

problems? Proceedings of ADVIS’2002, LNCS vol. 2457, pp 324-326.

Younger D.H. (1967). Recognition and parsing of context-free languages in time n3.

Information and Control 10(2): 189–208.

173

APPENDIX A

THE LANGUAGE OF WSCCS

Any process algebra as well as WSCCS consists of essentially three parts to be

defined.

• Syntax, usually given as context free grammar, to define the agents, and

the actions they perform. The basic features of WSCCS, weighing the

actions, parallel agent composition, and communication are all described

in syntactical rules.

• Semantics, defines the series of actions those are valid for any agent. By

involving transitional semantics, WSCCS allows us to consider the models

as finite automaton systems, that is we can draw transition graphs of each

agent.

• Congruence and the equational theory, help on deciding whether or not

two agents are equivalent in their behaviors, also checking how much

similar agents they are, using algebraic context or syntactical checking

respectively. Congruence involves the term bisimilarity, which is defined

via an equivalence relation over two state transition systems.

A.1. WSCCS Syntax

The novel syntax presented in (Tofts, 1994) has been slightly modified.

• Act refers to the finite of atomic action symbols, with # being the unit

action. For any
ia Act∈ , ! ia refers to the complementary action of

ia ,

which forms the basis of the communication. In case of communication,

the resulting action is the unit action, #. Let L be any subset of the Act

such that and #L Act L⊆ ∈ .

 { }1 2, ,.., mAct a a a=

• W stands for the set of weights, iw denotes each element of W .

{ }1 2, ,.., tW w w w= with each k

iw nw= :

174

o n Z
+∈ is the relative frequency of occurrence of an action with

which the weight is associated,

o k N∈ . k
w gives the action’s priority.

If an agent is able to perform more than one action at any time, the actions

whose priorities are equal to the highest priority may occur. The

probability of actions with equal weights is then determined by their

relative frequency. 0
nw is denoted by n.

The following is the set of rules for calculating the weights in case of

addition and multiplication with the assumption 'k k> .

 ' 'k k k k k
nw mw mw nw nw+ = + = (Eq.A.1)

 ()k k k k k
nw mw mw nw n m w+ = + = + (Eq.A.2)

 ' ' '* * ()k k k k k k
nw mw mw nw nm w

+= = (Eq.A.3)

• Agt denoting a set of agent variables, A Agt∈ ,

{ }1 2, ,.., lAgt A A A= ,

• :f Act Act→ , is the partial renaming function such that ()# #f = and,

() ()! !f a f a= .

• I is an arbitrary indexing set over N, { }1..I n= ,

• E is an agent expression which is formed by the following grammar:

The following is the WSCCS formal grammar

(), , ,WSCCSG V T E P= with

• V is a finite set of variables, { }, , , ,V E L w f X=

• T is a finite set of terminal symbols,

{ } { } { }0,1,2,3,4,5,6,7,8,9 0 .,:, , , , , (,),[,], , ,*, /T Agt Act fix= ∪ ∪ ∪ ∪ + × < Θ −

• E V∈ is the starting symbol,

175

• P is the finite set of production or substitution rules.

() ()

{ }()

1 2

1 2

0 .

: : ,

...

...

i j i i

i I

i

i I

l

m

E Agt Act E E E

E E L prio E f E

E w E fix X E i j I

L a

Agt A A A

Act a a a

∈

∈

→ ×

→ <

→ = ∈

→

→

→

∑

U

Figure A.1 WSCCS formal grammar

A.2 WSCCS Operational Semantics

The semantics of any formal language allows unambiguous interpretation of a

series of commands written in mentioned language. Transitional semantics of

WSCCS, described in (Tofts, 1994) results the agents to be represented as finite state

machines, which are later converted to transition graphs. In any transition graph,

agents appear at nodes, and weights and actions appear on labels of each edge. Then,

the congruence of two agents is investigated over the related transition graphs.

The semantics of WSCCS is presented in natural deduction style, where the

conclusion is a transition relation that is true provided by the hypothesis is true. The

hypothesis may contain one or more transition relations, and they belong to the

WSCCS semantics rule set.

Before listing the whole WSCCS semantics, it is necessary to define the transition

relations involved. There are two types of transitional relations; the least relation, and

the least multi-relation, for the transitions caused by actions, and for the transitions

caused by weights respectively.

• Least relation: Agt Act Agt→⊆ × × written as:
a

A B→

• Least multi-relation: ()bag Agt W Agt⊆ × ×a written as:
w

A Ba

 This is a weak relation, thus the relations of this kind may result in

 different outcomes, such as:

176

 1: 1: 2 :A A B+ +

 According to the least multi-relation, there are three possible transitions.

 However, by the addition rule of weights, the result should be equal to the

 2 : 2 :A B+ .

 Therefore, the following definition of weighted transition is given to have

 a consistent semantics.

 An agent A can make a weight based transition to B if

iww

iA B w A B
 

=  
 

∑a a

Together with the operators defined in formal WSCCS grammar, there is another

predicate involved in semantics.

()Ldoes E : It is a least relation, such that evaluates true if the agent E can perform

the actions from the set L. Usually, it is used to generate the behavior of restriction

operator, “<”.

177

.
a

a E E→

 A1
{ }: :

w

i i iw E i I E∈∑ a

 W1

' '

' '

a b

ab

E E F F

E F E F

→ × →

× → ×

 A2
' '

' '

w v

wv

E E F F

E F E F

×

× ×

a a

a

 W2

' '

'

a w

w

E E F F

E F E F

→ ×

× ×

a

a

 AW1
' '

'

w a

w

E E F F

E F E F

× →

× ×

a

a

 AW2

()
',

a

L

E E a L

does E

→ ∈
 A3 ()

()
', '

w

L

L

E E does E

does E

a
 W3

',

'

a

a

E E a L

E L E L

→ ∈

< → <

 A4
()',

'

w

L

w

E E does E

E L E L< <

a

a

 W4

()
()

()

'

'

a

f a

E E

f E f E

→

→

 A5
() ()

'

'

w

w

E E

f E f E

a

a

 W5

(){ }

()

:/ '

'

a

k i i i I

a

k

E fix F X E

fix F E

∈ →

→

 A6
(){ }

()

:/ '

'

w

k i i i I

w

k

E fix F X E

fix F E

∈ a

a

 W6

() ()

'

'

a

a

E E

prio E prio E

→

→

A7

()

() ()

'

', ', '' ' ''

'

k k
nw nw

n

E E k E k k E E

prio E prio E

 
∃ ∀ ≥ ∧ 

 
a a

a

 W7

Figure A.2 Operational semantics of WSCCS. All of the rules respect to the operators, whose

behaviors are described in syntax, except A6 and W6. The notation { }/ :i iE E X i I∈ is used to

state that substituting in E all occurrences of each Xi with the related Ei.

A.3 Congruence and Equational Theory

As an abstract term, congruence means, similarity between two objects. In

WSCCS, congruence refers to the equivalence relation between two automata (the

semantics allow us to consider the models as finite state machines), which is called

bisimilarity.

178

A.3.1 Congruence via Bisimilarity

Two kinds of bisimulation will be described, direct bisimulation and relative

bisimulation. The bisimulations described here are based on the accumulation

techniques of (Larsen & Skou, 1989).

2.6.5.17 A.3.1.1 Direct Bisimulation

Roughly speaking, if any two agents are said to be direct bisimulation equivalent,

that means they perform exactly the same set of transitions both weight based, and

action based, and the resulting agents of those transitions are identical as well.

The following definitions are given by (Tofts, 1994).

Definition A.1: P is an agent, and S is being a set of agents,

•
w

P Sa such that : ,
iw

iw w P Q Q S
 

= ∃ ∈ 
 

∑ a ; agent P is said to perform a

weight based transition with weight w, to a set of agents S, if some agents

in S, are the resulting agents of this transition(least multi relation).

•
a a

P S Q S P Q→ ⇔ ∃ ∈ ∧ → ; agent P performs an action based transition to

set of agents S, with action a, if and only if there exists some elements of S

which are resulting agents of the transition (least relation).

Definition A.2: An equivalence relation Pr PrR ⊆ × , Pr is the equivalence classes of

P with respect to R, is a direct bisimulation if (),P Q R∈ implies for all Pr/S R∈

that:

• ()
w w

w W P S Q S
 

∀ ∈ ⇔ 
 

a a ; if for all weight values, the agent P and Q are

performing the weight based transitions, and yielding the same set of agents

for the same weight values,

• ()
a a

a Act P S Q S
 

∀ ∈ → ⇔ → 
 

; if for all elements of action set, the agents P

and Q are performing action based transitions, and resulting in same set of

179

agents for the same actions,then, two agents, P and Q are said to be direct

bisimulation equivalent, and written as ~
d

P Q , if an equivalence relation R

exists between them.

2.6.5.18 A.3.1.2 Relative Bisimulation

Since direct bisimulation gives a strong equivalence if exists, relative frequency

notion cannot be covered, but instead total frequency is considered. However, we

want the following two agents are evaluated to be same.

1: #. 2 : #.A B+ and 3 : #. 6 : #.A B+

Thus, it is required to loosen the definition of equality, which shall be called

relative bisimulation.

Definition A.3: An equivalence relation Pr PrR ⊆ × , Pr is the equivalence classes of

P with respect to R, is a relative bisimulation if (),P Q R∈ implies that:

• ()1 2,c c Z
+∃ ∈ such that ()Pr/S R∀ ∈ and (),w v W∀ ∈ ,

()1 2

w v

P S Q S c w c v⇔ ∧ =a a

• ()Pr/S R∀ ∈ and ()a Act∀ ∈ ,
a a

P S Q S→ ⇔ →

Then, two agents, P and Q are said to be relative bisimulation equivalent, and

written as ~
r

P Q , if there exist a relative bisimulation between them.

180

A.3.2 Equational Theory

Instead of proving that all agents in an equivalence class, either relative

bisimulation, or abstract bisimulation, making the same transitions, one can compare

the definitions of agents at syntactical level, by using equational theory. That is,

equational theory is used to decide equality of agents in term of syntax.

•

Most of the symbols used in list of equational rules were introduced before,

the additional terms are defined in following:

• ()Ld E in Res2 that does the same job as ()Ldoes E in semantics, i.e.,

checks whether an agent can perform an action or not. It is recursively

defined as following:

− ()Ld E a L⇔ ∈

− () () ()L k L ii I
k I d E d E

∈
∃ ∈ ∧ ⇒ ∑

• maxw W in Prio2 is the maximum power of w occurring in W , a set of

weights.

• ()iwN in Prio2 is a projection from weights such that each iw is of the form

k
nw by definition :

() 0
def

k
nw nw=N

Equational Rules of WSCCS

• Sum: (){ }
() j

there is surjection : with

: : ,

and for all with then =E

i i j j j ii I j J

i

f I J

w E v E v w i I f i j

i f i j E

∈ ∈

 →


= = ∈ ∧ =


=

∑ ∑ ∑

• Exp1: (). . .a E b F ab E F× = ×

• Exp2: (). : : .
j j j jj J j J

a E v F v a E F
∈ ∈

× = ×∑ ∑

• Exp3: Q P P Q× = ×

• Exp4: () () ()(),
: : :i i j j i j i ji I j J i j I J

w E v F v w E F
∈ ∈ ∈ ×

× = ×∑ ∑ ∑

181

• Res1: ()
(). if

.
0 otherwise

a E L a L
a E L

 < ∈
< = 



• Res2: () () (){ }: : where |i i j j A ii I j J
w E L w E L J i I d E

∈ ∈
< = < = ∈∑ ∑

• Prio1: () (). .prio a E a prio E=

• Prio2: () () (): . wherei i j ji I j J
prio w E w prio E

∈ ∈
=∑ ∑ N

{ }(){ }max
| and w iw

iJ i I n w nw= ∈ ∃ =

• Ren: : : where i i i ii I i I
w E nw E n

∈ ∈
= ∈∑ ∑ P

