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DESIGN AND IMPLEMENTATION OF TURKISH SPEECH 
RECOGNITION ENGINE 

 

ABSTRACT 

 

In this thesis, we have designed and implemented syllable based Turkish speech 

recognition systems based on Linear Time Alignment (LTA), Dynamic Time 

Warping (DTW), Artificial Neural Network (ANN), Hidden Markov Model (HMM) 

and Support Vector Machine (SVM). These speaker dependent and isolated word 

recognition systems consist of five main parts: Preprocessing, feature extraction, 

training, recognition and postprocessing. Preprocessing includes some operations 

such as speech signal smoothing, windowing and syllable end-point detection. In 

feature extraction, we have used speech features as mel frequency cepstral 

coefficients, linear predictive coefficients, parcor, cepstrum and rasta coefficients. In 

training stage for HMM, SVM and ANN, every syllable of the words in the 

dictionary is trained, and the syllable models are generated. In recognition stage, 

every syllable in the word utterence is compared with the syllable models. So, the 

recognized syllables are determined and ordered. Then, the recognized syllables are 

concatenated with each other. In postprocessing operation, we have developed the 

system which is based on Turkish syllable n-gram frequencies. The system decides 

whether the recognized word is Turkish or not. If the word is Turkish, then it is new 

recognized word.  

 

The system is middle scaled speech recognition because the system dictionary has 

200 different Turkish words. After the system is tested on 2000 spoken words, we 

have seen that the word error rate of the system is about 5.8% for DTW, 12% for 

ANN, 8.8% for LTA, 17.4% for HMM and 9.2% for SVM with postprocessing. 

System recognition rate increased approximately 14% using postprocessing. 

 

Keywords: Turkish speech recognition, syllable based speech recognition, Hidden 

Markov Model, Linear Time Alignment, Dynamic Time Warping, Artificial Neural 

Network, Support Vector Machine, Turkish misspelled words, Turkish syllable       

n-gram. 
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TÜRKÇE KONUŞMA TANIMA SİSTEMİNİN TASARIMI VE 

GERÇEKLEŞTİRİLİMİ 

 

ÖZ 
 

 

Bu tezde, konuşmacıya bağımlı hece tabanlı Türkçe konuşma tanıma sistemi 

uygulamaları gerçekleştirilmiştir. Bu sistemlerde, konuşma tanıma yöntemlerinden 

Doğrusal Zaman Hizalama (DZH), Dinamik Zaman Bükmesi (DZB), yapay sinir 

ağlarından Çok Katmanlı Algılayıcı (ÇKA), Saklı Markov Modeli (SMM) ve Vektör 

Destek Makineleri (VDM) kullanılmıştır. Ayrık sözcük tanıma sistemi genel olarak 

önişleme, öznitelik çıkarılması, hecelerin eğitimi, tanıma ve önişleme süreçlerinden 

oluşmaktadır. Önişlemede, dijital sinyallerin düzleştirilmesi, pencereleme ve hece 

sınırların tespiti işlemleri yapılır. Hecelerin mfcc, lpc, parcor, cepstrum ve rasta 

öznitelikleri elde edildikten sonra ÇKA, VDM ve SMM kullanılarak eğitilir. Her 

yöntem için hece modelleri oluşturulur. Sözcük tanıma safhasında, tanınması istenen 

sözcüğün heceleri hece modelleri ile karşılaştırılır. En çok benzeyen heceler tespit 

edilip sıralandırılır. En çok benzeyen heceler birbirine eklenerek tanınan sözcük 

bulunur. Artişlemede ise bu tanınan sözcüğün Türkçe olup olmadığına bakılır. Eğer 

bu sözcük Türkçe ise tanıma işlemi biter. Fakat Türkçe değilse bir sonraki heceler 

eklenerek yeni sözcük oluşturulur. Bu işlemlere Türkçe sözcük bulunana kadar 

devam edilir. Bir sözcüğün Türkçe olup olmadığının tespiti için hece n-gram 

frekansları kullanılmıştır. 

 

Orta dağarcıklı konuşma tanıma sisteminin sözlüğünde 200 Türkçe sözcük 

bulunmaktadır. Her bir sözcük 10 defa kaydedilerek 2000 sözcüklü test veritabanı 

oluşturuldu ve test işlemi yapıldı. Sistemin başarımını ölçmek için sözcük hata oranı 

(word error rate) kullanıldı. Sözcük hata oranı, DZB için %5,8, ÇKA için %12, 

SMM için 17,4, DZH için %8,8 ve DVM için %9,2 olarak bulunmuştur. Artişleme, 

sistemin başarımını yaklaşık olarak %14 oranında artırmıştır. 
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1 

CHAPTER ONE 

INTRODUCTION 

  

1.1 Introduction 

 

Speech is the primary means of communication between people. For reasons 

ranging from technological curiosity about the mechanisms for mechanical 

realization of human speech capabilities, to the desire to automate simple tasks 

inherently requiring human-machine interactions, research in speech recognition and 

speech synthesis by machine has attracted a great deal of attention over the past six 

decades. 

 

Speech recognition is the process by which a computer converts an acoustic 

speech signal to text. This process is important to virtual reality because it provides a 

fairly natural and intuitive way of controlling the simulation while allowing the user's 

hands to remain free. Speech recognition allows making it easier both to create and 

to use information. Text is easier to store, process and consume, both for computers 

and for humans, but writing text is slow and requires some intention. Speech is easier 

to generate, it's intuitive and fast, but listening to speech is slow, it's hard to index 

speech, and easy to forget.  

 

Great advance has been achieved in last ten years in the speech recognition 

technology, but 100% reliable speech recognition systems are not developed yet. The 

most limiting factor in speech processing applications is the variability of speech 

signal characteristics from trial to trial, the variability of recording and transmission 

conditions, and the variations generated by the speaker, either deliberately or 

accidentally. However, the primary bottleneck is the spectral and pitch changes 

arising from emotional changes of the speakers.  
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Figure 1.1 General structure of speech recognition. 

 

In a simplified way, the general speech recognition procedure is shown in Figure 

1.1. Speech recognizer includes the operations as preprocessing, feature extraction, 

training, recognition and postprocessing. After the speech recognizer takes the 

acoustic speech signal as an input, the output of the recognizer will be the recognized 

text. 

 

The most common approaches to speech recognition can be divided into two 

classes: “template based approach” and “model based approach”. Template based 

approaches as LTA and DTW are the simplest techniques and have the highest 

accuracy when used properly, but they also suffer from the most limitations. As with 

any approach to speech recognition, the first step is for the user to speak a word or 

phrase into a microphone. The electrical signal from the microphone is digitized by 

an analog-to-digital converter. The system attempts to match the input with a 

digitized voice sample, or template. This technique is a close analogy to the 

traditional command inputs from a keyboard. The system contains the input template, 

and attempts to match this template with the actual input. Model based approaches as 

HMM and ANN tend to extract robust representations of the speech references in a 

statistical way from huge amounts of speech data. Model based approaches are 
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currently the most popular techniques. However, when the size of the vocabulary is 

small and the amount of training data is limited, template based approaches are still 

very attractive. Even though most of the time these approaches are used separately, 

some of these techniques are complementary and can be combined in a very efficient 

way. 

 

Another way to differentiate between speech recognition systems is by 

determining if they can handle only discrete words, connected words, or continuous 

speech. Most voice recognition systems are discrete word systems, and these systems 

are easiest to implement. For this type of system, the speaker must pause between 

words. This is fine for situations where the user is required to give only one word 

responses or commands. In a connected word voice recognition system, the user is 

allowed to speak in multiple word phrases, but he or she must still be careful to 

articulate each word and not slur the end of one word into the beginning of the next 

word. Totally natural, continuous speech includes a great deal of co-articulation, 

where adjacent words run together without pauses or any other apparent division 

between words. 

 

Speech recognition system is speaker dependent or speaker independent. A 

speaker dependent system is developed to operate for a single speaker. These 

systems are usually more accurate. A speaker independent system is developed to 

operate for any speaker. These systems are the most difficult to develop, most 

expensive and accuracy is lower than speaker dependent systems. 

 

The size of vocabulary is another key point in speech recognition applications. 

The size of vocabulary of a speech recognition system affects the complexity, 

processing requirements and the accuracy of the system. Some applications only 

require a few words such as only numbers; others require very large dictionaries such 

as dictation machines. According to vocabulary size, speech recognition systems can 

be divided into three main categories as small vocabulary recognizers (smaller than 

100 words), medium vocabulary recognizers (around 100-1000 words) and large 

vocabulary recognizers (over 1000 words). 
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1.2 Speech Recognition History 

 

First speech recognition studies started in the late 40s and early 50s, 

simultaneously in Europe with J. Dreyfus-Graf and in the U.S.A. with K. H. Davis 

and his colleagues at Bell Laboratories. Dreyfus-Graf, J. (1952) designed his first 

“Phonetographe” in 1952. This system transcribed speech into phonetic “atoms”. 

Davis, K., et al, (1952) designed the first speaker dependent, isolated digit 

recognizer. This system used a limited number of acoustic parameters based on zero-

crossing counting. 

 

A research group at Bell Laboratories adopted a phonetic decoding approach to 

design a word recognizer based on segmentation in phonetic units (Dudley & 

Balashek, 1958). At the same period, a system was designed on the basis of the 

distinctive features proposed in Jakobson, R., et al. (1952), for the speaker 

independent recognition of vowels (Wiren & Stubbs, 1956). Another phonetic 

approach was used at RCA laboratories in the first “phonetic typewriter” capable of 

recognizing syllables dictated in isolation by a single speaker (Olson & Belar, 1956). 

A rudimentary phoneme recognizer was developed at University College, London 

(Denes, 1959). This system was the first to incorporate linguistic knowledge under 

the form of statistical information about allowable sequences of two phonemes in 

English. 

 

All the above mentioned systems were electronic devices. The first experiments 

on computer based speech recognition were carried out in the late 50s and early 60s, 

especially Lincoln Laboratory for the speaker independent of ten vowels (Forgie & 

Forgie, 1959). At the same period, the first Japanese systems were developed, still as 

special purpose hardware for vowel (Suzuki & Nakata, 1961) or phoneme  

identification (Sakai & Doshita, 1962), and for digit recognition (Nagate et al., 

1963). But the systems actually correspond to the generalization of the use of digital 

processing and computers.  
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This decade was also marked by two major milestones in the history of speech 

recognition methodology. The first is preliminary development of techniques 

normalization in speech pattern matching. Acoustic feature abstraction was proposed 

in Martin et al., 1964, and the basic concepts of dynamic time warping using 

dynamic programming were proposed by Russian researchers (Slutsker, 1968; 

Vitsyuk, 1968). The second is the recognition of continuous speech by dynamic 

tracking of phonemes from Stanford University (Reddy, 1966). It led to the speaker 

dependent recognition of sentences with five vocabularies of 561 words (Vicens, 

1969).  

 

The 1970s were very active period for speech recognition with two distinct types 

of activities. First is the understanding of large vocabularies, continuous speech, 

based on the use of high level knowledge such as lexical and syntactic to compensate 

for the errors in phonetic decoding. The main contributions of these artificial 

intelligence projects were more in software architecture of knowledge based systems 

(Lesser et al., 1975). Such systems were primarily developed in the framework of the 

ARPA. The goal of speech understanding research project from 1971 to 1976 was 

understood of continuous speech sentences from a vocabulary of about 1000 words 

produced by one speaker. Several systems were developed which more or less 

fulfilled the initial goal: HARPY (Lowerre, 1976) and HEARSAY II (Lesser et al., 

1975) at Carnegie Mellon University, and HWIM (Wolf & Woods, 1977). Similar 

systems were proposed in France: MYRTILLE I (Haton & Pierrel, 1976), KEAL 

(Marcier, 1977). The second is the recognition of isolated words based on pattern 

recognition template based methods (Velichko & Zagoruyko, 1970). Several basic 

techniques still in use today were introduced during this decade. The first is elastic 

matching of speech patterns by dynamic time warping algorithms. These algorithms 

were first developed in USSR (Slutsker, 1968; Vistsyuk, 1968) and in Japan (Sakoe 

& Chiba, 1971). Sub-optimal, but less time consuming versions were also proposed 

(Haton, 1974). The second technique is clustering algorithms adapted from data 

analysis methods in order to design speaker independent systems (Rabiner et al., 

1979). The third is speech analysis based on linear predictive coding (lpc) instead of 

the classical fast fourier transform (fft) or filter bank methods (Itakura, 1975).  
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In the late 1970s, important progress was made with the implementation of speech 

recognition systems on microprocessor boards. This technological advance made 

possible the commercialization of the first low cost speech recognizers. 

 

The 1980s were marked by series of important milestones. The first one is the 

extension of dynamic programming to connected word recognition such as (Sakoe, 

1979) and onepass methods (Bridle & Brown, 1979; Lee & Rabiner, 1989). The 

second one is the shift in methodology from template based methods to statistical 

modeling based on HMMs (Ferguson, 1980; Rabiner, 1989). These methods were 

developed in the 1970s (Baker, 1975a, Jelinek, 1976) for continuous speech 

recognition. The third one is the reintroduction of neural networks techniques 

(Lippmann, 1987). The first neural network models as the perceptron were proposed 

in the 1950s, and then reappeared in the late 1980s. The fourth one is the acoustic-

phonetic decoding of continuous speech using knowledge based approaches. Expert 

system technology has been advocated to design phonetic decoders based on the 

expertise of phoneticians in spectrogram reading (Cole et al., 1980). The fifth one is 

the recording of large databases such as TIMIT (Fisher et al., 1986) which directly 

contributed to the advances made in speech recognition. During this same decade, an 

ARPA program contributed to substantially improve the accuracy of continuous 

speech recognition for medium size vocabulary with resource management task.  

 

The 1990s and 2000s have experienced a continuous and an extension of the 

ARPA program towards two main directions. These are the introduction of natural 

language and user system dialog in an air travel information application, and the 

extension of speech recognition systems to large vocabularies for dictation purposes 

(Makhoul & Schwatz, 1994). Another major trend of these years is an important 

increase in the use of speech recognition technology within public telephone 

networks (Wilpon, 1994). As a result, an increasing interest of speech processing 

under noisy or adverse conditions, as well as for spontaneous speech recognition 

emerged. 
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Some general conclusions can be drawn from this past experience of six decades 

in speech recognition research and development: First, present systems are based 

upon models and techniques that appeared quite early in the history of speech 

recognition. Second, transforming a laboratory prototype with excellent accuracy 

into a reliable commercial system is a long, and yet not totally mastered process. 

Third, the performance of today’s best systems is more than an order of magnitude in 

error rate from human performance. Finally, the general solution to the problem will 

not be found suddenly by an ingenious researcher. Rather, it will necessitate a long 

and tedious multi-disciplinary work. 

 

1.3 A Survey of Turkish Speech Recognition 

 

Today, there are  several speech recognition studies on Turkish. But, Turkish 

speech recognition studies have increased in the past decade. We have mentioned 

some of them as the followings. 

 

Arturner (1994) firstly constructed Turkish codebook for each Turkish phoneme. 

He then designed and implemented a Turkish speech phoneme clustering system 

using self organizing feature map. 

 

Meral (1996) developed speech recognition system based on pattern comparison 

techniques. He used lpc speech feature and dynamic time warping method. The WER 

of the system is about 0% on the vocabulary (26 Turkish words). 

 

Özkan (1997) implemented a speech recognition system for Turkish connected 

numerals. The system is speaker dependent isolated word recognition using dynamic 

time warping method. The WER of the system is about 0%. He used lpc speech 

recognition feature. 

 

Mengüşoğlu (1999) designed and implemented a rule based speech recognition 

system for Turkish. It is used rasta and mel-cepstrum features for the phoneme-based 
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and speaker dependent system. This isolated word system was tested on 248 words. 

For mel-cepstrum and rasta, the WER is 11.4% and 8.8% respectively. 

 

Yılmaz (1999) proposed a large scaled Turkish speech recognition system which 

is speaker dependent. Each word is modeled with triphones using hidden markov 

model. The WER of the system which is tested with 1000 words is about 10%. 

 

Karaca (1999) has developed a Turkish isolated word recognition system under 

noisy environments. This system is word-based and speaker independent. According 

to lpc and rasta features, each word is modeled using hidden markov model. The 

system is tested on the vocabulary which has 130 Turkish words. The WER is 

26.5%.  

 

Koç (2002) studied on acoustic feature analysis for robust speech recognition. The 

system is based on hidden markov model and uses mfcc and  rasta-plp features.   

 

Arısoy & Dutağacı (2006) have developed a unified language model for large 

vocabulary continuous speech recognition of Turkish using hidden markov model. 

The developed systems are speaker dependent and speaker independent. Letter error 

rates (LER) are approximately 28% for a speaker independent system and 20% for a 

speaker dependent system. 

 

 Avcı (2007) presented an automatic system for word recognition using real 

Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, 

which consists of two layers: discrete wavelet layer and multi-layer perceptron. The 

discrete wavelet layer is used for adaptive feature extraction in the time-frequency 

domain and is composed of Discrete Wavelet Transform (DWT) and wavelet 

entropy. The performance of the used system is evaluated by using noisy Turkish 

word signals. The WER is about 8% for small vocabulary (15 words). 

 

Salor & Pellom (2007) developed Turkish speech corpora and recognition tools 

developed by porting SONIC: Towards multilingual speech recognition. The system 
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is speaker independent based on  HMM triphone model. The speech recognition 

feature is mfcc. The phone recognition error rate is about 29.2%. 

 

1.4 The Thesis Perspective 

 

In this thesis, we introduced a new approach for Turkish speech recognition. We 

have designed and implemented some syllable based speech recognition systems 

based on LTA, DTW, HMM, ANN and SVM methods and evaluated the efficiency 

of the systems with the new approach.  

 

Turkish language, that is one of the least studied language in the speech 

recognition field, has different characteristics than European languages which require 

different language modeling technique (Hakkani, Oflazer & Tür, 2000; Oflazer, 

1994). Since Turkish is an agglutinative language, the degree of inflection is very 

high. So, many words are generated from a Turkish word’s root by adding suffixes. 

That’s why, word based speech recognition systems are not adequate for large scaled 

Turkish speech recognition and Turkish is syllabified language. We have developed 

syllable based isolated word speech recognition systems. First, acoustic signal of the 

word utterance as an input is applied by preprocessing. The utterance is divided into 

syllable utterances by the endpoint detection algorithm using signal’s energy and 

zero-crossing point. Each syllable of the word is separately trained and modeled by 

speech recognition methods and recognized. The recognized syllables are sorted and 

the most similar syllables are concatenated in order. So the recognized word is found 

in that way. After that, we have applied postprocessing operation which decides 

whether or not the recognized word is Turkish. This new approach used in this thesis 

increased the accuracy rate about 14%. For this purpose, we have developed TASA 

(Turkish Automatic Syllabifying Algorithm) which spells the Turkish words into 

syllables (Aşlıyan & Günel, 2005). TASA syllabifies the words by approximately 

100% success rate. The system decides whether a word is Turkish or not using 

syllable n-gram language model (Aşlıyan, Günel & Yakhno, 2007). 
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1.5 Structure of the Thesis 

 

In Chapter 2, we have mentioned about speech recognition in detail. The general 

procedure of speech recognition system which consists of speech acquisition, 

preprocessing, feature extraction, acoustic and language model is introduced. 

 

In Chapter 3, we give the definitions of speech recognition methods as linear time 

alignment, dynamic time warping, artificial neural network, hidden markov model 

and support vector machine. The mathematical formulation of the speech features as 

linear predictive coding coefficients, mel frequency cepstral coefficients, rasta, 

cepstrum and parcor coefficients are explained in detail. 

 

In Chapter 4, we have explained Turkish syllable n-gram analysis. Turkish 

Automatic Syllabifying Algorithm (TASA) and Turkish syllable statistics have been 

presented. 

 

In Chapter 5, we have mentioned how to be decided whether a word is Turkish or 

not using Turkish syllable n-gram frequencies. 

 

In Chapter 6, the speech recognition experiments are described  using the most 

efficient methods and features. In addition, the experimental results are given and 

compared. 

 

We have presented the conclusions and future directions of the thesis in Chapter 

7. 
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CHAPTER TWO 

SPEECH RECOGNITION 

 

In this chapter we describe the main steps of speech recognition as speech 

acquisition, preprocessing, feature extraction, recognition operation, acoustic and 

language model. 

 

2.1 Definition of Speech Recognition 

 

Speech recognition is the process that allows humans communicate with 

computers by speech. The purpose is to transmit the idea to the computer. 

 

There are a lots of other communication methods between humans and computers 

which require some input devices. Keyboards, mouses, touch screens are the most 

classical examples of input devices with high accuracies. Those input devices are not 

efficient enough in some conditions, especially when the use of hands is not possible. 

They need also a certain level of expertise for being used. 

 

There are some other recent researches on human-computer interaction with brain 

waves but this research field is still in its beginning phase (Anderson & Kirby, 2003). 

Since speech is the most natural way of communication between humans, it is 

important to make possible the use of speech to communicate with computers. By 

enabling speech recognition, communication between humans is faster than the other 

alternatives like keyboards or touch screens. 

 

There are many application areas for speech recognition. The main areas can be 

listed as home use, office use, education portable and wearable technologies, control 

of vehicles, avionics, telephone services, communications, hostile environments, 

forensics and crime prevention, entertainment, information retrieval, biometrics 

surveillance, etc. 
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Speech recognition is closely related to other speech related technologies such as 

automatic speech recognition, speech synthesis, speech coding, spoken language 

understanding, spoken dialogue processing, spoken language generation, auditory 

modeling, paralinguistic speech processing (speaker 

verification/recognition/identification, language recognition, gender recognition, 

topic spotting), speech verification, time-stamping/automatic subtitling, speech to 

speech translation, etc. 

 

Speech recognition is a multi-discipline spanning to acoustics, phonetics, 

linguistics, psychology, mathematics and statistics, computer science, electronic 

engineering and human sciences. 

 

Speech recognition has been a research field since the 1950s. The advances are 

not satisfactory enough despite more than 50 years of research. This is mainly due to 

openness of speech communication to environmental effects and existence of various 

variabilities that are difficult to model in the speech. The speech is acquired by 

computers using microphones which record it as energy levels at certain frequencies. 

Since speech is passed through air before having recorded digitally, the recording 

contains environmental effects also. Speech recognition process is based only on the 

speech content of the recorded signal. The quality of the signal must be improved 

before speech recognition. Hermansky (1998) claims that indiscriminate use of 

accidental knowledge about human hearing in speech recognition may not be what is 

needed. What is needed is to find the relevant knowledge and extract it before doing 

any further processing towards speech recognition. 

 

Figure 1.1 shows the speech recognition process in a simplified way. Speech 

recognizer contains the necessary information to recognize the speech at the point. At 

the input there should be a microphone and at the output there is a display that shows 

the recognized speech. 

 

The remaining part of this chapter defines the speech recognition cycle by 

decomposing it to its basic parts. In a more general context, speech recognition can 
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be seen as a signal modeling and classification problem. The main is to create models 

of speech of and use these models to classify it. The speech includes two parts which 

can be modeled: Acoustic signal and language. 

 

As a modeling problem, speech recognition includes two models: Acoustic model 

and language model. These two models will be explained later in detail. Acoustic 

model is the modeling of acoustic signal and it starts with acquisition of speech by 

computers. Language model is the modeling of speaker’s language and it will be 

used at the end of classification process to restrict the speech recognition to extract 

only acceptable results from speech signal. 

 

The speech recognizer as shown in Figure 1.1 can be extended as on Figure 2.1 

that shows, the main procedures in speech recognition are speech acquisition, 

preprocessing, feature extraction, recognition, recognition is sometimes called 

decoding. The most important parts which affect the performance of the system are 

acoustic model and language model. These models are obtained after a training 

procedure. Speech acquisition, preprocessing and feature extraction are also 

important for representing speech signal in recognition phase. 

 

2.2 Speech Acquisition 

 

Speech acquisition includes converting the acoustic signal to some computer 

readable digital signal codes. This process can also be called as “digital recording”. 

 

Speech signal is an analog signal which has a level (loudness), shape, and 

frequency. The first thing to do with speech signal is to convert it from analog 

domain which is continuous to digital domain which is discrete. To convert a signal 

from continuous time to discrete time, a process called sampling is used. The value 

of the signal is measured at certain intervals in time. Each measurement is referred to 

as a sample. 
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When the continuous analog signal is sampled at a frequency F, the resulting 

discrete signal has more frequency components than did the analog signal. To be 

precise, the frequency components of the analog signal are repeated at the sample 

rate. That is, in the discrete frequency response they are seen at their original 

position, and are also seen centered around +/- F, and around +/-2F, etc. 

 

 
Figure 2.1 Speech recognition procedure. 

 

If the signal contains high frequency components, we will need to sample at a 

higher rate to avoid losing information that is in the signal. In general, to preserve the 

full information in the signal, it is necessary to sample at twice the maximum 

frequency of the signal. This is known as the Nyquist rate. 
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Telephone speech is sampled at 8 kHz, which means the highest frequency 

represented is 4000 Hz which is greater than the maximum frequency standard for 

telephone in Europe (3400 Hz). A sampling frequency of 16 kHz is regarded as 

sufficient for speech recognition. Generally, speech signal sampling frequency is 

chosen 600 Hz and 16000 Hz. The frequency range that human ear hear is between 

80 Hz and 8000 Hz. The extreme limits are 20 Hz and 20 kHz (Boite & Kunt, 1987). 

 

The level of sampled speech signal is the sampling resolution. Using of more bits 

gives better resolution. For telephone speech, compressed 8 bits sampling resolution 

is used. For speech recognition, in general, 12 bits are sufficient. For higher 

accuracies, we need to use more bits per sample. 

 

The speech signal can contain some redundant frequency components which are 

considered as noise. Some of those frequencies can be filtered. Generally, filters are 

used to modify the magnitude of signals as a function of frequency. Desirable signals 

in one range of frequencies (usually called a band) are passed essentially unchanged, 

while unwanted signals (noise) in another band are attenuated. 

 

Figure 2.2 shows the structure of a speech acquisition block which can be 

integrated into speech recognizer in which the analog filtering part is generally 

integrated into a microphone. A device is used to record the speech digitally 

according to sampling theory. Digitalized speech can than be filtered digitally to 

improve the quality of speech. 

 

The digital speech signal can have various formants. Digital representation of 

speech is generally called “coding”. There are three groups of coding as waveform 

coding, source coding and hybrid coding. 

 

The waveform coding attempts to produce a reconstructed signal whose waveform 

is as close as possible to the original. The resulting representation is independent of 

the type signal. The most commonly used waveform coding is called “Pulse Code 

Modulation” (PCM). It is made up of quantizing and sampling the input waveform. 
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There are two variants of this coding method. Those are Differential PCM (DPCM) 

which quantizes the difference between two samples, and Adaptive DPCM 

(ADPCM) which tries to predict the signal and use a suitable quantization for 

different portion of that signal. 

 

The source coding is model based. A model of the source signal is used to code 

the signal. This technique needs a priori knowledge about production of signal. The 

model parameters are estimated from the signal. Linear Predictive Coding (LPC) 

uses source coding method. The value of the signal at each sample time is predicted 

to be linear function of the past values of the quantized signal. 

 

The hybrid coding is a combination of two other coding methods. An example of 

this type of coding is “Analysis by Synthesis”. The waveform is first, coded by 

source coding technique. Then the original waveform is reconstructed and the 

difference between original and coded signal is tried to be minimized. 

 

2.3 Preprocessing and Feature Extraction 

 

The original analogue signal which to be used by the system in both training and 

recognition is converted from analogue to discrete speech signal, x(n). n is 

represented as the sample index. 

 

The sample rate, Fs was 11025 Hz. An example of a signal in waveform sampled 

is given in Figure 2.2.  
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Figure 2.2 Sampled utterence signal of “fen” in waveform. 

 

There is a need for spectrally flatten the signal. The preemphasizer, often 

represented by a first order high pass FIR filter is used to emphasize the higher 

frequency components. The transfer function of this filter in time domain is 

described in Eq.2.1.  

 
195.01)( −−= zzH  (Eq.2.1) 

 

The result of the filtering is given in Figure 2.3. 
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Figure 2.3 Original signal (blue color) and preemphasized signal (red color). 

 

After detecting the end-point of the syllables from the preemphasized speech 

signal, frameblocking is applied to each syllable signal. Syllable end-point detection 

is explained in Chapter 6 in detail. The objective of frameblocking is to divide the 

signal into a matrix form with an appropriate time length for each frame. Due to the 

assumption that a signal within a frame of 20 ms is stationary and a sampling rate at 

16000 Hz will give the result of a frame of 320 samples. 
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Figure 2.4 Frameblocking. 

 

As shown in Figure 2.4 the speech signal, x(n) is divided into the matrix form, 

x(m, n). There are m frames and, each frame consists of n samples. 

 

After the frameblocking is done, a Hamming window, which is graphically 

demonstrated in Figure 2.5, is applied to each frame. This window is to reduce the 

signal discontinuity at the ends of each block. 

 

The equation which defines a Hamming window is shown in Eq.2.2. 

 

)
1

2cos(46.054.0)(
−
π

−=
K

kkw  (Eq.2.2) 
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Figure 2.5 Hamming window. 

 

Figure 2.6 shows only one frame’s signals which are results of frame blocking. In 

Figure 2.7, the frame windowed by Hamming window is displayed. The result gives 

a reduction of the discontinuity at the ends of the frame. 
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Figure 2.6 Signals on a frame before windowing. 

 

 
Figure 2.7 Signals on a frame after windowing. 
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2.4 Recognition Operation 

 

Speech recognition includes two pattern classification steps. The first one is 

acoustic processing which results a sequence of syllable speech units. The output of 

first step is then used for language processing which guaranties a valid speech output 

within the rules of current language. As a pattern classification problem, speech 

recognition must be mathematically formulated and decomposed into simpler 

subproblems. 

 

Let kYYYY ,...,, 21=  be a sequence of feature vectors obtained from the speech 

signal. The feature vectors iY  are generated sequentially by increasing values of i 

and k is the number of feature vector in the sequence. 

 

Let nsssS ,...,, 21=  be the syllable content of the speech signal. n is the number 

of syllables in the speech signal. 

 

)|( YSP  is the probability that the syllable S was spoken, given the feature vector 

sequence, which is called “observation”. After defining these elements, the speech 

recognition can be defined as a decision making process searching for the most 

probable syllable sequence Ŝ  as Eq.2.3 which consists of searching for the most 

likely syllable sequence S conditioned on observation sequence Y. The probability 

)|( YSP  can not be observed directly because of randomness of feature vector space. 

We need to rewrite this probability. 

 

)|( max argˆ YSPS
S

=  (Eq.2.3) 

 

The right-hand side probability of Eq.2.3 can be rewritten according to Bayes’ 

formula of probability theory as shown in Eq.2.4. 
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)(
)|()()|(

YP
SYPSPYSP =  (Eq.2.4) 

 

)(SP  is the probability that the syllable string S will be spoken by the speaker, 

)|( SYP  is the likelihood, and )(YP  is the average probability that Y will be 

observed. )(YP  in Eq.2.4 is known also as evidence, and it is generally omitted in 

speech recognition since this probability is same for all acoustic signal observations. 

The new version of maximization Eq.2.3 can be rewritten as Eq.2.5 after omitting the 

evidence of observing acoustic observation Y in Bayes’ formula.  

 

)|(  max argˆ SYPP(S)S
S

=  (Eq.2.5) 

 

Eq.2.5 is the base for classification in speech recognition. By writing the equation 

in this form we have the apportunity of computing the probabilities )(SP  and 

)|( SYP  by training some models. )(SP  can be obtained by training a model for the 

language and is independent of acoustic information. Language modeling is based on 

assigning a probability to each syllable occurrence within a context and the model 

can be trained on a large text containing virtually all occurrences of syllable 

sequences in the language. 

 

The second probability in Eq.2.5 can be obtained by training a model for the 

acoustic realizations of syllables. This modeling is called acoustic modeling and can 

be obtained by training a model from a large acoustic database which contains 

virtually all realizations of the syllables in the language. 

 

2.5 Acoustic Modeling 

 

Acoustic modeling is the process of generating models for each class in speech 

recognition. The class can be a word, a syllable, a semi-syllable, or a phoneme. There 

are many kinds of acoustic models and modeling techniques. The simplest acoustic 
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model can be the acoustic realization of each words in the vocabulary of speech 

recognizer. 

  

 
Figure 2.8 Constructing acoustic models. 

 

Figure 2.8 gives the acoustic modeling process. Acoustic modeling process is not 

a part of speech recognition. It provides the acoustic models which are used in 

speech recognition for classification. 

 

The flowchart in Figure 2.8 is not standard for all acoustic modeling techniques 

but it includes the common steps in acoustic modeling.  

 

The first step is “initialization” of models. At this step pre-segmented feature 

vectors are assigned to classes and a model for each class is created. In “training” 
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step initial models are used for classification of new feature vectors which are not 

segmented. After segmentation new class boundaries for models are determined in an 

iterative approach. Some generalization algorithms are applied to have a better 

modeling of unseen data. The output of this process is acoustic models for each class. 

The acoustic models are used by the recognizer to determine the probability )|( SYP  

of Eq.2.5. 

 

An important aspect of classification process is distance measure which is 

common in training of acoustic models. All acoustic modeling techniques are based 

on some distance measure to find the closeness of a new feature vector to a model. 

Distance measure is used for comparing feature vectors to some stored templates for 

classification purposes. The stored templates can be updated with new data in an 

iterative approach. 

 

Let C be the available classes by a template feature vector as shown in Eq.2.6. 

 

NcccC ,...,, 21=  (Eq.2.6) 

 

In Eq.2.6, N is the number of classes. The simplest way to classify a feature vector 

iy  is to compare it to class templates and find the closest template. 

 

),( min arg
1t

ti
N

cydT
=

=  (Eq.2.7) 

 

In Eq.2.7, T is the class for feature vector iy  and ),( ti cyd  is the distance function 

between the feature vector iy  and the class .tc  

 

The most commonly used distance function is Euclidean distance function which 

is defined as Eq.2.8. 

 



 

 

26

 

2)(),( ∑ −=
i

ii nmnmd  (Eq2.8) 

 

In Eq.2.8, m and n are feature vectors. 

 

The main acoustic modeling techniques are DTW, ANN, HMM and SVM which 

are explained in Chapter 3 in detail. 

 

2.6 Language Modeling 

 

Language modeling is the process of extracting important properties of a natural 

language by analyzing statistically a corpus of language. The goal is to assign 

probabilities to strings of words in the language. These properties are then used to 

rank the word sequences candidates from recognition results of acoustic model. 

Probability that the word sequence S were spoken given the feature vector X, 

),|( XSP  can be rewritten from Bayes’ formula as shown in Eq.2.9. 

 

)(
)|()()|(

XP
SXPSPXSP =  (Eq.2.9) 

 

)(SP  is the probability that the syllable string S will be spoken by the speaker. 

)|( SXP  is the probability that when the speaker says S the speech signal 

represented by X will be observed, and )(XP  is the probability of observing X. 

 

In Eq.2.9, the probability )|( SXP  is the acoustic model probability. )(XP  is 

omitted because of assumption about randomness of speech. The last unknown 

probability is the probability ),(SP  the language model probability. 

 

By using a language model for speech recognition, the number of acceptable 

syllable sequences is limited. This limitation leads to an increase in the accuracy of 

the speech recognizer since some erroneous syllable sequences will be replaced by 

nearest approximations which are mostly the correct syllable sequences. Language 
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models are useful for large vocabulary continuous speech recognition tasks. For 

small vocabulary isolated. 

 

Language models are used to assign probabilities to syllable sequences. Models 

are trained with a large text corpus from the language to be modeled. Language 

modeling is based on estimation of probability that word sequence S can be exist in 

the language. For a syllable sequence S=s1, s2, s3, ..., sN, probability P(S) is defined as 

Eq.2.10. 

 

∏
=

−=
N

i
ii ssssPsP

1
121 ),...,,|()(  (Eq.2.10) 

 

n is the number of syllables in the sequence. ),...,,|( 121 −ii ssssP  is the probability 

that is  is observed after syllable sequence },...,,{ 121 −isss  which is called history. 

 

Statistical language modeling is based on the formulation as Eq.2.10. The main 

task in language modeling is to provide good estimation of ),...,,|( 121 −ii ssssP , the 

probability of thi  syllable given the history },...,,{ 121 −isss (Jelinek, 1998). There are 

two methods frequently used for language modeling: n-gram language modeling and 

part-of-speech (POS) based language models. The details of these two types of 

modeling techniques will be explained in the following subsections. Both of them are 

based on statistics obtained from a training corpus. n-gram language models are 

based directly on the occurrences of syllables in the history list where POS models 

use linguistic information instead of syllables. 

 

Language modeling is based on counting the occurrences of syllable sequences. 

When long histories are used some syllable sequences may not be appear in the 

training text. This results in poor modeling of acceptable syllable sequences and is 

called as data sparseness problem. 
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Sparseness problem in language modeling is solved by applying smoothing 

techniques to language models. Smoothing techniques are used for better estimating 

probabilities when there is insufficient examples of some syllable sequences to 

estimate accurate syllable sequence probabilities directly from data. Since smoothing 

techniques are applied to n-gram language modeling, some of smoothing techniques 

will be presented in the following subsections. 

 

When the number of possible syllable sequences that can be accepted by the 

speech recognizer is known and limited, then it is possible to create some finite state 

grammars which limit the output of the recognizer. The finite state grammars used in 

this case are also called language models. This type of language models are task 

oriented and can be created in a deterministic way. 

 

2.6.1 n-gram Language Models 

 

n-gram language models are the most widely used language modeling methods. 

The n is generally selected as 1 (monogram), 2 (bigram) or 3 (trigram) in most n-

gram language models. 

 

P(S) is the probability of observing syllable sequence S and can be decomposed as 

Eq.2.11. 

 

∏
=

−

−

=

=
=

N

i
ii

nn

n

sssssP
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),...,,,|()...,|()|()(         
),...,,()(

 (Eq.2.11) 

 

),...,,|( 121 −ii ssssP  is the probability that si will be observed after history s1, s2, 

…, si-1. This formulation is the general form for n-gram language models. For 

monogram language model the probabilities )( isP , for bigram )|( 1−ii ssP  and for 

trigram ),|( 21 −− iii sssP  are computed. 
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The size of history depends on the selection of n for an n-gram language. There is 

no history when for monogram language models, the history has only one syllable 

for bigram and two syllables for trigram language models. 

 
The probability P(S) is computed by counting the frequencies of syllable sequence 

S and the history. For example, trigram probabilities are computed as Eq.2.12. 

 

),(
),,(

),|(
12

12
12

−−

−−
−− =

ii

iii
iii ssC

sssCsssP  (Eq.2.12) 

 

),,( 12 iii sssC −−  is the number of occurrences of syllable sequence iii sss ,, 12 −−  

and ),( 12 −− ii ssC  is the number of occurrences of history 12 , −− ii ss . 

 

In order to have a good estimate of language model probabilities we need a large 

text corpus including virtually all occurrences of all syllable sequences. For trigrams 

a corpus of several millions of syllables can be sufficient but for higher values of n 

the number of syllables should be very high. 

 

2.6.2 Perplexity 

 

The efficiency of n-gram language model can be simply evaluated by using it in a 

speech recognition task. Alternatively it is possible to measure the efficiency of a 

language model by its perplexity. Perplexity is a statistically weighted syllable 

branching measure on a test set. If the language model perplexity is higher, the 

speech recognizer needs to consider more branches which mean there will be a 

decrease on its performance. 

  

Computation of perplexity does not involve speech recognition. It is defined as 

the derivative of cross-entropy (Huang, Acero & Hon, 2001). The perplexity based 

on cross-entropy is defined as Eq.2.13. 

 
)(2)( SHSPP =  (Eq.2.13) 



 

 

30

 

 

)(SH  is the cross-entropy of the syllable sequence S and is defined as Eq.2.14. 

 

)(log1)( 2 SP
N

SH −=  (Eq.2.14) 

 

N is the length of syllable sequence and )(SP  is the probability of the syllable 

sequence from language model. It must be noted that S is a sufficiently long syllable 

sequence which helps to find a good estimate of perplexity. 

 

Perplexity can be measured for the training set and the test set (Huang, Acero & 

Hon, 2001). When it is measured for training set it provides a measure of how the 

language model fits the training data, for the test set it gives a measure of the 

generalization capacity of language model. Perplexity is seen as a measure of 

performance since it correlates with better recognition results. Higher perplexity 

means there will be more branches to consider statistically for a recognition task 

which leads to lower recognition accuracies. 

 

2.6.3 Smoothing 

 

Another important issue in n-gram language modeling is smoothing. Smoothing is 

defined as adjusting the maximum likelihood probabilities, obtained by counting to 

model syllable sequences, to produce more accurate probability distributions. This is 

necessary since data sparseness problem in training data due to high number of 

available syllable sequence may result in assigning low probabilities or zeroes to 

certain syllable sequences that will probably seen in test data. The purpose of 

smoothing is to make the probability distributions more uniform which means 

assigning higher probabilities to syllable sequences with low probabilities obtained 

by counting, and assigning low probabilities to syllable sequences with too high 

probabilities. This gives better generalization capability to the language model. 
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A good smoothing example is to consider each bigram is occurred one more time 

than it occurred in the training set. It can be done as Eq.2.15 by modifying Eq.2.12. 

By doing such a simple smoothing we avoided zero probabilities which could be 

harmful to the speech recognizer since it can reject a correct syllable sequence that 

could not in training set of language model but had a higher probability from 

acoustic model. 

 

 

∑ −
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)|(
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1
1  (Eq.2.15) 

 

There are several smoothing techniques that can be used for language models. For 

different smoothing techniques, Huang et al. (2001) is a good reference. We will 

consider only the back-off smoothing (Katz back-off model) technique which is 

commonly used. 

 

Katz back-off smoothing is based on Good-Turing estimates which partition n-

gram into groups depending on their frequency of appearance in the training set. In 

the approach the frequency, r, of an n-gram, n is replaced by *r  which is defined as 

Eq.2.16. 

 

r

r

n
nrr 1

* )1( ++=  (Eq.2.16) 

 

rn  is the number of n-grams that occurs exactly r times and 1+rn  is the number of 

n-grams that occurs exactly n+1 times. The probability of an n-gram, a, is then 

defined as Eq.2.17. 

 

N
raP *)( =  (Eq.2.17) 
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N is the number of all counts in the distribution. In Katz smoothing, the n-grams 

are partitioned into three class according to their frequencies in the training set. For 

partitioning a constant count number, k, is used. This is partitioned number generally 

selected between 5 and 8. If r is the count of an n-gram: 

 

• Large counts are considered as reliable and there is no smoothing; kr > . 

• The counts between zero and k are smoothed with Good-Turing 

estimates; kr ≤<0 . This smoothing is a discounting process which use a 

ration based on Good-Turing estimate to reduce the lower counts. 

• The zero counts are smoothed according to some function, ,α  which tries 

to equalize the discounting of nonzero counts with increasing zero counts 

by a certain amount. 

 

For bigram language model, the Katz smoothing can be summarized as Eq.2.18, 

Eq.2.19 and Eq.2.20 (Huang, Acero & Hon, 2001; Katz, 1987). 
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It can be seen from Eq.2.20 that the probability of zero count bigrams is increased 

by weighting monogram probabilities with .α  

 

There are several disadvantage of n-gram language models: 

 

• They are unable to incorporate long-distance syllable order constraints 

since the length of history is generally small and the exact order is 

considered. 

• It is not possible to integrate new syllables or alternative domains into 

language models. 

• The meaning can not be modeled by n-gram language models. 

 

Despite these disadvantages, n-gram language models gives good results when 

used in speech recognition tasks because they are based on a large corpus with helps 

to model the approximate syllable orders that exist in the language. Many languages 

have a strong tendency toward standard syllable order. 

 

Some of the disadvantage of n-gram language models can be avoided by using 

clustering techniques. Clustering can be made manually or automatically on training 

set. Clustering can improve the efficiency of language model by creating more 

flexible models. The next subsection gives details of a clustering technique, part-of-

speech (POS) tagging. 
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CHAPTER THREE 

SPEECH RECOGNITION FEATURES AND METHODS 

  

3.1 Speech Feature Extraction 

 

The main objective of feature extraction is to detect specific characteristics from 

the speech signal that are unique to each Turkish syllable which will be used to 

differentiate Turkish words. We have mentioned the speech features as linear 

predictive coding, parcor, cepstrum, rasta and mel frequency cepstral coefficients in 

the following subsections. 

 

3.1.1 Linear Predictive Coding Coefficients 

 

It is desirable to compress a speech signal for efficient transmission or storage in 

variety applications. For example, to accommodate many speech signals in a given 

bandwidth of a cellular phone system, each digitized speech signal is compressed 

before transmission. In the case of a digital answering machine, to save a memory 

space, a message is digitized and compressed. For medium or low bit-rate speech 

coders, linear predictive coding (lpc) is most widely used (Ayuso & Soler, 1993; 

Becchetti & Ricotti, 1999; Mengüşoğlu, 1999; Meral, 1996). Redundancy in a 

speech signal is removed by passing the signal through a speech analysis filter. The 

output of the filter, which is termed the residual error signal, has less redundancy 

than original speech signal and can be quantized by smaller number of bits than the 

original speech. The residual error signal along with the filter coefficients are 

transmitted to the receiver. At the receiver, the speech is reconstructed by passing the 

residual error signal through the synthesis filter. To model a human speech 

production system, all-pole model (also known as the linear prediction model) is 

used. 

 

An all-pole system (or the linear prediction system) is used to model a vocal tract 

as shown in Figure 3.1. 
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An efficient algorithm known as the Levinson-Durbin algorithm is used to 

estimate the linear prediction coefficients from a given speech waveform. Assume 

that the present sample of the speech is predicted by the past M samples of the 

speech as shown in Eq.3.1. 

∑
=

−=−++−+−=
M

i
iM inxaMnxanxanxanx

1
21 )()(...)2()1()(~  (Eq.3.1) 

 

 
Figure 3.1 Simplified model of the speech production. 

 

)(~ nx is the prediction of ),(nx  )( inx −  is the i-th step previous sample, and }{ ia  

are called the linear prediction coefficients. The error between the actual sample and 

the predicted one can be expressed as Eq.3.2. 

 

∑
=

−−=−=ε
M

i
i inxanxnxnxn

1
)()()(~)()(  (Eq.3.2) 

 

The sum of the squared error to be minimized is expressed as Eq.3.3. 
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∑ ∑∑ 









−−=ε=

=n

M

i
i

n
inxanxnE

2

1

2 )()()(  (Eq.3.3) 

 

We would like to minimize the sum of the squared error. By setting to zero the 

derivative of E with respect to ia  ( using the chain rule ), one obtains Eq.3.4. 
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Eq.3.4 results in M unknowns in M equations such that 

 

MknxknxMnxknxa

nxknxanxknxa

nn
M

nn

 ..., 3, 2, 1,for    )()()()(

...)2()()1()( 21

=−=−−+

+−−+−−

∑∑

∑∑
 (Eq.3.5) 

 

Let us assume that a speech signal is divided into many segments (or frames) with 

N samples. If the length of each segment (or frame) is short enough, the speech 

signal in the segment may be stationary. In other words, the vocal tract model is 

fixed over the time period of one segment. The length of each segment is usually 

chosen as 20-30 ms. If a speech signal is sampled at the rate of 8000 samples/second 

and the length of each segment is 20 ms, then the number of samples in each segment 

will be 160. If the length is 30 ms, then the number of samples is going to be 240. 

 

If there are N samples in the sequence indexed from 0 to N−1 such that 

)},1(),2(),...,2(),1(),0({)}({ −−= NxNxxxxnx  Eq.3.5 can be approximately 

expressed in terms of matrix equation. 
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where   ∑
−−

=
+=

kN

n
knxnxkr

1

0
)()()(  (Eq.3.7) 

 

This is called the autocorrelation method. To solve the matrix equation as Eq.3.6, 

Gauss elimination, iteration method, or QR decomposition can be used. In any case, 

an order of 3M multiplications is required to solve the equation. However, because 

of the special characteristics of the matrix, the number of multiplications can be 

reduced to the order of 2M
 
with the Levinson-Durbin algorithm that will be 

introduced in the next section. 

 

Once the linear prediction coefficients }{ ia are computed, Eq.3.2 can be used to 

compute the error sequence ).(nε  The implementation of Eq.3.2, where )(nx is the 

input and )(nε is the output, is called the analysis filter and shown in Figure 3.2. 

 

 
Figure 3.2 Speech analysis filter. 

 

The transfer function is given by Eq.3.8. 

 



 

 

38

 

∑
=

−−=
M

i

i
i zazA

1
1)(  (Eq.3.8) 

 

Because residual error, ),(nε  has less standard deviation than speech itself, 

smaller number of bits is needed to quantize the residual error sequence. 

 

Eq.3.2 can be rewritten as the difference equation of a digital filter whose input is 

)(nε  and output is )(nx  as Eq.3.9. 

 

∑
=

ε+−=
M

i
i ninxanx

1
)()()(  (Eq.3.9) 

 

The implementation of Eq.3.9 is called the synthesis filter and is shown in Figure 

3.3. 

 

 
Figure 3.3 Speech synthesis filter. 

 

If both the linear prediction coefficients and the residual error sequence are 

available, the speech signal can be reconstructed using the synthesis filter. In 

practical speech coders, linear prediction coefficients and residual error samples need 

to be compressed before transmission. Instead of quantizing the residual error, 

sample by sample, several important parameters such as pitch period, code for a 

particular excitation, etc are transmitted. At the receiver, the residual error is 

reconstructed from the parameters. 
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3.1.1.1 Levinson-Durbin Recursive Method 

 

In this section, the Levinson-Durbin method is introduced to solve Eq.3.6 

recursively. The Levinson-Durbin method is efficient, as it needs only the order of 
2M

 
multiplications to compute the linear prediction coefficients. 

 

The sum of squared errors of the M-th order prediction (or simply the M-th order 

prediction error) in Eq.3.3 can be rewritten as Eq.3.10. 
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 (Eq.3.10) 

 

Subscript M of ME
 
denotes the order of prediction. Eq.3.4 can be rewritten as 

Eq.3.11. 
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Mininx  ..., 3, 2, 1, for    0)()(  (Eq.3.11) 

 

Because of Eq.3.11, the second summation of Eq.3.10 is zero. Thus, the final 

expression of the prediction error becomes as Eq.3.12. 
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 (Eq.3.12) 

 

We now want to develop a recursive method to solve Eq.3.6. Let us start from the 

order m=0 and increase it until the desired order reaches. 

 

m=0: When m=0 (i.e., when no prediction is made), the error is expressed as 

Eq.3.13 from Eq.3.12. 
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)0(0 rE =  (Eq.3.13) 

 

m=1: When m=1, the error is expressed as Eq.3.14. 

 

)1()0( 111 rarE −=  (Eq.3.14) 

 

The second subscript 1 of 11a  indicates that the prediction order m in this case is 

1. The solution to Eq.3.6 is as Eq.3.14. 

 

111 )0(/)1( κ== rra  (Eq.3.15) 

 

1κ  is termed the reflection coefficient. Note that magnitude of 1κ
 
is less than 1. 

(| 1κ |<1) as |r(1)| is less than r(0). Now the prediction error for m=1 becomes as 

Eq.3.16. 

[ ] [ ]2
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2
111 11)0()1()0( κ−=κ−=κ−= ErrrE  (Eq.3.16) 

One can easily show that the prediction error 1E
 
is smaller than 0E . 

 

m=2: When m=2, Eq.3.12 and Eq.3.6 can be combined in a single matrix 

equation. 
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Assume that the solution can be found recursively as shown below. 
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1κ  is the reflection coefficient. The subscript 2 of 12a
 
and 22a

 
indicates that these 

are the second order linear prediction coefficients. When the prediction order m=1, 

Eq.3.19 can be easily shown.  
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Now Eq.3.17 becomes as Eq.3.20. 
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)1()2( 112 rarq −=  (Eq.3.21) 

 

Because 0122 =κ− Eq  from Eq.3.20, the reflection coefficient becomes as 

Eq.3.22. 

 

122 / Eq=κ  (Eq.3.22) 

 

The new prediction error for M=2 becomes as Eq.3.23. 

[ ]2
22212 1 κ−=κ−= EqEE  (Eq.3.23) 

The linear prediction coefficients as Eq.3.24 can be obtained using Eq.3.18. 
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 (Eq.3.24) 

 

m=3: When m=3, one can show Eq.3.25. 
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with the assumption as Eq.3.26. 
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Now the linear coefficients as Eq.3.27 can be obtained from Eq.3.26. 
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3.1.1.1.1 Recursive Algorithm. Now the recursive solution method for any 

prediction order M is described below. 

 

Initial values: 

 

)0(0 rE =  

 

0111 /)1( Era =κ=  

 

)1( 2
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with m≥2, the following recursion is performed. 
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(iii)  mmma κ=  

 

(iv)  1- ..., 1,for    )1)(()1( miaaa mimmmiim =κ−= −−−  

[ ]2
1 1   (v) mmm EE κ−= −

 

 

(vi)   If m<M, then increase m to m+1 and go to (i). If m = M, then stop. 

 

In the recursion, there are 2m+1 multiplications are involved for each m. Thus, the 

total number of multiplications to estimate prediction coefficients for the prediction 

order, M, becomes as Eq.3.28. 

 

# multiplication )2()12( 
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 (Eq.3.28) 

 

3.1.1.2 Lattice Implementation of LPC Filters 

 

Linear prediction coefficients are computed recursively using the Levinson-

Durbin algorithm. The first order prediction coefficient 11a
 
is the same as the 

reflection coefficient 1κ . The thm  order linear prediction coefficients are obtained 

from the thm )1( −  order prediction coefficients and the reflection coefficient mκ . 

Thus, M linear prediction coefficients are equivalent to M reflection coefficients. If 

reflection coefficients are given, the corresponding linear prediction coefficients can 

be obtained or vice versa. Quantization of reflection coefficients is easier because of 
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the well-defined range of values that they take on. Note that the absolute value of 

reflection coefficients is never greater than one. This is why reflection coefficients 

instead of linear prediction coefficients are often used to represent a vocal tract filter. 

In this section, linear predictive coding (lpc) filters are implemented in a lattice form 

using reflection coefficients. 

 

The prediction error for the thm  order prediction is rewritten as Eq.3.28. 
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where )(nmε  indicates that this error is the forward prediction error. Let us assume 

that the backward linear prediction of x(n−m) is made based on x(n), x(n−1), ..., and 

x(n−m+1). The backward prediction error )(nmβ  is defined as Eq.3.29. 
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Now the (m−1)
 th 

forward prediction error is given by Eq.3.30. 
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The (m−1)
 th 

backward prediction error is as Eq.3.31. 
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Because the recursive formula for linear prediction coefficients is given by 

Eq.3.32. 
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Eq.3.23 can be shown. 
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The initial values are given by Eq.3.34. 

 

)()()( 00 nxnn =β=ε  (Eq.3.34) 

 

The final value is given by Eq.3.35. 

 

)()( nn Mε=ε  (Eq.3.35) 

 

Thus, the analysis filter can be implemented as shown in Figure 3.4 where the 

input is the speech sequence and the output is the forward prediction error. 

 

From each frame of speech samples, M reflection coefficients are computed. 

Because important information about the vocal tract model is extracted in the form of 

reflection coefficients, the output of the lpc analysis filter using reflection 

coefficients will have less redundancy than the original speech. Thus, less number of 

bits is required to quantize this so-called residual error. This quantized residual error 

along with the quantized reflection coefficients are transmitted or stored. To play 

back, a lattice implementation of the lpc synthesis filter is required. In this case, the 

input is the residual error and the output is the reconstructed speech. By reversing all 

the arrows in the top part of the analysis filter, one can implement the synthesis filter 

as shown in Figure 3.5. 
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Figure 3.4 Lattice implementation of the lpc analysis filter using reflection coefficients. 

 

 
Figure 3.5 Lattice implementation of the lpc synthesis filter using reflection coefficients. 

 

In the synthesis filter, the initial value is as Eq.3.36. 

 

)()( nnM ε=ε  (Eq.3.36) 

 

The final values are as Eq.3.37 and Eq.3.38. 
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3.1.2 Parcor Coefficients 

 

Assume that { })1(),...,1(),0( −tsss  is a sequence of speech signals. After that 

forward autoregressive (AR) model of order m is given as Eq.3.39. 
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{ }m
i

m ia 1)( =  and )(lm
fε  are forward AR coefficients and forward prediction error, 

respectively. Similarly, backward AR model of order m is given as Eq.3.40. 
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{ }m
i

m ib 1)( =  and )(lm
bε  are backward AR coefficients and backward prediction 

error, respectively. The AR coefficients { }m
i

m ia 1)( =  or { }m
i

m ib 1)( =  can be determined so 

that the mean squares error minimized. 

 

Partial autocorrelation (parcor) coefficients (Bourlard & Morgan, 1997; Carson 

& Berndsen, 1998; Özgür, 1997) are used in speech signal processing and often 

more useful than AR coefficients { }m
i

m ia 1)( =  or { }m
i

m ib 1)( = . Parcor coefficient mP  of 

m is defined as a correlation coefficient between forward and backward prediction 

errors in the autoregressive model of order m-1. Namely, it can be stated as Eq.3.41. 
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It is well known that the parcor coefficient mP  is the same as the AR coefficient 

)(mam  or )(mbm  of AR model of order m. These coefficients are calculated from 

autocorrelations of the sequence of signals. 

 

There is a fast recursive algorithm for calculating AR and parcor coefficients. The 

algorithm can compute all AR and parcor coefficients of orders 1 through m with 

)( 2mO  

 

For online computation of parcor coefficients, we can use the recursive formula 

with forgetting factor 10 <α<  to estimate the autocorrelations )(lr  as Eq.3.42. 

 

)1()1()()1( )( )()1( ++α+α−←+ tstslrlr tt  (Eq.3.42) 

 

From the estimated autocorrelations, we can calculate the parcor coefficients with 

)( 2mO  computation. 

 

3.1.3 Cepstrum Coefficients 

 

Linear predictive analysis is based on a model of the vocal tract as an all-pole 

filter (Rabiner & Juang, 1993). The lpc coefficients are a short time measure of 

speech signal as the output of this all-pole filter. Although it has been designed to 

model speech production, it is also partially valid for musical instruments. In this 

case, the filter embodies the effect of resonating body of instrument, namely, its 

timbre. 

 

An alternative feature for lpc coefficient is lpc derived cepstral coefficient, which 

can be computed simply as Eq.3.43. 
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na  is the lpc coefficient. The principal advantage of lpc derived cepstral 

coefficients is that they are generally decorrelated. 

 

3.1.4 Mel Frequency Cepstral Coefficients 

 

Because of the known variation of the ear’s critical band-widths with frequency, 

filters spaced linearly at low frequencies and logarithmically at high frequencies have 

been used to capture the phonetically important characteristics of speech. Davis & 

Mermelstein (1980) showed that the first six eigenvectors of the covariance matrix 

for Dutch vowels of the speakers, expressed in terms of 17 such filter energies, 

accounted for 91.8 percent of the total variance. The direction cosines of this 

eigenvectors were very similar to a cosine series expansion on the filter energies. 

Additional eigenvectors showed an increasing number of oscillations of their 

direction cosines with respect to their original energies. This result suggested that a 

compact representation would be provided by a set of mel-frequency cepstrum 

coefficients. These cepstrum coefficients are the result of a cosine transform of the 

real logarithm of the short-time energy spectrum expressed on a Mel-frequency 

scale.  

 

In mfcc, the main advantage is that it uses mel frequency scaling which is very 

approximate to the human auditory system. 

 

Researchers have undertaken psychoacoustic experimental work to derive 

frequency scales that attempt to model the natural response of the human perceptual 

system, since the cochlea of the inner ear acts as a spectrum analyzer. The complex 

mechanism of the inner ear and auditory nerve implies that the perceptual attributes 

of sounds at different frequencies may not be entirely simple or linear in nature. 

AT&T Bell Labs has contributed many influential discoveries in hearing, such as 

critical bands. The cochlea in our auditory system acts as if it was made up of 

overlapping filters having bandwidths equal to the critical bandwidth (Huang & 

Hon, 2001). So the skill of frequency scaling is used to map linear frequency into 

human perception. Mel-frequency scale is such a kind of perceptually motivated 
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scale, which is linear below 1 KHz, and logarithmic above. One mel is defined as 

one thousand of the pitch of a 1 KHz tone. As with all attempts, it is hoped that the 

mel scale more closely models the sensitivity of the human ear than a purely linear 

scale and provides for greater discriminatory capability between speech segments. 

Mel-scale frequency analysis has been widely used in current speech recognition 

system. It can be approximated by Eq.3.44. 

 

)700/1ln(1125)( ffB +=  (Eq.3.44) 

 

 

Where B is the Mel-frequency scale, f is the linear frequency. 

 

Given that the DFT of the input signal in Eq.3.45. 
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And we define mel-frequency filter bank with p filters jm  (j=1,2,…,p), where 

filter m is triangular filter shown in the Figure 3.6. 

 

Each FFT magnitude coefficient is multiplied by the corresponding filter gain and 

the results accumulated. It can be computed as Eq.3.46. 
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Where Hj[k] is the transfer function of filter j. The mel frequency cepstrum is then 

the discrete cosine transform of the p filter outputs. It’s described as Eq.3.47. 
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Figure 3.6 Mel frequency filter bank. 
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For speech recognition, normally only the first 13 Cepstrum coefficients are used 

(Young & Kershaw, 2000). 

 

3.1.5 RelAtive SpecTrAl (RASTA) Features 

 

Noisy environments decreases the performance of the speech recognition systems. 

RASTA (Hermansky & Morgan, 1994) was developed to eliminate the 

environmental factors. The method filters out distortions and noises caused by 

environmental factors and increases speech recognition performance. 

 

In this method, it is replaced a common short term absolute spectrum by a spectral 

estimate in which every frequency channel is band pass filtered by a filter with sharp 

spectral zero at the zero frequency. The spectral estimate is less sensitive to slow 

variations in the short term spectrum.When the filtering operation is applied in the 



 

 

52

 

logarithmic spectral domain, the suppressed constant spectral component reflect the 

effect of the convolutive factors in the digital speech signal. 

 

The algorithm of RASTA are given as the following. The algorithm is applied for 

each speech frame. 

 

1. Compute the critical band spectrum and take its logarithm. 

2. Estimate the temporal derivative of the log critical band spectrum using 

regression line through five consecutive spectral values. 

3. Nonlinear processing such as applying threshold of median filtering can be 

done in this domain. 

4. Reintegrate the log critical band temporal derivative using a first order IIR 

system. The pole position of this system can be adjusted to set the effective 

window size. 

5. Add the equal loudness curve and multiply by 0.33 to simulate the power law 

of hearing. 

6. Take the inverse logarithm (exponential function) of this relative log 

spectrum, yielding a relative auditory spectrum. 

7. Compute an all-pole model of this spectrum. 

 

If the derivative of Step 2 is estimated by a simple first differece, and if the full 

integration in Step 4 is done (pole at z=1.0), then all intermediate terms cancel and 

the technique is equivalent to substraction of the log spectrum of the first analysis 

frame from each new frame. In this special case, the RASTA technique resembles the 

spectral substraction or blind deconbolution techniques. The whole derivative-

integration process is equivalent to a bandpass filtering of each frequency channel 

through an IIR filter with the transfer function as Eq.3.48. 
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The low cut-off frequency of the filter determines the fastest spectral change of 

the log spectrum which is ignored in the output, while the high cut-off frequency 

determines the fastest spectral change which is preserved. 

 

 
Figure 3.7 RASTA process. 

 

Linear distortions appear as an additive constant in the log spectrum. The high 

pass portion of the equivalent band-pass filter is expected to alleviate the effect of the 

convolutional noise introduced in the channel. The low pass filtering is expected to 

help in smoothing out some of fast frame to frame spectral changes present in the 

short time spectral estimate due to analysis artifacts. In Eq.3.48, low cut-off 
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frequency is 0.26 Hz. The filter slope decreases 6 dB/oct from 12.8 Hz with sharp 

zeros at 28.9 Hz and at 50 Hz. The whole process is illutrated in Figure 3.7. 

 

3.2 Speech Recognition Methods 

 

3.2.1 Linear Time Alignment (LTA) 

 

Linear time alignment algorithms are the simplest algorithms to implement and 

they can be used for both expansion and compression of the speech pattern vector. 

There are various ways of implementing linear algorithms, but all of them use the 

basic method of deleting feature vectors to shorten the speech pattern and duplicating 

feature vectors to length the speech pattern. An example is to duplicate or delete 

vectors at regular intervals along the pattern vector until the speech pattern is the 

correct size. An example of a linear algorithm used in conjunction with a neural 

network is that of Woodland (1990). Woodland achieved recognition rates of 91% 

for multiple speaker recognition and 88.3% for speaker independent recognition. 

 

3.2.2 Dynamic Time Warping (DTW) 

 

Dynamic time warping (DTW) is a technique that finds the optimal alignment 

between two time series if one time series can be “warped” non-linearly by stretching 

or shrinking it along its time axis. This warping between two time series can then be 

used to find corresponding regions between the two time series or to determine the 

similarity between the two time series. Dynamic time warping is often used in speech 

recognition to determine if two waveforms represent the same spoken phrase. In a 

speech waveform, the duration of each spoken sound and the interval between 

sounds are permitted to vary, but the overall speech waveforms must be similar. In 

addition to speech recognition, dynamic time warping has also been found useful in 

many other disciplines, including data mining, gesture recognition, robotics, 

manufacturing, and medicine. Dynamic time warping is commonly used in data 

mining as a distance measure between time series. An example of how one time 

series is “warped” to another is shown in Figure 3.8. 
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In Figure 3.8, each vertical line connects a point in one time series to its 

correspondingly similar point in the other time series. The lines actually have similar 

values on the y-axis but have been separated so the vertical lines between them can 

be viewed more easily. If both of the time series in Figure 3.8 were identical, all of 

the lines would be straight vertical lines because no warping would be necessary to 

‘line up’ the two time series. The warp path distance is a measure of the difference 

between the two time series after they have been warped together, which is measured 

by the sum of the distances between each pair of points connected by the vertical 

lines in Figure 3.8. Thus, two time series that are identical except for localized 

stretching of the time axis will have DTW distances of zero. 

 

 
Figure 3.8 A warping between two time series. 

 

A distance measurement between time series is needed to determine similarity 

between time series and for time series classification. Euclidean distance is an 

efficient distance measurement that can be used. The Euclidian distance between two 

time series is simply the sum of the squared distances from each nth point in one time 

series to the nth point in the other. The main disadvantage of using Euclidean distance 

for time series data is that its results are very unintuitive. If two time series are 

identical, but one is shifted slightly along the time axis, then Euclidean distance may 

consider them to be very different from each other. Dynamic time warping (DTW) 

was introduced (Kruskall & Liberman, 1983) to overcome this limitation and give 
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intuitive distance measurements between time series by ignoring both global and 

local shifts in the time dimension. 

 

3.2.2.1 Problem Formulation 

 

The dynamic time warping problem is stated as Eq.3.49. Given two time series X, 

and Y, of lengths | X | and | Y |. 
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 A warp path W is constructed as Eq.3.50. 

 

YXKY
wwwW K

+<≤

=

),Xmax(
  ,...,, 21  (Eq.3.50) 

 

where K is the length of the warp path and the kth element of the warp is wk = (i, j), 

where i is an index from time series X, and j is an index from time series Y. The warp 

path must start at the beginning of each time series at w1 = (1,1) and finish at the end 

of both time series at wK = (|X|, |Y|). This ensures that every index of both time series 

is used in the warp path. There is also a constraint on the warp path that forces i and j 

to be monotonically increasing in the warp path, which is why the lines representing 

the warp path in Figure 3.8 do not overlap. Every index of each time series must be 

used. Eq.3.51 states more formally. 

 

),,( jiwk =    ),(1 jiwk ′′=+     1+≤′≤ iii     1+≤′≤ jjj  (Eq.3.51) 

 

The optimal warp path is the warp path is the minimum-distance warp path, where 

the distance of a warp path W is as Eq.3.52. 
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Dist(W) is the distance of warp path W, and Dist(wki, wkj) is the distance between 

the two data point indexes (one from X and one from Y) in the kth  element of the 

warp path. 

 

3.2.3 Artificial Neural Networks (ANN) 

 

The ANNs probably belong to the borderline between the Artificial Intelligence 

and Approximation Algorithms. The ANNs are used in universal approximation 

(mapping input to the output), tools capable of learning from their environment.  

 

The Neural Networking algorithms model the brain (not necessarily - human 

brain) and how it processes the information. The brain is a very efficient tool. Having 

about 100,000 times slower response time than computer chips, it beats the computer 

in complex tasks, such as image and sound recognition, motion control and so on. It 

is also about 10,000,000,000 times more efficient than the computer chip in terms of 

energy consumption per operation.  

 

The brain is a multi layer structure that works as a parallel computer capable of 

learning from the “feedback”. It receives from the world and changing its design by 

growing new neural links between neurons or altering activities of existing ones. The 

brain is composed of neurons, interconnected.  
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3.2.3.1 The Biological Neuron 

 

 
Figure 3.9 A biological neuron. 

 

This neuron has two parts very interesting to us, called the synapse and the 

dendrite as shown in Figure 3.9. The dendrites are extensions of a neuron which 

connect to other neurons to form a neural network, while synapses are a gateway 

which connects to dendrites that come from other neurons. A biological neuron may 

thus be connected to other neurons as well as accepting connections from other 

neurons, and so we have the basis of a network.  

 

Through those connections, electrical pulses are transmitted, and information is 

carried in the timing and the frequency with which these pulses are emitted.  

 

So, our neuron receives information from other neurons, processes it and then 

relays this information to other neurons. A question which immediately arises is: of 

what form does this processing take? Clearly, the neuron must generate some kind of 

output based on the cumulative input. We still do not know the exact answer to the 

question as to what happens in a biological neuron. However, we do know that our 

neuron integrates the pulses that arrive and when this integration exceeds a certain 

limit, our neuron in turn emits a pulse.  
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Finally, one more thing that you should know is that dendrites modify the 

amplitude of the pulses traveling through them. This modification varies with time, 

as the network “learns”.  

 

So we could assume that when a connection (dendrite) is very strong, the 

importance of the neuron from which this connection come has an important role in 

the network, and on the other hand, when a connection is very narrow, the 

importance of the neuron from which the connection comes from is less high. Thus 

the neural network stores information in the pattern of connection weights. 

 

3.2.3.2 Structure of a Neuron 

 

Our “artificial” neuron will have inputs (all N of them) and one output. In Figure 

3.10 the neuron has set of nodes that connect to inputs, output, or other neurons, also 

called synapses. 

 

 
Figure 3.10 A neuron structure. 

 



 

 

60

 

A Linear Combiner, which is a function that takes all inputs and produces a single 

value. A simple way of doing it is by adding together the dInput (“d” prefix means 

“double”, we use it so that the name (dInput) represents the floating point number) 

multiplied by the Synaptic Weight (dWeight). 

 

How do we make a non-linear input? By applying the Activation Function, it will 

take any input from minus infinity to plus infinity and squeeze it into the -1 to 1 or 

into 0 to 1 interval. 

 

Finally, we have a threshold. What should the internal activity of a neuron be 

when there is no input? Should there be some threshold input before we have the 

activity? Or should the activity be present as some level (in this case it is called a 

bias rather than a threshold) when the input is zero?  

 

3.2.3.3 A Neural Net 

 

A single neuron by itself is not a very useful pattern recognition tool. The real 

power of neural networks comes when we combine neurons into the multilayer 

structures, called neural networks. 

 

As you can see in Figure 3.11, there are 3 layers in our network. There are N 

neurons in the first layer, where N equals number of inputs. There are M neurons in 

the output layer, where M equals number of outputs. For example, when you are 

building the network capable of predicting the stock price, you might want the 

yesterday's high, low and close volume as inputs and close as the output.  

 

You may have any number of neurons in the inner (also called “hidden”) layers. If 

you have too few, the quality of a prediction will drop and the net doesn't have 

enough “brains”. And if you make it too many - it will have a tendency to 

“remember” the right answers, rather than predicting them. Then your neural net will 

work very well on the familiar data, but will fail on the data that was never presented 

before. 
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Figure 3.11 A simple neural net. 

 

3.2.3.4 Backpropagation 

 

A single-layer network has severe restrictions: the class of tasks that can be 

accomplished is very limited. In this chapter we will focus on feed-forward networks 

with layers of processing units. Minsky and Papert (1969) showed that a two layer 

feed-forward network can overcome many restrictions, but did not present a solution 

to the problem of how to adjust the weights from input to hidden units. An answer to 

this question was presented by Rumelhart, Hinton and Williams (1986), and similar 

solutions appeared to have been published earlier (Werbos, 1974; Parker, 1985; Le 

Cun, 1985). The central idea behind this solution is that the errors for the units of the 

hidden layer are determined by back-propagating the errors of the units of the output 

layer. For this reason the method is often called the back-propagation learning rule. 

Back-propagation can also be considered as a generalization of the delta rule for non-

linear activation functions and multilayer networks. 

 

3.2.3.4.1 Multi-layer Feed-forward Networks. A feed-forward network has a 

layered structure. Each layer consists of units which receive their input from units 

from a layer directly below and send their output to units in a layer directly above the 

unit. There are no connections within a layer. The Ni inputs are fed into the first layer 
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of Nh; one hidden unit. The input units are merely 'fan-out' units; no processing takes 

place in these units. The activation of a hidden unit is a function Fi of the weighted 

inputs plus a bias, as given in Eq.3.53. 
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The output of the hidden units is distributed over the next layer of Nh; 2 hidden 

units, until the last layer of hidden units, of which the outputs are fed into a layer of 

No output units as shown in Figure 3.12. 

 

 
Figure 3.12 Neural network with hidden layers. 

 

Although backpropagation can be applied to networks with any number of layers, 

just as for networks with binary units it has been shown (Hornik, Stinchcombe, & 

White, 1989; Funahashi, 1989; Cybenko, 1989; Hartman, Keeler, & Kowalski, 1990) 

that only one layer of hidden units success to approximate any function with finitely 

many discontinuities to arbitrary precision, provided the activation functions of the 

hidden units are non-linear (the universal approximation theorem). In most 
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applications a feed-forward network with a single layer of hidden units is used with a 

sigmoid activation function for the units. 

 

3.2.4 Hidden Markov Models (HMM) 

 

HMM (Rabiner, 1989) is a result of the attempt to model the speech generation 

statistically. During the past several years it has become the most successful speech 

model used in speech recognition. The main reason for this success is its wonderful 

ability to characterize the speech signal in a mathematically tractable way. 

 

In a HMM based speech recognition system (Ferguson, 1980; Juang & Rabiner, 

1990; Pepper, Barnwell, & Clements, 1990), the HMM stage is proceeded by the 

preprocessing (feature parameter extraction) stages. Thus the input to the HMM is a 

discrete time sequence of feature parameter vectors. The parameter vectors can be 

supplied to the HMM, either in vector quantized form or in raw continuous form. It 

can be designed HMMs to handle any of the cases, but important point is how the 

HMM deals with the stochastic nature of the amplitudes of the feature vectors which 

is superimposed on the time stochasticity.  

 

The HMM is a finite set of states, each of which is associated with a probability 

distribution. Transitions among the states are governed by a set of probabilities called 

transition probabilities. In a particular state an outcome or observation can be 

generated, according to the associated probability distribution. It is only the outcome, 

not the state visible to an external observer and therefore states are “hidden” to the 

outside; hence the name Hidden Markov Model. 

 

In order to define an HMM completely, following elements are needed.  

 

• The number of states of the model, N.  

• The number of observation symbols in the alphabet, M. If the observations are 

continuous then M is infinite. 

• A set of state transition probabilities as shown in Eq.3.54. 
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tq  denotes the current state. Transition probabilities should satisfy the normal 

stochastic constraints as Eq.3.55 and Eq.3.56. 
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• A probability distribution in each of the states as shown as Eq.3.57. 
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kv  denotes the thk  observation symbol in the alphabet, and to  the current 

parameter vector. 

 

The stochastic constraints as Eq.3.58 and Eq.3.59 must be satisfied. 
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If the observations are continuous, then we will have to use a continuous 

probability density function, instead of a set of discrete probabilities. In this case we 

specify the parameters of the probability density function. Usually the probability 
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density is approximated by a weighted sum of M Gaussian distributions Ω  as 

Eq.3.60. 
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 (Eq.3.60) 

 

jmc  should satisfy the stochastic constraints as Eq.3.61 and Eq.3.62. 
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• The initial state distribution as shown in Eq.3.63. 
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Therefore we can use the compact notation as Eq.3.64 to denote an HMM with 

probability distributions while to denote an HMM with continuous densities as 

Eq.3.65. 

 

),,( π=λ BA  (Eq.3.64) 
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3.2.4.1 Assumptions of HMMs 

 

For the sake of mathematical and computational tractability, following 

assumptions are made in the theory of HMMs. 

 

3.2.4.1.1 The Markov Assumption. As given in the definition of HMMs, transition 

probabilities are defined as Eq.3.66. 

 

}|{ 1 iqjqpa ttij === +  (Eq.3.66) 

 

In other words, it is assumed that the next state is dependent only upon the current 

state. This is called the Markov assumption and the resulting model becomes actually 

a first order HMM. 

 

However, generally the next state may depend on past k states and it is possible to 

obtain such a model, called an thk order HMM by defining the transition 

probabilities as Eq.3.67. 
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But, it is seen that a higher order HMM will have a higher complexity. Even 

though the first order HMMs are the most common, some attempts have been made 

to use the higher order HMMs too. 

 

3.2.4.1.2 The Stationary Assumption. Here, it is assumed that state transition 

probabilities are independent of the actual time at which the transitions take place. 

Mathematically, it can be stated as Eq.3.68. 
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3.2.4.1.3 The Output Independence Assumption. This is the assumption that 

current output(observation) is statistically independent of the previous outputs 

(observations). We can formulate this assumption mathematically, by considering a 

sequence of observations as Eq.3.69. 

 

toooO ,...,, 21=  (Eq.3.69) 

 

Then, according to the assumption for an HMM λ  as Eq.3.70. 
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However, unlike the other two, this assumption has a very limited validity. In 

some cases this assumption may not be fair enough and therefore becomes a severe 

weakness of the HMMs. 

 

3.2.4.2 Three Basic Problems of HMMs 

 

Once we have an HMM, there are three problems of interest. 

 

3.2.4.2.1 The Evaluation Problem. Given an HMM λ  and a sequence of 

observations ToooO ,...,, 21= , what is the probability that the observations are 

generated by the model as Eq.3.71? 

 

  }|{ λOp  (Eq.3.71) 

 

3.2.4.2.2 The Decoding Problem. Given an HMM λ  and a sequence of 

observations ToooO ,...,, 21= , what is the most likely state sequence in the model 

that produced the observations? 
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3.2.4.2.3 The Learning Problem. Given an HMM λ  and a sequence of 

observations ToooO ,...,, 21= , how should we adjust the model parameters },,{ πBA  

in order to maximize }|{ λOp ? 

 

Evaluation problem can be used for isolated word recognition. Decoding problem 

is related to the continuous recognition as well as to the segmentation. Learning 

problem must be solved if we want to train an HMM for the subsequent use of 

recognition tasks. 

 

3.2.4.3 The Evaluation Problem and the Forward Algorithm 

 

We have a model ),,( π=λ BA  and a sequence of observations ToooO ,...,, 21= , 

and }|{ λOp  must be found. We can calculate this quantity using simple 

probabilistic arguments. But, this calculation involves number of operations in the 

order of TN . This is very large even if the length of the sequence, T is moderate. 

Therefore, for this calculation we have to look for another method. Fortunately, there 

exists one which has a considerably low complexity and makes use an auxiliary 

variable, )(itα  called “forward variable”. 

 

The forward variable is defined as the probability of the partial observation 

sequence Tooo ,...,, 21 , when it terminates at the state i. Mathematically, it can be 

stated as Eq.3.72. 

 

}|,,...,,{)( 21 λ==α iqooopi ttt  (Eq.3.72) 

 

Then, it is easy to see that the recursive relationship as Eq.3.73 holds. 
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Using this recursion we can calculate Eq.3.74. 

 

NiiT ≤≤α 1    ),(  (Eq2.74) 

 

And then, the required probability is given by Eq.3.75. 
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The complexity of this method, known as the “forward algorithm” is proportional 

to TN 2 , which is linear with respect to T whereas the direct calculation had an 

exponential complexity. 

 

In a similar way, we can define the “backward variable” )(itβ  as the probability 

of the partial observation sequence Ttt ooo ,...,, 21 ++ , given that the current state is i. 

Mathematically , this can be stated as Eq.3.76. 

 

},|,...,,{)( 21 λ==β ++ iqooopi tTttt  (Eq.3.76) 

 

As in the case of )(itα  there is a recursive relationship which can be used to 

calculate )(itβ  efficiently as shown in Eq.3.77. 
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We can also see the Eq.3.78. 
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Therefore, this gives another way to calculate }|{ λOp , by using both forward 

and backward variables as given in Eq.3.79. 
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Eq.3.79 is very useful, especially in deriving the formulas required for gradient 

based training. 

 

3.2.4.4 The Decoding Problem and the Viterbi Algorithm 

 

In this case, we want to find the most likely state sequence for a given sequence of 

observations, ToooO ,...,, 21=  and a model, ),,( π=λ BA . 

 

The solution to this problem depends upon the way “most likely state sequence” is 

defined. One approach is to find the most likely state tq  at t=t and to concatenate all 

such “ tq ”s. But, some times this method does not give a physically meaningful state 

sequence. Therefore, we would use another method which has no such problems. 

In this method, commonly known as “Viterbi algorithm”, the whole state sequence 

with the maximum likelihood is found. In order to facilitate the computation we 

define an auxiliary variable as Eq.3.80 which gives the highest probability that 

partial observation sequence and state sequence up to t=t can have, when the current 

state is i. 
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It is easy to observe that the recursive relationship as Eq.3.81 holds. 
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So, the procedure to find the most likely state sequence starts from calculation of 

)( jTδ , Nj ≤≤1  using recursion in Eq.3.81, while always keeping a pointer to the 

“winning state” in the maximum finding operation. Finally, the state *j  is found by 

Eq.3.82 and starting from this state. The sequence of states is back-tracked as the 

pointer in each state indicates. This gives the required set of states. 

This whole algorithm can be interpreted as a search in a graph whose nodes are 

formed by the states of the HMM in each of the time instant Ttt ≤≤1  , .  

 

)(  max arg
1

* jj T
Nj

δ=
≤≤

 (Eq.3.82) 

 

3.2.5 Support Vector Machines (SVM) 

 

SVM have been introduced as a new technique for solving pattern recognition 

problems (Blanz et al., 1996; Cortes & Vapnik, 1995; Osuna, Freud & Girosi, 1997; 

Schölkopf et al., 1996). According to the theory of SVMs (Vapnik, 1982, 1995), 

while traditional techniques for pattern recognition are based on the minimization on 

the training set, SVMs minimize the structural risk. Namely, the probability of 

misclassifying to be seen patterns for a fixed but unknown probability distribution of 

the data. This new induction principle, which is equivalent to minimize an upper 

bound on the generalization error, relies on the theory of uniform convergence in 

probability (Vapnik, 1982). What makes SVMs attractive is the ability to condense 

the information contained in the training set, and the use of families of decision 

surfaces of relatively low VC-dimension (Vapnik & Chervonenkis, 1971). 

 

In the linear, separable case the key idea of a SVM can be explained in plain 

words. Given a training set S which contains points of either of two classes, a SVM 

separates the classes through a hyper-plane determined by certain points of S, termed 

“support vectors”. In the separable case, this hyper-plane maximizes the margin, or 

twice the minimum distance of either class from the hyper-plane, and all the support 

vectors lie at the same minimum distance from the hyper-plane. In real cases, the two 
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classes may not be separable and both the hyper-plane and the support vectors are 

obtained from the solution of a problem of constrained optimization. The solution is 

a trade-off between the largest margin and the lowest number of errors, trade-off 

controlled by a regularization parameter. 

 

3.2.5.1 Optimal Separating Hyper-plane 

 

Assume S is a set of points n
i Rx ∈  with Ni  ..., 2, 1,= . Each point ix  belongs to 

either of two classes and thus is given a label }1 -1,{∈iy . The goal is to establish the 

equation of a hyper-plane that divides S leaving all the points of the same class on 

the same side while maximizing the minimum distance between either of the two 

classes and the hyper-plane. To this purpose we need some preliminary definitions. 

 

Definition: The set S is linearly separable if there exists nRw ∈  and Rb ∈  such 

that Eq.3.83 is satisfied. 

 

1 if    1
,1 if    1
−=−≤+⋅

=≥+⋅

ii

ii

ybxw
ybxw

 (Eq.3.83) 

 

In compact notation, the two inequalities as Eq.3.83 can be rewritten as Eq.3.84. 

 

Nibxwy ii  ..., 2, 1,for     , 1)( =≥+⋅  (Eq.3.84) 

 

The pair ),( bw  defines a hyper-plane of equation as Eq.3.85 named “separating 

hyper-plane” as shown Figure 3.14 and 3.15. 

 

0=+⋅ bxw  (Eq.3.85)  

 

If we denote with w the norm of w, the signed distance id  of a point ix  from the 

separating hyper-plane ),( bw  is given by Eq.3.86. 
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w
bxwd i

i
+⋅

=  (Eq.3.86) 

 

Combining inequality as Eq.3.84 and Eq.3.86, for all Sxi ∈  we have Eq.3.87. 

 

w
dy ii

1
≥  (Eq.3.87) 

 

In Figure 3.13 and 3.14, both solid lines separate the two identical sets of open 

circles and triangles, but the solid line in Figure 3.14 leaves the closest points at the 

maximum distance. The dashed lines in Figure 3.14 identify the margin. 

 

Therefore, w/1  is the lower bound on the distance between the points ix  and the 

separating hyper-plane ),( bw . 

 

 
Figure 3.13 Separating hyper-plane. 
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Figure 3.14 Optimal separating hyper-plane. 

 

One might ask why not simply rewrite inequality in Eq.3.84 as shown Eq.3.88. 

 

0)( ≥+⋅ bxwy ii  (Eq.3.88) 

 

The purpose of the “1” in the right hand side of inequality Eq.3.84 is to establish a 

one-to-one correspondence between separating hyper-planes and their parametric 

representation. This is done through the notation of canonical representation of a 

separating hyper-plane. 

 

Definition: Given a separating hyper-plane ),( bw  for the linearly separable set, S, 

the “canonical representation” of the separating hyper-plane is obtained by rescaling 

the pair ),( bw  into the pair ),( bw ′′  in such a way that the distance of the closest 

point equals w′/1 . 

 

Through above definition, we have Eq.3.89. 
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1)} ({min i
=′+⋅′∈ bxwy iiSx  (Eq.3.89) 

 

Consequently, for a separating hyper-plane in the canonical representation, the 

bound in Eq.3.87 is tight. In what follow we will assume that a separating hyper-

plane is always given the canonical representation and thus write ),( bw  instead of 

),( bw ′′ . We are now in a position to define the notation of optimal separating hyper-

plane. 

 

Definition: Given a linearly separable set S, the “optimal separating hyper-plane” 

(OSH) is the separating hyper-plane which maximizes the distance of the closest 

point of S. 

 

Since the distance of the closest point equals 1/w, the OSH can be regarded as the 

solution of the problem of maximizing 1/w subject to the constraint as Eq.3.84, or the 

problem as shown in Eq.3.90. 

 

N,    ib)x(wy

w

ii ..., 2, ,11    : subject to

w
2
1    :Minimize

=≥+⋅

⋅
 (Eq.3.90) 

 

Two comments are in order. First, if the pair ),( bw  solves Eq.3.90, then for at 

least one Sxi ∈  we have 1)( =+⋅ bxwy ii . In particular, this implies that the 

solution of Eq2.146 is always a separating hyper-plane in the canonical 

representation. Second, the parameter b enters in the constraints but not in the 

function to be minimized. The quantity 2/w, which measures the distance between 

the two classes in the direction of w, is named “margin”. Hence, the OSH can also be 

seen as a separating hyper-plane which maximizes the margin as shown in Figure 

3.14. We now study the properties of the solution of Eq.3.90. 
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3.2.5.2 Support Vectors 

 

Eq.3.90 can be solved by means of the classical method of Lagrange multipliers 

(Bazaraa & Shetty, 1979). If we denote with ),...,,( 21 Nααα=α  the N nonnegative 

Lagrange multipliers associated with the constraints as Eq.3.84, the solution to 

problem as Eq.3.90 is equivalent to determining the “saddle point” of Eq.3.91 with 

),,( α= bwLL . 

 

∑
=

−+⋅α−⋅=
N

i
iii bxwywwL

1
}1)({

2
1  (Eq.3.91) 

 

At the saddle point, L has a minimum for ww =  and bb =  and a maximum for 

α=α , and thus we can write Eq.3.92 and Eq.3.93 with Eq.3.94. 

 

∑
=

=α=
∂
∂ N

i
iiy

b
L

1
0  (Eq.3.92) 

 

∑
=

=α−=
∂
∂ N

i
iii xyw

w
L

1
0  (Eq.3.93) 
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w
L

w
L ,...,,

21
 (Eq.3.94) 

 

Substituting Eq.3.92 and Eq.3.93 into the right hand of Eq.3.91, we see that 

Eq.3.90 reduces to the maximization of Eq.3.95 subject to the constraint as Eq.3.92 

with 0≥α . This new problem is called “dual problem” can be formulated as 

Eq.3.96. 
 

∑∑
==

⋅αα−α=α
N

ji
jijiji

N

i
i xxyy

1,1 2
1)(l  (Eq.3.95) 
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0     , 0    subject to
2
1    Maximize

≥α=α

α+α⋅α−

∑
∑

ii

i

y

D
 (Eq.3.96) 

 

Both sums are for i=1, 2, ..., N, and D is an NxN matrix such that Eq.3.97 is 

satisfied. 

 

jijiij xxyyD ⋅=  (Eq.3.97) 

 

As for the pair ),( bw , from Eq.3.96, it follows Eq.3.98 while b  can be 

determined from the Kuhn-Tucker conditions as Eq.3.99. 

 

∑
=

α=
N

i
iii xyw

1
 (Eq.3.98) 

 

Nibxwy iii ..., 2, 1,    , 0)1)(( ==−+⋅α  (Eq.3.99) 

 

Note that the only iα  that can be nonzero in Eq.3.99 are those for which the 

constraints as Eq.3.84 are satisfied with the inequality sign. The corresponding points 

ix , termed “support vectors”, are the points of S closest to the OSH. Given a support 

vector jx , the parameter b  can be obtained from the corresponding Kuhn-Tucker 

condition as Eq.3.100. 

 

jj xwyb ⋅−=  (Eq.3.100) 

 

The problem of classifying a new data point x  is now simply solved by 

computing as Eq.3.101. 

 

)(sign bxw +⋅  (Eq.3.101) 
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In conclusion, the support vectors condense all the information contained in the 

training set S which is needed to classify new data points. 
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CHAPTER FOUR 

TURKISH SYLLABLE n-GRAM ANALYSIS 

 

4.1 Introduction 

 

The designation of language properties is important for natural language 

processing (NLP) systems, such as automatic language detection, spell checking and 

suggestion mechanism for wrong written words and text summary generation 

systems. Furthermore, it is worthy in the area of cryptology, data compression, 

speech synthesis and speech recognition. It is difficult to construct a NLP system for 

Turkish language. Because some extra techniques are needed to overcome the 

difficulties arise from the language nature. In this manner, a new mechanism is 

suggested for parsing the Turkish words by syllables within this chapter. 

 

TASA (Turkish Automatic Syllabifying Algorithm) is developed for hyphenation 

of Turkish words (Aşlıyan & Günel, 2005). The algorithm, which is coded with 

Matlab, is tested over 5 different corpora (Dalkılıç & Çebi, 2003). The test results 

show that the algorithm's error rate is 0% for the first 2000 Turkish words in each 

corpus. Then the total number of syllables and the number of syllables are calculated 

in Turkish for each corpus. The frequency of each syllable is analyzed. The syllable 

length distribution over corpora and the average syllable length are determined. 

 

To extract the statistical information from the corpora, we use the Markov Model 

(Jurafsky & Martin, 2000), which is a probabilistic model. An n-th order Markov 

model looks (n-1)-th words into the past and calculates the probability of word 

sequences of the  language. We apply this approach over the Turkish syllables. To 

obtain the n-gram probability (Jurafsky & Martin, 2003) from a corpus, Eq.4.1 can 

be used. 

 

),...,(
),...,(

)|(
11

1
1

−+−

+−
+− =

ini

ini
nii ssC

ssCssP  (Eq.4.1) 
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Table 4.1 Turkish alphabet 

Vowels : a e ı i o ö u ü 

Consonants : b c ç d f g ğ h j k l m n p r s ş t v y z 

 

As shown in Eq.4.1, ),...,( 1 ini ssC +−  is the number of occurrences of the syllable 

sequence ini ss ,...,1+−  in a corpus. 

  

Turkish language is a member of Altaic languages. The Turkish language consists 

of twenty nine different letters, which are given in the Table 4.1. The segments of 

speech uttered with a single impulse of air are called syllables. The Turkish words 

consist of a sequence of syllables. Morphologically, Turkish is an agglutinative 

language. Therefore, it is possible to generate thousands of forms from a given root 

word with suffixes, as Korean, Hungarian and Finnish.  

 

An exaggerated and so popular example of a Turkish word formation (Oflazer & 

Bozşahin, 1994) is given as “Çekoslovakyalılaştıramadıklarımızdanmışsınızcasına”. 

 

The word equivalent in English is “you were of those whom we could not convert 

to a Czechoslovakian”. In our example the root morpheme is Çekoslovakya, which is 

the name of the state of Czechoslovakia in English. The Syllabifying of the word is 

“Çe-kos-lo-vak-ya-lı-laş-tı-ra-ma-dık-la-rı-mız-dan-mış-sı-nız-ca-sı-na”.  

 

In Turkish, the syllables have at least one and at most four letters, which are 

meaningless in themselves except some special cases, such as “bal”, “kol”, “dal”, 

“çal”, “kürk. All the possible combinations of Turkish syllable formations with some 

examples are given in Table 4.2, where C and V denote the consonant and vowel, 

respectively. 

 

Some exceptional cases exist for the foreign words in Turkish, e.g. “tvist” 

imported from the English word “twist”, and for the words with accents, which alter 

the pronunciation of the syllables that contain them, such as “kâr”, “umumî” and 
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“üslûp”, which mean “profit”, “general” and “style” in English, respectively. In the 

next section, a new algorithm, which achieves the segmentation of the Turkish words 

to their syllables capable of overcoming all special cases, has been given. 
 

Table 4.2 The possible Turkish syllable structure 

V a e ı i o ö u ü 

VC ab, ac, aç, ad, ..., az, eb, ec, eç, ... 

CV ba, be, bı, bi, ..., za, ze, zı, zi, ... 

CVC bel, gel, köy, tır, ... 

VCC alt, üst, ırk, ... 

CCV bre, ... 

CVCC kurt, yurt, renk, Türk, ... 

 

4.2 Design and Implementation of TASA 

 

TASA is implemented with Matlab on Windows. As it is shown in Figure 4.1, 

TASA takes each word one by one from Turkish clean text corpus which is obtained 

by preprocessing the Turkish text corpus. In the preprocessing stage, punctuation 

marks are eliminated. Each letter is converted to lower case. There is only one blank 

between two words. After the preprocessing, TASA extracts the syllables from the 

word. The output of the TASA is Turkish Text Corpus which includes the syllables 

of the words. 

 

TASA consists of two main parts as TASA-A and TASA-B as given in Figure 4.1. 

TASA-A divides the words into subword units. TASA-B extract syllables from 

subword units. 
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Figure 4.1 The Turkish syllable extracting system. 

 

4.2.1 The Algorithm of TASA-A 

 

The algoritm takes a word as an input and gives subword units as outputs. The 

algorithm incorporates four steps. 

 
Step 1: If there are four consonants in the word side by side, and 

if these consonants are not at the beginning or end of the word, the 
word is divided into subword units after the second consonant. 

 
Step 2: If there are three consonants in the word side by side, 

and if these consonants are not at the beginning or end of the word, 
the word is divided into subword units after the second consonant. 
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Step 3: If there are two consonants in the word side by side, and 
if these consonants are not at the beginning or end of the word, the 
word is divided into subword units after the first consonant. 

 
Step 4: If there are two vowels in the word side by side, the word 

is divided into subword units after the first vowel.  
 

 
Figure 4.2 TASA structure. 

 

4.2.2 The Algorithm of TASA-B 

 

The algorithm takes a subword unit as an input and gives syllables of the subword 

unit as outputs. TASA-B consists of six cases according to the length of the subword 

unit. 
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Case 1:  The length of the subword unit is 1 
If the subword unit has only one letter then, 

It is only a syllable. 
Case 2:  The length of the subword unit is 2 
If the subword unit has two letters then, 

It is only a syllable. 
Case 3:  The length of the subword unit is 3 
If the three letters of the subword unit are vowel, consonant and 
vowel (VCV) respectively then, 

There are two syllables. The first vowel is the first syllable and 
the other two letters are the second syllable. 

ElseIf vowel and consonant forms are VCC, CVC     and CCV then, 
The subword unit is only one syllable. 

Case 4:  The length of the subword unit is 4 
If the first two letters or the last two letters of the subword unit 
are consonant then, 

The subword unit is a syllable. 
Else 

If the first letter is vowel then, 
The first letter is the first syllable and the other three 
letters are the second syllable. 

Else 
The first two letters are the first syllable and the other two 
letters are the second syllable. 

Case 5:  The length of the subword unit is 5 
If the first or the last three letters of the subword unit are 
consonants then, 

It is only a syllable. 
ElseIf  the first and the last two letters of the subword unit are 
consonants then, 

It is only a syllable. 
Else 

If the first letter is vowel then, 
If the last two letters are consonants then, 
The first letter is the first syllable, and the other letters 
are the second syllable. 

Else 
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The first letter is the first syllable. The next two letters 
are the second syllable. The last two letters are the third 
syllable. 

Else 
If the second letter of the subword unit is consonant then, 
The first three letters are the first syllable, and the other 
two letters are the second syllable. 

  Else 
The first two letters are the first syllable, and the other 
three letters are the second syllable. 

Case 6:  The length of the subword unit is equal or greater than 6 
If the first letter of the subword is vowel then, 

If the last three letters are consonant then, 
The first letter is a syllable. The next binary letters are 
syllables until the last five letters. The last five letters are 
a syllable. 

ElseIf the last two letters are consonant then, 
The first letter is a syllable. The next binary letters are 
syllables until the last four letters. The last four letters are 
a syllable. 

ElseIf the last letter is vowel then, 
The first letter is a syllable. The next binary letters are 
syllables. 

Else 
The first letter is a syllable. The next binary letters are 
syllables until the last three letters. The last three letters 
are a syllable. 

Else 
If the second letter is vowel then, 
If the last three letters are consonant then, 
The binary letters from the beginning are syllables until the 
last five letters. The last five letters are a syllable. 

ElseIf the last two letters are consonant then, 
The binary letters from the beginning are syllables until the 
last four letters. The last four letters are a syllable. 

ElseIf the last letter is vowel then, 
The binary letters from the beginning are syllables. 

ElseIf the last two letters are vowel and consonant   
 respectively then, 
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The binary letters from the beginning are syllables until the 
last three letters. The last three letters are a syllable. 

Else 
If the third letter is vowel then, 
If the last three letters are consonant then, 
The first three letters are a syllable. The next binary 
letters are syllables until the last five letters. The 
last five letters are a syllable. 

ElseIf the last two letters are consonant then, 
The first three letters are a syllable. The next binary 
letters are syllables until the last four letters. The 
last four letters are a syllable. 

ElseIf the last two letters are vowel and consonant 
respectively then, 
The first three letters are a syllable. The next binary 
letters are syllables until the last three letters. The 
last three letters are a syllable. 

ElseIf the last letter is vowel then, 
The first three letters are a syllable. The next binary 
letters are syllables. 

Else 
If the last three letters are consonant then, 
The first four letters are a syllable. The next binary 
letters are syllables until the last five letters. The 
last five letters are a syllable. 

ElseIf the last two letters are consonant then, 
The first four letters are a syllable. The next binary 
letters are syllables until the last four letters. The 
last four letters are a syllable. 

ElseIf the last two letters are vowel and consonant 
respectively then, 
The first four letters are a syllable. The next binary 
letters are syllables until the last three letters. The 
last three letters are a syllable. 

ElseIf the last letter is vowel then, 
The first four letters are a syllable. The next binary 
letters are syllables. 
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For example, the given word is converted into the subword units by TASA-A: 

“Çekos”, “lovak”, “yalılaş”, “tıramadık”, “larımız”, “dan”, “mış”, “sınız, “casına”. 

TASA-B takes these subword units and extracts the syllables. The syllables “Çe” and 

“kos” are extracted from the subunit “Çekos”. The syllables “lo” and “vak” are 

extracted from the subunit “lovak”. This process repeats for each subword units in 

the same way.  

 

 
Figure 4.3 FSA structure of TASA-B. 

 

Figure 4.3 represents the finite state automata (FSA) structure of TASA-B. C, V, 

λ and - is consonant, vowel, empty and syllable separator characters respectively. 

The finite state automata is a quintuple ),,,,( FsKM ∆Σ=  where ,},,,{ −λ=Σ VC  
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 . from strings ofset  
   theis   .xx ofsubset  finite a is  Δ and },,,

,,,,,,
,,,,,,,,,

,,{ , },,,,
,,,,,,,

,,,,,,,,,,,,{

**

Σ
ΣΣ−−−−−−−

−−−−−−−−−−−−−
−−−−−−−−−−−−

−−=λ=−−−−−−−−−−
−−−−−−−−−−−−−

−−−−−−−−−−−λ=

KKCVCCVVCVCVCVC

CVCCVCVCCCVCVCVVCVCCVCVCCVCVCCVC
CCVCCVCVCVCVCVCCCCVCCVVCVCCCVVCCVC

CVVFsCVCCVVCVCVCVCVCCCVCVCCV
CCVCVVCVCCVCVCCVCVCCVCCVCCCVCVCV

CVCVCCCCVCCVVCVCCCVVCCVCCVCCVCK

 

4.3 Experimental Results  

 

This system is composed of two stages. The first is to construct TASA, and the 

second is to constitute Turkish syllable statistics. After developing TASA, we 

extracted the syllables from the words in the five Turkish corpora. We tested TASA 

for the first 2000 words of each corpus, and we have encountered no words, which 

were spelt wrongly. 

 

We computed the syllable length for each corpus. Syllable length is the number of 

letters in the syllable. Table 4.3 shows that the rate of syllable length of every corpus 

is approximately the same. Generally, the rate of the syllables which have two letters 

is 56.57% over all syllables of the corpora. The rate of the syllables which have three 

letters is 35.16%. The rates of the syllables which have a letter, four letters and five 

letters are 5.93%, 2.18% and 0.17% respectively. There are no syllables whose 

length is greater than five in each corpus. Table 4.4 indicates the statistics of Turkish 

syllable. For İmla Corpus there are 3419 different syllables. 

 

There are a lot of studies on word n-grams. But we modeled syllable n-grams for 

Turkish. We computed the monogram and bigram of the corpora as shown in Table 

4.5. For instance, the syllable “la” has the highest frequency. In other words, The 

syllable “la” is 2.4% of the syllables in this corpus. We accepted the blank between 

two words like a syllable. According to the Table 4.5, the probability that the syllable 

“a” is following the blank is the highest (1.7%) for Bilim Corpus. 
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We have designed and implemented TASA for the five Turkish Corpora. After 

testing operation, it is calculated that TASA's correct spelling rate is about 100%. 

After analyzing the Turkish Corpora, we have found that the rate of the syllables 

which have two letters is 57% over all syllables of the corpora. It is also computed 

the monograms and bigrams of the Turkish Corpora. TASA can be used any other 

Turkish Corpora, and more detailed researches can be done. Turkish syllable 

structure can be extracted. New compression algorithms can be generated using 

syllables. Furthermore, Turkish syllables can be applied to speech synthesis. 

 
Table 4.3 The syllable length of Turkish corpora 

Corpus 
Syllables 

One letter Two letters Three letters Four 
letters Five letters 

İmla 5238 74796 72258 3020 99 
Bilim 34892 304097 186073 9713 908 

Pc Mag. 77740 765101 466650 39740 3338 
Yeni Asır 13620 153207 92600 2881 49 
Ulusal Pr. 33759 275598 160008 5157 261 

Sum 164849 1572799 977589 60511 4655 
 

Table 4.4 Statistics of some Turkish corpora 

Corpus The number of  
different syllables 

The number of 
syllables 

The number of 
words 

İmla 3419 155411 48350 
Bilim 3515 535683 201605 

Pc Mag. 6542 1352169 515904 
Yeni Asır 2324 262357 96703 
Ulusal Pr. 2048 474783 158945 

Sum  2780403 1021687 
 

Table 4.5 Statistics of Bilim corpora 

Monogram Frequency % Bigram Frequency % 
la 12808 2.4 blank a 9197 1.7 
le 10931 2.0 da blank 5821 1.1 
a 9976 1.8 blank o 5343 1.0 

de 9814 1.8 de blank 5185 1.0 
da 8751 1.6 blank i 5178 1.0 

Sum 9.6 Sum 5.8 
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CHAPTER FIVE 

DETECTING MISSPELLED WORDS IN TURKISH TEXT USING 

SYLLABLE n-GRAM FREQUENCIES 

  

5.1 Introduction 

 

To detect misspelled words in a text is an old problem. Today, most of word 

processors include some sort of misspelled word detection. Misspelled word 

detection is worthy in the area of cryptology, data compression, speech synthesis, 

speech recognition and optical character recognition (Barari & QasemiZadeh, 2005; 

Deorowicz & Ciura, 2005; Kang & Woo, 2001; Tong & Evans, 1996). The 

traditional way of detecting misspelled words is to use a word list, usually also 

containing some grammatical information, and to look up every word in the word list 

(Kukich, 1992) from dictionary. 

 

The main disadvantage of this approach is that if the dictionary is not large 

enough, the algorithm will report some of correct words as misspelled, because they 

are not included in the dictionary. For most natural languages, the size of dictionary 

needed is too large to fit in the working memory of an ordinary computer. In Turkish 

this is a big problem, because Turkish is an agglutinative language and too many new 

words can be constructed by adding suffixes. 

 

To overcome this difficulties, a new approach has been proposed for detecting 

misspelled words in Turkish text. We have used Turkish syllable n-gram frequencies 

which are generated from several Turkish corpora (Dalkılıc & Cebi, 2003). From the 

corpora we have extracted syllable monogram, bigram and trigram frequencies using 

TASA (see Chapter 4) (Aşlıyan & Günel, 2005). We have used these n-gram 

frequencies for calculating a word probability distribution. After that the system has 

decided whether a word is misspelled or not. In this approach we don’t need word 

list. We have only Turkish syllables and their monogram, bigram and trigram 

frequencies. The chapter is organized as follows. In Section 5.2, we described the 

system architecture.We explained how syllable n-gram frequencies and word 
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probability distribution are computed in Section 5.3. We discussed the empirical 

results of the system in Section 5.4. 

 

 
Figure 5.1 System architecture. 
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5.2 System Architecture 

 

The system consists of three main components. First component is preprocessing 

which cleans a text. Second component is TASA, and third component is calculating 

probability distribution of words. As shown in Figure 5.1, the system takes words in 

Turkish text as input and gives the result for each word as “Misspelled Word” or 

“Correctly Spelled Word”. 

 

In preprocessing component of the system, punctuation marks are cleaned. All 

letters in the text are converted to lower case. Blank characters between two 

successive words are limited with only one blank character. 

 

In second component, TASA takes the Turkish clean text as an input and gives the 

Turkish syllabified text. The system divides words into syllables putting the dash 

character between two syllables. For example, the word “kitaplık” in Turkish text is 

converted into the syllabified word “ki-tap-lık” in Turkish syllabified text. 

 

In third component, the probability distribution is calculated for each syllabified 

word. The system uses syllable monogram, bigram and trigram frequencies to find 

this probability distribution. How these n-gram frequencies are computed is 

explained in detail in the following Subsection 5.2.1. 

 

5.2.1 Calculation of Syllable n-gram Frequencies 

 

We have used the Turkish corpora (Dalkılıc & Cebi, 2003) which includes 

304178 Turkish words and the corpora is preprocessed as seen in Figure 5.1. The 

system TASA syllabifies all Turkish words in the corpora.We have constructed 

Turkish syllable corpora from the Turkish word corpora. Turkish syllable corpora 

contains 900342 Turkish syllables. As shown in Table 5.1, Table 5.2 and Table 5.3, 

Turkish syllable monogram, bigram and trigram frequencies are calculated. For 

example, the frequency of the syllable monogram“la” is 21322. In Table 5.2 and 
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Table 5.3, “blank” represents only one blank character. We accepted blank character 

as syllable for the system. Table 5.2 shows the frequencies of some Turkish syllable 

bigram. 

 

Table 5.1 Monogram statistics for Turkish corpus 

Monogram Frequency % 

la 21322 2.37 

ma 17704 1.97 

li 15124 1.68 

a 13439 1.49 

ta 13372 1.48 

i 12827 1.42 

de 11699 1.30 

ra 11611 1.29 

da 10930 1.21 

ve 10570 1.17 

ri 9618 1.07 

rı 9105 1.01 

me 8776 0.97 

e 7312 0.81 

ec 5909 0.66 
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Table 5.2 Bigram statistics for Turkish corpus 

Bigram Frequency % 

blank i 12880 1.43 

blank a 11194 1.24 

blank ve 9793 1.09 

blank e 9601 1.07 

li blank 9410 1.04 

ve blank 8803 0.98 

blank ta 8296 0.92 

blank ka 7907 0.88 

da blank 7429 0.82 

ec blank 5857 0.65 

la rı 5659 0.63 

le ri 5551 0.62 

 

Table 5.3 Trigram statistics for Turkish corpus 

Trigram Frequency % 

blank ve blank 5866 0.05 

blank ta rih 5238 0.03 

ta rih li 4944 0.03 

rih li blank 4944 0.03 

blank i liş 3437 0.02 

i liş kin 3282 0.02 

blank i le 3037 0.02 

blank bir blank 3000 0.02 

i le blank 2997 0.02 

la rı blank 2979 0.02 

ler ri blank 2905 0.02 

blank kon sey 2896 0.02 

kon sey blank 2895 0.02 
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5.3 Calculation of the Probability Distribution of Words 
 

An n-gram is a sub-sequence of n items from a given sequence. n-grams are used 

in various areas of statistical natural language processing and genetic sequence 

analysis. The items in question can be letters, syllables, words according to the 

application. 

 

An n-gram of size 1 is a “monogram”; size 2 is a “bigram”; size 3 is a “trigram”; 

and size 4 or more is simply called an “n-gram” or “(n−1)-order Markov model” 

(Zhuang et al., 2004). 

 

An n-gram model predicts ix  based on niiii xxxx −−−− ,...,,, 321 . When used for 

language modeling independence assumptions are made so that each word depends 

only on the last n words. This Markov model is used as an approximation of the true 

underlying language. This assumption is important because it massively simplifies 

the problem of learning the language model from data.  

 

Suppose that a word W in Turkish syllabified text consists of the syllable 

sequence tssss ,...,,, 321 . This word has t syllables. To obtain the n-gram probability 

distribution (Jurafsky & Martin, 2000) of the word W, we have used in Eq.5.1. 

 

∏
=

−+−+−==
t

i
ininiit ssssPsssPWP

1
12121 ),...,,|(),...,,()(  (Eq.5.1) 

In n-gram model, the parameter ),...,,|( 121 −+−+− ininii ssssP  in Eq.5.1 can be 

estimated with Maximum Likelihood Estimation (MLE) (Aşlıyan & Günel, 2005) 

technique as shown in Eq.5.2. 

 

),...,,(
),,...,,(

),...,,|(
121

121
121

−+−+−

−+−+−
−+−+− =

inini

iinini
ininii sssC

ssssCssssP  (Eq.5.2) 

 

So, we conclude as Eq.5.3. 
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∏
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t sssC
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121
21 ),...,,(
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),...,,()(  (Eq.5.3) 

 

In Eq.5.2 and Eq.5.3, ),,...,,( 121 iinini ssssC −+−+−  is the frequency of the syllable 

sequence iinini ssss ,,...,, 121 −+−+− . Furthermore, ),...,,( 121 −+−+− inini sssC  is the 

frequency of the syllable sequence 121 ,...,, −+−+− inini sss . The frequencies of these 

syllable sequences can be calculated from the Turkish corpora. 

 

For bigram(n=2) and trigram(n=3) models, probability distribution )(WP  can be 

computed as shown in Eq.5.4 and Eq.5.5 respectively. 
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For example, according to bigram model we can calculate the probability 

distribution of a word in Turkish text. Assume that we have a text which includes 

some words as “... Bu gün okulda, şenlik var...”. This text is converted to syllabified 

text as “... Bu gün o-kul-da, şen-lik var...”. Syllables in the words are delimited with 

dash character. Assume that the word W=”okulda” in the text is taken for computing 

its probability distribution and W can be written as the syllable sequence 

== 321 ,, sssW ”o”, “kul”, “da”. Here, =1s “o”, =2s “kul”, =3s “da”. We accepted 

blank character as a syllable.We call this syllable as λ . So, assume that syllable 

monogram frequencies are C(“ λ ”)=0.003, C(“o”)=0.002, C(“kul”)=0.004 and 

syllable bigram frequencies are C(“ λ ”,“o”)=0.0001, C(“o”,“kul”)=0.0002, 

C(“kul”,“da”)=0.0003. We have calculated P(“okulda”) using bigram model. We 

have found that the probability distribution of the word “okulda” is 0.0002475 as 

shown in Eq.5.6. 
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5.4 Testing the System 

 

We have designed and implemented two systems to detect misspelled words in 

Turkish text. One uses monogram and bigram frequencies. The size of monogram 

database is 41 kilobytes and our monogram consists of 4141 different syllables. The 

size of bigram and trigram databases are 570 and 2858 kilobytes respectively. While 

the bigram database includes 46684 syllable pairs, the trigram database consists of 

183529 ternary syllables. The other uses bigram and trigram frequencies. We have 

tested these two systems. To test the systems, we have two Turkish texts. One is 

correctly spelled text which includes 685 correctly spelled words. The other is 

misspelled text which has 685 misspelled words. These two texts have same words. 

Namely, misspelled words are generated with putting errors on the correctly spelled 

words. These error types are substitution, deletion, insertion, transposition and split 

word errors. The systems takes correctly spelled and misspelled texts as input and 

gives the results for each word as “correctly spelled word” or “misspelled word”. As 

it is shown in Figure 5.1, probability distributions are calculated for each word. If the 

probability distribution of a word is equal to zero, system decides that the word is 

misspelled. If it is greater than zero, system decides that the word is correctly spelled.  

 

The system works with Intel-based NT, Windows 2000, XP, Windows 2003 

Server systems with 512MB RAM and it has been developed using Borland C++ 

Builder Professional. 

 

We have first tested the system on the correctly spelled text using monogram and 

bigram frequencies. The system determines 602 correctly spelled words from the 
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correctly spelled text, so the words are correctly recognized with 88% success rate. 

Also, 589 misspelled words within the misspelled text are decided successfully by 

the system. Namely, the system which is tested on the misspelled text correctly 

recognized the words with 86% success rate. 

 

Finally we have tested the system on the correctly spelled text using bigram and 

trigram frequencies. The system determines 671 of 685 correctly spelled words from 

the correctly spelled text. The success rate on correctly recognition of the words is 

98%. Furthermore, 664 of 685 misspelled words within the misspelled text are 

decided successfully by the system. Thus, the system which is tested on the 

misspelled text correctly recognized the words with 97% success rate. The system 

can analyze 75000 words per second. 

 

In conclusion, we have designed and implemented a system which decides 

whether or not a word is misspelled in Turkish text. Firstly, three databases of 

syllable monogram, bigram and trigram frequencies are constructed using the 

syllables that are derived from five different Turkish corpora. Then, the system takes 

words in Turkish text as an input and computes the probability distribution of words 

using syllable monogram, bigram and trigram frequencies from the databases. If the 

probability distribution of a word is zero, it is decided that this word is misspelled. 

For testing the system, we have constructed two text databases with the same words. 

One text database has 685 misspelled words. The other has 685 correctly spelled 

words. The words from these text databases are taken as inputs for the system. The 

system produces two results for each word: “Correctly spelled word” or “Misspelled 

word”. The system that is designed with monogram and bigram frequencies has 86% 

success rate for the misspelled words and has 88% success rate for the correctly 

spelled words. According to the system designed with bigram and trigram 

frequencies, there is 97% success rate for the misspelled words and there is 98% 

success rate for the correctly spelled words. 
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CHAPTER SIX 

SPEECH RECOGNITION EXPERIMENTS 

 

In this thesis, we have designed and implemented speaker dependent isolated 

word speech recognition systems using the methods as LTA, DTW, ANN, HMM and 

SVM. In the applications, we have used the speech signal features as mfcc, lpc, 

parcor, cepstrum, rasta and the mixture of mfcc, lpc and parcor. 

 

The speech recognition applications have been executed on the computer which 

has the following features: Pentium Centrino 1.6 CPU, 768 MB RAM, 40 GB 

harddisk, Windows XP Operating System, a sound card and a microphone. The 

codes of the applications have been written with Matlab 6.5. 

 

6.1 System Databases 

 

System dictionary consists of 200 different Turkish words which are shown in 

Appendix A. Using this dictionary we have constructed two databases. One database 

has been used for training and the other is for testing of the system.  

 

The training speech database (approximately 2.7 hours of 250 MB speech 

material) involves 5000 Turkish word utterences (25x200) which were recorded by a 

male speaker. Each word in the dictionary was recorded 25 times using the recording 

program as shown in Figure 6.1. 

 

The testing speech database was constructed by recording every word in the 

dictionary 10 times. Total number of utterences is 2000 (about 1.1 hours of 100 MB 

speech material). 
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Figure 6.1 The user interface of wave file recording program. 

 

The recording procedure took place in a noise-free environment. A head-mounted 

close-talking microphone was used. The format of the file recording is WAVE file 

format. The waveforms of the utterences are encoded using Pulse Code Modulation 

(PCM) coding format, 11025 Hz sampling rate, 2 bytes per sample. The utterences 

are recorded in 2 seconds time duration. 

 

6.2 Preprocessing of the System 

 

After the digitization of the word speech signal, we have applied preemphasis 

filter to spectrally flatten the signal as explained in Section 2.5. For the speech signal 

the syllable end-point detection is applied as explained in Subsection 6.2.1. After that 

each syllable utterence is divided into frames of 20 ms by frameblocking. To reduce 

the signal discontinuity at the ends of each block, Hamming window is applied for 

each frame as mentioned in Section 2.5. 
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6.2.1 Word and Syllable End-point Detection 

 

An important problem in speech processing is to detect the presence of speech in a 

background of noise. This problem is often referred to as the end-point location 

problem (Rabiner & Sambur, 1975). The accurate detection of a word’s start and 

end-points means that subsequent processing of the data can be kept to a minimum. 

 

A major cause of errors in isolated-word automatic speech recognition systems is 

the inaccurate detection of the beginning and ending boundaries of test and reference 

patterns (Junqua, Mak & Reaves, 1997). It is essential for automatic speech 

recognition algorithms that speech segments are reliably separated from non-speech. 

 

The reason for requiring an effective end-point algorithm is that the computation 

for processing the speech is minimum when the end-points are accurately located 

(Savoji, 1989). 

 

In syllable end-point detection operation, the speech signals are taken and after 

processing them, the number of syllables and the indexes of syllable end-points have 

been detected. Namely, the beginning and end indexes are computed on the digital 

speech signal. 

 

After sampling the sound wav files, the mean of the speech signal as a vector is 

calculated and translated to 0=y  axis. Assume that ny  is a speech signal. The new 

speech signal, which is focused on 0=y  axis, is )(' nnn ymeanyy −= . After that, 

the voiced and unvoiced parts of the speech signal are approximately computed with 

the slope between the beginning value of the digital sound and the maximum value 

of the sound. This slope is the threshold slope. The utterence is divided into windows 

which have 350 samples. If the slope, which is calculated between two windows, 

which are one after the other, is greater than the threshold slope, this means that the 

voiced part of the sound begins at the index. However, these beginning and end 

index of the voiced part are nearly true, but not certain value. We have used the 

distance data of zero-crossing index of sound vector because of obtaining more 
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accurate results. We have constructed a new vector which represents the zero-

crossing distances, then we have defined a threshold (say zero-crossing 

threshold=100). The beginning index is found earlier but not certainly true index. 

Now this index goes on one by one to the first index if the zero-crossing distance is 

between 1 and zero-crossing threshold. Zero values of the vector are not taken into 

account. In the same way, the end index of the voiced part is calculated. At the end, 

we find the voiced part exactly. 

 

 
Figure 6.2 The process of syllable endpoint detection. 
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To discover syllable end-points, the windows that consist of 900 samples are 

generated without overlapping. The mean values of these windows are computed and 

assembled for constructing a new mean vector as shown in Figure 6.2. The slope 

between one element and the next element of the mean vector is determined, and if 

the slope is zero or greater than zero, a new vector’s value is +1. Otherwise, the value 

is -1. Using these vectors, the boundaries of syllables on the sound vector are 

obtained approximately. The samples between 500 samples backward and 500 

samples forward from the found syllable end-points are divided into windows which 

include 20 samples. After that, the middle index of the window which has the 

minimum mean is syllable end-point. Finally, we can calculate the beginning and end 

index of the syllables for each word before processing them. Now we have the 

number of syllables of the word and their end-point indexes. 

 

According to the number of syllable in a word using syllable end-point detection 

algorithm which is mentioned in the Subsection 6.2.1.2., we have found that 

accuracy result is approximately 99%. For example, the word which has five 

syllables is successfully divided into five syllables and the end-points of the syllables 

are detected.  

 

6.2.1.1 Word End-point Detection Algorithm 

 

1. x  in Eq.6.1 is digital sound vector. 22050=N  ( N  is the number of samples 

in the utterence) 

 

)...,,,( 321 Nxxxxx =  (Eq.6.1) 

 

2. λ  is the mean of the values of first 200 samples in .x  x~  is a vector which 

translated to the axis .0=y  
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ix  (Eq.6.2) 
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)~,...,~,~(),...,(~
211 NN xxxxxxx =λ−λ−=λ−=  (Eq.6.3) 

 

3. M  is the maximum value of the vector .~x  I  is the index of maximum value 

of the vector .~x  bE  and sE  are the beginning and end threshold values 

respectively. 

 

)~max(],[ xIM =  (Eq.6.4) 

 

IMEb /= ,      )/( INMEs −=  (Eq.6.5) 

 

 

4. The vector x~  is divided into windows which consist of 350 samples. The 

vector x  is the mean vector of above windows. 

 

),...,,( 21 pxxxx =  and 350/Np =  (Eq.6.6) 
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5. For 1,...,2,1 −= pi , Ex  and 
iEx are calculated as shown in Eq.6.8. 

 

),...,,(
121 −

=
pEEEE xxxx  and iiE xxx

i
/1+=  (Eq.6.8) 

 

6. bS  is the beginning index of the sound vector. 

 

For 1=r  to 1−p   

    if bE Ex
r

>  then 350*rSb =  

End 
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7. sS  is the end index of the sound vector. 

 

For  r =
1−pEx  DownTo 1  

    if sE Ex
r

>/1  then 350*rSs =  

End 

 

8. The beginning and end indexes are approximately determined from Step 6 

and 7. To decide exactly the end-points of the sound, the zero-crossing 

indexes are fixed. Using the sound vector )~,...,~,~(~
21 Nxxxx = , the zero-

crossing  vector ),...,,( 121 −= Nzzzz  is generated. 

 

For 2=k  To N  

   if 0~/~
1 <− kk xx  then  

                11 =−kz  

   else  

                 01 =−kz  

End 

 

9. After the distances between one after the other zero-crossing indexes are 

computed, new distance vector of  zero-crossing )~,...,~,~(~
121 −= Nk zzzz  is 

calculated as the followings. 

 

For 1=k  To 1−N  

 if 1=kz  and after the index k, its first value of the following indexes is 1,  

 ( 1=hz ) then 

 khzk −=~  

 else  

 0~ =kz  

 if 0=kz  then  0~ =kz   
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End 

 

10. The threshold value of zero-crossing is accepted as .100=T  SB  is the value 

at the index which the sound begins.  

 

bSSB =  

For bSk =  DownTo 1 

 if 0~ >kz  and Tzk <~  then kSB =  

 if 0~ =kz  then continue 

 if Tzk >~  then break 

End 

 

11. SS  is the value at the index which the sound ends. 

    

sSSS =  

For sSk =  To 1−N  

 if 0~ >kz  and Tzk <~  then kSS =  

 if 0~ =kz  then continue 

 if Tzk >~  then break 

End 

 

6.2.1.2 Syllables End-point Detection of the Words 

 

After detecting  the end-points ( SB  and SS ) of the words, the end-points of the 

syllables in the words are determined with the following algorithm. 

 

1. )~,...,~,~(),...,,( 121 SSSBSBk xxxnnnn +==  

 

2. The vector n  is divided into windows, which have 900 samples, without 

overlapping. The vector n  is the mean vector of each window above. 
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),...,,( 21 pnnnn =  and 900/kp =   

900/
1900*)1(

900*
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
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=

i

im
mi nn ,    pi ,...2,1=  (Eq.6.9) 

 

3. The slope vector is composed by computing the slopes between the values of 

the vector n  which follow one after another. 

 

),...,,(
121 −

=
pEEEE nnnn  and iiE nnn

i
/1+= ,  1,...,2,1 −= pi  (Eq.6.10) 

 

4. Using the slope vector, we calculate the vector ),...,,( 121 −= paaaa  which 

has the values, +1 and -1. Namely, the increasing and decreasing positions are 

determined. 

     

For 1=k  To 1−p  

 if 0≥
kEn  then 1=ka  

 else 1−=ka  

End 

 

5. H  is the number of syllables in the word. 

 

0=H  
 For 2=k To 1−p  

 if 11 =−ka  and 1−=ka  then 1+= HH  

End 

 

6. The values of the middle indexes, which include the value -1 in the vector 

,a are approximately the end-points of syllables. There are 1−H  syllable 

end-points. The syllable end-point vector ),...,,( 121 −= Hssss  is calculated as 
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shown in the following. The values is  are the indexes which are the values of 

the vector .~x   

    

For 1=k  To 1−H  

 if the middle  index of the indexes, which have the k-th value -1 that  

follows one after the other, is w then  

 wSBsk *900+=  

End 

 

7. Until now, the beginning point SB and end point SS  is detected. The vector 

s  represents the end-points of syllables. To find the syllable end-points more 

accurately the following algorithm is performed, and the vector 

)~,...,~,~(~
121 += Hssss  is attained. 

 

SBs =1
~

 and SSsH =+1
~

            

For 1=i To 1−H  

 The windows with 20 samples between 500−is  and 500+is  are  

constructed, and the mean values are computed for each windows. 

 if the middle index of the window, which has the smallest mean, is q   

 then  

  qsi =+1
~  

End 

 

8. The vector s~  which represents the syllables end-points in the word sound 

vector x~  is decided accurately. There are H  syllables in the word. The 

beginning index of  k-th syllable is ks~  and the end index is .~
1+ks  

 

6.3 Feature Extraction 

 

After preprocessing the speech signal, we have the syllable end-points of the 

word. The syllable utterences are framed with Hamming window as explained in 
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Subsection 2.5. The length of one frame is 20 ms with 10 ms shift (overlapping 

time=10 ms). 10 features are computed from each frame. These features are lpc, 

parcor, cepstrum, mfcc and rasta. The number of frames is not constant, but the 

number of frames is normalized  to 30 frames with the length of 10  as shown in 

Figure 6.3. The normalized features are used only for the speech recognition methods 

as ANN, HMM and SVM. )(ns  is the syllable feature vector. ),10( mx  is the syllable 

feature matrix. For normalized features, m is 30 as illustrated in Figure 6.3. In Figure 

6.4, the time duration for each speech feature is shown , and the fastest speech 

feature extraction algorithm among these features is mfcc. 

 

 
Figure 6.3 Feature extraction. 
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Figure 6.4 Feature extraction time duration. 

 

6.4 Experiments with Linear Time Alignment 

 

One of the speech recognition methods is linear time alignment. When the lengths 

of two vectors are different, this method provides us to compare the vectors using a 

distance metric according to their similarities. 

 

Assume that x  in Eq.6.11 is the digital speech signal which will be recognized, 

and y  is one of the digital speech signals in the template database which was 

constructed from the syllable utterences of the dictionary before the recognition 

operation. n  and m  are sample numbers in the speech vector. n  and m  are usually 

different. To decide the similarity of these vectors we have used Euclidean distance 

metric, ),( yxd  as shown in Eq.6.12. So, the best match speech signal of  x  can be 

found using this metric. x  and y  are compared with each other after their lengths 

are made same. 
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)(rf  in Eq.6.13 is the function which makes same length for the given r values. 

The results of )(rf  are the positive integers between 1 and .m  Figure 6.5 illustrates 

the function ).(rf  

 

 
Figure 6.5 The function for linear time alignment. 
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Figure 6.6 The user interface of the speech recognition system. 

 

Using linear time alignment, the system, which has the user interface as shown in 

Figure 6.6, detects the recognized syllables of the word which have smallest 

distances. After concatenation of the recognized syllables, the recognized word is 

found by the system if the postprocessing is not carried out. Section 6.5 explains how 

the postprocessing works. 

 

6.4.1 Word Error Rate 

 

The most widely used evaluation measure for speech recognition performance is 

Word Error Rate (WER) (Hunt, 1990; McCowan et al., 2005). The general difficulty 

of measuring the performance lies on the fact that the recognized word sequence can 

have different length from the reference word sequence. The WER is derived from 

the Levenshtein distance, working at word level instead of character. 
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This problem is solved by first aligning the recognized word sequence with the 

reference sequence using dynamic string alignment. The word error rate can then be 

computed as in Eq.6.14. 

 







=

N
EWER 100  (Eq.6.14) 

 

where E  is the number of wrongly detected words, and N  is the number of words in 

the reference set.  

 

Table 6.1 Experimental results of speech recognition using LTA (without postprocessing) 

Speech Recognition 

Experiments 

(No Postprocessing) 

FEATURES 

MFCC LPC PARCOR CEPSTRUM RASTA 
MFCC+LPC+ 

PARCOR 

One Syllabic 

Words (WER %) 
20 48 20 47 18 26 

Two Syllabic 

Words (WER %) 
22 54 40 75 27 37 

Three Syllabic 

Words (WER %) 
5 39 15 52 5 11 

Four Syllabic 

Words (WER %) 
6 42 21 64 6 16 

Five Syllabic Words 

(WER %) 
8 47 21 56 8 14 

Total Words (WER %) 12.2 46 23.4 58.8 12.8 20.8 

 

After testing of the system using linear time alignment, we have the WER results 

as shown in Table 6.1. The system is tested according to 6 different features. One of 

them is the mixture of the features which consist of mfcc, lpc and parcor features (4 

mfcc, 4 lpc and 4 parcor features are concatenated). In addition, the system is 

evaluated according to n-syllabic words in the dictionary (n=1, 2, 3, 4, 5). The best 
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result for LTA is gained with the mfcc feature as given in Figure 6.7. It is followed 

by rasta feature. Three syllabic words are the most successful words in the dictionary 

to be detected correctly. We can compare the systems which use and does not use 

postprocessing. Namely, the applications with the postprocessing, which are 

described in Section 6.5, improve the system accuracy rate about 14% using linear 

time alignment. 

 

6.5 The Postprocessing of the System 

 

After the syllables of the word utterence are recognized using the speech 

recognition method, and the most similar 10 syllables are put in order, the recognized 

syllables are concatenated and generated the recognized word. We can find the most 

similar words in order by concatenation of the most similar syllables. From  the 

uppermost recognized words, it can be determined whether or not the word is 

Turkish (see Chapter 5). If the word is Turkish, it is the recognized word of the 

system. If these words are not Turkish, the system does not recognize any word. 

 

For example, as shown in Table 6.2, the recognized syllables are ordered. Hence, 

the most similar syllables as “kı”, “tap” and “lik” have been found. These syllables 

are concatenated, and the most similar word as “kıtaplik” is constructed. But, the 

system decides that the word is not Turkish word. Then, the next most similar word 

is concatenated, and it is determined whether or not the word is Turkish. This process 

is continued until a Turkish word is found in these concatenated words. In this 

example, the word “kitaplık” which is generated from the syllables “ki”, “tap” and 

“lık” is detected by the system. Therefore, it is the recognized word using the 

postprocessing.  
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Table 6.2 The most similar syllables 

The order of the most 

similar syllables 

Recognized Syllables 

“ki” “tap” “lık” 

1. kı tap lik 

2. ki tap lak 

3. ki tep lık 

4. ki ta lik 

5. kı ta lık 

 

Table 6.3 Experimental results of speech recognition using LTA (with postprocessing) 

Speech Recognition 

Experiments 

(Postprocessing) 

FEATURES 

MFCC LPC PARCOR CEPSTRUM RASTA 
MFCC+LPC+ 

PARCOR 

One Syllabic 

Words (WER %) 
20 48 20 47 18 26 

Two Syllabic 

Words (WER %) 
19 32 20 49 12 17 

Three Syllabic 

Words (WER %) 
1 14 5 18 4 2 

Four Syllabic 

Words (WER %) 
2 11 6 31 6 5 

Five Syllabic Words 

(WER %) 
2 16 6 23 6 4 

Total Words (WER %) 8.8 24.2 11.4 33.6 9.2 10.8 

 

Table 6.3 displays the WER of the system with the features for LTA. 

Postprocessing is used in these applications. It can be seen that  WER decreases 

when the number of syllables in the word utterence ascends. Note that we can not 

apply postprocessing operation for one syllabic words. 
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Figure 6.7 WER results of system using LTA. 

 

6.5.1 Postprocessing Algorithm For Three Syllabic Word 

  

The following algorithm is a function which takes the recognized syllables as 

inputs and which gives the recognized word as an output. The algorithm is explained 

for only three syllabic words. 

 
If the word utterence is three syllabic word then 

Assume that st1, st2 and st3 are the matrix variables (column 
matrices) for the first, second and third recognized syllables of 
the word utterence respectively. 
Depth=10 
TotalDepth=3*Depth+1 
MaxDepth= TotalDepth 
For i=1 To Depth 
    If MaxDepth < i+1+1, break end 
    For j=1 To Depth 
      If MaxDepth < i+j+1, break end 
      For m=1 To Depth 
        if MaxDepth maxder < i+j+m, break end 



 

 

117 

 

          kelime: st1{i}, st2{j} and st3{m} are concatenated, and 
                the word is assigned to the variable kelime   
          if kelime is Turkish word then 
           TurkishWord{i+j+m}= kelime; 
           MaxDepth =i+j+m; 
          end 
        end   
      end 
   end 
   if MaxDepth < TotalDepth 
     return TurkishWord {maxder}; 
   else 
     return 'No-recognition'; 
   end 
end 
 

6.6 Experiments with Dynamic Time Warping 

 

DTW is based on the principle of matching a speech signal converted into a 

feature matrix  against a set of reference templates. The templates are simply feature 

matrix examples of each syllable of a word in the vocabulary of the system. 

Consequently, DTW is normally used for recognition of isolated words. The 

similarity between a template and the unknown speech is assumed to be inversely 

proportional to the minimum cost alignment. This is normally evaluated by 

calculating a local distance between each input features and all feature matrices of 

the reference template. Calculating the minimum cost alignment is then a matter of 

finding the optimal path from the bottom left-hand to the top right-hand corner of the 

matrix. Namely, the path that accumulates the lowest sum of local distances and does 

not stray too far away from the diagonal. The standard asymmetric dynamic 

programming decision rule adds a penalty for both horizontal and vertical deviances 

from the diagonal. 
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6.6.1 DTW Algorithm 

 

The following algorithm takes two speech feature matrices as inputs to calculate 

the distance of them. The output of this algorithm is the distance of these features. 

These two matrices consist of n and m frames respectively. Each frame has ten 

speech features. 

 
DTW_Distance (s[1..10,1..n], t[1..10,1..m], d[1..n,1..m]) 
    Define a matrix variable as DTW[0..n,0..m] 
    Define variables as i, j, cost 
    For i=1 To m 
        DTW[0,i] = infinity 
    end 
    For i=1 To n 
        DTW[i,0] = infinity 
    end 
    DTW[0,0] = 0 
    For i=1 To n 
        For j=1 To m 
            cost = distance(s[1..10,i],t[1..10,j]) 
            DTW[i,j] = cost + minimum(DTW[ i-1, j   ],    
                                      DTW[ i  , j-1 ],  
                                      DTW[ i-1, j-1 ])  
       end 
    end 
    return DTW[n,m] 

 

In Table 6.4 and Table 6.5, the WER results are given for dynamic time warping. 

If we evaluate the system, we can say that the best result for DTW is obtained with 

the mfcc feature. It is followed by rasta feature. Three syllabic words are the most 

successful words in the dictionary to be detected correctly. The system accuracy rate 

as displayed in Figure 6.8 is increased with postprocessing operation about 9% using 

DTW. 
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Table 6.4 Experimental results of speech recognition using DTW (without postprocessing) 

Speech Recognition 

Experiments 

(No Postprocessing) 

FEATURES 

MFCC LPC PARCOR RASTA 
MFCC+LPC+ 

PARCOR 

One Syllabic 

Words (WER %) 
15 24 22 18 18 

Two Syllabic 

Words (WER %) 
21 48 44 27 25 

Three Syllabic 

Words (WER %) 
4 18 16 12 15 

Four Syllabic 

Words (WER %) 
6 26 21 18 17 

Five Syllabic Words 

(WER %) 
6 23 21 17 16 

Total Words (WER %) 10.4 27.8 24.8 18.4 18.2 

 

Table 6.5 Experimental results of speech recognition using DTW (with postprocessing) 

Speech Recognition 

Experiments 

(Postprocessing) 

FEATURES 

MFCC LPC PARCOR RASTA MFCC+LPC+PARCOR 

One Syllabic 

Words (WER %) 
15 24 22 18 19 

Two Syllabic 

Words (WER %) 
12 28 24 12 14 

Three Syllabic 

Words (WER %) 
0 9 5 4 6 

Four Syllabic 

Words (WER %) 
0 13 7 6 7 

Five Syllabic Words 

(WER %) 
2 12 6 6 8 

Total Words (WER %) 5.8 17.2 12.8 9.2 10.8 
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Figure 6.8 WER results of system using DTW. 

 

6.7 Experiments with Artificial Neural Networks 

 

A Neural Network (NN) is a computer software that simulates a simple model of 

neural cells in humans. The purpose of this simulation is to acquire the intelligent 

features of these cells. 

 

Backpropagation networks are a popular type of network that can be trained to 

recognize different patterns including images, signal, and text. We have used 

backpropagation networks for our speech recognition system. 

 

6.7.1 Sigmoid Function 

 

The function as Eq.6.15 is called a Sigmoid function. The coefficient a is a real 

number constant. In NN applications, a is usually chosen between 0.5 and 2. As a 

starting point, we can use a=1 and modify it later when we are fine-tuning the 

network. Note that s(0) =  0.5, s(∞) = 1, s(-∞) = 0 (The symbol ∞ means infinity). 
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axe
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−+
=  (Eq.6.15) 

 

The sigmoid function will convert values less than 0.5 to 0, and values greater 

than 0.5 to 1. The Sigmoid function is used on the output of neurons. 

 

6.7.2 Neuron 

 

In NNs, a neuron is a model of a neural cell in humans. This model is simplistic, 

but as it turned out, is very practical. The neuron has been thought as a program or a 

class that has one or more inputs and produces one output. The inputs simulate the 

signals that a neuron gets, while the output simulates the signal which the neuron 

generates. The output is calculated by multiplying each input by a different number 

which is called weight, adding them all together, then scaling the total to a number 

between 0 and 1. 

 

Figure 6.9 shows a simple neuron with: 

 

1. Three inputs ],...,,,[ 300321 xxxx . The input values are usually scaled to 

values between 0 and 1.  

2. 300 input weights ],...,,,[ 300321 wwww . The weights are real numbers that 

usually are initialized to some random numbers. The weights are variables of 

type real. We can initialize to a random number between 0 and 1.  

3. One output z. A neuron has only one output. Its value is between 0 and 1, it 

can be scaled to the full range of actual values.  
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Figure 6.9 One neuron structure. 

 

)*(...)*()*()*( 300300332211 wxwxwxwxd ++++=  (Eq.6.16) 

 

In a more general manner, for n number of inputs, d is defined as Eq.6.17. 

 

∑
=

=
n

i
ii wxd

1
*  (Eq.6.17) 

 

Let θ  be a real number which is known as a threshold. Experiments have shown 

that best values for θ  are between 0.25 and 1. θ  is just a variable of type real that is 

initialized to any number between 0.25 and 1. 

 

)( θ+= dsz  (Eq.6.18) 

 

In Eq.6.18, the output z is the result of applying the sigmoid function on ).( θ+d   

In NN applications, the challenge is to find the right values for the weights and the 

threshold. 
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6.7.3 Backpropagation 

 

The structure of our system is shown in Figure 6.10. This NN consists of four 

layers: Input layer with 300 neurons, first hidden layer with 30 neurons, second 

hidden layer with 10 neurons and output layer with one neuron.  

 

 
Figure 6.10 Backpropagation network of our system. 

 

The output of a neuron in a layer goes to all neurons in the following layer. Each 

neuron has its own input weights. The weights for the input layer are assumed to be 1 

for each input. In other words, input values are not changed. The output of the NN is 

reached by applying input values to the input layer, passing the output of each neuron 

to the following layer as input. The Backpropagation NN must have at least an input 

layer and an output layer. It could have zero or more hidden layers.  

 

The number of neurons in the input layer depends on the number of possible 

inputs we have, while the number of neurons in the output layer depends on the 

number of desired outputs. In general, the addition of a hidden layer could allow the 

network to learn more complex patterns, but at the same time decreases its 

performance. 
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6.7.3.1 Supervised Learning 

 

The Backpropagation NN works supervised training. The training can be 

summarized as the following algorithm. 

 

1. Start by initializing the input weights for all neurons to some random 

numbers between 0 and 1. 

2. Apply input to the network.  

3. Calculate the output.  

4. Compare the resulting output with the desired output for the given input. 

This is called the error.  

5. Modify the weights and threshold θ  for all neurons using the error.  

6. Repeat the process until the error reaches an acceptable value (the error, 

0.006), which means that the NN was trained successfully, or if we reach a 

maximum count of iterations, which means that the NN training was not 

successful.  

 

The challenge is to find a good algorithm for updating the weights and thresholds 

in each iteration (step 5) to minimize the error. 

 

Changing weights and threshold for neurons in the output layer is different from 

hidden layers. For the input layer, weights remain constant at 1 for each input neuron 

weight. 

 

For the training operation, we define the following: 

 

1. The Learning Rate, λ : A real number constant, 0.02 for our system. 

2. The change, ∆ : For example x∆  is the change in x. 
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6.7.3.2 Output Layer Training 

 

Let z be the output of an output layer neuron. Let y be the desired output for the 

same neuron, it should be scaled to a value between 0 and 1. This is the ideal output 

which we like to get when applying a given set of input. Then the error, e, will be as 

Eq.6.19.  

 

)(*)1(* zyzze −−=  (Eq.6.19) 

 

e*λ=θ∆  (Eq.6.20) 

 

ii xw *θ∆=∆  (Eq.6.21) 

 

θ∆  represents the change in θ . iw∆  is the change in weight i of the neuron. In 

other words, for each output neuron, calculate its error e, and then modify its 

threshold and weights using Eq.6.19, Eq.6.20 and Eq.6.21. 

 

6.7.3.3 Hidden Layer Training 

 

Consider a hidden layer neuron as shown in Figure 6.11. Let z  be the output of 

the hidden layer neuron. Let im  be the weight at neuron  iN  in the layer following 

the current layer. This is the weight for the input coming from the current hidden 

layer neuron. Let ie  be the error e  at neuron iN . Let r  be the number of neurons in 

the layer following the current layer. (In Figure 6.11, 3=r ).  
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Figure 6.11 Hidden layer training. 
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1
*  (Eq.6.22) 

 

gzze *)1(* −=  (Eq.6.23) 

 

e*λ=θ∆  (Eq.6.24) 

 

ii xw *θ∆=∆  (Eq.6.25) 

 

e  is the error at the hidden layer neuron. θ∆  is the change in .θ  iw∆  is the 

change in weight i. In calculating g , we used the weight im  and error ie  from the 

following layer, which means that the error and weights in this following layer 

should have already been calculated. This implies that during a training iteration of a 

Backpropagation NN, we start modifying the weights at the output layer, and then we 
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proceed backwards on the hidden layers one by one until we reach the input layer. It 

is the method of proceeding backwards which gives this network its name Backward 

Propagation. 

 

Table 6.6 Experimental results of speech recognition using ANN (without postprocessing) 

Speech Recognition 

Experiments 

(No Postprocessing) 

FEATURES 

MFCC LPC PARCOR RASTA 
MFCC+LPC+ 

PARCOR 

One Syllabic 

Words (WER %) 
20 42 29 27 27 

Two Syllabic 

Words (WER %) 
33 51 29 37 44 

Three Syllabic 

Words (WER %) 
16 35 20 29 26 

Four Syllabic 

Words (WER %) 
18 39 31 33 26 

Five Syllabic Words 

(WER %) 
18 40 27 29 30 

Total Words (WER %) 21 41.4 27.2 31 30.6 
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Figure 6.12 WER results of system using ANN. 
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Table 6.7 Experimental results of speech recognition using ANN (with postprocessing) 

Speech Recognition 

Experiments 

(Postprocessing) 

FEATURES 

MFCC LPC PARCOR RASTA 
MFCC+LPC+ 

PARCOR 

One Syllabic 

Words (WER %) 
20 42 29 27 27 

Two Syllabic 

Words (WER %) 
18 32 27 25 24 

Three Syllabic 

Words (WER %) 
6 12 6 9 7 

Four Syllabic 

Words (WER %) 
8 10 8 13 9 

Five Syllabic Words 

(WER %) 
8 9 5 7 7 

Total Words (WER %) 12 21 15 16.2 14.8 

 

In Table 6.6 and Table 6.7, the WER results are given for artificial neural 

network. If we evaluate the system, we can say that the best result for ANN is 

obtained with the mfcc feature. Three syllabic words are the most successful words 

in the dictionary to be detected correctly. The system accuracy rate as shown in 

Figure 6.12 is increased with postprocessing operation about 15% using ANN.  

 

6.8 Experiments with Hidden Markov Models 

 

In acoustic modeling part of the speech recognition system, we have modeled 

each syllable of the word in the dictionary from the syllable features. How we 

constructed HMM models is explained by the following subsections. 
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6.8.1 Constructing Hidden Markov Models  

 

Calculating the parameters of  hidden markov model ),,( π=λ BA  is one of the 

hardest problem in HMM.  A , B  and π  parameters are calculated to satisfy an 

optimization criterion. Our optimization criterion is based on maximizing ),( λOP  

where O  represents the training observations. In order to do that the Baum-Welch 

method also known as expectation-maximization (EM) (Rabiner & Juang, 1993) 

method is used. Before going any further, the form of the observation symbol 

probability distribution )},({ kbB j=  needs to be made explicit. One can characterize 

observations as discrete symbols chosen from a finite alphabet and use a discrete 

probability density within each state of the model. On the other hand, feature 

parameters extracted from the speech signals can take continuous values. Therefore 

continuous observation densities are used to model feature parameters directly. 

 

The output distributions are represented by Gaussian Mixture Densities as shown 

in Eq.6.26. 

 

NjUoNcob jkjkt

M

k
jktj ≤≤µ= ∑

=
1  ),,,()(

1
 (Eq.6.26) 

 

where to  is the observation vector being modeled, M  is the number of mixture 

values used for each state (we used three mixture values ( 1=M ) for each state), 

N represents a Gaussian probability density function (pdf), and jkc  is the mixture 

coefficients for the thk mixture in state j as Eq.6.27. 
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 (Eq.6.27) 

 

The Gaussian pdf N  has a mean vector jkµ  and covariance matrix jkU  for the 

thk  mixture component in state j  as Eq.6.28. 
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where n  is the dimensionality of the observation vector to . On our case n  is 10 

feature parameters are extracted from each frame of the speech signal. Suppose that 

an HMM model contains just one state j  and one mixture value k  is used for this 

state. Then the parameter estimation would be easy. The maximum likelihood 

estimation of jkµ  and jkU  would be simple averages as follows: 
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 (Eq.6.29) 

 

where T is the number of observations. In practice, HMM models contain more than 

one state; each of which has more than one mixture component. Also, for a given 

model and observation sequence, there are no direct assignments of observation 

vectors to the individual states, as the underlying state sequence is not known. But 

Eq.6.28 and Eq.6.29 can be used if some approximate assignments of observation 

vectors to the states could be done.  

 

Now we define the variable ),( jitξ  (Rabiner & Juang, 1993) to help us the 

parameter estimation algorithm. The variable ),( jitξ  is the probability of being in 

state i  at time t , and state j  at time 1+t , given the model λ  and observation 

sequence O  as shown in Eq.6.30. 

 

),|,(),( 1 λ===ξ + OjqiqPji ttt  (Eq.6.30) 
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The variable ),( jitξ can be rewritten by using the definitions of the forward and 

backward variables as Eq.6.31. 
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 (Eq.6.31) 

 

A posteriori variable )(itγ  is defined for making the parameter estimation 

algorithm tractable as Eq.6.32. 

 

),|()( λ==γ OiqPi tt  (Eq.6.32) 

 

That is, as the probability of being in state i  at time t , given the observation 

sequence O , and the model λ . Then we can express )(itγ  as Eq.6.33. 
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Eq.6.33 can be rewritten by the aid of forward and backward variables as Eq.6.34. 
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We can relate )(itγ  to ),( jitξ  by summing over j  as Eq.6.34. 
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The summation of  )(itγ  over the time index t  can be interpreted as the expected 

number of times that state i  is visited. Similarly, summation of ),( jitξ over t  can be 

interpreted number of transitions from state i  to j  as Eq.6.36 and Eq.6.37. 
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If the current model is defined as ),,( π=λ BA  then a set of reasonable 

reestimation formulas for the parameters of the model can be defined as in Eq.6.38, 

Eq.6.39 and Eq.6.40. 

 

1 at time  statein   timesofnumber  expected ==π tij  (Eq.6.38) 
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In Eq.6.40, the equations for the reestimation of the coefficients jkjkc µ,  and 

jkU  are given as Eq.6.41, Eq.42 and Eq.6.43. 
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where ),( kjtγ  is the probability of being in state j  at time t  with the thk  mixture 

component accounting for to  as Eq.6.44. 
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At the end of these computation, a reestimated model ),,( π=λ BA  is obtained 

and either  λ=λ , that is )|()|( λ=λ OPOP , or model λ  is more likely than λ , that 

is, )|()|( λ>λ OPOP  (Rabiner, 1989). 
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In this way, we can iteratively use λ  in place of λ  and repeat the reestimation 

calculations to improve the probability of O  being observed from the model until 

some limiting point is reached. 

 

In this thesis, Turkish syllables are used  as the smallest unit for speech 

recognition. Each syllable is represented by a three state left to right HMM model.  

 

6.8.2 Training and Recognition with HMM 

 

After a spoken word is divided into syllable sequences, each syllable can be 

represented with a sequence of observation vectors O , defined as ToooO ,...,, 21=  

where to  is the tht  observation vector and T  is the number of observation vectors 

for single syllable utterence. Then the syllable recognition can be defined as Eq.6.45. 

 

)|(maxarg* OsPs i
i

=  (Eq.6.45) 

 

where is  is the thi  syllable in the dictionary and *s  is the desired syllable. By using 

Bayes’ rule, )|( OsP i  can be expressed as Eq.6.46. 

 

)(
)()|(

)|(
OP

sPsOP
OsP ii

i =  (Eq.6.46) 

 

Prior probabilities )( isP  are taken to be equal to each other for all is  in this 

thesis. Therefore the most probable syllable depends only on the likelihood 

)|( isOP . It is not feasible for a given observation sequence O , to directly estimate 

the joint probability )|,...,,( 21 iT soooP  for each syllable is  as discussed previous 

section. For HMM models, )|( isOP  is replaced by estimating the HMM model 

parameters of the syllable is  
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Syllables are used as the smallest unit for training and recognition of the syllables. 

The training of these models and their usages in recognition phase will be introduced 

next subsection. First, the spoken word is divided into syllables. The features of  

syllable utterences are extracted and observation feature vectors ToooO ,...,, 21=  are 

calculated. The trained HMM models of syllables are used to construct the HMM 

model of  a syllable s  supplied by the dictionary. The Viterbi algorithm is then 

applied to the HMM model with the feature vectors to get the probability )|( Osp . 

Then, the recognized syllables are concatenated by each other in order. After that, the 

recognized word is decided using postprocessing operation. 

 

6.8.3 The Training Process of HMM 

 

There are several training algorithms for HMM which were introduced in some 

studies (Furui, 1980; Kenny, Lenning & Mermelstein, 1990; Nadas, Nahammoo & 

Picheny, 1988; Pepper, Barnwell & Clements, 1980). The training algorithm with 

four steps is as the followings: 

 

1. Construct the HMM model topology of the syllable. 

2. Guess initial set of model parameters for the HMM model. 

3. Improve the HMM model. 

4. Save the individual HMM models for each syllable  in the word 

separately. 

 

In that way, the syllables in the spoken word  can be recognized. For instance, 

once the word “kitap” is trained, we have two HMM models for syllables /ki/ and 

/tap/. In the recognition stage, we can use the models for syllables. 

 

In the algorithm above and throughout this subsection, it is assumed that an HMM 

model is trained by using twenty five utterence of a word. The use of multiple 

observation sequence adds no additional complexity to the algorithm above. Step 3 is 

simply repeated for each distinct training sequence. In this thesis, 200 words have 

been trained with their syllables.  
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For the rest of this subsection,  assume that a training word has T  frames in the 

speech signal, N_S syllables, N  states and the HMM model ).,,( π=λ BA  

 

6.8.4 Initial Guess of the HMM Model Parameters 

 

Training algorithms always start with an initial guess. This section introduces the 

strategy to guess initial parameters for the HMM model ),,( π=λ BA . The training 

syllables of the word may already have been trained. If that is the case, these trained 

models are used as the initial guess, otherwise, the model parameters ,A B  and π  

are initially guessed as follows: 

 

Initial guess of the state transition probability distribution, ,A  is given in Figure 

6.13. 

 

 
Figure 6.13 Initial estimate of the state transition probability distribution, A . 

 

The transition goes from the rightmost state to itself because there is no other state 

on the left. Since the sum of the outgoing transition probabilities for a state must be 

1, the probability of taking this transition is 1.  

 

For initial guess of the observation symbol probability distribution, B , some 

approximate assignments of observation vectors to the individual states must be 

done. In this thesis, feature vectors extracted from the speech signal are distributed  

on the states of an HMM uniformly.  
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After assigning the feature vectors on syllables, we distribute feature vectors for a 

syllable over its three states such that , first one fifth of the feature vectors are 

assigned to the first state, next three fifths are assigned to the second state, and the 

last one fifth are assigned to the third state. Although this distribution is static, later 

in the improvement of HMM models, the Viterbi algorithm is used to modify this 

static distribution of the feature vectors on the states. Figure 6.14 shows the 

distribution of feature vectors on the states. 

 

 
Figure 6.14 Distribution of feature vectors on the states. 

 

In this thesis, continuous observation densities with three mixture values )3( =M  

for each state are used. K-means clustering algorithm (Juang & Rabiner, 1990) is 

used to cluster the feature vectors within each state j into a set of M clusters (using 

an Euclidean distance measure), where each cluster represents one of the M  

mixtures of the )( tj ob .  These mixture values are used with the gives observation 

sequence O  and the Eq.6.26 to compute the observation symbol probability 

distribution, B , for each state. 

 

For initial state distribution, π , since the HMM model for a syllable has only one 

starting state. So, we have  1=πi  and 0=πi  for all i  where .,...,3,2 Ni =  
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At the end of these computations, we have the initial HMM model ),,( π=λ BA  

for the training syllable. 

 

6.8.5 Improving the HMM Model 

 

Improvement of the model ),,( π=λ BA  means that the parameters of the model 

have to be reestimated to get an improved model ),,( π=λ BA . There are three main 

steps in the improvement of a HMM as shown in Figure 6.13.  

 

First, we find the optimum state sequence for the given model ),,( π=λ BA  and 

given observation sequence O  by using Viterbi algorithm. Optimum state sequence 

determines which state emits which frames. Therefore, we can consider the Viterbi 

algorithm as an another way of distributing feature vectors on the states of an HMM 

model such that )|( λOP  is maximized.  

 

Second, for each state, K-Means clustering algorithm is used to reestimate the 

clusters of its feature vectors according to the number of mixture used. The clusters 

may change since we change the distribution of the feature vectors on the states in 

the first step.  

 

Finally, the equations between Eq.6.39 and Eq.6.44 are used to reestimate the 

parameters of the model ),,( π=λ BA  to get the new improved model ),,( π=λ BA . 

Note that the parameter π  did not change because the new model should have also 

one start state. 

 

If the iteratively use λ  in place of λ  and repeat the procedure, the probability of 

O  being observed from the HMM model is improved until some limiting point is 

reached. 
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Viterbi algorithm is used to get better distribution of feature vectors on the states. 

After the better distribution, K-Means clustering algorithm is used to get better 

estimation of clusters for each of the model. Better clustering for each state means 

better estimation of the observation symbol probability distribution, ,B  and better 

estimate of the state transition probability distribution, .A  

 

 
Figure 6.15  The improvement algorithm for a HMM model. 

 

6.8.6 Recognition Process 

 

In order to apply the Viterbi algorithm in the recognition stage, the observation 

symbol probability distribution )}({ kbB j=  must be computed. The computation of 

B  is on the order of )..( MNTO  where T  is the number of observation sequence, N   

is the number of states in the HMM model, and M  is the number of mixture values 

used for each state.  
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In the training stage, after the creation of each syllable model, a space of mixture 

values is created by using the three mixture values of each state in every model. The 

space is 10-dimensional because we have 10-dimensional feature vectors. Later, this 

space is divided into C  classes by the aid of the K-Means clustering algorithm. In 

this clustering, the similarity criterion is Euclidean distance in 10-dimensional space.  

 

In the recognition stage, each observation vector is assigned to one of the clusters 

in the codebook by the help of the K-Means clustering algorithm. )( kjs κ is the value 

of the probability density function of emitting an observation vector at state j  which 

is assigned to the cluster kκ  ( thk  cluster ) and it is defined in as Eq.6.47. 

 

 ,),,()(
1

∑
=

µκ=κ
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m
jmjmkjmkj UNcs      

Ck
Nj

≤≤
≤≤

1
1

 (Eq.6.47) 

 

where jmc  is the mixture coefficient for the thm  mixture in state j . N  represents 

the Gaussian pdf with mean jmµ  and covariance matrix jmU  given in Eq.6.28. The 

computation of )( kjs κ  is performed at the training stage and it is inserted into the 

model of each syllable. Suppose that )( tod  stores the cluster number which the 

observation vector to  is assigned that is Cod t ≤≤ )(1 . Then, the computation of the 

observation symbol probability distribution, B , is just a table look-up process as 

expressed in Eq.6.48. 

 

))(()( tjtj odsob =        
Tt
Nj

≤≤
≤≤

1
,1
 (Eq.6.48) 

 

Using Viterbi algorithm, the  syllables in the word utterence are recognized and so 

by adding the syllables in order, the recognized word is found. 
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Table 6.8 Experimental results of speech recognition using HMM (without postprocessing) 

Speech Recognition 

Experiments 

(No Postprocessing) 

FEATURES 

MFCC LPC PARCOR RASTA 
MFCC+LPC+ 

PARCOR 

One Syllabic 

Words (WER %) 
14 20 18 15 22 

Two Syllabic 

Words (WER %) 
37 55 42 42 54 

Three Syllabic 

Words (WER %) 
23 29 26 48 39 

Four Syllabic 

Words (WER %) 
51 55 53 52 54 

Five Syllabic Words 

(WER %) 
48 57 48 53 52 

Total Words (WER %) 34.6 43.2 37.4 42 44.2 
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Figure 6.16 WER results of system using HMM. 
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Table 6.9 Experimental results of speech recognition using HMM (with postprocessing) 

Speech Recognition 

Experiments 

(Postprocessing) 

FEATURES 

MFCC LPC PARCOR RASTA 
MFCC+LPC+ 

PARCOR 

One Syllabic 

Words (WER %) 
14 20 18 15 22 

Two Syllabic 

Words (WER %) 
21 27 20 28 30 

Three Syllabic 

Words (WER %) 
7 6 7 15 11 

Four Syllabic 

Words (WER %) 
22 27 23 32 28 

Five Syllabic Words 

(WER %) 
23 31 24 27 28 

Total Words (WER %) 17.4 22.2 18.4 23.4 23.8 

 

In Table 6.8 and Table 6.9, the WER results are given for hidden markov model. 

If we evaluate the system, we can say that the best result for HMM is obtained with 

the mfcc feature. It is followed by parcor feature. Three syllabic words are the most 

successful words in the dictionary to be detected correctly. The system accuracy rate 

as shown in Figure 6.16 is increased with postprocessing operation about 19% using 

HMM.  

 

6.9 Experiments with Support Vector Machines (SVM) 

 

SVM is a technique of obtaining the optimal boundary of two sets in a vector 

space independently on the probabilistic distributions of training vectors in the sets. 

Its fundamental idea is quite simple; locating the boundary that is most distant from 

the vectors nearest to the boundary in both of the sets. This idea is a traditional one, 

however, recently has attracted much attention again. This is because of the 
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introduction of kernel method, which is equivalent to a transformation of the vector 

space for locating a nonlinear boundary. 

 

6.9.1 Basic Support Vector Machine 

 

At first, we assume a linearly separable problem, as shown in Figure 6.17. Our 

aim is finding the optimal boundary hyperplane which exactly separates one set from 

the other. Note that our “optimal” boundary hyperplane should classify not only the 

training vectors, but also unknown vectors in each set. In the first session of this 

topic, the classification method by estimating probabilistic distributions of the 

vectors was explained. However, an accurate estimation is difficult since the 

dimension of vectors is often much higher than the number of training vectors. It was 

referred as “curse of dimensionality”. 

 

 
Figure 6.17 Optimal boundary with SVM. 

 

In this approach, the “optimal” boundary is defined as the most distant hyperplane 

from both sets. In other words, this boundary passes the midpoint between these sets. 
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Although the distribution of each set is unknown, this boundary is expected to be the 

optimal classification of the sets, since this boundary is the most isolated one from 

both of the sets. The training vectors closest to the boundary are called support 

vectors. 

 

Such boundary is defined to be passing through the midpoint of the shortest line 

segment between the convex hulls of the sets and is orthogonal to the line segment.  

 

Let x  be a vector in a vector space. A boundary hyperplane is expressed as one of 

the hyperplanes 

 

0=+ bxwT  (Eq.6.49) 

 

where w  is a weight coefficient vector and b  is a bias term. The distance between a 

training vector ix  and the boundary, called “margin”, is expressed as follows: 

 

w

bxw i
T +

 (Eq.6.50) 

 

Since the hyperplanes expressed by Eq.6.49 where w  and b  are multiplied by a 

common constant are identical, we introduce a restriction to this expression, as 

follows: 

 

1min =+
i

i
T bxw  (Eq.6.51) 

 

www T
11

2 =  (Eq.6.52) 
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The optimal boundary maximizes the minimum of Eq.6.50. By the restriction of 

Eq.6.51, this is reduced to maximization of Eq.6.52. Consequently, the optimization 

is formalized as Eq.6.53. 

 

1)(    subject to

      minimize

≥+ bxwy

ww

i
T

i

T
 (Eq.6.53) 

 

where iy  is 1 if ix  belongs to one set and –1 if ix  belongs to the other set. If the 

boundary classifies the vectors correctly as Eq.6.54 and it is identical to the margin. 

 

0)( ≥+ bxwy i
T

i  (Eq.6.54) 

 

 

 
Figure 6.18 Linearly nonseparable case. 
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This conditional optimization is achieved by Lagrange’s method of indeterminate 

coefficient. Let us define a function as Eq.6.55. 

 

[ ]∑ −+α−=α
i

i
T

ii
T

i bxwywwbwL 1)(
2
1),,(  (Eq.6.55) 

 

where 0≥α i  are the indeterminate coefficients. If w  and b  take the optimal value, 

the partial derivatives as Eq.6.56 are zero. 
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Setting the derivatives of Eq.6.56 to zero, we get Eq.6.57 and Eq.6.58. 

 

∑α=
i

iii xyw  (Eq.6.57) 

 

∑ =α
i

ii y 0  (Eq.6.58) 

 

Rewriting Eq.6.55, we get Eq.6.59. 

 

∑ ∑ ∑α+α−α−=α
i i i

iiii
T

ii
T

i ybxwywwbwL
2
1),,(  (Eq.6.59) 

 

Substituting Eq.6.57 and Eq.6.58 to Eq.6.59, we get Eq.6.60. 
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The contribution of the second term of Eq.6.55 should be minimum, and L  

should be maximized subject to α . Consequently, the optimization is reduced to a 

quadratic programming problem as Eq.6.61. 
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 (Eq.6.61) 

 

The above discussion is applicable to the case of linearly separable sets only. If 

the sets are not linearly separable, a hyperplane exactly classifying the sets does not 

exist, as explained in the previous subsection. 

 

The method called “soft margin” is a solution to such case. This method replaces 

the restriction in Eq.6.53 with Eq.6.62. 

 

ii
T

i bxwy ξ−≥+ 1)(     subject to  (Eq.6.62.) 

 

where iξ  called slack variables, are positive variables that indicate tolerances of 

misclassification. This replacement indicates that a training vector is allowed to exist 

in a limited region in the erroneous side along the boundary, as shown in Figure 6.18. 

Several optimization functions are proposed for this case. 

 

∑ξ+
i

i
T Cww   minimize  (Eq.6.63) 
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The second term of Eq.6.63 is a penalty term for misclassification, and the 

constant C  determines the degree of contribution of the second term. 

 

6.9.2 Kernel Method 

 

The soft margin method is an extension of the support vector machine within the 

linear framework. The kernel method explained here is a method of finding truly 

nonlinear boundaries. 

 

The fundamental concept of kernel method is a deformation of the vector space 

itself to a higher dimensional space. We consider the linearly nonseparable example 

presented in the previous subsection, as shown in Figure 6.19. If the two-dimensional 

space is transformed to the three-dimensional one as shown in Figure 6.20, “black” 

vectors and “white” vectors are linearly separable. 

 

Let Φ  be a transformation to a higher dimensional space. The transformed space 

should satisfy that the distance is defined in the transformed space and the distance 

has a relationship to the distance in the original space. The kernel function ),( xxK ′   

is introduced for satisfying the above conditions. The kernel function satisfies 

Eq.6.64. 

 

)()(),( xxxxK T ′ΦΦ=′  (Eq.6.64) 
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Figure 6.19 Transformation to higher dimensional space (not separable by linearly) 

 

 
Figure 6.20 Transformation to higher dimensional space (linearly separable). 

 

Eq.6.65 indicates that the kernel function is equivalent to the distance between x  

and x′  measured in the higher dimensional space transformed by .Φ  If we measure 

the margin by the kernel function and perform the optimization, a nonlinear 

boundary is obtained. Note that the boundary in the transformed space is obtained as 

Eq.6.65. 
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0)( =+Φ bxwT  (Eq.6.65) 

 

Substituting Eq.6.57 into the above equation with replacing x  with Φ(x), we get 

Eq.6.66. 

 

0),()()( =+α=+ΦΦα ∑∑ bxxKybxxy
i

iii
i

T
iii  (Eq.6.66) 

 

The optimization function of Eq.6.61 in the transformed space is also obtained by 

substituting j
T
i xx  with ).,( ji xxK  These results mean that all the calculation can be 

achieved by using ),( ji xxK  only, and we do not need to know what Φ  or the 

transformed space actually is. 

 

A sufficient condition for satisfying Eq.6.64 is that K  is positive definite. One 

example of such kernel functions is known as Eq.6.67 (Gaussian Kernel or Radial 

Basis Function Kernel, RBF). 

 

)exp(),( 2

2

σ

′−
−=′

xx
xxK  (Eq.6.67) 

 

The term empirical risk means the misclassification rate for known training 

vectors. It is not what we want to minimize; Our objective is minimizing the 

misclassification rate for all vectors in each set, including unknown vectors. This 

misclassification rate is called expected risk. 

 

In case of linearly separable problems, there exists a boundary hyperplane that 

makes the empirical risk zero. The concept of support vector machine to find the 

boundary with the largest margin is equivalent to selecting a hyperplane minimizing 

the expected risk, from the set of hyperplanes that makes the empirical risk zero. 

This is formally explained in the framework of structural risk minimization with the 

concept of Vapnik-Chervenenkis (VC) dimensionality. 
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Table 6.10 Experimental results of speech recognition using SVM (without postprocessing) 

Speech Recognition 

Experiments 

(No Postprocessing) 

FEATURES 

MFCC LPC PARCOR RASTA 
MFCC+LPC+ 

PARCOR 

One Syllabic 

Words (WER %) 
20 37 24 25 25 

Two Syllabic 

Words (WER %) 
33 45 39 42 41 

Three Syllabic 

Words (WER %) 
10 23 13 29 16 

Four Syllabic 

Words (WER %) 
13 32 22 37 23 

Five Syllabic Words 

(WER %) 
10 30 18 27 23 

Total Words (WER %) 17.2 33.4 23.2 32 25.6 
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Figure 6.21 WER results of system using SVM. 
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Table 6.11 Experimental results of speech recognition using SVM (with postprocessing) 

Speech Recognition 

Experiments 

(Postprocessing) 

FEATURES 

MFCC LPC PARCOR RASTA 
MFCC+LPC+ 

PARCOR 

One Syllabic 

Words (WER %) 
20 37 24 25 25 

Two Syllabic 

Words (WER %) 
18 27 24 27 26 

Three Syllabic 

Words (WER %) 
1 8 3 9 3 

Four Syllabic 

Words (WER %) 
5 8 6 15 9 

Five Syllabic Words 

(WER %) 
2 4 4 9 7 

Total Words (WER %) 9.2 16.8 12.2 17 14 

 

In Table 6.10 and Table 6.11, the WER results are given for support vector 

machine. If we evaluate the system, we can say that the best result for SVM is 

obtained with the mfcc feature. It is followed by parcor feature. Three and five 

syllabic words are the most successful words in the dictionary to be detected 

correctly. The system accuracy rate as shown in Figure 6.21 is increased with 

postprocessing operation about 13% using SVM.  

 

6.10 Overall System Evaluation 

 

According to the results of WER of the system, as shown in Table 6.12, the most 

successful feature and speech recognition method are mfcc and DTW (5.8% WER) 

respectively. The postprocessing which we proposed improves approximately 14% 

of the system accuracy. 
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LTA and DTW do not need training operation. They use the extracted features. 

The best feature is mfcc because its extraction time duration is the lowest. ANN, 

HMM and SVM need training, and they construct a model for each syllable in words 

using training. The method which has the shortest time duration is HMM as shown in 

Table 6.15, but there must be much more training words to be more successful for 

this method. In addition, SVM’s accuracy rate is quite remarkable although its 

training time duration is short. 

 

Table 6.12 Experimental results of speech recognition  (with postprocessing) 

Speech Recognition 

Methods 

FEATURES 

MFCC LPC PARCOR RASTA 
MFCC+LPC+ 

PARCOR 

LTA (WER %) 8.8 24.2 11.4 9.2 10.8 

DTW (WER %) 5.8 17.2 12.8 9.2 10.8 

ANN (WER %) 12 21 15 16.2 14.8 

HMM (WER %) 17.4 22.2 18.4 23.4 23.8 

SVM (WER %) 9.2 16.8 12.2 17 14 

 

Table 6.13 Syllable recognition results 

Speech Recognition 

Methods 

FEATURES 

MFCC LPC PARCOR RASTA 
MFCC+LPC+ 

PARCOR 

LTA (WER %) 7.9 22.1 11.2 8.7 11.3 

DTW (WER %) 5.5 18.3 9.4 8.9 9.2 

ANN (WER %) 9.1 24.6 14.1 10.8 13.2 

HMM (WER %) 15.8 32.3 18.5 16.2 17.8 

SVM (WER %) 7.8 22.7 10.9 9.1 10.2 
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As shown in Table 6.13, DTW is the most successful method for syllable 

recognition. 

  

Table 6.14 Representative recognition WER for some isolated word recognizers 

Authors Environment Vocabulary Error Rates 

Martin, 1975 Actual baggage 

handling application 

34 words WER 1.5%  

Itakura, 1975 Telephone speech 200 Japanese words WER 2.7% 

Scott, 1977 Speaker independent 10 digits and 4 control 

words 

WER 4% 

Nippon 

electronic, 

1978 

Speaker dependent 10 digits WER 0.2% 

Nedim 

Karaca, 1999 

Speaker independent.  130 words WER 

26.5% 

Nuri İkizler, 

2003 

Speaker independent.  All Turkish syllables Syllable ER 

40% 

Ebru Arısoy, 

Helin 

Dutağacı, 

2006 

Speaker independent.  Turkish letters Letter error 

rates 20% 

Özgül Salor, 

Bryan L. 

Pellom, 2007 

Speaker independent.  Turkish phones Phone 

recognition 

ER %29.2 

Engin Avcı, 

2007 

Speaker independent.  15 words WER 8% 

Our system Speaker dependent 200 words WER 5.8% 
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Table 6.16 displays average testing time duration for each syllable. The fastest 

method is HMM, and it is fallowed by ANN, SVM, LTA and DTW respectively. 

Although the method, which has the best accuracy rate, is DTW, it has the longest 

time duration for testing operation. 

 
Table 6.15 Average training time for one syllable 

 Training Time (Seconds) 

ANN 1102.5 

HMM 17.5 

SVM 578.2 

 
Table 6.16 Average testing time for one syllable 

 Testing Time (Seconds) 

LTA 18.1 

DTW 57.3 

ANN 7.4 

HMM 4.7 

SVM 8.6 
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CHAPTER SEVEN 

CONCLUSIONS 

 

In this thesis, we have developed syllable based isolated word Turkish speech 

recognition systems using the speech recognition methods as LTA, DTW, ANN, 

HMM and SVM. These speaker dependent systems use the features as mfcc, lpc, 

parcor, cepstrum, rasta and the mixture of mfcc, lpc and parcor. We trained the 

system using ANN, HMM and SVM. Syllable models of the words in the dictionary 

are constructed syllable databases to compare the word utterence. The system firstly 

recognizes the syllables of the word utterence. Recognized word is found by the 

concatenation of the recognized syllables. 

 

To use in postprocessing stage of the system, we have firstly designed and 

implemented TASA. TASA’s correct spelling rate is about 100%. Then, we 

calculated Turkish syllable n-gram frequencies for some Turkish corpora.  

 

In addition, using syllable n-gram frequencies, we have developed a system which 

decides whether or not a word is misspelled in Turkish text. The system takes words 

as inputs. The system produces two results for each word: “Correctly spelled word” 

or “Misspelled word”. According to the system designed with bigram and trigram 

frequencies, the success rate is 97% for the misspelled words, and 98% for the 

correctly spelled words. 

 

In postprocessing operation, after the recognized word is constructed by 

concatenating of the recognized syllables, the system decides whether it is Turkish 

word or not. If the word is Turkish word, then it is new recognized word. This 

postprocessing increases the accuracy rate of the system approximately 14%.  

 

After testing of the middle scaled speech recognition system, we have seen that 

the most successful method is DTW whose word error rate is about 5.8%. It can be 

said that the best feature for the speech recognition is mel frequency cepstral 

coefficients. 
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7.1 Future Directions 

 

By combination of some speech recognition methods, the system will be extended 

to syllable based hybrid system. In addition, speaker independent systems will be 

constructed. 

 

Turkish is an agglutinative language. We can generate many words from a word 

by adding suffixes. Therefore, word based speech recognition systems are not 

adequate for Turkish to develop large scaled speech recognition systems. If the 

syllables of all Turkish words are modeled, large scaled system will be developed. 
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APPENDIX A 

DICTIONARY WORDS 

 

Table A.1 shows the system words which we have used for training and testing of 

the applications. 

 
Table A.1 The system dictionary words. 

abajur boyutlandırmak elektrikçi mükemmeliyet 
abaküs burun elektroteknik mütemadiyen 
aceleci bülten endüstrileşme naftalin 
acemice can evcilleştirme nakliyat 
acımasız caz faks nefeslenmek 
acil cesaretli fark neşelendirmek 
aç cevizli farklılaştırma neşeli 
açıklamak cezalı faydalı nicelemek 
adaletsizlik coğrafya felaketzede nitelendirmek 
adapazarı cumhuriyet felek not 
ağaçlandırmak çabalamak ferman nur 
ahşap çabuklaştırmak feza of 
ak çağla fındık ok 
akarsu çakır fikir oksijen 
akça çal fiyasko okuryazarlık 
akıcılık çalgı fotokopi organizasyon 
akıllanmak çalım gazetecilik ormanlık 
akreditasyon çalışkan gecekondu ot 
aks çalışmak habersiz pim 
aktar çam halıcı plak 
akvaryumculuk çay hareketli plan 
alçı çekim ihtiyarlamak prens 
alt çeşitlilik inandırma programcılık 
anıtlaştırmak çiçekçilik iştahsızlık radyoelektrik 
aydın çimenlik iyotlu radyoloji 
baba çobanpüskülü izcilik renk 
badanacılık dalgınlaşma kabataş resimlendirme 
bağlam damga kafkasyalı rey 
bahçıvan danışmak kahramanlık ring 
bahçıvanlık dansimetre kalorimetre risk 
bakla dargın kamburlaştırmak robotlaştırmak 
bal dayanışma kan sabunlaştırmak 
baltık defter kap samimiyetlik 
bar deha kapitülasyon sevindirmek 
bardak delgi karikatürcü simülasyon 
basamaklı demokrasi kılavuz siyasetname 
başarısızlık deneme kitabevi sosyoloji 
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başbakanlık denetleyici kundura şekerleme 
belirlemek denizaltı lösemi tank 
beneklenmedi denizyıldızı macun tarz 
benzerlik dert maç taş 
benzeşim dev maden tatbikat 
bereket divan mafya termodinamik 
biçimsel doğru   maharet uygarlaştırmak 
bilet doksan makas ücretlendirme 
bilimsel doktor malümat yabancılık 
biyosfer durak mart yaz 
boncuk ehliyet mat ziyaret 
borç eldiven mert ziyaretçi 
bordo elektrik misafirlik zor 

 


