

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DESIGN AND IMPLEMENTATION OF TURKISH

SPEECH RECOGNITION ENGINE

by

Rıfat AŞLIYAN

July, 2008

İZMİR

DESIGN AND IMPLEMENTATION OF TURKISH

SPEECH RECOGNITION ENGINE

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Computer Engineering

by

Rıfat AŞLIYAN

July, 2008

İZMİR

 ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DESIGN AND IMPLEMENTATION OF

TURKISH SPEECH RECOGNITION ENGINE” completed by RIFAT

AŞLIYAN under supervision of PROF. DR. TATYANA YAKHNO and we certify

that in our opinion it is fully adequate, in scope and in quality, as a thesis for the

degree of Doctor of Philosophy.

Prof. Dr. Tatyana YAKHNO

Supervisor

 Asst. Prof. Dr. Adil ALPKOÇAK Asst. Prof. Dr. Damla KUNTALP

 Thesis Committee Member Thesis Committee Member

 Assoc. Prof. Dr. A. Fevzi BABA Asst. Prof. Dr. Gökhan DALKILIÇ

 Examining Committee Member Examining Committee Member

Prof. Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

 iii

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor, Prof. Dr. Tatyana

YAKHNO, whose expertise, understanding, and patience, added considerably to my

graduate experience.

I would like to thank the other members of my committee, Asst. Prof. Dr. Adil

ALPKOÇAK, and Asst. Prof. Dr. Damla KUNTALP for the assistance they provided

at all levels of my study.

Special thanks go to my friend, Korhan GÜNEL, for his comments and help. I

want to thank Prof. Dr. Hatice KANDAMAR for her support.

I would also like to thank my parents, Fatma and Mehmet AŞLIYAN, for the

support they provided me through my entire life.

Rıfat AŞLIYAN

 iv

DESIGN AND IMPLEMENTATION OF TURKISH SPEECH
RECOGNITION ENGINE

ABSTRACT

In this thesis, we have designed and implemented syllable based Turkish speech

recognition systems based on Linear Time Alignment (LTA), Dynamic Time

Warping (DTW), Artificial Neural Network (ANN), Hidden Markov Model (HMM)

and Support Vector Machine (SVM). These speaker dependent and isolated word

recognition systems consist of five main parts: Preprocessing, feature extraction,

training, recognition and postprocessing. Preprocessing includes some operations

such as speech signal smoothing, windowing and syllable end-point detection. In

feature extraction, we have used speech features as mel frequency cepstral

coefficients, linear predictive coefficients, parcor, cepstrum and rasta coefficients. In

training stage for HMM, SVM and ANN, every syllable of the words in the

dictionary is trained, and the syllable models are generated. In recognition stage,

every syllable in the word utterence is compared with the syllable models. So, the

recognized syllables are determined and ordered. Then, the recognized syllables are

concatenated with each other. In postprocessing operation, we have developed the

system which is based on Turkish syllable n-gram frequencies. The system decides

whether the recognized word is Turkish or not. If the word is Turkish, then it is new

recognized word.

The system is middle scaled speech recognition because the system dictionary has

200 different Turkish words. After the system is tested on 2000 spoken words, we

have seen that the word error rate of the system is about 5.8% for DTW, 12% for

ANN, 8.8% for LTA, 17.4% for HMM and 9.2% for SVM with postprocessing.

System recognition rate increased approximately 14% using postprocessing.

Keywords: Turkish speech recognition, syllable based speech recognition, Hidden

Markov Model, Linear Time Alignment, Dynamic Time Warping, Artificial Neural

Network, Support Vector Machine, Turkish misspelled words, Turkish syllable

n-gram.

 v

TÜRKÇE KONUŞMA TANIMA SİSTEMİNİN TASARIMI VE

GERÇEKLEŞTİRİLİMİ

ÖZ

Bu tezde, konuşmacıya bağımlı hece tabanlı Türkçe konuşma tanıma sistemi

uygulamaları gerçekleştirilmiştir. Bu sistemlerde, konuşma tanıma yöntemlerinden

Doğrusal Zaman Hizalama (DZH), Dinamik Zaman Bükmesi (DZB), yapay sinir

ağlarından Çok Katmanlı Algılayıcı (ÇKA), Saklı Markov Modeli (SMM) ve Vektör

Destek Makineleri (VDM) kullanılmıştır. Ayrık sözcük tanıma sistemi genel olarak

önişleme, öznitelik çıkarılması, hecelerin eğitimi, tanıma ve önişleme süreçlerinden

oluşmaktadır. Önişlemede, dijital sinyallerin düzleştirilmesi, pencereleme ve hece

sınırların tespiti işlemleri yapılır. Hecelerin mfcc, lpc, parcor, cepstrum ve rasta

öznitelikleri elde edildikten sonra ÇKA, VDM ve SMM kullanılarak eğitilir. Her

yöntem için hece modelleri oluşturulur. Sözcük tanıma safhasında, tanınması istenen

sözcüğün heceleri hece modelleri ile karşılaştırılır. En çok benzeyen heceler tespit

edilip sıralandırılır. En çok benzeyen heceler birbirine eklenerek tanınan sözcük

bulunur. Artişlemede ise bu tanınan sözcüğün Türkçe olup olmadığına bakılır. Eğer

bu sözcük Türkçe ise tanıma işlemi biter. Fakat Türkçe değilse bir sonraki heceler

eklenerek yeni sözcük oluşturulur. Bu işlemlere Türkçe sözcük bulunana kadar

devam edilir. Bir sözcüğün Türkçe olup olmadığının tespiti için hece n-gram

frekansları kullanılmıştır.

Orta dağarcıklı konuşma tanıma sisteminin sözlüğünde 200 Türkçe sözcük

bulunmaktadır. Her bir sözcük 10 defa kaydedilerek 2000 sözcüklü test veritabanı

oluşturuldu ve test işlemi yapıldı. Sistemin başarımını ölçmek için sözcük hata oranı

(word error rate) kullanıldı. Sözcük hata oranı, DZB için %5,8, ÇKA için %12,

SMM için 17,4, DZH için %8,8 ve DVM için %9,2 olarak bulunmuştur. Artişleme,

sistemin başarımını yaklaşık olarak %14 oranında artırmıştır.

 vi

Anahtar sözcükler: Türkçe konuşma tanıma, hece tabanlı konuşma tanıma,

Dinamik Zaman Bükmesi, Saklı Markov Modeli, Çok Katmanlı Algılayıcı, Vektör

Destek Makineleri, hatalı yazılmış sözcük tespiti, Türkçe hece istatistiği, Türkçe hece

n-gram.

vii

CONTENTS

 Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

ÖZ .. v

CHAPTER ONE – INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Speech Recognition History ... 4

1.3 A Survey of Turkish Speech Recognition .. .7

1.4 The Thesis Perspective ... 9

1.5 Structure of the Thesis .. 10

CHAPTER TWO – SPEECH RECOGNITION ... 11

2.1 Definition of Speech Recognition ... 11

2.2 Speech Acquisition ... 13

2.3 Preprocessing and Feature Extraction ... 16

2.4 Recognition Operation.. 22

2.5 Acoustic Modeling ... 23

2.6 Language Modeling .. 26

2.6.1 n-gram Language Models.. 28

2.6.2 Perplexity ... 29

2.6.3 Smoothing .. 30

viii

CHAPTER THREE – SPEECH RECOGNITION FEATURES AND

METHODS ... 34

3.1 Speech Feature Extraction .. 34

3.1.1 Linear Predictive Coding Coefficients ... 34

3.1.1.1 Levinson-Durbin Recursive Method .. 39

3.1.1.1.1 Recursive Algorithm .. 42

3.1.1.2 Lattice Implementation of LPC Filters ... 43

3.1.2 Parcor Coefficients ... 47

3.1.3 Cepstrum Coefficients... 48

3.1.4 Mel Frequency Cepstral Coefficients .. 49

3.1.5 RelAtive SpecTrAl (RASTA) Features ... 51

3.2 Speech Recognition Methods ... 54

3.2.1 Linear Time Alignment (LTA) .. 54

3.2.2 Dynamic Time Warping (DTW) ... 54

3.2.2.1 Problem Formulation ... 56

3.2.3 Artificial Neural Networks (ANN) .. 57

3.2.3.1 The Biological Neuron .. 58

3.2.3.2 Structure of a Neuron .. 59

3.2.3.3 A Neural Net ... 60

3.2.3.4 Backpropagation .. 61

3.2.3.4.1 Multi-layer Feed-forward Networks 61

3.2.4 Hidden Markov Models (HMM) ... 63

3.2.4.1 Assumptions of HMMs.. 66

3.2.4.1.1 The Markov Assumption .. 66

3.2.4.1.2 The Stationary Assumption .. 66

3.2.4.1.3 The Output Independence Assumption 67

3.2.4.2 Three Basic Problems of HMMs .. 67

3.2.4.2.1 The Evaluation Problem ... 67

3.2.4.2.2 The Decoding Problem .. 67

3.2.4.2.3 The Learning Problem .. 68

3.2.4.3 The Evaluation Problem and the Forward Algorithm 68

ix

3.2.4.4 The Decoding Problem and the Viterbi Algorithm 70

3.2.5 Support Vector Machines (SVM) .. 71

3.2.5.1 Optimal Separating Hyper-plane .. 72

3.2.5.2 Support Vectors ... 76

CHAPTER FOUR – TURKISH SYLLABLE n-GRAM ANALYSIS 79

4.1 Introduction .. 79

4.2 Design and Implementation of TASA ... 81

4.2.1 The Algorithm of TASA-A ... 82

4.2.2 The Algorithm of TASA-B ... 83

4.3 Experimental Results .. 88

CHAPTER FIVE – DETECTING MISSPELLED WORDS IN TURKISH

TEXT USING SYLLABLE n-GRAM FREQUENCIES 90

5.1 Introduction .. 90

5.2 System Architecture ... 92

5.2.1 Calculation of Syllable n-gram Frequencies .. 93

5.3 Calculation of the Probability Distribution of Words 95

5.4 Testing the System ... 97

CHAPTER SIX – SPEECH RECOGNITION EXPERIMENTS 99

6.1 System Databases ... 99

6.2 Preprocessing of the System ... 100

6.2.1 Word and Syllable End-point Detection .. 101

6.2.1.1 Word End-point Detection Algorithm .. 103

6.2.1.2 Syllables End-point Detection of the Words 106

6.3 Feature Extraction .. 108

6.4 Experiments with Linear Time Alignment .. 110

6.4.1 Word Error Rate ... 112

x

6.5 The Postprocessing of the System... 114

6.5.1 Postprocessing Algorithm For Three Syllabic Word 116

6.6 Experiments with Dynamic Time Warping ... 117

6.6.1 DTW Algorithm.. 118

6.7 Experiments Using Artificial Neural Networks ... 120

6.7.1 Sigmoid Function .. 120

6.7.2 Neuron .. 121

6.7.3 Backpropagation ... 123

6.7.3.1 Supervised Learning .. 124

6.7.3.2 Output Layer Training ... 125

6.7.3.3 Hidden Layer Training .. 125

6.8 Experiments with Hidden Markov Models.. 128

6.8.1 Constructing Hidden Markov Models ... 129

6.8.2 Training and Recognition with HMM ... 134

6.8.3 The Training Process of HMM .. 135

6.8.4 Initial Guess of the HMM Model Parameters 136

6.8.5 Improving the HMM Model .. 138

6.8.6 Recognition Process .. 139

6.9 Experiments with Support Vector Machines (SVM) 142

6.9.1 Basic Support Vector Machine .. 143

6.9.2 Kernel Method .. 148

6.10 Overall System Evaluation ... 152

CHAPTER SEVEN – CONCLUSIONS .. 156

7.1 Future Directions .. 157

REFERENCES ... 158

APPENDIX A – DICTIONARY WORDS ... 169

1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Speech is the primary means of communication between people. For reasons

ranging from technological curiosity about the mechanisms for mechanical

realization of human speech capabilities, to the desire to automate simple tasks

inherently requiring human-machine interactions, research in speech recognition and

speech synthesis by machine has attracted a great deal of attention over the past six

decades.

Speech recognition is the process by which a computer converts an acoustic

speech signal to text. This process is important to virtual reality because it provides a

fairly natural and intuitive way of controlling the simulation while allowing the user's

hands to remain free. Speech recognition allows making it easier both to create and

to use information. Text is easier to store, process and consume, both for computers

and for humans, but writing text is slow and requires some intention. Speech is easier

to generate, it's intuitive and fast, but listening to speech is slow, it's hard to index

speech, and easy to forget.

Great advance has been achieved in last ten years in the speech recognition

technology, but 100% reliable speech recognition systems are not developed yet. The

most limiting factor in speech processing applications is the variability of speech

signal characteristics from trial to trial, the variability of recording and transmission

conditions, and the variations generated by the speaker, either deliberately or

accidentally. However, the primary bottleneck is the spectral and pitch changes

arising from emotional changes of the speakers.

2

Figure 1.1 General structure of speech recognition.

In a simplified way, the general speech recognition procedure is shown in Figure

1.1. Speech recognizer includes the operations as preprocessing, feature extraction,

training, recognition and postprocessing. After the speech recognizer takes the

acoustic speech signal as an input, the output of the recognizer will be the recognized

text.

The most common approaches to speech recognition can be divided into two

classes: “template based approach” and “model based approach”. Template based

approaches as LTA and DTW are the simplest techniques and have the highest

accuracy when used properly, but they also suffer from the most limitations. As with

any approach to speech recognition, the first step is for the user to speak a word or

phrase into a microphone. The electrical signal from the microphone is digitized by

an analog-to-digital converter. The system attempts to match the input with a

digitized voice sample, or template. This technique is a close analogy to the

traditional command inputs from a keyboard. The system contains the input template,

and attempts to match this template with the actual input. Model based approaches as

HMM and ANN tend to extract robust representations of the speech references in a

statistical way from huge amounts of speech data. Model based approaches are

3

currently the most popular techniques. However, when the size of the vocabulary is

small and the amount of training data is limited, template based approaches are still

very attractive. Even though most of the time these approaches are used separately,

some of these techniques are complementary and can be combined in a very efficient

way.

Another way to differentiate between speech recognition systems is by

determining if they can handle only discrete words, connected words, or continuous

speech. Most voice recognition systems are discrete word systems, and these systems

are easiest to implement. For this type of system, the speaker must pause between

words. This is fine for situations where the user is required to give only one word

responses or commands. In a connected word voice recognition system, the user is

allowed to speak in multiple word phrases, but he or she must still be careful to

articulate each word and not slur the end of one word into the beginning of the next

word. Totally natural, continuous speech includes a great deal of co-articulation,

where adjacent words run together without pauses or any other apparent division

between words.

Speech recognition system is speaker dependent or speaker independent. A

speaker dependent system is developed to operate for a single speaker. These

systems are usually more accurate. A speaker independent system is developed to

operate for any speaker. These systems are the most difficult to develop, most

expensive and accuracy is lower than speaker dependent systems.

The size of vocabulary is another key point in speech recognition applications.

The size of vocabulary of a speech recognition system affects the complexity,

processing requirements and the accuracy of the system. Some applications only

require a few words such as only numbers; others require very large dictionaries such

as dictation machines. According to vocabulary size, speech recognition systems can

be divided into three main categories as small vocabulary recognizers (smaller than

100 words), medium vocabulary recognizers (around 100-1000 words) and large

vocabulary recognizers (over 1000 words).

4

1.2 Speech Recognition History

First speech recognition studies started in the late 40s and early 50s,

simultaneously in Europe with J. Dreyfus-Graf and in the U.S.A. with K. H. Davis

and his colleagues at Bell Laboratories. Dreyfus-Graf, J. (1952) designed his first

“Phonetographe” in 1952. This system transcribed speech into phonetic “atoms”.

Davis, K., et al, (1952) designed the first speaker dependent, isolated digit

recognizer. This system used a limited number of acoustic parameters based on zero-

crossing counting.

A research group at Bell Laboratories adopted a phonetic decoding approach to

design a word recognizer based on segmentation in phonetic units (Dudley &

Balashek, 1958). At the same period, a system was designed on the basis of the

distinctive features proposed in Jakobson, R., et al. (1952), for the speaker

independent recognition of vowels (Wiren & Stubbs, 1956). Another phonetic

approach was used at RCA laboratories in the first “phonetic typewriter” capable of

recognizing syllables dictated in isolation by a single speaker (Olson & Belar, 1956).

A rudimentary phoneme recognizer was developed at University College, London

(Denes, 1959). This system was the first to incorporate linguistic knowledge under

the form of statistical information about allowable sequences of two phonemes in

English.

All the above mentioned systems were electronic devices. The first experiments

on computer based speech recognition were carried out in the late 50s and early 60s,

especially Lincoln Laboratory for the speaker independent of ten vowels (Forgie &

Forgie, 1959). At the same period, the first Japanese systems were developed, still as

special purpose hardware for vowel (Suzuki & Nakata, 1961) or phoneme

identification (Sakai & Doshita, 1962), and for digit recognition (Nagate et al.,

1963). But the systems actually correspond to the generalization of the use of digital

processing and computers.

5

This decade was also marked by two major milestones in the history of speech

recognition methodology. The first is preliminary development of techniques

normalization in speech pattern matching. Acoustic feature abstraction was proposed

in Martin et al., 1964, and the basic concepts of dynamic time warping using

dynamic programming were proposed by Russian researchers (Slutsker, 1968;

Vitsyuk, 1968). The second is the recognition of continuous speech by dynamic

tracking of phonemes from Stanford University (Reddy, 1966). It led to the speaker

dependent recognition of sentences with five vocabularies of 561 words (Vicens,

1969).

The 1970s were very active period for speech recognition with two distinct types

of activities. First is the understanding of large vocabularies, continuous speech,

based on the use of high level knowledge such as lexical and syntactic to compensate

for the errors in phonetic decoding. The main contributions of these artificial

intelligence projects were more in software architecture of knowledge based systems

(Lesser et al., 1975). Such systems were primarily developed in the framework of the

ARPA. The goal of speech understanding research project from 1971 to 1976 was

understood of continuous speech sentences from a vocabulary of about 1000 words

produced by one speaker. Several systems were developed which more or less

fulfilled the initial goal: HARPY (Lowerre, 1976) and HEARSAY II (Lesser et al.,

1975) at Carnegie Mellon University, and HWIM (Wolf & Woods, 1977). Similar

systems were proposed in France: MYRTILLE I (Haton & Pierrel, 1976), KEAL

(Marcier, 1977). The second is the recognition of isolated words based on pattern

recognition template based methods (Velichko & Zagoruyko, 1970). Several basic

techniques still in use today were introduced during this decade. The first is elastic

matching of speech patterns by dynamic time warping algorithms. These algorithms

were first developed in USSR (Slutsker, 1968; Vistsyuk, 1968) and in Japan (Sakoe

& Chiba, 1971). Sub-optimal, but less time consuming versions were also proposed

(Haton, 1974). The second technique is clustering algorithms adapted from data

analysis methods in order to design speaker independent systems (Rabiner et al.,

1979). The third is speech analysis based on linear predictive coding (lpc) instead of

the classical fast fourier transform (fft) or filter bank methods (Itakura, 1975).

6

In the late 1970s, important progress was made with the implementation of speech

recognition systems on microprocessor boards. This technological advance made

possible the commercialization of the first low cost speech recognizers.

The 1980s were marked by series of important milestones. The first one is the

extension of dynamic programming to connected word recognition such as (Sakoe,

1979) and onepass methods (Bridle & Brown, 1979; Lee & Rabiner, 1989). The

second one is the shift in methodology from template based methods to statistical

modeling based on HMMs (Ferguson, 1980; Rabiner, 1989). These methods were

developed in the 1970s (Baker, 1975a, Jelinek, 1976) for continuous speech

recognition. The third one is the reintroduction of neural networks techniques

(Lippmann, 1987). The first neural network models as the perceptron were proposed

in the 1950s, and then reappeared in the late 1980s. The fourth one is the acoustic-

phonetic decoding of continuous speech using knowledge based approaches. Expert

system technology has been advocated to design phonetic decoders based on the

expertise of phoneticians in spectrogram reading (Cole et al., 1980). The fifth one is

the recording of large databases such as TIMIT (Fisher et al., 1986) which directly

contributed to the advances made in speech recognition. During this same decade, an

ARPA program contributed to substantially improve the accuracy of continuous

speech recognition for medium size vocabulary with resource management task.

The 1990s and 2000s have experienced a continuous and an extension of the

ARPA program towards two main directions. These are the introduction of natural

language and user system dialog in an air travel information application, and the

extension of speech recognition systems to large vocabularies for dictation purposes

(Makhoul & Schwatz, 1994). Another major trend of these years is an important

increase in the use of speech recognition technology within public telephone

networks (Wilpon, 1994). As a result, an increasing interest of speech processing

under noisy or adverse conditions, as well as for spontaneous speech recognition

emerged.

7

Some general conclusions can be drawn from this past experience of six decades

in speech recognition research and development: First, present systems are based

upon models and techniques that appeared quite early in the history of speech

recognition. Second, transforming a laboratory prototype with excellent accuracy

into a reliable commercial system is a long, and yet not totally mastered process.

Third, the performance of today’s best systems is more than an order of magnitude in

error rate from human performance. Finally, the general solution to the problem will

not be found suddenly by an ingenious researcher. Rather, it will necessitate a long

and tedious multi-disciplinary work.

1.3 A Survey of Turkish Speech Recognition

Today, there are several speech recognition studies on Turkish. But, Turkish

speech recognition studies have increased in the past decade. We have mentioned

some of them as the followings.

Arturner (1994) firstly constructed Turkish codebook for each Turkish phoneme.

He then designed and implemented a Turkish speech phoneme clustering system

using self organizing feature map.

Meral (1996) developed speech recognition system based on pattern comparison

techniques. He used lpc speech feature and dynamic time warping method. The WER

of the system is about 0% on the vocabulary (26 Turkish words).

Özkan (1997) implemented a speech recognition system for Turkish connected

numerals. The system is speaker dependent isolated word recognition using dynamic

time warping method. The WER of the system is about 0%. He used lpc speech

recognition feature.

Mengüşoğlu (1999) designed and implemented a rule based speech recognition

system for Turkish. It is used rasta and mel-cepstrum features for the phoneme-based

8

and speaker dependent system. This isolated word system was tested on 248 words.

For mel-cepstrum and rasta, the WER is 11.4% and 8.8% respectively.

Yılmaz (1999) proposed a large scaled Turkish speech recognition system which

is speaker dependent. Each word is modeled with triphones using hidden markov

model. The WER of the system which is tested with 1000 words is about 10%.

Karaca (1999) has developed a Turkish isolated word recognition system under

noisy environments. This system is word-based and speaker independent. According

to lpc and rasta features, each word is modeled using hidden markov model. The

system is tested on the vocabulary which has 130 Turkish words. The WER is

26.5%.

Koç (2002) studied on acoustic feature analysis for robust speech recognition. The

system is based on hidden markov model and uses mfcc and rasta-plp features.

Arısoy & Dutağacı (2006) have developed a unified language model for large

vocabulary continuous speech recognition of Turkish using hidden markov model.

The developed systems are speaker dependent and speaker independent. Letter error

rates (LER) are approximately 28% for a speaker independent system and 20% for a

speaker dependent system.

 Avcı (2007) presented an automatic system for word recognition using real

Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used,

which consists of two layers: discrete wavelet layer and multi-layer perceptron. The

discrete wavelet layer is used for adaptive feature extraction in the time-frequency

domain and is composed of Discrete Wavelet Transform (DWT) and wavelet

entropy. The performance of the used system is evaluated by using noisy Turkish

word signals. The WER is about 8% for small vocabulary (15 words).

Salor & Pellom (2007) developed Turkish speech corpora and recognition tools

developed by porting SONIC: Towards multilingual speech recognition. The system

9

is speaker independent based on HMM triphone model. The speech recognition

feature is mfcc. The phone recognition error rate is about 29.2%.

1.4 The Thesis Perspective

In this thesis, we introduced a new approach for Turkish speech recognition. We

have designed and implemented some syllable based speech recognition systems

based on LTA, DTW, HMM, ANN and SVM methods and evaluated the efficiency

of the systems with the new approach.

Turkish language, that is one of the least studied language in the speech

recognition field, has different characteristics than European languages which require

different language modeling technique (Hakkani, Oflazer & Tür, 2000; Oflazer,

1994). Since Turkish is an agglutinative language, the degree of inflection is very

high. So, many words are generated from a Turkish word’s root by adding suffixes.

That’s why, word based speech recognition systems are not adequate for large scaled

Turkish speech recognition and Turkish is syllabified language. We have developed

syllable based isolated word speech recognition systems. First, acoustic signal of the

word utterance as an input is applied by preprocessing. The utterance is divided into

syllable utterances by the endpoint detection algorithm using signal’s energy and

zero-crossing point. Each syllable of the word is separately trained and modeled by

speech recognition methods and recognized. The recognized syllables are sorted and

the most similar syllables are concatenated in order. So the recognized word is found

in that way. After that, we have applied postprocessing operation which decides

whether or not the recognized word is Turkish. This new approach used in this thesis

increased the accuracy rate about 14%. For this purpose, we have developed TASA

(Turkish Automatic Syllabifying Algorithm) which spells the Turkish words into

syllables (Aşlıyan & Günel, 2005). TASA syllabifies the words by approximately

100% success rate. The system decides whether a word is Turkish or not using

syllable n-gram language model (Aşlıyan, Günel & Yakhno, 2007).

10

1.5 Structure of the Thesis

In Chapter 2, we have mentioned about speech recognition in detail. The general

procedure of speech recognition system which consists of speech acquisition,

preprocessing, feature extraction, acoustic and language model is introduced.

In Chapter 3, we give the definitions of speech recognition methods as linear time

alignment, dynamic time warping, artificial neural network, hidden markov model

and support vector machine. The mathematical formulation of the speech features as

linear predictive coding coefficients, mel frequency cepstral coefficients, rasta,

cepstrum and parcor coefficients are explained in detail.

In Chapter 4, we have explained Turkish syllable n-gram analysis. Turkish

Automatic Syllabifying Algorithm (TASA) and Turkish syllable statistics have been

presented.

In Chapter 5, we have mentioned how to be decided whether a word is Turkish or

not using Turkish syllable n-gram frequencies.

In Chapter 6, the speech recognition experiments are described using the most

efficient methods and features. In addition, the experimental results are given and

compared.

We have presented the conclusions and future directions of the thesis in Chapter

7.

11

CHAPTER TWO

SPEECH RECOGNITION

In this chapter we describe the main steps of speech recognition as speech

acquisition, preprocessing, feature extraction, recognition operation, acoustic and

language model.

2.1 Definition of Speech Recognition

Speech recognition is the process that allows humans communicate with

computers by speech. The purpose is to transmit the idea to the computer.

There are a lots of other communication methods between humans and computers

which require some input devices. Keyboards, mouses, touch screens are the most

classical examples of input devices with high accuracies. Those input devices are not

efficient enough in some conditions, especially when the use of hands is not possible.

They need also a certain level of expertise for being used.

There are some other recent researches on human-computer interaction with brain

waves but this research field is still in its beginning phase (Anderson & Kirby, 2003).

Since speech is the most natural way of communication between humans, it is

important to make possible the use of speech to communicate with computers. By

enabling speech recognition, communication between humans is faster than the other

alternatives like keyboards or touch screens.

There are many application areas for speech recognition. The main areas can be

listed as home use, office use, education portable and wearable technologies, control

of vehicles, avionics, telephone services, communications, hostile environments,

forensics and crime prevention, entertainment, information retrieval, biometrics

surveillance, etc.

12

Speech recognition is closely related to other speech related technologies such as

automatic speech recognition, speech synthesis, speech coding, spoken language

understanding, spoken dialogue processing, spoken language generation, auditory

modeling, paralinguistic speech processing (speaker

verification/recognition/identification, language recognition, gender recognition,

topic spotting), speech verification, time-stamping/automatic subtitling, speech to

speech translation, etc.

Speech recognition is a multi-discipline spanning to acoustics, phonetics,

linguistics, psychology, mathematics and statistics, computer science, electronic

engineering and human sciences.

Speech recognition has been a research field since the 1950s. The advances are

not satisfactory enough despite more than 50 years of research. This is mainly due to

openness of speech communication to environmental effects and existence of various

variabilities that are difficult to model in the speech. The speech is acquired by

computers using microphones which record it as energy levels at certain frequencies.

Since speech is passed through air before having recorded digitally, the recording

contains environmental effects also. Speech recognition process is based only on the

speech content of the recorded signal. The quality of the signal must be improved

before speech recognition. Hermansky (1998) claims that indiscriminate use of

accidental knowledge about human hearing in speech recognition may not be what is

needed. What is needed is to find the relevant knowledge and extract it before doing

any further processing towards speech recognition.

Figure 1.1 shows the speech recognition process in a simplified way. Speech

recognizer contains the necessary information to recognize the speech at the point. At

the input there should be a microphone and at the output there is a display that shows

the recognized speech.

The remaining part of this chapter defines the speech recognition cycle by

decomposing it to its basic parts. In a more general context, speech recognition can

13

be seen as a signal modeling and classification problem. The main is to create models

of speech of and use these models to classify it. The speech includes two parts which

can be modeled: Acoustic signal and language.

As a modeling problem, speech recognition includes two models: Acoustic model

and language model. These two models will be explained later in detail. Acoustic

model is the modeling of acoustic signal and it starts with acquisition of speech by

computers. Language model is the modeling of speaker’s language and it will be

used at the end of classification process to restrict the speech recognition to extract

only acceptable results from speech signal.

The speech recognizer as shown in Figure 1.1 can be extended as on Figure 2.1

that shows, the main procedures in speech recognition are speech acquisition,

preprocessing, feature extraction, recognition, recognition is sometimes called

decoding. The most important parts which affect the performance of the system are

acoustic model and language model. These models are obtained after a training

procedure. Speech acquisition, preprocessing and feature extraction are also

important for representing speech signal in recognition phase.

2.2 Speech Acquisition

Speech acquisition includes converting the acoustic signal to some computer

readable digital signal codes. This process can also be called as “digital recording”.

Speech signal is an analog signal which has a level (loudness), shape, and

frequency. The first thing to do with speech signal is to convert it from analog

domain which is continuous to digital domain which is discrete. To convert a signal

from continuous time to discrete time, a process called sampling is used. The value

of the signal is measured at certain intervals in time. Each measurement is referred to

as a sample.

14

When the continuous analog signal is sampled at a frequency F, the resulting

discrete signal has more frequency components than did the analog signal. To be

precise, the frequency components of the analog signal are repeated at the sample

rate. That is, in the discrete frequency response they are seen at their original

position, and are also seen centered around +/- F, and around +/-2F, etc.

Figure 2.1 Speech recognition procedure.

If the signal contains high frequency components, we will need to sample at a

higher rate to avoid losing information that is in the signal. In general, to preserve the

full information in the signal, it is necessary to sample at twice the maximum

frequency of the signal. This is known as the Nyquist rate.

15

Telephone speech is sampled at 8 kHz, which means the highest frequency

represented is 4000 Hz which is greater than the maximum frequency standard for

telephone in Europe (3400 Hz). A sampling frequency of 16 kHz is regarded as

sufficient for speech recognition. Generally, speech signal sampling frequency is

chosen 600 Hz and 16000 Hz. The frequency range that human ear hear is between

80 Hz and 8000 Hz. The extreme limits are 20 Hz and 20 kHz (Boite & Kunt, 1987).

The level of sampled speech signal is the sampling resolution. Using of more bits

gives better resolution. For telephone speech, compressed 8 bits sampling resolution

is used. For speech recognition, in general, 12 bits are sufficient. For higher

accuracies, we need to use more bits per sample.

The speech signal can contain some redundant frequency components which are

considered as noise. Some of those frequencies can be filtered. Generally, filters are

used to modify the magnitude of signals as a function of frequency. Desirable signals

in one range of frequencies (usually called a band) are passed essentially unchanged,

while unwanted signals (noise) in another band are attenuated.

Figure 2.2 shows the structure of a speech acquisition block which can be

integrated into speech recognizer in which the analog filtering part is generally

integrated into a microphone. A device is used to record the speech digitally

according to sampling theory. Digitalized speech can than be filtered digitally to

improve the quality of speech.

The digital speech signal can have various formants. Digital representation of

speech is generally called “coding”. There are three groups of coding as waveform

coding, source coding and hybrid coding.

The waveform coding attempts to produce a reconstructed signal whose waveform

is as close as possible to the original. The resulting representation is independent of

the type signal. The most commonly used waveform coding is called “Pulse Code

Modulation” (PCM). It is made up of quantizing and sampling the input waveform.

16

There are two variants of this coding method. Those are Differential PCM (DPCM)

which quantizes the difference between two samples, and Adaptive DPCM

(ADPCM) which tries to predict the signal and use a suitable quantization for

different portion of that signal.

The source coding is model based. A model of the source signal is used to code

the signal. This technique needs a priori knowledge about production of signal. The

model parameters are estimated from the signal. Linear Predictive Coding (LPC)

uses source coding method. The value of the signal at each sample time is predicted

to be linear function of the past values of the quantized signal.

The hybrid coding is a combination of two other coding methods. An example of

this type of coding is “Analysis by Synthesis”. The waveform is first, coded by

source coding technique. Then the original waveform is reconstructed and the

difference between original and coded signal is tried to be minimized.

2.3 Preprocessing and Feature Extraction

The original analogue signal which to be used by the system in both training and

recognition is converted from analogue to discrete speech signal, x(n). n is

represented as the sample index.

The sample rate, Fs was 11025 Hz. An example of a signal in waveform sampled

is given in Figure 2.2.

17

Figure 2.2 Sampled utterence signal of “fen” in waveform.

There is a need for spectrally flatten the signal. The preemphasizer, often

represented by a first order high pass FIR filter is used to emphasize the higher

frequency components. The transfer function of this filter in time domain is

described in Eq.2.1.

195.01)(−−= zzH (Eq.2.1)

The result of the filtering is given in Figure 2.3.

18

Figure 2.3 Original signal (blue color) and preemphasized signal (red color).

After detecting the end-point of the syllables from the preemphasized speech

signal, frameblocking is applied to each syllable signal. Syllable end-point detection

is explained in Chapter 6 in detail. The objective of frameblocking is to divide the

signal into a matrix form with an appropriate time length for each frame. Due to the

assumption that a signal within a frame of 20 ms is stationary and a sampling rate at

16000 Hz will give the result of a frame of 320 samples.

19

Figure 2.4 Frameblocking.

As shown in Figure 2.4 the speech signal, x(n) is divided into the matrix form,

x(m, n). There are m frames and, each frame consists of n samples.

After the frameblocking is done, a Hamming window, which is graphically

demonstrated in Figure 2.5, is applied to each frame. This window is to reduce the

signal discontinuity at the ends of each block.

The equation which defines a Hamming window is shown in Eq.2.2.

)
1

2cos(46.054.0)(
−
π

−=
K

kkw (Eq.2.2)

20

Figure 2.5 Hamming window.

Figure 2.6 shows only one frame’s signals which are results of frame blocking. In

Figure 2.7, the frame windowed by Hamming window is displayed. The result gives

a reduction of the discontinuity at the ends of the frame.

21

Figure 2.6 Signals on a frame before windowing.

Figure 2.7 Signals on a frame after windowing.

22

2.4 Recognition Operation

Speech recognition includes two pattern classification steps. The first one is

acoustic processing which results a sequence of syllable speech units. The output of

first step is then used for language processing which guaranties a valid speech output

within the rules of current language. As a pattern classification problem, speech

recognition must be mathematically formulated and decomposed into simpler

subproblems.

Let kYYYY ,...,, 21= be a sequence of feature vectors obtained from the speech

signal. The feature vectors iY are generated sequentially by increasing values of i

and k is the number of feature vector in the sequence.

Let nsssS ,...,, 21= be the syllable content of the speech signal. n is the number

of syllables in the speech signal.

)|(YSP is the probability that the syllable S was spoken, given the feature vector

sequence, which is called “observation”. After defining these elements, the speech

recognition can be defined as a decision making process searching for the most

probable syllable sequence Ŝ as Eq.2.3 which consists of searching for the most

likely syllable sequence S conditioned on observation sequence Y. The probability

)|(YSP can not be observed directly because of randomness of feature vector space.

We need to rewrite this probability.

)|(max argˆ YSPS
S

= (Eq.2.3)

The right-hand side probability of Eq.2.3 can be rewritten according to Bayes’

formula of probability theory as shown in Eq.2.4.

23

)(
)|()()|(

YP
SYPSPYSP = (Eq.2.4)

)(SP is the probability that the syllable string S will be spoken by the speaker,

)|(SYP is the likelihood, and)(YP is the average probability that Y will be

observed.)(YP in Eq.2.4 is known also as evidence, and it is generally omitted in

speech recognition since this probability is same for all acoustic signal observations.

The new version of maximization Eq.2.3 can be rewritten as Eq.2.5 after omitting the

evidence of observing acoustic observation Y in Bayes’ formula.

)|(max argˆ SYPP(S)S
S

= (Eq.2.5)

Eq.2.5 is the base for classification in speech recognition. By writing the equation

in this form we have the apportunity of computing the probabilities)(SP and

)|(SYP by training some models.)(SP can be obtained by training a model for the

language and is independent of acoustic information. Language modeling is based on

assigning a probability to each syllable occurrence within a context and the model

can be trained on a large text containing virtually all occurrences of syllable

sequences in the language.

The second probability in Eq.2.5 can be obtained by training a model for the

acoustic realizations of syllables. This modeling is called acoustic modeling and can

be obtained by training a model from a large acoustic database which contains

virtually all realizations of the syllables in the language.

2.5 Acoustic Modeling

Acoustic modeling is the process of generating models for each class in speech

recognition. The class can be a word, a syllable, a semi-syllable, or a phoneme. There

are many kinds of acoustic models and modeling techniques. The simplest acoustic

24

model can be the acoustic realization of each words in the vocabulary of speech

recognizer.

Figure 2.8 Constructing acoustic models.

Figure 2.8 gives the acoustic modeling process. Acoustic modeling process is not

a part of speech recognition. It provides the acoustic models which are used in

speech recognition for classification.

The flowchart in Figure 2.8 is not standard for all acoustic modeling techniques

but it includes the common steps in acoustic modeling.

The first step is “initialization” of models. At this step pre-segmented feature

vectors are assigned to classes and a model for each class is created. In “training”

25

step initial models are used for classification of new feature vectors which are not

segmented. After segmentation new class boundaries for models are determined in an

iterative approach. Some generalization algorithms are applied to have a better

modeling of unseen data. The output of this process is acoustic models for each class.

The acoustic models are used by the recognizer to determine the probability)|(SYP

of Eq.2.5.

An important aspect of classification process is distance measure which is

common in training of acoustic models. All acoustic modeling techniques are based

on some distance measure to find the closeness of a new feature vector to a model.

Distance measure is used for comparing feature vectors to some stored templates for

classification purposes. The stored templates can be updated with new data in an

iterative approach.

Let C be the available classes by a template feature vector as shown in Eq.2.6.

NcccC ,...,, 21= (Eq.2.6)

In Eq.2.6, N is the number of classes. The simplest way to classify a feature vector

iy is to compare it to class templates and find the closest template.

),(min arg
1t

ti
N

cydT
=

= (Eq.2.7)

In Eq.2.7, T is the class for feature vector iy and),(ti cyd is the distance function

between the feature vector iy and the class .tc

The most commonly used distance function is Euclidean distance function which

is defined as Eq.2.8.

26

2)(),(∑ −=
i

ii nmnmd (Eq2.8)

In Eq.2.8, m and n are feature vectors.

The main acoustic modeling techniques are DTW, ANN, HMM and SVM which

are explained in Chapter 3 in detail.

2.6 Language Modeling

Language modeling is the process of extracting important properties of a natural

language by analyzing statistically a corpus of language. The goal is to assign

probabilities to strings of words in the language. These properties are then used to

rank the word sequences candidates from recognition results of acoustic model.

Probability that the word sequence S were spoken given the feature vector X,

),|(XSP can be rewritten from Bayes’ formula as shown in Eq.2.9.

)(
)|()()|(

XP
SXPSPXSP = (Eq.2.9)

)(SP is the probability that the syllable string S will be spoken by the speaker.

)|(SXP is the probability that when the speaker says S the speech signal

represented by X will be observed, and)(XP is the probability of observing X.

In Eq.2.9, the probability)|(SXP is the acoustic model probability.)(XP is

omitted because of assumption about randomness of speech. The last unknown

probability is the probability),(SP the language model probability.

By using a language model for speech recognition, the number of acceptable

syllable sequences is limited. This limitation leads to an increase in the accuracy of

the speech recognizer since some erroneous syllable sequences will be replaced by

nearest approximations which are mostly the correct syllable sequences. Language

27

models are useful for large vocabulary continuous speech recognition tasks. For

small vocabulary isolated.

Language models are used to assign probabilities to syllable sequences. Models

are trained with a large text corpus from the language to be modeled. Language

modeling is based on estimation of probability that word sequence S can be exist in

the language. For a syllable sequence S=s1, s2, s3, ..., sN, probability P(S) is defined as

Eq.2.10.

∏
=

−=
N

i
ii ssssPsP

1
121),...,,|()((Eq.2.10)

n is the number of syllables in the sequence.),...,,|(121 −ii ssssP is the probability

that is is observed after syllable sequence },...,,{ 121 −isss which is called history.

Statistical language modeling is based on the formulation as Eq.2.10. The main

task in language modeling is to provide good estimation of),...,,|(121 −ii ssssP , the

probability of thi syllable given the history },...,,{ 121 −isss (Jelinek, 1998). There are

two methods frequently used for language modeling: n-gram language modeling and

part-of-speech (POS) based language models. The details of these two types of

modeling techniques will be explained in the following subsections. Both of them are

based on statistics obtained from a training corpus. n-gram language models are

based directly on the occurrences of syllables in the history list where POS models

use linguistic information instead of syllables.

Language modeling is based on counting the occurrences of syllable sequences.

When long histories are used some syllable sequences may not be appear in the

training text. This results in poor modeling of acceptable syllable sequences and is

called as data sparseness problem.

28

Sparseness problem in language modeling is solved by applying smoothing

techniques to language models. Smoothing techniques are used for better estimating

probabilities when there is insufficient examples of some syllable sequences to

estimate accurate syllable sequence probabilities directly from data. Since smoothing

techniques are applied to n-gram language modeling, some of smoothing techniques

will be presented in the following subsections.

When the number of possible syllable sequences that can be accepted by the

speech recognizer is known and limited, then it is possible to create some finite state

grammars which limit the output of the recognizer. The finite state grammars used in

this case are also called language models. This type of language models are task

oriented and can be created in a deterministic way.

2.6.1 n-gram Language Models

n-gram language models are the most widely used language modeling methods.

The n is generally selected as 1 (monogram), 2 (bigram) or 3 (trigram) in most n-

gram language models.

P(S) is the probability of observing syllable sequence S and can be decomposed as

Eq.2.11.

∏
=

−

−

=

=
=

N

i
ii

nn

n

sssssP

sssssPsssPssPsP
sssPSP

1
1321

1321213121

21

),...,,,|(

),...,,,|()...,|()|()(
),...,,()(

 (Eq.2.11)

),...,,|(121 −ii ssssP is the probability that si will be observed after history s1, s2,

…, si-1. This formulation is the general form for n-gram language models. For

monogram language model the probabilities)(isP , for bigram)|(1−ii ssP and for

trigram),|(21 −− iii sssP are computed.

29

The size of history depends on the selection of n for an n-gram language. There is

no history when for monogram language models, the history has only one syllable

for bigram and two syllables for trigram language models.

The probability P(S) is computed by counting the frequencies of syllable sequence

S and the history. For example, trigram probabilities are computed as Eq.2.12.

),(
),,(

),|(
12

12
12

−−

−−
−− =

ii

iii
iii ssC

sssCsssP (Eq.2.12)

),,(12 iii sssC −− is the number of occurrences of syllable sequence iii sss ,, 12 −−

and),(12 −− ii ssC is the number of occurrences of history 12 , −− ii ss .

In order to have a good estimate of language model probabilities we need a large

text corpus including virtually all occurrences of all syllable sequences. For trigrams

a corpus of several millions of syllables can be sufficient but for higher values of n

the number of syllables should be very high.

2.6.2 Perplexity

The efficiency of n-gram language model can be simply evaluated by using it in a

speech recognition task. Alternatively it is possible to measure the efficiency of a

language model by its perplexity. Perplexity is a statistically weighted syllable

branching measure on a test set. If the language model perplexity is higher, the

speech recognizer needs to consider more branches which mean there will be a

decrease on its performance.

Computation of perplexity does not involve speech recognition. It is defined as

the derivative of cross-entropy (Huang, Acero & Hon, 2001). The perplexity based

on cross-entropy is defined as Eq.2.13.

)(2)(SHSPP = (Eq.2.13)

30

)(SH is the cross-entropy of the syllable sequence S and is defined as Eq.2.14.

)(log1)(2 SP
N

SH −= (Eq.2.14)

N is the length of syllable sequence and)(SP is the probability of the syllable

sequence from language model. It must be noted that S is a sufficiently long syllable

sequence which helps to find a good estimate of perplexity.

Perplexity can be measured for the training set and the test set (Huang, Acero &

Hon, 2001). When it is measured for training set it provides a measure of how the

language model fits the training data, for the test set it gives a measure of the

generalization capacity of language model. Perplexity is seen as a measure of

performance since it correlates with better recognition results. Higher perplexity

means there will be more branches to consider statistically for a recognition task

which leads to lower recognition accuracies.

2.6.3 Smoothing

Another important issue in n-gram language modeling is smoothing. Smoothing is

defined as adjusting the maximum likelihood probabilities, obtained by counting to

model syllable sequences, to produce more accurate probability distributions. This is

necessary since data sparseness problem in training data due to high number of

available syllable sequence may result in assigning low probabilities or zeroes to

certain syllable sequences that will probably seen in test data. The purpose of

smoothing is to make the probability distributions more uniform which means

assigning higher probabilities to syllable sequences with low probabilities obtained

by counting, and assigning low probabilities to syllable sequences with too high

probabilities. This gives better generalization capability to the language model.

31

A good smoothing example is to consider each bigram is occurred one more time

than it occurred in the training set. It can be done as Eq.2.15 by modifying Eq.2.12.

By doing such a simple smoothing we avoided zero probabilities which could be

harmful to the speech recognizer since it can reject a correct syllable sequence that

could not in training set of language model but had a higher probability from

acoustic model.

∑ −

−
− +

+
=

is
ii

ii
ii ssC

ssC
ssP

)),(1(
),(1

)|(
1

1
1 (Eq.2.15)

There are several smoothing techniques that can be used for language models. For

different smoothing techniques, Huang et al. (2001) is a good reference. We will

consider only the back-off smoothing (Katz back-off model) technique which is

commonly used.

Katz back-off smoothing is based on Good-Turing estimates which partition n-

gram into groups depending on their frequency of appearance in the training set. In

the approach the frequency, r, of an n-gram, n is replaced by *r which is defined as

Eq.2.16.

r

r

n
nrr 1

*)1(++= (Eq.2.16)

rn is the number of n-grams that occurs exactly r times and 1+rn is the number of

n-grams that occurs exactly n+1 times. The probability of an n-gram, a, is then

defined as Eq.2.17.

N
raP *)(= (Eq.2.17)

32

N is the number of all counts in the distribution. In Katz smoothing, the n-grams

are partitioned into three class according to their frequencies in the training set. For

partitioning a constant count number, k, is used. This is partitioned number generally

selected between 5 and 8. If r is the count of an n-gram:

• Large counts are considered as reliable and there is no smoothing; kr > .

• The counts between zero and k are smoothed with Good-Turing

estimates; kr ≤<0 . This smoothing is a discounting process which use a

ration based on Good-Turing estimate to reduce the lower counts.

• The zero counts are smoothed according to some function, ,α which tries

to equalize the discounting of nonzero counts with increasing zero counts

by a certain amount.

For bigram language model, the Katz smoothing can be summarized as Eq.2.18,

Eq.2.19 and Eq.2.20 (Huang, Acero & Hon, 2001; Katz, 1987).









=
>≥

>
= −−

−−

−

 0r if)()(
0 if)(),(

 if)(),(
)|(11

11

1

ii

iiir

iii

ii

sPs
rksCssCd
krsCssC

ssPKatz

α
 (Eq.2.18)

where

1

1

1

1
*

)1(
1

)1(

n
nk

n
nk

r
r

d
k

k

r
+

+

+
−

+
−

= (Eq.2.19)

and

∑

∑

>

>

−

−

=
−

−

0

0

 ;

 ;
1

1)(1

)|(1
)(

rs
Katz

r
Katz

i
i

i
ii

i sP

ssP
s sα (Eq.2.20)

33

It can be seen from Eq.2.20 that the probability of zero count bigrams is increased

by weighting monogram probabilities with .α

There are several disadvantage of n-gram language models:

• They are unable to incorporate long-distance syllable order constraints

since the length of history is generally small and the exact order is

considered.

• It is not possible to integrate new syllables or alternative domains into

language models.

• The meaning can not be modeled by n-gram language models.

Despite these disadvantages, n-gram language models gives good results when

used in speech recognition tasks because they are based on a large corpus with helps

to model the approximate syllable orders that exist in the language. Many languages

have a strong tendency toward standard syllable order.

Some of the disadvantage of n-gram language models can be avoided by using

clustering techniques. Clustering can be made manually or automatically on training

set. Clustering can improve the efficiency of language model by creating more

flexible models. The next subsection gives details of a clustering technique, part-of-

speech (POS) tagging.

34

CHAPTER THREE

SPEECH RECOGNITION FEATURES AND METHODS

3.1 Speech Feature Extraction

The main objective of feature extraction is to detect specific characteristics from

the speech signal that are unique to each Turkish syllable which will be used to

differentiate Turkish words. We have mentioned the speech features as linear

predictive coding, parcor, cepstrum, rasta and mel frequency cepstral coefficients in

the following subsections.

3.1.1 Linear Predictive Coding Coefficients

It is desirable to compress a speech signal for efficient transmission or storage in

variety applications. For example, to accommodate many speech signals in a given

bandwidth of a cellular phone system, each digitized speech signal is compressed

before transmission. In the case of a digital answering machine, to save a memory

space, a message is digitized and compressed. For medium or low bit-rate speech

coders, linear predictive coding (lpc) is most widely used (Ayuso & Soler, 1993;

Becchetti & Ricotti, 1999; Mengüşoğlu, 1999; Meral, 1996). Redundancy in a

speech signal is removed by passing the signal through a speech analysis filter. The

output of the filter, which is termed the residual error signal, has less redundancy

than original speech signal and can be quantized by smaller number of bits than the

original speech. The residual error signal along with the filter coefficients are

transmitted to the receiver. At the receiver, the speech is reconstructed by passing the

residual error signal through the synthesis filter. To model a human speech

production system, all-pole model (also known as the linear prediction model) is

used.

An all-pole system (or the linear prediction system) is used to model a vocal tract

as shown in Figure 3.1.

35

An efficient algorithm known as the Levinson-Durbin algorithm is used to

estimate the linear prediction coefficients from a given speech waveform. Assume

that the present sample of the speech is predicted by the past M samples of the

speech as shown in Eq.3.1.

∑
=

−=−++−+−=
M

i
iM inxaMnxanxanxanx

1
21)()(...)2()1()(~ (Eq.3.1)

Figure 3.1 Simplified model of the speech production.

)(~ nx is the prediction of),(nx)(inx − is the i-th step previous sample, and }{ ia

are called the linear prediction coefficients. The error between the actual sample and

the predicted one can be expressed as Eq.3.2.

∑
=

−−=−=ε
M

i
i inxanxnxnxn

1
)()()(~)()((Eq.3.2)

The sum of the squared error to be minimized is expressed as Eq.3.3.

36

∑ ∑∑ 









−−=ε=

=n

M

i
i

n
inxanxnE

2

1

2)()()((Eq.3.3)

We would like to minimize the sum of the squared error. By setting to zero the

derivative of E with respect to ia (using the chain rule), one obtains Eq.3.4.

∑ ∑ ==









−−−

=n

M

i
i Mkinxanxknx ..., 3, 2, 1,for 0)()()(2

1
 (Eq.3.4)

Eq.3.4 results in M unknowns in M equations such that

MknxknxMnxknxa

nxknxanxknxa

nn
M

nn

 ..., 3, 2, 1,for)()()()(

...)2()()1()(21

=−=−−+

+−−+−−

∑∑

∑∑
 (Eq.3.5)

Let us assume that a speech signal is divided into many segments (or frames) with

N samples. If the length of each segment (or frame) is short enough, the speech

signal in the segment may be stationary. In other words, the vocal tract model is

fixed over the time period of one segment. The length of each segment is usually

chosen as 20-30 ms. If a speech signal is sampled at the rate of 8000 samples/second

and the length of each segment is 20 ms, then the number of samples in each segment

will be 160. If the length is 30 ms, then the number of samples is going to be 240.

If there are N samples in the sequence indexed from 0 to N−1 such that

)},1(),2(),...,2(),1(),0({)}({ −−= NxNxxxxnx Eq.3.5 can be approximately

expressed in terms of matrix equation.

37





























−

=

























































−−
−−

−−
−−

−

)(
)1(

.

.

.
)2(
)1(

.

.

.

)0()1(...)2()1(
)1()0(...)3()2(

.......

.......

.......
)2()3(...)0()1(
)1()2(...)1()0(

1

2

1

Mr
Mr

r
r

a
a

a
a

rrMrMr
rrMrMr

MrMrrr
MrMrrr

M

M

 (Eq.3.6)

where ∑
−−

=
+=

kN

n
knxnxkr

1

0
)()()((Eq.3.7)

This is called the autocorrelation method. To solve the matrix equation as Eq.3.6,

Gauss elimination, iteration method, or QR decomposition can be used. In any case,

an order of 3M multiplications is required to solve the equation. However, because

of the special characteristics of the matrix, the number of multiplications can be

reduced to the order of 2M

with the Levinson-Durbin algorithm that will be

introduced in the next section.

Once the linear prediction coefficients }{ ia are computed, Eq.3.2 can be used to

compute the error sequence).(nε The implementation of Eq.3.2, where)(nx is the

input and)(nε is the output, is called the analysis filter and shown in Figure 3.2.

Figure 3.2 Speech analysis filter.

The transfer function is given by Eq.3.8.

38

∑
=

−−=
M

i

i
i zazA

1
1)((Eq.3.8)

Because residual error,),(nε has less standard deviation than speech itself,

smaller number of bits is needed to quantize the residual error sequence.

Eq.3.2 can be rewritten as the difference equation of a digital filter whose input is

)(nε and output is)(nx as Eq.3.9.

∑
=

ε+−=
M

i
i ninxanx

1
)()()((Eq.3.9)

The implementation of Eq.3.9 is called the synthesis filter and is shown in Figure

3.3.

Figure 3.3 Speech synthesis filter.

If both the linear prediction coefficients and the residual error sequence are

available, the speech signal can be reconstructed using the synthesis filter. In

practical speech coders, linear prediction coefficients and residual error samples need

to be compressed before transmission. Instead of quantizing the residual error,

sample by sample, several important parameters such as pitch period, code for a

particular excitation, etc are transmitted. At the receiver, the residual error is

reconstructed from the parameters.

39

3.1.1.1 Levinson-Durbin Recursive Method

In this section, the Levinson-Durbin method is introduced to solve Eq.3.6

recursively. The Levinson-Durbin method is efficient, as it needs only the order of
2M

multiplications to compute the linear prediction coefficients.

The sum of squared errors of the M-th order prediction (or simply the M-th order

prediction error) in Eq.3.3 can be rewritten as Eq.3.10.

∑ ∑∑ ε









−−ε=

=n

M

i
i

n
M ninxannxE)()()()(

1
 (Eq.3.10)

Subscript M of ME

denotes the order of prediction. Eq.3.4 can be rewritten as

Eq.3.11.

∑ ==ε−
n

Mininx ..., 3, 2, 1, for 0)()((Eq.3.11)

Because of Eq.3.11, the second summation of Eq.3.10 is zero. Thus, the final

expression of the prediction error becomes as Eq.3.12.

∑

∑ ∑

=
−

=

−=−−−−−=











−−=

M

i
iMM

n

M

i
iM

irarMraMrarar

inxanxnxE

1
11

1

)()0()()1(...)1()0(

()()(
 (Eq.3.12)

We now want to develop a recursive method to solve Eq.3.6. Let us start from the

order m=0 and increase it until the desired order reaches.

m=0: When m=0 (i.e., when no prediction is made), the error is expressed as

Eq.3.13 from Eq.3.12.

40

)0(0 rE = (Eq.3.13)

m=1: When m=1, the error is expressed as Eq.3.14.

)1()0(111 rarE −= (Eq.3.14)

The second subscript 1 of 11a indicates that the prediction order m in this case is

1. The solution to Eq.3.6 is as Eq.3.14.

111)0(/)1(κ== rra (Eq.3.15)

1κ is termed the reflection coefficient. Note that magnitude of 1κ

is less than 1.

(| 1κ |<1) as |r(1)| is less than r(0). Now the prediction error for m=1 becomes as

Eq.3.16.

[] []2
10

2
111 11)0()1()0(κ−=κ−=κ−= ErrrE (Eq.3.16)

One can easily show that the prediction error 1E

is smaller than 0E .

m=2: When m=2, Eq.3.12 and Eq.3.6 can be combined in a single matrix

equation.
















=

















−
−

















0
0

1

)0()1()2(
)1(0()1(
)2()1()0(2

22

12

E

a
a

rrr
rrr
rrr

 (Eq.3.17)

Assume that the solution can be found recursively as shown below.
















−κ−
















−=

















−
−

1

0

0

11

11211

22

12 aa
a
a (Eq.3.18)

41

1κ is the reflection coefficient. The subscript 2 of 12a

and 22a

indicates that these

are the second order linear prediction coefficients. When the prediction order m=1,

Eq.3.19 can be easily shown.









=








−








0

1
)0()1(
)1()0(1

11

E
arr

rr
 (Eq.3.19)

Now Eq.3.17 becomes as Eq.3.20.
















=
















κ−
















=
































−κ−
















−

















0
000

1

0

0

1

)0()1()2(
)1()0()1(
)2()1()0(2

1

2

2

2

1

11211

E

E

q

q

E
aa

rrr
rrr
rrr

 (Eq.3.20)

)1()2(112 rarq −= (Eq.3.21)

Because 0122 =κ− Eq from Eq.3.20, the reflection coefficient becomes as

Eq.3.22.

122 / Eq=κ (Eq.3.22)

The new prediction error for M=2 becomes as Eq.3.23.

[]2
22212 1 κ−=κ−= EqEE (Eq.3.23)

The linear prediction coefficients as Eq.3.24 can be obtained using Eq.3.18.

222

1121111

κ=
κ−=

a
aaa

 (Eq.3.24)

m=3: When m=3, one can show Eq.3.25.

42

[]2
323

233

22123

1

/
)1()2()3(

κ−=

=κ
−−=

EE

Eq
rararq

 (Eq.3.25)

with the assumption as Eq.3.26.



















−
−

κ−



















−
−

=



















−
−
−

1

0

0

11

12

22
3

22

12

33

23

13

a
a

a
a

a
a
a

 (Eq.3.26)

Now the linear coefficients as Eq.3.27 can be obtained from Eq.3.26.

333

2)3(3213

a

2. 1,for

κ=

=κ−= − iaaa ii (Eq.3.27)

3.1.1.1.1 Recursive Algorithm. Now the recursive solution method for any

prediction order M is described below.

Initial values:

)0(0 rE =

0111 /)1(Era =κ=

)1(2
101 κ−= EE

with m≥2, the following recursion is performed.

43

(i) ∑
−

=
− −−=

1

1
)1()(

m

i
mimm imrarq

(ii)
)1(−

=κ
m

m
m E

q

(iii) mmma κ=

(iv) 1- ..., 1,for)1)(()1(miaaa mimmmiim =κ−= −−−

[]2
1 1 (v) mmm EE κ−= −

(vi) If m<M, then increase m to m+1 and go to (i). If m = M, then stop.

In the recursion, there are 2m+1 multiplications are involved for each m. Thus, the

total number of multiplications to estimate prediction coefficients for the prediction

order, M, becomes as Eq.3.28.

multiplication)2()12(
1

+=+= ∑
=

MMm
M

m
 (Eq.3.28)

3.1.1.2 Lattice Implementation of LPC Filters

Linear prediction coefficients are computed recursively using the Levinson-

Durbin algorithm. The first order prediction coefficient 11a

is the same as the

reflection coefficient 1κ . The thm order linear prediction coefficients are obtained

from the thm)1(− order prediction coefficients and the reflection coefficient mκ .

Thus, M linear prediction coefficients are equivalent to M reflection coefficients. If

reflection coefficients are given, the corresponding linear prediction coefficients can

be obtained or vice versa. Quantization of reflection coefficients is easier because of

44

the well-defined range of values that they take on. Note that the absolute value of

reflection coefficients is never greater than one. This is why reflection coefficients

instead of linear prediction coefficients are often used to represent a vocal tract filter.

In this section, linear predictive coding (lpc) filters are implemented in a lattice form

using reflection coefficients.

The prediction error for the thm order prediction is rewritten as Eq.3.28.

∑
=

−−=ε
m

i
imm inxanxn

1
)()()((Eq.3.28)

where)(nmε indicates that this error is the forward prediction error. Let us assume

that the backward linear prediction of x(n−m) is made based on x(n), x(n−1), ..., and

x(n−m+1). The backward prediction error)(nmβ is defined as Eq.3.29.

∑
=

+−−−=β
m

i
imm imnxamnxn

1
)()()((Eq.3.29)

Now the (m−1)
 th

forward prediction error is given by Eq.3.30.

∑
−

=
−− −−=ε

1

1
)1(1)()()(

m

i
mim inxanxn (Eq.3.30)

The (m−1)
 th

backward prediction error is as Eq.3.31.

∑
−

=
−− ++−−+−=β

1

1
)1(1)1()1()(

m

i
mim imnxamnxn (Eq.3.31)

Because the recursive formula for linear prediction coefficients is given by

Eq.3.32.

45

m

mimmmiim miaaa

κ=

=κ−= −−−

mm

)1)()1(

a

1- ..., 2, 1,for
 (Eq.3.32)

Eq.3.23 can be shown.

Mm
nnn

nnn

mmmm

mmmm

..., 2, 1,for
)()1()(
)1()()(

11

11

=
εκ−−β=β

−βκ−ε=ε

−−

−−

 (Eq.3.33)

The initial values are given by Eq.3.34.

)()()(00 nxnn =β=ε (Eq.3.34)

The final value is given by Eq.3.35.

)()(nn Mε=ε (Eq.3.35)

Thus, the analysis filter can be implemented as shown in Figure 3.4 where the

input is the speech sequence and the output is the forward prediction error.

From each frame of speech samples, M reflection coefficients are computed.

Because important information about the vocal tract model is extracted in the form of

reflection coefficients, the output of the lpc analysis filter using reflection

coefficients will have less redundancy than the original speech. Thus, less number of

bits is required to quantize this so-called residual error. This quantized residual error

along with the quantized reflection coefficients are transmitted or stored. To play

back, a lattice implementation of the lpc synthesis filter is required. In this case, the

input is the residual error and the output is the reconstructed speech. By reversing all

the arrows in the top part of the analysis filter, one can implement the synthesis filter

as shown in Figure 3.5.

46

Figure 3.4 Lattice implementation of the lpc analysis filter using reflection coefficients.

Figure 3.5 Lattice implementation of the lpc synthesis filter using reflection coefficients.

In the synthesis filter, the initial value is as Eq.3.36.

)()(nnM ε=ε (Eq.3.36)

The final values are as Eq.3.37 and Eq.3.38.

)()()(00 nxnn =β=ε (Eq.3.37)

1 2, ..., 2,- 1,- ,for
)()1()(
)1()()(

11

11

MMMm
nnn

nnn

mmmm

mmmm

=
εκ−−β=β

−βκ+ε=ε

−−

−−

 (Eq.3.38)

47

3.1.2 Parcor Coefficients

Assume that { })1(),...,1(),0(−tsss is a sequence of speech signals. After that

forward autoregressive (AR) model of order m is given as Eq.3.39.

∑
=

ε+−=
m

i

m
f

m lilsials
1

)()()()((Eq.3.39)

{ }m
i

m ia 1)(= and)(lm
fε are forward AR coefficients and forward prediction error,

respectively. Similarly, backward AR model of order m is given as Eq.3.40.

∑
=

ε+−=−−
m

i

m
b

m lilsibmls
1

)()()()1((Eq.3.40

{ }m
i

m ib 1)(= and)(lm
bε are backward AR coefficients and backward prediction

error, respectively. The AR coefficients { }m
i

m ia 1)(= or { }m
i

m ib 1)(= can be determined so

that the mean squares error minimized.

Partial autocorrelation (parcor) coefficients (Bourlard & Morgan, 1997; Carson

& Berndsen, 1998; Özgür, 1997) are used in speech signal processing and often

more useful than AR coefficients { }m
i

m ia 1)(= or { }m
i

m ib 1)(= . Parcor coefficient mP of

m is defined as a correlation coefficient between forward and backward prediction

errors in the autoregressive model of order m-1. Namely, it can be stated as Eq.3.41.

{ } { }211 21

1 11

)()(

)()(

ii

ii
P

m
b

t
mi

m
f

t
mi

m
b

m
fm

−−
=

−

−
=

−−

εε

εε
=

∑

∑
 (Eq.3.41)

48

It is well known that the parcor coefficient mP is the same as the AR coefficient

)(mam or)(mbm of AR model of order m. These coefficients are calculated from

autocorrelations of the sequence of signals.

There is a fast recursive algorithm for calculating AR and parcor coefficients. The

algorithm can compute all AR and parcor coefficients of orders 1 through m with

)(2mO

For online computation of parcor coefficients, we can use the recursive formula

with forgetting factor 10 <α< to estimate the autocorrelations)(lr as Eq.3.42.

)1()1()()1()()()1(++α+α−←+ tstslrlr tt (Eq.3.42)

From the estimated autocorrelations, we can calculate the parcor coefficients with

)(2mO computation.

3.1.3 Cepstrum Coefficients

Linear predictive analysis is based on a model of the vocal tract as an all-pole

filter (Rabiner & Juang, 1993). The lpc coefficients are a short time measure of

speech signal as the output of this all-pole filter. Although it has been designed to

model speech production, it is also partially valid for musical instruments. In this

case, the filter embodies the effect of resonating body of instrument, namely, its

timbre.

An alternative feature for lpc coefficient is lpc derived cepstral coefficient, which

can be computed simply as Eq.3.43.

∑
−

=
−−+=

1

1
)(1 n

i
ininn cain

n
ac (Eq.3.43)

49

na is the lpc coefficient. The principal advantage of lpc derived cepstral

coefficients is that they are generally decorrelated.

3.1.4 Mel Frequency Cepstral Coefficients

Because of the known variation of the ear’s critical band-widths with frequency,

filters spaced linearly at low frequencies and logarithmically at high frequencies have

been used to capture the phonetically important characteristics of speech. Davis &

Mermelstein (1980) showed that the first six eigenvectors of the covariance matrix

for Dutch vowels of the speakers, expressed in terms of 17 such filter energies,

accounted for 91.8 percent of the total variance. The direction cosines of this

eigenvectors were very similar to a cosine series expansion on the filter energies.

Additional eigenvectors showed an increasing number of oscillations of their

direction cosines with respect to their original energies. This result suggested that a

compact representation would be provided by a set of mel-frequency cepstrum

coefficients. These cepstrum coefficients are the result of a cosine transform of the

real logarithm of the short-time energy spectrum expressed on a Mel-frequency

scale.

In mfcc, the main advantage is that it uses mel frequency scaling which is very

approximate to the human auditory system.

Researchers have undertaken psychoacoustic experimental work to derive

frequency scales that attempt to model the natural response of the human perceptual

system, since the cochlea of the inner ear acts as a spectrum analyzer. The complex

mechanism of the inner ear and auditory nerve implies that the perceptual attributes

of sounds at different frequencies may not be entirely simple or linear in nature.

AT&T Bell Labs has contributed many influential discoveries in hearing, such as

critical bands. The cochlea in our auditory system acts as if it was made up of

overlapping filters having bandwidths equal to the critical bandwidth (Huang &

Hon, 2001). So the skill of frequency scaling is used to map linear frequency into

human perception. Mel-frequency scale is such a kind of perceptually motivated

50

scale, which is linear below 1 KHz, and logarithmic above. One mel is defined as

one thousand of the pitch of a 1 KHz tone. As with all attempts, it is hoped that the

mel scale more closely models the sensitivity of the human ear than a purely linear

scale and provides for greater discriminatory capability between speech segments.

Mel-scale frequency analysis has been widely used in current speech recognition

system. It can be approximated by Eq.3.44.

)700/1ln(1125)(ffB += (Eq.3.44)

Where B is the Mel-frequency scale, f is the linear frequency.

Given that the DFT of the input signal in Eq.3.45.

∑
−

=

π−=
1

0

/2 ,)()(
N

n

Nkj
a enxkX Nk ≤≤0 (Eq.3.45)

And we define mel-frequency filter bank with p filters jm (j=1,2,…,p), where

filter m is triangular filter shown in the Figure 3.6.

Each FFT magnitude coefficient is multiplied by the corresponding filter gain and

the results accumulated. It can be computed as Eq.3.46.

∑
−

=
=

1

0

2)()(
N

k
jaj kHkXm , pj ≤≤0 (Eq.3.46)

Where Hj[k] is the transfer function of filter j. The mel frequency cepstrum is then

the discrete cosine transform of the p filter outputs. It’s described as Eq.3.47.

51

Figure 3.6 Mel frequency filter bank.

∑
=







 −

π
=

p

i
ji j

N
im

N
c

1
)5.0(cos2 (Eq.3.47)

For speech recognition, normally only the first 13 Cepstrum coefficients are used

(Young & Kershaw, 2000).

3.1.5 RelAtive SpecTrAl (RASTA) Features

Noisy environments decreases the performance of the speech recognition systems.

RASTA (Hermansky & Morgan, 1994) was developed to eliminate the

environmental factors. The method filters out distortions and noises caused by

environmental factors and increases speech recognition performance.

In this method, it is replaced a common short term absolute spectrum by a spectral

estimate in which every frequency channel is band pass filtered by a filter with sharp

spectral zero at the zero frequency. The spectral estimate is less sensitive to slow

variations in the short term spectrum.When the filtering operation is applied in the

52

logarithmic spectral domain, the suppressed constant spectral component reflect the

effect of the convolutive factors in the digital speech signal.

The algorithm of RASTA are given as the following. The algorithm is applied for

each speech frame.

1. Compute the critical band spectrum and take its logarithm.

2. Estimate the temporal derivative of the log critical band spectrum using

regression line through five consecutive spectral values.

3. Nonlinear processing such as applying threshold of median filtering can be

done in this domain.

4. Reintegrate the log critical band temporal derivative using a first order IIR

system. The pole position of this system can be adjusted to set the effective

window size.

5. Add the equal loudness curve and multiply by 0.33 to simulate the power law

of hearing.

6. Take the inverse logarithm (exponential function) of this relative log

spectrum, yielding a relative auditory spectrum.

7. Compute an all-pole model of this spectrum.

If the derivative of Step 2 is estimated by a simple first differece, and if the full

integration in Step 4 is done (pole at z=1.0), then all intermediate terms cancel and

the technique is equivalent to substraction of the log spectrum of the first analysis

frame from each new frame. In this special case, the RASTA technique resembles the

spectral substraction or blind deconbolution techniques. The whole derivative-

integration process is equivalent to a bandpass filtering of each frequency channel

through an IIR filter with the transfer function as Eq.3.48.

)98.01(*
22*1.0)(14

431

−−

−−−

−

−−+
=

zz
zzzzH (Eq.3.48)

53

The low cut-off frequency of the filter determines the fastest spectral change of

the log spectrum which is ignored in the output, while the high cut-off frequency

determines the fastest spectral change which is preserved.

Figure 3.7 RASTA process.

Linear distortions appear as an additive constant in the log spectrum. The high

pass portion of the equivalent band-pass filter is expected to alleviate the effect of the

convolutional noise introduced in the channel. The low pass filtering is expected to

help in smoothing out some of fast frame to frame spectral changes present in the

short time spectral estimate due to analysis artifacts. In Eq.3.48, low cut-off

54

frequency is 0.26 Hz. The filter slope decreases 6 dB/oct from 12.8 Hz with sharp

zeros at 28.9 Hz and at 50 Hz. The whole process is illutrated in Figure 3.7.

3.2 Speech Recognition Methods

3.2.1 Linear Time Alignment (LTA)

Linear time alignment algorithms are the simplest algorithms to implement and

they can be used for both expansion and compression of the speech pattern vector.

There are various ways of implementing linear algorithms, but all of them use the

basic method of deleting feature vectors to shorten the speech pattern and duplicating

feature vectors to length the speech pattern. An example is to duplicate or delete

vectors at regular intervals along the pattern vector until the speech pattern is the

correct size. An example of a linear algorithm used in conjunction with a neural

network is that of Woodland (1990). Woodland achieved recognition rates of 91%

for multiple speaker recognition and 88.3% for speaker independent recognition.

3.2.2 Dynamic Time Warping (DTW)

Dynamic time warping (DTW) is a technique that finds the optimal alignment

between two time series if one time series can be “warped” non-linearly by stretching

or shrinking it along its time axis. This warping between two time series can then be

used to find corresponding regions between the two time series or to determine the

similarity between the two time series. Dynamic time warping is often used in speech

recognition to determine if two waveforms represent the same spoken phrase. In a

speech waveform, the duration of each spoken sound and the interval between

sounds are permitted to vary, but the overall speech waveforms must be similar. In

addition to speech recognition, dynamic time warping has also been found useful in

many other disciplines, including data mining, gesture recognition, robotics,

manufacturing, and medicine. Dynamic time warping is commonly used in data

mining as a distance measure between time series. An example of how one time

series is “warped” to another is shown in Figure 3.8.

55

In Figure 3.8, each vertical line connects a point in one time series to its

correspondingly similar point in the other time series. The lines actually have similar

values on the y-axis but have been separated so the vertical lines between them can

be viewed more easily. If both of the time series in Figure 3.8 were identical, all of

the lines would be straight vertical lines because no warping would be necessary to

‘line up’ the two time series. The warp path distance is a measure of the difference

between the two time series after they have been warped together, which is measured

by the sum of the distances between each pair of points connected by the vertical

lines in Figure 3.8. Thus, two time series that are identical except for localized

stretching of the time axis will have DTW distances of zero.

Figure 3.8 A warping between two time series.

A distance measurement between time series is needed to determine similarity

between time series and for time series classification. Euclidean distance is an

efficient distance measurement that can be used. The Euclidian distance between two

time series is simply the sum of the squared distances from each nth point in one time

series to the nth point in the other. The main disadvantage of using Euclidean distance

for time series data is that its results are very unintuitive. If two time series are

identical, but one is shifted slightly along the time axis, then Euclidean distance may

consider them to be very different from each other. Dynamic time warping (DTW)

was introduced (Kruskall & Liberman, 1983) to overcome this limitation and give

56

intuitive distance measurements between time series by ignoring both global and

local shifts in the time dimension.

3.2.2.1 Problem Formulation

The dynamic time warping problem is stated as Eq.3.49. Given two time series X,

and Y, of lengths | X | and | Y |.

Y

Xi

yyyyY

xxxxX

,...,,...,,

,...,,...,,

321

21

=

=
 (Eq.3.49)

 A warp path W is constructed as Eq.3.50.

YXKY
wwwW K

+<≤

=

),Xmax(
 ,...,, 21 (Eq.3.50)

where K is the length of the warp path and the kth element of the warp is wk = (i, j),

where i is an index from time series X, and j is an index from time series Y. The warp

path must start at the beginning of each time series at w1 = (1,1) and finish at the end

of both time series at wK = (|X|, |Y|). This ensures that every index of both time series

is used in the warp path. There is also a constraint on the warp path that forces i and j

to be monotonically increasing in the warp path, which is why the lines representing

the warp path in Figure 3.8 do not overlap. Every index of each time series must be

used. Eq.3.51 states more formally.

),,(jiwk =),(1 jiwk ′′=+ 1+≤′≤ iii 1+≤′≤ jjj (Eq.3.51)

The optimal warp path is the warp path is the minimum-distance warp path, where

the distance of a warp path W is as Eq.3.52.

57

∑
=

=
K

k
kjki wwDistWDist

1
),()((Eq.3.52)

Dist(W) is the distance of warp path W, and Dist(wki, wkj) is the distance between

the two data point indexes (one from X and one from Y) in the kth element of the

warp path.

3.2.3 Artificial Neural Networks (ANN)

The ANNs probably belong to the borderline between the Artificial Intelligence

and Approximation Algorithms. The ANNs are used in universal approximation

(mapping input to the output), tools capable of learning from their environment.

The Neural Networking algorithms model the brain (not necessarily - human

brain) and how it processes the information. The brain is a very efficient tool. Having

about 100,000 times slower response time than computer chips, it beats the computer

in complex tasks, such as image and sound recognition, motion control and so on. It

is also about 10,000,000,000 times more efficient than the computer chip in terms of

energy consumption per operation.

The brain is a multi layer structure that works as a parallel computer capable of

learning from the “feedback”. It receives from the world and changing its design by

growing new neural links between neurons or altering activities of existing ones. The

brain is composed of neurons, interconnected.

58

3.2.3.1 The Biological Neuron

Figure 3.9 A biological neuron.

This neuron has two parts very interesting to us, called the synapse and the

dendrite as shown in Figure 3.9. The dendrites are extensions of a neuron which

connect to other neurons to form a neural network, while synapses are a gateway

which connects to dendrites that come from other neurons. A biological neuron may

thus be connected to other neurons as well as accepting connections from other

neurons, and so we have the basis of a network.

Through those connections, electrical pulses are transmitted, and information is

carried in the timing and the frequency with which these pulses are emitted.

So, our neuron receives information from other neurons, processes it and then

relays this information to other neurons. A question which immediately arises is: of

what form does this processing take? Clearly, the neuron must generate some kind of

output based on the cumulative input. We still do not know the exact answer to the

question as to what happens in a biological neuron. However, we do know that our

neuron integrates the pulses that arrive and when this integration exceeds a certain

limit, our neuron in turn emits a pulse.

59

Finally, one more thing that you should know is that dendrites modify the

amplitude of the pulses traveling through them. This modification varies with time,

as the network “learns”.

So we could assume that when a connection (dendrite) is very strong, the

importance of the neuron from which this connection come has an important role in

the network, and on the other hand, when a connection is very narrow, the

importance of the neuron from which the connection comes from is less high. Thus

the neural network stores information in the pattern of connection weights.

3.2.3.2 Structure of a Neuron

Our “artificial” neuron will have inputs (all N of them) and one output. In Figure

3.10 the neuron has set of nodes that connect to inputs, output, or other neurons, also

called synapses.

Figure 3.10 A neuron structure.

60

A Linear Combiner, which is a function that takes all inputs and produces a single

value. A simple way of doing it is by adding together the dInput (“d” prefix means

“double”, we use it so that the name (dInput) represents the floating point number)

multiplied by the Synaptic Weight (dWeight).

How do we make a non-linear input? By applying the Activation Function, it will

take any input from minus infinity to plus infinity and squeeze it into the -1 to 1 or

into 0 to 1 interval.

Finally, we have a threshold. What should the internal activity of a neuron be

when there is no input? Should there be some threshold input before we have the

activity? Or should the activity be present as some level (in this case it is called a

bias rather than a threshold) when the input is zero?

3.2.3.3 A Neural Net

A single neuron by itself is not a very useful pattern recognition tool. The real

power of neural networks comes when we combine neurons into the multilayer

structures, called neural networks.

As you can see in Figure 3.11, there are 3 layers in our network. There are N

neurons in the first layer, where N equals number of inputs. There are M neurons in

the output layer, where M equals number of outputs. For example, when you are

building the network capable of predicting the stock price, you might want the

yesterday's high, low and close volume as inputs and close as the output.

You may have any number of neurons in the inner (also called “hidden”) layers. If

you have too few, the quality of a prediction will drop and the net doesn't have

enough “brains”. And if you make it too many - it will have a tendency to

“remember” the right answers, rather than predicting them. Then your neural net will

work very well on the familiar data, but will fail on the data that was never presented

before.

61

Figure 3.11 A simple neural net.

3.2.3.4 Backpropagation

A single-layer network has severe restrictions: the class of tasks that can be

accomplished is very limited. In this chapter we will focus on feed-forward networks

with layers of processing units. Minsky and Papert (1969) showed that a two layer

feed-forward network can overcome many restrictions, but did not present a solution

to the problem of how to adjust the weights from input to hidden units. An answer to

this question was presented by Rumelhart, Hinton and Williams (1986), and similar

solutions appeared to have been published earlier (Werbos, 1974; Parker, 1985; Le

Cun, 1985). The central idea behind this solution is that the errors for the units of the

hidden layer are determined by back-propagating the errors of the units of the output

layer. For this reason the method is often called the back-propagation learning rule.

Back-propagation can also be considered as a generalization of the delta rule for non-

linear activation functions and multilayer networks.

3.2.3.4.1 Multi-layer Feed-forward Networks. A feed-forward network has a

layered structure. Each layer consists of units which receive their input from units

from a layer directly below and send their output to units in a layer directly above the

unit. There are no connections within a layer. The Ni inputs are fed into the first layer

62

of Nh; one hidden unit. The input units are merely 'fan-out' units; no processing takes

place in these units. The activation of a hidden unit is a function Fi of the weighted

inputs plus a bias, as given in Eq.3.53.














θ+==+ ∑)()()())(()1(ttytwFtsFty k

j
jjkkkkk (Eq.3.53)

The output of the hidden units is distributed over the next layer of Nh; 2 hidden

units, until the last layer of hidden units, of which the outputs are fed into a layer of

No output units as shown in Figure 3.12.

Figure 3.12 Neural network with hidden layers.

Although backpropagation can be applied to networks with any number of layers,

just as for networks with binary units it has been shown (Hornik, Stinchcombe, &

White, 1989; Funahashi, 1989; Cybenko, 1989; Hartman, Keeler, & Kowalski, 1990)

that only one layer of hidden units success to approximate any function with finitely

many discontinuities to arbitrary precision, provided the activation functions of the

hidden units are non-linear (the universal approximation theorem). In most

63

applications a feed-forward network with a single layer of hidden units is used with a

sigmoid activation function for the units.

3.2.4 Hidden Markov Models (HMM)

HMM (Rabiner, 1989) is a result of the attempt to model the speech generation

statistically. During the past several years it has become the most successful speech

model used in speech recognition. The main reason for this success is its wonderful

ability to characterize the speech signal in a mathematically tractable way.

In a HMM based speech recognition system (Ferguson, 1980; Juang & Rabiner,

1990; Pepper, Barnwell, & Clements, 1990), the HMM stage is proceeded by the

preprocessing (feature parameter extraction) stages. Thus the input to the HMM is a

discrete time sequence of feature parameter vectors. The parameter vectors can be

supplied to the HMM, either in vector quantized form or in raw continuous form. It

can be designed HMMs to handle any of the cases, but important point is how the

HMM deals with the stochastic nature of the amplitudes of the feature vectors which

is superimposed on the time stochasticity.

The HMM is a finite set of states, each of which is associated with a probability

distribution. Transitions among the states are governed by a set of probabilities called

transition probabilities. In a particular state an outcome or observation can be

generated, according to the associated probability distribution. It is only the outcome,

not the state visible to an external observer and therefore states are “hidden” to the

outside; hence the name Hidden Markov Model.

In order to define an HMM completely, following elements are needed.

• The number of states of the model, N.

• The number of observation symbols in the alphabet, M. If the observations are

continuous then M is infinite.

• A set of state transition probabilities as shown in Eq.3.54.

64

Ni,jiqjqpa

aA

ttij

ij

≤≤===

=

+ 1 ,}|{

}{

1
 (Eq.3.54)

tq denotes the current state. Transition probabilities should satisfy the normal

stochastic constraints as Eq.3.55 and Eq.3.56.

Njiaij ≤≤≥ ,1 ,0 (Eq.3.55)

Nia
N

j
ij ≤≤=∑

=
1 ,1

1
 (Eq.3.56)

• A probability distribution in each of the states as shown as Eq.3.57.

MiNjjqvpkb

kbB

tktj

j

≤≤≤≤===

=

1 1 },|0{)(

)}({
 (Eq.3.57)

kv denotes the thk observation symbol in the alphabet, and to the current

parameter vector.

The stochastic constraints as Eq.3.58 and Eq.3.59 must be satisfied.

MkNjkb j ≤≤≤≤≥ 1 ,1 ,0)((Eq.3.58)

Njkb
M

k
j ≤≤=∑

=
1 ,1)(

1
 (Eq.3.59)

If the observations are continuous, then we will have to use a continuous

probability density function, instead of a set of discrete probabilities. In this case we

specify the parameters of the probability density function. Usually the probability

65

density is approximated by a weighted sum of M Gaussian distributions Ω as

Eq.3.60.

matrices covariance

rsmean vecto

tscoefficien weighting

),,()(
1

=Σ

=µ

=

ΣµΩ= ∑
=

jm

jm

jm

M

m
tjmjmjmtj

c

ocob

 (Eq.3.60)

jmc should satisfy the stochastic constraints as Eq.3.61 and Eq.3.62.

MmNjc jm ≤≤≤≤≥ 1 ,1 ,0 (Eq.3.61)

Njc
M

m
jm ≤≤=∑

=
1 ,1

1
 (Eq.3.62)

• The initial state distribution as shown in Eq.3.63.

Niiqpi

i

≤≤==π
π=π

1 },{
}{

1
 (Eq.3.63)

Therefore we can use the compact notation as Eq.3.64 to denote an HMM with

probability distributions while to denote an HMM with continuous densities as

Eq.3.65.

),,(π=λ BA (Eq.3.64)

),,,,(πΣµ=λ jmjmjmcA (Eq.3.65)

66

3.2.4.1 Assumptions of HMMs

For the sake of mathematical and computational tractability, following

assumptions are made in the theory of HMMs.

3.2.4.1.1 The Markov Assumption. As given in the definition of HMMs, transition

probabilities are defined as Eq.3.66.

}|{ 1 iqjqpa ttij === + (Eq.3.66)

In other words, it is assumed that the next state is dependent only upon the current

state. This is called the Markov assumption and the resulting model becomes actually

a first order HMM.

However, generally the next state may depend on past k states and it is possible to

obtain such a model, called an thk order HMM by defining the transition

probabilities as Eq.3.67.

Njiii

iqiqiqjqpa

k

kkttttjiii k

≤≤

===== +−−+

,,...,,1

},...,,|{

21

12111,,...,, 21 (Eq.3.67)

But, it is seen that a higher order HMM will have a higher complexity. Even

though the first order HMMs are the most common, some attempts have been made

to use the higher order HMMs too.

3.2.4.1.2 The Stationary Assumption. Here, it is assumed that state transition

probabilities are independent of the actual time at which the transitions take place.

Mathematically, it can be stated as Eq.3.68.

2111 and any for }|{}|{
2211

ttiqjqpiqjqp tttt ===== ++ (Eq.3.68)

67

3.2.4.1.3 The Output Independence Assumption. This is the assumption that

current output(observation) is statistically independent of the previous outputs

(observations). We can formulate this assumption mathematically, by considering a

sequence of observations as Eq.3.69.

toooO ,...,, 21= (Eq.3.69)

Then, according to the assumption for an HMM λ as Eq.3.70.

∏
=

λ=λ
T

t
ttT qopqqqOp

1
21),|(},,...,,|{ (Eq.3.70)

However, unlike the other two, this assumption has a very limited validity. In

some cases this assumption may not be fair enough and therefore becomes a severe

weakness of the HMMs.

3.2.4.2 Three Basic Problems of HMMs

Once we have an HMM, there are three problems of interest.

3.2.4.2.1 The Evaluation Problem. Given an HMM λ and a sequence of

observations ToooO ,...,, 21= , what is the probability that the observations are

generated by the model as Eq.3.71?

 }|{ λOp (Eq.3.71)

3.2.4.2.2 The Decoding Problem. Given an HMM λ and a sequence of

observations ToooO ,...,, 21= , what is the most likely state sequence in the model

that produced the observations?

68

3.2.4.2.3 The Learning Problem. Given an HMM λ and a sequence of

observations ToooO ,...,, 21= , how should we adjust the model parameters },,{ πBA

in order to maximize }|{ λOp ?

Evaluation problem can be used for isolated word recognition. Decoding problem

is related to the continuous recognition as well as to the segmentation. Learning

problem must be solved if we want to train an HMM for the subsequent use of

recognition tasks.

3.2.4.3 The Evaluation Problem and the Forward Algorithm

We have a model),,(π=λ BA and a sequence of observations ToooO ,...,, 21= ,

and }|{ λOp must be found. We can calculate this quantity using simple

probabilistic arguments. But, this calculation involves number of operations in the

order of TN . This is very large even if the length of the sequence, T is moderate.

Therefore, for this calculation we have to look for another method. Fortunately, there

exists one which has a considerably low complexity and makes use an auxiliary

variable,)(itα called “forward variable”.

The forward variable is defined as the probability of the partial observation

sequence Tooo ,...,, 21 , when it terminates at the state i. Mathematically, it can be

stated as Eq.3.72.

}|,,...,,{)(21 λ==α iqooopi ttt (Eq.3.72)

Then, it is easy to see that the recursive relationship as Eq.3.73 holds.

Njobj

TtNjaiobj

jj

N

i
ijttjt

≤≤π=α

−≤≤≤≤α=α ∑
=

++

1),()(

11 ,1 ,)()()(

11

1
11 (Eq.3.73)

69

Using this recursion we can calculate Eq.3.74.

NiiT ≤≤α 1),((Eq2.74)

And then, the required probability is given by Eq.3.75.

∑
=

α=λ
N

i
T iOp

1
)(}|{ (Eq.3.75)

The complexity of this method, known as the “forward algorithm” is proportional

to TN 2 , which is linear with respect to T whereas the direct calculation had an

exponential complexity.

In a similar way, we can define the “backward variable”)(itβ as the probability

of the partial observation sequence Ttt ooo ,...,, 21 ++ , given that the current state is i.

Mathematically , this can be stated as Eq.3.76.

},|,...,,{)(21 λ==β ++ iqooopi tTttt (Eq.3.76)

As in the case of)(itα there is a recursive relationship which can be used to

calculate)(itβ efficiently as shown in Eq.3.77.

Nii

TtNiobaji

T

N

j
tjijtt

≤≤=β

−≤≤≤≤β=β ∑
=

++

1 , 1)(

11 ,1 ,)()()(
1

11 (Eq.3.77)

We can also see the Eq.3.78.

TtNiiqOpii ttt ≤≤≤≤λ==βα 1 ,1 , }|,{)()((Eq.3.78)

70

Therefore, this gives another way to calculate }|{ λOp , by using both forward

and backward variables as given in Eq.3.79.

∑∑
==

βα=λ==λ
N

i
tt

N

i
t iiiqOpOp

11
)()(}|,{}|{ (Eq.3.79)

Eq.3.79 is very useful, especially in deriving the formulas required for gradient

based training.

3.2.4.4 The Decoding Problem and the Viterbi Algorithm

In this case, we want to find the most likely state sequence for a given sequence of

observations, ToooO ,...,, 21= and a model,),,(π=λ BA .

The solution to this problem depends upon the way “most likely state sequence” is

defined. One approach is to find the most likely state tq at t=t and to concatenate all

such “ tq ”s. But, some times this method does not give a physically meaningful state

sequence. Therefore, we would use another method which has no such problems.

In this method, commonly known as “Viterbi algorithm”, the whole state sequence

with the maximum likelihood is found. In order to facilitate the computation we

define an auxiliary variable as Eq.3.80 which gives the highest probability that

partial observation sequence and state sequence up to t=t can have, when the current

state is i.

}{ max)(121121
121

|λ,...,o,oi,o,q,...,q,qqpi t-tt-
,...,q,qq

t
t

==δ
−

 (Eq.3.80)

It is easy to observe that the recursive relationship as Eq.3.81 holds.

Njobj

TtNiaiobj

jj

ijtNitjt

≤≤π=δ

−≤≤≤≤



 δ=δ

≤≤
++

1 ,)()(

11 ,1 ,)(max)()(

11

1
11 (Eq.3.81)

71

So, the procedure to find the most likely state sequence starts from calculation of

)(jTδ , Nj ≤≤1 using recursion in Eq.3.81, while always keeping a pointer to the

“winning state” in the maximum finding operation. Finally, the state *j is found by

Eq.3.82 and starting from this state. The sequence of states is back-tracked as the

pointer in each state indicates. This gives the required set of states.

This whole algorithm can be interpreted as a search in a graph whose nodes are

formed by the states of the HMM in each of the time instant Ttt ≤≤1 , .

)(max arg
1

* jj T
Nj

δ=
≤≤

 (Eq.3.82)

3.2.5 Support Vector Machines (SVM)

SVM have been introduced as a new technique for solving pattern recognition

problems (Blanz et al., 1996; Cortes & Vapnik, 1995; Osuna, Freud & Girosi, 1997;

Schölkopf et al., 1996). According to the theory of SVMs (Vapnik, 1982, 1995),

while traditional techniques for pattern recognition are based on the minimization on

the training set, SVMs minimize the structural risk. Namely, the probability of

misclassifying to be seen patterns for a fixed but unknown probability distribution of

the data. This new induction principle, which is equivalent to minimize an upper

bound on the generalization error, relies on the theory of uniform convergence in

probability (Vapnik, 1982). What makes SVMs attractive is the ability to condense

the information contained in the training set, and the use of families of decision

surfaces of relatively low VC-dimension (Vapnik & Chervonenkis, 1971).

In the linear, separable case the key idea of a SVM can be explained in plain

words. Given a training set S which contains points of either of two classes, a SVM

separates the classes through a hyper-plane determined by certain points of S, termed

“support vectors”. In the separable case, this hyper-plane maximizes the margin, or

twice the minimum distance of either class from the hyper-plane, and all the support

vectors lie at the same minimum distance from the hyper-plane. In real cases, the two

72

classes may not be separable and both the hyper-plane and the support vectors are

obtained from the solution of a problem of constrained optimization. The solution is

a trade-off between the largest margin and the lowest number of errors, trade-off

controlled by a regularization parameter.

3.2.5.1 Optimal Separating Hyper-plane

Assume S is a set of points n
i Rx ∈ with Ni ..., 2, 1,= . Each point ix belongs to

either of two classes and thus is given a label }1 -1,{∈iy . The goal is to establish the

equation of a hyper-plane that divides S leaving all the points of the same class on

the same side while maximizing the minimum distance between either of the two

classes and the hyper-plane. To this purpose we need some preliminary definitions.

Definition: The set S is linearly separable if there exists nRw ∈ and Rb ∈ such

that Eq.3.83 is satisfied.

1 if 1
,1 if 1
−=−≤+⋅

=≥+⋅

ii

ii

ybxw
ybxw

 (Eq.3.83)

In compact notation, the two inequalities as Eq.3.83 can be rewritten as Eq.3.84.

Nibxwy ii ..., 2, 1,for , 1)(=≥+⋅ (Eq.3.84)

The pair),(bw defines a hyper-plane of equation as Eq.3.85 named “separating

hyper-plane” as shown Figure 3.14 and 3.15.

0=+⋅ bxw (Eq.3.85)

If we denote with w the norm of w, the signed distance id of a point ix from the

separating hyper-plane),(bw is given by Eq.3.86.

73

w
bxwd i

i
+⋅

= (Eq.3.86)

Combining inequality as Eq.3.84 and Eq.3.86, for all Sxi ∈ we have Eq.3.87.

w
dy ii

1
≥ (Eq.3.87)

In Figure 3.13 and 3.14, both solid lines separate the two identical sets of open

circles and triangles, but the solid line in Figure 3.14 leaves the closest points at the

maximum distance. The dashed lines in Figure 3.14 identify the margin.

Therefore, w/1 is the lower bound on the distance between the points ix and the

separating hyper-plane),(bw .

Figure 3.13 Separating hyper-plane.

74

Figure 3.14 Optimal separating hyper-plane.

One might ask why not simply rewrite inequality in Eq.3.84 as shown Eq.3.88.

0)(≥+⋅ bxwy ii (Eq.3.88)

The purpose of the “1” in the right hand side of inequality Eq.3.84 is to establish a

one-to-one correspondence between separating hyper-planes and their parametric

representation. This is done through the notation of canonical representation of a

separating hyper-plane.

Definition: Given a separating hyper-plane),(bw for the linearly separable set, S,

the “canonical representation” of the separating hyper-plane is obtained by rescaling

the pair),(bw into the pair),(bw ′′ in such a way that the distance of the closest

point equals w′/1 .

Through above definition, we have Eq.3.89.

75

1)} ({min i
=′+⋅′∈ bxwy iiSx (Eq.3.89)

Consequently, for a separating hyper-plane in the canonical representation, the

bound in Eq.3.87 is tight. In what follow we will assume that a separating hyper-

plane is always given the canonical representation and thus write),(bw instead of

),(bw ′′ . We are now in a position to define the notation of optimal separating hyper-

plane.

Definition: Given a linearly separable set S, the “optimal separating hyper-plane”

(OSH) is the separating hyper-plane which maximizes the distance of the closest

point of S.

Since the distance of the closest point equals 1/w, the OSH can be regarded as the

solution of the problem of maximizing 1/w subject to the constraint as Eq.3.84, or the

problem as shown in Eq.3.90.

N, ib)x(wy

w

ii ..., 2, ,11 : subject to

w
2
1 :Minimize

=≥+⋅

⋅
 (Eq.3.90)

Two comments are in order. First, if the pair),(bw solves Eq.3.90, then for at

least one Sxi ∈ we have 1)(=+⋅ bxwy ii . In particular, this implies that the

solution of Eq2.146 is always a separating hyper-plane in the canonical

representation. Second, the parameter b enters in the constraints but not in the

function to be minimized. The quantity 2/w, which measures the distance between

the two classes in the direction of w, is named “margin”. Hence, the OSH can also be

seen as a separating hyper-plane which maximizes the margin as shown in Figure

3.14. We now study the properties of the solution of Eq.3.90.

76

3.2.5.2 Support Vectors

Eq.3.90 can be solved by means of the classical method of Lagrange multipliers

(Bazaraa & Shetty, 1979). If we denote with),...,,(21 Nααα=α the N nonnegative

Lagrange multipliers associated with the constraints as Eq.3.84, the solution to

problem as Eq.3.90 is equivalent to determining the “saddle point” of Eq.3.91 with

),,(α= bwLL .

∑
=

−+⋅α−⋅=
N

i
iii bxwywwL

1
}1)({

2
1 (Eq.3.91)

At the saddle point, L has a minimum for ww = and bb = and a maximum for

α=α , and thus we can write Eq.3.92 and Eq.3.93 with Eq.3.94.

∑
=

=α=
∂
∂ N

i
iiy

b
L

1
0 (Eq.3.92)

∑
=

=α−=
∂
∂ N

i
iii xyw

w
L

1
0 (Eq.3.93)









∂
∂

∂
∂

∂
∂

=
∂
∂

nw
L

w
L

w
L

w
L ,...,,

21
 (Eq.3.94)

Substituting Eq.3.92 and Eq.3.93 into the right hand of Eq.3.91, we see that

Eq.3.90 reduces to the maximization of Eq.3.95 subject to the constraint as Eq.3.92

with 0≥α . This new problem is called “dual problem” can be formulated as

Eq.3.96.

∑∑
==

⋅αα−α=α
N

ji
jijiji

N

i
i xxyy

1,1 2
1)(l (Eq.3.95)

77

0 , 0 subject to
2
1 Maximize

≥α=α

α+α⋅α−

∑
∑

ii

i

y

D
 (Eq.3.96)

Both sums are for i=1, 2, ..., N, and D is an NxN matrix such that Eq.3.97 is

satisfied.

jijiij xxyyD ⋅= (Eq.3.97)

As for the pair),(bw , from Eq.3.96, it follows Eq.3.98 while b can be

determined from the Kuhn-Tucker conditions as Eq.3.99.

∑
=

α=
N

i
iii xyw

1
 (Eq.3.98)

Nibxwy iii ..., 2, 1, , 0)1)((==−+⋅α (Eq.3.99)

Note that the only iα that can be nonzero in Eq.3.99 are those for which the

constraints as Eq.3.84 are satisfied with the inequality sign. The corresponding points

ix , termed “support vectors”, are the points of S closest to the OSH. Given a support

vector jx , the parameter b can be obtained from the corresponding Kuhn-Tucker

condition as Eq.3.100.

jj xwyb ⋅−= (Eq.3.100)

The problem of classifying a new data point x is now simply solved by

computing as Eq.3.101.

)(sign bxw +⋅ (Eq.3.101)

78

In conclusion, the support vectors condense all the information contained in the

training set S which is needed to classify new data points.

79

CHAPTER FOUR

TURKISH SYLLABLE n-GRAM ANALYSIS

4.1 Introduction

The designation of language properties is important for natural language

processing (NLP) systems, such as automatic language detection, spell checking and

suggestion mechanism for wrong written words and text summary generation

systems. Furthermore, it is worthy in the area of cryptology, data compression,

speech synthesis and speech recognition. It is difficult to construct a NLP system for

Turkish language. Because some extra techniques are needed to overcome the

difficulties arise from the language nature. In this manner, a new mechanism is

suggested for parsing the Turkish words by syllables within this chapter.

TASA (Turkish Automatic Syllabifying Algorithm) is developed for hyphenation

of Turkish words (Aşlıyan & Günel, 2005). The algorithm, which is coded with

Matlab, is tested over 5 different corpora (Dalkılıç & Çebi, 2003). The test results

show that the algorithm's error rate is 0% for the first 2000 Turkish words in each

corpus. Then the total number of syllables and the number of syllables are calculated

in Turkish for each corpus. The frequency of each syllable is analyzed. The syllable

length distribution over corpora and the average syllable length are determined.

To extract the statistical information from the corpora, we use the Markov Model

(Jurafsky & Martin, 2000), which is a probabilistic model. An n-th order Markov

model looks (n-1)-th words into the past and calculates the probability of word

sequences of the language. We apply this approach over the Turkish syllables. To

obtain the n-gram probability (Jurafsky & Martin, 2003) from a corpus, Eq.4.1 can

be used.

),...,(
),...,(

)|(
11

1
1

−+−

+−
+− =

ini

ini
nii ssC

ssCssP (Eq.4.1)

80

Table 4.1 Turkish alphabet

Vowels : a e ı i o ö u ü

Consonants : b c ç d f g ğ h j k l m n p r s ş t v y z

As shown in Eq.4.1,),...,(1 ini ssC +− is the number of occurrences of the syllable

sequence ini ss ,...,1+− in a corpus.

Turkish language is a member of Altaic languages. The Turkish language consists

of twenty nine different letters, which are given in the Table 4.1. The segments of

speech uttered with a single impulse of air are called syllables. The Turkish words

consist of a sequence of syllables. Morphologically, Turkish is an agglutinative

language. Therefore, it is possible to generate thousands of forms from a given root

word with suffixes, as Korean, Hungarian and Finnish.

An exaggerated and so popular example of a Turkish word formation (Oflazer &

Bozşahin, 1994) is given as “Çekoslovakyalılaştıramadıklarımızdanmışsınızcasına”.

The word equivalent in English is “you were of those whom we could not convert

to a Czechoslovakian”. In our example the root morpheme is Çekoslovakya, which is

the name of the state of Czechoslovakia in English. The Syllabifying of the word is

“Çe-kos-lo-vak-ya-lı-laş-tı-ra-ma-dık-la-rı-mız-dan-mış-sı-nız-ca-sı-na”.

In Turkish, the syllables have at least one and at most four letters, which are

meaningless in themselves except some special cases, such as “bal”, “kol”, “dal”,

“çal”, “kürk. All the possible combinations of Turkish syllable formations with some

examples are given in Table 4.2, where C and V denote the consonant and vowel,

respectively.

Some exceptional cases exist for the foreign words in Turkish, e.g. “tvist”

imported from the English word “twist”, and for the words with accents, which alter

the pronunciation of the syllables that contain them, such as “kâr”, “umumî” and

81

“üslûp”, which mean “profit”, “general” and “style” in English, respectively. In the

next section, a new algorithm, which achieves the segmentation of the Turkish words

to their syllables capable of overcoming all special cases, has been given.

Table 4.2 The possible Turkish syllable structure

V a e ı i o ö u ü

VC ab, ac, aç, ad, ..., az, eb, ec, eç, ...

CV ba, be, bı, bi, ..., za, ze, zı, zi, ...

CVC bel, gel, köy, tır, ...

VCC alt, üst, ırk, ...

CCV bre, ...

CVCC kurt, yurt, renk, Türk, ...

4.2 Design and Implementation of TASA

TASA is implemented with Matlab on Windows. As it is shown in Figure 4.1,

TASA takes each word one by one from Turkish clean text corpus which is obtained

by preprocessing the Turkish text corpus. In the preprocessing stage, punctuation

marks are eliminated. Each letter is converted to lower case. There is only one blank

between two words. After the preprocessing, TASA extracts the syllables from the

word. The output of the TASA is Turkish Text Corpus which includes the syllables

of the words.

TASA consists of two main parts as TASA-A and TASA-B as given in Figure 4.1.

TASA-A divides the words into subword units. TASA-B extract syllables from

subword units.

82

Figure 4.1 The Turkish syllable extracting system.

4.2.1 The Algorithm of TASA-A

The algoritm takes a word as an input and gives subword units as outputs. The

algorithm incorporates four steps.

Step 1: If there are four consonants in the word side by side, and

if these consonants are not at the beginning or end of the word, the
word is divided into subword units after the second consonant.

Step 2: If there are three consonants in the word side by side,

and if these consonants are not at the beginning or end of the word,
the word is divided into subword units after the second consonant.

83

Step 3: If there are two consonants in the word side by side, and
if these consonants are not at the beginning or end of the word, the
word is divided into subword units after the first consonant.

Step 4: If there are two vowels in the word side by side, the word

is divided into subword units after the first vowel.

Figure 4.2 TASA structure.

4.2.2 The Algorithm of TASA-B

The algorithm takes a subword unit as an input and gives syllables of the subword

unit as outputs. TASA-B consists of six cases according to the length of the subword

unit.

84

Case 1: The length of the subword unit is 1
If the subword unit has only one letter then,

It is only a syllable.
Case 2: The length of the subword unit is 2
If the subword unit has two letters then,

It is only a syllable.
Case 3: The length of the subword unit is 3
If the three letters of the subword unit are vowel, consonant and
vowel (VCV) respectively then,

There are two syllables. The first vowel is the first syllable and
the other two letters are the second syllable.

ElseIf vowel and consonant forms are VCC, CVC and CCV then,
The subword unit is only one syllable.

Case 4: The length of the subword unit is 4
If the first two letters or the last two letters of the subword unit
are consonant then,

The subword unit is a syllable.
Else

If the first letter is vowel then,
The first letter is the first syllable and the other three
letters are the second syllable.

Else
The first two letters are the first syllable and the other two
letters are the second syllable.

Case 5: The length of the subword unit is 5
If the first or the last three letters of the subword unit are
consonants then,

It is only a syllable.
ElseIf the first and the last two letters of the subword unit are
consonants then,

It is only a syllable.
Else

If the first letter is vowel then,
If the last two letters are consonants then,
The first letter is the first syllable, and the other letters
are the second syllable.

Else

85

The first letter is the first syllable. The next two letters
are the second syllable. The last two letters are the third
syllable.

Else
If the second letter of the subword unit is consonant then,
The first three letters are the first syllable, and the other
two letters are the second syllable.

 Else
The first two letters are the first syllable, and the other
three letters are the second syllable.

Case 6: The length of the subword unit is equal or greater than 6
If the first letter of the subword is vowel then,

If the last three letters are consonant then,
The first letter is a syllable. The next binary letters are
syllables until the last five letters. The last five letters are
a syllable.

ElseIf the last two letters are consonant then,
The first letter is a syllable. The next binary letters are
syllables until the last four letters. The last four letters are
a syllable.

ElseIf the last letter is vowel then,
The first letter is a syllable. The next binary letters are
syllables.

Else
The first letter is a syllable. The next binary letters are
syllables until the last three letters. The last three letters
are a syllable.

Else
If the second letter is vowel then,
If the last three letters are consonant then,
The binary letters from the beginning are syllables until the
last five letters. The last five letters are a syllable.

ElseIf the last two letters are consonant then,
The binary letters from the beginning are syllables until the
last four letters. The last four letters are a syllable.

ElseIf the last letter is vowel then,
The binary letters from the beginning are syllables.

ElseIf the last two letters are vowel and consonant
 respectively then,

86

The binary letters from the beginning are syllables until the
last three letters. The last three letters are a syllable.

Else
If the third letter is vowel then,
If the last three letters are consonant then,
The first three letters are a syllable. The next binary
letters are syllables until the last five letters. The
last five letters are a syllable.

ElseIf the last two letters are consonant then,
The first three letters are a syllable. The next binary
letters are syllables until the last four letters. The
last four letters are a syllable.

ElseIf the last two letters are vowel and consonant
respectively then,
The first three letters are a syllable. The next binary
letters are syllables until the last three letters. The
last three letters are a syllable.

ElseIf the last letter is vowel then,
The first three letters are a syllable. The next binary
letters are syllables.

Else
If the last three letters are consonant then,
The first four letters are a syllable. The next binary
letters are syllables until the last five letters. The
last five letters are a syllable.

ElseIf the last two letters are consonant then,
The first four letters are a syllable. The next binary
letters are syllables until the last four letters. The
last four letters are a syllable.

ElseIf the last two letters are vowel and consonant
respectively then,
The first four letters are a syllable. The next binary
letters are syllables until the last three letters. The
last three letters are a syllable.

ElseIf the last letter is vowel then,
The first four letters are a syllable. The next binary
letters are syllables.

87

For example, the given word is converted into the subword units by TASA-A:

“Çekos”, “lovak”, “yalılaş”, “tıramadık”, “larımız”, “dan”, “mış”, “sınız, “casına”.

TASA-B takes these subword units and extracts the syllables. The syllables “Çe” and

“kos” are extracted from the subunit “Çekos”. The syllables “lo” and “vak” are

extracted from the subunit “lovak”. This process repeats for each subword units in

the same way.

Figure 4.3 FSA structure of TASA-B.

Figure 4.3 represents the finite state automata (FSA) structure of TASA-B. C, V,

λ and - is consonant, vowel, empty and syllable separator characters respectively.

The finite state automata is a quintuple),,,,(FsKM ∆Σ= where ,},,,{ −λ=Σ VC

88

 . from strings ofset
 theis .xx ofsubset finite a is Δ and },,,

,,,,,,
,,,,,,,,,

,,{ , },,,,
,,,,,,,

,,,,,,,,,,,,{

**

Σ
ΣΣ−−−−−−−

−−−−−−−−−−−−−
−−−−−−−−−−−−

−−=λ=−−−−−−−−−−
−−−−−−−−−−−−−

−−−−−−−−−−−λ=

KKCVCCVVCVCVCVC

CVCCVCVCCCVCVCVVCVCCVCVCCVCVCCVC
CCVCCVCVCVCVCVCCCCVCCVVCVCCCVVCCVC

CVVFsCVCCVVCVCVCVCVCCCVCVCCV
CCVCVVCVCCVCVCCVCVCCVCCVCCCVCVCV

CVCVCCCCVCCVVCVCCCVVCCVCCVCCVCK

4.3 Experimental Results

This system is composed of two stages. The first is to construct TASA, and the

second is to constitute Turkish syllable statistics. After developing TASA, we

extracted the syllables from the words in the five Turkish corpora. We tested TASA

for the first 2000 words of each corpus, and we have encountered no words, which

were spelt wrongly.

We computed the syllable length for each corpus. Syllable length is the number of

letters in the syllable. Table 4.3 shows that the rate of syllable length of every corpus

is approximately the same. Generally, the rate of the syllables which have two letters

is 56.57% over all syllables of the corpora. The rate of the syllables which have three

letters is 35.16%. The rates of the syllables which have a letter, four letters and five

letters are 5.93%, 2.18% and 0.17% respectively. There are no syllables whose

length is greater than five in each corpus. Table 4.4 indicates the statistics of Turkish

syllable. For İmla Corpus there are 3419 different syllables.

There are a lot of studies on word n-grams. But we modeled syllable n-grams for

Turkish. We computed the monogram and bigram of the corpora as shown in Table

4.5. For instance, the syllable “la” has the highest frequency. In other words, The

syllable “la” is 2.4% of the syllables in this corpus. We accepted the blank between

two words like a syllable. According to the Table 4.5, the probability that the syllable

“a” is following the blank is the highest (1.7%) for Bilim Corpus.

89

We have designed and implemented TASA for the five Turkish Corpora. After

testing operation, it is calculated that TASA's correct spelling rate is about 100%.

After analyzing the Turkish Corpora, we have found that the rate of the syllables

which have two letters is 57% over all syllables of the corpora. It is also computed

the monograms and bigrams of the Turkish Corpora. TASA can be used any other

Turkish Corpora, and more detailed researches can be done. Turkish syllable

structure can be extracted. New compression algorithms can be generated using

syllables. Furthermore, Turkish syllables can be applied to speech synthesis.

Table 4.3 The syllable length of Turkish corpora

Corpus
Syllables

One letter Two letters Three letters Four
letters Five letters

İmla 5238 74796 72258 3020 99
Bilim 34892 304097 186073 9713 908

Pc Mag. 77740 765101 466650 39740 3338
Yeni Asır 13620 153207 92600 2881 49
Ulusal Pr. 33759 275598 160008 5157 261

Sum 164849 1572799 977589 60511 4655

Table 4.4 Statistics of some Turkish corpora

Corpus The number of
different syllables

The number of
syllables

The number of
words

İmla 3419 155411 48350
Bilim 3515 535683 201605

Pc Mag. 6542 1352169 515904
Yeni Asır 2324 262357 96703
Ulusal Pr. 2048 474783 158945

Sum 2780403 1021687

Table 4.5 Statistics of Bilim corpora

Monogram Frequency % Bigram Frequency %
la 12808 2.4 blank a 9197 1.7
le 10931 2.0 da blank 5821 1.1
a 9976 1.8 blank o 5343 1.0

de 9814 1.8 de blank 5185 1.0
da 8751 1.6 blank i 5178 1.0

Sum 9.6 Sum 5.8

90

CHAPTER FIVE

DETECTING MISSPELLED WORDS IN TURKISH TEXT USING

SYLLABLE n-GRAM FREQUENCIES

5.1 Introduction

To detect misspelled words in a text is an old problem. Today, most of word

processors include some sort of misspelled word detection. Misspelled word

detection is worthy in the area of cryptology, data compression, speech synthesis,

speech recognition and optical character recognition (Barari & QasemiZadeh, 2005;

Deorowicz & Ciura, 2005; Kang & Woo, 2001; Tong & Evans, 1996). The

traditional way of detecting misspelled words is to use a word list, usually also

containing some grammatical information, and to look up every word in the word list

(Kukich, 1992) from dictionary.

The main disadvantage of this approach is that if the dictionary is not large

enough, the algorithm will report some of correct words as misspelled, because they

are not included in the dictionary. For most natural languages, the size of dictionary

needed is too large to fit in the working memory of an ordinary computer. In Turkish

this is a big problem, because Turkish is an agglutinative language and too many new

words can be constructed by adding suffixes.

To overcome this difficulties, a new approach has been proposed for detecting

misspelled words in Turkish text. We have used Turkish syllable n-gram frequencies

which are generated from several Turkish corpora (Dalkılıc & Cebi, 2003). From the

corpora we have extracted syllable monogram, bigram and trigram frequencies using

TASA (see Chapter 4) (Aşlıyan & Günel, 2005). We have used these n-gram

frequencies for calculating a word probability distribution. After that the system has

decided whether a word is misspelled or not. In this approach we don’t need word

list. We have only Turkish syllables and their monogram, bigram and trigram

frequencies. The chapter is organized as follows. In Section 5.2, we described the

system architecture.We explained how syllable n-gram frequencies and word

91

probability distribution are computed in Section 5.3. We discussed the empirical

results of the system in Section 5.4.

Figure 5.1 System architecture.

92

5.2 System Architecture

The system consists of three main components. First component is preprocessing

which cleans a text. Second component is TASA, and third component is calculating

probability distribution of words. As shown in Figure 5.1, the system takes words in

Turkish text as input and gives the result for each word as “Misspelled Word” or

“Correctly Spelled Word”.

In preprocessing component of the system, punctuation marks are cleaned. All

letters in the text are converted to lower case. Blank characters between two

successive words are limited with only one blank character.

In second component, TASA takes the Turkish clean text as an input and gives the

Turkish syllabified text. The system divides words into syllables putting the dash

character between two syllables. For example, the word “kitaplık” in Turkish text is

converted into the syllabified word “ki-tap-lık” in Turkish syllabified text.

In third component, the probability distribution is calculated for each syllabified

word. The system uses syllable monogram, bigram and trigram frequencies to find

this probability distribution. How these n-gram frequencies are computed is

explained in detail in the following Subsection 5.2.1.

5.2.1 Calculation of Syllable n-gram Frequencies

We have used the Turkish corpora (Dalkılıc & Cebi, 2003) which includes

304178 Turkish words and the corpora is preprocessed as seen in Figure 5.1. The

system TASA syllabifies all Turkish words in the corpora.We have constructed

Turkish syllable corpora from the Turkish word corpora. Turkish syllable corpora

contains 900342 Turkish syllables. As shown in Table 5.1, Table 5.2 and Table 5.3,

Turkish syllable monogram, bigram and trigram frequencies are calculated. For

example, the frequency of the syllable monogram“la” is 21322. In Table 5.2 and

93

Table 5.3, “blank” represents only one blank character. We accepted blank character

as syllable for the system. Table 5.2 shows the frequencies of some Turkish syllable

bigram.

Table 5.1 Monogram statistics for Turkish corpus

Monogram Frequency %

la 21322 2.37

ma 17704 1.97

li 15124 1.68

a 13439 1.49

ta 13372 1.48

i 12827 1.42

de 11699 1.30

ra 11611 1.29

da 10930 1.21

ve 10570 1.17

ri 9618 1.07

rı 9105 1.01

me 8776 0.97

e 7312 0.81

ec 5909 0.66

94

Table 5.2 Bigram statistics for Turkish corpus

Bigram Frequency %

blank i 12880 1.43

blank a 11194 1.24

blank ve 9793 1.09

blank e 9601 1.07

li blank 9410 1.04

ve blank 8803 0.98

blank ta 8296 0.92

blank ka 7907 0.88

da blank 7429 0.82

ec blank 5857 0.65

la rı 5659 0.63

le ri 5551 0.62

Table 5.3 Trigram statistics for Turkish corpus

Trigram Frequency %

blank ve blank 5866 0.05

blank ta rih 5238 0.03

ta rih li 4944 0.03

rih li blank 4944 0.03

blank i liş 3437 0.02

i liş kin 3282 0.02

blank i le 3037 0.02

blank bir blank 3000 0.02

i le blank 2997 0.02

la rı blank 2979 0.02

ler ri blank 2905 0.02

blank kon sey 2896 0.02

kon sey blank 2895 0.02

95

5.3 Calculation of the Probability Distribution of Words

An n-gram is a sub-sequence of n items from a given sequence. n-grams are used

in various areas of statistical natural language processing and genetic sequence

analysis. The items in question can be letters, syllables, words according to the

application.

An n-gram of size 1 is a “monogram”; size 2 is a “bigram”; size 3 is a “trigram”;

and size 4 or more is simply called an “n-gram” or “(n−1)-order Markov model”

(Zhuang et al., 2004).

An n-gram model predicts ix based on niiii xxxx −−−− ,...,,, 321 . When used for

language modeling independence assumptions are made so that each word depends

only on the last n words. This Markov model is used as an approximation of the true

underlying language. This assumption is important because it massively simplifies

the problem of learning the language model from data.

Suppose that a word W in Turkish syllabified text consists of the syllable

sequence tssss ,...,,, 321 . This word has t syllables. To obtain the n-gram probability

distribution (Jurafsky & Martin, 2000) of the word W, we have used in Eq.5.1.

∏
=

−+−+−==
t

i
ininiit ssssPsssPWP

1
12121),...,,|(),...,,()((Eq.5.1)

In n-gram model, the parameter),...,,|(121 −+−+− ininii ssssP in Eq.5.1 can be

estimated with Maximum Likelihood Estimation (MLE) (Aşlıyan & Günel, 2005)

technique as shown in Eq.5.2.

),...,,(
),,...,,(

),...,,|(
121

121
121

−+−+−

−+−+−
−+−+− =

inini

iinini
ininii sssC

ssssCssssP (Eq.5.2)

So, we conclude as Eq.5.3.

96

∏
= −+−+−

−+−+−==
t

i inini

iinini
t sssC

ssssC
sssPWP

1 121

121
21),...,,(

),,...,,(
),...,,()((Eq.5.3)

In Eq.5.2 and Eq.5.3,),,...,,(121 iinini ssssC −+−+− is the frequency of the syllable

sequence iinini ssss ,,...,, 121 −+−+− . Furthermore,),...,,(121 −+−+− inini sssC is the

frequency of the syllable sequence 121 ,...,, −+−+− inini sss . The frequencies of these

syllable sequences can be calculated from the Turkish corpora.

For bigram(n=2) and trigram(n=3) models, probability distribution)(WP can be

computed as shown in Eq.5.4 and Eq.5.5 respectively.

∏∏
= −

−

=
− ===

t

i i

ii
t

i
iit sC

ssC
ssPsssPWP

1 1

1

1
121)(

),(
)|(),...,,()((Eq.5.4)

∏∏
= −−

−−

=
−− ===

t

i ii

iii
t

i
iiit ssC

sssC
sssPsssPWP

1 12

12

1
1221),(

),,(
),|(),...,,()((Eq.5.5)

For example, according to bigram model we can calculate the probability

distribution of a word in Turkish text. Assume that we have a text which includes

some words as “... Bu gün okulda, şenlik var...”. This text is converted to syllabified

text as “... Bu gün o-kul-da, şen-lik var...”. Syllables in the words are delimited with

dash character. Assume that the word W=”okulda” in the text is taken for computing

its probability distribution and W can be written as the syllable sequence

== 321 ,, sssW ”o”, “kul”, “da”. Here, =1s “o”, =2s “kul”, =3s “da”. We accepted

blank character as a syllable.We call this syllable as λ . So, assume that syllable

monogram frequencies are C(“ λ ”)=0.003, C(“o”)=0.002, C(“kul”)=0.004 and

syllable bigram frequencies are C(“ λ ”,“o”)=0.0001, C(“o”,“kul”)=0.0002,

C(“kul”,“da”)=0.0003. We have calculated P(“okulda”) using bigram model. We

have found that the probability distribution of the word “okulda” is 0.0002475 as

shown in Eq.5.6.

97

























λ

λ
=

==

===

∏ ∏
= = −

−
−

)"kul("
)"da","kul("

)"o("
)"kul","o("

)"("
)"o","("

)(
)|(

)|(

)"da","kul","o("),,()"okulda(")(
3

1

3

1 1

1
1

321

C
C

C
C

C
C

sC
ssCssP

PsssPPWP

i i i

ii
ii (Eq.5.6)

5.4 Testing the System

We have designed and implemented two systems to detect misspelled words in

Turkish text. One uses monogram and bigram frequencies. The size of monogram

database is 41 kilobytes and our monogram consists of 4141 different syllables. The

size of bigram and trigram databases are 570 and 2858 kilobytes respectively. While

the bigram database includes 46684 syllable pairs, the trigram database consists of

183529 ternary syllables. The other uses bigram and trigram frequencies. We have

tested these two systems. To test the systems, we have two Turkish texts. One is

correctly spelled text which includes 685 correctly spelled words. The other is

misspelled text which has 685 misspelled words. These two texts have same words.

Namely, misspelled words are generated with putting errors on the correctly spelled

words. These error types are substitution, deletion, insertion, transposition and split

word errors. The systems takes correctly spelled and misspelled texts as input and

gives the results for each word as “correctly spelled word” or “misspelled word”. As

it is shown in Figure 5.1, probability distributions are calculated for each word. If the

probability distribution of a word is equal to zero, system decides that the word is

misspelled. If it is greater than zero, system decides that the word is correctly spelled.

The system works with Intel-based NT, Windows 2000, XP, Windows 2003

Server systems with 512MB RAM and it has been developed using Borland C++

Builder Professional.

We have first tested the system on the correctly spelled text using monogram and

bigram frequencies. The system determines 602 correctly spelled words from the

98

correctly spelled text, so the words are correctly recognized with 88% success rate.

Also, 589 misspelled words within the misspelled text are decided successfully by

the system. Namely, the system which is tested on the misspelled text correctly

recognized the words with 86% success rate.

Finally we have tested the system on the correctly spelled text using bigram and

trigram frequencies. The system determines 671 of 685 correctly spelled words from

the correctly spelled text. The success rate on correctly recognition of the words is

98%. Furthermore, 664 of 685 misspelled words within the misspelled text are

decided successfully by the system. Thus, the system which is tested on the

misspelled text correctly recognized the words with 97% success rate. The system

can analyze 75000 words per second.

In conclusion, we have designed and implemented a system which decides

whether or not a word is misspelled in Turkish text. Firstly, three databases of

syllable monogram, bigram and trigram frequencies are constructed using the

syllables that are derived from five different Turkish corpora. Then, the system takes

words in Turkish text as an input and computes the probability distribution of words

using syllable monogram, bigram and trigram frequencies from the databases. If the

probability distribution of a word is zero, it is decided that this word is misspelled.

For testing the system, we have constructed two text databases with the same words.

One text database has 685 misspelled words. The other has 685 correctly spelled

words. The words from these text databases are taken as inputs for the system. The

system produces two results for each word: “Correctly spelled word” or “Misspelled

word”. The system that is designed with monogram and bigram frequencies has 86%

success rate for the misspelled words and has 88% success rate for the correctly

spelled words. According to the system designed with bigram and trigram

frequencies, there is 97% success rate for the misspelled words and there is 98%

success rate for the correctly spelled words.

99

CHAPTER SIX

SPEECH RECOGNITION EXPERIMENTS

In this thesis, we have designed and implemented speaker dependent isolated

word speech recognition systems using the methods as LTA, DTW, ANN, HMM and

SVM. In the applications, we have used the speech signal features as mfcc, lpc,

parcor, cepstrum, rasta and the mixture of mfcc, lpc and parcor.

The speech recognition applications have been executed on the computer which

has the following features: Pentium Centrino 1.6 CPU, 768 MB RAM, 40 GB

harddisk, Windows XP Operating System, a sound card and a microphone. The

codes of the applications have been written with Matlab 6.5.

6.1 System Databases

System dictionary consists of 200 different Turkish words which are shown in

Appendix A. Using this dictionary we have constructed two databases. One database

has been used for training and the other is for testing of the system.

The training speech database (approximately 2.7 hours of 250 MB speech

material) involves 5000 Turkish word utterences (25x200) which were recorded by a

male speaker. Each word in the dictionary was recorded 25 times using the recording

program as shown in Figure 6.1.

The testing speech database was constructed by recording every word in the

dictionary 10 times. Total number of utterences is 2000 (about 1.1 hours of 100 MB

speech material).

100

Figure 6.1 The user interface of wave file recording program.

The recording procedure took place in a noise-free environment. A head-mounted

close-talking microphone was used. The format of the file recording is WAVE file

format. The waveforms of the utterences are encoded using Pulse Code Modulation

(PCM) coding format, 11025 Hz sampling rate, 2 bytes per sample. The utterences

are recorded in 2 seconds time duration.

6.2 Preprocessing of the System

After the digitization of the word speech signal, we have applied preemphasis

filter to spectrally flatten the signal as explained in Section 2.5. For the speech signal

the syllable end-point detection is applied as explained in Subsection 6.2.1. After that

each syllable utterence is divided into frames of 20 ms by frameblocking. To reduce

the signal discontinuity at the ends of each block, Hamming window is applied for

each frame as mentioned in Section 2.5.

101

6.2.1 Word and Syllable End-point Detection

An important problem in speech processing is to detect the presence of speech in a

background of noise. This problem is often referred to as the end-point location

problem (Rabiner & Sambur, 1975). The accurate detection of a word’s start and

end-points means that subsequent processing of the data can be kept to a minimum.

A major cause of errors in isolated-word automatic speech recognition systems is

the inaccurate detection of the beginning and ending boundaries of test and reference

patterns (Junqua, Mak & Reaves, 1997). It is essential for automatic speech

recognition algorithms that speech segments are reliably separated from non-speech.

The reason for requiring an effective end-point algorithm is that the computation

for processing the speech is minimum when the end-points are accurately located

(Savoji, 1989).

In syllable end-point detection operation, the speech signals are taken and after

processing them, the number of syllables and the indexes of syllable end-points have

been detected. Namely, the beginning and end indexes are computed on the digital

speech signal.

After sampling the sound wav files, the mean of the speech signal as a vector is

calculated and translated to 0=y axis. Assume that ny is a speech signal. The new

speech signal, which is focused on 0=y axis, is)(' nnn ymeanyy −= . After that,

the voiced and unvoiced parts of the speech signal are approximately computed with

the slope between the beginning value of the digital sound and the maximum value

of the sound. This slope is the threshold slope. The utterence is divided into windows

which have 350 samples. If the slope, which is calculated between two windows,

which are one after the other, is greater than the threshold slope, this means that the

voiced part of the sound begins at the index. However, these beginning and end

index of the voiced part are nearly true, but not certain value. We have used the

distance data of zero-crossing index of sound vector because of obtaining more

102

accurate results. We have constructed a new vector which represents the zero-

crossing distances, then we have defined a threshold (say zero-crossing

threshold=100). The beginning index is found earlier but not certainly true index.

Now this index goes on one by one to the first index if the zero-crossing distance is

between 1 and zero-crossing threshold. Zero values of the vector are not taken into

account. In the same way, the end index of the voiced part is calculated. At the end,

we find the voiced part exactly.

Figure 6.2 The process of syllable endpoint detection.

103

To discover syllable end-points, the windows that consist of 900 samples are

generated without overlapping. The mean values of these windows are computed and

assembled for constructing a new mean vector as shown in Figure 6.2. The slope

between one element and the next element of the mean vector is determined, and if

the slope is zero or greater than zero, a new vector’s value is +1. Otherwise, the value

is -1. Using these vectors, the boundaries of syllables on the sound vector are

obtained approximately. The samples between 500 samples backward and 500

samples forward from the found syllable end-points are divided into windows which

include 20 samples. After that, the middle index of the window which has the

minimum mean is syllable end-point. Finally, we can calculate the beginning and end

index of the syllables for each word before processing them. Now we have the

number of syllables of the word and their end-point indexes.

According to the number of syllable in a word using syllable end-point detection

algorithm which is mentioned in the Subsection 6.2.1.2., we have found that

accuracy result is approximately 99%. For example, the word which has five

syllables is successfully divided into five syllables and the end-points of the syllables

are detected.

6.2.1.1 Word End-point Detection Algorithm

1. x in Eq.6.1 is digital sound vector. 22050=N (N is the number of samples

in the utterence)

)...,,,(321 Nxxxxx = (Eq.6.1)

2. λ is the mean of the values of first 200 samples in .x x~ is a vector which

translated to the axis .0=y

∑
=

=λ
200

1
200/)(

i
ix (Eq.6.2)

104

)~,...,~,~(),...,(~
211 NN xxxxxxx =λ−λ−=λ−= (Eq.6.3)

3. M is the maximum value of the vector .~x I is the index of maximum value

of the vector .~x bE and sE are the beginning and end threshold values

respectively.

)~max(],[xIM = (Eq.6.4)

IMEb /= ,)/(INMEs −= (Eq.6.5)

4. The vector x~ is divided into windows which consist of 350 samples. The

vector x is the mean vector of above windows.

),...,,(21 pxxxx = and 350/Np = (Eq.6.6)

350/~
1350*)1(

350*










= ∑

−+

=

i

ik
ki xx , pi ,...,2,1= (Eq.6.7)

5. For 1,...,2,1 −= pi , Ex and
iEx are calculated as shown in Eq.6.8.

),...,,(
121 −

=
pEEEE xxxx and iiE xxx

i
/1+= (Eq.6.8)

6. bS is the beginning index of the sound vector.

For 1=r to 1−p

 if bE Ex
r

> then 350*rSb =

End

105

7. sS is the end index of the sound vector.

For r =
1−pEx DownTo 1

 if sE Ex
r

>/1 then 350*rSs =

End

8. The beginning and end indexes are approximately determined from Step 6

and 7. To decide exactly the end-points of the sound, the zero-crossing

indexes are fixed. Using the sound vector)~,...,~,~(~
21 Nxxxx = , the zero-

crossing vector),...,,(121 −= Nzzzz is generated.

For 2=k To N

 if 0~/~
1 <− kk xx then

 11 =−kz

 else

 01 =−kz

End

9. After the distances between one after the other zero-crossing indexes are

computed, new distance vector of zero-crossing)~,...,~,~(~
121 −= Nk zzzz is

calculated as the followings.

For 1=k To 1−N

 if 1=kz and after the index k, its first value of the following indexes is 1,

 (1=hz) then

 khzk −=~

 else

 0~ =kz

 if 0=kz then 0~ =kz

106

End

10. The threshold value of zero-crossing is accepted as .100=T SB is the value

at the index which the sound begins.

bSSB =

For bSk = DownTo 1

 if 0~ >kz and Tzk <~ then kSB =

 if 0~ =kz then continue

 if Tzk >~ then break

End

11. SS is the value at the index which the sound ends.

sSSS =

For sSk = To 1−N

 if 0~ >kz and Tzk <~ then kSS =

 if 0~ =kz then continue

 if Tzk >~ then break

End

6.2.1.2 Syllables End-point Detection of the Words

After detecting the end-points (SB and SS) of the words, the end-points of the

syllables in the words are determined with the following algorithm.

1.)~,...,~,~(),...,,(121 SSSBSBk xxxnnnn +==

2. The vector n is divided into windows, which have 900 samples, without

overlapping. The vector n is the mean vector of each window above.

107

),...,,(21 pnnnn = and 900/kp =

900/
1900*)1(

900*










= ∑

−+

=

i

im
mi nn , pi ,...2,1= (Eq.6.9)

3. The slope vector is composed by computing the slopes between the values of

the vector n which follow one after another.

),...,,(
121 −

=
pEEEE nnnn and iiE nnn

i
/1+= , 1,...,2,1 −= pi (Eq.6.10)

4. Using the slope vector, we calculate the vector),...,,(121 −= paaaa which

has the values, +1 and -1. Namely, the increasing and decreasing positions are

determined.

For 1=k To 1−p

 if 0≥
kEn then 1=ka

 else 1−=ka

End

5. H is the number of syllables in the word.

0=H
 For 2=k To 1−p

 if 11 =−ka and 1−=ka then 1+= HH

End

6. The values of the middle indexes, which include the value -1 in the vector

,a are approximately the end-points of syllables. There are 1−H syllable

end-points. The syllable end-point vector),...,,(121 −= Hssss is calculated as

108

shown in the following. The values is are the indexes which are the values of

the vector .~x

For 1=k To 1−H

 if the middle index of the indexes, which have the k-th value -1 that

follows one after the other, is w then

 wSBsk *900+=

End

7. Until now, the beginning point SB and end point SS is detected. The vector

s represents the end-points of syllables. To find the syllable end-points more

accurately the following algorithm is performed, and the vector

)~,...,~,~(~
121 += Hssss is attained.

SBs =1
~

 and SSsH =+1
~

For 1=i To 1−H

 The windows with 20 samples between 500−is and 500+is are

constructed, and the mean values are computed for each windows.

 if the middle index of the window, which has the smallest mean, is q

 then

 qsi =+1
~

End

8. The vector s~ which represents the syllables end-points in the word sound

vector x~ is decided accurately. There are H syllables in the word. The

beginning index of k-th syllable is ks~ and the end index is .~
1+ks

6.3 Feature Extraction

After preprocessing the speech signal, we have the syllable end-points of the

word. The syllable utterences are framed with Hamming window as explained in

109

Subsection 2.5. The length of one frame is 20 ms with 10 ms shift (overlapping

time=10 ms). 10 features are computed from each frame. These features are lpc,

parcor, cepstrum, mfcc and rasta. The number of frames is not constant, but the

number of frames is normalized to 30 frames with the length of 10 as shown in

Figure 6.3. The normalized features are used only for the speech recognition methods

as ANN, HMM and SVM.)(ns is the syllable feature vector.),10(mx is the syllable

feature matrix. For normalized features, m is 30 as illustrated in Figure 6.3. In Figure

6.4, the time duration for each speech feature is shown , and the fastest speech

feature extraction algorithm among these features is mfcc.

Figure 6.3 Feature extraction.

110

3.16

5.74
5.35

4.16 4.24

6.26

0

1

2

3

4

5

6

7

Features

S
ec

on
ds

mfcc
lpc
parcor
cepstrum
rasta
mfcc+lpc+parcor

Figure 6.4 Feature extraction time duration.

6.4 Experiments with Linear Time Alignment

One of the speech recognition methods is linear time alignment. When the lengths

of two vectors are different, this method provides us to compare the vectors using a

distance metric according to their similarities.

Assume that x in Eq.6.11 is the digital speech signal which will be recognized,

and y is one of the digital speech signals in the template database which was

constructed from the syllable utterences of the dictionary before the recognition

operation. n and m are sample numbers in the speech vector. n and m are usually

different. To decide the similarity of these vectors we have used Euclidean distance

metric,),(yxd as shown in Eq.6.12. So, the best match speech signal of x can be

found using this metric. x and y are compared with each other after their lengths

are made same.

)(),...,2(),1(
)(),...,2(),1(

myyyy
nxxxx

=
=

 (Eq.6.11)

2
1

1

2)))(()((),(









−= ∑

=

n

r
rfyrxyxd (Eq.6.12)

111

nr
n

mnr
n
mroundrf ,...,2,1 ,

11
1)(=








−
−

+







−
−

= (Eq.6.13)

)(rf in Eq.6.13 is the function which makes same length for the given r values.

The results of)(rf are the positive integers between 1 and .m Figure 6.5 illustrates

the function).(rf

Figure 6.5 The function for linear time alignment.

112

Figure 6.6 The user interface of the speech recognition system.

Using linear time alignment, the system, which has the user interface as shown in

Figure 6.6, detects the recognized syllables of the word which have smallest

distances. After concatenation of the recognized syllables, the recognized word is

found by the system if the postprocessing is not carried out. Section 6.5 explains how

the postprocessing works.

6.4.1 Word Error Rate

The most widely used evaluation measure for speech recognition performance is

Word Error Rate (WER) (Hunt, 1990; McCowan et al., 2005). The general difficulty

of measuring the performance lies on the fact that the recognized word sequence can

have different length from the reference word sequence. The WER is derived from

the Levenshtein distance, working at word level instead of character.

113

This problem is solved by first aligning the recognized word sequence with the

reference sequence using dynamic string alignment. The word error rate can then be

computed as in Eq.6.14.







=

N
EWER 100 (Eq.6.14)

where E is the number of wrongly detected words, and N is the number of words in

the reference set.

Table 6.1 Experimental results of speech recognition using LTA (without postprocessing)

Speech Recognition

Experiments

(No Postprocessing)

FEATURES

MFCC LPC PARCOR CEPSTRUM RASTA
MFCC+LPC+

PARCOR

One Syllabic

Words (WER %)
20 48 20 47 18 26

Two Syllabic

Words (WER %)
22 54 40 75 27 37

Three Syllabic

Words (WER %)
5 39 15 52 5 11

Four Syllabic

Words (WER %)
6 42 21 64 6 16

Five Syllabic Words

(WER %)
8 47 21 56 8 14

Total Words (WER %) 12.2 46 23.4 58.8 12.8 20.8

After testing of the system using linear time alignment, we have the WER results

as shown in Table 6.1. The system is tested according to 6 different features. One of

them is the mixture of the features which consist of mfcc, lpc and parcor features (4

mfcc, 4 lpc and 4 parcor features are concatenated). In addition, the system is

evaluated according to n-syllabic words in the dictionary (n=1, 2, 3, 4, 5). The best

114

result for LTA is gained with the mfcc feature as given in Figure 6.7. It is followed

by rasta feature. Three syllabic words are the most successful words in the dictionary

to be detected correctly. We can compare the systems which use and does not use

postprocessing. Namely, the applications with the postprocessing, which are

described in Section 6.5, improve the system accuracy rate about 14% using linear

time alignment.

6.5 The Postprocessing of the System

After the syllables of the word utterence are recognized using the speech

recognition method, and the most similar 10 syllables are put in order, the recognized

syllables are concatenated and generated the recognized word. We can find the most

similar words in order by concatenation of the most similar syllables. From the

uppermost recognized words, it can be determined whether or not the word is

Turkish (see Chapter 5). If the word is Turkish, it is the recognized word of the

system. If these words are not Turkish, the system does not recognize any word.

For example, as shown in Table 6.2, the recognized syllables are ordered. Hence,

the most similar syllables as “kı”, “tap” and “lik” have been found. These syllables

are concatenated, and the most similar word as “kıtaplik” is constructed. But, the

system decides that the word is not Turkish word. Then, the next most similar word

is concatenated, and it is determined whether or not the word is Turkish. This process

is continued until a Turkish word is found in these concatenated words. In this

example, the word “kitaplık” which is generated from the syllables “ki”, “tap” and

“lık” is detected by the system. Therefore, it is the recognized word using the

postprocessing.

115

Table 6.2 The most similar syllables

The order of the most

similar syllables

Recognized Syllables

“ki” “tap” “lık”

1. kı tap lik

2. ki tap lak

3. ki tep lık

4. ki ta lik

5. kı ta lık

Table 6.3 Experimental results of speech recognition using LTA (with postprocessing)

Speech Recognition

Experiments

(Postprocessing)

FEATURES

MFCC LPC PARCOR CEPSTRUM RASTA
MFCC+LPC+

PARCOR

One Syllabic

Words (WER %)
20 48 20 47 18 26

Two Syllabic

Words (WER %)
19 32 20 49 12 17

Three Syllabic

Words (WER %)
1 14 5 18 4 2

Four Syllabic

Words (WER %)
2 11 6 31 6 5

Five Syllabic Words

(WER %)
2 16 6 23 6 4

Total Words (WER %) 8.8 24.2 11.4 33.6 9.2 10.8

Table 6.3 displays the WER of the system with the features for LTA.

Postprocessing is used in these applications. It can be seen that WER decreases

when the number of syllables in the word utterence ascends. Note that we can not

apply postprocessing operation for one syllabic words.

116

8.8

24.2

11.4

33.6

9.2 10.812.2

46.0

23.4

58.8

12.8

20.8

0

10

20

30

40

50

60

70

mfcc lpc

pa
rco

r

ce
ps

tru
m

ras
ta

mfcc
+lp

c+
pa

rco
r

W
ER

 (
%

)

Posrprocessing (NO)

Postprocessing (YES)

Figure 6.7 WER results of system using LTA.

6.5.1 Postprocessing Algorithm For Three Syllabic Word

The following algorithm is a function which takes the recognized syllables as

inputs and which gives the recognized word as an output. The algorithm is explained

for only three syllabic words.

If the word utterence is three syllabic word then

Assume that st1, st2 and st3 are the matrix variables (column
matrices) for the first, second and third recognized syllables of
the word utterence respectively.
Depth=10
TotalDepth=3*Depth+1
MaxDepth= TotalDepth
For i=1 To Depth
 If MaxDepth < i+1+1, break end
 For j=1 To Depth
 If MaxDepth < i+j+1, break end
 For m=1 To Depth
 if MaxDepth maxder < i+j+m, break end

117

 kelime: st1{i}, st2{j} and st3{m} are concatenated, and
 the word is assigned to the variable kelime
 if kelime is Turkish word then
 TurkishWord{i+j+m}= kelime;
 MaxDepth =i+j+m;
 end
 end
 end
 end
 if MaxDepth < TotalDepth
 return TurkishWord {maxder};
 else
 return 'No-recognition';
 end
end

6.6 Experiments with Dynamic Time Warping

DTW is based on the principle of matching a speech signal converted into a

feature matrix against a set of reference templates. The templates are simply feature

matrix examples of each syllable of a word in the vocabulary of the system.

Consequently, DTW is normally used for recognition of isolated words. The

similarity between a template and the unknown speech is assumed to be inversely

proportional to the minimum cost alignment. This is normally evaluated by

calculating a local distance between each input features and all feature matrices of

the reference template. Calculating the minimum cost alignment is then a matter of

finding the optimal path from the bottom left-hand to the top right-hand corner of the

matrix. Namely, the path that accumulates the lowest sum of local distances and does

not stray too far away from the diagonal. The standard asymmetric dynamic

programming decision rule adds a penalty for both horizontal and vertical deviances

from the diagonal.

118

6.6.1 DTW Algorithm

The following algorithm takes two speech feature matrices as inputs to calculate

the distance of them. The output of this algorithm is the distance of these features.

These two matrices consist of n and m frames respectively. Each frame has ten

speech features.

DTW_Distance (s[1..10,1..n], t[1..10,1..m], d[1..n,1..m])
 Define a matrix variable as DTW[0..n,0..m]
 Define variables as i, j, cost
 For i=1 To m
 DTW[0,i] = infinity
 end
 For i=1 To n
 DTW[i,0] = infinity
 end
 DTW[0,0] = 0
 For i=1 To n
 For j=1 To m
 cost = distance(s[1..10,i],t[1..10,j])
 DTW[i,j] = cost + minimum(DTW[i-1, j],
 DTW[i , j-1],
 DTW[i-1, j-1])
 end
 end
 return DTW[n,m]

In Table 6.4 and Table 6.5, the WER results are given for dynamic time warping.

If we evaluate the system, we can say that the best result for DTW is obtained with

the mfcc feature. It is followed by rasta feature. Three syllabic words are the most

successful words in the dictionary to be detected correctly. The system accuracy rate

as displayed in Figure 6.8 is increased with postprocessing operation about 9% using

DTW.

119

Table 6.4 Experimental results of speech recognition using DTW (without postprocessing)

Speech Recognition

Experiments

(No Postprocessing)

FEATURES

MFCC LPC PARCOR RASTA
MFCC+LPC+

PARCOR

One Syllabic

Words (WER %)
15 24 22 18 18

Two Syllabic

Words (WER %)
21 48 44 27 25

Three Syllabic

Words (WER %)
4 18 16 12 15

Four Syllabic

Words (WER %)
6 26 21 18 17

Five Syllabic Words

(WER %)
6 23 21 17 16

Total Words (WER %) 10.4 27.8 24.8 18.4 18.2

Table 6.5 Experimental results of speech recognition using DTW (with postprocessing)

Speech Recognition

Experiments

(Postprocessing)

FEATURES

MFCC LPC PARCOR RASTA MFCC+LPC+PARCOR

One Syllabic

Words (WER %)
15 24 22 18 19

Two Syllabic

Words (WER %)
12 28 24 12 14

Three Syllabic

Words (WER %)
0 9 5 4 6

Four Syllabic

Words (WER %)
0 13 7 6 7

Five Syllabic Words

(WER %)
2 12 6 6 8

Total Words (WER %) 5.8 17.2 12.8 9.2 10.8

120

5.8

17.2

12.8
9.2

10.810.4

27.8
24.8

18.4 18.2

0
5

10
15
20
25
30
35
40

mfcc lpc

pa
rco

r
ra

sta

mfcc
+lp

c+
pa

rco
r

W
ER

 (%
)

Postprocessing
(YES)

Postprocessing
(NO)

Figure 6.8 WER results of system using DTW.

6.7 Experiments with Artificial Neural Networks

A Neural Network (NN) is a computer software that simulates a simple model of

neural cells in humans. The purpose of this simulation is to acquire the intelligent

features of these cells.

Backpropagation networks are a popular type of network that can be trained to

recognize different patterns including images, signal, and text. We have used

backpropagation networks for our speech recognition system.

6.7.1 Sigmoid Function

The function as Eq.6.15 is called a Sigmoid function. The coefficient a is a real

number constant. In NN applications, a is usually chosen between 0.5 and 2. As a

starting point, we can use a=1 and modify it later when we are fine-tuning the

network. Note that s(0) = 0.5, s(∞) = 1, s(-∞) = 0 (The symbol ∞ means infinity).

121

)1(
1)(

axe
xs

−+
= (Eq.6.15)

The sigmoid function will convert values less than 0.5 to 0, and values greater

than 0.5 to 1. The Sigmoid function is used on the output of neurons.

6.7.2 Neuron

In NNs, a neuron is a model of a neural cell in humans. This model is simplistic,

but as it turned out, is very practical. The neuron has been thought as a program or a

class that has one or more inputs and produces one output. The inputs simulate the

signals that a neuron gets, while the output simulates the signal which the neuron

generates. The output is calculated by multiplying each input by a different number

which is called weight, adding them all together, then scaling the total to a number

between 0 and 1.

Figure 6.9 shows a simple neuron with:

1. Three inputs],...,,,[300321 xxxx . The input values are usually scaled to

values between 0 and 1.

2. 300 input weights],...,,,[300321 wwww . The weights are real numbers that

usually are initialized to some random numbers. The weights are variables of

type real. We can initialize to a random number between 0 and 1.

3. One output z. A neuron has only one output. Its value is between 0 and 1, it

can be scaled to the full range of actual values.

122

Figure 6.9 One neuron structure.

)*(...)*()*()*(300300332211 wxwxwxwxd ++++= (Eq.6.16)

In a more general manner, for n number of inputs, d is defined as Eq.6.17.

∑
=

=
n

i
ii wxd

1
* (Eq.6.17)

Let θ be a real number which is known as a threshold. Experiments have shown

that best values for θ are between 0.25 and 1. θ is just a variable of type real that is

initialized to any number between 0.25 and 1.

)(θ+= dsz (Eq.6.18)

In Eq.6.18, the output z is the result of applying the sigmoid function on).(θ+d

In NN applications, the challenge is to find the right values for the weights and the

threshold.

123

6.7.3 Backpropagation

The structure of our system is shown in Figure 6.10. This NN consists of four

layers: Input layer with 300 neurons, first hidden layer with 30 neurons, second

hidden layer with 10 neurons and output layer with one neuron.

Figure 6.10 Backpropagation network of our system.

The output of a neuron in a layer goes to all neurons in the following layer. Each

neuron has its own input weights. The weights for the input layer are assumed to be 1

for each input. In other words, input values are not changed. The output of the NN is

reached by applying input values to the input layer, passing the output of each neuron

to the following layer as input. The Backpropagation NN must have at least an input

layer and an output layer. It could have zero or more hidden layers.

The number of neurons in the input layer depends on the number of possible

inputs we have, while the number of neurons in the output layer depends on the

number of desired outputs. In general, the addition of a hidden layer could allow the

network to learn more complex patterns, but at the same time decreases its

performance.

124

6.7.3.1 Supervised Learning

The Backpropagation NN works supervised training. The training can be

summarized as the following algorithm.

1. Start by initializing the input weights for all neurons to some random

numbers between 0 and 1.

2. Apply input to the network.

3. Calculate the output.

4. Compare the resulting output with the desired output for the given input.

This is called the error.

5. Modify the weights and threshold θ for all neurons using the error.

6. Repeat the process until the error reaches an acceptable value (the error,

0.006), which means that the NN was trained successfully, or if we reach a

maximum count of iterations, which means that the NN training was not

successful.

The challenge is to find a good algorithm for updating the weights and thresholds

in each iteration (step 5) to minimize the error.

Changing weights and threshold for neurons in the output layer is different from

hidden layers. For the input layer, weights remain constant at 1 for each input neuron

weight.

For the training operation, we define the following:

1. The Learning Rate, λ : A real number constant, 0.02 for our system.

2. The change, ∆ : For example x∆ is the change in x.

125

6.7.3.2 Output Layer Training

Let z be the output of an output layer neuron. Let y be the desired output for the

same neuron, it should be scaled to a value between 0 and 1. This is the ideal output

which we like to get when applying a given set of input. Then the error, e, will be as

Eq.6.19.

)(*)1(* zyzze −−= (Eq.6.19)

e*λ=θ∆ (Eq.6.20)

ii xw *θ∆=∆ (Eq.6.21)

θ∆ represents the change in θ . iw∆ is the change in weight i of the neuron. In

other words, for each output neuron, calculate its error e, and then modify its

threshold and weights using Eq.6.19, Eq.6.20 and Eq.6.21.

6.7.3.3 Hidden Layer Training

Consider a hidden layer neuron as shown in Figure 6.11. Let z be the output of

the hidden layer neuron. Let im be the weight at neuron iN in the layer following

the current layer. This is the weight for the input coming from the current hidden

layer neuron. Let ie be the error e at neuron iN . Let r be the number of neurons in

the layer following the current layer. (In Figure 6.11, 3=r).

126

Figure 6.11 Hidden layer training.

∑
=

=
r

i
ii emg

1
* (Eq.6.22)

gzze *)1(* −= (Eq.6.23)

e*λ=θ∆ (Eq.6.24)

ii xw *θ∆=∆ (Eq.6.25)

e is the error at the hidden layer neuron. θ∆ is the change in .θ iw∆ is the

change in weight i. In calculating g , we used the weight im and error ie from the

following layer, which means that the error and weights in this following layer

should have already been calculated. This implies that during a training iteration of a

Backpropagation NN, we start modifying the weights at the output layer, and then we

127

proceed backwards on the hidden layers one by one until we reach the input layer. It

is the method of proceeding backwards which gives this network its name Backward

Propagation.

Table 6.6 Experimental results of speech recognition using ANN (without postprocessing)

Speech Recognition

Experiments

(No Postprocessing)

FEATURES

MFCC LPC PARCOR RASTA
MFCC+LPC+

PARCOR

One Syllabic

Words (WER %)
20 42 29 27 27

Two Syllabic

Words (WER %)
33 51 29 37 44

Three Syllabic

Words (WER %)
16 35 20 29 26

Four Syllabic

Words (WER %)
18 39 31 33 26

Five Syllabic Words

(WER %)
18 40 27 29 30

Total Words (WER %) 21 41.4 27.2 31 30.6

12

21
15 16.2 14.8

21

41.4

27.2
31 30.6

0

10

20

30

40

50

60

mfcc lpc

parco
r

rasta

mfcc
+lpc+

parco
r

W
ER

 (%
) Postprocessing

(YES)

Postprocessing
(NO)

Figure 6.12 WER results of system using ANN.

128

Table 6.7 Experimental results of speech recognition using ANN (with postprocessing)

Speech Recognition

Experiments

(Postprocessing)

FEATURES

MFCC LPC PARCOR RASTA
MFCC+LPC+

PARCOR

One Syllabic

Words (WER %)
20 42 29 27 27

Two Syllabic

Words (WER %)
18 32 27 25 24

Three Syllabic

Words (WER %)
6 12 6 9 7

Four Syllabic

Words (WER %)
8 10 8 13 9

Five Syllabic Words

(WER %)
8 9 5 7 7

Total Words (WER %) 12 21 15 16.2 14.8

In Table 6.6 and Table 6.7, the WER results are given for artificial neural

network. If we evaluate the system, we can say that the best result for ANN is

obtained with the mfcc feature. Three syllabic words are the most successful words

in the dictionary to be detected correctly. The system accuracy rate as shown in

Figure 6.12 is increased with postprocessing operation about 15% using ANN.

6.8 Experiments with Hidden Markov Models

In acoustic modeling part of the speech recognition system, we have modeled

each syllable of the word in the dictionary from the syllable features. How we

constructed HMM models is explained by the following subsections.

129

6.8.1 Constructing Hidden Markov Models

Calculating the parameters of hidden markov model),,(π=λ BA is one of the

hardest problem in HMM. A , B and π parameters are calculated to satisfy an

optimization criterion. Our optimization criterion is based on maximizing),(λOP

where O represents the training observations. In order to do that the Baum-Welch

method also known as expectation-maximization (EM) (Rabiner & Juang, 1993)

method is used. Before going any further, the form of the observation symbol

probability distribution)},({ kbB j= needs to be made explicit. One can characterize

observations as discrete symbols chosen from a finite alphabet and use a discrete

probability density within each state of the model. On the other hand, feature

parameters extracted from the speech signals can take continuous values. Therefore

continuous observation densities are used to model feature parameters directly.

The output distributions are represented by Gaussian Mixture Densities as shown

in Eq.6.26.

NjUoNcob jkjkt

M

k
jktj ≤≤µ= ∑

=
1),,,()(

1
 (Eq.6.26)

where to is the observation vector being modeled, M is the number of mixture

values used for each state (we used three mixture values (1=M) for each state),

N represents a Gaussian probability density function (pdf), and jkc is the mixture

coefficients for the thk mixture in state j as Eq.6.27.

∑
=

≥=
M

k
jkjk cc

1
0 ,1

Mk
Nj

≤≤
≤≤

1
,1
 (Eq.6.27)

The Gaussian pdf N has a mean vector jkµ and covariance matrix jkU for the

thk mixture component in state j as Eq.6.28.

130

)()(
2
1 1

)2(

1),,(
jktjkjkt oUo

jk
njkjkt e

U
UoN

µ−′µ−− −

π
=µ (Eq.6.28)

where n is the dimensionality of the observation vector to . On our case n is 10

feature parameters are extracted from each frame of the speech signal. Suppose that

an HMM model contains just one state j and one mixture value k is used for this

state. Then the parameter estimation would be easy. The maximum likelihood

estimation of jkµ and jkU would be simple averages as follows:

∑

∑

=

=

′µ−µ−=

=µ

T

t
jktjktjk

T

t
tjk

oo
T

U

o
T

1

1

))((1ˆ

1ˆ

 (Eq.6.29)

where T is the number of observations. In practice, HMM models contain more than

one state; each of which has more than one mixture component. Also, for a given

model and observation sequence, there are no direct assignments of observation

vectors to the individual states, as the underlying state sequence is not known. But

Eq.6.28 and Eq.6.29 can be used if some approximate assignments of observation

vectors to the states could be done.

Now we define the variable),(jitξ (Rabiner & Juang, 1993) to help us the

parameter estimation algorithm. The variable),(jitξ is the probability of being in

state i at time t , and state j at time 1+t , given the model λ and observation

sequence O as shown in Eq.6.30.

),|,(),(1 λ===ξ + OjqiqPji ttt (Eq.6.30)

131

The variable),(jitξ can be rewritten by using the definitions of the forward and

backward variables as Eq.6.31.

∑∑
= =

++

++

++

+

βα

βα
=

λ

βα
=

λ
λ==

=ξ

N

i

N

j
ttjijt

ttjijt

ttjijt

tt
t

jobai

jobai
OP

jobai
OP

OjqiqPji

1 1
11

11

11

1

)()()(

)()()(

)|(
)()()(

)|(
)|,,(),(

 (Eq.6.31)

A posteriori variable)(itγ is defined for making the parameter estimation

algorithm tractable as Eq.6.32.

),|()(λ==γ OiqPi tt (Eq.6.32)

That is, as the probability of being in state i at time t , given the observation

sequence O , and the model λ . Then we can express)(itγ as Eq.6.33.

∑
=

λ=

λ=
=

λ
λ=

=

λ==γ

N

i
t

t

t

tt

iqOP

iqOP
OP

iqOP
OiqPi

1
)|,(

)|,(

)|(
)|,(

),|()(

 (Eq.6.33)

Eq.6.33 can be rewritten by the aid of forward and backward variables as Eq.6.34.

∑
=

βα

βα
=γ N

i
tt

tt
t

ii

iii

1
)()(

)()(
)((Eq.6.34)

132

We can relate)(itγ to),(jitξ by summing over j as Eq.6.34.

∑
=

ξ=γ
N

j
tt jii

1
),()((Eq.6.35)

The summation of)(itγ over the time index t can be interpreted as the expected

number of times that state i is visited. Similarly, summation of),(jitξ over t can be

interpreted number of transitions from state i to j as Eq.6.36 and Eq.6.37.

∑
−

=
=γ

1

1
 state from ns transitioofnumber expected)(

T

t
t ii (Eq.6.36)

jiji
T

t
t to state from ns transitioofnumber expected),(

1

1
∑

−

=
=ξ (Eq.6.37)

If the current model is defined as),,(π=λ BA then a set of reasonable

reestimation formulas for the parameters of the model can be defined as in Eq.6.38,

Eq.6.39 and Eq.6.40.

1 at time statein timesofnumber expected ==π tij (Eq.6.38)

∑

∑

=

=

γ

ξ

=

=

T

t
t

T

t
t

ij

i

ji

i
jia

1

1

)(

),(

 state from ns transitioofnumber expected
 to state from ns transitioofnumber expected

 (Eq.6.39)

∑
=

≤≤µ=
M

k
jkjktjktj NjUoNcob

1
1),,,()((Eq.6.40)

133

In Eq.6.40, the equations for the reestimation of the coefficients jkjkc µ, and

jkU are given as Eq.6.41, Eq.42 and Eq.6.43.

∑∑

∑

= =

=

γ

γ

= T

t

M

k
t

T

t
t

jk

kj

kj
c

1 1

1

),(

),(
 (Eq.6.41)

∑

∑

=

=

γ

γ

=µ T

t
t

T

t
tt

jk

kj

okj

1

1

),(

),(
 (Eq.6.42)

∑

∑

=

=

γ

′µ−µ−γ

= T

t
t

T

t
jktjktt

jk

kj

ookj
U

1

1

),(

))()(,(
 (Eq.6.43)

where),(kjtγ is the probability of being in state j at time t with the thk mixture

component accounting for to as Eq.6.44.





















µ

µ





















βα

βα
=γ

∑∑
==

M

m
jmjmtjm

jkjktjk
N

j
tt

tt
t

UoNc

UoNc

jj

jj
kj

11
),,(

),,(

)()(

)()(
),((Eq.6.44)

At the end of these computation, a reestimated model),,(π=λ BA is obtained

and either λ=λ , that is)|()|(λ=λ OPOP , or model λ is more likely than λ , that

is,)|()|(λ>λ OPOP (Rabiner, 1989).

134

In this way, we can iteratively use λ in place of λ and repeat the reestimation

calculations to improve the probability of O being observed from the model until

some limiting point is reached.

In this thesis, Turkish syllables are used as the smallest unit for speech

recognition. Each syllable is represented by a three state left to right HMM model.

6.8.2 Training and Recognition with HMM

After a spoken word is divided into syllable sequences, each syllable can be

represented with a sequence of observation vectors O , defined as ToooO ,...,, 21=

where to is the tht observation vector and T is the number of observation vectors

for single syllable utterence. Then the syllable recognition can be defined as Eq.6.45.

)|(maxarg* OsPs i
i

= (Eq.6.45)

where is is the thi syllable in the dictionary and *s is the desired syllable. By using

Bayes’ rule,)|(OsP i can be expressed as Eq.6.46.

)(
)()|(

)|(
OP

sPsOP
OsP ii

i = (Eq.6.46)

Prior probabilities)(isP are taken to be equal to each other for all is in this

thesis. Therefore the most probable syllable depends only on the likelihood

)|(isOP . It is not feasible for a given observation sequence O , to directly estimate

the joint probability)|,...,,(21 iT soooP for each syllable is as discussed previous

section. For HMM models,)|(isOP is replaced by estimating the HMM model

parameters of the syllable is

135

Syllables are used as the smallest unit for training and recognition of the syllables.

The training of these models and their usages in recognition phase will be introduced

next subsection. First, the spoken word is divided into syllables. The features of

syllable utterences are extracted and observation feature vectors ToooO ,...,, 21= are

calculated. The trained HMM models of syllables are used to construct the HMM

model of a syllable s supplied by the dictionary. The Viterbi algorithm is then

applied to the HMM model with the feature vectors to get the probability)|(Osp .

Then, the recognized syllables are concatenated by each other in order. After that, the

recognized word is decided using postprocessing operation.

6.8.3 The Training Process of HMM

There are several training algorithms for HMM which were introduced in some

studies (Furui, 1980; Kenny, Lenning & Mermelstein, 1990; Nadas, Nahammoo &

Picheny, 1988; Pepper, Barnwell & Clements, 1980). The training algorithm with

four steps is as the followings:

1. Construct the HMM model topology of the syllable.

2. Guess initial set of model parameters for the HMM model.

3. Improve the HMM model.

4. Save the individual HMM models for each syllable in the word

separately.

In that way, the syllables in the spoken word can be recognized. For instance,

once the word “kitap” is trained, we have two HMM models for syllables /ki/ and

/tap/. In the recognition stage, we can use the models for syllables.

In the algorithm above and throughout this subsection, it is assumed that an HMM

model is trained by using twenty five utterence of a word. The use of multiple

observation sequence adds no additional complexity to the algorithm above. Step 3 is

simply repeated for each distinct training sequence. In this thesis, 200 words have

been trained with their syllables.

136

For the rest of this subsection, assume that a training word has T frames in the

speech signal, N_S syllables, N states and the HMM model).,,(π=λ BA

6.8.4 Initial Guess of the HMM Model Parameters

Training algorithms always start with an initial guess. This section introduces the

strategy to guess initial parameters for the HMM model),,(π=λ BA . The training

syllables of the word may already have been trained. If that is the case, these trained

models are used as the initial guess, otherwise, the model parameters ,A B and π

are initially guessed as follows:

Initial guess of the state transition probability distribution, ,A is given in Figure

6.13.

Figure 6.13 Initial estimate of the state transition probability distribution, A .

The transition goes from the rightmost state to itself because there is no other state

on the left. Since the sum of the outgoing transition probabilities for a state must be

1, the probability of taking this transition is 1.

For initial guess of the observation symbol probability distribution, B , some

approximate assignments of observation vectors to the individual states must be

done. In this thesis, feature vectors extracted from the speech signal are distributed

on the states of an HMM uniformly.

137

After assigning the feature vectors on syllables, we distribute feature vectors for a

syllable over its three states such that , first one fifth of the feature vectors are

assigned to the first state, next three fifths are assigned to the second state, and the

last one fifth are assigned to the third state. Although this distribution is static, later

in the improvement of HMM models, the Viterbi algorithm is used to modify this

static distribution of the feature vectors on the states. Figure 6.14 shows the

distribution of feature vectors on the states.

Figure 6.14 Distribution of feature vectors on the states.

In this thesis, continuous observation densities with three mixture values)3(=M

for each state are used. K-means clustering algorithm (Juang & Rabiner, 1990) is

used to cluster the feature vectors within each state j into a set of M clusters (using

an Euclidean distance measure), where each cluster represents one of the M

mixtures of the)(tj ob . These mixture values are used with the gives observation

sequence O and the Eq.6.26 to compute the observation symbol probability

distribution, B , for each state.

For initial state distribution, π , since the HMM model for a syllable has only one

starting state. So, we have 1=πi and 0=πi for all i where .,...,3,2 Ni =

138

At the end of these computations, we have the initial HMM model),,(π=λ BA

for the training syllable.

6.8.5 Improving the HMM Model

Improvement of the model),,(π=λ BA means that the parameters of the model

have to be reestimated to get an improved model),,(π=λ BA . There are three main

steps in the improvement of a HMM as shown in Figure 6.13.

First, we find the optimum state sequence for the given model),,(π=λ BA and

given observation sequence O by using Viterbi algorithm. Optimum state sequence

determines which state emits which frames. Therefore, we can consider the Viterbi

algorithm as an another way of distributing feature vectors on the states of an HMM

model such that)|(λOP is maximized.

Second, for each state, K-Means clustering algorithm is used to reestimate the

clusters of its feature vectors according to the number of mixture used. The clusters

may change since we change the distribution of the feature vectors on the states in

the first step.

Finally, the equations between Eq.6.39 and Eq.6.44 are used to reestimate the

parameters of the model),,(π=λ BA to get the new improved model),,(π=λ BA .

Note that the parameter π did not change because the new model should have also

one start state.

If the iteratively use λ in place of λ and repeat the procedure, the probability of

O being observed from the HMM model is improved until some limiting point is

reached.

139

Viterbi algorithm is used to get better distribution of feature vectors on the states.

After the better distribution, K-Means clustering algorithm is used to get better

estimation of clusters for each of the model. Better clustering for each state means

better estimation of the observation symbol probability distribution, ,B and better

estimate of the state transition probability distribution, .A

Figure 6.15 The improvement algorithm for a HMM model.

6.8.6 Recognition Process

In order to apply the Viterbi algorithm in the recognition stage, the observation

symbol probability distribution)}({ kbB j= must be computed. The computation of

B is on the order of)..(MNTO where T is the number of observation sequence, N

is the number of states in the HMM model, and M is the number of mixture values

used for each state.

140

In the training stage, after the creation of each syllable model, a space of mixture

values is created by using the three mixture values of each state in every model. The

space is 10-dimensional because we have 10-dimensional feature vectors. Later, this

space is divided into C classes by the aid of the K-Means clustering algorithm. In

this clustering, the similarity criterion is Euclidean distance in 10-dimensional space.

In the recognition stage, each observation vector is assigned to one of the clusters

in the codebook by the help of the K-Means clustering algorithm.)(kjs κ is the value

of the probability density function of emitting an observation vector at state j which

is assigned to the cluster kκ (thk cluster) and it is defined in as Eq.6.47.

 ,),,()(
1

∑
=

µκ=κ
M

m
jmjmkjmkj UNcs

Ck
Nj

≤≤
≤≤

1
1

 (Eq.6.47)

where jmc is the mixture coefficient for the thm mixture in state j . N represents

the Gaussian pdf with mean jmµ and covariance matrix jmU given in Eq.6.28. The

computation of)(kjs κ is performed at the training stage and it is inserted into the

model of each syllable. Suppose that)(tod stores the cluster number which the

observation vector to is assigned that is Cod t ≤≤)(1 . Then, the computation of the

observation symbol probability distribution, B , is just a table look-up process as

expressed in Eq.6.48.

))(()(tjtj odsob =
Tt
Nj

≤≤
≤≤

1
,1
 (Eq.6.48)

Using Viterbi algorithm, the syllables in the word utterence are recognized and so

by adding the syllables in order, the recognized word is found.

141

Table 6.8 Experimental results of speech recognition using HMM (without postprocessing)

Speech Recognition

Experiments

(No Postprocessing)

FEATURES

MFCC LPC PARCOR RASTA
MFCC+LPC+

PARCOR

One Syllabic

Words (WER %)
14 20 18 15 22

Two Syllabic

Words (WER %)
37 55 42 42 54

Three Syllabic

Words (WER %)
23 29 26 48 39

Four Syllabic

Words (WER %)
51 55 53 52 54

Five Syllabic Words

(WER %)
48 57 48 53 52

Total Words (WER %) 34.6 43.2 37.4 42 44.2

17.4
22.2

18.4
23.4 23.8

34.6

43.2
37.4

42 44.2

0

10

20

30

40

50

60

mfcc lpc

parco
r

rasta

mfcc
+lpc+

parco
r

W
ER

 (%
) Postprocessing

(YES)

Postprocessing
(NO)

Figure 6.16 WER results of system using HMM.

142

Table 6.9 Experimental results of speech recognition using HMM (with postprocessing)

Speech Recognition

Experiments

(Postprocessing)

FEATURES

MFCC LPC PARCOR RASTA
MFCC+LPC+

PARCOR

One Syllabic

Words (WER %)
14 20 18 15 22

Two Syllabic

Words (WER %)
21 27 20 28 30

Three Syllabic

Words (WER %)
7 6 7 15 11

Four Syllabic

Words (WER %)
22 27 23 32 28

Five Syllabic Words

(WER %)
23 31 24 27 28

Total Words (WER %) 17.4 22.2 18.4 23.4 23.8

In Table 6.8 and Table 6.9, the WER results are given for hidden markov model.

If we evaluate the system, we can say that the best result for HMM is obtained with

the mfcc feature. It is followed by parcor feature. Three syllabic words are the most

successful words in the dictionary to be detected correctly. The system accuracy rate

as shown in Figure 6.16 is increased with postprocessing operation about 19% using

HMM.

6.9 Experiments with Support Vector Machines (SVM)

SVM is a technique of obtaining the optimal boundary of two sets in a vector

space independently on the probabilistic distributions of training vectors in the sets.

Its fundamental idea is quite simple; locating the boundary that is most distant from

the vectors nearest to the boundary in both of the sets. This idea is a traditional one,

however, recently has attracted much attention again. This is because of the

143

introduction of kernel method, which is equivalent to a transformation of the vector

space for locating a nonlinear boundary.

6.9.1 Basic Support Vector Machine

At first, we assume a linearly separable problem, as shown in Figure 6.17. Our

aim is finding the optimal boundary hyperplane which exactly separates one set from

the other. Note that our “optimal” boundary hyperplane should classify not only the

training vectors, but also unknown vectors in each set. In the first session of this

topic, the classification method by estimating probabilistic distributions of the

vectors was explained. However, an accurate estimation is difficult since the

dimension of vectors is often much higher than the number of training vectors. It was

referred as “curse of dimensionality”.

Figure 6.17 Optimal boundary with SVM.

In this approach, the “optimal” boundary is defined as the most distant hyperplane

from both sets. In other words, this boundary passes the midpoint between these sets.

144

Although the distribution of each set is unknown, this boundary is expected to be the

optimal classification of the sets, since this boundary is the most isolated one from

both of the sets. The training vectors closest to the boundary are called support

vectors.

Such boundary is defined to be passing through the midpoint of the shortest line

segment between the convex hulls of the sets and is orthogonal to the line segment.

Let x be a vector in a vector space. A boundary hyperplane is expressed as one of

the hyperplanes

0=+ bxwT (Eq.6.49)

where w is a weight coefficient vector and b is a bias term. The distance between a

training vector ix and the boundary, called “margin”, is expressed as follows:

w

bxw i
T +

 (Eq.6.50)

Since the hyperplanes expressed by Eq.6.49 where w and b are multiplied by a

common constant are identical, we introduce a restriction to this expression, as

follows:

1min =+
i

i
T bxw (Eq.6.51)

www T
11

2 = (Eq.6.52)

145

The optimal boundary maximizes the minimum of Eq.6.50. By the restriction of

Eq.6.51, this is reduced to maximization of Eq.6.52. Consequently, the optimization

is formalized as Eq.6.53.

1)(subject to

 minimize

≥+ bxwy

ww

i
T

i

T
 (Eq.6.53)

where iy is 1 if ix belongs to one set and –1 if ix belongs to the other set. If the

boundary classifies the vectors correctly as Eq.6.54 and it is identical to the margin.

0)(≥+ bxwy i
T

i (Eq.6.54)

Figure 6.18 Linearly nonseparable case.

146

This conditional optimization is achieved by Lagrange’s method of indeterminate

coefficient. Let us define a function as Eq.6.55.

[]∑ −+α−=α
i

i
T

ii
T

i bxwywwbwL 1)(
2
1),,((Eq.6.55)

where 0≥α i are the indeterminate coefficients. If w and b take the optimal value,

the partial derivatives as Eq.6.56 are zero.

∑

∑

α−=
∂
∂

α−=
∂
∂

i
ii

i
iii

y
b
L

xyw
w
L

 (Eq.6.56)

Setting the derivatives of Eq.6.56 to zero, we get Eq.6.57 and Eq.6.58.

∑α=
i

iii xyw (Eq.6.57)

∑ =α
i

ii y 0 (Eq.6.58)

Rewriting Eq.6.55, we get Eq.6.59.

∑ ∑ ∑α+α−α−=α
i i i

iiii
T

ii
T

i ybxwywwbwL
2
1),,((Eq.6.59)

Substituting Eq.6.57 and Eq.6.58 to Eq.6.59, we get Eq.6.60.

147

∑ ∑∑

∑∑∑

∑∑

α+αα−=

α+













αα−














α










α=α

i i
i

j
j

T
ijiji

i
ii

T

j
jjj

i
ii

j
jjj

T

i
iiii

xxyy

xxyy

xyxybwL

2
1

2
1),,(

 (Eq.6.60)

The contribution of the second term of Eq.6.55 should be minimum, and L

should be maximized subject to α . Consequently, the optimization is reduced to a

quadratic programming problem as Eq.6.61.

0 ,0 subject to

2
1 maximize

i
i ≥α=α

α+αα−

∑

∑∑∑

ii

i
i

i
j

T
ij

j
iji

y

xxyy
 (Eq.6.61)

The above discussion is applicable to the case of linearly separable sets only. If

the sets are not linearly separable, a hyperplane exactly classifying the sets does not

exist, as explained in the previous subsection.

The method called “soft margin” is a solution to such case. This method replaces

the restriction in Eq.6.53 with Eq.6.62.

ii
T

i bxwy ξ−≥+ 1)(subject to (Eq.6.62.)

where iξ called slack variables, are positive variables that indicate tolerances of

misclassification. This replacement indicates that a training vector is allowed to exist

in a limited region in the erroneous side along the boundary, as shown in Figure 6.18.

Several optimization functions are proposed for this case.

∑ξ+
i

i
T Cww minimize (Eq.6.63)

148

The second term of Eq.6.63 is a penalty term for misclassification, and the

constant C determines the degree of contribution of the second term.

6.9.2 Kernel Method

The soft margin method is an extension of the support vector machine within the

linear framework. The kernel method explained here is a method of finding truly

nonlinear boundaries.

The fundamental concept of kernel method is a deformation of the vector space

itself to a higher dimensional space. We consider the linearly nonseparable example

presented in the previous subsection, as shown in Figure 6.19. If the two-dimensional

space is transformed to the three-dimensional one as shown in Figure 6.20, “black”

vectors and “white” vectors are linearly separable.

Let Φ be a transformation to a higher dimensional space. The transformed space

should satisfy that the distance is defined in the transformed space and the distance

has a relationship to the distance in the original space. The kernel function),(xxK ′

is introduced for satisfying the above conditions. The kernel function satisfies

Eq.6.64.

)()(),(xxxxK T ′ΦΦ=′ (Eq.6.64)

149

Figure 6.19 Transformation to higher dimensional space (not separable by linearly)

Figure 6.20 Transformation to higher dimensional space (linearly separable).

Eq.6.65 indicates that the kernel function is equivalent to the distance between x

and x′ measured in the higher dimensional space transformed by .Φ If we measure

the margin by the kernel function and perform the optimization, a nonlinear

boundary is obtained. Note that the boundary in the transformed space is obtained as

Eq.6.65.

150

0)(=+Φ bxwT (Eq.6.65)

Substituting Eq.6.57 into the above equation with replacing x with Φ(x), we get

Eq.6.66.

0),()()(=+α=+ΦΦα ∑∑ bxxKybxxy
i

iii
i

T
iii (Eq.6.66)

The optimization function of Eq.6.61 in the transformed space is also obtained by

substituting j
T
i xx with).,(ji xxK These results mean that all the calculation can be

achieved by using),(ji xxK only, and we do not need to know what Φ or the

transformed space actually is.

A sufficient condition for satisfying Eq.6.64 is that K is positive definite. One

example of such kernel functions is known as Eq.6.67 (Gaussian Kernel or Radial

Basis Function Kernel, RBF).

)exp(),(2

2

σ

′−
−=′

xx
xxK (Eq.6.67)

The term empirical risk means the misclassification rate for known training

vectors. It is not what we want to minimize; Our objective is minimizing the

misclassification rate for all vectors in each set, including unknown vectors. This

misclassification rate is called expected risk.

In case of linearly separable problems, there exists a boundary hyperplane that

makes the empirical risk zero. The concept of support vector machine to find the

boundary with the largest margin is equivalent to selecting a hyperplane minimizing

the expected risk, from the set of hyperplanes that makes the empirical risk zero.

This is formally explained in the framework of structural risk minimization with the

concept of Vapnik-Chervenenkis (VC) dimensionality.

151

Table 6.10 Experimental results of speech recognition using SVM (without postprocessing)

Speech Recognition

Experiments

(No Postprocessing)

FEATURES

MFCC LPC PARCOR RASTA
MFCC+LPC+

PARCOR

One Syllabic

Words (WER %)
20 37 24 25 25

Two Syllabic

Words (WER %)
33 45 39 42 41

Three Syllabic

Words (WER %)
10 23 13 29 16

Four Syllabic

Words (WER %)
13 32 22 37 23

Five Syllabic Words

(WER %)
10 30 18 27 23

Total Words (WER %) 17.2 33.4 23.2 32 25.6

9.2
16.8

12.2
17 14

17.2

33.4

23.2

32
25.6

0

10

20

30

40

50

60

mfcc lpc

parco
r

rasta

mfcc
+lpc+

parco
r

W
ER

 (%
) Postprocessing

(YES)

Postprocessing
(NO)

Figure 6.21 WER results of system using SVM.

152

Table 6.11 Experimental results of speech recognition using SVM (with postprocessing)

Speech Recognition

Experiments

(Postprocessing)

FEATURES

MFCC LPC PARCOR RASTA
MFCC+LPC+

PARCOR

One Syllabic

Words (WER %)
20 37 24 25 25

Two Syllabic

Words (WER %)
18 27 24 27 26

Three Syllabic

Words (WER %)
1 8 3 9 3

Four Syllabic

Words (WER %)
5 8 6 15 9

Five Syllabic Words

(WER %)
2 4 4 9 7

Total Words (WER %) 9.2 16.8 12.2 17 14

In Table 6.10 and Table 6.11, the WER results are given for support vector

machine. If we evaluate the system, we can say that the best result for SVM is

obtained with the mfcc feature. It is followed by parcor feature. Three and five

syllabic words are the most successful words in the dictionary to be detected

correctly. The system accuracy rate as shown in Figure 6.21 is increased with

postprocessing operation about 13% using SVM.

6.10 Overall System Evaluation

According to the results of WER of the system, as shown in Table 6.12, the most

successful feature and speech recognition method are mfcc and DTW (5.8% WER)

respectively. The postprocessing which we proposed improves approximately 14%

of the system accuracy.

153

LTA and DTW do not need training operation. They use the extracted features.

The best feature is mfcc because its extraction time duration is the lowest. ANN,

HMM and SVM need training, and they construct a model for each syllable in words

using training. The method which has the shortest time duration is HMM as shown in

Table 6.15, but there must be much more training words to be more successful for

this method. In addition, SVM’s accuracy rate is quite remarkable although its

training time duration is short.

Table 6.12 Experimental results of speech recognition (with postprocessing)

Speech Recognition

Methods

FEATURES

MFCC LPC PARCOR RASTA
MFCC+LPC+

PARCOR

LTA (WER %) 8.8 24.2 11.4 9.2 10.8

DTW (WER %) 5.8 17.2 12.8 9.2 10.8

ANN (WER %) 12 21 15 16.2 14.8

HMM (WER %) 17.4 22.2 18.4 23.4 23.8

SVM (WER %) 9.2 16.8 12.2 17 14

Table 6.13 Syllable recognition results

Speech Recognition

Methods

FEATURES

MFCC LPC PARCOR RASTA
MFCC+LPC+

PARCOR

LTA (WER %) 7.9 22.1 11.2 8.7 11.3

DTW (WER %) 5.5 18.3 9.4 8.9 9.2

ANN (WER %) 9.1 24.6 14.1 10.8 13.2

HMM (WER %) 15.8 32.3 18.5 16.2 17.8

SVM (WER %) 7.8 22.7 10.9 9.1 10.2

154

As shown in Table 6.13, DTW is the most successful method for syllable

recognition.

Table 6.14 Representative recognition WER for some isolated word recognizers

Authors Environment Vocabulary Error Rates

Martin, 1975 Actual baggage

handling application

34 words WER 1.5%

Itakura, 1975 Telephone speech 200 Japanese words WER 2.7%

Scott, 1977 Speaker independent 10 digits and 4 control

words

WER 4%

Nippon

electronic,

1978

Speaker dependent 10 digits WER 0.2%

Nedim

Karaca, 1999

Speaker independent. 130 words WER

26.5%

Nuri İkizler,

2003

Speaker independent. All Turkish syllables Syllable ER

40%

Ebru Arısoy,

Helin

Dutağacı,

2006

Speaker independent. Turkish letters Letter error

rates 20%

Özgül Salor,

Bryan L.

Pellom, 2007

Speaker independent. Turkish phones Phone

recognition

ER %29.2

Engin Avcı,

2007

Speaker independent. 15 words WER 8%

Our system Speaker dependent 200 words WER 5.8%

155

Table 6.16 displays average testing time duration for each syllable. The fastest

method is HMM, and it is fallowed by ANN, SVM, LTA and DTW respectively.

Although the method, which has the best accuracy rate, is DTW, it has the longest

time duration for testing operation.

Table 6.15 Average training time for one syllable

 Training Time (Seconds)

ANN 1102.5

HMM 17.5

SVM 578.2

Table 6.16 Average testing time for one syllable

 Testing Time (Seconds)

LTA 18.1

DTW 57.3

ANN 7.4

HMM 4.7

SVM 8.6

156

CHAPTER SEVEN

CONCLUSIONS

In this thesis, we have developed syllable based isolated word Turkish speech

recognition systems using the speech recognition methods as LTA, DTW, ANN,

HMM and SVM. These speaker dependent systems use the features as mfcc, lpc,

parcor, cepstrum, rasta and the mixture of mfcc, lpc and parcor. We trained the

system using ANN, HMM and SVM. Syllable models of the words in the dictionary

are constructed syllable databases to compare the word utterence. The system firstly

recognizes the syllables of the word utterence. Recognized word is found by the

concatenation of the recognized syllables.

To use in postprocessing stage of the system, we have firstly designed and

implemented TASA. TASA’s correct spelling rate is about 100%. Then, we

calculated Turkish syllable n-gram frequencies for some Turkish corpora.

In addition, using syllable n-gram frequencies, we have developed a system which

decides whether or not a word is misspelled in Turkish text. The system takes words

as inputs. The system produces two results for each word: “Correctly spelled word”

or “Misspelled word”. According to the system designed with bigram and trigram

frequencies, the success rate is 97% for the misspelled words, and 98% for the

correctly spelled words.

In postprocessing operation, after the recognized word is constructed by

concatenating of the recognized syllables, the system decides whether it is Turkish

word or not. If the word is Turkish word, then it is new recognized word. This

postprocessing increases the accuracy rate of the system approximately 14%.

After testing of the middle scaled speech recognition system, we have seen that

the most successful method is DTW whose word error rate is about 5.8%. It can be

said that the best feature for the speech recognition is mel frequency cepstral

coefficients.

157

7.1 Future Directions

By combination of some speech recognition methods, the system will be extended

to syllable based hybrid system. In addition, speaker independent systems will be

constructed.

Turkish is an agglutinative language. We can generate many words from a word

by adding suffixes. Therefore, word based speech recognition systems are not

adequate for Turkish to develop large scaled speech recognition systems. If the

syllables of all Turkish words are modeled, large scaled system will be developed.

158

REFERENCES

Abdulla, W., Chow, D., & Sin, G. (2003). Cross-words reference template for

DTW-based speech recognition systems. In Proc. IEEE TENCON, 4, 1576-

1579.

Anderson, C. W. & Kirby, M. J. (2003). EEG subspace representations and feature

selection for brain-computer interfaces. Proceedings of the first IEEE workshop

on Computer Vision and Pattern Recognition for Human Computer Interaction,

Medison, Wisconsin.

Arısoy, E. & Dutağacı, H. (2006). A unified language model for large vocabulary

continuous speech recognition of Turkish. Signal Processing. 86(10), 2844-

2862.

Artuner, H. (1994). The design and implementation of a Turkish speech phoneme

clustering system. Ph. D. Thesis. Hacettepe University, Ankara.

Aşlıyan, R. & Günel, K. (2005). Design and implementation for extracting Turkish

syllables and analysing Turkish syllables. INISTA (International Symposium on

Innovations in Inttelligent Systems and Applications), İstanbul.

Aşlıyan, R., Günel, K. & Yakhno, T. (2007). Detecting misspelled words in Turkish

text using syllable n-gram frequencies, Lecture Notes in Computer Science

(LNCS), Pattern Recognition and Machine Intelligence, 4815, 553-559.

Avcı, E. (2007). An automatic system for Turkish word recognition using discrete

wavelet neural network based on adaptive entropy. Arabian Journal for Science

and Engineering. 32, 239-250.

Ayuso, A. J. R. & Soler, J. M. L. (Eds.). (1993). Speech recognition and coding:

New advances and trends. Berlin: Springer-Verlag.

159

Baker, J. (1975). The Dragon system, an overview. IEEE Trans. ASSP, 23(1), 24-

29.

Barari, L. & QasemiZadeh, B. (2005). CloniZER spell checker adaptive language

independent spell checker. AIML 05 Conference CICC, Cairo Egypt, 19-21.

Bazara, M. & Shetty, C. M. (1979). Nonlinear programming. New York: John

Wiley.

Becchetti, C. & Ricotti, L. P. (1999). Speech recognition: Theory and C++

implementation. Chichester: John Wiley & Sons.

Blanz, V., Schölkopf, B., Bulthoff, H., Burges, C., Vapnik, V. N. & Vetter, T.

(1996). Comparison of view-based object recognition algorithms using realistic

3D models. In Proc of ICANN’96. LNCS. 1112, 251-256.

Boite, R. & Kunt, M. (1987). Traitement de la parole. Lausanne: Pres

Politechnique Romandes.

Bourlard, H. A. & Morgan, N. (1997). Connectionist speech recognition: A hybrid

approach. Massachusetts: Kluwer Academic Publishers.

Bridle, J. & Brown, M. (1979). Connected word recognition using whole word

templates. Proceedings of the Institute of Acoustics Autumn Conference, 588-

595.

Carson, J. & Berndsen, J. (1998). Time map phonology: Fine state models and

event logics in speech recognition. Dordrecht: Kluwer Academic Publishers.

Cole, R., Rudnicky, R., Zue, V., & Reddy, D. (1980). Speech as patterns on paper.

In R. Cole, (Ed.). Perception and Production of Fluent Speech (3-50).

Hillsdale: Lawrence Erlbaum Ass.

Cortes, C. & Vapnik, V. N. (1995). Support vector network. Machine Learning.

20, 1-25.

160

Courant, R. & Hilbert, D. (1981). Methods of mathematical physics. New York:

John Wiley.

Cybenko, G. (1989). Approximation by super position of a sigmoidal function.

Mathematics of control, signals and system, 2 (4), 303-314.

Dalkılıç, G. & Çebi, Y. (2003). Creating a Turkish corpus and determining word

length. DEÜ Mühendislik Fakültesi, Fen ve Mühendislik Dergisi, 5(1), 1-7.

Davis, K., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken

digits. J. Acous. Soc. Ame., 24, 3-50.

Davis, S. B. & Mermelstein, P. (1980). Comparison of parametric representations

for monosyllabic word recognition in continuously spoken sentences. IEEE

trans. on Acoustic, Speech, and signal Processing, 28 (4), 357-366.

Denes, P. (1959). The design and operation of the mechanical speech recognizer at

University College London. Journal of the British Institute of Radio Engineers,

19, 211-229.

Deorowicz, S. & Ciura M. G. (2005). Correcting spelling errors by modelling their

causes. International Journal of Applied Mathematics and Computer

Science.15(2), 275-285.

Dreyfus-Graf, J. (1952). Letyposonographe phonetique ou phonetographe. Bulletin

Technique Des PTT Suisses, 12, 363-379.

Dudley, H. & Balashek, S. (1958). Automatic recognition of phonetic patterns in

speech. J. Acoustic Soc. Am., 30, 721-733.

Ferguson, J. (Ed.). (1980). Hidden Markov Models for speech. IDA-CRD,

Princeton, New Jersey.

Fisher, W., Doddington, G., & Goudie-Marshall, K. (1986). The DARPA speech

recognition database: Specifications and status. In DARPA Workshop on speech

Recognition, 93-99.

161

Forgie, J. & Forgie, C. (1959). Results obtained from a vowel recognition

computer program. J. Acoust. Soc. Ame., 31, 1480-1489.

Funahashi, K. (1989). On the approximate realization of continuous mappings by

neural networks. Neural Networks, 2, 183–192.

Furui, S. (1980). A training procedure for isolated word recognition systems. IEEE

Transactions on Accoustic, Speech, and Signal Processing, ASSP-28. 2.

Gupta, L., Molfese, D., Tammana, R., & Simos, P. (1996). Nonlinear alignment

and averaging for estimating the evoked potential. In IEEE Transactions on

Biomedical Engineering, 43 (4), 346-356.

Hakkani, D. Z., Oflazer, K. & Tür, G. (2000). Statistical morphological

disambiguation for agglutinative languages. Technical Report, Bilkent

University, Ankara.

Hartman, E. J., Keeler J. D., & Kowalski, J. M. (1990). Layered neural networks

with gaussian hidden units as universal approximations. Neural Computation,

2, 210-215.

Haton, J. P. (1974). A practical application of a real time isolated word

recognition. IEEE Trans. ASSP, 6(22), 416-419.

Haton, J. P. & Pierrel, J. M. (1976). Organization and operation of a connected

speech understanding system at lexical, syntactical and semantical levels. In

ICASSP, 430-433.

Hermansky, H., Morgan, N., Bayya, A. & Kohn, P. (1991). Compensation for the

effect of the communication channel in auditory-like analysis of speech. Proc.

of Eurospeech’91, 1367-1371.

Hermansky, H. (1998). Should recognizers have ears. Speech communication,

25(3), 3-27.

162

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward

networks are universal approximators. Neural Networks, 2, 359-366.

Huang, X. & Hon, A. A. H. (2001). Spoken language processing: A guide to

theory, algorithm, and system development. New York: Prentice Hall.

Hunt, M. J. (1990). Figures of merit for assessing connected word recognisers.

Speech Communication, 9, 229-236.

Itakura, F. (1975). Minimum prediction residual principle applied to speech

recognition. IEEE Trans. ASSP, 23, 67-72.

Jakobson, R., Fant, G., & Halle, M. (1952). Preliminaries to speech analysis (1st

ed.). Cambridge, MA: MIT Press.

Jelinek, F. (1976). Continuous speech recognition using statistical methods. Proc.

IEEE, 64(4), 532-556.

Jelinek, F. (1998). Statistical methods for speech recognition. Cambridge: MIT

Press.

Juang, B. H. & Rabiner, L. R. (1990). The segmental K-means algorithm for

estimating parameters of hidden markov models. IEEE Transactions on

Accoustic, Speech, and Signal Processing. 38(9).

Junqua, J. C., Mak, B. & Reaves, B. (1997). A robust algorithm for word boundary

detection in the presence of noise. IEEE Transactions on Speech and Audio

Processing, 2(3), 406-412.

Jurafski, D. & Martin, J. H. (2000). Speech and language processing. New Jersey:

Prentice Hall.

Kang, S. S. & Woo, C. W. (2001). Automatic segmentation of words using

syllable bigram statistics. Proceedings of the Sixth Natural Language

Processing Pacific Rim Symposium, Tokyo, Japan, 729-732.

163

Karaca, N. (1999). Realization of a Turkish isolated word speech recognition

system under noisy environments. Ph. D. Thesis. Hacettepe University, Ankara.

Katz, S. M. (1987). Estimation of probabilities from sparse data for the language

model component of a speech recognizer. IEEE Transactions on Accoustics,

Speech and Signal Processing, ASSP, 35(3), 400-4001.

Kenny, P., Lenning, M. & Mermelstein, P. (1990). A linear predictive HMM for

vector-valued observation with applications to speech recognition. IEEE

Transactions on Accoustic, Speech, and Signal Processing, 38(2).

Koç, A. (2002). Acoustic feature analysis for robust speech recognition. M. S.

Thesis. Boğaziçi University, İstanbul.

Kruskall, J. & Liberman, M. (1983). The theory and practice of sequence

comparison. Massachusetts: Addison-Wesley Publishing.

Kukich, K. (1992). Techniques for automatically correcting words in text. ACM

Computing Surveys. 24(4), 377-439.

Le Cun, Y. (1985). Une proc´edure d’apprentissage pour r´eseau `a seuil

assymetrique. Cognitiva 85, 599–604.

Lee, C. & Rabiner, L. (1989). A frame synchronous network search algorithm for

connected word recognition. IEEE Trans. ASSP, 37(11), 1649-1658.

Lesser, V., Fennell, R., Erman, L., & Reddy, D. (1975). Organization of the

HEARSAY II speech understanding system. IEEE Trans. ASSP, 23(1), 11-23.

Lippmann, R. (1987). An introduction to computing with neural nets. IEEE Trans.

ASSP Magazine, 4(2), 4-22.

Lowerre, B. (1976). The harpy speech recognition system. Technical Report.

Carnegie Mellon University.

164

Makhoul, J. & Schwartz, R. (1994). State of the art in continuous speech

recognition. In D. Roe, & J. Wilpon, (Eds.). Voice Communication Between

Humans and Machine (165-198). Washington: National Academy Press.

Martin, T., Nelson, A., & Zadel, H. (1964). Speech recognition by feature

abstraction techniques. Technical Report. Air Force Avionics Lab.

McCowan, I., Moore, D., Dines, J., Gatica-Perez, D., Flynn, M., Wellner, P., et al.

(2005). On the use of information retrieval measure for speech recognition

evaluation. IDIAP-RR 73, IDIAP.

Mengüşoğlu, E. (1999). Bir Türkçe sesli ifade tanıma sisteminin kural tabanlı

tasarımı ve gerçekleştirimi. Yüksek Lisans Tezi. Hacettepe Üniversitesi,

Ankara.

Meral, O. (1996). Speech recognition based on pattern comparison techniques.

M.S. Thesis. İstanbul Technical University, İstanbul.

Mercier, G. (1977). A multipurpose speech understanding system. In ICASSP,

815-818.

Minsky, M. L., & Papert, S. A. (1969). Perceptrons. Cambridge, MA: MIT Press.

Nadas, A., Nahammoo, D. & Picheny, M. A. (1988). On a model robust training

method for speech recognition. IEEE Transactions on Accoustic, Speech, and

Signal Processing. 36(8).

Nagata, K., Kato, Y., & Chiba, S. (1963). Spoken digit recognizer for Japanese

language. NEC Res. Develop., 6, 2.

Oflazer, K. (1994). Two-level description of Turkish morphology. Literary and

Linguistics. 9(2), 137-148.

Oflazer, K. & Bozşahin, H. C. (1994). Turkish natural language processing

initiative: An overview. In Proc. of the Third Turkish Symposium on Artifical

Intelligence, Middle East Technical University, Turkey.

165

Olson, H. & Bellar, H. (1956). Phonetic typewriter. J. Accous. Soc. Ame., 2, 1072-

1081.

Osuna, E., Freud, R. & Girosi, F. (1997). Training support vector machines: An

applications to face detection. In CVPR97. 130-136.

Özkan, Ö. (1997). Implementation of speech recognition for connected numerals.

M.S. Thesis. Middle East Technical University, Ankara.

Parker, D. (1985). Learning logic. MIT Technical Report, TR-47, Cambridge, MA.

Pepper, D., Barnwell, T. P. & Clements, M. A. (1990). Using a ring parallel

processor for hidden markov model training. IEEE Transactions on Accoustic,

Speech, and Signal Processing. 36(2).

Rabiner, L. & Sambur, M. R. (1975). An algorithm for determining the end-points

of isolated utterances. The Bell System Technical Journal, 54(2), 297-315.

Rabiner, L., Levinson, S., Rosenborg, A., & Wilpon, J. (1979). Speaker

independent recognition of isolated words using clustering techniques. IEEE

Trans. ASSP, 27(4), 336-349.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications

in speech recognition. Proc. IEEE, 77(2), 257-286.

Rabiner, L. & Juang, B. H. (1993). Fundamentals of speech recognition, New York:

Prentice-Hall.

Reddy, D. (1966). An approach to computer speech recognition by direct analysis

of the speech wave. Technical Report, Stanford University.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Parallel distributed

processing: Explorations in the microstructure of cognition. Cambridge, MA:

MIT Press.

166

Sakai, T. & Doshita, S. (1962). The phonetic typewriter. In IFIP Congress, 445-

449.

Sakoe, H. & Chiba, S. (1971). A dynamic programming approach to continuous

speech recognition. In 7th ICA, 20C-13.

Sakoe, H. (1979). Two level DP matching a dynamic programming based pattern

matching algorithm for connected word recognition. IEEE Trans. ASSP, 27(6),

588-595.

Salor, Ö & Pellom, B. L. (2007). Turkish speech corpora and recognition tools

developed by porting SONIC: Towards multilingual speech recognition.

Computer Speech and Language. 21(4), 580-583.

Salvador, S. (2004). Learning states for detecting anomalies in time series. M.S.

Thesis. Dept. Of Computer Sciences, Florida Institute of Technology, Florida.

Savoji, M. H. (1989). End-pointing of speech signals. Speech Communication,

8(1), 46-60.

Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T. & Vapnik,

V. N. (1996). Comparing support vector machines with gaussian kernels to

radial basis function classifiers. IEEE Trans. on Signal Processing. 45(11),

2758-2765.

Slutsker, G. (1968). Nelinejnyp method analiza recevych signalov. Trudy NIIR, 2,

76-82.

Suzuki, J. & Nakata, K. (1961). Recognition of Japanese vowels - Preliminary to

the recognition of speech. J. Radio Research Lab., 37(8) 193-212.

Tong, X. & Evans, D. A. (1996). A statistical approach to automatic OCR error

correction in context. Proceedings of the Fourth Workshop on Very Large

Corpora, Copenhagen. Denmark, 88-100.

167

Vapnik, V. N. & Chervonenkis, A. J. (1971). On the uniform convergence of

relative frequencies of events to their probabilities. Theory of Probability and

its Applications. 16, 264-280.

Vapnik, V. N. (1982). Estimation of dependencies based on empirical data. New

York: Springer-Verlag.

Vapnik, V. N. (1995). The nature of statistical learning theory. New York:

Springer-Verlag.

Velichko, V. & Zagoruyko, N. (1970). Automatic recognition of 200 words. Int. J.

Man-Machine Studies, 2, 223.

Vicens, P. (1969). Aspects of speech recognition by computer. Ph. D. Thesis.

Computer Science, Stanford University, California.

Vintsyuk, T. (1968). Speech discrimination by dynamic programming.

Kibernetika, Cybernetics, 4(1), 81-88.

Werbos P. J. (1974). Beyond regression: New tools for prediction and analysis in the

behavioral sciences. Ph. D. Thesis. Harvard University, Cambridge.

Wilpon, J. (1994). Applications of voice processing technology in

telecommunications. In D. Roe, & J. Wilpon, (Eds.). Voice Communication

Between Humans and Machines (280-310). Washington: National Academy

Press.

Wiren, J. & Stubbs, H. (1956). Electronic binary selection system for phoneme

classification. J. Acoustic Soc. Ame., 28(6), 1082-1091.

Wolf, J. & Woods, W. (1977). The HWIM speech understanding system. In

ICASSP, 784-787.

Woodland, P. C. (1990). Isolated word speech recogniton based on connectionist

techniques. Br. Telecom. Technol. J., 8(2), 61-66.

168

Yılmaz, C. (1999). A large vocabulary speech recognition system for Turkish. M.

S. Thesis. Bilkent University, Ankara.

Young, S. & Kershaw, D. (2000). The HTK book (3rd ed.). Cambridge: Cambridge

University Press.

Zhuang, L., Bao, T., Zhu, X.,Wang, C. & Naoi, S. (2004). A chinese OCR spelling

check appoarch based on statistical language models. IEEE International

Conference on Systems, Man and Cybernetics. 4727-4732.

169

APPENDIX A

DICTIONARY WORDS

Table A.1 shows the system words which we have used for training and testing of

the applications.

Table A.1 The system dictionary words.

abajur boyutlandırmak elektrikçi mükemmeliyet
abaküs burun elektroteknik mütemadiyen
aceleci bülten endüstrileşme naftalin
acemice can evcilleştirme nakliyat
acımasız caz faks nefeslenmek
acil cesaretli fark neşelendirmek
aç cevizli farklılaştırma neşeli
açıklamak cezalı faydalı nicelemek
adaletsizlik coğrafya felaketzede nitelendirmek
adapazarı cumhuriyet felek not
ağaçlandırmak çabalamak ferman nur
ahşap çabuklaştırmak feza of
ak çağla fındık ok
akarsu çakır fikir oksijen
akça çal fiyasko okuryazarlık
akıcılık çalgı fotokopi organizasyon
akıllanmak çalım gazetecilik ormanlık
akreditasyon çalışkan gecekondu ot
aks çalışmak habersiz pim
aktar çam halıcı plak
akvaryumculuk çay hareketli plan
alçı çekim ihtiyarlamak prens
alt çeşitlilik inandırma programcılık
anıtlaştırmak çiçekçilik iştahsızlık radyoelektrik
aydın çimenlik iyotlu radyoloji
baba çobanpüskülü izcilik renk
badanacılık dalgınlaşma kabataş resimlendirme
bağlam damga kafkasyalı rey
bahçıvan danışmak kahramanlık ring
bahçıvanlık dansimetre kalorimetre risk
bakla dargın kamburlaştırmak robotlaştırmak
bal dayanışma kan sabunlaştırmak
baltık defter kap samimiyetlik
bar deha kapitülasyon sevindirmek
bardak delgi karikatürcü simülasyon
basamaklı demokrasi kılavuz siyasetname
başarısızlık deneme kitabevi sosyoloji

170

başbakanlık denetleyici kundura şekerleme
belirlemek denizaltı lösemi tank
beneklenmedi denizyıldızı macun tarz
benzerlik dert maç taş
benzeşim dev maden tatbikat
bereket divan mafya termodinamik
biçimsel doğru maharet uygarlaştırmak
bilet doksan makas ücretlendirme
bilimsel doktor malümat yabancılık
biyosfer durak mart yaz
boncuk ehliyet mat ziyaret
borç eldiven mert ziyaretçi
bordo elektrik misafirlik zor

