
 

DOKUZ EYLUL U
IVERSITY 

THE GRADUATE SCHOOL OF 
ATURAL A
D APPLIED 

SCIE
CES 

 

 

 

 

A MULTI AGE
T SYSTEM FOR URBA
 

TRAFFIC CO
TROL 

 

 

 

 

 

 

 

by 

Ahmet ŞAHA
 

 

 

 

 

 

 

 

 

 

April, 2008 

ĐZMĐR



 

                                                                                             

        

 

A MULTI AGE
T SYSTEM FOR URBA
 

TRAFFIC CO
TROL 

 

 

 

 

 

A Thesis Submitted to the  

Graduate School of 
atural and Applied Sciences of Dokuz Eylül University 

In Partial Fulfillment of the Requirements for the Degree of Doctor of 

Philosophy in Computer Engineering Program 

 

 

 

 

by 

Ahmet ŞAHA
 

 

 

 

 

 

 

April, 2008 

ĐZMĐR 



ii 

THESIS EXAMI
ATIO
 RESULT FORM 

 

We have read the thesis entitled “A MULTI AGE
T SYSTEM FOR URBA
 

TRAFFIC CO
TROL” completed by AHMET ŞAHA
 under supervision of 

PROF. DR. TATYA
A YAKH
O and we certify that in our opinion it is fully 

adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy. 

 

 

 

 

Supervisor 

 

 

 

 

Thesis Committee Member       Thesis Committee Member     

    

 

 

 

 

 

   

Examining Committee Member             Examining Committee Member            

    

 

 

 

 

Prof. Dr. Cahit HELVACI 

Director 

Graduate School of Natural and Applied Sciences 



iii 

 

ACK
OWLEDGEME
TS 

 

 I would like to express my sincere thanks and appreciation to my advisor, Prof. 

Dr. Tatyana Yakhno, for guidance, and for providing me with excellent facilities to 

pursue my work. I would like to express my appreciation to the thesis committee 

members; Prof. Dr. Alp Kut and Prof. Dr., Erol Uyar for their valuable comments 

and insightful remarks. I am also grateful to Aselsan Inc. that I work for; my chief, 

Miren Izaskun Gallastegi and my manager, B. Tarık Oranç for their continued 

support.  

 

I appreciate to the countless authors of all the free software that I have used 

during my research work - their tremendous efforts have significantly aided my 

work. Special thanks go to my friends, Oğuz, Olcay Akay brothers and Kemal 

Memiş. As a friend, as a colleague, and as a mentor, they have contributed to this 

thesis continuously. 

 

Finally, I am also thankful to my mother, my father and my sister for providing a 

constant source of encouragement and support, and being there for me at all times. 

                   

     

Ahmet ŞAHAN 



iv 

A MULTI AGE
T SYSTEM FOR URBA
 TRAFFIC CO
TROL 

 

ABSTRACT 

 

Traffic signal control is a system for synchronizing the timing of any number of 

traffic signals in a target road domain. These systems automate the process of 

adjusting signals to optimize traffic flow by reducing stops, overall vehicle delay and 

thus maximizing throughput. The study presented in this thesis proposes a new 

intelligent traffic light control that is quickly adaptive to changing environment. The 

new controller focuses on urban intersections and road lanes that are incoming to this 

intersection. The system inputs are traffic volumes on road lanes and the outputs are 

continuously changing light periods for the traffic light units in target intersections.  

The proposed system is based on a hierarchical multi agent model and a fuzzy 

controller is executed through this agent hierarchy. In addition to this local traffic 

light control, a reasoning engine is also integrated into the system to evaluate 

neighbor intersection situations. The outputs of the reasoning engine are also used for 

updating traffic light periods. All these work has been implemented on software basis 

and the results are given according to some sample intersection scenarios. The 

obtained results show that the proposed dynamic signalization system outperforms 

the fixed time-plan based controllers and generate better vehicle flows through 

intersections. 

 

Keywords: Multi Agents, Fuzzy Logic, Adaptive Control Systems, Traffic Lights 

 



v 

KE
TSEL TRAFĐK KO
TROLÜ ĐÇĐ
 ÇOKLU BĐR ARACI SĐSTEMĐ 

 

ÖZ 

 

Trafik sinyalizasyonu, hedef bir yol ağında yer alan trafik ışıklarının araç trafiğini 

düzenleme amaçlı olarak eş zamanlamasını gerçekleştiren bir sistemdir. 

Sinyalizasyon sistemleri, trafik ışık sürelerinin otomatik olarak değişmesini 

sağlayarak trafik akışının araçların durma ve bekleme sürelerini, kavşaktan geçen 

araç sayısını azami olarak arttırmayı hedefler. Bu tezde sunulan çalışma ile değişen 

trafik koşullarına hızlı uyum sağlayan akıllı bir trafik kontrolü önerilmektedir. Yeni 

trafik kontrol birimi, kentsel kavşaklar ve bu kavşaklara giriş yapan yol şeritlerine 

odaklanmaktadır. Önerilen sistemin girdi değerleri, izlenen kavşakta yer alan yol 

şeritlerindeki araç yoğunluklarıdır, çıktı değerleri de sürekli değişim içinde olan 

trafik ışıkları gösterim süre değerleridir. Önerilen trafik kontrol sistemi, bir hiyerarşi 

içerisinde tanımlı ve farklı rollere sahip çoklu aracı modeline dayanmaktadır. Bu 

yapı boyunca işletilen bulanık mantık kontrol ünitesi ile trafik süreleri 

belirlenmektedir.  Yerel kontrolü sağlayan bulanık mantık ünitesinin yanında diğer 

kavşakların durumunu da değerlendiren bölgesel etkileşim birimi de sisteme monte 

edilmiştir. Bu birimin ürettiği sonuçlar da yeni trafik sinyalizasyon sürelerinin 

hesaplamasına katılmıştır. Tüm bu tasarım çalışmaları Java yazılım platformunda 

uygulama ortamına aktarılmış ve sonuçları çeşitli seçilmiş kavşak senaryolar ışığında 

ifade edilmiştir. Elde edilen neticeler, önerilen dinamik sinyalizasyon sisteminin 

zaman eksenli sinyalizasyon sistemlerine göre kavşaklardan daha başarılı araç akışı 

sağladığı görülmüştür. 

 

Anahtar sözcükler: Çoklu Aracılar, Bulanık Mantık, Adaptif Denetim Sistemleri, 

Trafik Işıkları 

 



vi 

CO
TE
TS  

 

Page 

 

THESIS EXAMI
ATIO
 RESULT FORM ........................................................... ii 

 

ACK
OWLEDGEME
TS ......................................................................................iii 

 

ABSTRACT ............................................................................................................... iv 

 

ÖZ ................................................................................................................................ v 

 

CHAPTER O
E - I
TRODUCTIO
 ..................................................................... 1 

 

1.1 Area of Research ............................................................................................. 1 

1.2 Scope of Research ........................................................................................... 2 

1.3 Thesis Organization ........................................................................................ 4 

 

CHAPTER TWO - PRELIMI
ARY WORK ......................................................... 5 

 

2.1 Traffic Lights Control ..................................................................................... 5 

2.1.1 Pre-timed or Fixed Time Signal Controllers ............................................ 5 

2.1.2 Progression Schemes ................................................................................ 5 

2.1.3 Actuated Controllers ................................................................................. 6 

2.1.4 Traffic Responsive ................................................................................... 7 

2.1.5 Adaptive Controllers ................................................................................ 8 

2.2 Traffic Systems Terminology ......................................................................... 8 

2.3 Fuzzy Systems ................................................................................................. 9 

2.4 Agent Systems ............................................................................................... 12 

2.5 Neural Networks ........................................................................................... 14 

2.5.3 Feed-forward networks ........................................................................... 17 

2.5.4 The Back-Propagation Network ............................................................. 19 

2.5.5 Learning Process .................................................................................... 19 

2.6 Other System Solutions ................................................................................. 21 

 

CHAPTER THREE - ARCHITECTURAL MODEL .......................................... 26 



vii 

 

3.1 Main Model ................................................................................................... 26 

3.2 General Properties ......................................................................................... 29 

3.3 Assumptions .................................................................................................. 31 

3.4 Agents ........................................................................................................... 32 

3.4.1 Road Agent ............................................................................................. 32 

3.4.2 Light Agent ............................................................................................. 35 

3.4.3 Junction Agent ........................................................................................ 36 

3.4.3.1 Distributed Fuzzy Logic Controller ................................................. 40 

3.4.3.2 The Weighted Defuzzification Technique ....................................... 43 

3.4.3.3 Handling Multiple Road Flows in Junctions ................................... 46 

3.4.4 Intersection Agent .................................................................................. 46 

3.4.4.1 State Reasoning ............................................................................... 53 

3.4.4.2 Neural Network Integration ............................................................. 55 

3.4.4.3 Training data for Supervised Neural Networks ............................... 58 

3.4.5 Area Agent ............................................................................................. 58 

 

CHAPTER FOUR - IMPLEME
TATIO
 ........................................................... 61 

 

4.1 Coding Environment ..................................................................................... 61 

4.2 Agent Library Process ................................................................................... 62 

4.2.1 JADE Features ........................................................................................ 63 

4.3 Neural Network Process ................................................................................ 65 

4.3.1 Joone Features ........................................................................................ 66 

4.4 Software Specification .................................................................................. 68 

4.5 Traffic Simulators ......................................................................................... 72 

4.5.1 TSIS Simulator ....................................................................................... 73 

4.5.2 TSIS in Detail ......................................................................................... 74 

 

CHAPTER SIX - CO
CLUSIO
S ........................................................................ 79 

 

REFERE
CES ......................................................................................................... 81 

 

APPE
DICES .......................................................................................................... 86 

 



viii 

Appendix A - Input Fuzzy Set Generation .............................................................. 86 

Appendix B - Maximization Function for Agent Fuzzy Sets ................................. 87 

Appendix C - Database Graph for Configuration Tables........................................ 89 

Appendix D - Sample Traffic Network Scenarios .................................................. 90 

Scenario 1: The Simplest Junction ...................................................................... 90 

Scenario 2: An Intersection with No Neighbor and Two Junctions .................... 93 

Scenario 3: SOK MARKET Intersection – Bornova ......................................... 105 

Scenario 4: Ege University Hospital Intersection – Campus Link .................... 109 

Appendix E – Light Agent Program Code ............................................................ 114 

 



 

1 

CHAPTER O
E 

I
TRODUCTIO
 

 

1.1 Area of Research 

 

As the number of the vehicles on roads and highways continues to increase and 

distribute non-uniformly, the demand and expectations from the transportation 

systems grow in the same level too. However, roads and highways are unlikely to 

expand much due to cost and land supply so intelligent systems such as advanced 

traffic light controls become significantly important to operating our existing 

roadway systems at maximum performance.  

 

Interest in Intelligent transportation systems comes from the problems caused by 

the traffic congestion worldwide and a synergy of new information technologies for 

simulation, real-time control and communications networks. Traffic congestion has 

been increasing world-wide as a result of increased motorization, urbanization, 

population growth and changes in population density. Congestion reduces efficiency 

of transportation infrastructure and increases travel time, air pollution and fuel 

consumption. A statistical survey shows that the fuel consumed by vehicles stopping 

and idling is approximately 40% of network wide vehicular fuel consumption. 

 

In Today’s world, most traffic signals are still of the pre-timed type with fixed 

splits and offsets that operate different timing plans based on time of day, congestion 

patterns or operator navigation. This type of signals is generally very good when it 

operates with progressive flow of traffic on an arterial street. However, pre-timed 

signals cannot respond to dynamically changing traffic flow. Although the traffic 

pattern changes, it still tries to execute the same active cycle length and split plan.  

 

This type of operation often leads to the congestion if unusual traffic patterns 

occur or if there are major deviations in traffic flow. Furthermore, the timing plans in 



2 

 

use become obsolete unless they are checked regularly. Retiming also requires 

staffing that many organizations and administrations don’t have. 

 

The primary goal of an urban traffic control system must be regulating the vehicle 

flow patterns as fast and optimum as possible. In other words, it should have high 

efficiency to decrease vehicle delays by means of the management, in specific terms 

traffic lights are the main traffic control units. 

 

1.2 Scope of Research 

 

Intelligent systems such as adaptive traffic light controllers get specifically more 

attention to operate existing roadway systems at optimum performance. With the 

development of the computer technology and adapting it to the traffic engineering 

fields, fully automated models have been started to replace with manual operator 

assisted setting and optimization systems. These models generally combine the 

historical and current data with some intelligent techniques to estimate the optimal 

traffic light periods. These solutions aim to minimize vehicle delays and maximize 

total vehicle throughput while passing through an intersection or a group of them. 

 

Since the beginning of eighties, some adaptive traffic light controller systems 

have already been proposed. These can be classified into two main groups according 

to their approach to the problem (Van Katwijk, Van Koningsbruggen, De Schutter,  

& Hellendoorn, 2005) and (Wiering, Van Veenen, Vreeken, & Koopman, 2004)  

expresses the same classification in terms of microscopic and macroscopic models. 

 

• Vehicle-Oriented or Microscopic models focus on the control of the behavior 

of the individual vehicles. 

• Measure-Oriented or Macroscopic (Traffic Light-based) models focus on the 

control of density of traffic. 

 

Vehicle-Oriented models estimate the waiting periods of each vehicle that resides 

in incoming route queues to the junction and after the evaluation of these predicted 



3 

 

waiting times, it tries to minimize it by adjusting light periods. Applicability of these 

systems is very low because each vehicle should be controlled by a different module 

and some destination information might be required to estimate waiting times of the 

vehicles dynamically. Second type of the base models estimate density of the traffic 

and don’t concentrate on waiting times of the vehicles individually. Thus it tries to 

eliminate the local congestion by predicting new light periods. 

 

After the examination of the many proposed models and solutions to the traffic 

light control problem domain (Macroscopic models), the following results have been 

obtained: 

 

- Some of them have been precisely defined but they couldn’t be implemented 

or simulated in real-time. 

- A group of them have no practical results 

- Some of them have only been designed for single junctions or some strict 

topologies. 

- Some of them have different approach to the problem (Travel time 

minimization centric, vehicle-oriented etc.) 

 

After putting the general picture of the existing traffic control and signalization 

systems, it is seen that the traffic control strategies and policies are still hot topics 

and under research. Inspired from this point, the research presented with this thesis 

primarily addresses the problem of traffic flow management through intersections 

using traffic light control units. 

 

The core objectives of the proposed model are the usage of intelligent techniques 

and providing generalization to be able to apply the system concepts to any target 

traffic network domain.  The designed model focuses on traffic lights, junctions 

where the traffic lights are installed and intersections that consist of sub junction or 

junctions in a selected zone and tries to optimize the traffic light periods on local and 

global basis. The proposed solution looks have similarities with other Agent-based 

and fuzzy logic applied projects. However, the hierarchical multi-role agent 



4 

 

architecture, the independent and generic fuzzy logic implementation nature from the 

traffic network topologies differentiates our model than others. 

 

1.3 Thesis Organization 

 

The outline of the thesis is as follows. 

 

In Chapter 2, initially the traffic systems overview is given. The taxonomy of the 

Traffic Control systems is defined in detail. And then, the previously designed and 

developed adaptive traffic control systems are described. A group of these systems is 

now already in market as commercial products. 

 

Chapter 3 starts with the basic specification of the proposed controller system. 

The multi-role agent specifications, the agent hierarchy, distributed fuzzy controller 

flow and local and global congestion reasoning details are described here. This 

chapter is the core part of the thesis. Some extensions are referenced to Appendices.  

 

In Chapter 4, the implementation details of the project are described. The 

implementation part consists of the software development and simulation details with 

tested scenarios of the proposed model. The specification of the software 

development environment is firstly given and then, the tools and utilities that are 

used at project development cycle are described in detail.  

 

Chapter 5 defines the conclusion remarks according to the design, implementation 

and the test results of the thesis. Moreover, some future work possibilities are listed. 

After this chapter, the all reference list is given. 

 

At the end of the thesis, an Appendices section is given. Some references related 

with the design issues and test scenarios with their details result graphs and tables are 

described in the sub sections of the Appendices part. 

 



5 

 

CHAPTER TWO 

PRELIMI
ARY WORK 

 

2.1 Traffic Lights Control 

 

Modern traffic lights can be grouped into three parts: pre-timed, semi-actuated, 

and fully actuated. Pre-timed lights ignore the current state of traffic and follow a 

pre-defined timing strategy. Semi-actuated lights are normally used at intersections 

between a minor road and a major road: the major road is given the right of way 

unless a car is sensed waiting at the minor road. Fully actuated signals detect the 

presence of cars at all directions. The function of the controller in this mechanism is 

to measure traffic flow on all incoming ways to an intersection and to make new 

period assignments in accordance with traffic demand. The classification details are 

given below (Pearson, 2001). 

 

2.1.1 Pre-timed or Fixed Time Signal Controllers 

 

Under pre-timed operation, the master controller sets signal phases and the cycle 

length based on predetermined rates. These rates are determined from historical 

data.  Pre-timed signal control is appropriate for areas where traffic demand is very 

predictable (Pearson, 2001). 

 

2.1.2 Progression Schemes 

 

A progression scheme is a simple way of coordinating signals along an arterial, 

which is common in many urban areas.  The signals can be set manually to run in a 

constant, synchronous manner.  There are 3 different types of progression schemes 

(Pearson, 2001): 

 

Simultaneous: Under simultaneous progression, all signals along the route operate 

with the same cycle length and display green at the same time.  All traffic moves 



6 

 

at once and a short time later all traffic stops at the nearest intersection to allow 

cross street traffic to move.  This type of progression is typically used in 

downtown areas where intersections are close together, 300 to 500 ft, and 

uniformly spaced (Pearson, 2001). 

 

Alternate: For alternate progression, there is a common cycle length. However, 

each successive signal or group of signals shows opposite indications.  This type 

of progression is associated with uniform spacing of intersections. Ideal spacing is 

in the range of 1000 to 2.000 feet (Pearson, 2001).  

 

Limited or simple: Limited/simple progression schemes employ a common cycle 

length, though the relationship of the indications between intersections vary 

because spacing between intersections is not uniform, and therefore offsets at each 

intersection differ.  This type of progression scheme is typically used where traffic 

flow is uniform throughout the day (Pearson, 2001). 

 

Flexible: Flexible progression schemes are identical to simple progression 

schemes, except that the common cycle length can be changed to reflect changing 

traffic patterns.  Similar to limited or simple progression schemes, flexible 

progression schemes use different offsets between intersections (Pearson, 2001). 

 

2.1.3 Actuated Controllers 

 

An actuated controller operates based on traffic demands as registered by the 

actuation of vehicle and/or pedestrian detectors.  There are several types of actuated 

controllers, but their main feature is the ability to adjust the signal’s pre-timed phase 

lengths in response to traffic flow.  If there are no vehicles detected on an approach, 

the controller can skip that phase. The green time for each approach is a function of 

the traffic flow, and can be varied between minimum and maximum lengths 

depending on flows. Cycle lengths and phases are adjusted at intervals set by vehicle 

actuation of pavement loops (Pearson, 2001). 

 



7 

 

Semi-Actuated Control: A semi-actuated controller provides for traffic actuation 

of all phases except the main phase.  A continuous green is maintained on the 

major street except when a demand is registered by the minor street detector.  The 

right of way always returns to the major street when no vehicles are present on the 

minor street or a timing limit has been reached.  Semi-actuated operation is best 

suited for locations with low volume minor street traffic.  It may also be used to 

permit pedestrian crossings at mid street (Pearson, 2001).  

 

Full Actuated Control: Under full actuated control, the function of the controller is 

to measure traffic flow on all approaches to an intersection and make assignments 

of the right of way in accordance with traffic demand.  Full actuated control 

requires placement of detectors on all approaches to the intersection.  The 

controller’s ability to respond to traffic flow provides for maximum efficiency at 

individual locations. This type of control is appropriate for intersections where the 

demand proportions from each leg of the intersection are less predictable 

(Pearson, 2001). 

 

2.1.4 Traffic Responsive 

 

In traffic responsive mode, signals receive inputs that reflect current traffic 

conditions, and use this data to choose an appropriate timing plan from a library of 

different plans. An individual signal or a network of several signals may be traffic 

responsive. Capabilities include: (Pearson, 2001) 

 

Vehicle Actuated: uses data from presence detectors and modifies the phase splits 

based on vehicle actuation and gaps.  This procedure addresses current traffic and 

does not require traffic projections (Pearson, 2001). 

 

Future traffic prediction: The control system uses the volume data from system 

detectors and projects future conditions (Pearson, 2001). 

 



8 

 

Pattern Matching: The volume and occupancy data from system detectors are 

smoothed and weighted and compared with profiles in memory.  This enables 

identification of the stored profile most closely matching the existing traffic 

conditions.  When a pattern is identified, appropriate parameters are placed into 

operation (Pearson, 2001). 

 

2.1.5 Adaptive Controllers  

 

Adaptive Traffic Light controllers are currently the most advanced and complex 

control systems available. They are similar to fully actuated controllers, but instead 

of matching current conditions to existing timing plans, the system uses a real-time 

computer to create continuously an optimal timing plan. No library of timing plans is 

needed, which works well for areas with high rates of growth, where libraries of 

timing plans would need to be updated frequently. However, the success of these 

systems against traditional models is still on debate. For a discussion of all these 

studies, see (Roozemond & Rogier, 2000). 

 

2.2 Traffic Systems Terminology 

 

Traffic signal operation can be described in terms of phase splits, cycle lengths 

and offsets. A phase split defines the activation periods of red and green lights. The 

cycle length is the total time required for a complete sequence of signal phases and is 

typically between 60 to 120 seconds for a four-legged intersection. The offset 

between successive traffic signals is the time difference between the start of the 

green phase at an upstream intersection as related to the start of the green phase at an 

adjacent downstream intersection. 

 

Some notions associated with “traffic” are outlined as follows too:  

- Number of Vehicles: The number of vehicles in the system as a whole will 

depend on matters such as the capacity of roads, times of day, and similar factors. 

- Density of Traffic: This will be mainly a function of the number of vehicles 

and capacity of the roads. 



9 

 

- Speed of Traffic: The speed of vehicles along a road has a direct bearing upon 

the rate of traffic flow along that road. The speed of individual vehicles along a 

section of road depends upon a number of factors: car types, weather, road 

condition, road obstacles, number of cars, the speed of other cars, and so on. 

- Road Priority: Commonly, at any given intersection, one road will be more 

major than others. 

- Road Capacity: This is a property of individual road segments, since only a 

finite number of vehicles can travel along a road at any given time. The maximum 

capacity of a segment is the number of vehicles, which can fit on the road in 

stationary “bumber-to-bumper” traffic. 

 

2.3 Fuzzy Systems 

 
(Brule, 1985) gives a general introduction to Fuzzy Logic. The fuzzy system is an 

alternative to traditional notions of set membership and logic that has its origins in 

ancient Greek philosophy, and applications at the leading edge of Artificial 

Intelligence. Yet, despite its long-standing origins, it is a relatively new field, and as 

such leaves much room for development.  

 

The notion central to fuzzy systems is that truth values (in fuzzy logic) or 

membership values (in fuzzy sets) are indicated by a value on the range [0.0, 1.0], 

with 0.0 representing absolute Falseness and 1.0 representing absolute Truth. For 

example, let us take the statement (Brule, 1985):  

     "Jane is old." 

If Jane's age was 75, we might assign the statement the truth value of 0.80. The 

statement could be translated into set terminology as follows:  

     "Jane is a member of the set of old people." 

This statement would be rendered symbolically with fuzzy sets as:  

     mOLD(Jane) = 0.80 

 

where m is the membership function, operating in this case on the fuzzy set of old 

people, which returns a value between 0.0 and 1.0.  

 



10 

 

At this juncture it is important to point out the distinction between fuzzy systems 

and probability. Both operate over the same numeric range, and at first glance both 

have similar values: 0.0 representing False (or non-membership), and 1.0 

representing True (or membership). However, there is a distinction to be made 

between the two statements: The probabilistic approach yields the natural-language 

statement, "There is an 80% chance that Jane is old," while the fuzzy terminology 

corresponds to "Jane's degree of membership within the set of old people is 0.80." 

The semantic difference is significant: the first view supposes that Jane is or is not 

old (still caught in the Law of the Excluded Middle); it is just that we only have an 

80% chance of knowing which set she is in. By contrast, fuzzy terminology supposes 

that Jane is "more or less" old, or some other term corresponding to the value of 0.80. 

Further distinctions arising out of the operations will be noted below (Brule, 1985). 

 

The next step in establishing a complete system of fuzzy logic is to define the 

operations of EMPTY, EQUAL, COMPLEMENT (NOT), CONTAINMENT, 

UNION (OR), and INTERSECTION (AND). Before we can do this rigorously, we 

must state some formal definitions (Brule, 1985):  

 

Definition 1: Let X be some set of objects, with elements noted as x. Thus, 

   X = {x}. 

Definition 2: A fuzzy set A in X is characterized by a membership function  

mA(x) 

which maps each point in X onto the real interval [0.0, 1.0]. As mA(x) approaches 

1.0, the "grade of membership" of x in A increases.  

 

Definition 3: A is EMPTY iff for all x, mA(x) = 0.0.  

Definition 4: A = B iff for all x: mA(x) = mB(x) [or, mA = mB].  

Definition 5: mA' = 1 - mA.  

Definition 6: A is CONTAINED in B iff mA <= mB. 

Definition 7: C = A UNION B, where: mC(x) = MAX(mA(x),mB(x)).  

Definition 8: C = A INTERSECTION B where: mC(x) =MIN(mA(x), mB(x)).  

 



11 

 

It is important to note the last two operations, UNION (OR) and 

INTERSECTION (AND), which represent the clearest point of departure from a 

probabilistic theory for sets to fuzzy sets. Operationally, the differences are as 

follows (Brule, 1985):  

 

For independent events, the probabilistic operation for AND is multiplication, 

which (it can be argued) is counterintuitive for fuzzy systems. For example, let us 

presume that x = Bob, S is the fuzzy set of smart people, and T is the fuzzy set of tall 

people. Then, if mS(x) = 0.90 and uT(x) = 0.90, the probabilistic result would be 

(Brule, 1985):  

 

     mS(x) * mT(x) = 0.81 

whereas the fuzzy result would be:  

     MI/(uS(x), uT(x)) = 0.90 

 

The probabilistic calculation yields a result that is lower than either of the two 

initial values, which when viewed as "the chance of knowing" makes good sense. 

However, in fuzzy terms the two membership functions would read something like 

"Bob is very smart" and "Bob is very tall." If we presume for the sake of argument 

that "very" is a stronger term than "quite," and that we would correlate "quite" with 

the value 0.81, then the semantic difference becomes obvious. The probabilistic 

calculation would yield the statement (Brule, 1985): 

 

If Bob is very smart, and Bob is very tall, then Bob is a quite tall, smart person. 

The fuzzy calculation, however, would yield  

If Bob is very smart, and Bob is very tall, then Bob is a very tall, smart person. 

 

Another problem arises as we incorporate more factors into our equations (such as 

the fuzzy set of heavy people, etc.). We find that the ultimate result of a series of 

AND's approaches 0.0, even if all factors are initially high. Fuzzy theorists argue that 

this is wrong: that five factors of the value 0.90 (let us say, "very") AND'ed together, 

should yield a value of 0.90 (again, "very"), not 0.59 (perhaps equivalent to 



12 

 

"somewhat"). Similarly, the probabilistic version of A OR B is (A+B - A*B), which 

approaches 1.0 as additional factors are considered. Fuzzy theorists argue that a 

string of low membership grades should not produce a high membership grade; 

instead, the limit of the resulting membership grade should be the strongest 

membership value in the collection (Brule, 1985). 

 

The skeptical observer will note that the assignment of values to linguistic 

meanings (such as 0.90 to "very") and vice versa, is a most imprecise operation. 

Fuzzy systems, it should be noted, lay no claim to establishing a formal procedure 

for assignments at this level; in fact, the only argument for a particular assignment is 

its intuitive strength. What fuzzy logic does propose is to establish a formal method 

of operating on these values, once the primitives have been established. Fuzzy 

systems, including fuzzy logic and fuzzy set theory, provide a rich and meaningful 

addition to standard logic. The mathematics generated by these theories is consistent, 

and fuzzy logic may be a generalization of classic logic. The applications which may 

be generated from or adapted to fuzzy logic are wide-ranging, and provide the 

opportunity for modeling of conditions which are inherently imprecisely defined, 

despite the concerns of classical logicians. Many systems may be modeled, 

simulated, and even replicated with the help of fuzzy systems, not the least of which 

is human reasoning itself (Brule, 1985). 

 
2.4 Agent Systems 

 

An agent is basically a software that has its own life-cycle (autonomy). It is 

capable of making independent decisions and taking actions to satisfy internal goals 

based upon its perceived environment that is shared. (Tanenbaum & van Steen, 2002, 

p. 173-180)  

 

(Nikraz, Caire, & Bahri, 2006) gives an introduction about agent systems and 

agent based programming. The term agent is very broad and has different meanings 

to different people. However, on close observation of the literature, it is sufficient to 

say that two usages of the term agent can be identified: the weak notion of agency 

and the strong notion of agency. The weak notion of agency constitutes the bare 



13 

 

minimum that most researchers agree on, while the stronger notion of agency is more 

controversial and a subject of active research.  

 

The weak notion of agency denotes a software-based computer system with the 

following properties (Nikraz, Caire, & Bahri, 2006, p.6):  

 • Autonomy: agents operate without the direct intervention of humans or 

others, and have some kind of control over their actions and internal state.  

 • Social ability: agents interact with other agents (and possibly humans) via 

some kind of agent communication language.  

 • Reactivity: agents perceive their environment and respond in a timely 

fashion to changes occurring therein.  

 • Pro-activeness: in addition to acting in response to their environment, agents 

are able to exhibit goal-directed behavior by taking the initiative.  

 

The strong notion of agency is an extension of the weaker notion, and advocates 

additional humanistic, mental properties such as belief, desire, and intention (BDI). 

Consistent with the weak notion of agency, it may be said that the software agents 

are application programs that communicate with each other in an expressive agent 

communication language. Though at first this definition may seem a little simplistic, 

it allows one to clearly identify what constitutes a multi-agent system, i.e. agents are 

just pieces of autonomous code, able to communicate with each other using an agent 

communication language. The view of agents assumed in the proposed methodology 

is based on this definition. Specifically, the methodology assumes the following 

definition for a software agent (Nikraz, Caire, & Bahri, 2006, p.6):  

 

agents reside on a platform that, consistent with the presented vision, 

provides the agents with a proper mechanism to communicate by 

names, regardless of the complexity and nature of the underlying 

environment (i.e. operating systems, networks, etc).  

 

A multi-agent system (MAS) is a system composed of several software agents, 

collectively capable of reaching goals that are difficult to achieve by an individual 



14 

 

agent or monolithic system (A monolithic architecture is where processing, data and 

the user interface all reside on the same system). Although MAS is still strictly a 

research topic, many graphic computer games today are developed using MAS 

algorithms and MAS frameworks. MAS is applicable in transportation, logistics, 

graphics, GIS systems as well as in many other fields. It is widely being advocated to 

be used in networking and mobile technologies, to achieve automatic and dynamic 

load balancing, high scalability, and self healing networks. 

 

Agent-based software engineering is a relatively new field and can be thought of 

as an evolution of object-oriented programming. Though agent technology provides a 

means to effectively solve problems in certain application areas, where other 

techniques may be deemed lacking or cumbersome, there is a current lack of mature 

agent-based software development methodologies. This deficiency has been pointed 

out as one of the main barriers to the large-scale uptake of agent technology. Thus, 

the continued development and refinement of methodologies for the development of 

multi-agent systems is imperative, and consequently, an area of agent technology 

deserving significant attention (Nikraz, Caire, & Bahri, 2006, p.2).  

 

2.5 
eural 
etworks 

 

(Stergiou & Siganos, 1987) gives a detailed chapter about Neural Networks. An 

Artificial Neural Network (ANN) is an information processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process 

information. The key element of this paradigm is the novel structure of the 

information processing system. It is composed of a large number of highly 

interconnected processing elements (neurones) working in unison to solve specific 

problems. ANNs, like people, learn by example. An ANN is configured for a specific 

application, such as pattern recognition or data classification, through a learning 

process. Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurones. This is true of ANNs as well.  

 



15 

 

Neural networks, with their remarkable ability to derive meaning from 

complicated or imprecise data, can be used to extract patterns and detect trends that 

are too complex to be noticed by either humans or other computer techniques. A 

trained neural network can be thought of as an "expert" in the category of 

information it has been given to analyse. This expert can then be used to provide 

projections given new situations of interest and answer "what if" questions. 

Other advantages include (Stergiou & Siganos, 1987, Section 1):  

 

1. Adaptive learning: An ability to learn how to do tasks based on the 

data given for training or initial experience.  

2. Self-Organization: An ANN can create its own organization or 

representation of the information it receives during learning time.  

3. Real Time Operation: ANN computations may be carried out in 

parallel, and special hardware devices are being designed and manufactured 

which take advantage of this capability.  

4. Fault Tolerance via Redundant Information Coding: Partial 

destruction of a network leads to the corresponding degradation of 

performance. However, some network capabilities may be retained even with 

major network damage (Stergiou & Siganos, 1987, Section 1).  

 
An artificial neuron is a device with many inputs and one output. The neuron has 

two modes of operation; the training mode and the using mode. In the training mode, 

the neuron can be trained to fire (or not), for particular input patterns. In the using 

mode, when a taught input pattern is detected at the input, its associated output 

becomes the current output. If the input pattern does not belong in the taught list of 

input patterns, the firing rule is used to determine whether to fire or not (Stergiou & 

Siganos, 1987, Section 3). 

 



16 

 

 

  Figure 2.1 A simple neuron scheme. 

 

The previous neuron doesn't do anything that conventional computers don't do 

already. A more sophisticated neuron (Figure 2) is the McCulloch and Pitts model 

(MCP). The difference from the previous model is that the inputs are 'weighted', the 

effect that each input has at decision making is dependent on the weight of the 

particular input. The weight of an input is a number which when multiplied with the 

input gives the weighted input. These weighted inputs are then added together and if 

they exceed a pre-set threshold value, the neuron fires. In any other case the neuron 

does not fire (Stergiou & Siganos, 1987, Section 3).  

 

 

     Figure 2.2 An MCP neuron. 

 

In mathematical terms, the neuron fires if and only if;  

X1W1 + X2W2 + X3W3 + ... > T  

 

The addition of input weights and of the threshold makes this neuron a very 

flexible and powerful one. The MCP neuron has the ability to adapt to a particular 



17 

 

situation by changing its weights and/or threshold. Various algorithms exist that 

cause the neuron to 'adapt'; the most used ones are the Delta rule and the back error 

propagation. The former is used in feed-forward networks and the latter in feedback 

networks (Stergiou & Siganos, 1987, Section 3).  

 

2.5.3 Feed-forward networks 

 

Feed-forward ANNs (Figure 2.3) allow signals to travel one way only; from input 

to output. There is no feedback (loops) i.e. the output of any layer does not affect that 

same layer. Feed-forward ANNs tend to be straight forward networks that associate 

inputs with outputs. They are extensively used in pattern recognition. This type of 

organisation is also referred to as bottom-up or top-down.  

 
          Figure 2.3 The feed forward network. 

 
The commonest type of artificial neural network consists of three groups, or 

layers, of units: a layer of "input" units is connected to a layer of "hidden" units, 

which is connected to a layer of "output" units (See Figure 2.3). The activity of the 

input units represents the raw information that is fed into the network. The activity of 

each hidden unit is determined by the activities of the input units and the weights on 

the connections between the input and the hidden units. The behavior of the output 

units depends on the activity of the hidden units and the weights between the hidden 

and output units (Stergiou & Siganos, 1987, Section 4). 

 



18 

 

This simple type of network is interesting because the hidden units are free to 

construct their own representations of the input. The weights between the input and 

hidden units determine when each hidden unit is active, and so by modifying these 

weights, a hidden unit can choose what it represents. We also distinguish single-layer 

and multi-layer architectures. The single-layer organization, in which all units are 

connected to one another, constitutes the most general case and is of more potential 

computational power than hierarchically structured multi-layer organizations. In 

multi-layer networks, units are often numbered by layer, instead of following a 

global numbering. The behavior of an ANN (Artificial Neural Network) depends on 

both the weights and the input-output function (transfer function) that is specified for 

the units. This function typically falls into one of three categories (Stergiou & 

Siganos, 1987, Section 4):  

 

• linear (or ramp) 

• threshold 

• sigmoid 

 

For linear units, the output activity is proportional to the total weighted output. 

For threshold units, the output are set at one of two levels, depending on whether 

the total input is greater than or less than some threshold value. For sigmoid units, 

the output varies continuously but not linearly as the input changes. Sigmoid units 

bear a greater resemblance to real neurons than do linear or threshold units, but all 

three must be considered rough approximations. In order to make a neural network 

that performs some specific task, we must choose how the units are connected to one 

another (see figure 2.3), and we must set the weights on the connections 

appropriately. The connections determine whether it is possible for one unit to 

influence another. The weights specify the strength of the influence (Stergiou & 

Siganos, 1987, Section 4). 

 

 

 



19 

 

2.5.4 The Back-Propagation &etwork 

 

In order to train a neural network to perform some task, we must adjust the 

weights of each unit in such a way that the error between the desired output and the 

actual output is reduced. This process requires that the neural network compute the 

error derivative of the weights (EW). In other words, it must calculate how the error 

changes as each weight is increased or decreased slightly. The back propagation 

algorithm is the most widely used method for determining the EW. The back-

propagation algorithm is easiest to understand if all the units in the network are 

linear. The algorithm computes each EW by first computing the EA, the rate at 

which the error changes as the activity level of a unit is changed. For output units, 

the EA is simply the difference between the actual and the desired output. To 

compute the EA for a hidden unit in the layer just before the output layer, we first 

identify all the weights between that hidden unit and the output units to which it is 

connected. We then multiply those weights by the EAs of those output units and add 

the products. This sum equals the EA for the chosen hidden unit. After calculating all 

the EAs in the hidden layer just before the output layer, we can compute in like 

fashion the EAs for other layers, moving from layer to layer in a direction opposite 

to the way activities propagate through the network. This is what gives back 

propagation its name. Once the EA has been computed for a unit, it is straight 

forward to compute the EW for each incoming connection of the unit. The EW is the 

product of the EA and the activity through the incoming connection. Note that for 

non-linear units, the back-propagation algorithm includes an extra step. Before back-

propagating, the EA must be converted into the EI, the rate at which the error 

changes as the total input received by a unit is changed (Stergiou & Siganos, 1987, 

Section 4).  

 
2.5.5 Learning Process 

 

Every neural network possesses knowledge which is contained in the values of the 

connections weights. Modifying the knowledge stored in the network as a function of 

experience implies a learning rule for changing the values of the weights. 

Information is stored in the weight matrix W of a neural network. Learning is the 



20 

 

determination of the weights. Following the way learning is performed, we can 

distinguish two major categories of neural networks (Stergiou & Siganos, 1987, 

Section 5): 

 

Fixed networks in which the weights cannot be changed, i.e. dW/dt=0. In such 

networks, the weights are fixed a priori according to the problem to solve.  

 

Adaptive networks which are able to change their weights, i.e. dW/dt not= 0. 

All learning methods used for adaptive neural networks can be classified into two 

major categories: 

 

Supervised learning which incorporates an external teacher, so that each output 

unit is told what its desired response to input signals ought to be. During the 

learning process global information may be required. Paradigms of supervised 

learning include error-correction learning, reinforcement learning and stochastic 

learning. An important issue concerning supervised learning is the problem of 

error convergence, i.e. the minimization of error between the desired and 

computed unit values. The aim is to determine a set of weights which minimizes 

the error. One well-known method, which is common to many learning 

paradigms, is the least mean square (LMS) convergence. 

 

Unsupervised learning uses no external teacher and is based upon only local 

information. It is also referred to as self-organization, in the sense that it self-

organizes data presented to the network and detects their emergent collective 

properties. A neural network learns off-line if the learning phase and the operation 

phase are distinct. A neural network learns on-line if it learns and operates at the 

same time. Usually, supervised learning is performed off-line, whereas 

unsupervised learning is performed on-line (Stergiou & Siganos, 1987, Section 5). 

 

 

 



21 

 

2.6 Other System Solutions 

 

In the following paragraphs, the known traffic control systems are described 

shortly and the primitive properties of these systems from the positive and negative 

points of view are emphasized. 

 

UTCS (Urban Traffic Control System): (Pearson, 2001) gives a short description 

about a centralized traffic control system that controls all intersections in a system 

with fixed or variable timing plans, developed by the Federal Highway 

Administration (FHWA). UTCS generates fixed timing schedules off-line based on 

average traffic conditions for a specified time of day. 

 

SCATS (Sydney Coordinated Traffic Adaptive System): is a dynamic control 

system with a decentralized architecture (Pearson, 2001). It updates the intersection 

cycle length using the detectors. The basic traffic data used is the “degree of 

saturation”, defined as the ratio of the effectively used green time to the total 

available green time. Basic limitation of this approach is that no major changes are 

permitted. Each light must have the same length cycle to remain in sequence with 

every other light. Therefore, SCATS can not make taking the advantage of major 

shifts in traffic patterns. 

 

SCOOT (Split Cycle and Offset Optimization Technique) is a centralized traffic 

computerized control system developed at the Transportation Road Research 

Laboratory in the U.K.  It is an enhancement over first generation UTCS systems and 

provides real-time adaptive control.  SCOOT uses system detectors to measure traffic 

flow profiles in real time, and along with predetermined travel times and the degree 

of saturation (the ratio of flow-to-capacity), predicts queues at intersections. 

Adjustments of cycle length, phase splits and offsets are made in small steps to 

operate at a preset degree of saturation (usually 90%).  Tests have shown that 

SCOOT is most effective when demand approaches, but is less than, capacity, where 

demand is unpredictable, and when distances between intersections are short. It 

knows how many cars are about to arrive at each light it controls, and thus figures 



22 

 

out which lights should get priority. SCOOT’s objective is to minimize the sum of 

the average queues in an area. At fixed intervals, it modifies the splits, offsets and 

cycle times of each signal. SCOOT is slightly more sophisticated design than 

SCATS. However it has still the same limitation with SCATS. 

 

Expert System: An expert system uses a set of given rules to decide upon the next 

action. (Findler & Stapp, 1992) proposes that a network of roads is connected by 

traffic light-based expert systems. These expert systems can communicate each other 

for synchronization and the system could optimize rules and learn new rules. 

 

UTOPIA/SPOT: This PC based system uses a Rolling Horizon Optimization 

technique. It is economic to implement in a small town with as little as three or four 

intersections and is scalable into a large city system. The system uses an industrial 

grade single board PC card which can be installed in a wide range of existing traffic 

signal controllers. The card takes control of the unit and communicates with 

neighboring control units upstream and downstream of its location. 

 

Each traffic light controller becomes a node in a local area network, with TCP/IP 

capability. Data is exchanged with neighboring intersections every 3 seconds and 

optimization is constantly performed over a rolling horizon 2 minute time frame. 

Public transport and emergency vehicle priority is supported, without sacrificing 

adaptive performance. Public transport priority operates on a selective priority basis 

– i.e. only vehicles running behind schedule receive priority at signalized 

intersections.  

 

The UTOPIA / SPOT system has delivered increases of up to 35% in public 

transport speeds and 30% in private vehicle traffic speeds, when compared with fixed 

time signal systems. UTOPIA/SPOT is one of the popular adaptive control systems. 

These systems are powerful when the number of detectors installed at intersections is 

satisfactorily high and the parameter configurations are very reliable.  

 



23 

 

Fuzzy Logic Model: Fuzzy Logic offers a formal way of handling terms like 

“more”, “less”, “longer” etc., so rules like “if there is more traffic from south to north 

then the lights should stay green longer” can be reasoned with. (Taale & others, 

1998) tried simulated a fuzzy logic traffic system. It measures the traffic the same 

way SCATS does, it is capable of determining how many cars pass through a given 

green light. It then applies this data to a set of 40 rules and adjusts the timings of the 

lights to correspond to large trends in traffic movement. This proposed design 

appears to be effective in simulations. A side effect of this research is the crucial 

point of consistency among all the lights. When the changes in timings are applied to 

only three lights and left other lights in standard cycle, the number of stops a car 

faced increased dramatically. 

 

Reinforcement Learning Model: In simplest terms, reinforcement learning is used 

to learn agent control by letting the agent (can be traffic light or a vehicle) interact 

with its environment and learn from the obtained feedback (reward signals). Using a 

trial-and-error process, a reinforcement learning agent is able to learn a policy that 

optimizes the cumulative reward intake of the agent over time. For traffic light 

control it has first been studied by (Thorpe, 1997). He used a traffic light-based value 

function. A neural network is used for this value function that predicts the waiting 

time for all cars standing at the junction. (Thorpe, 1997) trained only one single 

traffic light controller and tested it by instantiating on a grid of 4x4 traffic lights. The 

system outperformed both fixed and rule-based controllers. The disadvantage of this 

model is that the difficulty to compute total trip waiting times for all road users 

standing at the traffic node, since this quantity has a large variance. To eliminate this 

problem, (Shen & Norrie, 2001) uses a bit different approach: A predictor is made 

for each car to estimate the waiting time of the car alone when the light is green or 

red. Then a voting scheme adds all predicted waiting times of cars for different 

traffic node decisions that will be used to minimize the overall waiting time. 

 

(Cools, Gershenson & D’Hooge, 2005) points out an application self organizing 

logic to the control of traffic lights in a realistic simulation. The given concept is 

simple: counting the vehicles and making decisions to switch to green or red signal 



24 

 

periods. The solution is green wave centric and it tries to optimize the vehicle 

densities caused by standard green waves. The results are very impressive. However, 

because of its design principles only focused to straightforward intersection network, 

it can not be ported to isolated intersections or to the complex ones.  

 

(Lee, J., Lee, K., Seong, Kim & Lee-Kwang, 1995) describes the use of fuzzy 

logic in controlling multiple junctions. Controllers at target point collect information 

at previous and next junctions, thus to provide green wave functionalities. The model 

outperforms a fixed light controller, and is best at both light and heavy traffic. The 

controller could easily handle changes in traffic flow. However it is strictly 

dependent on intersection topologies and requires some specific parameter 

adjustments. 

  

(Liu, 2007) argues that Fuzzy Controller is much likely a traffic police who makes 

quick decisions by using interrelated qualitative knowledge. Also, it tells that Fuzzy 

Logic is more appropriate for single intersection management because of insufficient 

coverage of large and complex traffic networks.  

 

(Eagan, Lamstein, Mappus, 2003) presents Intelligent Agent architecture for the 

traffic light control. Intelligent Traffic signalling agents and Road Segment agents try 

to perform their own tasks, and try to achieve local optimality. One or more 

coordinator agents can communicate with the group of these agents for global 

performance. All agents act upon their BDI (Belief, Desire, and Intention) properties. 

In Intelligent Agent terminology, Beliefs represent the informational state of the 

agent, Desires (or goals) represent the motivational state of the agent, Intentions 

represent the deliberative state of the agent. Although the model has a well-defined 

architecture, no practical results are presented. 

 

The research studies show that the most traffic controllers are still operator 

assisted; pre-timed control systems or type of switching a group of plans based on a 

date/time information or vehicle densities. As it is stated before, those types of the 

systems can not manage dynamic changes in traffic flow. In order to handle all traffic 



25 

 

patterns, many adaptive traffic controller systems have already been proposed. 

However, there exist problems in these adaptive systems: Some of them are designed 

for only single intersection; some of them are strictly designed for a specific 

intersection arterial or limited network topologies and some of them have different 

approaches to the problem such as travel time minimization centric or some 

dependencies (i.e. reliable communication, lots of parameter adjustments etc.). 



 

26 

CHAPTER THREE 

ARCHITECTURAL MODEL  

 

The solution model defined here puts a new adaptive traffic control framework 

that tries to eliminate the deficiencies of the existing signalization control systems. In 

this thesis, we concentrate on Measure-Oriented models (traffic-light based 

macroscopic model) and to make global decisions some connectivity relations are 

defined between intersections. The proposed solution is mainly based on Multi-

Agent paradigm.  

 

3.1 Main Model 

 

Our system is composed of several agent roles and they communicate with each 

other in the form of message communication or changes in their shared environment. 

There are five types of agents defined here: Road Agent, Light Agent, Junction 

Agent, Intersection Agent and Area Agent. There is a hierarchy between these agents 

shown as follows: 



27 

 

 

            Figure 3.1 The general agent hierarchy of the system. 

 

The objective of hierarchy construction is to decrease the complexity of control. 

Each upper agent will control its lower level agents by means of peer to peer 

communication methods.  For the following traffic network, the agent schema is 

formed as follows: 



28 

 

     Figure 3.2 A sample traffic network. 

 

Area agent represents the Regional Center in Figure 3.2 that is the global monitor 

of a target traffic network which consists of the tightly coupled intersections. 

Intersection agent represents traffic cross-point. In a traffic cross-point, it has to be at 

least one junction. If more tightly coupled junctions exist in an intersection, they are 

also controlled by the same intersection agent. This generally happens in intersection 

environments where there are so many road lanes incoming and outgoing. On the 

other hand, A Junction agent represents a transition controller: if one side is open, 

then other side should wait. Light agent represents controller of coupled road lanes 

on opposite directions and Road agent represents one-way lane traffic. 

 

If this project wants to be executed on a selected network, the following 

guidelines should be followed for the configuration: 

 

• Each incoming road direction (to the junction) is assigned to one Road Agent 

• Each unique traffic light is assigned to one Light Agent 

• Each junction is assigned to one Junction Agent 

• Each intersection is assigned to an Intersection Agent 

• Each tightly coupled intersection network is assigned to one Area agent. 



29 

 

 

Multi-agent model is the one side of the system. In addition to this, a fuzzy logic 

controller that is implemented from Road Agent to Junction Agent, neural network 

progress that is embedded in each Intersection agent and finally, local and global 

reasoning embedded in Intersection Agent are defined. 

 

3.2 General Properties 

 

• This system will try to optimize vehicle densities (volumes) on target road 

lanes that are incoming to intersection. 

• Optimization will be done by decreasing or increasing of red period of traffic 

lights. Cycle time is assumed unchangeable. However, it may be open to small shifts. 

• Junction to Junction in an intersection and Junction to Neighbor Junction 

between intersection lists, Light grouping lists are kept in a database. 

• Fuzzy Controller is implemented across the agents: Road Agent, Light Agent 

and Junction Agent. 

• To provide learning ability and enhance decision-making, a neural network 

module is implemented in Intersection Agent. 

• Intersection Agent makes a rule-based reasoning based on local junction and 

neighbor intersection states. The result of reasoning is then used to generate 

commands to each local junction agent by launching a neural net processor. 

• Our junction control design is explicitly focused on a road flow at each time 

slice. At each slice, the most overloaded one is selected for the optimization. 

Therefore, if one directional road flow is constantly at high level then it always gets 

the highest green light and lowest red light periods. 

• The general system view is given in the following figures: 



30 

 

 

    Figure 3.3 The general architectural view of the system. 

 



31 

 

 

            Figure 3.4 The messaging between agents. 

 

3.3 Assumptions 

 

• There is no yellow light period defined in this system. It is assumed as a 

portion of the green light. 

• There is no direct synchronization between intersections. However, on behalf 

of communication between intersection agents, it is assumed that there is a cascaded 

synchronization and it may provide some kind of green wave opportunity for the 

vehicles. Note that green wave is a simple model applied to the traffic lights that 

have predicted patterns. Green wave algorithms are mostly applied to pre-timed 

controllers.  



32 

 

• There is no turn movement control in an intersection. On the other side, if 

turn movements are controlled by traffic lights, they are integrated to the junctions in 

triple level. 

• There are minimum values for the red light periods. It is stated as %10 of 

cycle time. 

• Road lane densities will be generated by a simulator (Random number or a 

pre configured file). In real life, there are some devices called RTMS (Real Time 

Monitoring System) that watches the target road lane segment and generates an 

occupancy-density volume data which shows the vehicle usage rate of road for a 

period of time. 

 

3.4 Agents 

 

In the following sub-chapters, each agent, its roles, actions, and their interactions 

with other agents are given in detail. 

 

3.4.1  Road Agent 

 

Road Agent is the bottom unit of the system. These are responsible of sensing one 

roadway direction. It estimates the density of road that is occupied by vehicles. This 

estimation is then processed to obtain a fuzzy data set. 

 

The estimation is done instantly. It means that Road Agent waits a request from 

its master agent, Light-Agent. When it gets the request, it reads density from the 

sensor and generates fuzzy set, and then sends it back to the Light Agent as a reply.  

 

Road Agent is the starting point of the fuzzy controller implementation. Each 

density estimated is translated into a fuzzy input set. The fuzzy input graph is as 

follows: 



33 

 

 

        Figure 3.5 The fuzzy input data set graph. 

 

Depending on this graph, the following data structure is defined. Dominant State 

is also estimated by selecting the highest value group. 

 

Fuzzy Input Set 

- Low value rate; (0<x<1) 

- Normal value rate; (0<x<1) 

- High value rate; (0<x<1) 

- Too_High value rate; (0<x<1) 

 

The data structure is filled by a case based evaluation that is given in Appendix A. 

 

The road agent work flow diagram is given in Figure 3.6. As it is seen from the 

diagram, there is a registration phase at start-up. Master, Light Agent requires the 

addresses of Road Agents to send and receive messages. To implement this 

functionality, during start-up, each road agent registers itself to System level name 

service. The parameters that are used for the registration: 

 



34 

 

- Agent Name (its unique id) 

- Group Name (Sub-Group Name, Ex: L-1) 

 

     Figure 3.6 The road agent flowchart diagram. 

 

3.4.1.1 Vehicle Flow between Road Agents 

 

In order to get some simulative results, communication channels have been 

established between road agents. This is required because some road directions have 

no direct input generator. They get vehicle flow from previous road lanes according 

to the topological positioning. In order to transfer vehicle flow to these intermediate 

road directions, a new configuration table has been constructed. This table provides 

the leaking rate for transferring vehicle densities from source road lanes to target 

road lanes. Leak rate is parametric and can be changed anytime. 

 

Table 3.1 Road to road connections configuration table 

SourceRoad TargetRoad LeakRate TargetMaster 

Road-ID Road-ID %value Junction-ID 

 



35 

 

Road lanes that have input generator (detector) are simulated in our programs 

using data files. Each data file has same name with Road Agent. Whenever a request 

comes from the master Light Agent, Road Agent reads its detector information from 

file and if exists from previous Road agent communication channel and then 

combines them for the “fuzzification”. 

 

3.4.2 Light Agent 

 

A light agent represents a traffic light in an intersection. It mainly controls its 

slave Road Agent(s). The work-flow diagram of Light Agent is given in Figure 3.7. 

When the Light Agent starts, it first registers itself to System-level name service, 

because Junction Agent, Master of Light Agents should find the addresses of its 

slave Light Agents to communicate. During registration, as in Road Agent, the 

following parameters are used: 

 

- Agent Name (Sub-Group Name, Ex: L-1) 

- Group Name: (Super-Group Name, Ex: Junction-1) 

 

All actions defined in Light Agent: Waiting Fuzzy Data Request from Junction 

Agent, Waiting New Red Light Period from Junction Agent and periodically 

collecting fuzzy data of Road Agents, are executed as parallel and simultaneously. 



36 

 

 

Figure 3.7 The light agent flow diagram. 

 

After Light Agent collects all fuzzy data sets of dependent Road Agents, it 

forwards them into a maximum function. This function is applied to the members of 

fuzzy data set one by one. The maximization function is given in Appendix B. 

 

3.4.3 Junction Agent 

 

This agent contains the main intelligence part of the system. It collects the fuzzy 

data sets of its slave light agents and then applies the fuzzy controller to this data set. 

The output of the fuzzy controller will be the estimated change rate of red light 

period for one chosen light agent. 

 

When the Junction Agent starts, it first registers itself to System-level name 

service, because Intersection Agent, Master of Junction Agents should find the 

addresses of its slave Junction Agents to communicate. During registration, as in 

Light Agent, the following parameters are used: 

 



37 

 

- Agent Name (Sub-Group Name, Ex: Junction-1) 

- Group Name: (Super-Group Name, Ex: I-1) 

 

This agent has four parallel actions: “FuzzyCollector”, 

“WaitIntersectionCommand”, “WaitRequestFromIntersection”. 

 

1. “FuzzyCollector” gets the fuzzy data sets of dependent Light Agents and then 

processes them to estimate the initial change rate. This action is time-cyclic and the 

timer frequency is parametric. 

2. “WaitIntersectionCommand” waits a command message from the Master, 

Intersection agent. This message defines the general purpose of the intersection. The 

incoming data type is directly processed to decrease or increase the red light period 

of the reference group. 

3. “WaitRequestFromIntersection” sends its fuzzy state to Intersection agent 

upon its request. 

 

The work flow diagrams of Junction Agent actions are given in Figure 3.8, 3.9 

and Figure 3.10. The registration part is almost the same like other mentioned agents 

and it provides that Intersection agent finds the address of this Junction Agent to 

send messages. 

 

One of the intelligence functionalities is fuzzy logic that is implemented in 

“FuzzyCollector” Behavior.  After collecting fuzzy set values of its dependent Light 

Agents, they are classified into two groups according to pre-defined correlation table. 

This table keeps which light agent takes place in which group. An example of 

grouping of light agents is given below. 

 

Table 3.2 Reference-Opponent light agent groups relation table 

Intersection 
ame Junction 
ame Light Agent 
ame Group 

IS-1 J-1 L-1 Reference 

IS-1 J-1 L-2 Opponent 

 



38 

 

The group names are Reference and Opponent. Reference group contains the light 

agents that show green and red signalizations at the same time in the same period, 

and Opponent group consists of the opposite part in the Junction. This information is 

pre-requisite for the system. For each road-cross in an intersection or road-cross 

itself, is a junction and the junction agent delegates it. To define the fuzzy data sets 

of Reference and Opponent groups, the maximization function that is already used 

before in Light Agent actions, is applied again. 

 

 Figure 3.8 The junction agent flow diagram I. 



39 

 

 

  Figure 3.9 The junction agent flow diagram II. 

 

 

 

 Figure 3.10 The fuzzy logic control processing at junction agent. 



40 

 

3.4.3.1 Distributed Fuzzy Logic Controller 

 
After the classification of the light agents into two groups, fuzzy rules are applied 

over input fuzzy sets. The output values of rules (Membership Union Values and 

Output Fuzzy Set Central Mass Values) are then transferred into de-fuzzification 

process. This process generates the change rate of red light period for Reference 

group as the result of session evaluation. Execution of rules generates the output 

fuzzy set.  

 

FUZZY RULE LIST: 

a. if Reference is Low and Opponent is Low then Do Nothing (Zero) 

b. if Reference is Low and Opponent is Normal then Do Nothing 

c. if Reference is Normal and Opponent is Low then Do Nothing 

d. if Reference is Normal and Opponent is Normal then Do Nothing 

e. if Reference is High and Opponent is High then Do Nothing 

f. if Reference is Too High and Opponent is Too High then Do Nothing 

g. if Reference is Low and Opponent is High then change period in Positively 

Medium 

h. if Reference is Low and Opponent is Too High then change period in 

Positively Large 

i. if Reference is Normal and Opponent is High then change period in 

Positively Small 

j. if Reference is Normal and Opponent is Too High then change period in 

Positively Medium 

k. if Reference is High and Opponent is Low then change period in Negatively 

Medium 

l. if Reference is High and Opponent is Normal then change period in 

Negatively Small 

m. if Reference is High and Opponent is Too High then change period in 

Positively Small 

n. if Reference is Too High and Opponent is Low then change period in 

Negatively Large 



41 

 

o. if Reference is Too High and Opponent is Normal then change period in 

Negatively Medium 

p. if Reference is Too High and Opponent is High then change period in 

Negatively Small 

 

      Based on these definitions, the following formulas are generated: 

       //RULE-1 

      MVal1 = MIN (ReferenceFuzzy.LowValue, OpponentFuzzy.LowValue); 

      OVal1 = OutputValue[3]; //ZERO 

      //RULE-2 

      MVal2 = MIN (ReferenceFuzzy.LowValue, OpponentFuzzy.NormalValue); 

      OVal2 = OutputValue[3]; //ZERO 

      //RULE-3 

      MVal3 = MIN (ReferenceFuzzy.NormalValue, OpponentFuzzy.LowValue); 

      OVal3 = OutputValue[3]; //ZERO 

      //RULE-4 

MVal4 = MIN (ReferenceFuzzy.NormalValue, 

OpponentFuzzy.NormalValue); 

      OVal4 = OutputValue[3]; //ZERO 

      //RULE-5 

      MVal5 = MIN (ReferenceFuzzy.HighValue, OpponentFuzzy.HighValue); 

      OVal5 = OutputValue[3]; //ZERO 

      //RULE-6 

MVal6 = MIN (ReferenceFuzzy.TooHighValue, 

OpponentFuzzy.TooHighValue) 

      OVal6 = OutputValue[3]; //ZERO 

      //RULE-7 

      MVal7 = MIN (ReferenceFuzzy.LowValue, OpponentFuzzy.HighValue); 

      OVal7 = OutputValue[1];//POSITIVE_MED 

      //RULE-8 

      MVal8 = MIN (ReferenceFuzzy.LowValue, OpponentFuzzy.TooHighValue); 

      OVal8 = OutputValue[0];//POSITIVE_LARGE 



42 

 

      //RULE-9 

      MVal9 = MIN (ReferenceFuzzy.NormalValue, OpponentFuzzy.HighValue); 

      OVal9 = OutputValue[2];//POSITIVE_SMALL 

      //RULE-10 

MVal10 = MIN (ReferenceFuzzy.NormalValue, 

OpponentFuzzy.TooHighValue); 

      OVal10 = OutputValue[1];//POSITIVE_MED 

      //RULE-11 

      MVal11 = MIN (ReferenceFuzzy.HighValue, OpponentFuzzy.LowValue); 

      OVal11 = OutputValue[5];//NEGATIVE_MED 

      //RULE-12 

      MVal12 = MIN (ReferenceFuzzy.HighValue, OpponentFuzzy.NormalValue); 

      OVal12 = OutputValue[4];//NEGATIVE_SMALL 

      //RULE-13 

MVal13 = MIN (ReferenceFuzzy.HighValue, 

OpponentFuzzy.TooHighValue); 

      OVal13 = OutputValue[2];//POSITIVE_SMALL 

      //RULE-14 

MVal14 = MIN (ReferenceFuzzy.TooHighValue, 

OpponentFuzzy.LowValue); 

      OVal14 = OutputValue[6];//NEGATIVE_LARGE 

      //RULE-15 

MVal15 = MIN (ReferenceFuzzy.TooHighValue, 

OpponentFuzzy.NormalValue); 

      OVal15 = OutputValue[5];//NEGATIVE_MED 

      //RULE-16 

MVal16 = MIN (ReferenceFuzzy.TooHighValue, 

OpponentFuzzy.HighValue); 

      OVal16 = OutputValue[4];//NEGATIVE_SMALL 

       



43 

 

Although the output fuzzy values are obtained by the fuzzy rules, we still need the 

real output value (change rate of red light period). In order to do it, De-fuzzification 

step is implemented using The Weighted Centroid function. 

 

3.4.3.2 The Weighted Defuzzification Technique 

 

With this method the output is obtained by the weighted average of the each 

output of the set of rules stored in the knowledge base of the system. The weighted 

average defuzzification technique can be expressed as  

 

 

  

where x* is the defuzzified output, mi is the membership of the output of each rule, 

and wi is the weight associated with each rule. This method is computationally faster 

and easier and gives fairly accurate result. This defuzzification technique is applied 

in fuzzy application of signal validation and fuzzy application on power. If we 

extract this formula into more understandable format 

 

   

 

OTotal = MVal7*OVal7 + MVal8*OVal8 + MVal9*OVal9 + MVal10*OVal10 + 

MVal11*OVal11 + MVal12*OVal12 + MVal13*OVal13 + MVal14*OVal14 + 

MVal15*OVal15 + MVal16*OVal16; 

 

      MTotal = MVal1 + MVal2 + MVal3 + MVal4 + MVal5 + MVal6 + MVal7 + 

MVal8 + MVal9 + MVal10 + MVal11 + MVal12 + MVal13 + MVal14 + MVal15 + 

MVal16; 

      ChangeDelta = OTotal/MTotal; 



44 

 

 

In our model, X values on the right side refer to central mass value of output 

fuzzy sets and M values refer to union membership values of input fuzzy sets of 

rules. Each central mass value, X, refers to x-coordinate value of the centroid of 

triangular output fuzzy set. 

 

The centroid of a triangle is the point of intersection of its medians (the lines 

joining each vertex with the midpoint of the opposite side). The centroid divides each 

of the medians in the ratio 2:1, which is to say it is located ⅓ of the perpendicular 

distance between each side and the opposing point as illustrated in the figure below 

 

 

Figure 3.11 The centroid point of a triangle. 

 

The defined output fuzzy set is also given below: 

 

 

Figure 3.12 The output fuzzy set graph. 



45 

 

Based on the centroid principle, the X coordinate-values of centre of masses of 

output sets are listed in the following table. (Output sets consist of isosceles triangles 

and trapezoids) 

 

Table 3.3 Predefined centroid values of fuzzy output sets 

Output Value Centroid 

Positively large 0.75 

Positively medium 0.50 

Positively low 0.25 

Do Nothing (Zero) 0 

Negatively small -0.25 

Negatively medium -0.50 

Negatively large -0.75 

  

To summarize all stuff, the following fuzzy controller graph is drawn: 

 

 

  Figure 3.13 The agent-wide fuzzy logic implementation flow. 

 



46 

 

3.4.3.3 Handling Multiple Road Flows in Junctions 

 

Since the beginning of the project, it was assumed that a Junction controls two 

primary road directions. However, some junctions including turn movements consist 

of three or sometimes more road flows. In order to handle these types of junctions, 

the design internals of Junction Agent have been little changed. For each unique turn 

movement flow, related light agents are contained in new light groups. 

 

In Junction agent, all combinations of light agent groups are generated and for 

each combination of the reference and opponent groups, the fuzzy controller is 

launched repetitively. Each fuzzy controller result output is forwarded into an 

average function. The final average values are then used to estimate new light period 

and this output is sent to the related Light Agent group. 

 

With this modification, the project has gained ability to manage controlled turn 

movements in a junction. However, the turn movement groups are still ignored in 

correlation configuration tables. It was assumed that turn movement is an implicit 

action and it should not affect relations between main road flows of junctions and 

intersections. 

 
3.4.4 Intersection Agent 

 

This agent is the bridge between the global control and local control of the 

intersections. Global control includes collecting neighbor intersection states and 

according to states of the neighbor intersections, generating commands for local 

junctions. Local control includes getting states of sub junctions and generating 

commands if necessary to balance the traffic load implicitly. 

 

Intersection Agent controls pre-defined junction agents in a tightly coupled road-

crosses. It can be seen as a super-junction agent. All junction agents send their local 

state information to Intersection agent and then it checks neighboring relations. 

Moreover, it gets status information from its neighbor intersection agents. 



47 

 

Neighboring relations are based on after-before position of junctions and 

intersections.  

 

Intersection Agent generates local and global information in two separate cycles. 

If more than one junction exists in an intersection topology, the local information is 

generated based on their states. To generate global information, at least one neighbor 

intersection should be defined in the target area. The work flow cycles of Intersection 

Agent are given in Figure 3.14. 

 



48 

 

 

Figure 3.14 The intersection agent work flow cycles. 

 

As it is expected, intersections consist of only one junction. In that case, it has 

only one critical role: getting states of neighbors. If one of the neighbors is in high 



49 

 

density, and its local state junction(s) are in normal level, it can change the light 

periods of junction to help the neighbor in trouble. 

 

The registration part is similar to the other agents. When the Intersection Agent 

starts, it first registers itself to System-level name service, because Area Agent, 

Master of Intersection Agents and other neighbor agents should find the addresses of 

this Intersection Agent to communicate. During registration, as in Junction Agent, 

the following parameters are used: 

 

- Agent Name (Its unique id, Ex: IS-1) 

- Group Name: (Name of Sector, Ex: Sector-1) 

 

 Intersection Agent keeps two relations tables. First one lists the members of 

neighbor intersections. The layout of it is as follows. This table is used to send local 

intersection to neighbors. 

 

Table 3.4 Neighbor list table for an intersection 

Intersection 
ame 
eighbor-
ame 

IS-1 IS-2 

IS-1 IS-3 

IS-1 IS-4 

  

The other relation is about the links between junctions in an intersection and 

between intersections. The data in this table is used during rule-based reasoning to 

help sub-junctions or neighbors in trouble. According to Figure 3.15 and Figure 3.16, 

the complete junction to junction relations are as follows. 



50 

 

 

Figure 3.15 Ege university hospital intersection and sub junctions. 

  



51 

 

 

Figure 3.16 Junction to junction and neighbor intersection relations for the sample intersection. 

 

However, most of them are ignored or modified because they have connections to 

both parts of junctions (reference and opponent). If both junction sub groups have a 

connection to the same part of other another junction or neighbour intersection, it can 

not take a place in this relation table. For example, if a junction-sub group is in 

trouble, adjacent junction can be taken under evaluation. If both parts of this junction 

have direct relation with sub-group in trouble, it will have no sense. Therefore, only a 

subset of these relations is taken into the table as in the following structure. 

 

Table 3.5 Complete relations 

Local Junction 

ID With Sub 

Group 
ame 

Linked To Relation Type 
eighbor Position Type 

(according to 

local junction) 

J-2 Reference J-1 Reference Neighbor IS-2 Next 

J-2 Opponent J-1 Reference Neighbor IS-2 Next 

J-2 Reference J-1 Opponent Local - Next 

J-2 Opponent J-1 Opponent Local - Next 

J-3 Reference J-2 Reference Neighbor IS-1 Next 



52 

 

J-3 Opponent J-2 Reference Neighbor IS-1 Next 

J-3 Reference J-2 Opponent Local - Next 

J-3 Opponent J-2 Opponent Local - Next 

J-1 Reference J-1 Reference Neighbor IS-2 Previous 

J-1 Opponent J-2 Reference Local - Previous 

J-1 Opponent J-2 Opponent Local - Previous 

J-2 Reference J-1 Reference Neighbor IS-1 Previous 

J-2 Reference J-1 Opponent Neighbor IS-1 Previous 

J-2 Opponent J-3 Reference Local - Previous 

J-2 Opponent J-3 Opponent Local - Previous 

J-3 Reference J-1 Opponent Local - Previous 

J-3 Reference J-1 Reference Local - Previous 

 

Table 3.6 Main junctions to neighbors (local junction or neighbor intersection) link table 

Junction-

SubGroup 

Linked To Relation Type 
eighbor Position Type 

(according to 

local junction) 

J-1 Reference J-1 Neighbor IS-2 Prev 

J-1 Opponent J-2 Local - Prev 

J-2 Reference J-1 Neighbor IS-1 Prev 

J-2 Opponent J-3 Local - Prev 

J-3 Reference J-1 Local - Prev 

  

Each intersection agent launches its rule based algorithm after collecting local 

junction and neighbor intersection states. This algorithm is given in the next page. 

 

After generating commands in fuzzy value rank, they are forwarded into a neural 

net so that more accurate and realistic light periods will be generated. The neural net 

details are given in the following chapters. 

   

 



53 

 

3.4.4.1 State Reasoning 

 

The given algorithm below shows the flowchart of the Junction and Neighbor 

intersection state reasoning occurs at Intersection Agent. 

 

Collect States of Junction Light Groups 

My_State = Majority of Local Junction States 

Collect States of Junction Light Groups of Neighbor Intersections 

If LocalState is high or too_high AND Junction_Count > 1 then 

Call Manage_LocalState(Junction) 

Else  

Call Manage_Neighbors(Intersection); 

End if 

Manage_LocalState(Junction) 

Begin 

For I 1 to N (Number of Junctions) 

If (Junction[I].State is High or Too_High) then  

  Link[] = GetLinksFromDB(Junction[I], LOCAL); 

  For J 1 TO N (Number of Links) 

   XState = Link[j].State; 

   XEdge = Link[j].EdgeType;//Opponent or Reference 

   XPos = Link[j].Pos;//Prev or Next 

   XIndex = getJunctionIndex(Link[j].Name); 

   If XState is NOT Too_High then //Normal, Low or High 

    XFactor = ABS(Junction[I].State – XState); 

    ChgRate[ XIndex ] += XFactor* Value[XPos][XEdge]; 

   End if 

  End For 

  End if 

End if 

End For 

End 



54 

 

…………………………………… 

Manage_/eighbors(Intersection) 

For I 1 to N (Number of Intersections) 

If (Neighbor[I].State is High or Too_High) then  

  Link[] = GetLinksFromDB(Neighbor[I], NEIGHBOR); 

  For J 1 TO N (Number of Links) 

   XState = Link[j].State; 

   XEdge = Link[j].EdgeType;//Ref or Opp 

   XPos = Link[j].Pos;//Prev or Next 

   XIndex = getJunctionIndex(Link[j].Name); 

   If XState is NOT Too_High then //Normal, Low or High 

    XFactor = ABS(Neighbor[I].State – XState); 

    ChgRate[XIndex] += XFactor* Value[XPos][XEdge]; 

   End if 

  End For 

  End if 

End if 

End For 

End 

 

As you see, at each cycle, only one command is generated for a junction. The 

priority is firstly given to the internal part of intersections. Value array consists of 

constant values. The table values are as follows. 

 

Table 3.7 Command evaluation matrix used at reasoning phase 

XPos 

(Prev = 0, 

&ext = 1) 

XEdge 

(Ref = 0, 

Opp = 1) 

Value Comment To Junction Cycle 

0 0 -1 Increase red period of Reference Group 

0 1 1 Decrease red period of Reference Group 

1 0 1 Increase red period of Reference Group 

1 1 -1 Decrease red period of Reference Group 



55 

 

• The objective of the value table is to define the direction of change rate for 

the reference light agent group (controlled by the related Junction Agent).  

• XPos value is defined by targeting neighbor pos according to local group 

(XEdge) 

• XFactor can take a value between 0 and 3 (LOW = 0, TOO_HIGH = 3). In 

that case, change rate at one time is max 30%. And min 0%. 

 
3.4.4.2 /eural /etwork Integration 

 

In our application, a back-propagation neural network is integrated to the 

Intersection agent. Back-propagation is a supervised learning technique used for 

training neural networks (Rich & Knight, 1991, p. 500-507). It is most useful for 

feed-forward networks (networks that have no feedback or simply, that have no loop 

connections). The technique is as follows. 

 

a. Present a training sample to the neural network.  

b. Compare the network's output to the desired output from that sample. 

Calculate the error in each output neuron.  

c. For each neuron, calculate what the output should have been, and a scaling 

factor, how much lower or higher the output must be adjusted to match the desired 

output. This is the local error.  

d. Adjust the weights of each neuron to lower the local error.  

e. Repeat the steps above on the neurons at the previous level, using each one's 

"blame" as its error.  

 

In order to provide learning ability and attach other environmental parameters into 

the new light period decision making cycle, a neural network was attached to the 

Intersection agent work flow model. For our neural network, Three layers will be 

defined (one input, output and one hidden layer) Table 5 shows the input elements of 

the neural network  

 

 



56 

 

 

Table 3.8 Input elements of the designed neural network 


eural 
et Input Parameters Description 

Command Rate coming from Reasoning 

Engine:  

001 to 110 (-3≤fCommand ≤ 3) 

Target ID Type: (Local  Junction or Neighbor 

Intersection) Either 0 or 1 

Is Holiday:  0 or 1 

Day Of Week:  001 to 111 (from Monday to Sunday) 

Hour of Time:  00000 to 10111 (from 0 to 23) 

Minute of Time:  000000 to 111011 (from 0 to 59) 

Junction ID to give support: (2n+1 input neurons,  n refers to the 

number of junctions in target 

intersection) 

Target ID to get help: (2n+1 input neurons,  n refers to the 

maximum number of junctions or 

neighbors for the target intersection) 

 

All these inputs attached to the input layer of the designed neural network are 

connected to the neurons in the hidden layer and the output of the hidden nodes is 

connected to the neuron in output layer. The result of the output node represents the 

change rate for the red light period of target Junction Reference Group. To obtain 

accurate results, the training data must be well produced in high and effective 

densities.  

 

The output of the ANN will be a new Light Period: 0< fPeriod <1. There will be a 

constraint on fPeriod. By using the supervised learning training samples, it will be 

eligible to generate output between 0 and Total_Cycle/100. The real output of neural 

network will be then multiplied by 100 and the final light period for reference 

junction group will be obtained. 

 



57 

 

     

Figure 3.17 The neural network lay out. 

 

The generated command rates are then sent to the target junctions. Each command 

is directly put in charge by Junction Agent to accelerate traffic. 



58 

 

 

3.4.4.3 Training data for Supervised /eural /etworks 

 

In each Intersection Agent, there will be an artificial neural network module running. 

In order to enable ANN (Artificial Neural Network), it should be trained first and if 

possible with a package of huge data. However, providing this kind of data with help 

of simulators is almost impossible. Therefore unsupervised network models might be 

under consideration in future. This kind of networks learns without an external 

teacher (note that in supervised networks, the output expected is given in training 

data), simply by detecting the similarities of the input patterns and categorizing (i.e. 

projecting) them on a (1D or 2D) map. In an Unsupervised learning, a data set of 

input objects is gathered. Unsupervised learning then typically treats input objects as 

a set of random variables. A joint density model is then built for the data set.  

 

3.4.5 Area Agent 

 

This agent is located in the root of hierarchy. This agent will have no automatic 

contribution to the system. It will be manual controller and watcher of the system. 

All intersection agents will send their local states to this agent. After collecting these 

local states, the operator will see the total picture and he will be able to send some 

commands:  increase red, increase green in some levels to the intersection agents 

(like fuzzy output set names). Intersection Agents will get these commands to 

administer the junction agents in global manner. Also, the Area Agent will be able to 

send the real period values to the intersection agents and telling them to disable or 

enable their automated system. 

 

According to the given explanations, the Area Agent will have two primary 

behaviors: 

 

Send Commands: This action waits for the interaction of operator. When the 

system operator selects to send global command based on local states of 

intersections, he fills the required parameters. For each intersection, commands can 



59 

 

have different content. Like the declarations of fuzzy output sets, the command will 

be as follows: 

 

1. Increase your capacity in small, medium or large levels 

2. Decrease your capacity in small, medium or large levels. 

 

When Intersection gets this command, it will inform its sub-junctions to reach that 

goal.  Another option for the system operator is to define red and green light periods 

of a specific intersection with enabling or disabling automated signalization process. 

After parameters have been defined, the prepared message is sent to target 

intersection agent. Thus, the system will be able to provide pre-timed signalization 

work type. 

 

The “Send Commands” behavior will show a dialog and from this dialog, the 

system operator will be able to send command to the target intersection. 

 

Collect States: With this action, the local states of intersections are collected, and 

the system operator watches the traffic flow between intersections. Intersection 

agents define their local state again using the maximization function over junction 

agent states. 

 

There is an obligatory registration part in Area Agent, because it is the root agent. 

However, it registers itself using its name. It also searches naming service to find the 

addresses of Intersection Agent to communicate. The work flow diagram of Area 

Agent is given in Figure 3.18.  



60 

 

       

Figure 3.18 The area agent flow diagram. 

  

Till now, all system internals are given in detail. In order to show how the model 

works, four sample scenarios are defined in Appendix D.  

 

Scenario 1 figures out a primitive local intersection that consists of 1 junction. 

Scenario 2 figures out a bit more complex local intersection that consists of 2 

junctions. Scenario 3 figures out a complex intersection that is a type of triple 

junction control including turn movements. Scenario 4 figures out a more complex 

intersection that consists of 3 junctions and 1 neighbor. 



 

61 

CHAPTER FOUR 

IMPLEME
TATIO
 

 

After completing the design cycle of the proposed model, the software 

development and simulation have been implemented. There are four parts of this 

development work:  Coding Environment, Agent Library process, Neural Network 

process, Traffic Simulator search. In the following chapters, these processes are 

detailed. 

 

4.1 Coding Environment 

 

Software development of the project has been implemented over Windows XP 

PRO/SP2 OS platform. As IDE environment, Borland Java Builder 2005 Foundation 

edition v11.0 was used. As it is seen from IDE name, Java run-time and development 

environments (v1.5) were used. Java SDK is selected as primary language for all 

development work because it has platform independence over common operating 

systems and its object-oriented nature is very close to the Agent paradigms. 

(Encapsulation, independent execution, message based communication that triggers 

the target events) Moreover, more components and libraries are freely available on 

Java platforms. 

 

The project covers some configuration and implicitly estimated data structure. All 

these information is kept in an MS Access 2003 database (The current view of the 

database is given in Appendix C). The database management of MS Access is simple 

and Java is connected to the Access database by JDBC-ODBC driver. MS Access 

database program was chosen because there is no huge collection of data in this 

system and only the configuration of traffic topologies and agent workflow 

parameters are kept in tables. System runs interactively on real-time data.  

 

 



 

62 

4.2 Agent Library Process 

 

Agent programming is popular in coding and design parts of the software 

development cycle. Shortly it is a methodology that provides a context for 

componentizing application functionality through the abstraction of these features 

called as agents. In agent programming, agent is the basic element of distribution. 

Each agent serves as an independent component with its own local state and 

execution model. The agent designer can choose to assign a particular set of the 

functionalities to an agent, specify the types of events and messages that the agent 

may invoke and/or respond to, and implement those triggers and/or responses. Once 

an agent-based system is designed, it can be distributed flexibly across multiple 

CPUs and nodes in a network. 

 

Before selecting target agent platform, four library options have been examined in 

this project: OpenCybele, Zeus, AgentKernel, and Jade. After the first review of 

agent languages and depending on requirements of our project, “OpenCybele” was 

chosen as agent library because of its easy to use and simplicity properties. However, 

during the practices with “OpenCybele”, some problems occurred and when a help is 

demanded from the creators of the environment, unfortunately no reply has been 

received. Therefore the second alternative, JADE, has been taken under investigation 

and finally it was seen that it was the best selection to continue. 

 

Jade is a Java Agent DEvelopment Framework to develop multi-agent systems in 

compliance with the FIPA (Foundation for Intelligent Physical Agents) 

specifications. It is free software with GNU General Public License. 

 

Jade has been fully coded in Java, and an agent programmer should code his/her 

agents in Java. Jade is made of various Java packages, giving application 

programmers both ready-made pieces of functionality and abstract interfaces for 

custom, application dependent tasks. Java was the programming language of choice 

because of its many attractive features, particularly geared towards object-oriented 



63 

 

programming in distributed heterogeneous environments; some of these features are 

Object Serialization, Reflection API and Remote Method Invocation (RMI). 

 

4.2.1 JADE Features 

 

JADE is built on Java platform. Its architectural position is given below. 

 

A p p l i c a t i o n

J A D E  F r a m e w o r k

J a v a  P l a t f o r m

A p p l i c a t i o n

H a r d w a r e

 
  Figure 4.1 The Jade agent system infrastructure. 

 

The standard model of an agent platform, as defined by FIPA, is also represented 

in the following figure. The Agent Management System (AMS) is the agent who 

exerts supervisory control over access to and use of the Agent Platform. Only one 

AMS will exist in a single platform. The AMS provides white-page and life-cycle 

service, maintaining a directory of agent identifiers (AID) and agent state. Each 

agent must register with an AMS in order to get a valid AID (Bellifemine, Caire, 

Trucco & Rimassa, 2007). 

 

The Directory Facilitator (DF) is the agent who provides the default yellow page 

service in the platform. The Message Transport System, also called Agent 

Communication Channel (ACC), is the software component controlling all the 

exchange of messages within the platform, including messages to/from remote 

platforms. 

 



64 

 

 

  Figure 4.2 The Jade agent platform interactions. 

 

Jade fully complies with this reference architecture and when a Jade platform is 

launched, the AMS and DF are immediately created and the ACC module is set to 

allow message communication. The agent platform can be split on several hosts. 

Only one Java application, and therefore only one Java Virtual Machine (JVM), is 

executed on each host. Each JVM is a basic container of agents that provides a 

complete run time environment for agent execution and allows several agents to 

concurrently execute on the same host. The main-container, or front-end, is the agent 

container where the AMS and DF lives and where the RMI registry, that is used 

internally by Jade, is created. The other agent containers, instead, connect to the main 

container and provide a complete run-time environment for the execution of any set 

of Jade agents. 

 

An Agent super class is defined in Jade library and all user agents are inherited 

from this Agent class. An agent must be able to carry out several concurrent tasks in 

response to different external events. In order to make agent management facility 

efficient, every Jade agent is composed of a single execution thread and its tasks are 

modeled and can be implemented as Behavior objects. Jade Behavior class hierarchy 

is given below. 

 



65 

 

 

  Figure 4.3 The Jade agent behavior class hierarchy. 

 

4.3 
eural 
etwork Process 

 

In order to give learning ability to Intersection agents at global decision-making 

progress, a neural network model has been defined. Instead of writing the neural-net 

code directly, a free Java library search has been done. 

 

Some of the examined ANN libraries are Matlab Neural Network Tool, 

NNUtility, JavaNNS, Neurak, NumMap7 and Joone. 

 



66 

 

A group of libraries given above were based on C/C++ language. Therefore, they 

were eliminated because of our Java programming environment. Some of them 

require license fee and some libraries look complex and not easy to use quickly. At 

the end of all evaluations and comparisons, Joone was selected as primary neural 

network library. It is Java based Object Oriented Neural Engine that is most popular 

and recommended free engine. It has both Java API access and GUI interface. 

 

4.3.1 Joone Features 

 

Joone is a free Neural Network framework to create, train and test artificial neural 

networks. The aim is to create a powerful environment both for enthusiastic and 

Professional users, based on the newest Java technologies. 

 

Joone is composed of a central engine that is the fulcrum of all applications that 

are developed with Joone. Joone's neural networks can be built on a local machine, 

be trained on a distributed environment and run on whatever device. Everyone can 

write new modules to implement new algorithms or new architectures starting from 

the simple components distributed with the core engine (Marrone, 2005) 

 

The kernel of the engine is the Layer object. It is composed by N neurons (that 

can be set by the attribute 'rows'). Imagine a feed-forward neural net composed by 

three layers like the following graph: 

 

 

             Figure 4.4 The simple neural network scheme. 

 



67 

 

In order to build this neural net with Joone, three Layer objects and two Synapse 

objects are created: 

SigmoidLayer layer1 = new SigmoidLayer(); 

SigmoidLayer layer2 = new SigmoidLayer(); 

SigmoidLayer layer3 = new SygmoidLayer(); 

FullSynapse synapse1 = new FullSynapse(); 

FullSynapse synapse2 = new FullSynapse(); 

 

Then we complete the net connecting the three layers with the synapses: 

layer1.addOutputSynapse(synapse1); 

layer2.addInputSynapse(synapse1); 

layer2.addOutputSynapse(synapse2); 

layer3.addInputSynapse(synapse2); 

 

Here you can see, each synapse is the output synapse of a layer and the input 

synapse of the next layer in the net. The general properties of Joone Neural Net 

package is listed as follows. 

 

• The Joone's framework is built with a modular architecture: the 'core engine' 

is separated from the visual interface and permits easily to implement any new 

application based on it. 

• Joone is portable, being written in 100% pure Java. It can run in any 

environment, from big multiprocessor machines to small palmtop devices. 

• The neural networks based on Joone are usable stand-alone (separated from 

the framework that has created or trained them). 

• The Joone's based neural networks can be transported using common 

protocols (like http or ftp) to run on remote machines 

• The framework is expandable with more components to implement new 

learning algorithms or new architectures. 

• With Joone, it's possible to implement any kind of optimization; there are two 

main methods to find the best solution to a given problem (i.e. to find the best neural 

network): local optimization and global optimization techniques. The local 



68 

 

optimization is obtained applying some 'internal' mechanism (the most famous is the 

momentum), the global optimization, instead, try to find the best solution applying 

some external technique to select the best performing NN among a predefined group 

of NNs (like genetic algorithms). Both are implemented with Joone, and many new 

optimization techniques can be experimented thanks to its expansibility. 

• Joone's core engine is based on a multithreaded engine, capable to scale using 

all the computing resources available. 

• Joone provides the professional users with a distributed environment to train 

many neural networks in parallel on several machines. 

• Joone is freely usable. Its license is the Lesser General Public License 

(LGPL). 

 

4.4 Software Specification 

 

Agent Roles and Fuzzy Controller have been fully implemented in Java software 

development platform. Agents and their tasks have been coded using Jade libraries. 

Screen simulation parts have been done by using Java Swing Component. For neural 

network studies, Joone API has been integrated to the simulator program 

 

Communication between agents is handled by a service provided by Jade. It’s 

called Yellow Page Service. All agents register themselves to this service at startup. 

Depending on their names, the sender agent of a message finds the address of the 

receiver and then sends it to this receiver. The implemented simulation software is 

designed for running on a single computer. However, Jade has support to send 

messages over network. 

 

Agents are hierarchically constructed in this model. The some part of the 

hierarchical relations is kept in MS Access 2003 database tables (see Appendix C, 

LAgents and ISAgents tables). The other part of the relations is given at startup batch 

file. A sample batch runner is as follows: 

 



69 

 

“java jade.Boot -nomtp R-A:JadeTestAgent.RoadAgent (Road-A Light-2 0) R-

B:JadeTestAgent.RoadAgent (Road-B Light-1 1) L-1:JadeTestAgent.LightAgent (Light-1 

Junction-1) L-2:JadeTestAgent.LightAgent (Light-2 Junction-1) J-

1:JadeTestAgent.JunctionAgent (Junction-1 Intersection-1) R-

C:JadeTestAgent.RoadAgent (Road-C Light-4 2) R-D:JadeTestAgent.RoadAgent (Road-

D Light-4 3) R-E:JadeTestAgent.RoadAgent (Road-E Light-3 4) L-

3:JadeTestAgent.LightAgent (Light-3 Junction-2) L-4:JadeTestAgent.LightAgent (Light-4 

Junction-2) J-2:JadeTestAgent.JunctionAgent (Junction-2 Intersection-1) IS-

1:JadeTestAgent.IntersectionAgent (Intersection-1 Sector-1) I-

Demo:JadeTestAgent.ISDemoSimulator (SIMULATOR)” 

 
The description of the startup text is given below: 

 
“java” addresses the java run time starter.  

“Jade.Boot” addresses the run-time start parameter of Jade Agent platform. 

“mtp” addresses external Messsage Transport Protocol activation for 

communication between agents. If “nomtp” is given, only the default settings defined 

in jade main container is used. 

 

“AAA:BBB.CCC (X Y Z)” can be parsed in the following order: 

AAA: refers to the agent name recorded in page service 

BBB: the name of the namespace where the agent resides. 

CCC: The software module name of the agent 

X, Y, Z: refers to the arguments for Agent startup. 

 

The general view of the class diagram implemented in this project is given in the 

following figure (Figure 4.5). 

 

As it is seen in the picture, there are 5 types of agents defined. Each Agent in Jade 

environment represents a separate process and each process has a type of sub thread 

that is called as Behavior. 

 



 

70
 

 

 

   
F

ig
ur

e 
4.

5.
 T

he
 c

la
ss

 d
ia

gr
am

 o
f 

th
e 

im
pl

em
en

te
d 

so
ft

w
ar

e 
si

m
ul

at
io

n 



71 

 

The descriptions of some significant classes are given below: 
 

RegistrationUI:  This class is used to register agents against Jade Yellow 
Page Service. Its layout is given below. 

 

 
 

ISDemoSimulator: This class is used to manage simulator screen activities. It 

is basically a thread. However, it is implemented b Jade library utilities. 

That’s why it seems Agent. Another property of this class is that for each 

intersection topology, it should be newly designed. 

 

ISData: This class is used to send intersection state information to neighbors. 

 

JunctionAgent: This class is used to manage Junction Agent behaviors. 

 

LightAgent: This class is used to manage Light Agent behaviors. 

 

RoadAgent: This class is used to manage Road Agent behaviors. 

 

IntersectionAgent: This class is used to manage Intersection Agent behaviors. 

 

GeneralFuncs: This class contains some common functions used by agents. 

Some functions are related with fuzzy controller estimations. 

 

DatabaseUI: This class is a collection of functions to access database and its 

tables. It is used by all agent modules. 

 



72 

 

FuzzyData: This class represents fuzzy input set sent from Road Agents to 

Light Agents and then Light Agents to Junction Agents. 

 

SignalController: This class is used by the Junction Agent to control the 

estimation of new light period. Fuzzy Controller and De-fuzzification cycles 

are implemented in this class. 

 

RelationDef: This class is used by the Intersection Agent to keep relations 

between internal junctions and junction to neighbor intersections. The data 

kept in this table is evaluated by the Reasoning engine integrated to the 

Junction Agent. 

 

GroupFuzzies: This class is used by the Junction Agent to forward it into 

Fuzzy Controller. Junction Agent uses this structure as input to the fuzzy 

controller. Each group may refer to a Light Agent in a junction topology. If 

some Light Agents work at the same splits and offsets, they become the 

member of the same group and the group fuzzy values are estimated using 

average function. 

 

In order to give a view of the programming design, the code module of the Light 

Agent that is written by Java and Jade is given in Appendix E. 

 
4.5 Traffic Simulators 

 

After the system is fully coded in software, two types of requirement have been 

emerged: Sample input data for road lane densities and displaying intersection work 

flow cycle on a screen simulator. 

 

A simulator research has been done for a couple of months. It was seen that to 

find a general simulator product that meets all requirements above will be not easy. If 

the requirements are evaluated one by one; 

 



73 

 

Sample input density for road lanes: In order to overcome this issue, TSIS (Traffic 

Software Integrated System) simulator utility is taken under consideration. With this 

product an intersection model can be built and then after interpreting the model, the 

sample input data for each road lane in constructed topology can be obtained. TSIS 

simulator has a visualization component too. However, it is not open to external 

world and can not be directly used from development environment (ex: Java 

programs). More information about TSIS is given later. 

 

Screen Simulator Demo:  An intersection monitor module referencing to the Area 

Agent has been fully coded and implemented in the system. The programmer should 

change the style of the monitor for each target intersection or area environment. 

Therefore, it requires a programming effort to display new scenarios.  

 

4.5.1 TSIS Simulator 

 

The Traffic Software Integrated System (TSIS) is an integrated suite of traffic 

models for input development (TRAFED), simulation (CORSIM), and animation 

(TRAFVU). The suite is somewhat analogous to Microsoft Office that integrates a 

word processor, presentation, and spreadsheet. TSIS is widely recognized as one of 

the most successful analysis tools supported by FHWA (Federal Highway 

Administration). With the advent of TSIS, several tools were integrated into a 

common Windows interface that provides the user with a familiar look-and-feel 

compared to standard Windows applications. 

 

The advantages of operating CORSIM within the TSIS environment include an 

intuitive, user-friendly graphical interface; scrollable screen input; better memory 

management; and on-line context-sensitive help that encompasses the TSIS, 

TRAFED, TRAFVU and CORSIM Users Guides. TSIS is designed to support 

CORSIM simulator, its input processor (TRAFED) and output processor (TRAFVU). 

The user can however extend TSIS functionality by adding other traffic engineering 

or analysis software tools that have been designed to conform to TSIS traffic tool 

interface (Owen, Zhang, Rao & McHale, 2000). 



74 

 

In this project, TSIS may be used for two purposes. The first one is sample data 

collection. TSIS provides detector installations on road links. By counting vehicles or 

densities, data sampling can be done on time period basis. After each complete 

simulation, TSIS generates an output file and this file includes detector occupation 

results. Manually extracting these results into related road lane files may provide a 

way to test our software with real data solve input sample data requirement problem. 

 

The second usage type is to make animation and directing this animation by an 

external program (Win32 compiled DLL). TSIS provides a mechanism by which an 

external application can interface directly with the CORSIM simulation tool. This 

type of application has become known as a CORSIM run-time extension (RTE). The 

original run-time extensions were tailored for signal timing studies. However, the 

concept has been expanded to support freeway monitoring, incident detection and 

ramp metering run-time extension packages. 

 

4.5.2 TSIS in Detail 

 

A sample Intersection edited in TSIS (TRAFED) is given below.  

 



75 

 

 

Figure 4.6 A sample TSIS traffic network editor view (TRAFED). 

 

For input sampling, detectors are set on target road directions. A detector 

installation and configuration window is given below. 



76 

 

 

     Figure 4.7 The detector install and setup page of TSIS. 

 

The traffic light controllers and incoming road lane directions are set using the 

following dialogs (Figure 4.8, Figure 4.9).  

 

Some tests have been done using the detector outputs of TSIS. However, it didn’t 

satisfy the expectations because there are lots of parameters in TSIS environment. 

Each one should be precisely defined to construct the required intersection topology 

and get realistic results. 



77 

 

 

  Figure 4.8 The TSIS intersection control parameters dialog. 

 



78 

 

 

  Figure 4.9 The TSIS traffic light controller configuration pages. 

 

At the end of each simulation time period (set by the user before the simulation), 

the following detector output type is listed in out file.  

                                   

AT A SELECTED TIME-PERIOD            

DETECTOR  APP VEHICLE CUMULATIVE OCCUPANCY SPEED 

TYPE          LINK COUNT  TIME (SEC) (%)**   (MPH) 

PRESENCE  (2,   1) 22  44.3  73.8  14.5 

PRESENCE  (5,   1) 8  47.1  78.5  14.1 

PRESENCE  (7,   4) 17  41.2  68.7  9.7 

PRESENCE  (8,   4) 29  50.7  84.5  16.0 

PRESENCE  (1,   4) 23  49.6  82.7  13.1 

 

** OCCUPANCY IS CALCULATED AS (CUMULATIVE TIME) / (TIME SINCE 

BEGINNING OF SIMULATION) 



 

79 

CHAPTER SIX 

CO
CLUSIO
S 

 

The general objective of this project research is to establish a know-how regarding 

the applicability of intelligent systems in traffic lights management and control and 

then the final goal is to develop a system that can effectively react upon versatile 

road and intersection traffic patterns. The system (can be called “smart traffic lights 

management“) is capable of optimizing and adjusting traffic lights, therefore 

improving vehicular throughput and minimize delays. 

 

The target controller model has been fully implemented and simulated against the 

pre-timed controllers. With all this completed study, it was shown that the proposed 

solution model generates realistic and optimal schedules for any selected road traffic 

network.  

 

The proposed solution is quite different from many other adaptive models in terms 

of the independent nature of the intersection topologies, neuro-fuzzy approach 

embedded into multi-role Agents, and global state evaluations that are taken into the 

decision mechanisms of the local level agents. 

 

Analyzing the obtained results, it is seen that the proposed adaptive traffic 

controller solves the congestion problems efficiently. It boosts the performance 

specifically when one road has constant vehicle volume and the other road has a 

continuously changing vehicle curve, either in increasing or decreasing mode. If the 

traffic pattern changes occur sharply and very frequently, the new controller can’t 

handle the traffic and in those cases it shows the characteristics of the pre-timed 

controllers.  

 

It seems that the controller could be very productive if one road has low and the 

other one has high densities at micro control (basic junction) level. In addition to this 

property, it is seen that when the controller reaches the limits of the signalization 

periods, it stays at that level until the other road direction gets congested. 



80 

 

Adaptive Traffic Controllers are not a global unique solution for all traffic 

problems. Their primary purpose is to regulate the unexpected vehicle flow very 

efficiently. If traffic at a predefined location is predictable, using fixed pre-timed 

controllers or their derivatives (green wave etc.) will be more satisfactory than 

Adaptive ones. Therefore, our newly designed controller should be tested and used 

for intersections that have non-uniform traffic patterns. 

 

As a future study, some enhancements could be applied to the solution model. 

Neural Network internals are well defined and integrated to the Intersection Agent. 

However, it still requires more training data to give accurate and reliable results. 

Training data and training cycles are fundamental problems of the neural network 

applications. In order to eliminate it, an unsupervised neural-net (Dean, et al., 1995, 

p. 183) might be preferred. 

 

Another enhancement is possible through comparisons with other adaptive 

systems. This project focused on the comparisons with pre-timed controllers. In order 

to compare the results of the proposed model with other adaptive systems, other 

popular simulation tools such as TSIS (Traffic Software Integrated System) 

simulation program, see (Owen, et al., 2000), that contains CORSIM traffic 

simulator tool might be employed.   Thus, the strength of the proposed solution 

might be better appreciated. 

 

Moreover, the proposed controller might be tested with real world intersection 

data. Nowadays, many traffic radars named RTMS (Real Time Monitoring System) 

are already installed on roads and junctions by the municipalities and private 

organizations. Requesting these data for academic purposes and evaluating with our 

proposed controller would be productive to see the performance. 

  

 



81 

 

REFERE
CES 

 

Abdulhai, B., Pringle, R., & Karakoulas, G., J. (2003). ASCE Journal of 

Transportation Engineering, Volume 129, Number 3, 278-285. 

 

Athmaraman, N., & Soundararajan, S. (2005). Adaptive Predictive Traffic Timer 

Algorithm, Proceedings of the 2005 Mid-Continent Transportation Research 

Symposium, AN: 01004337, ITS Section. 

 

Bellifemine, F., Caire, G., Trucco, T., & Rimassa, G. (June 18, 2007). Jade 

Programmers Guide v3.5. Retrieved December 15, 2007, from 

http://jade.tilab.com/doc/index.html 

 

Bigus, J. P., & Bigus, J. (1998). Constructing Intelligent Agents with Java: A 

Programmers Guide to Smarter Applications. John Wiley & Sons Inc. 

 

Brule, J.F. (April 27, 1985). Fuzzy Systems, A Tutorial. Retrieved July 24, 2005 from 

http://www.jimbrule.com/fuzzytutorial.html 

 

Camurri, M., & Mamei, M. (2006). Urban Traffic Control with Co-Fields. The Third 

International Workshop on Environments for Multi Agent Systems - EMAS 2006. 

 

Chiu, S., & Chand, S. (1999). Adaptive Traffic Signal Control Using Fuzzy Logic, 

Proceedings FUZZ-IEEE'99, 1371-1376. 

 

Cools, S., Gershenson, C., & D’Hooge, B. (2005). Self-organizing traffic lights: A 

realistic simulation, arXiv:nlin/0411066v2[nlin.AO] 

 

Cunningham, R., & Dowling, J. (2006). Self-Optimization in a Next Generation 

Urban Traffic Control Environment, ERCIM /ews - Special: Emergent 

Computing, 2006, vol. 64, 55-56 

 



82 

 

Dean, T., Allen, J., & Aloimonos, Y. (1995). Artificial Intelligence Theory and 

Practice, New York: The Benjamin/Cummings Publishing Company, Inc. 

 

Deitel, H.M., & Deitel, P. J. (1998). JAVA How to Program (Second Edition), 

Prentice Hall. 

 

Dresner, K, & Stone, P. (2006). Multi Agent Traffic Management: Opportunities for 

Multi Agent Learning, SpringerLink Book: Learning and Adaption in Multi-Agent 

Systems, Volume 3898/2006, 129-138. 

 

Erciyes, K., & Sahan A. (2004). A Real-time Total Order Multicast Protocol. 4th 

International Conference on Computational Science, ICCS’2004. SpringerLink, 

Volume 3036, 357-364 

 

Findler, N., & Stapp, J. (1992). A distributed approach to optimized control of street 

traffic signals, Journal of Transportation Engineering, vol.118: No.1, 

99-110. 

 

Flanagan, D. (1999). Java in a /utshell, A Desktop Quick Reference (Third Edition), 

USA: O’Reilly. 

 

Gabric, T., Howden, N., Norling, E., Tidhar, G., & Sonenberg, L. (1994). Multi 

Agent Design of a Traffic Flow Control System, Technical Report 94/24, 

Department of Computer Science, University of Melbourne 

 

Huang, D., Huang, W. (2003). Optimization of Traffic Lights at Crossroads, 

International Journal of Modern Physics C, vol. 14, Issue 05, 539-548 

 

Lee, J., Lee, K., Seong, K., Kim, C., & Lee-Kwang, H. (1995). Traffic Control of 

Intersection Group Based On Fuzzy Logic, Int. Conf. 6th IFSA '95, Sao Paulo, 

465 – 468 

 



83 

 

Lin S., & Chen D. (2005). Apply Adaptive and Cooperative multi-agent system to 

urban traffic signal control, IEICE Trans Inf & Syst., E88-D: 119-126 

 

Liu, Z. (2007). A Survey of Intelligence Methods in Urban Traffic Signal Control. 

IJCS/S International Journal of Computer Science and /etwork Security, vol.7 

No.7, 105-112 

 

Liu H.X., & Oh J.S. (2001). On-line Traffic Signal Control Scheme with Real-time 

Delay Estimation Technology, Journal of Eastern Asia Society for Transportation 

Studies (EASTS), 4(4): 107-119 

 

Marrone P. (February 3, 2005). The Joone (Java Object Oriented /eural Engine) 

Complete Guide. Retrieved January 22, 2006, from http://www.joone.org 

 

Nikraz, M., Caire, G., & Bahri, P.A. (2006). A Methodology for the Analysis and 

Design of Multi-Agent Systems using JADE. International Journal of Computer 

Systems Science & Engineering. Special Section: Software Engineering for Multi-

Agent Systems. 

 
Owen L., Zhang Y., Rao L., & McHale, G. (2000). Traffic Flow Simulation using 

Corsim, Proceedings of the 2000 Winter Simulation Conference, 1143-1147 

 

Pearson, R. (November 1, 2001). ITS Traffic Signal Control. Retrieved May 15, 

2005, from http://www.calccit.org/itsdecision/serv_and_tech/ 

Traffic_signal_control/ traffsigrep_print.htm 

 

Posio, J. (June 2003). Role of Intelligent Techniques in Transport Management – A 

Survey, European /etwork on Intelligent Technologies for Smart Adaptive 

Systems (EU/ITE) Roadmap, University of Oulu, Finland 

 

Rich, E., & Knight, K. (1991) Artificial Intelligence (International Edition), 

Singapore: McGraw Hill 



84 

 

 

Roozemond, D.A., & Rogier, J.L.H. (2000). Agent controlled traffic lights, ESIT-

2000 Aachen, 77-81 

 

Shen W., Norrie, D.H., Barthes, J. (2000). Multi-Agent Systems for Concurrent 

Intelligent Design and Manufacturing (First Edition). USA: CRC 

 

Stergiou, C., & Siganos D. (April 17, 1987). /eural /etworks Course Guide. 

Retrieved March 17, 2006 from 

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html 

 

Taale, H., Back, T., Preuß, M., Eiben, A.E., De Graaf, J.M., & Schippers, C.A. 

(1998). Optimizing traffic light controllers by means of evolutionary algorithms, 

Proceedings of the 6th European Congress on Intelligent Techniques and Soft 

Computing, Verlag in series H 

 

Tanenbaum, A.S., & Van Steen, M. (2002). Distributed Systems: Principles and 

Paradigms, New Jersey: Prentice Hall 

 

Tavladakis, K., & Voulgaris, N.C. (1999). Development of An Autonomous 

Adaptive Traffic Control System, European Symposium on Intelligent Techniques 

ESIT’99. Traffic W AB-03 

 

Thorpe, T.L. (1997). Vehicle Traffic Light Control Using SARSA. Masters Thesis, 

Department of Computer Science, Colorado State University  

 

Van Katwijk, R.T., Van Koningsbruggen, P., De Schutter, B., & Hellendoorn J. 

(2005). Test bed for multiagent control systems in road traffic management, 

Transportation Research Record: Journal of the Transportation Research Board, 

no. 1910, 108-115 

 



85 

 

Vega, J., R., P. (October 20, 2004). ECE210 Statics Course Guide, Retrieved 

October 16, 2006, from 

http://math.la.asu.edu/~rpacheco/COURSES/ECE210/ece210/Statics7.doc 

 

Weiss G., (Ed.). (1999). Multi Agent Systems: An Introduction to Distributed 

Artificial Intelligence. Cambridge: The MIT Press 

 

Wiering, M., van Veenen, J., Vreeken, J., & Koopman, A. (2004). Intelligent Traffic 

Light Control, Technical Report UU-CS-2004-029, Utrecht University, The 

Netherlands



 

86 

APPE
DICES 

 
Appendix A - Input Fuzzy Set Generation 

 

Input fuzzy set data structure that is used by the Agents is given below. 

STRUCT FUZZY SET 

{ 

Low_Value : 0<x<1 

Normal_Value: 0< x <1 

High_Value: 0< x <1 

TooHigh_Value: 0< x <1 

DominantFuzzySet: Low < x <Too High 

} 

 

The fuzzy object generated from this struct is filled by the Road Agent using the 

following rules: 

 

CASE volume < = 25 

 If (volume <= 16) then 

  DominantFuzzySet = "Low"; 

 Else 

  DominantFuzzySet = "Normal"; 

 Endif 

 TooHigh_value = 0 

      High_value = 0 

      Normal_value = volume/25 

      Low_value = ABS(volume-50)/50 

 

CASE volume < = 50 

      DominantFuzzySet = "Normal" 

      TooHigh_value = 0 

      High_value = (volume-25)/50 



87 
 

 

      Normal_value = (75-volume)/50 

      Low_value = ABS(volume-50)/50 

 

CASE volume < = 75 

 DominantFuzzySet = "High" 

      TooHigh_value = (volume-50)/50 

      High_value = (volume-25)/50 

      Normal_value = (75-volume)/50 

      Low_value = 0 

         

CASE volume <=100 

 If (volume <= 83) then 

  DominantFuzzySet = "High" 

 Else DominantFuzzySet = "Too_High" 

 Endif 

      TooHigh_value = (volume-50)/50 

      High_value = ABS(volume-100)/25 

      Normal_value = 0 

 Low_value = 0 

 

Appendix B - Maximization Function for Agent Fuzzy Sets  

 

This function is applied in Light and Junction Agents to generate their own fuzzy 

set from member Road and Light Agent fuzzy sets correspondingly. 

 

Maximization Function Algorithm: 

 MAX = LOW(0); 

 FOR (I = 1 to N) 

  IF (LOW(I) > MAX) THEN MAX = LOW(I); 

 END FOR 

 LIGHT_FUZZY_LOW = MAX; 

 MAX = NORMAL(0); 



88 

 

 FOR (I = 1 to N) 

  IF (NORMAL(I) > MAX) THEN MAX = NORMAL(I); 

 END FOR 

 LIGHT_FUZZY_NORMAL = MAX; 

 MAX = HIGH(0); 

 FOR (I = 1 to N) 

  IF (HIGH(I) > MAX) THEN MAX = HIGH(I); 

 END FOR 

 LIGHT_FUZZY_HIGH = MAX; 

 MAX = TOOHIGH(0); 

 FOR (I = 1 to N) 

  IF (TOOHIGH(I) > MAX) THEN MAX = TOOHIGH(I); 

 END FOR 

 LIGHT_FUZZY_TOOHIGH = MAX; 

 

With this evaluation, Light Agent produces a new fuzzy data set over tightly 

coupled road fuzzy sets.  

 

Table A.1 Sample road-to-light agent fuzzy data process ccenario 

 Road-A Road-B MAX(RoadA, RoadB) � 

Light Agent Fuzzy Set 

Road Volume 47 67 - - 

LOW 0,06 0,00 0,06 0,06 

NORMAL 0,56 0,16 0,56 0,56 

HIGH 0,44 0,84 0,84 0,84 

TOO-HIGH 0,00 0,34 0,34 0,34 

Dominant 

Fuzzy Set 

Normal High High High 

 

 

     



89 

 

Appendix C - Database Graph for Configuration Tables 

 

In this thesis, there is no historical data kept. However, for road, light, junction 

and intersection relations, a group of configuration tables are used.  For simplicity, 

an MS Access database is preferred. The picture of the database and some 

explanations are given below. 

 

 

Figure A.1 The tables in configuration database. 

 

• Centroids: keeps some values of de-fuzzification process 

• TimerParams: keeps the values of agent timers for collecting sub-states. 

• IS/eighbors: keeps the list of neighbors of intersection. Position shows the 

relation whether next or previous to this intersection 

• RoadLinks: keeps the relations between incoming and outgoing road 

directions. The relations show that the leak rate that defines the vehicle volume level 

transferred from one road to the other one. 



90 

 

• LAgents: keeps the list and classification data of light agents in a junction. 

LAgentProperty shows the group: Group-Reference or Group-Opponent 

• ISLinks: keeps the relation between junctions and neighbor intersections. 

(Which junction group is connected to which junction or neighbor intersection?) 

LinkType column shows the relation whether it is intersection or junction 

connection.  RelationType column show the target object, whether it is Prev or Next. 

JPart column shows the junction group (reference or opponent), NPart column shows 

the adjacent junction group if the link type is junction. This table is open to change 

because of ambiguous relations between intersections and junctions. 

 

Appendix D - Sample Traffic 
etwork Scenarios 

 

Scenario 1: The Simplest Junction 

 

The implemented system was initially tested for a base junction scenario that 

consists of two complementary traffic lights and one junction and pre-selected data 

sets. The sample scenario schema is illustrated in Figure A.2. 

 

 

Initial test configuration is as follows: Total Cycle is set to 60 seconds. Data 

collection frequencies are 30, 45, 60 seconds corresponding to Light, Junction and 

Intersection Agents. Road max capacity is assumed 100 vehicles and a vehicle can 

pass through the intersection in 1 second: 1 vehicle/sec 

 

 



91 

 

 
 

      Figure A.2 The sample intersection graph for scenario 1. 

 

Based on these settings and according to the given data sample sets in Table A.4 

and Table A.5, two work schemes are presented here. 

 

The first data set of Scenario 1 is given in Table A.2. In this table, Road-A has 

low vehicle input volume, other one is changing dynamically. The result graph 

(Figure A.3) shows that our adaptive light controller outperforms the fixed pre-timed 

light sharply just after Road-B input vehicle count has started to decrease. 

 

Table A.2 The sample data set 1 and results of scenario 1 
 

Time 
(min) Road-A Road-B 

Pre-timed, in 
wait 

Actuated by 
our system, in 
wait 

1 10 10 0 0 
2 10 20 0 0 
3 10 30 0 0 
4 10 40 10 10 
5 10 50 30 28 
6 10 60 60 51 
7 10 50 80 51 
8 10 40 90 41 
9 10 30 90 21 
10 10 20 80 16 
 



92 

 

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Time

V
e
h
ic
le
s
 i
n
 W

a
it
in
g

Pre-timed Light

Our Adaptive Light

 
 Figure A.3 The result graph of data set 1 execution. 

 
The second data set for Scenario 1 is given in Table A.5. In this data set, while the 

Road-A has low vehicle input volume, the other one changes dynamically, and the 

result graph (Figure A.4) shows that our adaptive light outperforms the fixed pre-

timed light again in the same manner. 

 
Table A.3 The sample data set 2 and results of scenario 1 
 
Time 
(min) Road-A

Road-
B 

Pre-timed, 
in wait 

Actuated by our 
system, in wait 

1 10 60 30 30 
2 10 50 50 49 
3 10 40 60 38 
4 10 30 60 18 
5 10 20 60 8 
6 10 10 60 12 
7 10 20 60 16 
8 10 30 60 20 
9 10 40 70 22 
10 10 50 80 24 
 
 

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

V
e
h
ic
le
s
 i
n
 W

a
it
in
g

Time

Pre-timed Light

Our Adaptive Light

 



93 

 

             Figure A.4 The result graph of data set 2 execution. 

The results show that for the basic controller scheme, the proposed controller boosts the 

performance when compared to the pre-time traffic controller. For low volumes, the adaptive 

controller shows almost the same performance. However, for high vehicle volumes, the new 

controller outperforms pre-timed controllers. 

 

Scenario 2: An Intersection with &o &eighbor and Two Junctions 

 

The sample scenario is applied to the following figure given. According to this 

figure, the following agent structure is generated: 

 



94 

 

      Figure A.5 The sample intersection 2 (road lanes with yellow color are out of scope). 

 

 1 Intersection Agent (top-controller) 

 2 Junction Agents (middle-level controller, J-1, J-2) 

 4 Light Agents (2 for J-1, 2 for J-2) 

 Light-1: J-1 Reference 

 Light-2: J-1 Opponent 

 Light-3: J-2 Reference 

 Light-4: J-2 Opponent 

 5 Road Agents (2 for J-1, 3 for J-2) 

 Road-A: Light-2 

 Road-B: Light-1 



95 

 

 Road-C: Light-4 

 Road-D: Light-4 

 Road-E: Light-3 

 

Data Collection period parameters: 

� Light Agent collects states of road agents each 30 seconds 

� Junction Agent collects states of light agents each 45 seconds 

� Intersection Agent collects state of Junction agent each 60 seconds. 

  

START 

STEP-1: Each 30 seconds, 

Road agents send their fuzzy sets to Light Agents (upon their request) 

SAMPLE 

Road-A: Volume�40 

 Fuzzy_Set (LOW:0.2, 
ORMAL:0.7, HIGH:0.3, TOO_HIGH:0) 

 Dominant State � Normal 

Road-B: Volume�30 

 Fuzzy_Set (LOW:0.4, 
ORMAL:0.9, HIGH:0.1 , TOO_HIGH:0) 

 Dominant State�Normal 

Road-C: Volume�25 

 Fuzzy_Set (LOW:0.5 , 
ORMAL:1.0, HIGH: 0, TOO_HIGH: 0) 

 Dominant State�Normal 

Road-D: Volume�80 

 Fuzzy_Set (LOW:0, NORMAL:0, HIGH:0.8, TOO_HIGH:0.6) 

 Dominant State�High 

Road-E: Volume-�35 

 Fuzzy Set (LOW:0.3, 
ORMAL:0.8,HIGH:0.2, TOO_HIGH:0) 

 Dominant State�Normal 

------------------------------------------------------------------------------------------------------ 

STEP-2: Each 45 seconds, 

Light Agents send their fuzzy sets to Junction agents (upon their request) 

Light-1: = MAX(Road-B) = Road-B 



96 

 

 Fuzzy_Set (LOW:0.4, 
ORMAL:0.9, HIGH:0.1 , TOO_HIGH:0) 

 Dominant State�Normal 

Light-2: = MAX(Road-A) = Road-A 

 Fuzzy_Set (LOW:0.2, 
ORMAL:0.7, HIGH:0.3, TOO_HIGH:0) 

 Dominant State�Normal 

Light-3: = MAX(Road-E) = Road-E 

 Fuzzy Set (LOW:0.3, 
ORMAL:0.8,HIGH:0.2, TOO_HIGH:0) 

 Dominant State�Normal 

Light-4: = MAX(Road-C,Road-D) 

 Fuzzy_Set (LOW:0.5, NORMAL:1.0, HIGH:0.8, TOO_HIGH:0.6) 

 Dominant State�High 

Junction-2: 

 Group Reference (Light-3), Dominant State�
ormal 

 Group Opponent (Light-4), Dominant State�High 

 Launch Fuzzy Controller 

Fuzzy Controller: 

 Reference-Set (Light-3)�  (LOW:0.3, 
ORMAL:0.8,HIGH:0.2, 

TOO_HIGH:0)  

 Opponent-Set (Light-4)� (LOW:0.5, NORMAL:1.0, HIGH:0.8, 

TOO_HIGH:0.6) 

 

 Fuzzy Rules Evaluation 

• Rule-1: MinVal1 = 0.3, Oval1 =  0 

• Rule-2: MinVal2 = 0.3, Oval2 =  0 

• Rule-3: MinVal3 = 0.5, Oval3 =  0 

• Rule-4: MinVal4 = 0.8, Oval4 =  0 

• Rule-5: MinVal5 = 0.2, Oval5 =  0 

• Rule-6: MinVal6 = 0, Oval6 =  0 

• Rule-7: MinVal7 = 0.3, Oval7 =  0.6 

• Rule-8: MinVal8 = 0.3, Oval8 =  0.9 

• Rule-9: MinVal9 = 0.8, Oval9 =  0.3 

• Rule-10: MinVal10 = 0.6, Oval10 =  0.6 



97 

 

• Rule-11: MinVal11 = 0.2, Oval11 =  -0.6 

• Rule-12: MinVal12 = 0.2, Oval12 =  -0.3 

• Rule-13: MinVal13 = 0.2, Oval13 =  0.3 

• Rule-14: MinVal14 = 0, Oval14 =  -0.9 

• Rule-15: MinVal15 = 0, Oval15 =  -0.6 

• Rule-16: MinVal16 = 0, Oval16 =  -0.3 

 

 De-fuzzification�Apply Centroid Principle 

 OTotal = 0.18+0.27+0.24+0.36-0.12-0.06+0.06 = 0.93 

 MTotal = 4.7 

 Change_Rate = 0.93 /4.7 = 0.19, %19 increase of red period of reference light 

group. 

 If Red of Light-3 was 45 sec, it becomes now 53 sec. And it means 53 

seconds (up from 45 sec) green for Light -4 which is in High state 

Neural-Net: 

 ISCommand�0 

 Change_Fuzzy�0.19 ( based on  reference group) 

 DayOfWeek�XXX 

 Time�XXXXX, XXXXXX 

 IsHoliday�X 

 Output* 100 will be real red period value for reference light agents. 

Junction-1: 

 Group Reference (Light-1), Dominant State�
ormal 

 Group Opponent (Light-2), Dominant State�
ormal 

 
o Trouble Do 
othing (optional) or  

Light-1: = MAX(Road-B) = Road-B 

 Fuzzy_Set (LOW:0.4, 
ORMAL:0.9, HIGH:0.1 , TOO_HIGH:0) 

 Dominant State�Normal 

Light-2: = MAX(Road-A) = Road-A 

 Fuzzy_Set (LOW:0.2, 
ORMAL:0.7, HIGH:0.3, TOO_HIGH:0) 

 Dominant State�Normal 

Rule Results:  



98 

 

0.2, 0.4, 0.2, 0.7, 0.1, 0, 0.3, 0, 0.3, 0, 0.1, 0.1, 0, 0, 0, 0 

Output Set Centroids 

0, 0, 0, 0, 0, 0, 0.6, 0.9, 0.3, 0.6, -0.6, -0.3, 0.3, -0.9, -0.6, -0.3 

 OTotal = 0.18 + 0 + 0.09 + 0 + -0.06 -0.03 + 0 + 0 + 0 + 0 = 0.18 

 MTotal = 2.4 

Change_Rate = 0.18 /2.4 = 0.07, %7 increase of red period of reference light. 

------------------------------------------------------------------------------------------------------ 

STEP-3: Each 60  seconds, 

ISLinks database table content is as given as follows. 

 

Table A.4 Junction-to-junction, Junction-to-intersection links table 

Junction-

SubGroup 

Linked To Relation Type 
eighbor Position Type 

(according to 

local junction) 

J-2 Opponent J-1 Local - Prev 

 

Junction Agents send their fuzzy states to Intersection Agent (upon its request) 

Junction-1:  

State�Normal 

 Reference�Normal 

 Opponent�Normal 

Junction-2:  

State�High 

 Reference�Normal 

 Opponent�High 

 

Now execute the Intersection Agent state reasoning algorithm: 

- Local State is High, so call manage_localstate() 

- There is no link to Junction-2, so skip process 

 

If J-1 were high and J-2 were Normal, 

- Local state is High, so call manage_localstate() 



99 

 

- There is a link found to Junction-1 

- Send command to J-2 (%10 increase of reference red period), means that %10 

increase of green period of J-2 Opponent. It causes less traffic to J-1. 

 

There is a table below that shows several results according to the values of input 

Road Agents: 

 

Table A.5 The Execution flow of the system for sample scenario 2 

 Road  

Agents 

Fuzzy Flow Fuzzy Output Junctions Reasoning at IS 

T-1 Road-A: 90 

Road-B: 70 

Road-C: 50 

Road-D: 30 

Road-E: 10 

Junction-1 

Group Reference (Light-1, Road B): 

(Low:0,Normal:0.1,High:0.9,Too_High:

0.4) 

High 

Group Opponent (Light-2, Road A):  

(Low:0, Normal:0, High:0.4, 

Too_High:0.8) 

Too_High 

Junction-2 

Group Reference (Light-3, Road E): 

(Low:0.8, Normal:0.4, High:0, 

Too_High:0) 

Low 

Group Opponent (Light-4, Road 

C,D): 

Road-C 

(Low:0, Normal:0.5, High:0.5, 

Too_High:0) 

Road-D 

(Low:0.4,Normal:0.9,High:0.1,Too_Hig

h: 0) 

MAX = (Low:0.4, Normal:0.9, 

High:0.5, Too_High:0) 

Normal 

Junction-1: 

MTotal = 2.2 

OTotal = 0.21 

Change = 

0.21/2.2 = %9 

increase of 

reference red 

period. 

Junction-2: 

MTotal = 2.9 

OTotal = 0.42 

Change = %14 

increase of 

reference red 

period or do 

nothing 

(optional) 

Junc-1: 

Too_High 

Junc-2: Normal 

Evaluation  for 

Junc-1 

(Too_High-


ormal) = 2*10 

Change[Prev,Op

p] 

%20 increase 

red period of 

reference for 

Junc-2. 

T-2 Road-A: 70 

Road-B: 30 

Road-C: 10 

Road-D: 50 

Road-E: 90 

Junction-1 

Group Reference (Light-1, Road B): 

(Low:0.4,Normal:0.9,High:0.1,Too_Hig

h: 0) 

Normal 

Group Opponent (Light-2, Road A):  

(Low:0,Normal:0.1,High:0.9,Too_High:

0.4) 

High 

Junction-1: 

MTotal = 2.6 

OTotal = 1.11 

Change = 

1.11/2.6 = %42 

increase of 

reference red 

period. 

Junction-2: 

Junc-1: High 

Junc-2: 

Too_High 

Evaluation  for 

Junc-2 


o Links to J-2 


o command 



100 

 

Junction-2 

Group Reference (Light-3, Road E): 

(Low:0, Normal:0, High:0.4, 

Too_High:0.8) 

Too_High 

Group Opponent (Light-4, Road 

C,D): 

Road-C 

(Low:0.8, Normal:0.4, High:0, 

Too_High:0) 

Road-D 

(Low:0, Normal:0.5, High:0.5, 

Too_High:0) 

MAX = (Low:0.8, Normal:0.5, 

High,:0.5 Too_High:0) 

Normal 

MTotal = 3.0 

OTotal = -1.53 

Change = %51 

decrease of 

reference red 

period. 

T-3 Road-A: 50 

Road-B: 70 

Road-C: 30 

Road-D: 90 

Road-E: 10 

Junction-1 

Group Reference (Light-1, Road B): 

(Low:0,Normal:0.1,High:0.9,Too_High:

0.4) 

High 

Group Opponent (Light-2, Road A):  

(Low:0, Normal:0.5, High:0.5, 

Too_High:0) 

Normal 

Junction-2 

Group Reference (Light-3, Road E): 

(Low:0.8, Normal:0.4, High:0, 

Too_High:0) 

Low 

Group Opponent (Light-4, Road 

C,D): 

Road-C 

(Low:0.4,Normal:0.9,High:0.1,Too_Hig

h: 0) 

Road-D 

(Low:0, Normal:0, High:0.4, 

Too_High:0.8) 

MAX = (Low:0.4, Normal:0.9, 

High,:0.4 Too_High:0.8) 

Too_High 

Junction-1: 

MTotal = 2.0 

OTotal = -0.36 

Change = -

0.36/2.0 = %18 

decrease of 

reference red 

period. 

Junction-2: 

MTotal = 4.0 

OTotal = 1.32 

Change = %33 

increase of 

reference red 

period 

Junc-1: High 

Junc-2: 

Too_High 

Evaluation  for 

Junc-2 


o Links to J-2 


o Command 

T-4 Road-A: 10 

Road-B: 30 

Road-C: 50 

Road-D: 70 

Road-E: 90 

Junction-1 

Group Reference (Light-1, Road B): 

(Low:0.4,Normal:0.9,High:0.1,Too_Hig

h: 0) 

Normal 

Group Opponent (Light-2, Road A):  

(Low:0.8, Normal:0.4, High:0, 

Junction-1: 

MTotal = 2.2 

OTotal = -0.09 

Change = -

0.09/2.2 = %4 

decrease of 

reference red 

Junc-1: Normal 

Junc-2: 

Too_High 

Evaluation  for 

Junc-2 


o Links to J-2 


o Command 



101 

 

Too_High:0) 

Low 

Junction-2 

Group Reference (Light-3, Road E): 

(Low:0, Normal:0, High:0.4, 

Too_High:0.8) 

Too_High 

Group Opponent (Light-4, Road 

C,D): 

Road-C 

(Low:0, Normal:0.5, High:0.5, 

Too_High:0) 

Road-D 

(Low:0,Normal:0.1,High:0.9,Too_High:

0.4) 

MAX = (Low:0, Normal:0.5, High:0.9, 

Too_High:0.4) 

High 

period or do 

nothing 

(optional) 

Junction-2: 

MTotal = 2.9 

OTotal = -0.54 

Change = %18 

decrease of 

reference red 

period 

T-5 Road-A: 90 

Road-B: 50 

Road-C: 10 

Road-D: 30 

Road-E: 70 

Junction-1 

Group Reference (Light-1, Road B): 

(Low:0, Normal:0.5, High:0.5, 

Too_High:0) 

Normal 

Group Opponent (Light-2, Road A):  

(Low:0, Normal:0, High:0.4, 

Too_High:0.8) 

Too_High 

Junction-2 

Group Reference (Light-3, Road E): 

(Low:0,Normal:0.1,High:0.9,Too_High:

0.4) 

High 

Group Opponent (Light-4, Road 

C,D): 

Road-C 

(Low:0.8, Normal:0.4, High:0, 

Too_High:0) 

Road-D 

(Low:0.4,Normal:0.9,High:0.1,Too_Hig

h: 0) 

MAX = (Low:0.8, Normal:0.9, 

High:0.1, Too_High:0) 

Normal 

Junction-1: 

MTotal = 1.8 

OTotal = 0.57 

Change = 

0.57/1.8 = %31 

increase of 

reference red 

period. 

Junction-2: 

MTotal = 3.0 

OTotal = -1.35 

Change = %45 

decrease of 

reference red 

period 

Junc-1: 

Too_High 

Junc-2: High 

Evaluation  for 

Junc-1 

(Too_High-

High) = 1*10 

Change[Prev,Op

p] 

%10 increase 

red period of 

reference for 

Junc-2. 

T-6 Road-A: 10 

Road-B: 90 

Road-C: 30 

Road-D: 70 

Road-E: 50 

Junction-1 

Group Reference (Light-1, Road B): 

(Low:0, Normal:0, High:0.4, 

Too_High:0.8) 

Too_High 

Junction-1: 

MTotal = 2.0 

OTotal = -1.32 

Change = -

1.32/2.0 = %66 

Junc-1: 

Too_High 

Junc-2: High 

Evaluation  for 

Junc-1 

%10 increase 

red period of 

reference for 

Junc-2. 



102 

 

Group Opponent (Light-2, Road A):  

(Low:0.8, Normal:0.4, High:0, 

Too_High:0) 

Low 

Junction-2 

Group Reference (Light-3, Road E): 

(Low:0, Normal:0.5, High:0.5, 

Too_High:0) 

Normal 

Group Opponent (Light-4, Road 

C,D): 

Road-C 

(Low:0.4,Normal:0.9,High:0.1,Too_Hig

h: 0) 

Road-D 

(Low:0,Normal:0.1,High:0.9,Too_High:

0.4) 

MAX = (Low:0.4, Normal:0.9, 

High:0.9, Too_High:0.4) 

High 

decrease of 

reference red 

period. 

Junction-2: 

MTotal = 3.6 

OTotal = 0.12 

Change = %3 

increase of 

reference red 

period. 

(Too_High-

High) = 1*10 

Change[Prev,Op

p] 

T-7 Road-A: 30 

Road-B: 10 

Road-C: 70 

Road-D: 90 

Road-E: 50 

Junction-1 

Group Reference (Light-1, Road B): 

(Low:0.8, Normal:0.4, High:0, 

Too_High:0) 

Low 

Group Opponent (Light-2, Road A):  

(Low:0.4,Normal:0.9,High:0.1,Too_Hig

h: 0) 

Normal 

Junction-2 

Group Reference (Light-3, Road E): 

(Low:0, Normal:0.5, High:0.5, 

Too_High:0) 

Normal 

Group Opponent (Light-4, Road 

C,D): 

Road-C 

(Low:0,Normal:0.1,High:0.9,Too_High:

0.4) 

Road-D 

(Low:0, Normal:0, High:0.4, 

Too_High:0.8) 

MAX (Low:0, Normal:0.1, High:0.9, 

Too_High:0.8) 

High 

Junction-1: 

MTotal = 2.2 

OTotal = 0.09 

Change = 

0.09/2.2 = %4 

increase of 

reference red 

period or do 

nothing 

(optional) 

Junction-2: 

MTotal = 2.2 

OTotal = 0.57 

Change = %25 

increase of 

reference red 

period. 

Junc-1: Normal 

Junc-2: High 

Evaluation  for 

Junc-2 


o Links to J-2 


o Command 

 

After the detailed evaluations, the following summary results table is generated: 



103 

 

 

Table A.6 Final results summary for sample scenario 2 

Tests Reference Opponent Junction Result IS Result 

T-0 Light-1: 


ormal 

Light-2: 
ormal %7 increase red period of 

Reference (J-1) 

Local State is High, and No 

link to J-2, No Command 

Light-3: 


ormal 

Light-4: High %19 increase red period of 

Reference (J-2) 

T-1 Light-1: 

High 

Light-2: Too_High %9 increase red period of 

Reference (J-1) 

Test-1, Local State is 

Too_High, Command�%20 

increase red period of 

reference for J-2. 

Light-3: 

Low 

Light-4: 
ormal %14 increase red period of 

Reference (J-2) 

T-2 Light-1: 


ormal 

Light-2: High %42 increase red period of 

Reference (J-1) 

Test-2, Local State is 

Too_High, No Link to J-2, 

No Command Light-3: 

Too_High 

Light-4: 
ormal %51 decrease red period of 

Reference (J-2) 

T-3 Light-1: 

High 

Light-2: 
ormal %18 decrease red period of 

Reference (J-1) 

Test-3, Local State is 

Too_High, No Link to J-2, 

No Command Light-3: 

Low 

Light-4: Too_High %33 increase red period of 

Reference (J-2) 

T-4 Light-1: 


ormal 

Light-2: Low %4 decrease red period of 

Reference (J-1) 

Test-4, Local State is 

Too_High, No Link to J-2, 

No Command Light-3: 

Too_High 

Light-4: High %18 decrease red period of 

Reference (J-2) 

T-5 Light-1: 


ormal 

Light-2: Too_High %31 increase red period of 

Reference (J-1) 

Test-5, Local State is 

Too_High, Command�%10 

increase red period of 

reference for J-2. 

Light-3: 

High 

Light-4: 
ormal %45 decrease red period of 

Reference (J-2) 

T-6 Light-1: 

Too_High 

Light-2: Low %66 decrease red period of 

Reference (J-1) 

Test-6, Local State is 

Too_High, Command�%10 

increase red period of 

reference for J-2. 

Light-3: 


ormal 

Light-4: High %3 increase red period of 

Reference (J-2) 

T-7 Light-1: 

Low 

Light-2: 
ormal %4 increase red period of 

Reference (J-2) 

Test-7, Local State is High, 

No Link to J-2, No 

Command Light-3: 


ormal 

Light-4: High %25 increase red period of 

Reference (J-2) 

  

A part from the step by step scenario work given above, for the same intersection 

scenario another test has been realized.  The sample data set for the execution is as 

follows. Note that the all roads have a steady flow and Road-C is an internal road 

direction that’s why it’s labeled with a T. The values given in parentheses specify the 



104 

 

transferred vehicle count for pre-timed controller scheme. (The Leak rate parameters: 

%60 of Road-B, %70 of Road-A). In Table A.8, the numbers of queued vehicles are 

listed according to the tested environments (Pre-timed controller, TSIS Simulator 

environment, the proposed model) 

 

Table A.7 The another data set for sample scenario 2 

Time (unit) Road-A Road-B Road-C Road-D Road-E 

1 20 40 0 40 20 

2 20 40 0 + 38(T) 40 20 

3 20 40 0 + 38(T) 40 20 

4 20 40 0 + 38(T) 40 20 

5 20 40 0 + 38(T) 40 20 

6 20 40 0 + 38(T) 40 20 

 

Table A.8 The queued vehicles after the execution of data set 

Time (unit) Road-A Road-B Road-C Road-D Road-E Total 

New Solution 0 30 0 60 21 111 

Pre-timed 

Controller 0 60 38 60 0 158 

Corsim 

Controller 4 7 39 25 6 81 

 

As you see from the table, the new solution outperforms pre-timed controller, 

however, the Corsim controller (TSIS-integrated simulator) performs better than the 

solution model. With high probability, it occurred because of the wrong settings of 

the simulator environment because the Corsim simulator had been configured based 

on pre-timed controller model and it should have approximated to the pre-timed 

controller. 

 

 

 

 

 



105 

 

Scenario 3: SOK MARKET Intersection – Bornova 

 

 Figure A.6 The sample triple junction scenario (yellow lanes are out of scope). 

 

According to this figure, the following agent structure is generated: 

 1 Intersection Agent (IS-1, top-controller, has no sense in this configuration) 

 1 Junction Agent (middle-level controller, J-1) 

 3 Light Agents (L-1, L-2, L-3, each one controls a road-cross point) 

 6 Road Agents 

  Road-A: Light-1 

  Road-B: Light-1 

  Road-C: Light-2 

  Road-D: Light-2 



106 

 

  Road-E: Light-3 

  Road-F: Light-3 

 Data Collection period parameters: 

 

� Light Agent collects states of road agents each 30 seconds 

� Junction Agent collects states of light agents each 45 seconds 

� Intersection Agent collects state of Junction agent each 60 seconds. 

� Total Cycle for intersection is 90 sec. Initially each Light agent launches 

30sec green and 60 sec red signal. 

� The vehicle count above 100 in queues is ignored, because road capacities 

are assumed as 100. 

The first sample data table is as follows: 

 

Table A.9 Input vehicle counts data set I for sample scenario 3 

 VEHICLE COU&TS I&COMI&G 

 Road-A Road-B Road-C Road-D Road-E Road-F 

Time-1 20 40 20 60 40 10 

Time-2 20 40 20 55 40 15 

Time-3 20 40 20 50 40 20 

Time-4 20 40 20 45 40 25 

Time-5 20 40 20 40 40 30 

Time-6 20 40 20 35 40 35 

Time-7 20 40 20 30 40 45 

Time-8 20 40 20 25 40 50 

Time-9 20 40 20 15 40 55 

Time-10 20 40 20 10 40 60 

 

By processing this data set, the following result graph is obtained. As you see 

from the graph, at the end of simulation, our system outperforms fixed-time split 

system and moreover, it uniformly distributes the waiting vehicles on roads. 

 

 



107 

 

0

100

0

65

100

45

310

0

72

26

65

38
49

250

0

50

100

150

200

250

300

350

Road-A Road-B Road-C Road-D Road-E Road-F Total

N
u
m
b
e
r 
o
f 
V
e
h
ic
le
s

Roads

Queued Vehicles

Fixed Time Split system Our System

    

    Figure A.7 The result graph of the vehicle data set 1 of sample scenario 3. 

 

 Another data set and output graph is given below: 

 

Table A.10 Input vehicle counts data set II for sample scenario 3 

 VEHICLE COU&TS I&COMI&G 

 Road-A Road-B Road-C Road-D Road-E Road-F 

Time-1 40 50 10 60 10 10 

Time-2 40 50 15 55 15 15 

Time-3 40 50 20 50 25 20 

Time-4 40 50 25 45 30 25 

Time-5 40 50 30 40 35 30 

Time-6 40 50 35 35 40 35 

Time-7 40 50 40 30 45 45 

Time-8 40 50 45 25 50 50 

Time-9 40 50 55 15 55 55 

Time-10 40 50 60 10 60 60 

 

By processing the given data set the following result graph is obtained. 

 



108 

 

100 100

35

65 65
45

410

67
84

64 54 62 62

393

0

50

100

150

200

250

300

350

400

450

Road-A Road-B Road-C Road-D Road-E Road-F Total

N
u
m
b
e
r 
o
f 
v
e
h
ic
le
s

Roads

Queued Vehicles

Fixed Time Split system Our System

 

    Figure A.8 The result graph of the queued vehicles for data set 2 of sample scenario 3. 

 

As it is in the previous graph, at the end of simulation, our system outperforms 

fixed time-split system and again it uniformly distributes the waiting vehicles on 

roads. Because of fuzzy and autonomous nature, our system may produce different 

results for the same data set. For example, when the second test is repeated with 

same date, the program generated the following results. Probably it is related with 

minimum and maximum assumptions that are affecting results regarding to small 

changes. 

 

Table A.11 The result table of the queued vehicles for data set 2 of sample scenario 3 

At the end of time 

period 

(Second Test) 

Road-A Road-B Road-C Road-D Road-E Road-F Total 

Fixed Time Split system 100 100 35 65 65 45 410 

Our System 67 92 75 58 43 43 378 

 

 
 



109 

 

Scenario 4: Ege University Hospital Intersection – Campus Link  

 

The intersection diagram is given below: 

 

 

Figure A.9 A three junctions topology scenario in a single intersection. 



110 

 

 

According to this figure, the following agent structure is generated. 

 1 Intersection Agent (IS-1, top-controller) 

 3 Junction Agent (middle-level controller, J-1, J-2, J-3) 

 6 Light Agents (L-1, L-2, L-3, L-4, L-5, L-6, each one controls one road-

cross point) 

 6 Road Agents 

 Road-A: Light-1 

 Road-B: Light-2 

 Road-C: Light-3 

 Road-D: Light-4 

 Road-E: Light-5 

 Road-F: Light-6 

 

Data Collection period parameters: 

 

o Light Agent collects states of road agents each 30 seconds 

o Junction Agent collects states of light agents each 45 seconds 

o Intersection Agent collects state of Junction agent each 60 seconds. 

o Total Cycle for each junction is 60 sec. Initially each Light agent launches 

30sec green and 30sec red signal. 

o The vehicle count above 100 in queues is ignored, because road capacities are 

assumed as 100. 

 

The first sample data table is given as follows. 



111 

 

Table A.12 The vehicle data input set I of the sample scenario 4 

 VEHICLE COU&TS I&COMI&G FROM FILE 

 Road-A 

(from C,D) 

Road-B Road-C 

(from E,F) 

Road-D Road-E Road-F 

(from 

A,B) 

Time-1 30 50 30 60 10 30 

Time-2 0 – 33(T) 50 0 – 8(T) 55 15 0 – 61(T) 

Time-3 0 – 28(T) 50 0 – 15(T) 50 25 0 – 63(T) 

Time-4 0 – 27(T) 50 0 – 18(T) 45 30 0 – 60(T) 

Time-5 0 – 26(T) 50 0 – 18(T) 40 35 0 – 59(T) 

Time-6 0 – 22(T) 50 0 – 19(T) 35 40 0 – 58(T) 

Time-7 0 – 20(T) 50 0 – 20(T) 30 45 0 – 54(T) 

Time-8 0 – 17(T) 50 0 – 20(T) 25 50 0 – 54(T) 

Time-9 0 – 15(T) 50 0 – 21(T) 15 55 0 – 51(T) 

Time-10 0 – 10(T) 50 0 – 21(T) 10 60 0 – 51(T) 

T represents transferred vehicle count according to pre-timed controller scale. 

  

In order to transfer vehicle flow to intermediate road lanes (shown with 0 values 

in the table given above), the database configuration table has been filled with some 

default values. The table keeps leak rates between source and destination road lanes. 

Whenever source lane passes vehicles, it sends a portion of passed vehicles to target 

road. During run-time, these values are used for fuzzy estimations. The Road Link 

table diagram for this scenario is given below. 



112 

 

 

Table A.13 Road to road connection leak rates for internal road links 

RoadLinks DB TABLE 

SourceRoad TargetRoad LeakRate TargetMaster 

Road-A Road-F 70 Light-6 

Road-B Road-F 80 Light-6 

Road-C Road-A 10 Light-1 

Road-D Road-A 50 Light-1 

Road-E Road-C 20 Light-3 

Road-F Road-C 20 Light-3 

  

After processing the given data set against the new controller and the fixed-time 

split systems, the following result graph is generated. 

 

100 100

35
65 65

45

410

67
92

75
58

43 43

378

0

50

100

150

200

250

300

350

400

450

Road-A Road-B Road-C Road-D Road-E Road-F Total

N
u
m
b
e
r 
o
f 
v
e
h
ic
le
s

Roads

Queued Vehicles

Fixed Time Split system Our System

 Figure A.10 The result graph of data set 1 of Sample Scenario 4. 

 

As it is seen from graph, our system outperforms fixed-time split system. Some 

small inconsistencies can have been caused by intermediate transitions. However, in     

general, our system solution makes more vehicles passed through the intersection. 

 

Based on the same scenario, another data set and output graph is given below. 



113 

 

 

Table A.14 The vehicle data input set II of sample scenario 4 (T represents the transferred vehicle 

count according to the pre-timed controller scale) 

 VEHICLE COU&TS I&COMI&G 

 Road-A 

(from C,D) 

Road-B Road-C 

(from E,F) 

Road-D Road-E Road-F 

(from A,B) 

Time-1 30 40 30 60 20 30 

Time-2 0 – 33(T) 40 0 – 10(T) 55 20 0 – 53(T) 

Time-3 0 – 28(T) 40 0 – 15(T) 50 20 0 – 55(T) 

Time-4 0 – 26(T) 40 0 – 15(T) 45 20 0 – 52(T) 

Time-5 0 – 24(T) 40 0 – 14(T) 40 20 0 – 50(T) 

Time-6 0 – 21(T) 40 0 – 14(T) 35 20 0 – 49(T) 

Time-7 0 – 19(T) 40 0 – 14(T) 30 20 0 – 47(T) 

Time-8 0 – 16(T) 40 0 – 13(T) 25 20 0 – 45(T) 

Time-9 0 – 14(T) 40 0 – 13(T) 20 20 0 – 43(T) 

Time-10 0 – 11(T) 40 0 – 13(T) 15 20 0 – 43(T) 

 

0

100

0

65 65

100

330

16

52

15
0

59
81

223

0

50

100

150

200

250

300

350

Road-A Road-B Road-C Road-D Road-E Road-F Total

N
u
m
b
e
r 
o
f 
v
e
h
ic
le
s

Roads

Queued Vehicles

Fixed Time Split system Our System

  Figure A.12 The result graph of data set 2 of sample scenario 4. 

 

The results show that our system outperforms the fixed-time system again. 

Moreover, in this case a bit more clearly and sharply. 

 



114 

 

Appendix E – Light Agent Program Code 

 
package JadeTestAgent; 
/** 
 * <p>Title: Light Agent </p> 
 * <p>Description: all behaviors of Light Agent coded here</p> 
 * <p>Copyright: Copyright (c) 2008 by A.Ş.</p> 
 * <p>Company: DEU University</p> 
 * @author unascribed 
 * @version 1.0 
 */ 
import jade.core.Agent; 
import jade.core.AID; 
import jade.core.behaviours.*; 
import java.util.*; 
import java.io.IOException; 
import jade.domain.DFService; 
import jade.domain.FIPAException; 
import jade.domain.FIPAAgentManagement.DFAgentDescription; 
import jade.domain.FIPAAgentManagement.ServiceDescription; 
import jade.lang.acl.ACLMessage; 
import jade.lang.acl.MessageTemplate; 
import jade.lang.acl.UnreadableException; 
 
public class LightAgent extends Agent 
{ 
  private AID[] roadAgents = null; 
  private int   step = 0; 
  private int   iTimerFreq; 
  private RegistrationUI regObj; 
  private String myGroup = "None", Master = "None"; 
  private FuzzyData myFuzzy; 
  protected void setup() 
  { 
    Object[] args = getArguments(); 
    DatabaseUI  dbObj = new DatabaseUI(); 
    regObj = new RegistrationUI(); 
    if (args != null && args.length > 1) 
    { 
      myGroup = (String) args[0]; 
      Master = (String) args[1]; 
    } 
    AID myAID = getAID(); 
    System.out.println("LAgent:is ready, 
MyGroup:"+myGroup+"Master:"+Master); 
    regObj.RegisterAgent(Master,myGroup,myAID,this); 
    dbObj.ConnectToDB(); 
    iTimerFreq = dbObj.getTimerValue("Select LightPeriod From 
TimerParams","LightPeriod"); 
    dbObj.DisconnectFromDB(); 
    myFuzzy = new FuzzyData(); 
    myFuzzy.State = 1;//Default is normal, 
    myFuzzy.myGroup = myGroup; 
    addBehaviour(new WaitRequest()); 
    addBehaviour(new WaitPeriod()); 
    addBehaviour(new TickerBehaviour(this,iTimerFreq) 
    { 
        protected void onTick() 



115 

 

        { 
            DFAgentDescription  template = new DFAgentDescription(); 
            ServiceDescription  sd = new ServiceDescription(); 
            sd.setType(myGroup); 
            template.addServices(sd); 
            try 
            { 
                DFAgentDescription[] result = 
DFService.search(myAgent, 
                        template); 
                if (result.length > 0) 
                { 
                    roadAgents = new AID[result.length]; //no escape 
                    regObj.AssignAgents(result, roadAgents); 
                    myAgent.addBehaviour(new Collector()); 
                } 
                step = 0; 
            } 
            catch(FIPAException fe) 
            { 
                fe.printStackTrace(); 
            } 
        } 
    }); 
  } 
  protected void takeDown() 
  { 
    System.out.println( myGroup + " terminating"); 
  } 
  /***********************************************/ 
  private class WaitRequest extends CyclicBehaviour 
  { 
    public void action () 
    { 
      byte State = 0;// 
      FuzzyData  msgData = new FuzzyData(); 
      MessageTemplate m1 = 
MessageTemplate.MatchPerformative(ACLMessage.REQUEST); 
      MessageTemplate mt = MessageTemplate.and(m1, 
MessageTemplate.MatchLanguage(Master)); 
      ACLMessage msg = myAgent.receive(mt); 
      if (msg != null) 
      { 
        String title = msg.getContent(); 
        ACLMessage  reply = new ACLMessage(ACLMessage.INFORM); 
        reply.addReceiver(msg.getSender()); 
        System.out.println(myGroup +": send its state value:" + 
myFuzzy.State + " to "+ Master);//getAID().getName() 
        reply.setLanguage(Master); 
        msgData.State = myFuzzy.State; 
        msgData.myGroup = myGroup; 
        msgData.hvalue = myFuzzy.hvalue; 
        msgData.lvalue = myFuzzy.lvalue; 
        msgData.nvalue = myFuzzy.nvalue; 
        msgData.tvalue = myFuzzy.tvalue; 
        try 
        { 
          reply.setContentObject(msgData);//String.valueOf(myState) 
        } catch (IOException e) 



116 

 

        { 
          e.printStackTrace(); 
        } 
        myAgent.send(reply); 
      } else block(); 
    } 
  } 
  /**********************************************/ 
  private class WaitPeriod extends CyclicBehaviour 
  { 
    public void action() 
    { 
      int RedPeriod = 0;// 
      MessageTemplate m1 = 
MessageTemplate.MatchPerformative(ACLMessage.INFORM); 
      MessageTemplate mt = MessageTemplate.and(m1, 
MessageTemplate.MatchLanguage(Master)); 
      ACLMessage msg = myAgent.receive(mt); 
      if (msg != null) 
      { 
        RedPeriod = Integer.parseInt(msg.getContent()); 
        System.out.println(myGroup + ":Getting new Period Values (in 
SECONDs), Setting Red-Light:"+ RedPeriod + 
        " Green-Light:"+ (GeneralFuncs.TOTAL_CYCLE - RedPeriod)); 
          InformRoadAgents(GeneralFuncs.TOTAL_CYCLE - RedPeriod); 
      } 
      else block(); 
    } 
    private void InformRoadAgents(int RedPeriod) 
    { 
      DFAgentDescription  template = new DFAgentDescription(); 
      ServiceDescription  sd = new ServiceDescription(); 
      sd.setType(myGroup); 
      template.addServices(sd); 
      try 
      { 
          DFAgentDescription[] result = DFService.search(myAgent, 
                  template); 
          if (result.length > 0) 
          { 
            ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 
            msg.addReceiver(result[0].getName()); 
            msg.setLanguage(myGroup); 
            msg.setContent(String.valueOf(RedPeriod)); 
            myAgent.send(msg); 
          } 
      } 
      catch(FIPAException fe) 
      { 
          fe.printStackTrace(); 
      } 
    } 
  } 
  /*****************************************/ 
  private class Collector extends Behaviour 
  { 
    private int repliesCnt = 0; 
    private MessageTemplate mt,m1; 
    private FuzzyData[] VolumeData; 



117 

 

     public void action() 
     { 
        
System.out.println("................................................
..."); 
        ACLMessage cfp = new ACLMessage(ACLMessage.REQUEST); 
        for (int i = 0; i < roadAgents.length; ++i) 
          cfp.addReceiver(roadAgents[i]); 
        cfp.setLanguage(myGroup); 
        myAgent.send(cfp); 
        m1 = MessageTemplate.MatchLanguage(myGroup); 
        mt = 
MessageTemplate.and(m1,MessageTemplate.MatchPerformative(ACLMessage.
INFORM)); 
        VolumeData = new FuzzyData[roadAgents.length]; 
        while (repliesCnt < roadAgents.length) 
        { 
           ACLMessage reply = myAgent.receive(mt); 
           if (reply != null) 
           { 
               FuzzyData fuzzyObj; 
               try 
               { 
                 fuzzyObj = (FuzzyData) reply.getContentObject(); 
                 AID sender = reply.getSender(); 
                 String name = sender.getName(); 
                 System.out.println(myGroup + ":Received State from 
" + name + ":" + fuzzyObj.State); 
                 VolumeData[repliesCnt] = fuzzyObj; 
                 repliesCnt++; 
               } catch(UnreadableException e3) 
               { 
             System.err.println(getLocalName()+ " catched exception 
"+e3.getMessage()); 
               } 
           } 
           else block(); 
        }//end of action. 
        if (repliesCnt >= roadAgents.length) 
        { 
          step=2; 
          String GlobalFuzzy = "Unknown"; 
          GeneralFuncs  FuncsObj = new GeneralFuncs(); 
          FuncsObj.FindAvgFuzzy(VolumeData,myFuzzy); 
          System.out.println(myGroup + "->Low:"+ myFuzzy.lvalue+" 
Normal:"+ myFuzzy.nvalue+" High:"+ myFuzzy.hvalue+" TooHigh:" 
          +myFuzzy.tvalue); 
          GlobalFuzzy = FuncsObj.PrintFuzzyState(myFuzzy.State); 
          System.out.println(myGroup + ":My fuzzy state is " + 
GlobalFuzzy); 
          byte[] index = myGroup.getBytes(); 
          InformScreen(GlobalFuzzy,(byte)(index[index.length-1]-
0x30)); 
        } 
     }//end of action 
     public boolean done() 
     { 
      return (step == 2); 
     } 



118 

 

     private void InformScreen(String sFuzzy, byte index) 
     { 
       DFAgentDescription  template = new DFAgentDescription(); 
       ServiceDescription  sd = new ServiceDescription(); 
       sd.setType("SIMULATOR"); 
       template.addServices(sd); 
       try 
       { 
           DFAgentDescription[] result = DFService.search(myAgent, 
                   template); 
           if (result.length > 0) 
           { 
             ScreenMsg sm = new ScreenMsg(); 
             sm.Index = index; 
             sm.FuzzySet = sFuzzy; 
             ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 
             msg.addReceiver(result[0].getName()); 
             msg.setLanguage("Light"); 
             msg.setContentObject(sm); 
             myAgent.send(msg); 
           } 
       } 
       catch(FIPAException fe) 
       { 
           fe.printStackTrace(); 
       } 
       catch(IOException fe) 
       { 
         fe.printStackTrace(); 
       } 
     } 
 }//end of RequestPerformer 
} 
 


