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3G WIRELESS MULTICASTING
SERVICE DESCRIPTION, DISCOVERY AND TRANSPORT

ABSTRACT

Wireless Multicasting is a technology that enables data and multimedia services to
be delivered from a single source to a group of mobile receivers particularly for the
actors in the broadcasting and telecommunication world. Although multicasting has
been extensively researched in the past, the wired IP Multicast model has not picked
up due to various limitations. The new generation wireless counterpart of this

technology is receiving tremendous interest from all over the world.

In this work, first we have provided a survey of recent technological
improvements for wireless multicasting in both cellular and broadcast world. Then,
one of the 3G wireless multicasting architecture, 3GPP’s MBMS (Multimedia
Broadcast Multicast Services) in UMTS (Universal Mobile Telecommunication
System) networks, is investigated with a focus on reliable download mechanism. We
have provided an end to end download prototype for MBMS. Our prototype, called
MBMS legacy download, also covers an implementation of a Service Discovery
Architecture. As a unique contribution the thesis provides the gain of using
progressive download instead of legacy download and proposes ways to increase the
gain for streamable multimedia files for MBMS. With progressive download,
downloadable media can be streamed earlier after some waiting time, while the
downloading still continues in the background. First we provide optimizations of the
parameters for an efficient MBMS legacy download. Then based on these
optimizations, we provide experimental analyses to show the gain in using
progressive download in MBMS. Finally in order to further increase the progressive
download performance, we apply our application layer interleaving strategy to our
MBMS download systems and give a performance comparison of the legacy,
interleaved and progressive download delivery. This work has has been fully funded

by TUBITAK and Vidiator Technology US under the project EEEAG 104E163.

Keywords: 3G, MBMS, Interleaving, Progressive Download.
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UCUNCU NESIL KABLOSUZ COKLU DAGITIM
SERVIS TANIMI, KESFi VE iLETIiMi

0Z
Kablosuz ¢oklu dagitim tek bir kaynaktan, hareketli bir grup aliciya, veri ve ¢coklu
ortam dagitimim Ozellikle telekomiinikasyon ve yayimsal diinya aktorleri igin
miimkiin kilan bir teknolojidir. Coklu dagitim gecmiste kapsamli bir sekilde
calisilmasina ragmen, kablolu IP ¢oklu dagitim modeli bircok kisitlamalardan dolay1
basarili olamamistir. Bu teknolojinin yeni nesil kablosuz siiriimii diinyanin her

yerinden olaganiistii bir ilgi almigtir.

Bu tezde ilk olarak hiicresel ve yayimsal diinyada, kablosuz ¢oklu dagitimin son
teknolojik gelismelerini ortaya c¢ikardik. Sonra, UMTS (Universal Mobile
Telecommunication System) aglarda 3. nesil kablosuz ¢oklu dagitim mimarilerinden
biri olan 3GPP‘nin MBMS (Multimedia Broadcast Multicast Services) teknolojisini
giivenilir yiikleme {iizerinde durarak inceledik. MBMS’in ugtan uca yiikleme
prototipini gelistirdik. Bu prototipimizi MBMS kalit yiikleme olarak isimlendirdik.
Prototipimize ayni1 zamanda servis kesif mimarisinin bir uygulamasini da ekledik.
Prototipi daha da gelistirerek asagidaki yenilikleri tezde sunduk. Tez MBMS’te
duraksiz c¢oklu ortam icin, kalit yiikleme yerine gelisimsel yiikleme kullaniminin
getirdigi kazanci sunar ve bu kazanci attirmak i¢in yeni metotlar onerir. Geligimsel
yiikleme ile yiikleme islemi arka planda devam ederken, belli bir bekleme
zamanindan sonra yiiklenebilir coklu ortam dosyalar1 duraksiz olarak oynatilabilir.
Once verimli bir MBMS kalit yiikleme icin parametrelerin en iyilemelerini gosterdik.
Sonra bu en iyilemelerin iistiine, MBMS gelisimsel yiikleme kullanilarak elde edilen
kazanci gostermek icin deneysel analizler sunduk. Son olarak gelisimsel yiikleme
verimliligini daha da artirmak i¢in, uygulama katmaninda “interleaving”
mekanizmasi kullandik. Kalit Yiikleme ile Gelisimsel ve “Interleaved” Yiikleme
arasinda verimlilik kiyaslamasi yaptik. Bu calisma TUBITAK ve Vidiator
Technology US firmasi tarafindan EEEAG 104E163 proje numarasi altinda

desteklenmistir.

Keywords: 3G, MBMS, Serpistirim, Gelisimsel Yiikleme.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

The recent development in multimedia applications with the parallel progress in
transport technologies has brought real-time or non-real time multimedia distribution in
the form of multicasting or broadcasting for both wired and wireless environments.
Multimedia distribution is rapidly evolving with effective multimedia compression
techniques and higher speed wireless networks. Hence mobile services are getting
better with the decreasing delivery cost day by day. Such mobile services include
streaming, downloading and progressive downloading (BenQ Mobile, 2006) services
for on-demand video, mobile TV, short clips for news, football results, software
updates and more. IP multicasting that refers to IP layer wired multicasting case has not
succeeded due to many limitations. The new generation wireless counterpart of this
technology is receiving tremendous interest from all over the world. The term
“Broadcast” refers to the ability to deliver content to all users. Known examples are
radio and TV services, which are broadcasted over the air, such as terrestrial or via
satellite, or over cable networks. Multicasting, on the other hand, refers to services that
are solely delivered to users who have joined a particular multicast group. Both
multicasting and broadcasting are synonyms regarding to communication in that they
deliver data over point-to-multipoint communication where data packets are transmitted

from a single source to multiple destinations.

Today many mobile operators launched streaming type services such as mobile TV
services, which allow mobile users to watch TV on their mobile terminals or
downloading type services such as MMS. In Europe, a number of operators have
launched sports information services that push short video clips to the mobile terminals.
Vodafone (Germany, the Netherlands), TIM (Italy and Greece), Three (Italy and

Sweden) and Sprint (US) have all launched mobile TV services and continue to do so in



different countries. Multimedia services are still offered to consumers over point-to-
point wireless connections. Large scale media distribution makes this point-to-point
service delivery inefficient especially for wireless networks. Furthermore, the cost of
point-to-point services is expensive. Although the technology already realized the
service delivery over one-to-many multicast channels, with sufficient quality of service,
consumer market is not deployed yet due to it’s still in transition from 2.5 G to 3G.
Several technologies that provide multicasting for 3G wireless networks are 3GPP
MBMS (Third Generation Partnership Project Multimedia Broadcast and Multicast
System; 3GPP TSG 26.346, 2007), 3GPP2 BCMCS (Third Generation Partnership
Project 2 Broadcast and Multicast System; 3GPP2 BCMCS, 2005), DVB-H (Digital
Video Broadcast for Handhelds), and MediaFLO among others (Mobile TV WG,
2006). Beside scability problem, each service type has its own problems. While real
time services expose delivery of packets in a timely manner, downloading type of
services requires reliable delivery of content, where the same content is sent reliably to

a large number of users.

Recently, 3GGP and 3GGP2 began addressing broadcasts / multicast services in
GSM/WCDMA and CDMA2000 respectively. 3GPP is currently introducing support
for IP multicasting services into the UMTS architecture namely the multimedia
broadcast and multicast service (MBMS). Using these standards, multimedia services
such as audio, video and TV-like services as well as large software updates could be
provided to thousands of users simultaneously in a point-to-multipoint manner. In
3GPP2 the same work item is called Broadcast and Multicast Service (3GPP2 BCMCS,
2005). They have much common functionality where Open Mobile Alliance
Broadcasting (OMA BCAST) is working around. OMA BCAST is working on the
specification of broadcast/multicast related service-layer functionalities that can be
applied to mobile and non-mobile digital broadcast networks. For instance, OMA
BCAST addresses content protection, service and program guides, and transmission

scheduling.

Although 3G mobile networks are much more powerful than that of existing

traditional networks, they have still limitations in the transmission of larger files or



streams to a large number of users. Some broadcast technology such as DVB-H come
up with more powerful multicast streaming or multicast downloading. Trial tests of
DVB-H platform have been already started at some countries. The main limitation in
this type of broadcast networks is that they have only unidirectional communication
architecture with no back channel support. Because of this problem, DVB convergence
of the broadcast and mobile services group (ETSI TS, 2007) has recently begun
specifying the protocols and the codecs above IP so that a new work item to converge
both networks into a more powerful hybrid network with back channel support is
started. However more serious criticism of deployment of DVB-H in mass market is
that network requirements and related deployment cost for providing coverage
comparable to that of mobile networks. In most countries virtually all suitable DVB-H
spectrum is being used by analog or digital TV services. Even if the spectrum in this
band were made available for DVB-H, in many countries this spectrum is assigned to
TV services only. It means it cannot be used for other types of IP datacast service.
Because of such limitations in broadcast world primarily in DVB-H, we believe that

3GPP MBMS will take off earlier than DVB-H.

Our research focuses on reliable download including progressive download in
MBMS. The downloading in MBMS is based on FLUTE (File Delivery over
Unidirectional Transport) protocol (Paila T. & Others, 2004). FLUTE is a protocol used
to deliver files, particularly over unidirectional systems from one sender to many
receivers. Since FLUTE uses an unreliable transport protocol, an application layer FEC
is coupled with FLUTE to recover from packet losses, making a reliable service. The
most popular FEC codes are Raptor codes, as initially introduced by Shokrollahi A.
(2003) and Reed Solomon codes (Rizzo L., 1998). For the MBMS system, Raptor
codes have been selected due to their high performance, relative to others.
Consequently, 3GPP has mandated the support of Raptor codes (3GPP TSG 26.346,
2007) for their terminals that use the MBMS service.

There are two ways considered to play the media in MBMS download delivery. First
is to wait for the download to complete and then play the media. Second is to wait for

some initial startup time and then play the media while downloading it. First one is



called Legacy Download while the latter is called Progressive Download. Hence
progressive download is important in that it reduces the waiting time substantially,
which will be demonstrated in this work. There are two important parameters for
MBMS download; transmission cost and waiting time. Minimum waiting time, called
downloading time optimization, and minimum FEC cost, called Transmission cost
optimization, with reliability requirement are the targets for an acceptable service.
Transmission cost optimization minimizes the FEC overhead required for a reliable
download. However downloading time optimization minimizes the initial startup delay
as well as the download duration. In this thesis we provide three contributions to
decrease the waiting time as well as FEC overheads for a reliable and efficient MBMS
download service: i) Progressive Download Approach ii) Downloading Optimizations

and iii) Application Layer Interleaving.

1.2 Progressive Download Approach

Today MBMS has two delivery modes which correspond to streaming and
downloading services over point to multipoint bearers. Downloading mode can be also
referred to as “download and play” mode when the content includes continuous media
such as audio, video and presentations. Downloading mode consumes less radio
resources despite its longer time of service consumption with respect to streaming. In
this thesis we focus on progressive download which combines the advantages of
streaming and download in terms of time and bandwidth. Progressive download can be
referred to as “play while download”. With progressive download, downloadable
content can be streamed sooner, after some initial startup delay, also called waiting time
in the thesis, while the downloading still continues in the background. By its nature,

MBMS progressive download is a software overlay on top MBSM download mode.

We believe that MBMS should enable the use of progressive download for three
reasons; the first reason is while the media content is being downloaded in the
background the user is waiting for the download to complete. Instead of waiting for the
download to complete the user experience can be enriched if media play started earlier.
The second reason is the optimization of radio resources. Download mode uses less bit

rate compared to streaming and progressive download provides the benefits of



download in terms of bit rate utilization. The download and play mode allows
download of media contents at much lower bit rates than the streaming bit rates. The
third reason, adding progressive download capability to any multicast delivery system
will not require many changes in the infrastructure or software components since

progressive download will utilize the existing download delivery mode.

MBMS Progressive download is still an open issue in 3GPP and related discussions
are postponed to future MBMS releases. One of the issues is the gain to be obtained
from having progressive download. Our aim in the thesis is to show that using
progressive download compared to legacy download we have satisfactory gain with
respect to waiting time. We target progressive download of small 3gp multimedia files,
instead of big files, which require long waiting time that is not acceptable for user
experience. We considered constant bit rate encoding since variable bit rate makes
waiting time prediction difficult in MBMS progressive download and requires more
capability at receiver side. We consider enhanced AAC+ and H.264 AVC (3GPP TSG
26.346, 2007; ITU-T Recommendation H.264, 2005) coding with total 128 kbps media
play rate.

1.3 Downloading Optimizations

During the MBMS FLUTE transport, a file is partitioned into source blocks (SBs),
each of which is encoded in FEC layer and then carried as a set of symbols in Multicast
IP datagrams over the IP backbone to the destination network. IP datagrams are
mapped to SDU (Service Data Unit) blocks and each SDU packet is mapped to RLC
(Radio Link Layer) blocks across the UMTS core network. Each RLC block is carried
as PDU (Protocol Data Unit) packets to receivers in the Radio Access Network. This
partitioning and mapping process requires allocating proper block sizes wherever they
are sent throughout the route from sender to a destined multicast area. Furthermore, the
sizing considerations in the IP network (IP packet size), core network (SDU and PDU
size) and FEC Layers (SB size) all affect the cost of the download reliability and hence
there should be a combination of the size choices that lead to a target-optimized result,
such as the reliability with minimum FEC overhead and minimum waiting time with

reliability.



1.4 Interleaving Approach

Another technique to increase efficiency of the MBMS download as well as
progressive download delivery is the use of application layer interleaving. Interleaving
can be used in digital communications systems to enhance the error correcting
capabilities of FEC mechanism. Interleaving changes the transmission order of symbols
in an attempt to minimize the loss of symbols belonging to the same source block. In
practice, packet losses occur as error bursts. One lost packet may cause one or more
consecutive packets to be lost. The interleaving mechanism can substantially reduce the
negative effects of packet losses that belong to the same FEC block, thus providing an
increase in download efficiency. Interleaving transmission strategy is important in that
if not properly selected it may cause randomization of source blocks which prevents

progressive download.

1.5 The Problem Definition

Discussions related to progressive download in MBMS are postponed to future
MBMS releases. One of the important reason, among many, is there is no clear work
that show our gains from having progressive download in MBMS. The main problem
addressed in this thesis is to show the possible gains from having progressive download
in MBMS and to show our contributions to improve the gains further by our
optimizations and our application layer interleaving strategy. We studied four solutions
to reduce the waiting time and FEC overhead for reliable MBMS downloads in the
thesis. The reductions are identified as gains from MBMS Download optimizations,
gains from Application Layer Interleaving, gains from Progressive Download and gains
from the Interleaved-Progressive Download in MBMS. Gain is described in terms of
waiting time and FEC overhead for full reliability. So optimizations are based on
waiting time and as well as on transmission cost. To the best of our knowledge these
topics have not been studied in the literature and our work is providing a leading path

for future research.



1.6 Main Contributions

Four contributions are provided to decrease the waiting time of the MBMS
download service in the thesis. First the work provides optimizations for efficient and
reliable download services for 3GPP’s MBMS that also supports progressive
downloading. Since MBMS download mechanism uses unreliable multicast, Forward
Error Correction (FEC) is used to recover from packet losses. Reed Solomon FEC
coding is used in our work as underlying protection method. Two optimizations;
downloading time optimization and FEC overhead optimization are introduced to
investigate an efficient and reliable MBMS download service. Experimental analyses
are provided to show the gain in downloading time as well as the gain in FEC overhead
from our optimizations. Trading between the two optimizations is investigated under
MBMS network conditions. Instead of considering only FEC cost optimization as
legacy MBMS downloads do, downloading time optimization is recommended for

efficient MBMS download services.

Second, based on the optimizations, Reliable Download analyses with and without
interleaving in MBMS is studied to provide the gain in FEC overhead as well as the
gain in download duration from the application layer interleaving approach in MBMS.
Then a performance comparison of the legacy and the interleaved download delivery is

provided.

Third, based on the optimizations, we provide the progressive download approach to
provide the gain in download duration from the progressive download instead of legacy
download for streamable media files for MBMS. For this, a legacy MBMS download
system optimized for waiting time to play the media is provided first. Then a

progressive MBMS download system is provided to compare the gain in waiting time.

Finally, we combined the approaches in order to further increase the system
performance, hence we applied our application layer interleaving strategy to our
MBMS Progressive download system, so called Interleaved Progressive Download,
and gave a performance comparison of the legacy and the interleaved progressive

download delivery.



The results encourage the usage of progressive download instead of legacy
download mechanism where the data file is streamable, for improved user experience
for 3G wireless multicasting systems. The results of this study will also provide
guidelines to designers to fine-tune MBMS download service parameters for an

efficient and reliable download service.

1.7 Scope of the Thesis

MBMS Download Service

Service
Announcement

Transport

Service Reliable
Description Delivery

SDP

+

+

set of XML files Maintenance of Metadata
= Metadata Fragments | Fragments

UDpP

IP (multicast)

MBMS Bearer(s)

Figure 1.1 Scope of the PhD work.

The scope of the work aimed in the thesis is shown in Figure 1.1. We have provided
an end to end download prototype for MBMS. Our prototype, called MBMS legacy

download, also covers an implementation of a Service Discovery Architecture.

Closely related to service descriptions is their announcement (push) to subscribers.
There must be a way for subscribers to learn service descriptions so that they can join
and start playing the multicast media or start downloading the multicast data. Service
discovery is a mechanism for subscribers to get service descriptions before the start of
the service. MBMS does not restrict the delivery method of service descriptions. It can

be via MBMS multicast download sessions such as broadcast or multicast over FLUTE



protocol or any other means such as cell-broadcast, http, even via emails. Delivering
the service descriptions for a session is vital but not enough alone for a successful
deployment of service discovery/announcement mechanism onto a mass. During the
course of time, service descriptions may change, expire or corrupt, so suitable metadata
structures are needed to maintain service discovery/announcement process. Currently
MBMS delivers service descriptions as a set of metadata fragments each of which
coupled with a metadata envelope that has a time-validity and other properties to
maintain the actual metadata fragment. Our prototype covers generation of these

metadata fragments, their maintanence and their transport to subsribers.

The protocol stack for our MBMS download systems are shown in Figure 1.1. The
layers above the FLUTE protocol that inlude interleaving, FEC and progressive content
are considered in the application layer. With the interleaving and progressive
downloading methods the IP / UDP / FLUTE packet may contain interterleaved or
progressive content or the interleaved progressive content where combination of both

methods is applied.

1.8 Organization of the Thesis

The thesis is organized as follows; chapter two gives a brief overview of MBMS
download delivery and its main components; FEC and File Delivery over
Unidirectional Transport (FLUTE) Protocol. It discusses gains from MBMS
progressive download and gains from interleaving with providing existing works. In the
third chapter FLUTE protocol is investigated in detail while FLUTE usage in MBMS is
provided in chapter four. The system models that our work is based including an
analytical model to formulize the problem are provided in chapter five. In chapter six
we show the experimental results of four MBMS download system proposed in this
thesis: (i) Legacy downloads with waiting time and transmission cost optimizations, (ii)
Progressive download, (iii) Interleaved download, and (iv) Interleaved Progressive.
Then we compared proposed systems with legacy download and give a conclusion and
future directions in the final chapter. Our ptototype and its enhancements for our
solutions are provided in Appendix A while Appendix B shows figures from the

intermediate works during the experimental analyses.



CHAPTER TWO

BACKGROUND AND RELATED WORK

2.1 Background

Third Generation (3G) is the generic name for next-generation mobile networks such
as the Universal Telecommunications System (UMTS) or IMT-2000; 3G wireless
networks offer faster data transfer rates than current networks. As indicated in Table
2.1, the first generation of wireless (1G) networks is analog cellular. The second
generation (2G) networks are digital cellular, featuring integrated voice and data
communications. 2.5G networks offer incremental speed increases. 3G networks offer
dramatically improved data transfer rates, enabling new wireless applications such as

streaming media. Services and their speeds in each phase of this evolution are given in

Table 2.1.

Table 2.1 Service types and their speeds in 3G (CNET Asia).

1G 2G 2.5G 3G 3.5G 4G and beyond
Technology | AMPS |GSM GPRS UMTS |HSDPA (upgrade |WiMax*
CDMA IxRTT 1xEV-  |for UMTS)
EDGE DO 1XEV-DV
Speeds n/a Less than 30Kbps to | 144Kbps |384Kbps to 100Mbps to 1Gbps
20Kbps 90Kbps to 2Mbps | 14.4Mbps
Features |Analog |Voice; MMS; Full- On-demand High-quality
(voice |SMS; images; motion | video; streaming video;
only) conference | Web video; videoconferencing | high-quality
calls; caller |browsing; streaming videoconferencing;
ID; push to |short music; Voice-over-1P
talk audio/video |3D telephony
clips; gaming;
games, faster
applications, | Web
and ring browsing
tone
downloads

At the time this thesis is being written, the deployment of 4G, which is a
combination of broadband wireless and cellular wireless, has just started. It is forseen

that the near future will focus on 4G technologies and challenges. The 1990s marked

10
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the arrival of two digital networks: Code Division Multiple Access (CDMA), popular in
the United States and a few other countries; and GSM, the dominant technology in
Europe. These 2G networks replaced the analog communication with the digital one.
By further upgrading existing components in 2G network and by adding packet-

switching features GPRS technology progressed.

The Global System for Mobile Communications (GSM) is a wireless network
system is used at three different frequencies: GSM900 and GSM1800 are used in
Europe, Asia, and Australia, while GSM1900 is deployed in North America and other

parts of the world.

GPRS is an enhancement to existing GSM networks that introduces packet data
transmission, enabling "always on" mobility. This means that users can choose to be
permanently logged on to e-mail, Internet access and other services, but do not have to
pay for these services unless sending or receiving information. It is a new non-voice
value added service that allows information to be sent and received across a mobile
telephone network. It supplements today’s Circuit Switched Data and Short Message
Service. GPRS allows customers to maintain a data session while answering a phone
call, which is a unique and exclusive feature to GSM technologies. GPRS also provides
an "always-on" data connection where users don’t have to log on each time they want
data access, and the packet architecture means they only pay for the data itself rather

than for the airtime used to establish a connection and download data.

EDGE (Enhanced data rates for GSM evolution) upgrades to GPRS systems that
require new base stations and claim to increase bandwidth to 384 kbps. HSCSD (High-
speed circuit-switched data) software upgrade for cellular networks that gives each

subscriber 56K data.

CDMA is a cellular technology widely used in the world. There are currently three
CDMA standards: CDMA One, CDMA2000 and W-CDMA. CDMA One and
CDMA2000 are widely used in North America while W-CDMA is used in Europe,
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Asia and Australia. CDMA technology uses UHF 800Mhz-1.9Ghz frequencies and
bandwidth ranges from 115Kbs to 2Mbps.

3G Operator Evolution Options

45% PDC 3G/UMTS

735%  GSM

8%  TDMA
19% CDMA One CD{""AR?I?rDO ; c_?xME"“'?_g?‘“
- I CDMA2000
1x EV-DO

26 2.5G 3G Enhanced 3G

Figure 2.1 3G evolution paths (UMTS Forum, 2005).

CDMA One also known as IS-95, is a 2nd generation wireless technology and
supports speeds from 14.4Kbps to 115K bps. CDMA2000, also known as IS-136, is a
3rd generation wireless technology and supports speeds ranging from 144Kbps to
2Mbps. In general CDMA technology spreads voice calls across several wireless
spectrums, making for more reliable connections that are much harder for hackers to
intercept. More importantly, CDMA and GSM networks are also capable of sending a
sliver of data along with voice signals, making possible for such features as text

messaging (SMS), caller ID, and conference calling.

Figure 2.1 shows different evolution paths for 3G systems. Wideband Code-Division
Multiple Access (W-CDMA), also known as IMT-2000, is a 3rd generation wireless
technology and supports speeds up to 384Kbps on a wide-area network, or 2Mbps
locally. UMTS is a standard that will provide cellular users a consistent set of
technologies no matter where they are located worldwide. UMTS utilizes W-CDMA
technology. EDGE is the result of a joint effort between TDMA operators, vendors and
carriers and the GSM Alliance. TDMA is used by Digital-American Mobile Phone
Service (D-AMPS), GSM and Personal Digital Cellular (PDC). However, each of these

systems implements TDMA in a somewhat different and incompatible way.
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Crucially, 3G/UMTS has been specified as an integrated solution for mobile voice
and data with wide area coverage, Universally standardized via the Third Generation
Partnership Project (www.3gpp.org). Symmetry between uplink and downlink data
rates when using paired (FDD) spectrum also means that 3G/UMTS is ideally suited for
applications such as real-time video telephony — in contrast with other technologies
such as ADSL where there is a pronounced asymmetry between uplink and downlink
throughput rates. Ongoing technical work within 3GPP will see further increases in
throughput speeds of the WCDMA Radio Access Network (RAN). High Speed
Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA)
technologies are already standardized and are undergoing network trials with operators
in the Far East and North America. Promising theoretical downlink speeds as high as
14.4 Mbps (and respectively 5.8 Mbps uplink), these technologies will play an
instrumental role in positioning 3G/UMTS as a key enabler for true ‘mobile
broadband’. Offering data transmission speeds of the same order of magnitude as
today’s Ethernet based networks that are a ubiquitous feature of the fixed-line
environment, 3G/UMTS will offer enterprise customers and consumers all the benefits

of broadband connectivity whilst on the move (UMTS Forum, 2005, s.4).

Building on current investments in GSM/GPRS, 3G/UMTS offers mobile operators
significant capacity and broadband capabilities to support greater numbers of voice and
data customers —especially in urban centres — plus higher data rates at lower
incremental cost than 2G. The choice of eight out of the world’s ten biggest operators
who have been awarded licenses to launch 3G services, UMTS represents the natural
evolutionary route from 2G to 3G for more than 90% of the world’s mobile users —
spanning 1.2 billion GSM customers as well as subscribers to second generation
TDMA and PDC networks. Taking use of radio spectrum in bands identified by the
ITU for Third Generation IMT-2000 mobile services and subsequently licensed to
operators, 3G/UMTS uses a S MHz channel carrier width to deliver significantly higher
data rates and increased capacity compared with second generation networks. This 5
MHz channel carrier provides optimum use of radio resources, especially for operators

who have been granted large, contiguous blocks of spectrum — typically ranging from
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2x10 MHz up to 2x20 MHz - to reduce the cost of deploying 3G networks. This
contrasts with the 1.25 MHz channel carrier width specified for the CDMA2000 system
that was developed initially to serve North American mobile markets with more limited
access to large, contiguous blocks of radio spectrum than operators in Western Europe.
This means that 3G/UMTS offers greater cost efficiencies in terms of carrying network
traffic than other mobile technologies, allowing operators to support larger numbers of

simultaneous users and offer greater data speeds. (UMTS Forum, 2005, s.3)

2.2 Current State of Wireless Multicasting

Multicasting has been extensively researched in the past (Almeroth K.C, 2000;
Obraczka K., 1998; Diot C. & Others, 2000). First introduced in 1988, IP multicasting
has not been as successful as WWW, a technology of the same age. The two main

reasons for the failure of IP multicasting are:

1. the lack of a well defined business model and services

2. the need for network intelligence

The need for network intelligence has shifted the research focus on multicast routing
and transport protocols. This shift has provided significant source for academic
research, but it did not impact the success of multicasting. With the lack of a well
defined business model and services, wired Internet multicast simply did not take off as

expected.

The wireless multicast (Varshley U., 1999) research began around 1994. The
mobility of the user and the characteristics of the wireless channel made multicasting
even more challenging. Varshley (2002) provides a review of the challenges of wireless
multicasting, Figure 2.2. Varshley divides wireless multicasting architectures into two
as infrastructure based and ad-hoc. Infrastructure-based wireless architectures have a
base-station and a fixed topology but the user nodes are mobile. For ad-hoc wireless
multicasting both the routers and the users are mobile, where in most cases the nodes
have routing capabilities. The challenges for each model are different. Ad hoc wireless

multicasting has a very important yet very limited application area such as military or a
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disaster connectivity scenario. Hence, in this project we will concentrate on

infrastructure based wireless multicasting.

Current “wired” Wireless and mobile Possible ways to support
Issue multicast multicast wireless and mobile multicast
Type of links | Symmetrical and Possibly asymmetrical Design of new protocols to
fixed characteristics  |and/or unidirectional links | handle route asymmetry and
Broadcast links of varying performance and | unidirectional links without
in LANs point-to-point links in reverse-path information
cellular and PCS (possible history and prediction-
based schemes)
Bandwidth | Plentiful Limited and variable Protocols to adapt membership
amount management and routing updates
to the amount of bandwidth
available and user mobility
Topology Fixed Fixed in infrastructure- Protocols for both fixed and
based, dynamic in changing topology by “sensing”
ad hoc networks topological changes
Loss of Infrequent (<1%) Frequent and variable Error control with possible
packets (1%—30% based on links) retransmission from neighboring
user(s)
Membership | Only when a user Also when a user moves Protocols with reduced over-
changes leaves or joins a group | to another location head for managing membership
Routing Fixed routing Routing structure subject | Protocols that could dynamically
structure throughout | to change due to user adapt the routing to current
the multicast session | mobility structure and available resources
Security Less complex due More complex due to Encryption and security
Issues to fixed users and wireless links and possible | techniques in routing and
wired links use of broadcasting membership management
Quality of Individual routes Due to user mobility, Design of new protocols for
service can use RSVP RSVP may cause excessive |‘‘soft” QoS under varying link
overhead conditions and mobility
Reliability Possible use of a More complex due to Design of new protocols that
transport-layer wireless links and user could allow one or more
protocol (such as the |mobility; possible unwanted | different retransmission schemes
Multicast File interaction of protocols at | at one or more protocol layers
Transfer Protocol) transport and link layers

Figure 2.2 Challenges of wireless multicasting (Varshley U., 2002).

Infrastructure based multicasting means wireless (cellular) and mobile multicasting.
In the work (Gossain H., 2002), the challenges of infrastructure based multicasting are
studied further but it focuses mostly on the network layer issues of wireless
multicasting and does not address the impact of these issues to higher level protocols
and applications. Dutta (2003) addresses the impact of wireless multicasting on

streaming applications. Dutta identifies the following areas as major challenges:

1. diverse wireless network support: different networks with different

characteristics should be supported
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2. intradomain mobility: the user should keep it’s multicast group connectivity
while moving from cell to cell

3. scalability: the application should support scalable multicast groups.

4. load balancing: the application should support load balancing depending on the
number of users or location of content.

5. Quality of service: the user should keep it’s QoS while moving from cell to cell.

Li X. & etal (1999) provide a comprehensive overview of video multicasting
challenges and it’s possible solutions. Li reviews layering and rate adaptation and
provides results for tests on MBone, the well-known IP multicast overlay network.
However Li fails to provide any overview for the challenges specific to wireless

multicasting.

In the research of Mukhtar R. G. (2003), although wireless multicasting is not being
addressed directly, Mukthar reviews the challenges for wireless traffic management.
Radio link layer characteristics are identified along with higher layer transport protocol

issues.

Wan T. & Subramanian R. K. (2004) provide a very good comparison of traditional
QoS metrics and wireless multicast QoS metrics. It also reviews application layer QoS
adaptation techniques, where feedback based adaptation with predictive adaptation is
compared. However, it does not address how different wireless networks can be

accommodated with the proposed model and how reliability can be added.

In addition to the work presented in the literature review, there are two major groups

for wireless multicasting work:

1. Standards based wireless multicasting work
a. 3GPP MBMS (3GPP TSG 26.346, 2007; 3GPP TSG 26.946, 2007)
b. 3GPP2 BMCS (Wang J. & Others, 2004)
c. OMA BCAST (2004)
d. DVB-H
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2. Commercial (proprietary) architectures: MediaFlo (Qualcom), Bamboo

Mediacast, Crown Castle (About CrownCastle), etc.

MBMS is a point-to-multipoint service in which data is transmitted from a single
source entity to multiple recipients. Transmitting the same data to multiple recipients
allows network resources to be shared. MBMS user services can be built on top of the

MBMS bearer service.

Application MM S PSS Other
Delivery Download Streaming
Bearer PTP Bearer MBMS Bearer

Figure 2.3 Functional layers for MBMS service delivery (3GPP TSG 26.346, 2007).

There are two delivery methods for the MBMS user services: download and
streaming. Examples applications using the download delivery method are news and
software upgrades. Delivery of live music is an example of an application using the

streaming delivery method.

Provider/
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Figure 2.4 MBMS architecture as defined by 3GPP (3GPP TSG 26.346, 2007).
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Functional layers for MBMS service delivery is shown in Figure 2.3 and the
architecture diagram for MBMS is shown in Figure 2.4. Existing packet switched
entities such as GGSN, SGSN, UTRAN/GERAN and UE are upgraded to provide
MBMS bearer services. Additionally a new entity called BMSC (Broadcast Multicast
Service Center) is placed as an entry point between content provider and operator

network.

BMSC task is very critical in MBMS. It provides a set of functions for MBMS user
services such as bearer control signalling, bearer establishment and bearer maintenance
through Gmb interface, scheduling among MBMS sessions, delivery of IP datagrams
through Gi interface to UEs with a specified QoS, authentication and authorization of
UEs and 3" party content providers, delivering of service descriptions to UEs,

maintaining UE subscription information etc.

2.3 MBMS Download

This section gives brief overview of MBMS Download delivery and its main
components FEC and FLUTE protocol. An example of the MBMS Download Service
is given in Figure 2.5 where subscribers are announced previously for the upcoming
service and its contents. When the service descriptions are available to the subscribers
they may join the service. Joining to a service does not mean that the service starts
soon. The service always starts at the time as it is previously announced to the
subsribers. The service start and end times are provided in session descriptions (SDP)
of the service. As shown in Figure 2.5 the MBMS download service occurs as
unidirectional transport. So for the receiver, there is no way to feedback the lost packets
during the download session but after the download. Associated delivery description
components describe how to request the missing packets after the download session.
Optionally the associated delivery procedure descriptions may provide for the server to

collect statistical report from clients.

MBMS download delivery is based on FLUTE (Paila T. & Others, 2004) protocol
used to deliver files particularly over unidirectional systems from one sender to many

receivers. FLUTE is an IETF protocol based on Asynchronous Layered Coding (ALC)
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protocol (Luby M., Gemmell J. & Others, 2002) that makes the FLUTE well scalable

and hence preferable for unidirectional systems.

Server Player

Download

Interface | - MBMS Service
D Announcemen Service Description xm Download T
Service Session Description SDP Interface corvi
DB Assoc. Delivery Description els\gce

Jan/16/2008 -~ MBMS Download Session
3:15pm Starts

FLUTE Session

Time Download w FEC £ o1 Available
Download w/o } Services
__leave |  -----
Jan/16/2008  + MBMS Download Session i | =
20:00pm Stops

= Download Report and/or

R T R I— Repair Request

Ptp repair L B
Download ¢ e

Figure 2.5 MBMS download service flow.

ALC is an instantiation of Layered Coding Transport (LCT) (Luby M., Gemmell J.
& Others, 2002) for FLUTE. LCT manages how to transport an object identified by
Transport Object Identifier (TOI) within a session identified by Transport Session
Identifier (TSI). ALC inherits LCT with asynchronous and FEC coding selection as
underlying coding technique. Finally the FLUTE protocol inherits the ALC and
provides capabilities carried in-band or via FDT instances (File Delivery Table) to
signal the properties of the file including FEC coding descriptions and map them to the
ALC protocol.

With FLUTE, the only built-in reliability mechanism is provided by FEC
mechanism. FEC provides reliable delivery of media content by appending repair
symbols to the original data called source block prior to transmission across

communication network. If some symbols are lost during transmission FEC allows
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receiver to use repair symbols to recover the original source block without

retransmission.
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Figure 2.6 MBMS download protocol stack.

Figure 2.6 (Gasiba T. & Others, 2006) shows a detailed view of the protocol stack
for MBMS download delivery. A file in application layer, called object in ALC
terminology, is partitioned into source blocks (SB) each of which is further divided into
“k* source symbols of size “T” each. Each SB is forwarded to the FEC/FLUTE layer,
where Raptor FEC encoding is individually applied to each source block. The result is

“«

an encoding block (EB) of “n” encoding symbols, “n - k” of which is repair symbols.
Each encoding symbol is identified by the couple: a source block number (SBN) and an
encoding symbol identifier (ESI). A group of G consecutive encoding symbols that
share the same SBN is appended to an ALC/FLUTE header (LHg =16 bytes). The result
is a FLUTE packet with payload P = GXT. The FLUTE header contains FEC payload
ID that is the ESI and SBN of the first symbol, Transport Session Identifier (TSI),
Transport Object Identifier (TOI), as specified by FLUTE protocol. User datagram

protocol (UDP) over IP is used to distribute the FLUTE packets.
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Further headers are appended to the original packet at the UDP, IP, Logical Link
Layer (LLC)/Subnetwork Data Convergence Protocol (SNDCP) or Packet Data
Convergence Protocol (PDCP). At the Radio Link layer (RLC), Protocol Data Units
(PDU) are obtained and forwarded to the physical layer as usual, where the data is
encoded with a convolutional code, is interleaved and transmitted in small bursts. Due
to the lower layer interleaver, the RLC-PDUs can be assumed to be lost with link loss

rates as high as 10% or even more. (Gasiba T. & Others, 2006).

2.3.1 Forward Error Correction

Some part of the original data may be lost during transmission. A FEC scheme
allows receiver to use the additional redundant data to recover the original data without

retransmission. FEC codes are divided into two sub categories:

1. Systematic FEC codes: An (n, k) systematic FEC block code preserves the k
source symbols and appends (n —k) repair symbols.

2. Nonsystematic FEC Codes: An (n, k) non-systematic FEC block code creates n
encoding symbols from k source symbols without necessarily preserving all the

source symbols.

k original input symbols FEC n output

—®  Encoder symbols

Any k symbols of n symbol FEC k original
»  Decoder symbols

Figure 2.7 (n, k) FEC block code.

Figure 2.7 shows a FEC block code which is specified as an (n, k) code, for each “k”
input symbols the encoder produces “n” output symbols. A source block is a fragment
of the original object (media). Each source block contains several source symbols. A
block of “k” source symbols constitute a source block. Decoding algorithms allow the

€«

recovery of the “k” source symbols from any set of the “n” received symbols. While
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«“__

“k” is a number of source symbols, “n” is a number of encoding symbols, “n — k” is

the number of repair symbols which are encoding symbols that are not source symbols.

2.3.1.1 Reed Solomon versus Raptor

Important factors of FEC mechanisms are their encoding/decoding efficiency and
their time complexity. Algorithm time complexity particularly affects the processing
ability of limited handsets. Raptor FEC scheme computational complexity is about O(/)
time to generate an encoding symbol and O(k) time to decode a message of length “k”.
Reed Solomon encoding algorithm computational complexity depends on the current
source block length (k) and number of encoding symbols (n) generated for the relevant
source block. These parameters are carried by the FEC Object Transmission

Information (FEC OT1) to receiver side to execute the decoding algorithm.

Raptor provides linear encode/decode time (Luby M., 2005). Raptor is a fountain
code, i.e. as many symbols as needed can be created unlike Reed Solomon, which has a
block size of 255 symbols. Raptor decoding time is independent of packet loss patterns.
However, Reed Solomon decoding time is loss dependent. Raptor is based on irregular
low-density parity-check code (LDPC), since the LDPC codes allow data transmission
close to the theoretical maximum (Luby M., 2005). Both Raptor and Reed Solomon
codes are systematic so the original source symbols are sent intact from sender to

receiver.

2.3.2 Interleaving Effect on FEC performance

With application layer interleaving, FEC performance increases greatly. This fact
can be observed in the example in Figure 2.8. The cross sign indicated that the symbol
is lost. Without interleaving all symbols belonging to source blocks will be sent
sequentially in the order of source block number. That is, symbols of SB1 are sent first,
symbols of SB2 next and so on. With interleaving, symbols in a block are sent in
different times in a changing order of source block numbers. There can be many

different ways of changing transmission order of symbols. One way is the
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randomization of the transmission order of all symbols. In the example in Figure 2.8,

different transmission strategy is used to show the effect of interleaving.

Packet Loss Source Block Length = 8 symbols

Pattern No Interleaving Interleaved with Block Size = 3 SB
-
X
SB1 C/ ]
X
X [ x ]
- X x|
V]
LV ]
C/ ]
V]
SB2 LV ]
V]
V]
- LV ]
Vv ]
SB3 CV ]
LV ]
CV ]
V]
LV ]
Time FEC Overhead FEC Overhead
Y 5/8 = 63% 2/8 = 25%

Figure 2.8 Interleaving effect on FEC performance.

After each transmission by skipping next symbol, 3 symbols from SB1, 3 symbols
from SB2 and 2 symbols from SB3 are sent in first round, 3 symbols from SBI, 2
symbols from SB2 and 3 symbols from SB3 are sent next round, 2 symbols from SB1,
3 symbols from SB2 and 3 symbols from SB3 are sent in final round. The result is a

reduction in necessary FEC overhead from 63% to 25% for reliability.

2.4 Related Work

Recently progressive download of 3gp media files in MBMS is studied in 3GPP
working groups (BenQ Mobile, 2006). According to 3GPP PSS (packet-switched
streaming service) specification (3GPP TS 26.234, 2007), PSS clients already support
progressive download of 3GP media files with HTTP connection over TCP/IP.
However, PSS is based on IETF RTSP (Real Time Session Protocol)/SDP and requires
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bidirectional connectivity between sender and clients. Progressive download in MBMS
is still in debate and currently few works (BenQ Mobile, 2006; Yetgin Z., Seckin G.,
March 2008; Yetgin Z., Seckin G., April 2008) exist to support MBSM progressive

download.

Yetgin Z., Seckin G. (2007) studied MBMS downloading optimization for minimum
FEC overheads for both Reed Solomon and Raptor FEC. In MBMS, FEC mechanisms
have been studied on two layers, namely physical layer and application layer, in a
complementary way. The tradeoff in applying one or the other or suitable combinations
of the two is addressed in (Luby M., Watson M., Gasiba T., Stockhammer T., 2006;
Watson M. & Stockhammer T., n.d). Interleaving in MBMS is also studied on these
two layers. On the physical layer, Turbo coding with interleavers is used as a standard
in 3GPP. Turbo codes emerged in 1993 (Berrou C., Glavieux A., & Thitimajshaima P.,
May 1993) and have since increased its popularity in communications research. In
(Rekh S., Rani S.S. & Shanmugam A., 2005), some of those works are referred and the
behavior of Turbo codes for various interleaver size and structure is analyzed. Luby M.,
Watson M., Gasiba T. & Stockhammer T. (October 2006) investigated the tradeoffs
between the assignment of physical layer resources for UMTS turbo code and

application layer resources for the MBMS download delivery service.

MBMS download delivery has already been analyzed in 3GPP working groups.
Reed-Solomon codes with and without interleaving (Siemens, March 2005; Yetgin Z.,
Seckin G., 2007) and Raptor codes, also investigated in (Luby M., Watson M., Gasiba
T., Stockhammer T., and Xu W., January 2006; Watson M. & Stockhammer T., n.d) for
MBMS, are used in these analyses. Generally interleaving mechanism above FEC layer
is studied as random transmission of symbols (Siemens, March 2005). However
random transmission strategy disables the progressive download. Our recommendation
is to use an interleaving strategy that also enables progressive downloading. This issue
is also addressed in the work by Yetgin Z., Seckin G. (2007). The strategy used to
support progressive download, just after sending each source block, it’s repair symbols

are sent and a group of consequitive blocks are interleaved at a time.
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From the MBMS service delivery point of view, progressive download is a
download because it uses MBMS download delivery mode based on FLUTE protocol.
From the end user point of view, it is streaming because while the download continues
in the background, media can be played in parallel with the downloading. Download
delivery mode is very cost effective compared to streaming in that less bandwidth
consumption is required in downloading since there is no real time requirement. As an
alternative to the streaming, Siemens AG (August 2006) presents an intermediate
delivery mode that constitute an actual bridge between streaming and downloading and
based on MBMS download delivery mode, called “Preload Delivery Mode”, for
multimedia of limited duration. However, adding new network elements and
requirement for a standardization effort are some of the critics, which make the

proposed approach difficult to be deployed in practice.

Jenkac H., Stockhammer T., Xu W. (March 2006) provides an asynchronous and
reliable solution for streaming, conceptually more suitable for progressive download.
The proposal stands on partitioning of the media into segments and segment protection
with fountain codes over FLUTE. Partitioning of the media into segments is not a new
concept and is previously studied. In harmonic-broadcast based approaches such as
Pyramid Broadcasting, studied by Hu A. (2001) and Engebretsen L., Sudan M. (2002),
such segments are mapped onto different channels and mainly proposed for streaming
type of applications. The drawback of these approaches is their expectation from the
receiver to be capable of handling many channels in parallel. Repetition of these
segments with FEC redundant-symbols over FLUTE is proposed by Jenkac H.,
Stockhammer T., Xu W. (March 2006) and Jenkac H., Stockhammer T., Xu W., Abdel
Samad W. (May 2006) for streaming applications on a few channels where each
segment is repeated at different frequency. By repeating the early parts of the media
more frequently, users are expected to catch the overall stream from the beginning with
acceptable initial startup delay. The solution can be equally or more suitably applied to
the progressive download where missing the initial portions similarly causes the

streaming to fail.
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For the reliability issues, FEC is the only built-in mechanism in FLUTE. MBMS
download reliability has already been analyzed in 3GPP working groups. Generally
existing works analyses the download reliability to discover the minimum FEC
overhead among a small set of the sizing parameters such as source block size, symbol
size, IP packet size, SDU (Service Data Unit) and PDU (Protocol Data Unit) size and so
on. However, Yetgin Z., Seckin G. (2007) studied minimum waiting time with
minimum FEC overheads to discover the reliability among a large set of sizing
parameters. According to MBMS specification, 3GPP TSG 26.346 (2007), the FEC
repair symbols are sent after all the source blocks are sent to the clients. However, this
approach is not suitable for progressive download application, since lost packets are
recovered after the file download and client must wait for all source blocks to be sent.
As studied in (Siemens, March 2005) Random transmission strategy of FEC repair
symbols is not suitable from the same reason for progressive download too. Reliable
download analyses supporting progressive download is recently studied by BenQ

Mobile (2006) and Yetgin Z., Seckin G. (October 2007).

Apart from FEC reliability, some of the works use data carousal technique over
FLUTE, Peltotalo J., Peltotalo S., Harju J. (July 2005), in which files are transported in
loops and missing portions can be caught in next loops. This approach is not useful for
playing the stream for the receiver who missed a portion in current loop and waiting for
the following loop to recover. So once a portion is missed, the receiver has to wait the
loop that serves the missed portion. This means the receiver can download but cannot
play it during the download. However, data carousal technique is still important in that
receivers missing a loop can still have a chance to use this technique for progressive

download in subsequent loops.

Another way to guarantee the download reliability apart from FEC is to use MBMS
repair procedure, one of the associated delivery procedures as defined in MBMS, 3GPP
TSG 26.346 (2007), in which missing portions can be requested over ptp (point to
point) or ptm (point to multipoint) repair sessions are configured. Again, this is not
suitable for progressive download, since this procedure starts after the session ends or

transmission of the object is finished.
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In our analyses in the thesis, we try to find optimum combination among many that
leads to minimum waiting time. Then, we provided an analysis of the progressive
download delivery considering Reed Solomon and Raptor to find the best gain in
waiting time for a large set of system parameters under various MBMS network
conditions. Finally, we provided an analysis of the interleaved download delivery
considering Reed Solomon and Raptor to find the best gain in FEC overhead for a large

set of system parameters under various MBMS network conditions.

Four MBMS download systems are proposed in this thesis: (i) Legacy downloads
with waiting time and transmission cost optimizations, (ii) Progressive download, (iii)
Interleaved-legacy download, (iv) Interleaved-progressive download. Then we
compared proposed systems with legacy download and give a conclusion in final

section. Sequentially we did following steps:

1. Optimizations for Legacy-Download delivery are done to explore Reed
Solomon FEC protected MBMS from the progressive download point of view.

2. Analysis for the Interleaved-Download delivery is done to find the gain in
downloading time and transmission cost.

3. Analysis of the Progressive-Download is done to find the gain in waiting time.

4. Analysis for the Interleaved-Progressive-Download delivery is done to find the
possible gain in waiting time and transmission cost.

5. Comparision of the legacy and the proposed download systems are provided.



CHAPTER THREE

FLUTE PROTOCOL

3.1 Overview

In multicast networks, especially in wireless environments, scability is the primary
issue. For downloading in such environments, a necessity of reliability brings an extra
challenge. So there is a requirement to achieve transport of content delivery in a

unidirectional manner while preserving reliability and scability at the same time.

Typical multicast data streams are sent using UDP. TCP is not used because it is
designed for one-to-one unicast streams of data. Multicast data streams sent over UDP
are inherently unreliable because UDP does not provide guaranteed delivery or
retransmission of lost packets. Lost packets in UDP-based multicast data streams
cannot be detected or recovered, unless reliability is provided by the upper layer

protocol.

There are many protocol standards that provide reliable multicast at the transport or
application layers. Existing reliable multicast protocols fall into the following four

categories (Microsoft, 2003):

1. Negative acknowledgement (NACK)-only
Receivers use NACK packets to request, from the sender, the retransmission of
missing packets in the multicast data stream. NACK-only protocols do not require any

additional support from routers in the network.

2. Tree-based acknowledgement (ACK)
Receivers use positive acknowledgments to indicate multicast data packets that are

successfully received.

3. Asynchronous Layered Coding (ALC)

28
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Senders provide forward error correction (FEC) with no messages from receivers or

the routers of the network.

4. Router assist
Receivers use NACK packets. Routers in the network assist with retransmitting lost

packets.

Router assist category adds network-centric requirements while other categories
require bi-directional connectivity between sender and receivers. FLUTE and NORM
are two IETF (The Internet Engineering Task Force) protocols. FLUTE is an ALC
based protocol and it differs from other categories in that no messages are required
from receivers to senders. That is, it requires a connection from sender to receivers but
does not require a connection from receivers to sender. FLUTE has unidirectional
property, fewer requirements, less overhead reliable transmissions, most scalability and

interoperability.

NORM is designed to provide reliable transport of data from one or more sender(s)
to a group of receivers over an [P multicast network. “The primary design goals of
NORM are to provide efficient, scalable, and robust bulk data (e.g., computer files,
transmission of persistent data) transfer across possibly heterogeneous IP networks
and topologies.....NORM is a protocol centered around the use of selective NACKs to

request repairs of missing data.” (Adamson B. & Others, 2004).

IETF Reliable Multicast Transport Working group (RMT WG) believes that variety
of applications and orthogonal requirements these applications exhibit makes a "one

size fits all" protocol unable to meet the requirements of all applications.

3.1.1 Target Environment

One of the desing goals for FLUTE is its massive scability to a large number of
multicast receivers particularly in wireless environments. FLUTE is applicable to in
both fixed networks such as IP multicast and wireless networks such as MBMS in

UMTS and DVB-H in real broadcast networks as well as in satelite networks. Besides
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its scability, it can also provide reliability through re-transmission besides Forward

Error Correction. However, FLUTE re-transmission reliability is not used in MBMS.

FLUTE can be used for both multicast and unicast content delivery, but it is
primarily designed for unidirectional multicast content delivery. FLUTE can support
IP4 and IP6 environments. There is no IP specific part in FLUTE headers. FLUTE
supports Any Source Multicast (ASM) model in which many senders concurrently send
to same multicast group and receiving side discriminate packets by looking at source
addresses and Source Specific Multicast (SSM) models in which there is only one

sender source in a multicast session.

FLUTE provides reliability using the FEC building block. This will reduce the error
rate but does not guarantee a complete success. “Because, FLUTE does not provide a
method for senders to verify the reception success of receivers, the specification of such
a method is completely application specific.” (Paila T. & Others, 2004). For example
in MBMS, after the session, a receiver may request missing parts that was not

downloaded with associated delivery procedures.

3.1.2 FLUTE Basics

FLUTE is an IETF standardized protocol for unidirectional delivery of files over
UDP protocol, which is particularly suited to multicast networks. FLUTE is built on top
of the Asynchronous Layered Coding protocol instantiation as shown in Figure 3.1 that
uses LCT (Layered Coding Transport Protocol) to carry transport parameters such as
session identifier and it allows receiver to discriminate among packets by TOI
(transport object identifier). So a FLUTE packet can be destined for a specific TOI in a
specific session identified by TSI (Transport Session Identifier) by using LCT session
and object concept. However LCT alone can not handle the transport of objects,
because the size of objects is unknown to it. It can generally transport binary objects of
finite or indeterminate length. All files are referred as objects in LCT concept and

hence in this document.
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FLUTE

LCT CC FEC

Figure 3.1 Building block structure of FLUTE.

FLUTE overlays its own headers so that each object with TOI is further described by
file attributes such as file size, file name, encoding and as well as by transport
descriptions such as FEC description parameters. All the files that are to be transported
in a FLUTE session must be described in File Description Table (FDT). FDT table is an
XML file stored local to sender. Example of a FDT table is given in Figure 3.2 for two
files: A.3gp and B.txt. If a file is not described in FDT, it does not belong to that
session. FDT is transported as FDT Instances with TOI=0. A FDT Instance can
describe one or more files in FDT. FDT Instance carries a running index of files and

their essential reception parameters in-band of a FLUTE session.

3.1.3 File Description Table (FDT)

Tl | File-Mame| Content-Type| Expire| File-zize FEC-OT! Infarmation Cortert-Encoding|Transfer Length | Complete
(wvith URLD (MIME-type) (Enc. Id, Ins. Id, Enc. Specific Info))|

1 Aagp ...................................

2 [ S e O e [ o

Figure 3.2 Symbolic example of a FDT.

TOI is used as an index to FDT table that matches file description (saving)
parameters such file name possibly with URL, Content type that identifies the type of
content as a MIME type. Expire means reference to those object descriptions is valid
until its expiry time. While file size shows the size of file before any encoding (if exist)

is applied, transfer length shows the size of the object in compressed form such as
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“gzipped”. If any FEC coding is used for an object, it can be described in FDT. We will

describe FEC and other file description parameters later in this section.

3.1.4 Sending FDT

‘ Do R
> |:ID é@g/

content j _ . . . Recs iysrs
(fles) Sender objeet object object objact object wanting
4 3 2 1 0
content

Figure 3.3 Four files described by one FDT instance.

FDT can be sent completely in one FDT Instance, in this case optional parameter
“complete” can be used to indicate no more different file parameters will be described
in any upcoming FDT Instance. In Figure 3.3, FDT describing four files are sent with
one FDT Instance. Each file description in FDT can be separately sent in different FDT

Instance. Figure 3.4 shows an example of this case. Four files are described in four

FDT Instances in Figure 3.4.

S FOT#1
T F FOT#2 =
—_ = [foTm E = QI
= [FIT#4 J o —
h L) &
dhjet obied objed object object ohject ohjedt object
4 3 fe} [1} 2 a 1 o

Figure 3.4 Four files described by four FDT instances.

Many combinations can be created. One FDT instance carries at least one file
description at most complete FDT. During the session, FDT Instances can appear at any
moment of time. However, it is recommended FDT Instances should be sent prior to

beginning of transmission of actual object that it describes.
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At any moment of time during the session, FDT Instances can be duplicated as
shown in Figure 3.5, or re-described by any subset, superset of a FDT Instance.
However, any FDT Instance cannot change file descriptions with a specific TOI that
previously sent in any other FDT Instance. Figure 3.5 shows a datacarausal approach

where session files are sent in a loop until session ends.

....@a&v

uh_lact ouau uua-:t uhpn objact chjsct cbjsd chject ohied  object
0 4 3 2 1 0

Figure 3.5 Four files described by one FDT Instances in a loop.

3.1.5 Flute Session Concept

A FLUTE session is actually an ALC/LCT session consisting of one or more
ALC/LCT channels sharing a single sender. Sender’s IP address and TSI (Transport
Session Identifier) uniquely identify a FLUTE session. Each channel in a session is
defined by a tuple of sender IP address and an address associated with the channel.
Channels are used with a suitable congestion control building block. In the case of
multiple channels, multiple rate receiver-driven congestion control protocol is used. A
receiver must join to a channel in order to receive data sent to the channel by the
sender. Similarly the receiver leaves the channel to stop receiving data packets from the

channel.

3.1.6 General FLUTE Protocol Flow

At the beginning, both sender and receiver side know session description parameters
so that sender knows when and which multicast group it will send to, similarly receiver
knows sender IP address, the time to join to session, and other session parameters.
However, receiver does not need to know file parameters in advance of session startup.
FLUTE protocol allows receiver gradually to learn file descriptions required for

download. This is achieved by FDT Instances as stated before. Diagram in Figure 3.6
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shows an example that a multicast session is taking place from sender to receiver.
Sender has already sent a FDT Instance describing only A.3gp and now sending source
blocks belonging to A.3gp after which FDT instance describing the file B.3gp will be

sent next.

Sender has 3 files A.3gp and B.txt, which are described in FDT.xml file. Partitioning
of A.3gp is achieved by a blocking algorithm that depends on FEC Scheme used.
Blocking algorithm partitions the file into source blocks so that sizes of source blocks
are as close each other as possible. In the diagram shown in Figure 3.6 source blocks
are symbolically indicated as cells. Thus, a source block, SBi, is converted to an
encoding block, EBi, by FEC encoder. Encoding block EBi includes same or larger

number of encoding symbols than the source block SBi.

Now sender has to transmit the EBi. However, sender may not send a complete
encoding block at once. So a group of G consecutive encoding symbols in the EBi,
called ESG (Encoding Symbol Group), are placed into FLUTE payload with a marker
in the FLUTE header that shows the starting index, j, of the ESGi in the encoding
block, called FLUTE Payload ID = (i, j) here to indicate starting index j in Encoding
Block i.

Now constructed FLUTE packet is transmitted over UDP/IP within a FLUTE
session. Receiver behavior is quite simple, when it receives a FLUTE packet carrying
ESG;, it checks which TOI owns the packet. If TOI is zero, it means, ESGj belongs to a
FDT Instance so receiver will update current FDT database. Otherwise, ESGj belongs
to a file, so receiver decodes and possibly uncompresses the ESG;j if it received enough
number of encoding symbols and then process results in original source block i, as

Figure 3.6 shows.
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Figure 3.6 Example of the FLUTE flow diagram.

Meanwhile, if a packet comes with TOI=2, receiver behaviour is completely application

dependent. Because receiver doesn’t know file description information of TOI 2.
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Simplest solution is to ignore the packet. Another possible solution is to put packet to a
buffer, wait for a FDT Instance that describe it. Hence in Figure 3.6, the question marks

indicate that the receiver behaviour is application dependent.

3.1.7 Flute Packetization/Depacketization

3.1.7.1 Partitioning

Partitioning of a file is achieved by a blocking algorithm that depends on FEC
Scheme used. Blocking algorithm computes file fragmentation structure. It decides how
to partition the file to source blocks so that sizes of source blocks are as close to each
other as possible. It must be divided in such a way that first number of source blocks
are of the same larger length, and remaining second number of source blocks are of the
same smaller length as shown in Figure 3.7. Z=Z;+Zs shows the number of source
blocks that file is partitioned into. Z;, shows the left larger part, Zs shows the rigth
smaller part. Ky is the number of source symbols in a source block that is at left side
(larger part) Kg is the number of source symbols in a source block that is at right side
(smaller part). At any moment of time, a source block includes either K;, or Kg source
symbols. Blocking algorithm computes above parameters Z;, Zs, Ki. and Kg depending

of the FEC Scheme used.

With FEC, “the data stream is transformed in such a way that reconstruction of data
object does not depend on the reception of specific data packets, but only on the
number of different packets received.” ( Luby M., Gemmell J & Others, 2002). FEC
requires that the object is partitioned into source blocks that sufficient enough in size to
be able to be stored and processed in FEC buffer. Source Block consist of K source
symbols. Each source block is independently given to FEC algorithm as input. For each
source block that given to FEC algorithm, some N redundant symbols are generated,
which is called repair symbols. When FEC decoder gathers any K of K+N encoding

symbols, it can recover the original source block.
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3.1.7.2 Packetization

FLUTE Packetizer receives packet payload as input creates a complete FLUTE
Packet as output. In Figure 3.7, FLUTE packet is shown within an IP packet. FLUTE
payload is actually a group of consequtive encoding symbols (ESG) identified by a
single ID, ESI (Encoding Symbol ID).

Partitioning : Blocking
Algorithm
(Source Blocks)
|||| Each source block SBi
contains either K orK
i Source Symbols
‘ 2 ki g £t Humber of Source Blocks with K|
-k - . L source symbols
7 i 2, Number of Source Blooks with K ,
source symbals
SB,
Suppose Source Block
v SB, is to be sent
FEC Encodin
‘ g ‘ SB; is given to FEC Decoder.
Output is EBi (Encoding Block i)
EB,
v EBi includes K+N enceding
mbols
[ [ ] K+n =
ij:_ﬂ """ fD ESG,,
ESjaneaan B3 ESG, ; Encoding Symbol Group,
y A group of G consecutive
Packetizer encoding symbaols starting
at Index ] In EBI
] i : Flute Payload ID : {Source Block
Faleggr| WEFHRgaer | Fllieshieadar| 55 el e BSic Number, Encoding Symbol ID)
» o =)
Flute Payload ID = (i j)
TRANSPORT

Figure 3.7 FLUTE packetization.

ESI is the starting index of the first symbol of ESG in the Encoding Block (EB). ESI
together with the SBN (Source Block Number) describes the FLUTE Payload ID. For
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example in Figure 3.7, the ESG = EBj, EBj,,,... EBj.g is referred as ESG;, and its ESI is
j- With SBN =i, FEC Payload ID becomes (i, j).

‘ File ‘

When All SBi received

Wait until All SBi is received Or
Object expired

-

~ak

Y

FEC Decoding

When Any K of K+N Received

._ - ﬁafurtiliny K of K+N
EBI Received or object expired
FEC Buff
............ e e | KN

_411—? ESG,

ES;------ ESu

De-Packetizer

IP Header | UDP Header ‘ Flite Header | ES; (€S} ..... | ES,¢

B ]

Flute Payload ID = (i,j)

T

TRANSPORT

Figure 3.8 FLUTE de-packetization.

3.1.7.3 De-Packetization

FLUTE De-Packetization process is shown in Figure 3.8. Receiver receives an

IP/UDP packet that includes FLUTE Packet as UDP payload. FLUTE payload is
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extracted and its content ESG, a group of consequtive encoding symbols identified by
ESI (Encoding Symbol ID), placed into FEC Buffer. When enough encoding symbols
are collected (K of K+N), process is delivered to FEC decoding. FEC decoder decodes
the Encoding Block EBi and restores the original Source Block, When all source blocks

are received, file reception is completed.

3.2 FLUTE Details

FLUTE is built on top of the Asynchronous Layered Coding protocol
instantiation, a massively scalable reliable content delivery protocol that combines
the Layered Coding Transport (LCT) building block, a congestion control building
block and the Forward Error Correction (FEC) building block to provide congestion
controlled reliable asynchronous delivery of content to an unlimited number of

concurrent receivers from a single sender. (Luby M. & Others, 2002).

As Figure 3.1 shows, LCT is not an overlay over CC and FEC instead it provides
place holders to be aligned and compatible for CC and FEC.

3.2.1 Layered Coding Transport Block (LCT)

LCT (Luby M., Gemmell J. & Others, 2002) defines the basic transport mechanism
for FLUTE. It defines session concept, channel concept and object concept in that it
includes a unique TOI (Transport Object Identifier) for each object. FLUTE defines
objects further to form a complete object definition by specifying download parameters
for each object: object name, location, object saving parameters, etc. An LCT session
consists of one or more logically grouped LCT channels sharing a common sender
source in LCT headers. An LCT channel is defined by a combination of a sender and an
address associated with the channel by the sender. There are currently two models of
multicast delivery: Any Source Multicast (ASM) and Source Specific Multicast (SSM).
LCT works with both multicast models. FLUTE adopts these transport level definition
of LCT.
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LCT supports transport level functions in sender or receiver applications by in-band
signaling of transport parameters in LCT header. FLUTE uses the session management
functionality defined in LCT. LCT includes general support for congestion control that
provides multiple rate or single rate delivery to receivers but does not specify which
congestion control is to be used. “LCT is also compatible with coding techniques that
possibly provide reliable delivery of content” (Luby M., Gemmell J. & Others, 2002)
but does not specify which coding technique to use. In LCT concept, a session can be
composed of many layers each of which can be coded independently. LCT even does
not require the coding technique to be used should enable reliability. ALC and hence
FLUTE define more specificly some of these open issues, and finally FLUTE forms a
complete protocol. ALC adopts to use a coding technique that also enables reliability

by means of forward error correction.

LCT provides a number of fields and supports functionality commonly required by
many protocols. For example LCT provides TSI (transport session identifier) that
uniquely identify a session, TOI (Transport Object Identifir) that uniquely identify an
object, Congestion Control Information (CCI) which allows the receiver to perform the
required congestion control on the packets received. Default LCT header fields is given

in Figure 3.9. The format of Header Extensions is given in Figure 3.10.

Within an LCT session each packet has an “LCT header”. The LCT header format in
Figure 3.9 is the default format. “This format is the recommended for use by protocol
instantiations to ensure a uniform format across different protocol instantiations. *
(Luby M., Gemmell J. & Others, 2002). If default LCT header is not used, position and
length of each header fields must be specified. LCT header attributes are explained in

following list.

- Default LCT header is of variable size. The length of the overall header is given
by “HDR_LEN” field. When constructing an LCT packet, all padding and
reserved (indicated as ‘r’) bits must be set to “0”. All integer types are put into

“big-endian” or “network order” format.
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Figure 3.9 Default LCT header format (Luby M., Gemmell J. & Others, 2002).

V (4 bits): LCT version number
C (2 bits): Congestion Control flag. It defines the length of CCI field.
C=0->CCI=32 bits
C=1->CCI=64 bits
C=2->CCI=96 bits
C=3->CCI=128 bits
S (1 bit): Transport Session Identifier flag. It partially defines the length of TSI
field;
S=0->TSI=0 or TSI=16 bits
S=1->TSI=32 or TSI=48 bits
O (1 bit): Transport Object Identifier flag. It partially defines the length of TOI
field;
0O=0->TOI=0 or TOI=16 bits
O=1->TOI=32 or TOI=48 bits
H (1 bit): Half-word flag. It allows TSI and TOI field lengths to be multiple of 16
bits;
T (1 bit): Sender Current Time present flag. It decides whether SCT field is
present;
T=0->SCT is NOT present
T=1->SCT is present
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R (1 bit): Expected Residual Time present flag. It decides whether ERT field is
present;

R=0->ERT is NOT present
T=1->ERT is present

A (1 bit): Close Session flag. It indicates that session is about to end. Once it is set
to 1 by the sender, in following packets it must be set to 1 until session is
closed.

B (1 bit): Close Object flag. It indicates that delivery of an object identified by
TOI in the header is about to finish. Once it is set to 1 by the sender, in
following packets for the same TOI it must be set to 1 until the object
transmission is finished.

HDR_LEN (8 bits): Total length of the LCT header that must be multiple of 32
bits.

CP (8 bits): Codepoint. It gives coding information of LCT payload. It is similar
to payload type field in RTP protocol header. In FLUTE, this field corresponds
to FEC Payload ID.

TOI (variable length) : Transport Object Identifier. Depending on the S and H bits
it can be 0, 16, 32, 48, 64, 80, 96, 112 bits. In LCT each packet carries content
belonging to only one object identified by TOL

SCT (variable length): Sender Current Time. Depending on the S and H bits it can
be 0 or 32 bits. It represents the time when the packet was transmitted at the
sender, local to session start time,. If SCT reaches 2732-1, it start from zero
again.

ERT (variable length): Expected Residual Time. Depending on the S and H bits it
can be 0 or 32 bits. It represents the expected time after which the current
session or current object transmission is finalized, from the sender point of
view. If packet containing ERT field also contain TOI, ERT applies to that
object otherwise applies to session.

CCI (variable length): Congestion Control Information. Depending on the S and
H bits it can be 32, 64, 96 or 128 bits. It is used to carry congestion control

information.
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- TSI (variable length): Transport Session Identifier. Depending on the S and H bits
it can be 0, 16, 32, or 48 bits. In LCT TSI is scoped by sender IP address.
Thus, the IP address of the sender together with the TSI uniquely identifies a
session. TSI must be unique among all sessions served by the sender during
the period when session is active.

- Header Extensions (Variable Length) : It gives a way for upper layer protocols to
add their specific header information as well as used as container for optional
header fields that are not always used or have variable size, for example

extended-size versions of already contained header fields.
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Figure 3.10 Format of extension headers (Luby M., Gemmell J. & Others, 2002).

- HET (8 bits): Header Extension Type. HET values from 0 to 127 are used for
variable length header extensions. HET values from 128 to 255 are used for
fixed length 32 bit header extensions. Following general header extension
types that must be supported by all senders and receivers are defined:

- EXT_NOP=0: No operation extension that must be ignored by the receivers,
EXT_AUTH=1: Packet Authentication Extension that is used to authenticate
the sender of the packet. It must be recognized by senders and receivers.
However its contents may not be able to be parsed by them.

- There may be header extension types that upper layer protocol using LCT
defined. For example ALC adds FEC OTI (object transmission information)
Extension header and Content Encoding Extension Headers. FLUTE adds

FDT (File delivery table) extension headers.
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- HEL (8 bits): Header Extension Length. The length of the whole header extension
field is expressed in multiple of 32 bits.

- HEC (variable length): Header Extension Content. For fixed length header
extensions, HEC is 24 bits, for variable length header extensions HEC is
variable in size depending on the HEL field.

- ALC and hence FLUTE strengthen the transport concept in LCT and uses the
default LCD header specified here.

3.2.2 Congestion Control Building Block

Congestion Control Building Block needed to enable co-existing of FLUTE and
TCP traffic on the internet. "FLUTE is applicable to both internet use with a suitable
congestion control building block and provisioned\controlled systems, such as delivery

over wireless broadcast radio systems. ” (Digital Fountains & Others, May 2004).

Multiple rate or single rate congestion control protocol can be used with LCT. For
multiple rate procols, receiver driven approach is used. A session consists of more than
one channel (layer) each of which is possibly coded. Sending rate of each channel does
not depend on receiver current state. At any moment of time, receiver explores its
available bandwidth and joins or drops channels dynamically upon the available
bandwidth independently of other receivers. For single rate protocols, sender driven
approach is used where a session consist of one channel and during the course of time,
sending rate changes based on feedback from receivers. Reception rate of each receiver
may vary dynamically but in cordination with all receivers. This approach requires

feedback from receivers.

ALC protocol hence FLUTE potentially can use both single rate and multiple rate
approach. Because of its massive scalability, and its suitability for reliable content
delivery, feed-back free multiple rate congestition controls are adopted by ALC.
Additionally by using FEC coding technique, reconstruction of an object, does not
depend on the reception of specific data packets, rather than the number of different
packets received, which may be gathered from multiple channels. As a result by

increasing number of channels, the receiver can reduce the transfer time accordingly
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without giving any concession from reliability. However if single channel is to be used,
the effect of using multiple rate congestion control with single channel implies no

congestion contol where the control is provided by other means.

In summary, four scenarios are possible with FLUTE: i) use of single channel and
single rate congestion control protocol, ii) use of multiple channels and multiple rate
congestion control protocol, iii) use of single channel without congestion control
provided by ALC but possibly provided by other means, iv) use of multiple channels
without any congestion control supplied by ALC but possibly by other means. Possible
Congestion Control Building Blocks are Wave and Equation Based Rate Control
(WEBRC) Building Block (Luby M., & Goyal V., April 2004), Receiver Driven and
among others (Welzl M., & Eddy V., March 2007).

3.2.3 Forward Error Correction (FEC) Building Block

LCT does not specify which coding technique to use, and even does not require a
coding technique that enables reliability such as forward error correction. But the
natural definition of its layered concept advantageously can be used with a coding
technique that also enables reliability. The concept of LCT can be naturally extended
to reliable content delivery protocols by using forward error correction coding
technique. ALC and FLUTE does not specify which FEC algorithm is to be used. But
they define sufficient place holders to encompass any FEC algorithm to be used by

defining FEC specific ALC extension headers.

A FEC algorithm or equivalently a FEC scheme can be specified by a tuple of FEC
Encoding ID and FEC Instance ID (=0 for Fully-Specified FEC Scheme). FEC schemes
can be classified into Fully-Specified FEC Scheme and Under-Specified FEC Scheme.
In Fully-Specified FEC Scheme, the algorithm is fully specified and opened to other
implementors. In Under-Specified FEC Scheme, the algorithm is either not fully
specified or not opened to other implementors. FEC Enc. ID also specifes the format of
header extension fields that carry FEC OTI in ALC packet. Different FEC algorithms
need different sets of encoding parameters. So there is FEC-Enc. specific part in

General FEC OTI extension header as shown in Figure 3.11.
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Figure 3.11 General EXT_FTI format (Luby M., Gemmell J. & Others, 2002).

LCT concept gives upper layer protocol to add their protocol specific extension
headers in LCT extension concept. ALC uses FEC OTI Extension Header, the format of
which is shown in Figure 3.11. FEC OTI Extension Header with FEC Enc. ID specific
part carries complete FEC OTI information. FEC encoding algorihms sharing the same
FEC Enc. ID uses the same FEC Enc. ID Specific Format. FEC Enc. ID is a number
between 0 to 255, 0 to 127 are reserved for Fully-Specified FEC Scheme, 128 to 255
are used for Under-Specified FEC Scheme. For Fully-Specified FEC Scheme, only
FEC Encoding ID is used to specify FEC algorithm with FEC Instance ID set to 0. For
Under-Specified FEC Scheme, both FEC Encoding ID and FEC Instance ID are used to
specify FEC codec to be used.

The use of FEC in Reliable Multicast is defined in RFC 3453 (Luby M., Vicisano L.,
& Others, 2002). Possible FEC Encoding algorithms are as follows:

XOR FEC
Reed Solomon
Parity Checked Matrix-Based FEC
Low Density Parity Check FEC
Low Density Generator Matrix FEC
— LDGM-Staircase
— LDGM-Triangle
Raptor FEC

With FLUTE, the default FEC is Compact-No Code FEC (NULL FEC) that does not

encode or decode objects. It simply equalizes source symbols and encoding symbols.
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3.2.4 FEC OTI Information

FEC OTTI Information is signalled in-band either with EXT_FTI extension header
and CP (code point) that carries FEC Encoding ID or using FDT where FEC OTI
parameters can be specified for objects of TOI > 0. EXT_FTI format inherits from

ALC and its general format is shown in Figure 3.12. The complete format of this

header depends on the FEC scheme used.
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Figure 3.12 FEC OTI Examples for different FEC Encoding IDs A) FEC Enc. ID=0,128,130 specific
format B) FEC Enc. ID=129 specific format C) MBMS specific format.

Figure 3.12 gives 3 examples for 3 different FEC schemes. For FDT Instance objects
(TOI=0), FEC OTI information must be provided using EXT_FTI. For non-FDT
instance objects (TOI>0), both EXT_FTI and FDT can be used to deliver FEC OTI
information. FEC OTI Information required to be delivered is dependent on the FEC

scheme used. FEC Enc. ID specifies the format of FEC Enc. specific part in General

EXT_FTI format.

Following FEC information is common in all FEC Schemes:

- FEC Encoding ID
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- FEC Instance ID

- Transfer Length (Object size that is being transferred).

Following FEC OTlIs are dependent on FEC Scheme used:

- Encoding Symbol Length (A,B,C)

- Maximum number of source symbols in a source block (A,B)

- Maximum number of encoding symbols for a source block (B)

- Number of source blocks (C)

- Number of sub-blocks (C), when a source block size cannot be fit into FEC
buffer, sub- blocks are used.

- Symbol Alignment parameter (C), ensures that Symbols in a source block and

sub-symbols contained in a sub-block are multiple of Alignments in size.

3.2.5 Asychronous Layered Coding (ALC) Protocol

Asynchronous Layered Coding combines the Layered Coding Transport (LCT)
building block, a multiple rate congestion control building block and the Forward Error
Correction (FEC) building block to provide congestion controlled reliable
asynchronous delivery to concurrent receivers. The most prominent overlays that ALC
specifies over LCT concepts are FEC as coding technique and Congestion Control
adaptation. Hence in ALC packet format, content type of payload is the FEC encoding
type used; hence in default LCT header CP (codepoint) field carries FEC Encoding ID.
ALC also forces TSI (Transport Session ID) length not to be zero. It means a session
concept in LCT is more strengthen in ALC. We have already explained LCT, FEC and
CC building blocks over which ALC is built. So we will not repeat them here and we

have also given ALC adaptions as much as possible in previous sections.

The overall ALC packet format is given in Figure 3.13. Default LCT header is given
previosly in detail in Figure 3.9. ALC packet resides in UDP payload. ALC headers are
Default LCT headers and Fec Payload ID. Encoding symbols reside in ALC payload.
FEC payload ID is a tuple of Source Block Number and Encoding Symbol ID. So FEC



49

payload ID specifies which source block packet belongs to and enables differentiation
among encoding symbols by Encoding Symbol ID.
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Figure 3.13 Overall ALC packet format (Luby M., Gemmell J. & Others, 2002).

When a source block is encoded into an encoding block by FEC encoder, encoding
block may not be able to be put into a single ALC payload at once. So a group of G
consequtive encoding symbols are placed into ALC payload and sent until encoding
block is transmitted. These consequtive G encoding symbols, called encoding symbol
group, identified by a single Encoding Symbol ID that is the encoding symbol ID of the

first encoding symbol in the payload.

3.2.6 FLUTE Packet Format

FLUTE is built on top of ALC. ALC provides the basic trasport for FLUTE. So
FLUTE is an overlay on ALC that inherits all properties of ALC and further define the
object concept by in-band signaling of object properties together with the delivered
object. The core of FLUTE specification over ALC is to define how object properties
such as file-name, location, file-type, content encoding type, security properties, and
other saving parameters are carried in-band during a session. This property is important
in that it allows a FLUTE session to start without knowing the actual object that is
being transferred. So a FLUTE session may gradually define object parameters during a

session.
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FLUTE adds two extension headers in LCT extension concept: EXT_FDT and
EXT_CENC and also uses EXT_FTI inherited from ALC. FLUTE packet can be
decomposed to four abstractions: Transport Information, FEC OTI Information, FDT
Instance Information, Content Encoding Information. Transport Information is what

ALC over LCT concept provides. Following sections provides the other abstractions.

3.2.6.1 FDT Instance Information

FDT (File Delivery Table) information is contained in an XML file local to sender.
It describes all the files with corresponding file attributes and saving parameters related
to delivery of files during the session. Each FLUTE session requires a FDT file local to
sender and a file that is not described in FDT, cannot belong to that session. FDT file

can include the following object-level information:

- TOI, uniquely identifies the file during the session. It is scoped by concerning
session (obligatory)

- FEC OTI Information,(described in FEC Object Tranmission Information section)

- Transfer-Length, Object size that is transferred

- File Name and Location identified by the URL (obligatory)

- Content-Type, MIME media type of file

- Content-Length, File Size

- Content Encoding, Encoding of File if compression is applied

- Content-MDS5, Message digest of file

- Additionally FDT Instances include following instance-level information that
applies to FDT Instance:

- Expires, A FDT Instance is valid until its expiration time (obligatory)

- Complete, a boolean value to indicate no new FDT intances will be provided
anymore until the end of the session

- Content-Type, MIME media type of files

- Content-Encoding, Encoding of Files

- FEC OTI Information
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Figure 3.14 FLUTE packet format (Luby M., Gemmell J. & Others, 2002).

Each file in a FLUTE session must be associated with a TOI >0 in the scope of that
session. Hence TOI and URL information are obligatory, others are optional. FDT is
carried as FDT instances during the session. Each FDT instance is carried as transport
objects TOI= 0. Within a FLUTE session, any TOI=0 means that packet carries a FDT

instance describing one or more files in FDT. A FDT instance can be subset, superset,
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dublication, or complement of any other FDT Instances. Each FDT instance is
identified by FDT Instance ID. FLUTE adds FDT Instance specific extension header,
EXT_FDT, with HET=192. In EXT_FDT as shown in Figure 3.14, FDT Instance ID
reserves 20 bits. For each FLUTE session, FDT Instances starts from zero and it is

incremented by one for each subsequent FDT Instances.

A receiver of a FLUTE session keeps a FDT database that reflects the current state
of receiver knowledge of the FDT. Upon receiving a new FDT Instance, receiver
updates its FDT database. In FLUTE specification, FDT Insances are recommended to
be delivered before the files that are described by those FDT Instances. However

receiver should assume that a FDT Instance may appear at any time during the session.

3.2.6.2 Content Encoding Information

Content Encoding Information is signalled in-band for FDT instances (TOI=0) using
EXT_CENC extension header as shown in Figure 3.14. That is, FDT instance itself can
be content encoded and EXT_CENC is used to deliver which content encoding

algorithm is to be performed to extract original FDT instance.

For non-FDT instance objects (TOI>0), content encoding information is carried
using FDT. In Figure 3.14, EXT_CENC format is shown. FLUTE identifies this
extension header by giving a header extension type, HET=193. CENC (8 bits) carries
content encoding algorithm used in FDT Instance payload. Possible content encoding
algorithms inludes implementations of Deutsch P. (May 1996): ZLIB, GZIP, and
DEFLATE.

3.2.7 FLUTE Session Descriptions

A FLUTE session is identified by a sender IP address and TSI (Transport Session
Identifier). Each channel in a session is defined by a tuple of sender IP address and an

address associated with the channel.
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Receiver needs session descriptors to initiate a service. Service descriptors for
FLUTE I-D (Walsh R., & Others, January 2007) specifies session description attributes
for FLUTE. Sender must also know session descriptions in order to begin, send to and
end the session. Sender must send all files described in a FDT XML file that is local to

sender. Session descriptions and FDT information are explained in following sections.

3.2.7.1 Session Descriptions

Session description must be known by both sender and client side. Sender must
know when, how and to whom it will send the data, similarly receiver must know
when, how and from whom it will get the data. Service Description is a meta data (such
as SDP or XML based) that contains required information for both side to initiate a
service. For receiver it is obligatory to have a Service Description service component.
To describe a FLUTE session, following transport parameters must be provided in

Session Descriptions:

- The Source IP Address

- Number of channels in the session

- Destination IP Address (Multicast IP) and port number for each channel in the
session

- Transport Session Identifier (TSI) that is unique in the scope of that session.

Optionally following parameters should be provided to the receiver

- Start time and End time of the session

- FEC OTI Information

- FEC Encoding ID

- FEC Instance ID

- FEC Encoding ID Specific Information (Encoding Symbol Length, Maximum
number of symbols in a source block, Maximum number of source blocks, etc)

- Content Encoding Format
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How service description parameters can be described is out of the scope of FLUTE
specification. It can be a description syntax such as SDP or XML based. How session
description information is acquired is again out of scope of the FLUTE specification. It
can be via some transport protocols such as HTTP, email, SIP, Session Announcement

Protocol, manual pre-confugaration,etc.

An example of Session description with SDP syntax is given in the text below that
describes 2 channels identified by two IP6 addresses and two corresponding port
numbers: Address1=FF1E:03AD::7F2E:172A:1E24, portl=4001 and Address2=
FF1E:03AD::7F2E:172A:1E25 and port2=4002. Both channels are FEC Protected.
First channel uses FEC Encoding ID=0, second one uses FEC Encoding ID 128 and
Instance ID=0.

v=1

o=user_zeki 2890844526 2890842807 IN IP6 2201:056D::112E:144A:1E24
s=Zeki File delivery session example

i=More information

t=1160636400 1192172400

a=source—-filter: incl IN IP6 * 2001:210:1:2:240:96FF:FE25:8EC9
a=flute-tsi:l

a=flute-ch:2

a=FEC-declaration : 0 encoding-id
a=FEC-declaration : 0 encoding-id
m=application 4001 FLUTE/UDP 0
c=IN IP6 FF1E:03AD:7F2E:172A:1E24
a=FEC:0

m=application 4002 FLUTE/UDP 0
c=IN IP6 FF1E:03AD:7F2E:172A:1E25
a=FEC:1

0
128 ; instance—-id = 0

Source address is an [P6 address=2001:210:1:2:240:96FF:FE25:8EC9 together with

session ID=1 uniquely identify the session.

3.2.7.2 File Delivery Table (FDT) Description

We have already explained FDT. Here we will explain how it is described. FDT is
an XML file that contains file description entries. During the session it is sent as one
ore more FDT instances, each of which describes at least one, at most the complete

FDT (all files). The XML code below specifies the XML Schema for FDT Instance:



<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema
xmlns="urn:IETF:metadata:2005:FLUTE:FDT"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="urn:IETF:metadata:2005:FLUTE:FDT"
elementFormDefault="qualified">
<xs:element name="FDT-Instance" type="FDT-InstanceType"/>
<xs:complexType name="FDT-InstanceType">
<Xs:sequence>
<xs:element name="File" type="FileType"
maxOccurs="unbounded" />
<xs:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Expires" type="xs:string"
use="required"/>
<xs:attribute name="Complete" type="xs:boolean"
use="optional"/>
<xs:attribute name="Content-Type" type="xs:string"
use="optional"/>
<xs:attribute name="Content-Encoding" type="xs:string"
use="optional"/>
<xs:attribute name="FEC-OTI-FEC-Encoding-ID"
type="xs:unsignedLong" use="optional"/>
<xs:attribute name="FEC-OTI-FEC-Instance-ID"
type="xs:unsignedLong" use="optional"/>
<xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
type="xs:unsignedLong"
use="optional"/>
<xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
type="xs:unsignedLong" use="optional"/>
<xs:attribute name="FEC-OTI-Max—-Number-of-Encoding-—
Symbols" type="xs:unsignedLong"
use="optional"/>
<xs:attribute name="FEC-OTI-Scheme-Specific-Info"
type="xs:base64Binary" use="optional"/>
<xs:anyAttribute processContents="skip"/>
</xs:complexType>
<xs:complexType name="FileType">
<Xs:sequence>
<xs:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Content-Location" type="xs:anyURI"
use="required"/>
<xs:attribute name="TOI" type="xs:positiveInteger"
use="required"/>
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<xs:attribute name="Content-Length" type="xs:unsignedLong"

use="optional"/>

<xs:attribute name="Transfer-Length"
type="xs:unsignedLong" use="optional"/>

<xs:attribute name="Content-Type" type="xs:string"
use="optional"/>

<xs:attribute name="Content-Encoding" type="xs:string"
use="optional"/>

<xs:attribute name="Content-MD5" type="xs:base6t4Binary"
use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Encoding-ID"
type="xs:unsignedLong" use="optional"/>
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<xs:attribute name="FEC-OTI-FEC-Instance-ID"
type="xs:unsignedLong" use="optional"/>
<xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
type="xs:unsignedLong"
use="optional"/>
<xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
type="xs:unsignedLong" use="optional"/>
<xs:attribute name="FEC-OTI-Max-Number-of-Encoding-—
Symbols" type="xs:unsignedLong"
use="optional"/>
<xs:attribute name="FEC-OTI-Scheme-Specific-Info"
type="xs:base64Binary" use="optional"/>
<xs:anyAttribute processContents="skip"/>
</xs:complexType>
</xs:schema>

In the schema, there is a sing root element “FDT-Instance”. The “FDT-Element”
must contain “Expires” attribute that indicates expiry time of the FDT Instance. The
“File” element defined in a “sequence” structure means, one or more files can be
described and each can be parsed with “File” element name. Each “File” element has
same property definitions such as TOI, Content-location, Content-type,etc, which are
explained before. After the “sequence” definition, there are a group of attributes that
apply to the complete instance, in the document, we called it as “instance-level”
attributes, for the file element attributes, we used the term “object-level” attributes.
“Expires” attribute is an “instance-level” attribute because it characterizes the complete

FDT Instance.

One example of the FDT based on the XML schema above is given below where

two files “trackl.mp3” and “track2.mp3” are described;

<?xml version="1.0" encoding="iso-8859-1"7>
<FDT-Instance Expires="1197446400"
FEC-OTI-FEC-Encoding—-ID="129"
FEC-OTI-FEC-Instance-ID="0"
FEC-OTI-Maximum-Source—-Block-Length="180"
FEC-OTI-Max—-Number-of-Encoding-Symbols="246"
FEC-OTI-Encoding-Symbol-Length="948">

<File TOI="1"
Content-Location="file:///files/trackl.mp3"
Content-Length="101888*
Content-Type=*“audio/mp3”
Content-MD5=“Eth76GIkJU45sghK"” />

<File TOI="2"
Content-Location="file:///files/track2.mp3"
Content-Length="101888*
Content-Type=*audio/mp3”
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Content-Encoding="gzip”
Transfer-Length=“68552"/>
</FDT-Instance>

As the FDT instance shows if all the files share a group of file attribute values, they
can be put into instance-level means applies to all files. FEC OTI parameters are
described as instance-level. That is both mp3 files are protected with the same FEC OTI
parameters. Content-protection with “mdS” is applied to “trackl.mp3” and content-

compression with “gzip” is applied to “track2.mp3”.

3.2.8 Service Delivery Model

FLUTE can support several service delivery models. Two examples of them are
Push Service Model and On-Demand Service Delivery Model. A push model is a
sender initiated concurrent delivery of objects to a selected set of receivers. One way
a push service model can be used for reliable content delivery is to deliver a series of
objects. The sender could send a Session Description announcement to a control
channel and receivers could monitor this channel and join a session whenever a
Session Description of interest arrives. Upon receipt of the Session Description,
each receiver could join the session to receive packets until enough packets have
arrived to reconstruct the object, at which point the receiver could report back to the
sender that its reception was completed successfully. The sender could decide to
continue sending packets for the object to the session until all receivers have
reported successful reconstruction or until some other condition has been satisfied.

(Luby M., Gemmell J. & Others, 2002).

For an on-demand content delivery service model, senders typically transmit for
some given time period selected to be long enough to allow all the intended
receivers to join the session and recover a single object. For example a popular
software update might be transmitted using ALC for several days, even though a
receiver may be able to complete the download in one hour total of connection time,
perhaps spread over several intervals of time. In this case the receivers join the
session at any point in time when it is active. Receivers leave the session when they

have received enough packets to recover the object. The receivers, for example,
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obtain a Session Description by contacting a web server (Luby M., Gemmell J. &

Others, 2002).

There may be other reliable content delivery service models that can be supported
by ALC. The description of the potential applications, the appropriate delivery
service model, and the additional mechanisms to support such functionalities when
combined with ALC is beyond the scope of this document. (Luby M., Gemmell J. &
Others, 2002).



CHAPTER FOUR

MBMS DOWNLOAD SERVICE

4.1 MBMS Download Service

MBMS download delivery method uses the FLUTE protocol that is described in
Chapter 3. However MBMS do not use all features of FLUTE, for example it uses a
single channel for a download session, where in FLUTE number of channels in the
session is limited but not restricted. So following sections will exhibit how MBMS
selects capabilities and features of FLUTE protocol specification. A summary of
MBMS download in MBMS Release 7 specification are extracted from 3GPP TS
26.346 (2007) and 3GPP TS 26.946 (2007). For up-to-date information check the
current state of MBMS specification (3GPP TS 26.346 & 26.946).

4.1.1 MBMS Service Descriptions

4.1.1.1 Service Discovery/Announcement

Service Discovery / Announcement provide service description information, which
may be delivered via the Session and Transmission function or via the Interactive
Announcement function in MBMS. Service discovery is a mechanism for subscribers to
get a list of service descriptions while service announcement is a mechanism for the
sender to announce the list of service descriptions to subscribers. The latter is sender-

initiated while the former is receiver-initiated process.

MBMS download delivery method or MBMS Interactive announcement function
can be used to deliver service descriptions to subscribers. MBMS Interactive
announcement functions provide service descriptions to the UE using HTTP. Other user
service announcement and discovery mechanisms by other means than MBMS defined

are also possible, for example SAP, SIP, email, SMS Cell Broadcast and so on.

59
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4.1.1.2 Service Descriptions

Service descriptions are sets of metadata that describe sufficient number of
properties of a service to be initiated by the receiver and sender. Service descriptions

can be in the form of XML-based or SDP based as well as HTTP/MIME headers.
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Figure 4.1 MBMS download delivery service description fragments (3GPP TSG
26.346, 2007).

A Service is described by one or more descriptive data, each of which is an
identifiable block of metadata, called fragment. Each fragment describes some aspect of
the service and it can be discriminated with identifiers. Figure 4.1 shows these service
description fragments. Session description fragment is an SDP file that is mandatory
and describes the session parameters. Others are optional XML files that describe
details of service protection and associated delivery procedure. Three metadata
fragments: Associated delivery description, session description and security description

are referenced in a user service description fragment, which is another XML file.

One or more services may be bundled together. In this case the root fragment, user
service bundle description will encompass all service descriptions in separate
userServiceDescription section in XML as shown in the user service description XML

example below. All services that form a bundle are described with local or remote
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references of other fragments. UserServiceDescription section must include at least one
delivery method, at most many. XML Schema definition of user service bundle

description is given in (3GPP TSG 26.346, 2007, p.82).

The MBMS Release 7 schema extension provides new attributes for UEs starting
and terminating behaviour of the service. An initiationRandomization element and
terminationRandomization element carries the parameters to be used by the MBMS UE
to randomize their initiation and/or termination operations over time. If the
initiationRandomization element is present, al MBMS UEs shall randomize the
inititation time as defined by the attributes of the elements. If the
terminationRandomization element is present, all MBMS UEs shall randomize the
termination time as defined by the attributes of the elements. (3GPP TSG 26.346, 2007,
p-83).

<?xml version="1.0" encoding="UTF-8"7?>

<bundleDescription
xmlns="www.example.com/3gppUserServiceDescription"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

<userServiceDescription

serviceld="urn:3gpp:1234567890coolcat">
<name lang="EN">Welcome</name>
<name lang="DE">Willkommen</name>

<name lang="FR">Bienvenue</name>
<name lang="FI">Tervetuloa</name>
<serviceLanguage>EN</servicelLanguage>
<serviceLanguage>DE</servicelLanguage>
<deliveryMethod

accessGroupId="1"

sessionDescriptionURI="http://www.example.com/3gpp/mbms/sessionl
.sdp"/>

<deliveryMethod
sessionDescriptionURI="http://www.example.com/3gpp/mbms/session2
.sdp"
associatedProcedureDescriptionURI=
"http://www.example.com/3gpp/mbms/procedureX.xml" />
<deliveryMethod
sessionDescriptionURI="http://www.example.com/3gpp/mbms/session3
.sdp"

associatedProcedureDescriptionURI=
"http://www.example.com/3gpp/mbms/procedureY.xml" />

<deliveryMethod
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accessGroupId="2"

sessionDescriptionURI="http://www.example.com/3gpp/mbms/session4
.sdp"/>

<accessGroup id="1">
<accessBearer>3GPP.R6.GERAN</accessBearer>
<accessBearer>3GPP.R6.UTRAN</accessBearer>

</accessGroup>

<accessGroup id="2">
<accessBearer>3GPP.R6.UTRAN</accessBearer>

</accessGroup>

</userServiceDescription>
</bundleDescription>

Above XML code provides an example of MBMS Service description. There is one
userServiceDescription section; it means the bundle describes only one service. Each
service has a name and identity so that it can be identified among other services. Name
and ServicelD attributes are used in this purpose. DeliveryMethod specifies either
streaming or downlading method used. A single session can be either a streaming
session or a downloading session. Within the DeliveryMethod section, at least
sessionDescripitonURI  must be provided, and possibly other fragments
AssociatedProcedureDescriptionURI and ProtectionDescriptionURI can be provided.
Several Delivery Methods may refer to same AssociatedProcedureDescriptionURI or

same ProtectionDescriptionURI.

Each service can provided for some radio access network such as UTRAN or
GERAN. Furthermore, releases of RAN can be specified so that a client within the
specified release of RAN can use the service. This feature is described by a
AccessGroup and AccessGroupID. The session described by session4.sdp is provided
only for 3GPP.R6.UTRAN. It means a client in Release 5 UTRAN will not be able to

use the service.

4.1.1.3 Security Descriptions

The security description is referenced by the protectionDescriptionURI of the
deliveryMethod element. A FLUTE channel can be protected using key management

mechanism. A client needs to know some server addresses that managing key
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distribution. Each channel in the session is mapped to a specific key ID. Since MBMS
FLUTE uses single channel, there should be a single mapping of a key ID to a
download channel specified by a multicast address and a port. Keyld element in XML
does such a mapping as shown in security description example below. Requesting for
actual keys that will be used for protection and their distribution by the key server, will
be using MIKEY packets over point to point bearers on UDP or point to multipoint on
UDP (not over FLUTE). When point to multipoint bearers are used, FEC protection can
applied to MIKEY distribution channel. Using FEC requires FEC Encoding ID, FEC
Instance ID and FEC Object Transmission Information specific to FEC Encoding ID.
They are provided within fecProtection element in the XML. MBMS Service
Protection Description Example (3GPP TSG 26.346, 2007) is given below.

<?xml version="1.0" encoding="UTF-8"7?>
<securityDescription
xmlns="www.example.com/3gppSecurityDescription"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema—-instance"
confidentialityProtection="true"
integrityProtection="true"
uiccKeyManagement="true">
<keyManagement
offsetTime="5"
maxBackOff="10">

<serverURI ="http://register.operator.umts/"/>
<serverURI ="http:// register2.operator.umts/"/>
</keyManagement>
<keyId identity="<someMSKidA>" mediaFlow=224.1.2.3:4002 />
<fecProtection

fecEncodingId="130"

fecInstanceId="0"

fecOtiExtension="1SCxWEMNe397m24SwgyRhg=="/>
</securityDescription>

Both MBMS client and server request a secret key from the key servers, which
are available in the specified addresses within keyManagement element, using same
initial keys given in the security description. Since many receivers or servers may
request key materials from key servers at the same time, key management procedure
involves some kind of randomization that is managed by offsetTime and
maxBackOff. Key servers respond them with a secret key using MIKEY packets,
with which a single download channel can be protected later. (3GPP TSG 26.346,
2007)
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4.1.1.4 Associated Delivery Procedure Descriptions

The Associated Delivery Procedure Descriptions is referenced by the
AssociatedProcedureDescriptionURI of the deliveryMethod element. An example of
MBMS Associated Delivery Description (3GPP TSG 26.346, 2007) is given below.
Associated Delivery Procedure for a FLUTE session mostly means file repair procedure
as well as reception reporting option. Reception reporting procedure is used to report
the complete reception of one or more files. By its nature, FLUTE may not provide a
complete transmission of files to a mass. Some of the files may have corrupted or lost
blocks. If a receiver determines that some files are not completely received and file
repair option is also available in the description, specified by postFileRepair element in

the XML, then it starts Associated Delivery Procedure.

<?xml version="1.0" encoding="UTF-8"7?>
<associatedProcedureDescription
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.com/mbms—associated-
descrition.xsd">
<postFileRepair
offsetTime="5"
maxBackOff="10">
<serverURI>http://mbmsrepair.operator.umts/"</serverURI>
<serverURI>http://mbmsrepairl.operator.umts/"</serverURI>
<serverURI>http://mbmsrepair2.operator.umts/"</serverURI>
</postFileRepair>
<bmFileRepair
sessionDescriptionURI="http://www.example.com/3gpp/mbms/sessionl.sdp"/
>

</associatedProcedureDescription>

Since many clients may request file repair procedure from repair servers about same
time, some a mechanism is needed to prevent repair servers from being bottleneck. The
offsetTime and maxBackOff are used in this purpose. The MBMS client Calculates a
random back-off time and selects a file repair server randomly out of a list, specified in
postFileRepair element and sends a repair request message to the selected file repair

server at the calculated time.

If file repair option is available, MBMS client should wait for repair data in the

defined MBMS download session, possibly current session or a different session
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defined in bmFileRepair element. The existence of a broadcast/multicast file repair
session is signalled by the inclusion of the optional bmFileRepair procedure in the
updated Associated Delivery procedure description. This is signalled by the
bmFileRepair element with a single "sessionDescriptionURI" attribute. In the cases
where the same IP addressing is used for the broadcast/multicast repair session as the
original download session, the MBMS client simply not leaves the group. Otherwise,
the client must join to defined session using the specified SDP. A broadcast/multicast
file repair session behaves just as an MBMS download session, and the determination
of end of files and session, and use of further associated delivery procedures uses the
same techniques as specified for the MBMS download delivery method. Then the file
repair server responds with a repair response message containing the repair data, or at

worst, describing an error case or some other alternative case.

4.2 MBMS Service Description Transport

Service Descriptions are transported using association of metadata envelope and
metadata fragment, both of which are XML coded objects. Envelope is a metadata that
give high-level description of its associated fragment so that it manages transport of
service descriptions independent of the fragment syntax. “The metadata envelope and
metadata fragment objects are transported as file objects in the same download session
either as separate referencing files or as a single embedding file.” (3GPP TSG 26.346,
2007). A metadata envelope shall be associated with a metadata fragment by one of two

methods:

1. Embedded: The metadata fragment is embedded within the metadata envelope.

2. Referenced: The metadata fragment is referenced from the metadata envelope.

The attributes for a metadata envelope and their description defined in 3GPP TSG
26.346 (2007) as follows:

- metadataURI: A URI providing a unique identifier for the metadata fragment.
The metadataURI attribute is obligatory as indicated in the metadata envope

schema below.
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- version: The version number of the associated instance of the metadata fragment.
The version number should be initialized to one. The version number must be
increased by one whenever the metadata fragment is updated. The version
attribute is used for this purpose and it is obligatory.

- validFrom: The date and time from which the metadata fragment file is valid. The
validFrom attribute may or not be present. If not present, the UE should
assume the metadata fragment version is valid immediately.

- wvalidUntil: The date and time when the metadata fragment file expires. The
validUntil attribute may or not be present. If not present the UE should assume
the associated metadata fragment is valid for all time, or until it receives a
newer metadata envelope for the same metadata fragment describing a
validUntil value.

- contentType: The MIME type of the metadata fragment which shall be used as
defined for "Content-Type" in RFC 2616. The contentType attribute shall be
present for embedding metadata envelopes. The contentType attribute may be
present for referencing metadata envelopes. For example, security description

fragment uses application/mbms-protection-description.

The formal schema for the MBMS metadata envelope is defined as an XML Schema
as follows (3GPP TSG 26.346, 2007);

<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="metadataEnvelope" type="metadataEnvelopeType"
minOccurs="1"
maxOccurs="unbounded" />
<xs:complexType name="metadataEnvelopeType">
<xSs:sequence>
<xs:element name="metadataFragment"
type="xs:string"
minOccurs="0"
maxOccurs="1">
</xs:element>
</xs:sequence>
<xs:attribute name="metadataURI"
type="xs:anyURI"
use="required"/>
<xs:attribute name="version"
type="xs:positiveInteger"
use="required"/>
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<xs:attribute name="validFrom"
type="xs:dateTime"
use="optional"/>
<xs:attribute name="validUntil"
type="xs:dateTime"
use="optional"/>
<xs:attribute name="contentType"
type="xs:string"
use="optional"/>
<xs:anyAttribute processContents="skip"/>

</xs:element>
</xs:schema>

4.3 Congestion Control

MBMS uses single FLUTE channel with single rate transport. No congestion control

algorithms are needed in this case.

4.4 Content Encoding of Files

Files may be content encoded for transport, using the generic GZip algorithm
described by Deutsch P. (May 1996). UEs shall support GZip content decoding of
FLUTE files. However content encoding of FDT is not used in MBMS. That is, FDT
Instances are not content encoded hence FDT_CENC extension header is not used at all

in MBMS.

4.5 Signaling of Parameters

MBMS Download parameters are carried in FLUTE Headers including Flute

Extension Headers and FDT Instances.

4.5.1 Flute Mandatory Headers (3GPP TSG 26.346, 2007)

FLUTE and ALC mandatory header fields are explained already in detailed FLUTE

section. MBMS adds following additional specializations:

- The length of the CCI (Congestion Control Identifier) field shall be 32 bits and it

is assigned a value of zero (C=0).
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The Transmission Session Identifier (TSI) field will be of length 16 bits (S=0,
H=1, 16 bits).

The Transport Object Identifier (TOI) field should be of length 16 bits (O=0,
H=1).

Only Transport Object Identifier (TOI) O (zero) will be used for FDT Instances.

The following features may be used for signalling the end of session and end of
object transmission to the receiver:

The Close Session flag (A) for indicating the end of a session.
The Close Object flag (B) for indicating the end of an object.

The T flag indicates the use of the optional "Sender Current Time (SCT)" field
(when T=1).

The R flag indicates the use of the optional "Expected Residual Time (ERT)"
field (when R=1).

The LCT header length (HDR_LEN) shall be set to the total length of the LCT
header in units of 32-bit words.

For "Compact No-Code FEC scheme" ], the FEC Payload ID shall be such that a
16 bit SBN (Source Block Number) and then the 16 bit ESI (Encoding Symbol
ID) are given.

For “MBMS FEC scheme”, the FEC Payload ID shall be set according to MBMS
FEC Scheme definition below.

4.5.2 Flute Extension Headers (3GPP TSG 26.346, 2007)

MBMS uses FLUTE extension header fields EXT_FDT, EXT_FTI , EXT_CENC as

follows:

- EXT_FTI must be included in every FLUTE packet carrying symbols belonging

to any FDT Instance.

- FLUTE packets carrying symbols of files (not FDT Instances) shall not include an

EXT FTIL
FDT Instances shall not be content encoded and therefore EXT CENC shall not

be used.
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- EXT_FDT is in every FLUTE packet carrying symbols belonging to any FDT
Instance.

- FLUTE packets carrying symbols of files (not FDT instances) do not include the
EXT_FDT.

4.5.3 FDT Instances

MBMS uses FDT Instances elements as follows described in detail in 3GPP TSG
26.346 (2007):

- Content-Location (URI of a file)

- TOI (Transport Object Identifier of a file instance)
- Expires (expiry data for the FDT Instance)

- Content-Length (source file length in bytes)

- Content-Type (content MIME type)

- FEC Encoding ID

Other FEC Object Transmission Information specified by the FEC scheme are:

- FEC-OTI-Maximum-Source-Block-Length

- FEC-OTI-Encoding-Symbol-Length

- FEC-OTI-Max-Number-of-Encoding-Symbols
- FEC-OTI-Scheme-Specific-Info

Following FDT attributes are optinal in MBMS:

- Complete
- Content-Encoding

- Content-MD5

“The FEC-OTI-Scheme-Specific-Info FDT Instance data element contains
information specific to the FEC scheme indicated by the FEC Encoding ID encoded
using base64.” (3GPP TSG 26.346, 2007).
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4.6 FDT Schema

MBMS uses IETF FLUTE FDT Schema as well as 3GPP FDT extensions as defined
in (3GPP TSG 26.346, 2007, p.35, p.37) for FDT Instances. The extension of the IETF
FLUTE FDT schema is done using the following schema definition (3GPP TSG
26.346, 2007, p.35):

<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema
xmlns="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"
elementFormDefault="qualified">
<xs:complexType name="MBMS-Session-Identity-Expiry-Type">
<xs:simpleContent>
<xs:extension base="MBMS-Session-Identity-Type">
<xs:attribute name="value"
type="xs:unsignedInt" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:simpleType name="MBMS-Session-Identity-Type">
<xs:restriction base="xs:unsignedByte"/>
</xs:simpleType>
<xs:simpleType name="groupIdType">
<xs:restriction base="xs:string"></xs:restriction>
</xs:simpleType>
</xs:schema>

Most of the data elements in the FDT instances are described previously in Chapter
3. FEC related parameters in IETF FDT Schema will be described in following
sections. Grouping attribute in FDT Schema is used to logically group one or more files
so that downloading of the one in the group automatically triggers other files in the
same group. Most of the time files downloaded are related to each other. For example,
downloading a web page component that has many references to other components,
software packages, and the referencing metadata envelopes and their metadata
fragments are related. A FLUTE receiver should download all the files belonging to all
groups where one or more of the files of those groups have been requested. However, a
UE may instruct its FLUTE receiver to ignore grouping to deal with special
circumstances, such as low storage availability. The usage of the MBMS Session

Identity is optional. Each MBMS session may be activated using a different MBMS
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session identifier. The MBMS UE determines, based on the MBMS Session Identity
value, whether the files of the upcoming MBMS download session were already
received. If the files have already been completely received, the MBMS UE does not
respond to the notification of the MBMS Session (3GPP TSG 26.346, 2007).

The following schema (3GPP TSG 26.346, 2007, p.37) is given as a 3GPP extension

of FDT Schema, new in MBMS Release 7, it defines new elements;

<?xml version="1.0" encoding="UTF-8"7?>

<xs:schema
xmlns="urn:3GPP:metadata:2007:MBMS:FLUTE:FDT"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="urn:3GPP:metadata:2007:MBMS:FLUTE:FDT"
elementFormDefault="qualified">

<xs:element name="Cache-Control">
<xs:complexType>
<xs:attribute name="no-cache" use="optional"
type="xs:boolean"/>
<xs:attribute name="max-stale" use="optional"
type="xs:boolean"/>
<xs:attribute name="Expires" use="optional"
type="xs:unsignedInt"/>
<xs:anyAttribute processContents="skip"/>
</xs:complexType>
</xs:element>
</xs:schema>

A file download service may indicate the caching recommendations for a specific
file or set of files that are delivered using FLUTE. The caching functionality defines

three different caching directives:

- no-cache: this directive is used to indicate to the receiver not to cache a specific
file (or set of files). This is probably useful in the case where the file is expected to be
highly dynamic (changes to the file occur quite often) or if the file will be used only
once by the receiver application.

- max-stale: this directive indicates to the FLUTE receiver that a specific file (or set
of files) should be cached for an indefinite period of time, if possible. The file has no

expiry date.
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- Expires: this directive is used by the server to indicate the expected expiry time of
a specific file (or set of files). It indicates a date and time value in the HTTP date

format or in the NTP timestamp format. (3GPP TSG 26.346, 2007, p.38)

4.7 MBMS FEC Scheme Definition

MBMS uses Raptor Encoding algorithm which is a fully-specified FEC Scheme and
uses FEC Encoding ID=0, and NULL FEC Encoding Algorithm which uses FEC
Encoding ID=0.

4.7.1 FEC Payload ID

Figure 4.2 provides the FEC Payload ID format and its place in FLUTE packet. FEC
payload ID is a tuple of Source Block Number and Encoding Symbol ID. It specifies
which source block packet belongs to and enables differentiation among encoding

symbols by Encoding Symbol ID.
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Figure 4.2 FEC payload ID in MBMS FLUTE.

“The FEC Payload ID shall be a 4 octet field defined as follows:

- Source Block Number (SBN), (16 bits): An integer identifier for the source block

that the encoding symbols within the packet relate to.
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- Encoding Symbol ID (ESI), (16 bits): Starting index of the first encoding symbol

within a group of consecutive encoding symbols in Encoding Block.” (3GPP

TSG 26.346, 2007, p.38).

4.7.2 FEC Object Transmission Information (FEC OTI)

MBSM FEC Object Transmission information consists of:

- The FEC Encoding ID=0, FEC Instance ID=0 are used to define raptor encoding

- The Transfer Length (F), is the size of object that is being transferred

- The parameters 7, Z, N and A
T- Encoding Symbol Length
Z- Number of source blocks
N- Number of sub-blocks, when a source block size cannot be fit into FEC
buffer, sub- blocks are used
A- Symbol Alignment parameter ensures that symbols in a source block and
sub-symbols contained in a sub-block are multiple of Alignments (A) in

size.

There are two ways to communicate FEC OTI: FDT Instances or Session
Description Protocol (SDP). Session Description provides FEC OTTI at session level for
MBMS. It means all objects can be sent using one FEC OTI configuration in SDP.
However, FDT can provide FEC OTI at object-level. It means each object can be sent
using different FEC OTI configuration and in that case any previously known

configuration for that object will be overwritten.

General EXT_FTI format Encoding Symbol Length (7)
Number of Source Blocks (Z) Number of Sub-Blocks Symbol Alignment
(N) Parameter (A)

Figure 4.3 MBMS FEC specific EXT_FTI format.

When FDT is used to communicate FEC OTI, the FEC Encoding ID will be carried
in CodePoint (CP) portion of Flute packet (Figure 3.14), FEC Instance ID and Transfer
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Length will be communicated in General EXT_FTI (Figure 3.14). The other parameters
shall be encoded in the FEC Encoding ID specific portion of the EXT_FTI field as

shown in Figure 4.3 below.

The parameters 7 and Z are 16 bit unsigned integers, N and A are 8 bit unsigned
integers. The remaining parameters Z, N, A, shall be encoded as a 4 byte field within

the FEC-Scheme Specific format field.

4.8 MBMS Fragmentations

4.8.1 Fragmentation of Files

Fragmentation is a mechanism that decides how to divide a file into partitions in
sender side, as well as decides how to augment these partitions to the original file in
receiver side. It requires two steps; First is the partitioning a file into source blocks,
possibly, further dividing source blocks into sub-blocks. Second is the partitioning of a

block into encoding symbols.
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Figure 4.4 MBMS fragmentation.
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Step-1 will be provided by blocking algorithms, step-2 will be provided by FEC
encoding algorithms. There are two blocking algorithms; one for Compact No-Code
FEC scheme that is described in FLUTE specification (Luby M. & Others, 2002), and
one for Raptor-Encoding FEC scheme that will be described in later section. As Figure
4.4 shows both blocking algorithms and encoding algorithms needs FEC-encoding
scheme as input parameter. It means partitioning criteria will be described by FEC
Scheme and file size. While encoding criteria is defined by only FEC scheme used.
Step-1 results in Z number of Source symbols, Z; of which has K; number of source
symbols, Zs of which has Kg number of source symbols. Step 2 results in K+N number

of encoding symbols, N of which are repair symbols.

4.8.2 Blocking Algorithm

Blocking algorithms is affected by file size, FEC Scheme and some
recommendations based on file size and FEC Scheme. Since MBMS uses raptor
encoder, definition in Figure 4.4, Blocking_Algorithm (File Size, FEC Scheme) can be
replaced by MBMS_Blocking_Alg (File Size, Recommendations), where MBMS

specific recommendations will be put into a structure called Recommendations.

In order to apply the Raptor encoder to a source file, the file may be broken into Z >
1 blocks, known as source blocks. The Raptor encoder is applied independently to each
source block. As Figure 4.5 shows each source block is identified by a unique integer
Source Block Number (SBN), where the first source block has SBN zero, the second
has SBN one, etc. Each source block is divided into a number, K, of source symbols of
size T bytes each. Each source symbol is identified by a unique integer Encoding
Symbol Identifier (ESI), where the first source symbol of a source block has ESI zero,

the second has ESI one, etc.

Each source block with K source symbols is divided into N > 1 sub-blocks, which
are small enough to be decoded in the working memory. Each sub-block is divided into
K sub-symbols of size 7. Figure 4.5 shows an example source block placed into a two
dimensional array, where each entry is a T’-byte sub-symbol, each row is a sub-block

and each column is a source symbol. For example, the sub-symbol numbered K
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contains bytes T’-K through T’-(K+1)-1 of the source block. Then, source symbol i is
the concatenation of the ith sub-symbol from each of the sub-blocks, which corresponds
to the sub-symbols of the source block numbered i, K+i, 2-K+i,..., (N-1)-K+I as shown

in Figure 4.5. That is, source symbol i is the concatenation of N number of sub-symbols

in column 1.
] File \
S’B s‘s2 S‘B‘ SLZ
N (I Il | [—=—1]
-+ - -
K, K K,
- -t
ZL ZS
7=7,+2
0 1 2 K-1
N|_ K K+1 K+2 2-K-1
2K 2-K+1 2-K+2 3-K-1
NSI (N-1)-K N-K-1
- < >

j=N-1
Source Symbol [ i ] = Concat (Sub-BIockj [i])
j=0

Sub-BIockj [i] = j. sub-symbol of i. source symbol

Sub-Block | = j- Row

Figure 4.5 Source block construction.

In general, each source block shall be divided into N = Ny + Ns contiguous sub-
blocks, the first Ny sub-blocks each consisting of K contiguous sub-symbols of size of
Ty -A and the remaining Ny sub-blocks each consisting of K contiguous sub-symbols of
size of Ts -A. The symbol alignment parameter A ensures that sub-symbols are always a

multiple of A bytes.

So blocking algorithm must determine 8 quantities: Z;, Zs, K1, Ks, Ni, Ns, Tr, Ts

based on the five input parameters:
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- F the size of the file, in bytes

- A asymbol alignment parameter, in bytes

- T the symbol size, in bytes, which must be a multiple of A
- Z the number of source blocks

- N the number of sub-blocks in each source block

These input parameters T, Z, N will be adjusted according to some parameter
derivation algorithms that use some recommendations.

(I,, Is, Ju, Js) = Partition (I, J)
Begin
I, = ceil (I/J)
Is = floor (I/J)
Jy=I1 - Is- J
Js= J - J,
End;

Recommendatations is Struct

Begin
W/ Pl A/ KMAX 7 KMIN 7 GMAX
End
[T,Z,N] = Parameter_Derivation_ Alg (F, Recommendatitons,
Begin

G = min {ceil (P -Kyw/F), P/A, Guyax}
T = floor (P/ (A-G)) -A
K, = ceil (F/T)

Z = ceil (K: /Kuax)

N = min{ceil(ceil( K./Z)-T/W ), T/A}
End
[(Ky, Ks; 21, Zs), (T, Ts, Ny, Ns)] = MBMS_Blocking Alg (F,
Recommendations)
Begin
[T, Z,N]=Parameter_Derivation_Alg (F, Recommendations)
K. = cell(F/T)
(K., Ks, Zp, Zs) = Partition[K., Z ]
(T,, Ts, N;, Ng) = Partition[T/A, N ]
End ;

Parameter Derivation Algorithm recommends for the derivation of the four transport
parameters, A, 7, Z and N. This recommendation is based on the following input

parameters:

- F the file size, in bytes

- W, atarget on the sub-block size, in bytes
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- P , the maximum packet payload size, in bytes, which is assumed to be a
multiple of A

- A , the symbol alignment factor, in bytes

- Kuax, the maximum number of source symbols per source block.

- Kyn, a minimum target on the number of symbols per source block

- Gpyax, a maximum target number of symbols per packet

The values of G and N derived above should be considered as lower bounds. It may
be advantageous to increase these values, for example to the nearest power of two. In
particular, the above algorithm does not guarantee that the symbol size, T, divides the
maximum packet size, P, and so it may not be possible to use the packets of size
exactly P. If, instead, G is chosen to be a value which divides P/A, then the symbol

size, T, will be a divisor of P and packets of size P can be used.

Recommended settings for the input parameters, W, A, Kyuv and Guyax are as

follows: W =256 KB; A =4; Kyuy = 1024; GMAX = 10.

4.9 MBMS Download Flow

Detailed flow diagram, shown in Figure 4.6, for the receiver side is given in (3GPP
TSG 26.946, 2007, p.15). Repair procedure and reporting are also showed in detail in

the diagram. Diagram identifies four states of the MBMS receiver:

- The ‘Object Reception’ state reflects the state of the MBMS UE, in which the
MBMS client is receiving data for any kind of objects, files or FDT instances.
TOI identifies the object. If client should receive a FDT Instance related to the
current file being downloaded, it should update corresponding information for
that file in FDT database. In general, a received FDT Instance results in
updating current view of FDT database.

- The ‘defer file repair’ state reflects the state of the MBMS UE, in which the
MBMS UE deferring the file repair request message.
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Figure 4.6 Detailed SDL diagram for the file download process of MBMS UE (3GPP TSG 26.946, 2007,

p.15).
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- The ‘defer reception reporting’ state reflects the state of the MBMS UE, in which
the MBMS UE deferring the file repair request message. (TSG 26.946, 2007,

p-15).

In stand by state, receiver is ready to receive a packet; this packet should include either
FDT instance fragments or file fragments described in a previously received FDT
instance. Whenever a new FDT instance is received, a timer is started for those files in
that FDT instance. Each timer is possibly a separate thread that triggers FDT instance
expire event so that it can decide when to start repair procedure (associated delivery)
for the files in that FDT instances. However, a FDT instance may be duplicated, subset
or superset of a previously received one. It means, a timer startedfor a file described in
FDT instance i, can be reset if the same file (possibly with new TOI or with the old
ones) is described in a newly received FDT Instance i+1. So each timer cares one or

more of objects for the starting time of repair procedure of those objects.

When a timer expires, client checks which repair options are available if any. If a ptp
repair is available, it starts soon a request to the selected server specified in list of the
associated procedure description within the current session. Selection of server and
contacting time is determined based on some randomization principle as explained
before. Depending of the situation of the server and incoming request for the missing
parts, client may be redirected to a pmp repair procedure. This case may occur if the
requested symbols of files are also requested for many clients. Pmp repair procedure
requires either new session establishment (creation of new MBMS multicast bearers) or

using the current one.

When session expired or session close flag is received, same procedure above must
be executed if any missing symbols in files exist. Whether everything is okey or not,
client may request reporting (reception or statistical one) at the end of the repair
procedure if any repair is defined and required or at the end of the session if no repair is

required.



CHAPTER FIVE

SYSTEM MODELS

This section provides system models of the proposed MBMS download deliveries,
which are the legacy download delivery model and the interleaved download delivery
model as well as an analytical model to show how we formulate the problem and how

we derive equations for Raptor.

Service Discovery /o o
e m
Announcement Module =l
=
AT
MBMS Manager o -
) tsi, start_tirme, end_tirme
. ’;". e = .
MBEMS Listener P MBMS Service Database

streaming Sub Downloading Sub | Associated Delivery Procedure
Module Module Suh Module
(FEC and RTF) (FEC and FlLte) e Reporing
Module rodule
Transport Module(UDPAP) Transport Module(TCP/P)

Figure 5.1 Vidiator MBMS prototype software modules.

The legacy download system is based on Vidiator (Vidiator Technology US) MBMS
download prototype based on (3GPP TS 26.346, 2007; Digital Fountain, Ericsson &
Others, May 2004; Nortel Networks, April 2004), which uses Reed Solomon FEC
coding. System architecture of the legacy download is shown in Figure 5.1. Other
proposed systems are upgraded from the legacy download system. In each step, Raptor
results are derived using the experimental results of the Reed Solomon, our analytical
model and the works in Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005).
So for Raptor the results are approximated. To emulate MBMS link conditions we

implemented a transmission rate and packet loss control module. The MBMS link
81
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conditions are aligned with Digital Fountain, Ericsson & Others (May 2004), Nortel
Networks (April 2004) and 3GPP TSG 26.946 (2007). Mobility issues are discarded,
hence group management procedures joining and leaving to multicast group occurs

before the session start and session end respectively.

5.1 The Legacy Download Delivery Model

The system model for the legacy download delivery is shown in Figure 5.2. In order
to support progressive downloading we assumed that repair symbols are sent just after

source symbols.

| \
SBy SBa

i=3+¢
PACKETIZER
TRANSPORT
‘IP Header‘ UDP Header‘ Flute Header‘(i,j]‘ ESir j‘ -----‘Esi’ 3+G

Repeat Until J > K + N ' Flute Payload ID =(i,3)

Figure 5.2 System model for the legacy download delivery.

In Figure 5.2, after each SB; is delivered to FEC layer the result is EB; that includes
N encoding symbols (ES). Each encoding symbols is uniquely identified by the couple
of its Source Block Number (SBN) and Encoding Symbol ID (ESI). A group of G
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consecutive encoding symbols (ESG) starting from encoding symbol ID = j for SB; is
denoted as ESG;; and identified by the couple (SBN,ESI) of the first encoding symbol,
here (i , j). The ESGs are packed into FLUTE payload just after the place reserved for
FLUTE Payload ID that is assigned to ESG ID, here (i, j) and transported until no more

encoding symbols to send.

5.2 The Interleaved Download Delivery Model

The system model for the interleaved download delivery is shown in Figure 5.3. It
shows the sender side flow of the download delivery with the SB Interleaving of block-

size b that we considered in our work.
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Figure 5.3 System model for the interleaved download delivery.

That is, b consecutive SBs constitute an interleaver-block and are sent in parallel in the
order of ESIs. All encoding symbols in the interleaver-block with ESI=1 will be sent

first, and so on. One more requirement of our interleaving strategy is that each FLUTE
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packet must include one encoding symbol at a time. However, this process requires all
the b EBs to be in memory before they are sent. So the parameter b and SB size can be

used to adapt to different service conditions.

Minimally the interleaver-block size should be two otherwise interleaving cannot be
applicable. However, increasing the interleaver-block size consumes much more
memory and complicates the cost of the download process. Hopefully in our work we
have caught a threshold point upon which increasing the interleaver-block size no
longer gives benefit. In our work we have caught best results with =3 for MBMS link
conditions and under our assumptions. Considering a fixed b, we have to adjust SB size
accordingly so that the interleaver-block should be filled with always b SBs at a time.
This is easily accomplished if the interleaver-block divides the number of SBs. So with
the interleaving strategy that we discussed, partitioning of files into source blocks and
determining the source block and symbol length will be affected by an extra parameter
b. Since we have studied on small-scale file size we could not experimentally discover

the overall aspect of the SB interleaving considering high file sizes.

5.3 Analytical Model

In this section we provide the formulization of the problem, hence 4 parameters:
Waiting Time, Transmission Cost, Gain in waiting time and Gain in transmission cost
for the proposed MBMS systems. To do so we define waiting time as “the minimal
waiting time required to start playing the media on the terminal after the initialization
of the MBMS download service”. So the term “waiting time” implies the initial startup
time in progressive based downloads while it refers the downloading time in non-
progressive downloads. In order to predict the initial startup delay, two types of
receivers; Analyzing Receiver, and Actual Receiver are considered. Analyzing
receivers estimate the initial startup delays for the target environment for the actual
receiver. The initial startup delay is maintained on the sender side and sent to the
receiver. The way that the sender has the estimated initial startup delays priori to the
service and signaling of initial startup delays to receivers is out of scope of our work

but it is studied by BenQ Mobile (2006).
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We considered four environments corresponding to the system models studied:
Time-Optimized and FEC-Optimized downloading environments, interleaved
downloading environment and progressive downloading environment. For Progressive
download types we implicitly assumed downloading time optimization. Since we have
not Raptor code implementation, we are unable to work on the optimizations for Raptor
FEC OTI parameters. So FEC overheads for Raptor are taken from the works by
Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005) for different MBMS link
conditions. From the same reason, we cannot study the effect of interleaved progressive
download for Raptor. The gain functions allows us to identify how much savings in
waiting time or in transmission cost can be gained from using the interleaved download
delivery, progressive download delivery and interleaved progressive download delivery
as well as from our optimizations. The file transmission is organized such that repair

packets are transmitted after each source blocks to support progressive download.

A F (File Size)

Fz

Fi
Fi-1

Y

(time)

Figure 5.4 Download size as a function of time.

Figure 5.4 shows a worst case analyzing receiver obeying two assumptions:
reliability and timely manner property where sending rate is less than media play rate
and both playing and downloading ends at the same time. By considering the worst case
scenario, analyzing receivers estimate the worst case waiting time for the actual
receivers. Timely manner property implies that sender transmits symbols approximately

at some constant rate and the receiver capability is sufficient enough to handle the
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decoding of blocks without causing any overflow in the receiver buffer. Timely manner
property is also explained in Figure 5.5. On receiver side, each time a source block is
decoded, i is incremented and T7; is assigned to a timestamp, the time of writing the
source block to the file. At time 7, media can be started to play progressively. With
such a property and with a reliable delivery property, receivers can be assumed to play

the media at some constant rate after waiting D time unit.

Figure 5.4 shows the linearity approximation between time and downloaded media.
Congestion and buffering in the network decides the linearity approximation between
time and downloaded media size. If the client suffers much from the buffering delays
the linearity approximation is good otherwise it will be bad. However, for the receiver
doing a progressive download, there is a complete linearity between time and played
media size as long as 100% reliability is provided and suitable initial startup delay is
given as indicated in the report by BenQ Mobile (2006). So we define partial receiving

rate r; as the size of source block decoded within a consecutive times 7;.; and 7.

_F‘i_F'i—l_AF'

1

I"i = =
T,-T, AT,

1

€]

where Fy = 0, Ty=0; F; denotes downloaded file size in KB and r; denotes partial

reception rate in Kbps at time 7, i: /...z, z is the total number of the source blocks.

R is defined as Expected Average Receiving Rate (EARR) computed at time 7; by
the analyzing receiver that predicts the average receiving rate of the actual receiver.
The analyzing receiver should use all r; sequences up to 7} to find a single rate R that
best estimates the actual average receiving rate of the receiver. That is the focus is the
expected average receiving rate in near future, let’s say after time 7. In order to predict
the initial startup delay D as well as the download duration for the actual receiver, an
EARR function is defined. Choosing a good EARR function is not critical regarding to

its effect on waiting time for small file sizes. So our choice is as follows:
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i ) ()

where R; is our choice for the EARR at T;, Rp=r;, i: 1...z.

The reason behind our choice for such an EARR function, consider another EARR
function that averages all r; sequences. Let r;=50, r,=60, r3=70 kbps where z=3. Then
Eq.2 results in R3 = 62.5 kbps however the averaging EARR results in Rz = 60 kbps.
Our choice more reacts to the recent changes in r; sequences. That is, it is more reactive

to the network conditions such as network congestion and buffering delays.

From Figure 5.4, we can construct the following approximation for the downloading

time;

T =—
z R (3)

The environments that we worked under are denoted as superscript words: “time”
and “FEC” to mean downloading time optimization and transmission cost optimization.
The word “INT” is used as subscript to denote that the system is interleaved while the

word “PROG” is used to indicate progressive download. Other subscripts “RS” and

“Raptor” are used to indicate which FEC methods are used. So we define gain G"™ to

denote the gain in downloading time for downloading time optimization while

G ™€ denotes the gain in FEC overhead for transmission cost optimization. G can be

computed using Eq.2 and Eq.3 as follows:

ime F
Tp = e (4)
RS
F
Tps < = (5)

= pFEC
R RS
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; F
TI;??;NT = e (6)
RII?S,INT
Ttime
time RS
G =1oo*( -TFECJ (7)
RS
Ttime
ime RS ,INT
GI;S,INT = 100*[1-W] (8)
RS

where Tye and T, ey denote the downloading times (in sec.) of the legacy and the

interleaved downloading deliveries respectively, Rae and R denote the Expected
Average Receiving Rate (in Kbps) of the legacy and the interleaved downloading
deliveries respectively, Gpe indicates the gain in downloading time from downloading
time optimization while Ggg,, denotes the gain in downloading time from the

interleaved download all of which is for Reed Solomon coding.

The gain in FEC overhead G can be computed as follows:

CFEC
Grs® =100%1-—£ )
Ci
CFEC
RS ,INT
szffm = 100*(1_ CFEC J (10)
RS

Where Cp“ and Cryy, denote necessary FEC overheads (in percent) for reliability

of the legacy and the interleaved downloading deliveries under transmission cost

time

optimization respectively while Cg¢° indicates the necessary FEC overhead for

reliability of the legacy download under downloading time optimization. Gain in FEC
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overhead from the transmission cost optimization of the legacy download and the
interleaved download using Reed Solomon coding, are denoted as G and GpiGy,

respectively.

For Reed Solomon all C, R and T values are experimentally discovered during

emulations. Using the FEC OTI parameters, FEC overhead is calculates as follows;
C = 100* (max_nb_encoding_symbols - max_sb_len) | max_sb_len (11)
where max_nb_encoding_symbols indicates maximum number of encoding symbols

in an encoded block and max_sb_len indicates maximum number of source symbols in

a source block.

Decoding Decoding Decoding
- I . P I ﬁ—’—ﬁ'— -----
(k+r)*t (k+r)*t (k+ r)*t

Figure 5.5 Receiving rate approximation.

Under the same network, same link conditions and same FEC partitioning with Reed

Solomon we can produce analytical approximations for C, R and T values for Raptor.

For Raptor, we assumed that there is single FEC overhead selection for both
optimizations which means the amount of FEC overhead is always selected to be
minimum to provide 100% reliability. That is, transmission cost optimization and
downloading time optimization uses the same FEC overheads for Raptor which are
taken from the works by Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005)
for different MBMS link conditions. So for Raptor the results are approximated using

our analytical model here.

To formulize the problem for Raptor coding we need to consider few other details.

Since transmission of a source block and its repair symbols follow each other, decoding
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process of the block must start within the time interval (k + r)* ¢t as shown in Figure
5.5, where k is the number of source symbols in the block, r is the number of repair
symbols for the block and ¢ denotes symbol period under reliability assumption; the
average time between receiving of two consecutive symbols for an object. So symbol
period depends on symbol size and transmission rate. However, decoding process may
not be expected to be completed in this interval. The reason is that while decoding
process continues the receiver can collect the symbols belonging to the next source
block in parallel. That is, computation and communication can be overlapped during

decoding.

If the receiver is overloaded or incapable of handling decoding processes in timely
manner, such overlapping may occur. If the overlapping causes the decoding of the next
source block to be failed we say that the timely manner property is not satisfied. So
throughout the formulizations for Raptor as well as to support progressive downloading
we assume that sender transmit symbols approximately at constant rate, hence a

constant symbol period and the receiver satisfies the timely manner property.

Since each source block means extra repair symbols total time needed to download

the media is total symbols including repair symbols multiplied by t:

F kK C
T=——(k+r)*t=F*(——+——)*1
PEPME Gews T 100 (12

where s is the symbol size in bytes, k is the number of source symbols, r is the

number of repair symbols, C is FEC overhead in percent and ¢ is the symbol period.

In order to have downloading time and gain approximations for Raptor we have
assumed that for a source block size of k*s, while Reed Solomon requires Cgrg percent
transmission overhead, Raptor requires Crgapior percent transmission overhead and
symbol period t = frapior = tgs since symbol sizes and transmission rates are same. Based
on such an assumption and using Eq.12, if we subtract T from Trs we can arrive at

following for Raptor:
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F  Crs = Crupor
=TR)§ *?(u)*ﬂ (13)

T X
100 Raptor

Raptor

where X € {FEC, time).

From Eq.12,
X _ TR).(S' _ X
ZRS - k CX - tRaptor (14)
F *( + RS )
k*s 100

where X € {FEC, time).

As shown in Figure 5.5, for every time interval of (k+r)*f exactly one source block

is decoded. So the Expected Average Receiving Rate is computed as follows:

x _ kxs 1
Raptor — X - X 15
(k + r) * tRaptor ( k + CRaptor )* tX ( )

k * s 100 Raptor

where X € {FEC, time).

While FEC overheads and gain from interleaving for Reed Solomon are
experimentally explored in this study, Raptor FEC overheads are taken from the work
by Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005). Since interleaving
deals with packet loss patters, under the same network conditions with the same
interleaving technique we can get the same interleaving gain in transmission cost for

Raptor FEC protected download delivery system.
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To formulize the problem for Progressive Download Delivery we considered
Downloading time optimization. From Eq.15, we can derive the Expected Average

Receiving Rate for progressive download using Raptor FEC as follows:

R time _ 1
Raptor ,PROG — k time (16)
( + Raptor ) % 4 lime

t
k %* s 100 Raptor

where Cggpior denotes the necessary FEC overheads for reliability, which is derived

from the work by Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005).

From Figure 5.4, we can construct the following approximation for the download

duration:

F F
D+ =T =— 17
R “"R. a7

media

Using Eq.17 the Expected Average Receiving Rate and initial startup delay

approximated at the end of file download using Reed Solomon is as follows;

time 1 1
Dis prog = F *(ane - J (18)

RS ,PROG Rmedia

where D,’j’;’f;,ROG denotes initial startup delay, R4, denotes media play rate in Kbps;

F is media file size in KB; Ryi%poq= R: is the Expected Average Receiving Rate

computed using emulation results of Reed Solomon FEC protected Progressive
Download under downloading time optimization. Similarly for Raptor, the initial

startup time is derived as follows:



93

4 1 1
time _ * _
DRaptor,PROG - F Rtime R (19)

Raptor ,PROG

media

where D,’jmer,PROG denotes initial startup delay, R,.q, denotes media play rate in
Kbps; F is media file size in KB; R,’;Z;fmrq rroc = R; 1s the Expected Average Receiving

Rate computed using the analytical model here.

We define gain Gpygo; as the time gain of using progressive download compared

to legacy download in terms of initial startup delay. Gain can be computed using R and

T as follows:

time

ime DRS PROG
Grs proc = 100%| 1- —pme (20)
RS

time

where Ty (Eq.4) denotes the duration of the legacy download of the media in

seconds and G is the gain with progressive download. Similarly following is derived

for Raptor:

time

time _ * _ Raptor,PROG
GRaptor,PROG =100%| 1 time 21

Raptor

where T™ (Eq.13) denotes the duration of the legacy download of the media in

Raptor
seconds. Similarly we can compute the Gain from Interleaved Progressive Download

Delivery compared to legacy download in terms of initial startup delay as follows:

time

ine _100%| 1 - Prs.nr.rroc.
GRS,INT,PROG =100 1 T time (22)
RS
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time

where Ty (Eq.4) denotes the duration of the legacy download of the media in
seconds and Djg‘y; prog 18 the initial startup time observed during the emulations of

Interleaved Progressive Download Delivery.

5.4 Simulation Environment

The prototype in Figure 5.1 is extended to simulate MBMS network conditions.
Hence a database is designed including two tables: “Configuration” and
“Simulation_Results”. Simulation is configured mostly by setting the parameters in
configuration table. Actually configuration table maintain the sizing parameters in

application layer, FEC layer, IP layer, core network and RLC link layer.

id fscale | bbloss ccloss lloss | cmloss | cedelay | cmdelay | iterations spdu txrate es_len | max_sb_len | max nb _es
1 2 ] 0 1 0 0 ] 6 1230 128 748 100 120
2 2 0 0 5 0 0 0 6 1230 128 748 100 120

3 2 ] 0 10 0 0 ] 6 1280 128 743 100 120

Figure 5.6 Configurations of the simulation.

Figure 5.6 shows an example of three set of configuration parameters for the 512 KB
(fscale=2) file distribution. Each set of configuration parameters is identified by the
configuration ID. In the example, configuration ID 2 identifies that RLC link layer lost
is 5% (lllost), PDU size is 1280 bytes and the others, which are as follows:

- “fscale” identifes the file to download. There are two files of 100 KB and 512 KB,
which are identified by “fscale =1 and “fscale =2” respectively.

- “bbloss” is IP backbone loss ratio.

- “ccloss” is cell congestion loss ratio.

- “Illoss” is link layer loss ratio (RLC PDU loss)

- “cmloss” is cell mobility loss ratio.

- “ccdelay” is maximum cell congestion delay in second. Once a cell is congested it

stays congested for randomly changing duration up to “ccdelay” seconds.
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- “cmdelay” is maximum cell mobility delay in second (max. cell change delay).
Cell mobility takes a random duration upto “cmdelay” seconds.

- “max_sb_len”, “es_len” and “max_nb_es” are maximum source block length,
encoding symbol length and maximum number of encoding symbols respectively,

which are FEC OTI (Object Transmission information) parameters.

Burst errors are created using the algorithm for simulating the SDU loss pattern
taken from the work by Digital Fountain, Ericsson & Others (May 2004), which is
shown below. The function transport_block_lost() simulates the transmission/reception
of a transport block, returning TRUE or FALSE according to whether the transport

block is lost or received successfully respectively.

Initialise variable spare_octets to zero
Initialise variable last_block_ lost to FALSE
Let block_length be the transport block length
FOR each SDU
Let sdu_length be the length of the SDU
sdu_lost := (spare_octets != 0) & last_block_ lost
IF (sdu_length <= spare_octets) THEN
spare_octets := spare_octets - sdu_length
ELSE
remaining_octets := sdu_length - spare_octets
blocks := Integer part of
remaining_octets/block_length
IF (blocks > 0)
FOR i := 1 TO blocks
sdu_lost := transport_block_lost () |
sdu_lost
END FOR
ENDIF
last_block _lost := transport_block_lost ()
sdu_lost := sdu_lost | last_block _lost
spare_octets := block_length - (remainder of
remaining _octets/block_length)
ENDIF
IF (sdu_lost) THEN
Report SDU as lost
END IF
END FOR

Other parameters such as SDU size, mapping of PDU losses to SDU losses that is
given in above algortihm are implemented inside the code. After an iteration of the
download, the simulation results are saved in Simulation_Result table shown in Figure

5.7. Figure 5.7 shows the simulation results of six iterations for the configuration ID =
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2, which is set previously in configuration table. Each record shows a download result
and identified by “id”, “fscale” and “iter”. “Id” intentifies the configuration parameters
set in configuration table. “Iter” identifies the current iteration of the download. Total
number of iterations is set by the “iterations” in configuration table. Other attributes are

as follows:

- “A”,”B”,”C” and “D” identifies the lost distribution among IP backbone losses,
cell congestion losses, RLC PDU losses and cell mobility losses, which are defined in

the report by Digital Fountain, Ericsson, NEC, Nokia, Nortel, Siemens (May 2004). In

the example in Figure 5.7, all the losses belong to “C”, which are RLC PDU losses.

id |fscale| A B £ D | expecteddelay | rxsymbelper | rxpercent es_len max_sb_len| max nb_es iter rxrate txrate |~
2 2 00 00 10 0.0 10 1.00 1.00 748 100 120 1 98 128/
2 2 00 00 10 00 10 1.00 1.00 748 100 120 2 98 128
2 2 00 00 10 0.0 1 1.00 1.00 748 100 120 3 96 128
2 2 00 00 10 0.0 1" 1.00 1.00 748 100 120 4 96 128
2 2 00 00 10 00 12 1.00 1.00 748 100 120 5 95 128
2 2 00 00 10 0.0 1 1.00 1.00 748 100 120 6 97| 128

Figure 5.7 Entries in Simulation_Results Table.

- “expecteddelay” is the expected delay identifying the downloading duration in
MBMS download or initial waiting time in MBMS progressive download.

- “rxsymbolper” is the percent of the received symbols without caring the successful
or unsuccessfull decoding of source blocks.

- “rxpercent” is the the downloaded percent of the media with successful decoding
of source blocks.

- “rxrate” is the average receiving rate under the configured network and link
conditions.

- “txrate” is the transmission rate.

In the example in Figure 5.7, although transmission rate is 128 kbps, because of 5%
RLC PDU losses, the average receiving rate is reduced to 98, 97 or 96 kbps under 20%

FEC transmission.
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The simulation flow at server side can be summarized as follows;

FOR each Item in Configurations_Table DO
MBMS_Download = New Download ( Item)
FOR i:=1 to Item.Iterations DO

MBMS_Download.Send()
END FOR
END FOR

The simulation flow at receiver side can be summarized as follows;

FOR each Item in Configurations_Table DO

MBMS Download = New Download ( Item)
FOR i:=1 to Item.Iterations DO
Result_Item = MBMS Download.Receive (New
MBMS_Link_Conditions (Item));
Add_To_Simulation_Results_Table (Result_Item);
END FOR
END FOR

MBMS_Download.Receive and MBMS_Download.Send functions are FLUTE sender
and FLUTE receiver that are based on Vidiator MBMS download prototype, which
uses Reed Solomon FEC coding. The receive function takes the MBMS link conditions
as parameters since the transmission rate and packet loss control module are
implemented at the receiver side. After each download the receiver adds the simulation

record, denoted as Result_Item in the flow, to the Simulation_Results table.

The configuration database is manually preconfigured before running the simulation.
There can be many runs of the simulation. After each run of the simulation,
Simulation_Results table are examined and new set of configuration parameters are
produced. This process repeats until all sizing effects of the parameters are explored by

repeating the pre-configuring and running sequence.

Experiments are done on a set of computers. Each computer runs the simulation for
different configuration parameters which are given in Table 5.1. The MBMS download
system consists of a single server and a single client. Considering server and client on
the same machine allows the full control of our simulations. Both client and server

maintain a database and create a record after each download. The record contains
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evaluated target parameters for the selected set of configuration parameters shown in
Table 5.1. Several sets of configuration parameters are scheduled to initiate several
downloads with different characteristics. Each download experiment for one set of
configuration parameters has 100 download iterations over which our target parameters
such as waiting time and initial startup delay are computed using the average of the
values. After performing all the combinations of the configuration parameters, local
databases in each computer are merged into a single database. Experimental results are

produced using that merged database.



CHAPTER SIX
EXPERIMENTAL RESULTS
This section is divided into four parts. First part shows the results of our
experimental analyses for the legacy-download under two optimizations: Downloading

time optimized versus transmission cost optimized reliability.

Table 6.1 Parameters studied accross layers.

Parameter Unit Layer Experiment Set System
File Size Kilobyte Application {100,512} All
Transmission cost optimized FEC Percent Application To be determined in this study Legacy
overheads
Transmission cost optimized Second Application To be determined in this study Legacy
Waiting Time
Downloading time optimized FEC Percent Application To be determined in this study Legacy
Overheads
Downloading time optimized {Second, Application To be determined in this study Legacy
Waiting Time Percent}
Gain in Waiting Time from {Second, Application To be determined in this study Legacy
Optimizations Percent}
Initial Startup Delay in Second Application To be determined in this study Progressive

Progressive Download

Gain in Initial Startup Delay from {Second, Application To be determined in this study Progressive
Progressive Download Percent}
Gain in Downloading Time from {Second, Application To be determined in this study Interleaved
Interleaving Percent}
Gain in FEC Overhead from Interleaving Percent Application To be determined in this study Interleaved
Initial Startup Delay in Interleaved- Second Application To be determined in this study Interleaved-
Progressive Download Progressive
Gain in Initial Startup Delay from {Second, Application To be determined in this study Interleaved-
Interleaved-Progressive Download Percent} Progressive
Symbol Length Byte FEC {SDU — 48} All
SB Size Symbol FEC {10,50,80,100,120,150,180,200.230} All
IP packet size Byte IP {SDU} All
SDU block size Byte Core Network {400,600,800,1000,1400} All
PDU block size (RLC block size) Byte RLC Radio L. {640,1280} All
PDU (RLC Link Layer) Losses Percent RLC Radio L. {1,5,10} All
Transmission Rates Kbps All layer {64,128.256} All
Interleaver block size Source FEC {2,3,4} Interleaved-
Block (Progressive)
Media Play Rate Kbps Application {128} All

In second part gains obtained from the legacy download is further extended by
Application Layer Interleaving mechanism. Third part shows progressive download
approach. Hence third part shows our progressive download analyses to explore the

gain in waiting time. In final section the gain obtained from the progressive download

99
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is further improved by combining our application layer interleaving mechanism and
progressive download. Hence the final section shows the results of analyses of
Interleaved-Progressive download delivery. Here after, the term legacy download refers

to the downloading time optimized legacy download unless otherwise stated.

6.1 Experimental Results for Legacy-Download Delivery

This section shows the results of our experimental analyses targeting two
optimizations for legacy download delivery: Downloading time optimization and
transmission cost optimization. Each optimization satisfies the reliability requirement.
Finally we compare them by providing the gains in downloading time as well as in
transmission cost for different network conditions described by the parameters. The list

of parameters analyzed in this study across layers is summarized in Table 6.1.

—o— RLC Block 1280B,SDU Size 600B,%1 PDU Loss —a— RLC Block 1280B,SDU Size 1000B,%5 PDU Loss
RLC Block 1280B,SDU Size 600,%10 PDU Loss RLC Block 640B,SDU Size 600B,%1 PDU Loss
—¥— RLC Block 640B,SDU Size 400B,%5 PDU Loss —e— RLC Block 640B,SDU Size 400B,%10 PDU Loss

160 - - — - — - -
150
140 +
130 +
120
110
100
90 4
80 4
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Fec Overhead (%)

SB Size (Number of Symbols)

Figure 6.1 Transmission cost optimization for 100 KB file.

Reed Solomon FEC performance is very bad at small source block size. As shown in

Figure 6.1, to Figure 6.4 increasing source block size will decrease the FEC overhead



101

required for reliability, hence causes an increase in FEC performance. However, the
source block size exceeded a threshold value makes the downloading time increase in
spite of still reducing the FEC overhead. This property provides trades off between
downloading time and FEC overhead. Together with source block size, effects of other
sizing parameters, such as symbol length, RLC block size (Radio Link Layer) and SDU

(Service Data Unit) size all should be considered together.

—o— RLC Block 1280B,SDU Size 1000B,%1 PDULoss =~ —=— RLC Block 1280B,SDU Size 1000B,%5 PDU Loss
RLC Block 1280B,SDU Size 1000,%10 PDU Loss RLC Block 640B,SDU Size 1000B,%1 PDU Loss

—%— RLC Block 640B,SDU Size 1000B,%5 PDU Loss —e— RLC Block 640B,SDU Size 1000B,%10 PDU Loss
180
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Figure 6.2 Download time optimization for 100 KB file.

By analyzing many possible combinations of the size choices we have been able to
catch those cases that lead to download time optimized reliability. Download time
optimized reliability aims the fastest download with reliability, which also provides

savings in initial startup time for progressive download delivery.

We observed that as SB (Source Block) size increases FEC overheads dramatically
decreases around up to SB size of 80 symbols thereafter the decrease slows.

Additionally the small size file transport shows less deterministic behavior in terms of
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FEC overhead cost required for reliability. These fluctuations can be seen in Figure 6.1
and Figure 6.2. With FEC overhead cost optimizations, shown in Figure 6.1 and Figure
6.3, FEC overhead is reduced with the decreased SDU sizes and increased SB size,
hence increased number of symbols per block. This will increase the downloading time
as shown in Table 6.2 and Table 6.3. With downloading time optimizations, shown in
Figure 6.2 and Figure 6.4, downloading time is reduced with the increased SDU sizes
and decreased SB sizes, hence decreased number of symbols per block with compared
to FEC cost optimization. This will cause the FEC overhead to increase as shown in

Table 6.2 and Table 6.3.

—e— RLC Block 1280B,SDU Size 1000B,%1 PDU Loss —&— RLC Block 1280B,SDU Size 600B,%5 PDU Loss
RLC Block 1280B,SDU Size 800,%10 PDU Loss RLC Block 640B,SDU Size 400B,%1 PDU Loss
—¥— RLC Block 640B,SDU Size 600B,%5 PDU Loss —e— RLC Block 640B,SDU Size 400B,%10 PDU Loss
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Figure 6.3 FEC overhead cost optimization for 512 KB file.

Comparing to both optimizations, FEC overhead optimized reliability is usually
obtained at same or less SDU sizes and smaller symbol length but higher SB size. It is
interesting while our recommended SDU size, among the set shown in Table 6.1, for
FEC overhead optimized reliability is the one that is high but smaller than the RLC

block size, for downloading time optimized reliability, it is the one that is small but
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higher than the RLC block size. This gives us clue that in general, recommended SDU
size should be equal to RLC block size. More detailed comparisons are given in Table
6.2 and Table 6.3, which also shows the trade off values between FEC and time costs,

where they occur are shown as labels in the Figure 6.1 to Figure 6.4.

—e— RLC Block 1280B,SDU Size 1000B,%1 PDULoss ~ —=— RLC Block 1280B,SDU Size 800B,%5 PDU Loss
RLC Block 1280B,SDU Size 800B,%10 PDU Loss RLC Block 640B,SDU Size 1000B,%1 PDU Loss
—%— RLC Block 640B,SDU Size 800B,%5 PDULoss ~ —e— RLC Block 640B,SDU Size 800B,%10 PDU Loss
170 f oo
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Figure 6.4 Download time optimization for 512 KB file.

For example, for RLC block size 640 B, SDU sizes are found mostly 400 and 600 B
for the FEC optimized reliability, while it is mostly 800 and 1000 B for the download
time optimized reliability. It seems mysterious that increased FEC overhead results in
reduction in downloading time. Normally as FEC overhead increases downloading time
increases too. The mystery lies in that fact that FEC performance increases as SB size
increases with the cost of decoding time. In order to catch reliability at minimum FEC
overhead, SB size should be properly selected as well as with the other sizing

parameters. So higher FEC overhead but the smaller source block size possibly with the
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other size choices for the sizing parameters changed can trade each other for

downloading time and FEC overhead.

Comparisons under different optimizations are given in Table 6.2 for Reed Solomon
and in Table 6.3 for Raptor. For small files the results shows not deterministic behavior
and optimization effect is very small hence ignorable. Two type of gain is considered:

Time and FEC overhead. Usually the gain in one causes a cost in the other.

Table 6.2 Comparison of optimizations for different transmission rates for Reed Solomon.

Transmission Rate Transmission Rate Transmission Rate
256 Kbps 128 Kbps 64 Kbps
Transmission | Downloading Transmission | Downloadin Transmission | Downloadin
cost time cost g time cost g time
Optimization | optimization Optimization | optimization Optimization | optimization
File |PDU |FEC |D. |FEC D [240® gge (b |Fec D 200 lgge |p. | Rec |p. [OMRCD
Size [ Loss | Ov. | Time | Ov. Time Ov. | Time | Ov. [ Time Ov. [ Time | Ov. [ Time
(KB) [ (%) | (%) |(sec) | (%) |(sec) | Time | FEC | (%) | (sec) | (%) | (sec) | Time | FEC | (%) | (sec) | (%) | (sec) | Time | FEC
100 1 10 3.7 12 34 8 17 10 7.4 12 6.8 7 17 10 15.3 12 13.8 [ 10 17
100 5 23 44 23 3.7 17 0 23 8.8 23 7.4 17 0 24 18.5 32 153 |17 25
100 10 38 4.8 43 4.0 17 12 38 9.7 43 8.1 17 12 42 213 53 175 |18 21
512 1 7 18.5 7 185 [0 0 7 37.0 (7 369 |0 0 8 82.7 8 745 |10 0
512 5 18 214 19 209 [2 5 18 429 19 414 |4 5 20 88.3 21 853 [3 5

512 10 34 23.7 37 235 34 47.9 37 471 |2 8 37 104.2 | 41 999 |4 10

=3

For example, in Table 6.2 for file 512 KB and 256 Kbps transmission rate the couple
(Time,FEC)=(2,5) indicates that the downloading time optimization compared to the
transmission cost optimization gives 2% gain in downloading time with the cost of
increased FEC overhead. The reverse is also correct, the transmission cost optimization
compared to the downloading time optimization provides 5% gain in FEC overhead

with the cost of increased downloading time.

Table 6.3 shows the similar results for Raptor that are obtained under the same size
selections of the sizing parameters for Reed Solomon, which characterize the same
network, the same link conditions and the same source block partitioning. So Table 6.2
and Table 6.3 consider the same conditions for both Reed Solomon and Raptor. Since
Raptor code implemantation is not free and available upon a huge cost, the analyses of
the FEC OTI parameters for Raptor is not studied but the effect of network parameters
are studied. So for Raptor we assumed that there is single FEC overhead selection for
both optimizations where FEC overheads for different MBMS conditions are selected

from the works by Siemens (March 2005) and 3GPP TSG SA WG#4 (June 2005). As a
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consequence, the results for Raptor are approximated using our analytical model in

which our assumptions for Raptor are given in detail.

Table 6.3 Comparison of optimizations for different transmission rates for Raptor.

Transmission Rate Transmission Rate Transmission Rate
256 Kbps 128 Kbps 64 Kbps
Transmission | Downloading Transmission | Downloading Transmission | Downloading
cost time cost time cost time

Optimization | optimization Optimization | optimization Optimization | optimization
File | PDU | FEC | D. FEC | D. Gain (%) | ggc |, FEC | D. Gain® | gpc |, |FEC | D. Gainl(%)
Size | Loss | Ov. [ Time | Ov. | Time Ov. [ Time | Ov. [ Time Ov. Time | Ov. Time
KB | (%) | (%) |(sec) | (%) | (sec) Time (%) | (sec) | (%) | (sec) Time | (%) | (sec) | (%) | (sec) Time
100 |1 8 3.6 8 33 8 8 7.2 8 6.6 8 8 15.0 8 133 11
100 |5 21 44 21 3.6 18 21 8.7 21 72 17 22 18.2 22 14.1 22
100 | 10 35 4.7 35 3.8 19 35 9.5 35 7.6 20 39 20.9 39 159 24
512 |1 4 18.0 4 18.0 0 4 359 4 359 0 4 79.7 4 71.7 10
512 |5 12 20.3 12 19.7 3 12 40.7 12 38.9 4 14 83.9 14 80.4 4
512 | 10 22 216 | 22 21.0 3 22 43.6 22 41.9 4 26 95.9 26 89.3 7

The following is a summary of general observations for optimizations for legacy

download in MBMS, where results for 100 KB file size is ignored:

- As source block size increases the legacy download system performance increases
up to a point. Around that point a trade off between FEC overhead and
downloading time can be provided for Reed Solomon by adjusting the size
selections of the parameters described in different layers in Table 1.

- The sizing parameters describing the network that enable optimum downloading
time for Reed Solomon also enable the optimization in downloading time for
Raptor.

- Maximum savings in downloading time is around up to %10 with the
downloading time optimization compared to the transmission cost
optimization.

- Maximally 8.3 seconds gain in downloading time is provided by the downloading
time optimization with regards to the transmission cost optimization.

- Maximum savings in FEC overhead is around up to %10 with the transmission
cost optimization compared to the downloading time optimization for Reed
Solomon.

- Maximum reduction in FEC overhead percent is around up to 4 units with the
transmission cost optimization compared to the downloading time

optimization for Reed Solomon.



106

6.2 Experimental Results for Interleaved Download Delivery

6.2.1 Experimental Results Under Transmission Cost Optimization

This section shows the gain in FEC overhead when we apply our application layer
interleaving to the transmission cost optimized legacy download delivery. This means
the legacy download and the interleaved download are under the transmission cost

optimization.

Table 6.4 Gains from the interleaved download under FEC optimization for Reed Solomon.

Transmission Rate Transmission Rate Transmission Rate

256 Kbps 128 Kbps 64 Kbps
Legacy Interleaved Legacy Interleaved Legacy Interleaved
Download Download Download Download Download Download

File | PDU | FEC | Down. | FEC | Down. | FEC | FEC | Down. | FEC | Down | FEC | FEC | Down. | FEC | Down. | FEC
Size |Loss | Ov. [Time | Ov. |time Gain | Ov. | Time |Ov. |time | Gain | O. Ttime | Ov. | Time | Gain
(KB) | (%) | (%) [(sec) | (%) |(sec) | (%) | (%) | (sec) |(%) |(sec) [(%) [(%) |(sec) | (%) |(sec) | (%)

100 |1 10 [3.7 8 |35 20 |10 74 8 7.1 20 [ 10 15.3 7 1143 30
100 |5 23 44 22 |37 4 |23 8.8 22 |73 4 |24 18.5 18 |16.1 25
100 [ 10 38 148 32 (40 16 | 38 9.7 32 | 8.1 16 |42 21.3 30 | 17.5 29
512 |1 7 18.5 5 |176 29 |7 37.0 5 353 29 |8 82.7 6 789 25
512 |5 18 21.4 15 | 19.1 17 |18 429 15 383 17 20 88.3 17 1859 15

512 |10 34 237 30 [21.0 12 |34 47.9 30 | 421 12 137 104.2 31 1982 16

The results for Raptor are approximated using both the analytical model and the
experimental results for Reed Solomon. The list of parameters analyzed in this section
is summarized in Table 6.1. Savings in FEC overhead from the interleaved download
delivery using Reed Solomon and Raptor are given in Table 6.4 and Table 6.5

respectively.

Table 6.5 Gains from the interleaved download under FEC optimization for Raptor.

Transmission Rate Transmission Rate Transmission Rate

256 Kbps 128 Kbps 64 Kbps
Legacy Interleaved Legacy Interleaved Legacy Interleaved
Download Download Download Download Download Download

File | PDU | FEC | Down. | FEC | Down. | FEC | FEC | Down. | FEC | Down | FEC | FEC | Down. | FEC | Down. | FEC
Size |Loss | Ov. [Time |Ov. |Time | Gain |Ov. |Time |Ov. | Time | Gain | Ov. | Time | Ov. | Time Gain
(KB) | (%) [ (%) |(sec) | (%) |(sec) | (%) [(%) |(sec) |(%) |(sec) | (%) | (%) |(sec) |(%) |(sec) | (%)

100 |1 8 3.6 7 35 13 8 72 7 7.0 13 8 15.0 6 14.2 25
100 |5 21 44 20 3.6 5 21 8.7 20 7.2 5 22 18.2 17 16.0 23
100 [ 10 35 4.7 30 39 14 35 9.5 30 8.0 14 39 20.9 29 17.4 26
512 |1 4 18.0 3 17.3 25 4 359 3 34.6 25 4 79.7 3 76.7 25
512 |5 12 20.3 10 18.3 17 12 | 40.7 10 | 36.6 17 14 83.9 12 82.2 14

512 |10 22 21.6 20 19.4 9 22 | 436 20 | 389 9 26 95.9 22 915 15
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The following is a summary of general observations for the interleaved download
under transmission cost optimization in MBMS, where results for 100 KB file size are

ignored because of its small effect on both transmission size and downloading time:

As file sizes increase, the necessary FEC transmission overhead decreases

particularly for the network with RLC block = 1280 B. Generally RLC 640 B

network requires more FEC overhead compared to the RLC 1280 B networks.

- For 100 KB file, results are not much deterministic where there are more
fluctuations in gain with regards to 512 KB file.

- The gain from the transmission cost optimized interleaved download can save
FEC overhead around up to 29% for Reed Solomon and 25% for Raptor with
regards to transmission cost optimized legacy download.

- For Reed Solomon the gain in FEC overhead from the transmission cost
optimized interleaved download is slightly higher then that of Raptor, where
the gain difference is around up to 4%.

- The transmission cost optimized interleaved download provides up to 12%
savings in downloading time for Reed Solomon and around up to 10% for

Raptor with regards to the transmission cost optimized legacy download.

6.2.2 Experimental Results under Downloading Time Optimization

This section shows the gain in downloading time when we use the interleaved
download delivery under downloading time optimization. This means the legacy
download and the interleaved download are under the downloading time optimization.
The results for Raptor are approximated using both the analytical model and the

experimental results for Reed Solomon.

The list of parameters analyzed in this section is summarized in Table 6.1. Savings
in downloading time from the interleaved download delivery using Reed Solomon and

Raptor are given in Table 6.6 and Table 6.7 respectively.
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Table 6.6 Gains from the interleaved download under downloading time optimization for Reed Solomon.

Transmission Rate Transmission Rate Transmission Rate
256 Kbps 128 Kbps 64 Kbps
Legacy Interleaved Legacy Interleaved Legacy Interleaved
Download Download Download Download Download Download
D.
Fie |PDU |Fec |D. |FEc |D. | Time |FEC |D. |EEC |D. |Time |FEC |D. |EEC |D. |Time
Size | Loss | O. Time | Ov. | Time | Gain [ Ov. | Time [ Ov. | Ttime | Gain | Ov. Time | Ov. | Time | Gain
(KB) | (%) | (%) |(sec) | (%) |(sec) | (%) | (%) |(sec) [(%) |(sec) | (%) | (%) (sec) | (%) | (sec) | (%)
100 |1 12 34 12 3.4 0 12 6.8 12 6.8 0 12 13.8 10 13.9 0
100 |5 23 37 22 37 0 23 74 22 73 1 32 15.3 20 15.5 0
100 [ 10 43 4.0 36 4.0 0 43 8.1 36 8.0 1 53 17.5 38 17.1 2
512 |1 7 18.5 5 17.6 5 7 36.9 5 35.3 4 8 75.3 7 71.7 5
512 |5 19 | 209 | 16 19.1 9 19 | 414 | 16 | 384 7 21 85.3 19 | 79.8 7
512 |10 37 | 235 ] 32 | 210 11 37 | 47.1 32 | 42.1 11 41 994 | 37 | 90.2 9

Table 6.7 Gains from the interleaved download under downloading time optimization for Raptor.

Transmission Rate Transmission Rate Transmission Rate
256 Kbps 128 Kbps 64 Kbps
Legacy Interleaved Legacy Interleaved Legacy Interleaved
Download Download Download Download Download Download
D.
Fie |PDU |FEc |D. |FEc |D. | Time |FEC |D. |FEC |D. | Time |FEC |D. |FEC |D. |Time
Size | Loss | Ov. [Time | Ov. | Time | Gain | Ov. | Time | Ov. | Time | Gain | Ov. Time | Ov. | Time | Gain
(KB) | (%) | (%) |(sec) | (%) |(sec.)|(%) | (%) |(sec) | (%) |(sec) | (%) | (%) (sec) | (%) | (sec) | (%)
100 |1 8 33 |8 3.3 0 8 6.6 |8 6.6 0 8 133 |7 134 0
100 |5 21 3.6 |20 3.6 0 21 72 |20 7.2 0 22 14.1 | 14 14.7 0
100 |10 35 3.8 |29 3.8 0 35 76 [29 7.6 0 39 159 |28 159 0
512 |1 4 180 |3 17.3 4 4 359 |3 34.6 4 4 717 |4 69.4 3
512 |5 12 |1 197 | 10 18.2 8 12 | 389 | 10 36.4 7 14 804 |13 75.6 6
512 |10 22 | 210 |19 18.9 10 22 | 419 | 19 37.9 10 26 89.3 |23 81.3 9

The following is a summary of general observations for the interleaved download
under downloading time optimization in MBMS, where results for 100 KB file size are

ignored because of its small effect on both transmission size and downloading time:

As file sizes increase, the downloading time increases as well particularly for the
network with RLC block = 640 B since RLC 640 B network requires more
FEC overhead compared to the RLC 1280 B networks.

For 100 KB file, results are not much deterministic where there are more

fluctuations in gain with regards to 512 KB file.

The gain from the downloading time optimized interleaved download can save

downloading time around up to 11% for Reed Solomon and 10% for Raptor

with regards to the downloading time optimized legacy download.

For Reed Solomon the gain in downloading time from the downloading time
optimized interleaved download is slightly higher then that of Raptor, where

the gain difference is around up to 2%.
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- The downloading time optimized interleaved download provides up to 29%
savings in FEC overhead for Reed Solomon and around up to 25% for Raptor

with regards to the downloading time optimized legacy download.

6.2.3 General Comparisons

This section combines the gain in downloading time and the gain in FEC overhead
from the interleaved download to make cross comparisons between transmission cost

and downloading time optimizations for both Reed Solomon and Raptor FEC methods.

Table 6.8 General comparisons.

FEC Reed Solomom Raptor
Transmission Cost Downloading Time Transmission Cost Downloading Time
Optimization Type Optimized Optimized Legacy Optimized Optimized Legacy
Legacy Download Download Legacy Download Download
FEC Download FEC Download FEC Download FEC Download
Gain Type Overhead Time Overhead Time Overhead Time Overhead Time
(%) (%) (%) (%) (%) (%) (%) (%)
Gain from the
Transmission Cost
Optimized Avg=19 |Avg=8 |Avg=23 |Avg=5 Avg=17 | Avg=7 |Avg=17 |Avg=4
Interleaved Download | Max =29 |Max=12 | Max=29 |Max=11 |Max=25 |[Max=11 [Max=25 |Max=7
Gain from the
Downloading Time
Optimized Avg=12 |[Avg=10 | Avg=12 |Avg=7 Avg=14 | Avg=10 |Avg=14 |Avg=7
Interleaved Download | Max =29 |Max=13 | Max=29 |Max=11 |Max=25 |Max=15 [Max=25 |Max=10

Table 6.8 shows these comparisons using maximum and average gains in FEC
overhead and in downloading time, where the results for 100 KB files are ignored
because of its small effect on both transmission size and downloading time. Average

values are computed using the results for 256, 128 and 64 Kbps transmission rates.

The following is a summary of general observations for the interleaved download
considering both optimizations in MBMS, where results for 100 KB file size are

ignored because of its small effect on both transmission size and downloading time:

- The transmission cost optimized interleaved download under Raptor FEC
protection makes reduction in FEC overhead at the average 50% with regards
to the downloading time optimized legacy download under Reed Solomon

FEC protection.
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- The downloading time optimized interleaved download under Raptor FEC
protection makes reduction in downloading time at the average 15% with
regards to the transmission cost optimized legacy download under Reed
Solomon FEC protection.

- In general Reed Solomon has more benefits from interleaving with regards to

Raptor.

6.3 Experimental Results for Progressive Download Delivery.

This section shows waiting time analyses for 100% reliability and provides the
savings in waiting time from progressive download delivery in MBMS. This section
provides further increase in the gain obtained from downloading time optimized legacy
download by progressive downloading. Here after, the term legacy download refers to
the downloading time optimized legacy download unless otherwise stated. Progressive
download delivery is also considered to be under downloading time optimiziation.
MBMS download implies Raptor FEC protected MBMS download unless specified
otherwise. The list of parameters analyzed in this study across layers is summarized in

Table 6.1.

First we observe the initial startup delay for 100% reliability for various Reed
Solomon SB sizes. Figure 6.5 and Figure 6.6 show initial startup delay analyses
observed for small and medium file sizes respectively, transmitted over 256 kbps, 128
kbps and 64 kbps, under 1%, 5% and 10% link loss ratios for Reed Solomon FEC
protected download. The SDU size is selected to be the optimum for these conditions as
well as the SB to provide 100% reliability. We observed that for as the SB size
increases the initial startup delay decreases. The amount of FEC overhead increases as
the PDU loss ratio increases. As the FEC overhead increases it is expected that the

initial startup delay increases too.
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256 Kbps Transmission Rate ,%1 PDU Loss, 1000B SDU Size —&— 256 Kbps Transmission Rate ,%5 PDU Loss, 1000B SDU Size
—m— 256 Kbps Transmission Rate ,%10 PDU Loss, 1000B SDU Size 128 Kbps Transmission Rate ,%1 PDU Loss, 1000B SDU Size
—¥— 128 Kbps Transmission Rate ,%5 PDU Loss, 1000B SDU Size —@— 128 Kbps Transmission Rate ,%10 PDU Loss, 1000B SDU Size
—+— 64 Kbps Transmission Rate ,%1 PDU Loss, 1000B SDU Size —=— 64 Kbps Transmission Rate ,%5 PDU Loss, 1000B SDU Size

64 Kbps Transmission Rate ,%10 PDU Loss, 1000B SDU Size
36
32
28

24

20

Initial Startup Delay (sec)
>

0 20 40 60 80 100 120 140

SB Size (Number of Symbols)

Figure 6.5 Initial startup delay analyses for 100 KB file.
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Figure 6.6 Initial startup delay analyses for 512 KB file.
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Figure 6.7 Initial startup delay for various PDU loss ratios.
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For very small files the difference in initial startup delay between Reed Solomon and

Raptor is around a few seconds which is negligible due to the small file sizes. Using the

analytical model and experimental results here we provide comparative observations

between Raptor and Reed Solomon FEC protected progressive downloads at different

transmission rates that are listed in Table 6.9, Table 6.10 and Table 6.11.

Table 6.9 Progressive download gain comparisions for MBMS at 256 Kbps.

Reed Reed Reed Waiting time
Reed Solomon Solomon Solomon Raptor Raptor Raptor difference in
Solomon Waiting Waiting Progressive Raptor Waiting Waiting | Progressive | Progressive D.
File | PDU FEC time in time in Download FEC time in time in Download | (Reed
Size | Loss | Overhead | Progressiv Legacy Gain Overhead | Progressive | Legacy Gain Solomon -
(KB) | (%) (%) e D.(sec) D.(sec.) (%) (%) D.(sec) D.(sec.) (%) Raptor) (sec.)
100 1 12 0 34 100 8 0 33 100 0
100 5 23 0 3.7 100 21 0 3.6 100 0
100 10 43 0 4.0 100 35 0 3.8 100 0
512 1 7 0 18.5 100 4 0 18.0 100 0
512 5 19 0 20.9 100 12 0 19.7 100 0
512 | 10 37 0 23.5 100 22 0 21.0 100 0
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Table 6.10 Progressive download gain comparisions for MBMS at 128 Kbps.

Reed Reed Reed Waiting time
Reed Solomon Solomon Solomon Raptor Raptor Raptor difference in
Solomon Waiting Waiting Progressive Raptor Waiting Waiting | Progressive | Progressive D.
File | PDU FEC time in time in Download FEC time in time in Download | (Reed
Size | Loss | Overhead | Progressiv Legacy Gain Overhead | Progressive | Legacy Gain Solomon -
(KB) | (%) (%) e D.(sec) D.(sec.) (%) (%) D.(sec) D.(sec.) (%) Raptor) (sec.)
100 1 12 0.6 6.8 92 8 0.3 6.6 95 0.2
100 5 23 1.1 74 85 21 1.0 72 86 0.1
100 10 43 1.8 8.1 71 35 1.4 7.6 82 0.5
512 1 7 4.9 36.9 87 4 39 359 89 1.0
512 5 19 9.4 414 77 12 6.9 38.9 82 2.4
512 10 37 15.1 47.1 68 22 9.9 41.9 76 5.2

Table 6.11 Progressive download gain comparisions for MBMS at 64 Kbps.

Reed Reed Reed Waiting time
Reed Solomon Solomon Solomon Raptor Raptor Raptor difference in
Solomon Waiting Waiting Progressive Raptor Waiting Waiting | Progressive | Progressive D.
File | PDU FEC time in time in Download FEC time in time in Download | (Reed
Size | Loss | Overhead | Progressiv Legacy Gain Overhead | Progressive | Legacy Gain Solomon -
(KB) | (%) (%) e D.(sec) D.(sec.) (%) (%) D.(sec) D.(sec.) (%) Raptor) (sec.)
100 1 12 7.5 13.8 45 8 7.1 13.3 47 0.5
100 5 32 9.0 15.3 41 22 7.9 14.1 44 1.2
100 10 53 11.3 17.5 36 39 9.7 15.9 39 1.6
512 1 8 42.5 74.5 43 4 39.7 71.7 45 2.8
512 5 21 53.3 85.3 38 14 48.4 80.4 40 4.9
512 10 41 67.9 99.9 32 26 57.3 89.3 36 10.6

The following is a summary of our observations for MBMS Progressive download

discarding results for the 100 KB file:

For higher transmission rates, higher gain from progressive download is obtained.
Gain obtained for 256, 128 and 64 Kbps transmission rates are around 100%,

80% and 40% on the average respectively.

In general, progressive download provides savings in waiting time from 36% up

to 100% gain, up to 32 seconds with compared to legacy download.

In general, progressive download using Reed Solomon provides savings in
waiting time from 32% up to 100% gain, up to 32 seconds with compared to

legacy download.

Progressive download using Reed Solomon provides savings in waiting time from
9% 45 up to % 100 gain, up to 40 seconds, with compared to FEC optimized

legacy download.
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- Progressive download with Raptor has savings in initial startup delay from 7% up
to 33%, which is up to 11 seconds with regards to progressive download with

Reed Solomon.

6.4 Experimental Results for Interleaved Progressive Download Delivery.

This section shows the gain in initial startup delay as well as in FEC overhead when
we use interleaving in progressive download delivery using Reed Solomon FEC
protection. We did not study interleaving effect in progressive download for Raptor.
The interleaved progressive download delivery is considered to be under downloading
time optimization where service and network parameters are selected to minimize the

download duration hence initial startup delay.

We tried to find the optimum interleaver-block size and hence made experiments for
the interleaver-block size of 2, 3 and 4 source blocks. As a result we have caught best
results with an interleaver-block size of 3 under both MBMS link conditions. We
explored the MBMS network from the interleaving point of view by jointly analyzing
the interleaving effect of the parameters listed in Table 6.1 on the minimum waiting

time as well as its effect on the FEC overhead for 100% reliability.

The results provided us the gain in FEC overhead as well as waiting time from
having application layer interleaving in MBMS network conditions. So using the
analytical model and the experimental results we obtained comparative observations for
Reed Solomon FEC protected interleaved download delivery that are provided in Table
6.12, Table 6.13, and Table 5.14. These tables also provide the overall results and

gains for our four proposed MBMS download systems.

The following is a summary of our general observations for Reed Solomon FEC

protected MBMS downloads discarding results for the 100 KB file:

- Gain from the interleaving can save FEC overhead up to 29% and save initial

sartup delay up to 40% in progressive download delivery.
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Non-Interleaved Interleaved
Gain in Gain in Gain in
waiting time FEC initial
Waiting Waiting Waiting time | Waiting time | from Inter. Overhead startup
File | PDU | FEC time in timein | FEC in Interleaved | in Interleaved | Prog D wrt | from delay from
Size | Loss | overhead | Progressive | Legacy | Overhead | Progressive Legacy D. Legacy D. Interleaving | Interleavin
KB) | (%a) | (%%) D (sec) D.(sec) | (%) D.(sec) (sec) (%) (o) g (%)
100 1 12 0 34 12 0 34 100 0 0
100 5 23 0 3.7 22 0 3.7 100 4 0
100 10 43 0 4.0 36 0 4.0 100 16 0
512 1 7 0 18.5 5 0 17.6 100 29 0
512 5 19 0 20.9 16 0 19.1 100 16 0
512 10 37 0 235 32 0 21.0 100 14 0
Table 6.13 Summary for Reed Solomon protected MBMS at 128 Kbps.
Non-Interleaved Interleaved
Gain in Gain in Gain in
waiting time | FEC initial
Waiting Waiting Waiting time | Waiting time | from Inter. Overhead | startup
File | PDU | FEC time in timein | FEC in Interleaved | in Interleaved | Prog. D. wrt | from delay from
Size |Loss | overhead | Progressive | Legacy | Overhead | Progressive | Legacy D. Legacy D. Interleaving | Interleavin
XEB) | (%) | (%) D.(sec) D.(sec) | (%) D.(sec) (sec) (%) (%) g (o)
100 1 12 0.6 6.8 12 0.6 6.8 92 0 0
100 5 23 1.1 74 22 1.1 7.3 85 4 1
100 10 43 1.8 8.1 36 1.8 8.0 78 16 4
512 1 7 4.9 36.9 3 33 353 91 29 32
512 5 19 94 414 16 6.4 384 85 16 32
512 10 37 15.1 47.1 32 10.1 42.1 79 14 33
Table 6.14 Summary for Reed Solomon protected MBMS at 64Kbps.
Non-Interleaved Interleaved
Gain in Gain in Gain in
waiting time | FEC initial
Waiting Waiting Waiting time | Waiting time | from Inter. Overhead startup
File |PDU | FEC time in timein | FEC in Interleaved | in Interleaved | Prog. D. wrt | from delay from
Size | Loss | overhead | Progressive | Legacy | Overhead | Progressive | Legacy D. Legacy D. Interleaving | Interleavin
®B)| () [C)  |DGe) |DGeo |9 | D(eo) (se0) ) D) £ ()
100 1 12 7.5 13.8 10 7.6 13.9 45 17 0
100 5 32 2.0 15.3 20 92 15.5 40 38 0
100 10 53 113 17.5 38 10.9 17.1 38 28 4
512 1 8 425 745 7 39.7 71.7 47 13 6
512 5 21 533 85.3 19 47.8 79.8 44 10 10
512 10 41 67.9 99.9 37 58.2 90.2 42 10 14

Gain in waiting time from interleaved progressive download obtained for 256,

128 and 64 Kbps transmission rates are around 100%, 85% and 45% on the

average respectively, when compared to legacy download.

In general, interleaved progressive provides savings in waiting time up to 42

seconds, from % 42 up to % 100 gain with compared to legacy download.
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- Interleaved Progressive download provides savings in waiting time up to 46
seconds, from % 49 up to % 100 gain, when compared to FEC optimized

legacy download.



CHAPTER SEVEN

CONCLUSIONS

In this thesis we focused on 3GPP’s MBMS download delivery with new novel
methodologies applied on it. We provided a survey of the competing wireless multicast
technologies with a focus on reliable download. We studied application layer solutions
to increase the performance of the MBMS download delivery. Hence, we provided
mechanisms to increase the user satisfaction of the download service such as waiting
time. The mechanisms studied in this thesis to reduce the waiting time are the
application layer interleaving mechanism and progressive download mechanism as well
as optimizations. To the best of our knowledge these topics have not been studied in the

literature and our work is providing a leading path for future research.

We analyzed and compared four MBMS download systems: a legacy download
delivery, an interleaved download delivery, progressive download delivery and
interleaved progressive download delivery under our optimizations. We considered
downloading time and transmission cost optimization for both Reed Solomon and
Raptor FEC protected MBMS systems. While our results for Reed Solomon are
experimentally exact the results for Raptor are approximated using our analytical model
more or less to see Raptor behavior against interleaving and progressive downloading

mechanisms.

First we explored what benefits can be obtained from both optimizations in legacy
download. We have explored MBMS from the download point of view by analyzing
many combinations of service parameters as well as network parameters for an efficient
download service under various MBMS link conditions. Then based on these
optimizations, we provide experimental analyses to show the gain in using application
layer interleaving in MBMS. Finally in order to further decrease the waiting time,
progressive downloading is used with the interleaved download systems. Finally we

provided performance comparisons of the legacy and the enhanced download deliveries

117



118

such as progressive download and interleaved progressive download under our

optimizations.

We consider small 3G mobile media with 128 kbps constant media play rate. With
our results, the optimizations provides around up to %10 gain in both FEC overhead
and waiting time with compared to MBMS legacy download. In general, interleaving
provides savings in FEC transmission cost up to 29% and provides savings in
downloading time up to 10% in MBMS legacy download delivery and savings in initial
startup delay up to 40% in MBMS progressive download delivery. We see that Reed
Solomon FEC protected download system has more benefits from application layer
interleaving. While MBMS progressive download provides 36% up to 100% gain and
saves up to 32 seconds in waiting time, the MBMS interleaved progressive download
delivery provides 45% to 100% gain and saves up to 40 seconds in waiting time with

compared to MBMS legacy download.

We expect that progressive download support should be provided in MBMS. This
work will pioneer to support progressive download in MBMS. The results of this study
will provide guidelines to designers to fine-tune MBMS download service parameters
for reliability and encourage new works on progressive download and application layer
interleaving in MBMS. Our work will also be beneficial for 3G wireless multicast
download and streaming service providers for identifying various issues, resolving

them and optimizing the system performance.

Future Work

Our progressive download mechanism is a direct extension of the MBMS
downloading mechanism. However, new mechanims can be used to increase the power
of the progressive download in MBMS. Since we have no Raptor FEC codes available,
our results for Raptor are approximated and might be far from the actual values. So we
recommend using the Raptor FEC code implementation to get exact values. In our
work, we used small file sizes and 128 Kbps media play rates, same work can be

extended to the cases for high file sizes and different media play rates. The thesis



119

encourages novel approaches to support progressive download in MBMS, which will

be dominant download method in future.
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APPENDIX A

TEMPORAL ANALYSES

A.1 Detailed Transmission Cost Analyses

Filesize 100KB, Data Rate 128-256 Kbps, PDU Size 1280 Bytes, PDU Loss %1 SDU Size (Bytes) —600 —800 1000

90

B0 b - — s

T

@
S

o
t=)
L

FEC Overhead
£

w
S
L

20 4

0 50 100 150 200 250)
SB Size (Number of Symbols)

Figure A.1 Transmission cost analyses for Filesize 100KB, Data Rate 128-256 Kbps, PDU Size 1280
Bytes, PDU Loss %1.
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Figure A.2 Transmission cost analyses for Filesize 100KB, Data Rate 128-256 Kbps, PDU Size 1280 Bytes,
PDU Loss %5

127



128

160

Filesize 100KB, Data Rate128-256 Kbps, PDU Size 1280 Bytes,PDU Loss %10

SDU Size (Bytes) —_ 600 —a00

1000

140 4

120 +

100 4

Fec Overhead
3 S

'S
S
L

n
5]
L

SB Size (Number of Symbols)

250|

Figure A.3 Transmission cost analyses for Filesize 100KB, Data Rate 128-256 Kbps, PDU Size 1280
Bytes, PDU Loss %10.

80

Filesize 512KB, Data Rate128-256 Kbps, PDU Size 1280 Bytes, PDU Loss %1

SDU Size (Bytes) — 600 —800

1000

70 1

60 4

N o
S oS

Fec Overhead

[}
S

20 4

50 100

150 200

SB Size (Number of Symbols)

250

Figure A.4 Transmission cost analyses for Filesize 512KB, Data Rate 128-256 Kbps, PDU Size 1280

Bytes, PDU Loss %1.
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Figure A.5 Transmission cost analyses for Filesize 512KB, Data Rate 128-256 Kbps, PDU Size 1280
Bytes, PDU Loss %S5.
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Figure A.6 Transmission cost analyses for Filesize 512KB, Data Rate 128-256 Kbps, PDU Size 1280
Bytes, PDU Loss %10.
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Figure A.7 Transmission cost analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640 Bytes,
PDU Loss %1.
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Figure A.8 Transmission cost analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640 Bytes,
PDU Loss %5.
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Figure A.9 Transmission cost analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640 Bytes,
PDU Loss %10.
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Figure A.10 Transmission cost analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640
Bytes, PDU Loss %1.




132

Filesize 512KB, Data Rate 64 Kbps,PDU Size 640 Bytes, PDU Loss %5 SDU Size (Bytes) —ggg — ?880
140

120 4

100

@
S
L

=
S
L

Fec Overhead

40

—
20 S

0 50 100 150 200 250
SB Size (Number of Symbols)

Figure A.11 Transmission cost analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640
Bytes, PDU Loss %>5.
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Figure A.12 Transmission cost analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640
Bytes, PDU Loss %10.
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A.2 Detailed Initial Startup Time Analyses
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Figure A.13 Initial startup time analyses for Filesize 100KB, Data Rate 256 Kbps, PDU Size 1280
Bytes, PDU Loss %1.
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Figure A.14 Initial startup time analyses for Filesize 100KB, Data Rate 256 Kbps, PDU Size 1280
Bytes, PDU Loss %S5.
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Figure A.15 Initial startup time analyses for Filesize 100KB, Data Rate 256 Kbps, PDU Size 1280
Bytes, PDU Loss %10.
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Figure A.16 Initial startup time analyses for Filesize 100KB, Data Rate 128 Kbps, PDU Size 1280

Bytes, PDU Loss %1.
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Figure A.17 Initial startup time analyses for Filesize 100KB, Data Rate 128 Kbps, PDU Size 1280
Bytes, PDU Loss %>5.
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Figure A.18 Initial startup time analyses for Filesize 100KB, Data Rate 128 Kbps, PDU Size 1280
Bytes, PDU Loss %10.
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Figure A.19 Initial startup time analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640
Bytes, PDU Loss %1.
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Figure A.20 Initial startup time analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640

Bytes, PDU Loss %S5.
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Figure A.21Initial startup time analyses for Filesize 100KB, Data Rate 64 Kbps, PDU Size 640
Bytes, PDU Loss %10.
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Figure A.22 Initial startup time analyses for Filesize 512KB, Data Rate 256 Kbps, PDU Size 1280
Bytes, PDU Loss %1.
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Figure A.23 Initial startup time analyses for Filesize 512KB, Data Rate 256 Kbps, PDU Size 1280
Bytes, PDU Loss %>5.
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Figure A.24 Initial startup time analyses for Filesize 512KB, Data Rate 256 Kbps, PDU Size 1280
Bytes, PDU Loss %10.
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Figure A.25 Initial startup time analyses for Filesize 512KB, Data Rate 128 Kbps, PDU Size 1280
Bytes, PDU Loss %1.
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Figure A.26 Initial startup time analyses for Filesize 512KB, Data Rate 128 Kbps, PDU Size 1280
Bytes, PDU Loss %>5.
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Figure A.27 Initial startup time analyses for Filesize 512KB, Data Rate 128 Kbps, PDU Size 1280
Bytes, PDU Loss %10.
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Figure A.28 Initial startup time analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640
Bytes, PDU Loss %1.
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Figure A.29 Initial startup time analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640
Bytes, PDU Loss %>5.
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Figure A.30 Initial startup time analyses for Filesize 512KB, Data Rate 64 Kbps, PDU Size 640
Bytes, PDU Loss %10.



APPENDIX B

.
B.1 Prototype Service Modules
Download 1 Shigaming
Selected Files For Download Session SESSION DESCRIPTION PROTOCOL
E expl.30p
B exp2 30p ’7 ’7
FEC OBJECT TRANMISSION INFORMATION
= [Resd Sofman <] N =
ElN o
[ |
A5S0CIATED DELIVERY PROCEDURE — T r
Fiepait 5
| Y o] o
| |
Scheduled Sessions Fieception epart -
T8l | Root | Session Stat Time | Session End Time | Down... | FDT File | ’7 | : :‘
1 filesd...  SunSep0910:. Tue Sep 0910, Yes files/FDT_1_11... J $ J
[ [ |
new | [f
ANMOUNCEMENT SESSION
Create Armouncement Session—

Figure B.1 User interface of the download service of the prototype when a new download service is

scheduled.

Figure B.1 shows the creation of a download service that will distribute two
multimedia files “expl.3gp” and “exp2.3gp” to a multicast group identified by

Destination Multicast IP and Transport Session Identifier.

Figure B.2 shows creation of an announcement service for the download service
newly scheduled. This announcement service will distribute the service description
metadata of the actual download service to the multicast group identified by
Destination Multicast IP and Transport Session ID in announcement section of Figure

B.2.
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Dosrload | usaming

Files In Base Directory Selected Files For Download Session - SESSION DESCRIPTION PROTOCOL
# 3 Session Files_B7507134 [0 0.0 = . ,7
[E expl.3gp
[ exp23gp 5 0 e ’7 : =7
FEC DBJECT TRAMMISSION INFORMATION
W reeraex |
ASSOCIATED DELIVERY PROCEDURE — T Hoy r ort
Flepair S
Scheduled Sessions Reception Report =
TSI | Root | Session StaltTlme‘ Session End Time | Diown... | FDT File | e ,—_| Dl J
1 filess..  SunSep0910.. TueSep 0910 Yes files/FOT_1_11... s J # J
3 files/..  SunSep0310.. TueSep0310.. Yes files/FOT_3 11... i S andar e | o i | _J
NEW
ANNOUMCEMEMT SESSION
Create Announcement Session [~

Figure B.2 User interface of the download service of the prototype when an announcement service is
scheduled.

HEL

tsi root staritime endiims download fit acti
1/files/USD_1_11893212005ml| 1189321200 1220944210 files/FOT 1 1189321200 xml O
3files/USD 3 1189321200.xml| 1189321200 1220944210 files/FDT_3 1189321200 xml O

» i 0 0 O

Figure B.3 Scheduled services in services database prior to sessions start.

Figure B.3 shows the content of the service database just after the creation of the
download and its announcement services while Figure B.4 shows the content just after

the services are started.

B services : Tablo

isi root staritime endiime download fdt active
1 files/USD_1_1189321200.xml 1139321200 1220844210 files/FDT_1_1189321200.xm|
3 files/USD_3_1159321200.xml 1189321200 1220944210 files/FDT_3_1189321200.xml
* 0 0 0 ]

Figure B.4 Scheduled services in services database just after sessions start.
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<?2ml ver=zion="1.0" encoding="iso-8859-1"7>
<metadataEnvelope

Emlns:=x2i="http:/ www.w3.org/2001/¥XHMLEchema-instance"
%3i:noNamespaceSchemalocation="envelope.xsd"
metadatalURI="file:///files/USD 1 1189321200.xmi"
version=riT

validFrom="1189311200"

validUntil="1220944210"

contentType="application/=mil"™ />

Yardim icin F1'e basin | | .zt

Figure B.5 User service description envelope file created for the

download service.

USD._1_1189321200.xml - WordPad

Dosya Dizen Gorondm  Ekle’ Bigm; Yardm

hed &6 # @ B B

<?xml version="1.0" encoding="UTIF-8"2>

fuserServiceDescription xmlns="www.example.con/3gppUserServicelescription™
xmlns:xsi="http:// www.w3.0rg/2001/¥ML3chema-instance">
zerviceId="urn:3gpp:1234567890coonlcat">

<deliveryMethod

sessionDescriptionURI="files/SDP 1 1189321200.sdp"/>
</userServicelescription>

ardm igin F1'e basin

Figure B.6 User service description file created for the download service.
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el & b B By
<?xml version="1.0" encoding="isco-EBB59-1"7>
<metadataEnvelope
xmins:xsi="http://www.w3.o0rg/2001/¥MLSchema-instance”
X3i:noMamespaceSchemalocation="envelope.xsd"
metadataURI="file:///files/SDP 1 1189321200.sdp"
wversion="1"

wvalidFrom="1188311200"

walidUntil="1220944210"
contentIype="application/sdp" />

‘Yardim icin F1'e basin

Figure B.7 Session description envelope file created for the download

service.
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s=vidiator File delivery
i=More information
T=11E89321200 1220944210
a=source-filter: incl IN
a=flute-tsi:1

C=IN IP4 226.10.40.1

”~
o=user 2890844526 2890842807 IN IP4 10.20.30.40

m=application 4001 FLUTE/UDP O

sessjon example

P4 * 10.0.0.20
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Figure B.8 Session description file created for the

download service.
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<?xml version="1.0" e
<FDI-Instance Expires

FEC-CTI-FEC-Instance—
FEC-OTI-Maximum-Sourc

§

FEC-OTI-Max-Numbher-of
FEC-CTI-Encoding-Symb
<File TOI="1"

"

Content-Locatcion="fil
Content—-Lengcth="52377
<File TIQI="2"
Content-Locatcion="fil
Content—-Length="52377
</FDT-Instancel

FEC-OTI-FEC-Encoding-T

neoding="iso—-E8859-1"2>
=r1220844210"

129™

ID:H.:] n
e-Block-Length="100"
-Encoding-Symbols="120"
ol-Length="T748">
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Figure B.9 File description table file created for the

download service.
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Figure B.5 and Figure B.6 show envelope and metadata fragment association of the

user service description metadata fragment. They are created at the phase of scheduling

of the download service shown in Figure B.1

Figure B.7 and Figure B.8 show envelope and metadata fragment association of the

session description metadata fragment. They are created at the phase of scheduling of

the download service shown in Figure B.1
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Figure B.9 shows file description table created for the download service. It is also

created at the phase of scheduling of the download service shown in Figure B.1.

I AVAILABLE SERVICES W Recelve Arnouncemens

JOIN

Wersion tdetadata LRI ] Walid From Walid Until Content Type 1 Expired

Active Sessions

I ACTIVE SESSIONS

Session Type ] Root Description I Current Activity
Announcement  announcement_service. sml Session in Announcement mode.. W aiting for FDT Instances...
I ACTIVE DOWNLOADS
15l | TEHi File ‘ Downloaded(#] | Decoded SESJ Tatal SBs Current &ctivity
5 >

Figure B.10 Receiver user interface when announcement session is activated.

Now services are ready to start when their session start time comes. Server is
running. Now Figure B.10 shows the receiver side user interface that is newly join to
the announcement channel. There are no available services known by the user. In order
to automatically receive the announcement, the user has to join to the announcement
channel. As soon as the announcement channel is joined, corresponding information

becomes available to the user in active session section of the user interface.

Figure B.11 shows the situation when a new service is available from the
announcement channel and the user leaves the announcement channel. There are four
service description files downloaded from the announcement channel. These files are
metadata files and they update the receiver side service database, the content of which

is shown in Figure B.12.
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[ AVAILABLE SERVICES Receive Anhouncements
“Wersion I tdetadata LRI l “alid From I W alid Lintil l Content Type I E xpired T\"_
1 file: /¢ /files/USO_1_1189321..  SunSep 0907132020071 Tue S5ep0310:10:10 20081 wserServiceDescription NO
JOIN
- Active Sessions
| ACTIVE SESSIONS
Seszion Type I Root Description l Current Activity
Announcement  anhouncement_service. xml EXITIMG...Sezzion Clozed
| ACTIVE DOWNLOADS
151 | T0I] File | Downloaded(%) | Decoded 5Bs | Total GBs | Current Activity
2 1 file:4¢filessSDP_1_1189321200.5dp 100.00
2 2 filendddfilessSDP_1_1189321200.5dp....  100.00
2 3 filedddfilessUSD_T_11859321200.8ml 100.00
2 4 filedddfilessUSD_T_118593212004ml...  100.00
& 2

Figure B.11 Receiver user interface when a new service is available.

{= Services : Veritabam (Access 97 dosya bi

B envelopes : Tablo

version metadatalRI validFrom validUntil centeniType expired exis
» [ file-///files/SDP_1_1189321200.sdp | 1139311200 1220944210/ sessionDescriptionProtocal O

1 file://ffiles/lUSD_1_1189321200xml | 1185311200 1220944210 userSericeDescription £
* 0 0 0 O |
kayt: [14] « | T )R] 2

Figure B.12 Receiver service announcement database after a new service is available.

Figure B.12 indicates service announcement descriptions. As new envelopes or

metada fragments come from the announcement channel, it updates the corresponding
entries in database.

Figure B.13 shows the situation when the user is joined to the actual download
service available and used that service.
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#= Clientlist
I AVAILABLE SERVICES [ Receive Announcements
Wersion | Metadata LIRI | Walid From | Walid Lintil J Content Type ‘ Expired |
1 file: 4/ /files/USD_1_1183321 SunSep 0907132020071 Tue Sep0910:10:1020081  userServiceDescription ND v SR
JOIN
T
Aclive Sessions-
I ACTIVE SESSIONS
Session Type | Foot Description ‘ Current Achivity
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Figure B.13 Receiver user interface after the download service is used.

B.2 Prototype Enhancement for MBMS Emulations

The prototype is extended to emulate progressive download as well as interleaved
download or interleaved progressive download under MBMS network conditions.
Hence a database is designed including two tables: “configuration” and “entries”
(girisler). Emulation is configured mostly by setting the attributes in configuration

table. However, some of the attributes are controlled inside the code.

Figure B.14 shows the current state of the emulation for the example of a download
service distributing two 3gp media files. In active downloads section “Iter” provides
iteration related information. In the example there are 100 iterations, now the emulation
just finished iteration 3. It means 6 downloads are done. MBMS link and MBMS
network conditions are identified by the configuration ID, which is shown in Figure
B.15 in detail. In the example, configuration ID 2 means RLC link layer lost is 5%

(Ilost), PDU size is 1280 bytes. Other informations are as follows:
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Figure B.14 Emulation user interface of the receiver side media download.
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Figure B.15 Configuration of the emulation in emulation database.

“bbloss” is IP backbone loss ratio.

“ccloss” is cell congestion loss ratio.

“llloss” 1is link layer loss ratio (RLC PDU loss)

“cmloss” is cell mobility loss ratio.

100
100
100

“ccdelay” is maximum cell congestion delay in second. Once a cell is congested it

stays congested for randomly changing duration up to “ccdelay” seconds.

“cmdelay” is maximum cell mobility delay in second (max. cell change delay).

Cell mobility takes a random duration upto “cmdelay” seconds.
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Other parameters such as SDU size, Transmission rate and mapping of PDU lossess
to SDU losses are implemented inside the code. With each iteration our emulation
calculates and saves following information shown in B.16. Each record (iteration

information) is identified by “id”, “fscale” and “‘iter”.
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Figure B.16 Entries in emulation database.

“Id” intentifies the configuration parameters set for MBMS network conditions in
configuration table while “fscale” identifes the media file downloaded. There are two
files of small and medium sizes, which are identified by “fscale =1 and “fscale =2”
respectively. “Iter” identifies the current iteration of the download. Total number of

iterations is set by the “iter” in configuration table. Other informations are as follows:

“A”.’B”,”C” and “D” identifies the lost distribution among IP backbone losses, cell
congestion losses, RLC PDU losses and cell mobility losses, which are defined in the
report by Digital Fountain, Ericsson, NEC, Nokia, Nortel, Siemens (May 2004). In the
exaple in Figure B.16 all the losses belong to “C”, which are RLC PDU losses.

- “expecteddelay” is the expected delay identifying the waiting time or initial
startup time in MBMS download.

- “rxsymbolper” is the received symbols percent without caring the successful or
unsuccessfull decoding of source blocks.

- “rxpercent” is the the downloaded percent of the media with successful decoding

of source blocks.
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- “max_sb_len”, “es_len” and “max_nb_es” are maximum source block length,
encoding symbol length and maximum number of encoding symbols
respectively, which are FEC OTI informations.

- “rxrate” is the average receiving rate under the configured network and link
conditions.

“txrate” is the transmission rate.

In the example in Figure B.16, although transmission rate is 128 kbps, because of
5% RLC PDU losses, the average receiving rate is reduced to 98, 97 or 96 kbps under
20% FEC transmission cost with other FEC OTIs shown in the table, 1280 bytes RLC

block size, 800 bytes SDU size as well as other parameters.



