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NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR
EIGENVALUE PROBLEMS USING TAYLOR’S DECOMPOSITION METHOD

ABSTRACT

The main purpose of this thesis is to solve regular Sturm-Liouville eigenvalue
problems and some special nonlinear eigenvalue problems numerically using Taylor’s
decomposition method. The numerical scheme is based on the application of the
Taylor’s decomposition to the corresponding first order differential equation system.
The technique is illustrated with three problems, regular Sturm-Liouville eigenvalue
problems, Bratu problem and Euler buckling problem. The results show that the
method converges rapidly and hence approximates the exact solution very accurately
for relatively large step-sizes.

Keywords: Taylor’s decomposition, regular Sturm-Liouville eigenvalue problems,
nonlinear eigenvalue problems, Bratu problem, Euler Buckling problem.
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TAYLOR AYRIŞMA METODU KULLANIMI İLE DOǦRUSAL VE DOǦRUSAL
OLMAYAN ÖZDEǦER PROBLEMLERİNİN SAYISAL ÇÖZÜMLERİ

ÖZ

Bu tezin temel amacı homojen ve periyodik Sturm-Liouville özdeǧer problemlerini
ve bazı doǧrusal olmayan özdeǧer problemlerini sayısal olarak Taylor ayrışma metodu
kullanımı ile çözmektir. Sayısal düzen Taylor ayrışımının incelenen problemlere karşılık
gelen birinci mertebeden diferansiyel denklem sistemine uygulanmasına
dayanmaktadır. Teknik üç problemle örneklendirilmiştir, homojen ve periyodik Sturm-
Liouville özdeǧer problemleri, Bratu problemi ve Euler burkulma problemi. Sonuçlar
metodun hızla yakınsadıǧını ve böylece daha geniş adım aralıkları için gerçek çözüme
çok iyi bir doǧrulukla yaklaştıǧını göstermiştir.

Anahtar sözcükler: Taylor ayrışımı, homojen ve periyodik Sturm-Liouville özdeǧer
problemleri, doǧrusal olmayan özdeǧer problemleri, Bratu Problemi, Euler burkulma
problemi .
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

Investigation of the exact and numerical solutions of eigenvalue problems have
been focused by some researchers for many years. We refer to Dijksma, & Langer
(1996), Fulton (1977) and Walter (1973) and their reference lists which give this long
history. Typical topics studied have been on existence and location of the eigenvalues,
oscillation, comparison of the eigenfunctions, their completeness, asymptotics, and
applications to physics and engineering. Linear eigenvalue problems are well studied in
comparison with nonlinear eigenvalue problems, since the nonlinear eigenvalue
problems share several difficulties caused from nonlinearity. Some examples of the
numerical and analytic treatment of nonlinear eigenvalue problems are given in
Anderssen, & de Hoog (1984), Andrew (1988), Andrew (1988), Andrew, & Paine
(1986), Belford (1969), Binding, Browne, & Watson (2000), Binding, & Volmer (1996),
Bujurke, Salimath, & Shiralashetti (2008), Buckmire (2004), Busca, & Quaas (2004),
Euler (1744), Everitt, et al. (1983), Khuri (2004), Dijksma, & Langer (1996),
Fulton (1977), Gentry, & Travis (1976), Griffel (1981), Kreiss (1972), Lou, Nie, &
Wan (2004), Makin, & Thompson (2004), Odejide, & Aregbesola (2006), Pimbley
(1962), Romeiras, & Rowlands (1986), Rynne (1999), Shibita (2002) and Shibita
(1996), Somali, & Gokmen (2007), Somali, & Oger (2004), Walter (1973) and Wazwaz
(2005). This thesis is concerned with the numerical solutions of regular Sturm-Liouville
eigenvalue problems and two nonlinear eigenvalue problems; Bratu problem and Euler
buckling problem.

We investigate the computation of eigenvalues of regular Sturm-Liouville
eigenvalue problems

−y′′(x)+ r(x)y(x) = λy(x), 0 6 x0 < x < xn

y(x0) = y(xn) = 0,

where r(x) ∈Cp+q[x0,xn]. There have been a number of papers (see Anderssen and de
Hoog, 1984; Andrew, 1988, 1988, 1989; Andrew and Paine, 1986) dealing with the
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same problem with different boundary conditions using various methods. A survey
paper related to this problem can be found in Andrew, (1994). Andrew (Andrew,
1989) used the approach to improve finite difference eigenvalue estimates of periodic
Sturm-Liouville eigenvalue problems. It is well known that when finite difference
methods are used to approximate the eigenvalues, λ1 < λ2 < λ3 < .. . , of Sturm-
Liouville eigenvalue problems, the error in approximation for λk is known to increase
rapidly with k. In this thesis, we used Taylor’s decomposition method to find
eigenvalues and corresponding eigenfunctions. The properties and some examples of
regular Sturm-Liouville eigenvalue problems are given in chapter 2.

The “Bratu problem” or “Bratu’s problem” is defined as ∆y+λey = 0 with zero on
the boundary. The Bratu problem in 1-dimensional planar coordinates,

y′′+λey = 0,

y(0) = y(1) = 0

has two known bifurcated exact solutions for values of λ < λc, unique solution for
λ = λc and no solutions for λ > λc. The value of λc is simply 8(α2−1) where α is the
fixed point of the hyperbolic cotangent function cothx. Bratu problem is a nonlinear
eigenvalue problem that appears in a number of applications, from the fuel ignition
model found in thermal combustion theory (Frank-Kamenetski, 1955) to the
Chandrasekhar model for the expansion of the universe (Chandrasekhar, 1957). The
exact solution and some applications in science are given in chapter 3.

Another nonlinear eigenvalue problem

y′′+λsiny = 0,

y′(0) = y′(1) = 0

is called Euler buckling problem. This problem concerns the buckling of elastic rods,
extensively studied in the last few years (Domokos, & Holmes, 1993, Griffel, 1981,
Jones, 2006 and Stakgold, 1971). Stakgold (1971) tells the physical meaning of Euler
buckling problem as follows.
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The buckling of a thin rod under compression is perhaps the simplest and oldest
physical example to illustrate branching.

llllllmmllllllFigure 1.1 Thin rod and horizontal load P.

Figure 1.1 shows a homogeneous, thin rod whose ends are pinned, the left end being
fixed, the right end free to move along the x-axis. In its unloaded state the rod coincides
with the portion of the x-axis between 0 and 1. Under a compressive load P, a possible
state for the rod is that of pure compression, but experience shows that, for sufficiently
large values of P, transverse deflection can occur. Assuming that this buckling takes
place in x, y-plane, we investigate the equilibrium of forces on a portion of the rod
including its left end. The forces and moments are taken positive as drawn in the
Figure 1.2. Let X be the original x-coordinate of a material point along the rod. This
point is moved after buckling to (x + u,v). We let y be the angle between the tangent
to the buckled rod and the x-axis, and s the arclength measured from the left end and
λ = P/EI, E and I are fixed positive, physical constants. The detailed properties of
Euler buckling problem are given in chapter 4.

In general, numerical techniques for solving initial value problems for ordinary
differential equations are more highly developed than techniques for solving
boundary value problems. It is therefore reasonable to be able to reduce to a boundary
value problem to the problem of solving one or more initial value problems. In fact, one
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llllllllllllllmmmmmll
lllllllllllllmmmmmllllFigure 1.2 Thin rod and horizontal load P.

of the standard methods for solving boundary value problems for linear
differential equations involves just such a reduction. In the case of nonlinear equations,
the situation is not so straightforward. Now, an eigenvalue problem can be thought of as
basically a boundary value problem, but with an additional difficulty on a parameter in
the equation that must be simultaneously determined. In this thesis, regular Sturm-
Liouville eigenvalue problem the Bratu and Euler buckling problems are solved
numerically by converting them into a differential equation systems with initial
conditions as recommended above.

The eigenvalues and corresponding eigenfunctions of regular Sturm-Liouville
problems, Bratu problem and Euler buckling problem are found approximately by
considering the Taylor’s decomposition method on two points which is the
application of the following theorem given in Ashyralyev, & Sobolevskii (2004)

Theorem 1.1.1. Let the function v(t) (0 6 t 6 T ) have a (p + q + 1)-th continuous

derivative and tk−1, tk ∈ [0,T ]τ, where

[0,T ]τ = {tk = kτ,k = 0,1, . . . ,N,Nτ = T}. (1.1.1)

Then the following relation holds:

v(tk)− v(tk−1)+
p

∑
j=1

α jv( j)(tk)τ j−
q

∑
j=1

β jv( j)(tk−1)τ j (1.1.2)
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=
(−1)p

(p+q)!

∫ tk

tk−1

(tk− s)q(s− tk−1)pv(p+q+1)(s)ds,

where 



α j =
(p+q− j)!p!(−1) j

(p+q)! j!(p− j)!
for any j, 1 6 j 6 p,

β j =
(p+q− j)!q!

(p+q)! j!(q− j)!
for any j, 1 6 j 6 q.

(1.1.3)

The main advantage of the method, which computes eigenvalues and corresponding
eigenfunctions approximately with high order accuracy for relatively large step sizes, is
that it can be applied directly for all types of differential equations, linear or nonlinear,
homogeneous or inhomogeneous, with constant or with variable coefficients.

In chapter 2, a method for finding eigenvalues and the corresponding eigenfunctions
for regular Sturm-Liouville eigenvalue problems using Taylor’s decomposition method
is developed. Further error analysis and numerical results of the method are given by
comparing the results of other methods. In chapter 3, the application of the Taylor’s de-
composition method for the nonlinear initial value problem corresponding to the Bratu
problem, error analysis and numerical results of the method are discussed. In chapter 4,
the eigenvalues and eigenfunctions of Euler buckling problem are found approximately
using Taylor’s decomposition method. In the conclusion, we summarize the study and
present our suggestions regarding future works. The theory of existence, uniqueness
and spectral properties of nonlinear eigenvalue problems is given in Appendix A. The
theoretical properties, development and some applications of Taylor’s decomposition
are given in Appendix B.



CHAPTER TWO
TAYLOR’S DECOMPOSITION ON TWO POINTS

FOR REGULAR STURM-LIOUVILLE EIGENVALUE PROBLEMS

2.1 Sturm-Liouville Eigenvalue Problems

Sturm-Liouville eigenvalue problems are important in applied mathematics. In
recent years there has been a considerable renewal of interest in the Sturm-Liouville
eigenvalue problems, from the point of view of both mathematics and their applications
to physics and engineering. For many important applications in science and
engineering it is required to determine the eigenvalues as well as the corresponding
eigenfunctions. In fact, the general theory of eigenvalues and eigenfunctions is one
of the deepest and richest part of mathematical physics. In applications, for instance,
involving vibration and stability of deformable bodies the vital piece of information
required is the smallest eigenvalue (Brunt, 2003 and Frederick, 1995). Engineers are
often interested in the location of the smallest eigenvalue since this gives
potentially the most visual structure of dynamic systems. The seismic damage to a
structure can be catastrophic if its fundamental frequency (related in some way to the
smallest eigenvalue) is of the same order as the frequency of the earth quake (Brunt,
2003). The eigenvalues are also crucial in finding the stability region of solutions of
Sturm-Liouville eigenvalue problems (Bender, & Orszag, 1987). Generally, finding
the eigenvalues and corresponding nontrivial solutions poses a formidable task.

Keller gives the mathematical structure of Sturm-Liouville eigenvalue problems in
Keller (2006). If the coefficients of the equation and/or of the boundary
conditions depend upon a parameter, it is frequently of interest to determine the value
or values of the parameter for which nontrivial solutions exist. These special parameter
values are called eigenvalues, and the corresponding nontrivial solutions are called
eigenfunctions, and the problems described above are called eigenvalue problems. All
along a great deal of interest has been focused on the exact and numerical solutions of

6
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the special case of eigenvalue problems, that is, Sturm-Liouville eigenvalue problems

Ly+λr(x)y = (p(x)y′)′−q(x)y+λr(x)y = 0,

a0y(a)−a1 p(a)y′(a) = 0,

b0y(b)+b1 p(b)y′(b) = 0,

where p(x) > 0, r(x) > 0 and q(x) > 0 while p′(x), q(x) and r(x) are continuous on
[a,b]. The constants a0, a1, b0 and b1 are nonnegative and at least one of each pair
does not vanish. It is known that for such problems there exists an infinite sequence of
nonnegative eigenvalues

0 6 λ1 < λ2 6 λ3 . . . .

In addition there exist corresponding eigenfunctions, yn(x) which are twice
continuously differentiable and satisfy the orthogonal relations:

∫ b

a
yn(x)ym(x)r(x) dx = δnm, n, m = 1,2, . . . .

The reader can find much information about Sturm-Liouville eigenvalue problems in
Keller (2006).

In section 2, we consider the regular Sturm-Liouville eigenvalue problems

−y′′(x)+ r(x)y(x) = λy(x), 0 6 x0 < x < xn

y(x0) = y(xn) = 0,

where r(x) ∈ Cp+q[x0,xn]. The behavior of eigenvalues and corresponding
eigenfunctions are obtained by Taylor’s decomposition method. In section 3, a bound
of the error between the exact solution and approximate solution of regular Sturm-
Liouville eigenvalue problem and the convergence of the method for constant
functions r(x) are given. The technique is illustrated with two examples and the
numerical results are given by comparing the results of other methods in section 4.
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2.2 Taylor’s Decomposition on Two Points For Regular Sturm-Liouville
Eigenvalue Problems

We consider the regular Sturm-Liouville eigenvalue problem

−y′′(x)+ r(x)y(x) = λy(x), 0 6 x0 < x < xn,

y(x0) = y(xn) = 0,
(2.2.1)

where r(x) ∈Cp+q[x0,xn]. Introducing a new depending variable y′(x) = z(x), (2.2.1)
can be written as [

y′(x)
z′(x)

]
=

[
0 1

r(x)−λ 0

][
y(x)
z(x)

]
,

[
1 0
0 0

][
y(x0)
z(x0)

]
+

[
0 0
1 0

][
y(xn)
z(xn)

]
=

[
0
0

]
.

Defining Y (x) =

[
y(x)
z(x)

]
, A(x) =

[
0 1

r(x)−λ 0

]
, C0 =

[
1 0
0 0

]
,

C1 =

[
0 0
1 0

]
, we have

Y ′(x) = A(x)Y (x)
C0Y (x0)+C1Y (xn) = 0.

(2.2.2)

Following Ashyralyev, & Sobolevskii (2004), we will consider the application of
Taylor’s decomposition of function Y (x) on two points. We need to find Y ( j)(x) for any
1 6 j 6 p and q. Using the equation Y ′(x) = A(x)Y (x), we get

Y ( j)(x) = A j(x)Y (x), (2.2.3)

where
A0(x) = I,

A1(x) = A(x),

A j(x) = A′j−1(x)+A j−1(x)A(x), 2 6 j 6 p,
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where I is the 2×2 identity matrix. By using the structure of the matrix A(x), we obtain

the entries of the matrix of A j(x) =

[
a j(1,1)(λ;x) a j(1,2)(λ;x)
a j(2,1)(λ;x) a j(2,2)(λ;x)

]
as in the following

formulas

a j(1,1)(λ;x) =
∂a j−1(1,1)(λ;x)

∂x
+(r(x)−λ)a j−2(2,2)(λ;x)

= a j−1(2,1)(λ;x)

a j(2,2)(λ;x) =
∂a j−1(2,2)(λ;x)

∂x
+a j(1,1)(λ;x)

a j(1,2)(λ;x) = a j−1(2,2)(λ;x)

a j(2,1)(λ;x) = −∂a j(2,2)(λ;x)
∂x

+a j+1(2,2)(λ;x)

(2.2.4)

for 2 6 j 6 p, where

a0(1,1)(λ;x) = 1, a1(1,1)(λ;x) = 0,

a0(1,2)(λ;x) = 0, a1(1,2)(λ;x) = 1,

a0(2,1)(λ;x) = 0, a1(2,1)(λ;x) = r(x)−λ,

a0(2,2)(λ;x) = 1, a1(2,2)(λ;x) = 0.

From the Theorem 1.1.1, we have the following relation

Y (xk)−Y (xk−1)+
p

∑
j=1

α jY ( j)(xk)h j−
q

∑
j=1

β jY ( j)(xk−1)h j

=
(−1)p

(p+q)!

∫ xk

xk−1

(xk− s)q(s− xk−1)pY (p+q+1)(s)ds (2.2.5)

on the uniform grid

[x0,xn]h = {xk = x0 + kh,k = 0,1, . . . ,n, nh = xn− x0,n ∈ N},

where

α j =
(p+q− j)!p !(−1) j

(p+q)! j !(p− j)!
, 1 6 j 6 p,

β j =
(p+q− j)!q!

(p+q)! j !(q− j)!
, 1 6 j 6 q.

(2.2.6)
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Rewriting the formula (2.2.5) by neglecting the last term we obtain a one step
difference scheme of (p+q)-order of accuracy for the approximate solution of problem
(2.2.2)

Yk−Yk−1 +
p

∑
j=1

α jA j(xk)Ykh j−
q

∑
j=1

β jA j(xk−1)Yk−1h j = 0, (2.2.7)

where Yk =

[
yk

zk

]
is the approximate value of Y (xk). For a simple computation, let

p = q, then we have

(
I +

p

∑
j=1

α jA j(xk)h j

)
Yk =

(
I +

p

∑
j=1

(−1) jα jA j(xk−1)h j

)
Yk−1,

where

α j =
(2p− j)!p!(−1) j

(2p)! j!(p− j)!
,

β j =
(2p− j)!p!

(2p)! j!(p− j)!
= (−1) jα j.

Letting M(xk) =

(
I +

p

∑
j=1

α jA j(xk)h j

)
and N(xk−1) =

(
I +

p

∑
j=1

(−1) jα jA j(xk−1)h j

)

we write
Yk = M−1(xk)N(xk−1)Yk−1. (2.2.8)

Since the accuracy and convergence of the method is independent of h, taking
h = xn− x0 gives

Y1 = M−1(xn)N(x0)Y0

and substituting the boundary condition of (2.2.1), we get

(
C1M−1(xn)N(x0)+C0

)
Y0 = 0.

To obtain a nontrivial solution Y0, we must have the following equation

det(C1M−1(xn)N(x0)+C0) = 0.
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Defining M(xn) =

[
m11 m12

m21 m22

]
and N(x0) =

[
n11 n12

n21 n22

]
, we have

(
C1M−1(xn)N(x0)+C0

)
=

=
1

det(M)

[
0 0
1 0

][
m22 −m12

−m21 m11

][
n11 n12

n21 n22

]
+

[
1 0
0 0

]

=


 1 0

m22n11−m12n21

detM
m22n12−m12n22

detM


 .

For det(C1M−1(xn)N(x0)+C0) =
m22n12−m12n22

detM
= 0, we must have the following

statement
m22n12−m12n22 = 0. (2.2.9)

Since

M(xn) =

(
I +

p

∑
j=1

α jA j(xn)h j

)
=




1+
p

∑
j=1

α ja j(1,1)(λ;xn)h j
p

∑
j=1

α ja j(1,2)(λ;xn)h j

p

∑
j=1

α ja j(2,1)(λ;xn)h j 1+
p

∑
j=1

α ja j(2,2)(λ;xn)h j


 ,

N(x0) =

(
I +

p

∑
j=1

(−1) jα jA j(x0)h j

)
=




1+
p

∑
j=1

(−1) jα ja j(1,1)(λ;x0)h j
p

∑
j=1

(−1) jα ja j(1,2)(λ;x0)h j

p

∑
j=1

(−1) jα ja j(2,1)(λ;x0)h j 1+
p

∑
j=1

(−1) jα ja j(2,2)(λ;x0)h j


 ,

using the entries m12, m22, n12 and n22 of the above matrices we obtain (2.2.9) interms
of λ,

m22n12−m12n22 =

(
1+

p

∑
j=1

α ja j(2,2)(λ;xn)h j

)(
p

∑
j=1

(−1) jα ja j(1,2)(λ;x0)h j

)
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−
(

p

∑
j=1

α ja j(1,2)(λ;xn)h j

)(
1+

p

∑
j=1

(−1) jα ja j(2,2)(λ;x0)h j

)
.

Since the entries of A j(x) are defined interms of diagonal entries in (2.2.4), we write

F(λ) = m22n12−m12n22

=

(
1+

p

∑
j=1

α ja j(2,2)(λ;xn)h j

)(
p

∑
j=1

(−1) jα ja j−1(2,2)(λ;x0)h j

)

−
(

p

∑
j=1

α ja j−1(2,2)(λ;xn)h j

)(
1+

p

∑
j=1

(−1) jα ja j(2,2)(λ;x0)h j

)
. (2.2.10)

Solving the nonlinear equation F(λ) = 0 by Newton’s method, we find the approximate
eigenvalues.

To find the corresponding eigenfunctions of the regular Sturm-Liouville eigenvalue
problem (2.2.1), we substitute the eigenvalue to (2.2.1) and we solve the obtained
boundary value problem by Taylor’s decomposition method on two points xk−1 and
xk with the uniform grid

[x0,xn]h = {xk = x0 + kh,k = 0,1, . . . ,n, nh = xn− x0,n ∈ N}

for p = q. Then we get a homogeneous linear equation system of 2n equations with
2n unknowns z0, y1, z1, y2, z2 . . . ,yn−1, zn−1,zn which are the approximated values of
y′(x0), y(x1), y′(x1) y(x2) y′(x2), . . . ,y(xn−1), y′(xn−1), y′(xn) respectively. Solving the
2n×2n homogeneous system, we obtain approximate values of the eigenfunction and
the derivative of (2.2.1) at the point x = xk.

2.3 Error Analysis

In this section we will show the convergence of the method for eigenfunctions with
the constant function r(x) = c by obtaining approximate value of eigenfunction at a
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point x ∈ [x0,xn] of the problem

−y′′(x)+ cy(x) = λy(x), 0 6 x0 < x < xn,

y(0) = 0, y(xn) = 0.
(2.3.1)

We know from the theory of the Sturm-Liouville eigenvalue problems the eigenvalues
k2π2−c > 0 of (2.3.1) are positive. Without loss of generality, we may choose r(x) = 0
then A j(x) = A j, that is, a j(2,2)(λ;xn) = a j(2,2)(λ;0) = a j(2,2)(λ). Using (2.2.4), we can
find explicit values of a j(1,1), a j(2,2) as follows

a2 j(1,1) = (−1) jλ j,

a2 j(2,2) = (−1) jλ j,

a2 j+1(1,1) = 0,

a2 j+1(2,2) = 0, j > 0.

This yields

m22 = 1+
bp/2c
∑
j=1

α2 ja2 j(2,2)h
2 j +

bp/2c
∑
j=0

α2 j+1a2 j+1(2,2)h
2 j+1

= 1+
bp/2c
∑
j=1

α2 j(−1) jλ jh2 j,

n22 = 1+
bp/2c
∑
j=1

(−1)2 jα2 ja2 j(2,2)h
2 j +

bp/2c
∑
j=0

(−1)2 j+1α2 j+1a2 j+1(2,2)h
2 j+1

= 1+
bp/2c
∑
j=1

(−1) jα2 jλ jh2 j

= m22,

m12 =
p

∑
j=1

α ja j−1(2,2)h
j =

p−1

∑
j=0

α j+1a j(2,2)h
j+1

=
b p−1

2 c
∑
j=0

α2 j+1a2 j(2,2)h
2 j+1 +

b p−1
2 c

∑
j=0

α2 j+2a2 j+1(2,2)h
2 j+2

=
b p−1

2 c
∑
j=0

α2 j+1(−1) jλ jh2 j+1,
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n12 =
p

∑
j=1

(−1) jα ja j−1(2,2)h
j =

p−1

∑
j=0

(−1) j+1α j+1a j(2,2)h
j+1

=
b p−1

2 c
∑
j=0

(−1)2 j+1α2 j+1a2 j(2,2)h
2 j+1 +

b p−1
2 c

∑
j=0

(−1)2 j+2α2 j+2a2 j+1(2,2)h
2 j+2

=
b p−1

2 c
∑
j=0

(−1) j+1α2 j+1λ jh2 j+1

= −m12,

m11 = 1+
p

∑
j=1

α ja j(1,1)h
j = 1+

p

∑
j=1

α ja j(2,2)h
j

= m22,

m21 =
p

∑
j=1

α ja j(2,1)h
j =

p

∑
j=1

α ja j+1(2,2)h
j

= −λ
p

∑
j=1

α ja j+2(1,2)h
j

= −λm12.

Using (2.2.8) for k = 1, we have

Y1 = M−1(x)N(x0)Y0, (2.3.2)

where Y0 and Y1 are the approximated values of Y (x0) and Y (x) respectively with the
stepsize h = x− x0.

Y1 =
1

det(M)

[
m22 −m12

−m21 m22

][
n11 n12

n21 n22

][
0
z0

]

=
z0

det(M)

[
−2m22m12

−λ(m12)2 +(m22)2

]
. (2.3.3)

The first component of the above vector (2.3.3) gives the approximate eigenfunction
y1 and the second component of the above vector (2.3.3) gives the derivative of the
approximate eigenfunction z1 of the regular Sturm-Liouville problem (2.3.1) at x. Now
we will show that y1 and z1 converge to exact functions y(x) and y′(x) respectively as
p→ ∞.
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Using the Stirling’s Formula n!≈√2π n
n+1

2 e−n for α j in (2.2.6), we obtain

α j =
(2p− j)!p!(−1) j

(2p)! j!(p− j)!

≈ (−1) j (2p− j)
2p− j+1

2
√

2 π e−(2p− j)p
p+1

2
√

2 π e−p

j! (2p)
2p+1

2
√

2π e−2p(p− j)
p− j+1

2
√

2 π e−(p− j)

≈ (−1) j 1
j!

2
2p− j+1

2 (p− j
2)

2p− j+1
2

2
2p+1

2 p
p
2 (p− j)

p− j+1
2

≈ (−1) j 1
j!

1
2 j

(
p− j

2
p− j

) p− j+1
2

(
p− j

2
p

) p
2

.

This gives,

lim
p→∞

α j = (−1) j 1
j!

1
2 j .

Thus,

lim
p→∞

m22 = lim
p→∞


1+

b p
2 c

∑
j=1

α2 j(−1) jλ j h2 j




= 1+
∞

∑
j=1

1
(2 j)!

1
22 j (−1) jλ j h2 j

=
∞

∑
j=0

(−1) j

(√
λ h
2

)2 j
1

(2 j)!

= cos(
√

λ)
h
2
.

(2.3.4)

Using the same idea we obtain

lim
p→∞

m12 = lim
p→∞



b p−1

2 c
∑
j=0

(−1) jα2 j+1(λ) j h2 j+1




=
1√
λ

sin(
√

λ)
h
2
.

(2.3.5)



16

It follows from (2.3.4) and (2.3.5) that

lim
p→∞

det(M) = m2
22 +λm2

12

= cos2(
√

λ)
h
2

+λ
(

1√
λ

sin(
√

λ)
h
2

)2

= 1.

Hence the approximate eigenfunction of (2.3.1) to the corresponding eigenvalue λ
converges to exact eigenfunction

lim
p→∞

y1 = 2
z0

det(M)
1√
λ
(cos(

√
λ

h
2
))(sin(

√
λ

h
2
))

=
z0√

λ
sin(

√
λ (x− x0)).

Since we have z(x) = y′(x), the derivative of approximate eigenfunction of (2.3.1) to
the corresponding eigenvalue λ converges to derivative of the exact solution

lim
p→∞

z1 =
z0

det(M)

(
(−λ)

1
λ

sin2(
√

λ
h
2
)+ cos2(

√
λ

h
2
)
)

= z0 cos(
√

λ (x− x0)),

where λ = k2π2, k = 1,2, . . ..

2.4 Numerical Results for Regular Sturm-Liouville Eigenvalue Problems

We consider two regular Sturm-Liouville eigenvalue problems, one of them has
polynomial coefficients and the other has periodic coefficients taken from Bujurke,
Salimath, & Shiralashetti (2008).

Example 1: Consider the Titchmarch equation

y′′+(λ− x2n)y(x) = 0,

y(0) = y(1) = 0,
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where n is a nonnegative integer. We obtain the numerical solutions taking n = 0,2.
The accuracy of the method is tested by comparing with the exact solution which exists
when n = 0 and Finite Difference Method (FDM) solution when n = 2.

Tables 2.1 and 2.2 give computed eigenvalues and the solution y(x) of Titchmarch
problem using Taylor’s decomposition method (TDM), Haar wavelet series method
(HWSM) and FDM for p = 16 and n = 0,2, the integer parameter in Titchmarch
problem.

Example 2: Consider the Mathieu’s equation

y′′+(λ−2θcos(2x))y = 0,

y(0) = y(π) = 0.

We will solve these two problems approximately using Taylor’s decomposition method
(TDM) and we will compare our results with the results in Bujurke, Salimath, &
Shiralashetti (2008). Bujurke, Salimath, & Shiralashetti (2008) that solve Example
1 and Example 2 approximately using Haar wavelets. So they transform the interval
[0,π] to [0,1] because of the properties of Haar wavelets. So, to compare the results we
normalize the interval [0,π] by using x = πt, the Mathieu’s equation in Example 2
transformed into

y′′+(π2λ−2π2θcos(2πt))y = 0,

y(0) = y(1) = 0.

The estimation of the eigenvalues for this problem is more complicated to the
problems discussed Example 1. We obtain eigenpairs corresponding to a fixed value
of θ = 5, demonstrating the fact that the first eigenvalue can even be negative, a
distinguishing feature of Mathieu’s equation. We also demonstrate graphically the
fact that the first eigenfunction has no zeros in (0,1) and the nth eigenfunction has
n−1 zeros in (0,1) Binding, & Volmer (1996) and Everitt, et al. (1983) (see Fig. 2.1).
Table 2.3 gives the asymptotic behavior of higher eigenvalues of Mathieu’s
equation and these eigenvalues are λn = n2 + O(1), which is consistent with the
classical theorem on asymptoticity of the eigenvalues lim

n→∞
λ1/2

n /n = 1 from Brunt (2003).
Shifting symmetry of solutions for selected values of parameter is displayed in
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Figure 2.2.

The numerical calculations and all figures in this work are performed using
Mathematica.

llllllllllllll
lllllllllllllllFigure 2.1 Higher eigenfunctions of Mathieu’s equation for a fixed parameter
lllllllllllllll θ = 5.

llllllllllllll
lllllllllllllllFigure 2.2 Solutions of Mathieu’s equation for different parameters of θ.
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Table 2.1 Comparison of the first eigenvalue and solutions of Example 1 using Taylor’s
decomposition method, exact values and the Table 4 from Bujurke, Salimath, & Shiralashetti
(2008), when p = 16, n = 0 and h = 0.0625.llllmmmmmmmmmmmmmmmmmmmlllll

x HWSM FDM TDM Exact
0 0 0 0 0

0.0625 0.27521 0.278599 0.275899 0.275899
0.125 0.54181 0.541196 0.541196 0.541196

0.1875 0.78549 0.785695 0.785695 0.785695
0.25 1.00482 1 1 1

0.3125 1.17851 1.17588 1.17588 1.17588
0.375 1.31285 1.30656 1.30656 1.30656

0.4375 1.38376 1.38704 1.38704 1.38704
0.5 1.41103 1.41421 1.41421 1.41421

0.5625 1.38376 1.38704 1.38704 1.38704
0.625 1.31285 1.30656 1.30656 1.30656

0.6875 1.17851 1.17588 1.17588 1.17588
0.75 1.00482 1 1 1

0.8125 0.78549 0.785695 0.785695 0.785695
0.875 0.54181 0.541196 0.541191 0.541191

0.9375 0.27521 0.275899 0.275899 0.275899
1 0 0 0 0

λ1 = 10.9334 (HWSM), 10.8379 (FDM), 10.8696 (TDM), 10.8696 (Exact)

In the Table 2.4 the observed orders ord(h) are computed using the
following formula

ord(h) =
log y4h−y2h

y2h−yh

log2

where y4h, y2h and yh are the approximated value of eigenfunctions at xk to the
corresponding eigenvalue λ when the problems are solved with stepsizes 4h, 2h and
h respectively. The observed orders given in the following tables are well confirm the
theoretical results. That is the order of Taylor’s decomposition method is order of 2p.
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Table 2.2 Comparison of the first eigenvalue and solutions of Example 1 using Taylor’s
decomposition method and the Table 4 from Bujurke, Salimath, & Shiralashetti (2008), when
p = 16, n = 2 and h = 0.0625.

x HWSM FDM TDM
0 0 0 0

0.0625 0.27521 0.27756 0.277563
0.125 0.54181 0.54434 0.544337

0.1875 0.78949 0.78996 0.789953
0.25 1.00485 1.00488 1.00487

0.3125 1.18153 1.18075 1.18074
0.375 1.31286 1.31082 1.31076

0.4375 1.39372 1.38996 1.38994
0.5 1.42102 1.41527 1.41529

0.5625 1.39371 1.38591 1.38598
0.625 1.31285 1.30323 1.30334

0.6875 1.18154 1.18066 1.17081
0.75 1.0048 0.99361 0.993792

0.8125 0.77949 0.77917 0.779357
0.875 0.53481 0.53577 0.535934

0.9375 0.27726 0.27277 0.272878
1 0 0 0

λ1 = 10.3452 (HWSM), 9.95067 (FDM), 9.98317 (TDM).

Table 2.3 Comparison of higher eigenvalues for Mathieu’s equation obtained from FDM,
HWSM and TDM corresponding to θ = 5.mmmmmmmmmmmmmmmmmmmmmmmmmmm

n n2 λn(FDM) λn (HWSM) λn (TDM)
1 1 -57311 -5.4665 -5.79008
2 4 2.0992 2.6161 2.09946
3 9 9.2365 9.4227 9.23633
4 16 16.648 16.3707 16.6482
5 25 25.511 24.1471 25.5108
6 36 36.359 36.6577 36.3589
λ1 =−5.46653 (HWSM), -5.73115 (FDM), -5.79008 (TDM).
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Table 2.4 Comparison of the solutions corresponding to the first eigenvalue for different
step-sizes and observed orders of Example 1 for n = 2 at x = 1/2 using Taylor’s decomposition
method.mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

p = 2 p = 3 p = 4
n = 2 -1.6205094696443345 -1.9314644751012906 -2.0235744281581614
n = 4 -2.0166390991925601 -2.038800266323615 -2.0392696315435903
n = 8 -2.037712615075868 -2.039247754178566 -2.0392599136760863

n = 16 -2.0391623932478797 -2.039259748585679 -2.0392599481929437
n = 32 -2.039253807660177 -2.0392599452145523 -2.0392599483660714

Observed Orders
ord(1/8) 4.23247 7.90607 10.6574

ord(1/16) 3.86153 5.22141 8.13719
ord(1/32) 3.98674 5.93074 7.63932



CHAPTER THREE
BRATU PROBLEM

The boundary problem

y′′+λey = 0, 0 < x < 1,

y(0) = 0 and y(1) = 0
(3.0.1)

is referred to as the Bratu Problem in 1-dimensional planar coordinates. It is nonlinear
eigenvalue problem with two known bifurcated solutions for λ < λc and no solutions
for λ > λc, and a unique solution when λ = λc. The classical Bratu problem (see
Buckmire, 2003);

4u+λeu = 0 on Ω : {(x,y) ∈ 0 6 x 6 1,0 6 y 6 1},
u = 0 on ∂Ω

is a nonlinear elliptical partial differential equation that appears in a number of
applications, from the fuel ignition model found in thermal combustion theory (Frank-
Kamenetski, 1955) to the Chandrasekhar model for the expansion of the universe
(Chandrasekhar, 1957). It is also a nonlinear eigenvalue problem that is often used
as a benchmarking tool for numerical methods (Abbott, 1978 and Ascher, Mattheji, &
Russell, 1995) due to the bifurcation nature of the solution for λ < λc. In Jacobsen, &
Schmitt (2002), Jacobsen and Schmitt provide an excellent summary of the
significance and history of Bratu problem. Several numerical techniques, such as
Mickens Finite difference scheme (Buckmire, 2004), weighed residual method
(Odejide, & Aregbesola, 2006), Adomian decomposition method (Wazwaz, 2005)
and Laplace transform decomposition numerical algorithm (Khuri,2004) have been
implemented independently to handle the Bratu model numerically.

The exact solution to (3.0.1) is given in Buckmire (2003), Khuri (2004) and Wazwaz
(2005) and represented here as

y(x) =−2ln

[
cosh

(
(x− 1

2)θ
2

)

cosh(θ
4)

]
(3.0.2)

22
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where θ solves
θ =

√
2λcosh

(
θ
4

)
. (3.0.3)

There are two solutions to (3.0.3) for values 0 < λ < λc. For λ > λc there is no solution.
The solution (3.0.2) is unique only for a critical value of λ = λc which solves

1 =
√

2λc sinh
(

θc

4

)
1
4
. (3.0.4)

The critical value θc is
θc = 4.79871456.

The exact value of θc can therefore be used in (3.0.4) to obtain the exact value of λc

λc =
8

sinh2
(

θc
4

) = 3.513830719.

This chapter presents Taylor’s decomposition method for solving the nonlinear 1-
dimensional Bratu problem (3.0.1). The algorithm illustrates how the Taylor’s
decomposition technique (Ashyralyev, & Sobolevskii, 2004) can be efficiently
manipulated to approximate the solution of this non-linear boundary value problem.
In section 2, the computation of the eigenvalues of the problem by using Taylor’s
decomposition method is given. In section 3, the application and error analysis of the
method for the nonlinear initial value problem corresponding to the Bratu
problem are discussed. The last section demonstrates numerically accurate solutions
to 1-dimensional Bratu problem for some λ 6 λc eigenvalues.

3.1 Computation of Eigenvalues and Eigenfunctions by Taylor’s
Decomposition Method

For convenience we introduce the following notations as in chapter 2;

Y ′(x) = F(Y (x)), 0 < x < 1,

A0Y (0)+A1Y (1) = 0,
(3.1.1)
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where

Y (x) =

[
y(x)
z(x)

]
, F(Y (x)) =

[
f (0)
1 (y,z)

f (0)
2 (y,z)

]
,

A0 =

[
1 0
0 0

]
, A1 =

[
0 0
1 0

]
, f (0)

1 (y,z) = z and f (0)
2 (y,z) =−λey.

Defining the following recurrence relations for j = 1, . . . ,2p,

f ( j)
1 (y,z) = z

∂ f ( j−1)
1 (y,z)

∂y
−λey ∂ f ( j−1)

1 (y,z)
∂z

, (3.1.2)

and

f ( j)
2 (y,z) = z

∂ f ( j−1)
2 (y,z)

∂y
−λey ∂ f ( j−1)

2 (y,z)
∂z

(3.1.3)

we get
f ( j)
1 (y,z) = f ( j−1)

2 (y,z) for j = 1, . . . ,2p, (3.1.4)

Y ( j)(x) =

[
f ( j−1)
1 (y,z)

f ( j−1)
2 (y,z)

]
for j = 1, . . . ,2p+1. (3.1.5)

We first give the following lemma which defines f ( j−1)
2 (y,z) explicitly.

Lemma 3.1.1. For j = 1, . . . ,2p, let f ( j)
2 (y,z) satisfies the recurrence relation (3.1.3)

with f (0)
2 (y,z) =−λey. Then

f ( j−1)
2 (y,z) =

b j

∑
i=0

(−1)i+1a j,iλi+1(ey)i+1z j−2i−1, (3.1.6)

where b j = b j−1
2 c and

a j,i =





1, i = 0,

(i+1)a j−1,i +( j−2i)a j−1,i−1, 1 6 i 6 b j−1,

0, else,

for j = 1, . . . ,2p+1.

Proof. The proof follows induction argument based on the equation (3.1.3). Let j = 1,



25

we get

f (1)
2 (y,z) = z

∂ f (0)
2 (y,z)

∂y
−λey ∂ f (0)

2 (y,z)
∂z

= z(−λey)
=−λzey

and for j = 2 with a0,2 = 1, right hand side of (3.1.6) becomes

0

∑
i=0

(−1)i+1ai,2λi+1(ey)i+1z2−2i−1 =−λeyz

= f (1)
2 (y,z).

Suppose it is true for j = k that is

f (k−1)
2 (y,z) =

bk

∑
i=0

(−1)i+1ak,iλi+1(ey)i+1zk−2i−1

where bk = bk−1
2
c.

Now we will show that (3.1.6) is true for j = k +1.

f (k)
2 (y,z) = z

∂ f (k−1)
2 (y,z)

∂y
−λey ∂ f (k−1)

2 (y,z)
∂z

= z
bk

∑
i=0

(−1)i+1ak,iλi+1(i+1)(ey)i+1zk−2i−1

−λey
bk

∑
i=0

(−1)i+1ak,iλi+1(ey)i+1(k−2i−1)zk−2i−2

=
bk

∑
i=0

(−1)i+1ak,iλi+1(i+1)(ey)i+1z(k+1)−2i−1

+
bk

∑
i=0

(−1)i+2ak,iλi+2(ey)i+2(k−2i−1)zk−2i−2

=
bk

∑
i=0

(−1)i+1(i+1)ak,iλi+1(ey)i+1z(k+1)−2i−1

+
bk+1

∑
i=1

(−1)i+1ak,i−1λi+1(ey)i+1(k +1−2i)zk−2i

Case i. Let k is odd that is k = 2c− 1, c = 1, . . . , p, so bk = b2c−1−1
2

c = c− 1 =
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b2c−1
2

c= bk+1. Then

f (k)(y,z) =
c−1

∑
i=0

(−1)i+1(i+1)a2c−1,iλi+1(ey)i+1z2c−2i−1

+
c

∑
i=1

(−1)i+1a2c−1,i−1λi+1(ey)i+1(2c−1−2i+1)z2c−1−2i

=
c−1

∑
i=0

(−1)i+1(i+1)a2c−1,iλi+1(ey)i+1z2c−2i−1

+
c−1

∑
i=0

(−1)i+1a2c−1,i−1λi+1(ey)i+1(2c−1−2i+1)z2c−1−2i

since a2c−1,−1 = 0. Hence

f (k)(y,z) =
c−1

∑
i=0

(−1)i+1[(i+1)a2c−1,i +(2c−2i)a2c−1,i−1]λi+1(ey)i+1z2c−2i−1

=
bk+1

∑
i=0

(−1)i+1[(i+1)ak,i +(k +1−2i)ak,i−1]λi+1(ey)i+1z(k+1)−2i−1

=
bk+1

∑
i=0

(−1)i+1ak+1,iλi+1(ey)i+1z(k+1)−2i−1

Case ii. Let k is even that is k = 2c, c = 1, . . . , p, so bk = b2c−1
2

c = c− 1 and

bk+1 = b2c+1−1
2 c= c. Then

f (k)(y,z) =
c−1

∑
i=0

(−1)i+1(i+1)a2c,iλi+1(ey)i+1z2c+1−2i−1

+
c

∑
i=1

(−1)i+1a2c,i−1λi+1(ey)i+1(2c−2i+1)z2c+1−1−2i

=
c

∑
i=0

(−1)i+1(i+1)a2c,iλi+1(ey)i+1z(2c+1)−2i−1

+
c

∑
i=0

(−1)i+1a2c,i−1λi+1(ey)i+1(2c+1−2i)z(2c+1)−1−2i
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since a2c,c = 0 and a2c,−1 = 0. Hence

f (k)(y,z) =
c

∑
i=0

(−1)i+1[(i+1)a2c,i +(2c+1−2i)a2c,i−1]λi+1(ey)i+1z(2c+1)−2i−1

=
bk+1

∑
i=0

(−1)i+1[(i+1)ak,i +(k +1−2i)ak,i−1]λi+1(ey)i+1z(k+1)−2i−1

=
bk+1

∑
i=0

(−1)i+1ak+1,iλi+1(ey)i+1z(k+1)−2i−1.

Theorem 3.1.1. If f ( j)
1 (y,z) and f ( j)

2 (y,z) are sufficiently smooth and satisfy (3.1.4)

and (3.1.6) respectively then for j = 2, . . . ,2p+1, the following relations hold:

a) (−1) j f ( j−1)
1 (0,z1)− f ( j−1)

1 (0,z0)

= (z1 + z0)(−1) j
b j−1

∑
i=0

(−1)i+1a j−1,iλi+1

[
j−2i−3

∑
n=0

(−1)nz j−2i−3−n
1 zn

0

]
,

(3.1.7)

for any fixed z0, z1,

b) (−1) j f ( j−1)
2 (0,z1)− f ( j−1)

2 (0,z0) =−2
b j

∑
i=0

(−1)i+1λi+1a j,iz
j−2i−1
0

=−2 f ( j−1)
2 (0,z0),

(3.1.8)

for z1 =−z0.

Proof. We split the proof (a) into two cases.
a) Case i. Let j = 2k +1 for k = 1, . . . , p,

(−1)2k+1 f (2k)
1 (0,z1)− f (2k)

1 (0,z0) =− f (2k−1)
2 (0,z1)− f (2k−1)

2 (0,z0).



28

Using (3.1.6) from Lemma 3.1.1, we have

(−1)2k+1 f (2k)
1 (0,z1)− f (2k)

1 (0,z0) =− f (2k−1)
2 (0,z1)− f (2k−1)

2 (0,z0)

=−
k−1

∑
i=0

(−1)i+1a2k,iλi+1z2k−2i−1
1 −

k−1

∑
i=0

(−1)i+1a2k,iλi+1z2k−2i−1
0

=
k−1

∑
i=0

(−1)i+2a2k,iλi+1
[
z2k−2i−1

1 + z2k−2i−1
0

]

= (z1 + z0)

(
−

k−1

∑
i=0

(−1)i+1a2k,iλi+1

[
2k−2i−2

∑
n=0

(−1)nz2k−2i−2−n
1 zn

0

])
.

Case ii. Let j = 2k for k = 1,2, . . . , p. The proof is analogous to the case i.
b) Case i. Let j = 2k +1 for k = 1, . . . , p, using Lemma 3.1.1,

(−1)2k+1 f (2k)
2 (0,z1)− f (2k)

2 (0,z0)

=−
k

∑
i=0

(−1)i+1a2k+1,iλi+1z2k+1−2i−1
1 −

k

∑
i=0

(−1)i+1a2k+1,iλi+1z2k+1−2i−1
0

=
k

∑
i=0

(−1)i+1a2k+1,iλi+1
[
−(−z0)2k−2i− z2k−2i

0

]

=−2
k

∑
i=0

(−1)i+1a2k+1,iλi+1z2k−2i
0 .

Case ii. Let j = 2k for k = 1,2, . . . , p. The proof is analogous to the case i.

We consider the application of Taylor’s decomposition Ashyralyev, & Sobolevskii
(2004) of solution to (3.1.1) on two points xk and xk−1:

Y (xk)−Y (xk−1)+
p

∑
j=1

α jY ( j)(xk)h j−
q

∑
j=1

β jY ( j)(xk−1)h j = τk, (3.1.9)

where
τk =

(−1)p

(p+q)!

∫ xk

xk−1

(xk− s)q(s− xk−1)p Y (p+q+1)(s)ds, (3.1.10)
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and xk = kh, k = 0, . . . ,n, nh = 1, n ∈ N with the stepsize h,

α j =
(p+q− j)!p!(−1) j

(p+q)! j!(p− j)!
, 1 6 j 6 p,

β j =
(p+q− j)!q!

(p+q)! j!(q− j)!
, 1 6 j 6 q .

Neglecting the last term of (3.1.9), we obtain single-step difference schemes of (p+q)-
order of accuracy for the approximate solution to the problem (3.1.1)

Yk−Yk−1 +
p

∑
j=1

α jY
( j)
k h j−

q

∑
j=1

β jY
( j)
k−1h j = 0, (3.1.11)

where Y ( j)
k =

[
y( j)

k

z( j)
k

]
is the approximate value of Y ( j)(xk). For the computation of the

eigenvalues of (3.0.1), putting h = 1 and p = q, the approximation (3.1.11) gives

Y1−Y0 +
p

∑
j=1

(−1) jβ jY
( j)
1 −

p

∑
j=1

β jY
( j)
0 = 0, (3.1.12)

where α j = (−1) jβ j. Writing (3.1.12) with respect to the components and
imposing the boundary conditions y0 = y(0) = 0 and y1 = y(1) = 0, we have the
following equations

p

∑
j=1

β j

[
(−1) j f ( j−1)

1 (0,z1)− f ( j−1)
1 (0,z0)

]
= 0 (3.1.13)

and

z1− z0 +
p

∑
j=1

β j

[
(−1) j f ( j−1)

2 (0,z1)− f ( j−1)
2 (0,z0)

]
= 0. (3.1.14)

Using Theorem 3.1.1.a, the equation (3.1.13) becomes

(z1 + z0)

[
p

∑
j=2

β j

b j−1

∑
i=0

(−1) j+i+1a j−1,iλi+1

[
j−2i−3

∑
n=0

(−1)nz j−2i−3−n
1 zn

0

]]
= 0. (3.1.15)

It is clear that for z1 = −z0, that is, y′(1) = −y′(0), (3.1.15) is satisfied. Thus, taking
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z1 =−z0 and using Theorem 3.1.1.b, the equation (3.1.14) will be

G(z0,λ) = z0 +
p

∑
j=1

β j f ( j−1)
2 (0,z0) = 0. (3.1.16)

As Figure 3.1 demonstrates, we observed that λ has a maximum value. To find the

llllllllllllll 0 2 4 6 8 10 12 14
z0>y’H0L0

2

4

6

8

Λ

lllllllllllllllFigure 3.1 Graph of the equation G(λ,z0) = 0.

maximum value, it is necessary to satisfy

dλ
dz0

=−∂G/∂z0

∂G/∂λ
= 0, that is

∂G
∂z0

= 0.

Solving nonlinear equations

G(z0,λ) = 0 and
∂G
∂z0

= 0

by Newton’s method, we find critical eigenvalue λc = 3.5138307192516 and the
corresponding initial value z0 ' y′(0).

Figure 3.1 and Table 3.1 show that there is no z0 for λ > λc and a unique solution
corresponding to the initial value z1,0 = z0 for λ = λc, and there are two solutions
corresponding to the initial values z1,0 and z2,0 for λ < λc. It is conclude that, the
numerical results obtained using Taylor’s decomposition method agree with the exact
results of Bratu problem given in Khuri (2004).
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Table 3.1 Corresponding to the initial values z1,0 and z2,0 for various λ 6 λc obtained from
(3.1.16)

λ z1,0 z2,0

0.5 0.261277 12.9998
1 0.549353 10.8469
2 1.24822 8.26876
3 2.3196 6.10338
3.5138307192516 4. −

3.2 Error Analysis of the Approximate Solution

Now we find an approximate solution to the initial value problem

Y ′(x) = F(Y (x))
Y (0) = Y0

(3.2.1)

that corresponds to Bratu Problem (3.0.1) for an eigenvalue λ 6 λc and the initial value
z0. Using Taylor’s decomposition on two points xk−1, xk on the uniform grid

[0,1]h = {xk = kh, k = 0,1, . . . ,n, nh = 1, n ∈ N},

for p = q, we get

Yk−Yk−1 +
p

∑
j=1

(−1) jβ jY
( j)
k h j−

p

∑
j=1

β jY
( j)
k−1h j = 0 and Y0 =

[
y0

z0

]
, (3.2.2)

where y0 = y(0), z0 ' z(0). Solving the nonlinear system (3.2.2) by Newton’s method,
we obtain the approximate value yk of the eigenfunction y(x) at x = xk with O(h2p).

Lemma 3.2.1. Let Y (x) has (2p + 1) continuous derivatives on [0,1], then the

truncation error τk at xk for the Taylor’s decomposition method (3.2.2) is

‖τk‖6 const.
ξ h2p+1Mp+1

(2p)!
(3.2.3)

where M = max
(y,z)∈D

{| f (0)
1 (y,z)|, | f (0)

2 (y,z)|}, D is 2-dimensional box in R2,

ξ = max{a j,i}, j = 1, . . . ,2p + 1, i = 0, . . . , p, and const. is a constant independent

of h and p, and ‖ · ‖ denotes ‖ · ‖∞.
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Proof. From (3.1.6) in Lemma 3.1.1, we have

| f ( j)
2 (y,z)| 6

b j+1

∑
i=0

a j+1,iλi+1(ey)i+1|z| j−2i

6
b j+1

∑
i=0

a j+1(λey)i+1|z| j−2i

6
b j+1

∑
i=0

a j+1| f (0)
2 (y,z)|i+1| f (0)

1 (y,z)| j−2i

6 ξ
b j+1

∑
i=0

Mi+1M j−2i

6 ξM j+1
b j+1

∑
i=0

(
1
M

)i

6 ξMi+1

∣∣∣∣∣
1− ( 1

M )b j+1+1

1− 1
M

∣∣∣∣∣
6 ξM j+1−b j+1

1
|M−1| ,

and hence
| f ( j)

2 (y,z)|6 ξM j+1−b j+1
1

|M−1| , M 6= 1. (3.2.4)

Since f (2p)
1 (y,z) = f (2p−1)

2 (y,z), using (3.2.4) with b j = b j−1
2
c for j = 2p− 1 and

j = 2p, we obtain

||Y (2p+1)(s)|| 6 max
{∣∣∣ f (2p−1)

2 (y(s),z(s))
∣∣∣ ,

∣∣∣ f (2p)
2 (y(s),z(s))

∣∣∣
}

6 max
{

ξM2p−b2p

|M−1| ,
ξM2p+1−b2p+1

|M−1|
}

6 ξ
Mp+1

|M−1| .
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From (3.1.10), we obtain

||τk|| 6 1
(2p)!

∫ xk

xk−1

‖(xk− s)p(s− xk−1)p Y (2p+1)(s)|| ds

6 1
(2p)!

h2p
∫ xk

xk−1

||Y (2p+1)(s)|| ds

6 1
(2p)!

h2p ξ
Mp+1

|M−1|

∣∣∣∣
∫ xk

xk−1

ds
∣∣∣∣

‖τk‖6 const.
h2p+1

(2p)!
ξ Mp+1,

where const. is independent of h and p which proves the assertion.

Lemma 3.2.2. Let f (0)
2 (y,z) be Lipshitz in y with constants K in 2-dimensional box D

and let

di, j = max
(y,z)∈D

∣∣∣∣∣
∂ f ( j)

i (y,z)
∂y

∣∣∣∣∣ , si, j = max
(y,z)∈D

∣∣∣∣∣
∂ f ( j)

i (y,z)
∂z

∣∣∣∣∣ , i = 1,2, (3.2.5)

for all j = 1,2, . . . ,2p. Then F( j)(Y (x)) is Lipshitz in Y on D with constant L where

L = max
16 j6p

{l1, j, l2, j} with l1, j = max
16 j6p

{d1, j, Ks1, j}, l2, j = max
16 j6p

{d2, j, Ks2, j}.

Proof. Using recurrence relation (3.1.2), we get

| f ( j)
1 (y,z)− f ( j)

1 (ỹ, z̃)| 6
∣∣∣∣∣z

∂ f ( j−1)
1 (y,z)

∂y
− z̃

∂ f ( j−1)
1 (ỹ, z̃)

∂y

∣∣∣∣∣

+

∣∣∣∣∣ f (0)
2 (y,z)

∂ f ( j−1)
1 (y,z)

∂z
+ f (0)

2 (ỹ, z̃)
∂ f ( j−1)

1 (ỹ, z̃)
∂z

∣∣∣∣∣
6 d1, j|z− z̃|+ s1, j| f (0)

2 (y,z)− f (0)
2 (ỹ, z̃)|.

Since f (0)
2 (y,z) is Lipschitz in y with the constant K, we obtain from (3.2.5) that

| f ( j)
1 (y,z)− f ( j)

1 (ỹ, z̃)| 6 d1, j|z− z̃|+ s1, jK|y− ỹ|
6 l1, j (|z− z̃|+ |y− ỹ|) .
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For f ( j)
1 (y,z), using a similar technique, we get

| f ( j)
2 (y,z)− f ( j)

2 (ỹ, z̃)|6 l2, j (|z− z̃|+ |y− ỹ|) .

Therefore, we obtain

||F( j)(Y )−F( j)(Ỹ )||6 L||Y − Ỹ ||, ∀ Y, Ỹ ∈ D.

Theorem 3.2.1. If F is Lipschitz in Y with constant L and if the local error at each

step satisfies Lemma 3.2.1, then the global error for (3.1.11) is bounded by

‖Y (xk)−Yk‖6 C0‖Y (0)−Y0‖+C1
ξh2pMp+1

(2p)!
,

where C0 = ex 2LB(h)
1−LhB(h) , C1 = const.

C0

L
1

1+ β2
β1

h+ · · ·+ βp
β1

hp−1
for some x > 0.

Proof. Subtracting the equation (3.1.11) from (3.1.9) and taking the norms yields

‖Y (xk)−Yk‖ 6 ‖Y (xk−1)−Yk−1‖+
p

∑
j=1

β j‖Y ( j)(xk)−Y ( j)
k ‖h j

+
p

∑
j=1

β j‖Y ( j)(xk−1)−Y ( j)
k−1‖h j +‖τk‖

6 ‖Y (xk−1)−Yk−1‖+
p

∑
j=1

β jh jL‖Y (xk)−Yk‖

+
p

∑
j=1

β jh jL‖Y (xk−1)−Yk−1‖+‖τk‖.

Using Lemma 3.2.2 and the fact that Y ( j)(x) = F( j−1)(Y (x)), we have

Ek 6 Ek−1 +
p

∑
j=1

β jh jLEk +
p

∑
j=1

β jh jLEk−1 +‖τk‖,

where Ek = ‖Y (xk)−Yk‖. It follows that

Ek 6 1+ h B(h)
1− h B(h)

Ek−1 +
1

1− h B(h)
‖τk‖,
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where B(h) = L∑p
j=1 β jh j−1. Since β1 = 1/2 and β j/β1 6 1, j = 1, . . . , p and

β2
β1

h+ · · ·+ βp
β1

hp−1 < 1 for large p, 1−hB(h) is positive and thus

Ek 6 exk
2B(h)

1−h B(h) E0 +
1

2hB(h)
‖τk‖

(
exk

2B(h)
1−hB(h) −1

)

6 exk
2B(h)

1−h B(h) E0 +
1

2Lhβ1

1

1+ β2
β1

h+ . . .+ βp
β1

hp−1
‖τk‖

(
exk

2B(h)
1−hB(h)

)
.

Since 1
1+ β2

β1
h+...+ βp

β1
hp−1

= O(1) we obtain from the bound of local error (3.2.3) we

therefore have that

Ek 6 C0E0 +C1
ξh2pMp+1

(2p)!
.

3.3 Numerical Results for Bratu Problem

The Taylor’s decomposition method described in previous sections is applied to
the one dimensional Bratu Problem. The following graphs show the exact solutions
and the approximate solutions of Bratu problem for λ = 1, the corresponding initial
values z1,0 = 0.549353, z2,0 = 10.8469 for p = 2.

llllllllllllll
lllllllmllllllllFigure 3.2 Lower solution for z1,0 = 0.549353 when λ = 1.

The numerical results using constant stepsize and observed orders of convergence
for the solution y(x) are listed in the Tables 3.2, 3.3, 3.4, 3.5 and 3.6 for different
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llllllllllllll
llllllllllmlllllFigure 3.3 Upper solution for z2,0 = 10.8469 when λ = 1.

eigenvalues λ. The observed orders are computed using

2p =
log eh

eh/2

log2
,

where eh and eh/2 are the maximum error moduli of the global errors when the problem
is solved with stepsize h and h/2 respectively.

Table 3.2 Maximum error moduli and observed errors for the solution y(x) for λ = 1 and
z0 = 0.549353.

p 2 3 4
e1/10 2.9042(-7) 1.52083(-10) 6.86108(-14)
e1/20 1.81472(-8) 2.373398(-12) 4.02456(-16)

Observed Orders
4.00033 6.00141 7.41346

Table 3.3 Maximum error moduli and observed errors for the solution y(x) for λ = 1 and
z0 = 10.8469.

p 2 3 4
e1/10 1.4734(-3) 1.5602(-5) 2.7229(-7)
e1/20 9.5390(-5) 2.8821(-7) 1.4438(-9)

Observed Orders
3.94914 5.7584 7.55922

A comparison of the errors generated using Taylor’s decomposition for different

stepsize h =
1
n

are illustrated in Figure 3.4 and 3.5.
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Table 3.4 Maximum error moduli and observed errors for the solution y(x) for λ = 3 and
z0 = 2.3196.

p 2 3 4
e1/10 1.33602(-5) 2.1112(-8) 5.02158(-11)
e1/20 8.38644(-7) 3.30479(-10) 1.95621(-13)

Observed Orders
3.99374 5.99736 8.00394

Table 3.5 Maximum error moduli and observed errors for the solution y(x) for λ = 3 and
z0 = 6.10338.

p 2 3 4
e1/10 2.3498(-4) 9.2964(-7) 5.6874(-9)
e1/20 1.4808(-5) 1.4977(-8) 2.3545(-11)

Observed Orders
3.99809 5.95585 7.9162

llllllllllllll
lllllllmllmllllllFigure 3.4 Errors for lower solution when λ = 1.
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Table 3.6 Maximum error moduli and observed errors for the solution y(x) for
λ = 3.513807192516 and z0 = 4.

p 2 3 4
e1/10 5.4628(-5) 1.7783(-7) 5.5514(-10)
e1/20 3.7633(-6) 2.805(-9) 2.2216(-12)

Observed Orders
3.85957 5.98635 7.96511

llllllllllllll
lllllllmllmllllllFigure 3.5 Errors for λc = 3.513807192516.

As seen in Figures 3.4 and 3.5, the discretization errors for p = 2 and different step

sizes h =
1
n

(n = 30, 40, 50) are bounded by −4 x 10−9. It is worth noting that in the
study Buckmire (2003) the Mickens discretization and standard discretization errors
are bounded by 1.5 x 10−6 for n = 100. As a result, tables and figures demonstrate the
power of the current study.



CHAPTER FOUR
EULER BUCKLING PROBLEM

4.1 Euler Buckling Problem

We examine an elementary, classical problem- buckling of an end-loaded rod- which
possesses a completely soluble continuous model in the form of a nonlinear, second
order boundary value problem which is described as in Stakgold (1971), Jones (2006),
Domokos, & Holmes (1993), Griffel (1981). An essential complete analysis of this
problem was provided by Euler (1744).

The classic simple example of a nonlinear eigenvalue problem is the problem of an
elastic rod under compression with its ends clamped; the angular displacement y of
the rod under a compressive load λ satisfies the following equation as given in Griffel
(1981) with f (x,y) = siny

y′′+λsiny = 0
y′(0) = 0 and y′(1) = 0.

(4.1.1)

The solution y ≡ 0 of (4.1.1) corresponds to the rod being straight. For small loads,
that is, for small values of λ, we expect that the trivial solution is the only solution.
But when the load λ is increased, we expect that the rod buckles at the some stage
corresponding to the appearance of nonzero solutions of (4.1.1). It is well known that
the linear case, where f (x,y) = y, we know that if λ is not an eigenvalue, then the zero
solution is the only solution of

y′′+λy = 0
y′(0) = 0 and y′(1) = 0.

In the case which λ is an eigenvalue, there are infinitely many solutions since any
multiple of an eigenfunction is an eigenfunction. For the nonlinear eigenvalue
problem (4.1.1) one finds that for small λ the only solution is zero solution as the
linear case. But the eigenvalue λ increases as it reaches a critical value λ1 at which
a nonzero solution appears corresponding to buckling of the rod. For λ > λ1 the
nonlinear problem behaves quite differently from the linear problem: For a range of

39
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values λ1 < λ < λ2 there is exactly one nonzero solution of (4.1.1) for each λ, and
when λ exceeds λ2 a second nonzero solution appears; similarly there is a value λ3

beyond which there are three nonzero solutions, and so on. Namely, one may establish
inductively

0 6 λ 6 π2, only the trivial solution,
π2 < λ 6 4π2 one nontrivial solution,
n2π2 < λ 6 (n+1)2π2, n nontrivial solutions,

as it is given in Stakgold (1971). This behavior is a simple example of the phenomenon
of bifurcation or branching; it occurs in many different areas of applied mathematics.
In mechanics there are many situations where sudden jumps from one kind of behavior
to another (analogous to the buckling rod) occur as some parameter (analogous to the
compressive load on the rod) is continuously varied; such problems are described by
nonlinear eigenvalue equation similar to (4.1.1).

After reviewing background of Euler Buckling problem, in section 2, we establish
lemmas and a theorem, and then we give the application of Taylor’s decomposition
method to the Euler Buckling problem. The last section demonstrates the
numerical results accompanying the theoretical results and the behavior of solution
of Euler Buckling problem.

4.2 Application of Taylor’s Decomposition Method to the Euler Buckling
Problem

For convenience we introduce the following notations as in chapter 2:

Y (x) =

[
y(x)
z(x)

]
, F(Y (x)) =

[
f (0)
1 (y,z)

f (0)
2 (y,z)

]
,

A0 =

[
0 1
0 0

]
, A1 =

[
0 0
0 1

]
, f (0)

1 (y,z) = z and f (0)
2 (y,z) =−λsiny.
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Thus, the Euler Buckling Problem (4.1.1) can be written in the form

Y ′(x) = F(Y (x)), 0 < x < 1,

A0Y (0)+A1Y (1) = 0,
(4.2.1)

Defining the following recurrence relations for j = 1, . . . ,2p,

f ( j)
i (y,z) = z

∂ f ( j−1)
i (y,z)

∂y
−λsiny

∂ f ( j−1)
i (y,z)

∂z
, i = 1, 2 (4.2.2)

we obtain

Y ( j)(x) =

[
f ( j−1)
1 (y,z)

f ( j−1)
2 (y,z)

]
=

[
f ( j−2)
2 (y,z)

f ( j−1)
2 (y,z)

]
for j = 2, . . . ,2p+1. (4.2.3)

We first give the following lemma which defines f ( j−1)
2 (y,z) explicitly.

Lemma 4.2.1. Let a2m+2,i,k and a2m+1,i,k be defined as follows

a2m+2,i,k =





1, i = 0, k = 0,

(2k +1)a2m+1,i,k +(i−2−2k)a2m+1,i,k−1

+(2m+2−2i)a2m+1,i−1,k−1, 1 6 i 6 m, 0 6 k 6 i
2 ,

0, else,
(4.2.4)

for m = 0, . . . , p−1 and

a2m+1,i,k =





1, i = 0, k = 0,

(2k +2)a2m,i,k+1 +(i+1−2k)a2m,i,k

+(2m+1−2i)a2m,i−1,k, 1 6 i 6 m, 0 6 k 6 i
2 ,

0, else,

(4.2.5)

for m = 0, . . . , p, then the following equations hold

a)
b i+1

2 c
∑
k=0

(−1)m−k (2k− (i+1))a2m,i,k(cosy)i−2k(siny)2k+1

=
b i

2 c
∑
k=0

(−1)m−k (2k− (i+1))a2m,i,k(cosy)i−2k(siny)2k+1

(4.2.6)
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for i = 0, . . . ,m−1, m = 0, . . . , p.

b)
b i+1

2 c
∑
k=0

(−1)m−k 2k a2m,i,k (cosy)i+2−2k(siny)2k−1

=
b i

2 c
∑
k=0

(−1)m+1−k(2k +2)a2m,i,k+1(cosy)i−2k(siny)2k+1

(4.2.7)

for i = 0, . . . ,m−1, m = 0, . . . , p.

c)
m−1

∑
i=0

λi+2 (2m−2i−1)z2m−2i−2
b i+1

2 c
∑
k=0

(−1)m+1−k a2m,i,k (cosy)i+1−2k(siny)2k+1

=
m

∑
i=0

λi+1 (2m−2i+1)z2m−2i
b i

2 c
∑
k=0

(−1)m+1−k a2m,i−1,k (cosy)i−2k(siny)2k+1

(4.2.8)
for i = 0, . . . ,m−1, m = 0, . . . , p.

d)
b i

2 c
∑
k=0

(−1)m+1−k (2k− i)a2m+1,i,k(cosy)i−2k−1(siny)2k+2

=
b i+1

2 c
∑
k=0

(−1)m−k (2k− i−2)a2m+1,i,k−1(cosy)i+1−2k(siny)2k

(4.2.9)

for i = 0, . . . ,m−1, m = 0, . . . , p−1.

e)
b i

2 c
∑
k=0

(−1)m+1−k (2k +1)a2m+1,i,k(cosy)i+1−2k(siny)2k

=
b i+1

2 c
∑
k=0

(−1)m+1−k (2k +1)a2m+1,i,k(cosy)i+1−2k(siny)2k

(4.2.10)

for i = 0, . . . ,m−1, m = 0, . . . , p−1.

f)
m

∑
i=0

λi+2 (2m−2i)z2m−2i−1
b i

2 c
∑
k=0

(−1)m+2−k a2m+1,i,k (cosy)i−2k(siny)2k+2

=
m

∑
i=0

λi+1 (2m−2i+2)z2m−2i+1
b i+1

2 c
∑
k=0

(−1)m+1−k a2m+1,i−1,k−1

×(cosy)i+1−2k(siny)2k

(4.2.11)
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for i = 0, . . . ,m−1, m = 0, . . . , p−1.

Proof. a) Let i be odd, i.e. i = 2c + 1, then b i+1
2 c = b2c+2

2 c = c + 1 = i+1
2 .

In this case the term 2k − (i + 1) becomes 0 for k = b i+1
2 c, since

2(c + 1)− (2c + 1 + 1) = 2c + 2− 2c− 2 = 0. Therefore it is sufficient to write the
sum on the left hand side of (4.2.6) from 0 to b i

2c, that is,

b i
2 c

∑
k=0

(−1)m−ka2m,i,k (2k− (i+1))(cosy)i−2k(siny)2k+1.

For the case i = 2c, we have b i+1
2 c = b2c+1

2 c = c = b i
2c. So we can write b i

2c instead
of writing b i+1

2 c. Hence we have

b i+1
2 c

∑
k=0

(−1)m−ka2m,i,k (2k− (i+1))(cosy)i−2k(siny)2k+1

=
b i

2 c
∑
k=0

(−1)m−ka2m,i,k (2k− (i+1))(cosy)i−2k(siny)2k+1.

for i = 1, . . . ,m−1, m = 0, . . . , p.
b) It is clear that the term 2k is 0 for k = 0, so we can rewrite the sum on the left of
(4.2.7) as

b i+1
2 c

∑
k=1

(−1)m−k (2k) a2m,i,k (cosy)i+2−2k(siny)2k−1

=
b i+1

2 c−1

∑
k=0

(−1)m−k−1 (2k +2) a2m,i,k+1 (cosy)i−2k(siny)2k+1

=
b i−1

2 c
∑
k=0

(−1)m−k+1 (2k +2) a2m,i,k+1 (cosy)i−2k(siny)2k+1

For i = 2c, b i
2c = b2c

2 c = c = i
2 , so we have a2m,i, i

2 +1 in the last sum and it equals to
0 by the definition of a2m,i,k. For i = 2c+1 we have b i

2c= b2c+1
2 c= c = b i−1

2 c. Thus
we rewrite the last sum from 0 to b i

2c, since the sum will not change. Hence we get the
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following equation:

b i+1
2 c

∑
k=0

(−1)m−k (2k) a2m,i,k (cosy)i+2−2k(siny)2k−1

=
b i

2 c
∑
k=0

(−1)m+1−k(2k +2)a2m,i,k+1 (cosy)i−2k(siny)2k+1

for i = 0, . . . ,m−1, m = 0, . . . , p.
c) Shifting the sum on the left hand side of (4.2.8) to i = 0 and remembering
a2m,−1,k = 0, we have

m

∑
i=1

λi+1 (2m−2i+1)z2m−2i
b i

2 c
∑
k=0

(−1)m+1−k a2m,i−1,k (cosy)i−2k(siny)2k+1

=
m

∑
i=0

λi+1(2m−2i+1)z2m−2i
b i

2 c
∑
k=0

(−1)m+1−k a2m,i−1,k(cosy)i−2k(siny)2k+1.

for m = 0, . . . , p.
d) Shifting the sum on the left hand side of (4.2.9) from k = 0 to k = 1 and remembering
a2m+1,i,−1 = 0, we get

b i
2 c+1

∑
k=1

(−1)m+1−k+1 a2m+1,i,k−1 (2k−2− i)(cosy)i−2k+1(siny)2k

=
b i+2

2 c
∑
k=0

(−1)m−k a2m+1,i,k−1 (2k−2− i)(cosy)i+1−2k(siny)2k

For i = 2c, b i+2
2 c= b2c+2

2 c= c+1, then the term (2k−2− i) becomes 0 for k = b i+2
2 c,

since (2c + 2)− 2− 2c = 0. Therefore it is sufficient to write the last sum form 0 to
b i+1

2 c, that is,

b i+1
2 c

∑
k=0

(−1)m−ka2m+1,i,k−1(2k−2− i)(cosy)i+1−2k(siny)2k. (4.2.12)

For the case i = 2c + 1, we have b2c+3
2 c = c + 1 = b2c+2

2 c = b i+1
2 c. So we can write
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b i+1
2 c instead of writing b i+2

2 c in the sum (4.2.12). Hence we get

b i
2 c

∑
k=0

(−1)m+1−k (2k− i) a2m+1,i,k(cosy)i−2k−1(siny)2k+2

=
b i+1

2 c
∑
k=0

(−1)m−k (2k−2− i) a2m+1,i,k−1(cosy)i+1−2k(siny)2k

for i = 0, . . . ,m, m = 0, . . . , p−1.
e) For i = 2c, b i+1

2 c= b2c+1
2 c= c = b i

2c. So we can write b i+1
2 c instead of writing b i

2c
in the sum on the left hand side of (4.2.10). For i = 2c + 1, we get b i+1

2 c = b2c+2
2 c =

c+1 = i+1
2 . In this case, by definition of a2m+1,i,k we have a2m+1,i, i

2 + 1
2
= 0 for k = i+1

2 .
Hence we obtain the following equation for i = 0, . . . ,m, m = 0, . . . , p−1

b i
2 c

∑
k=0

(−1)m+1−k (2k +1) a2m+1,i,k (cosy)i+1−2k(siny)2k

=
b i+1

2 c
∑
k=0

(−1)m+1−k (2k +1) a2m+1,i,k (cosy)i+1−2k(siny)2k.

f) It is clear that the term (2m−2i) is 0 for i = m, so we can rewrite the sum on the left
hand side of (4.2.11) as

m−1

∑
i=0

λi+2z2m−2i−1(2m−2i)
b i

2 c
∑
k=0

(−1)m−k+2a2m+1,i,k(cosy)i−2k(siny)2k+2

=
m

∑
i=1

λi+1z2m−2i+1(2m−2i+2)
b i−1

2 c
∑
k=0

(−1)m−ka2m+1,i−1,k

×(cosy)i−1−2k(siny)2k+2

=
m

∑
i=1

λi+1z2m−2i+1(2m−2i+2)
b i−1

2 c+1

∑
k=1

(−1)m+1−ka2m+1,i−1,k−1

×(cosy)i+1−2k(siny)2k

=
m

∑
i=1

λi+1z2m−2i+1(2m−2i+2)
b i+1

2 c
∑
k=1

(−1)m+1−ka2m+1,i−1,k−1

×(cosy)i+1−2k(siny)2k

By definition of a2m+1,i−1,k−1, we have a2m+1,−1,k−1 = 0 and a2m+1,i−1,−1 = 0 so we
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can rewrite the last sum as follows:

m

∑
i=0

λi+1z2m−2i+1
b i+1

2 c
∑
k=0

(−1)m+1−k (2m−2i+2) a2m+1,i−1,k−1(cosy)i+1−2k(siny)2k

for m = 0, . . . , p−1. This completes the proof.

Lemma 4.2.2. Let f ( j)
2 (y,z), a2m+2,i,k and a2m+1,i,k satisfy the recurrence relations

(4.2.2), (4.2.4) and (4.2.5) respectively with f (0)
2 (y,z) =−λsiny for j = 0, . . . ,2p. Then

f (2m)
2 (y,z) =

m

∑
i=0

λi+1z2m−2i
bi/2c
∑
k=0

(−1)m+1−ka2m+1,i,k(cosy)i−2k(siny)2k+1 (4.2.13)

for m = 0, . . . , p and

f (2m+1)
2 (y,z) =

m

∑
i=0

λi+1z2m+1−2i
b(i+1)/2c

∑
k=0

(−1)m+1−ka2m+2,i,k(cosy)i+1−2k(siny)2k

(4.2.14)
for m = 0, . . . , p−1.

Proof. The proof follows induction argument based on the equation (4.2.2). Since

f (0)
2 (y,z) = −λsiny, f ( j)

2 (y,z) = z
∂ f ( j−1)

2 (y,z)
∂y

− λ siny
∂ f ( j−1)

2 (y,z)
∂z

and

∂ f (0)
2 (y,z)

∂z
= 0; we get the function f (1)

2 (y,z) = z(−λcosy) =−λzcosy.
For j = 1 with a2,0,0 = 1, we have

0

∑
i=0

λi+1z0−2i+1
b i+1

2 c
∑
k=0

(−1)1−ka2,i,k(cosy)i+1−2k(siny)2k

= λz(−1)a2,0,0 cosy =−λzcosy.

For j = 2 with a3,0,0 = 1, we have

f (2)
2 (y,z) = z

∂ f (1)
2 (y,z)

∂y
−λ siny

∂ f (1)
2 (y,z)

∂z
= z(λ z siny)−λsiny(−λcosy)
= λz2 siny+λ2 sinycosy.
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The summation becomes

1

∑
i=0

λi+1z2−2i
b i

2 c
∑
k=0

(−1)2−ka3,i,k(cosy)i−2k(siny)2k+1

= λz2(−1)a3,0,0 siny+λ2a3,0,0 cosysiny

= λz2 siny+λ2 cosysiny.

Suppose it is true for j = 2m−1, that is,

f (2m−1)
2 (y,z) =

m−1

∑
i=0

λi+1z2m−2i−1
b i+1

2 c
∑
k=0

(−1)m−ka2m,i,k(cosy)i+1−2k(siny)2k.

Now we will show that (4.2.13) is true for j = 2m

f (2m)
2 (y,z) = z

∂ f (2m−1)
2 (y,z)

∂y
−λ siny

∂ f (2m−1)
2 (y,z)

∂z

= z
m−1

∑
i=0

λi+1z2m−2i−1
b i+1

2 c
∑
k=0

(−1)m−ka2m,i,k [−(i+1−2k)

×(cosy)i−2k siny (siny)2k +2k cosy (cosy)i+1−2k(siny)2k−1
]

−λsiny
m−1

∑
i=0

λi+1(2m−2i−1)z2m−2i−2
b i+1

2 c
∑
k=0

(−1)m−ka2m,i,k

×(cosy)i+1−2k(siny)2k

=
m−1

∑
i=0

λi+1z2m−2i



b i+1

2 c
∑
k=0

(−1)m−ka2m,i,k (2k− (i+1))(cosy)i−2k(siny)2k+1

+
b i+1

2 c
∑
k=0

(−1)m−k 2k a2m,i,k (cosy)i+2−2k(siny)2k−1


+

m−1

∑
i=0

λi+2(2m−2i−1)

×z2m−2i−2
b i+1

2 c
∑
k=0

(−1)m+1−ka2m,i,k(cosy)i+1−2k(siny)2k+1
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Substituting equations (4.2.6), (4.2.7) and (4.2.8) into the last observation, we have

f (2m)
2 (y,z) =

m−1

∑
i=0

λi+1z2m−2i



b i

2 c
∑
k=0

(−1)m−k(2k− (i+1))a2m,i,k(cosy)i−2k

×(siny)2k+1 +
b i

2 c
∑
k=0

(−1)m+1−k(2k +2)a2m,i,k+1(cosy)i−2k(siny)2k+1




+
m

∑
i=0

λi+1(2m−2i+1)z2m−2i
b i

2 c
∑
k=0

(−1)m+1−ka2m,i−1,k

×(cosy)i−2k(siny)2k+1.

Rewrite the first summation in the last equation from 0 to m, since a2m,m,k = 0 and
a2m,m,k+1 = 0

f (2)
2 (y,z) =

m

∑
i=0

λi+1z2m−2i
b i

2 c
∑
k=0

(−1)m+1−k [
(i+1−2k)a2m,i,k +(2k +2)a2m,i,k+1

]

×(cosy)i−2k(siny)2k+1 +
m

∑
i=0

λi+1z2m−2i

×
b i

2 c
∑
k=0

(−1)m+1−k(2m−2i+1)a2m,i−1,k(cosy)i−2k(siny)2k+1

=
m

∑
i=0

λi+1z2m−2i
b i

2 c
∑
k=0

(−1)m+1−k [
(i+1−2k)a2m,i,k +(2k +2)a2m,i,k+1

+(2m−2i+1)a2m−i−1,k
]
(cosy)i−2k(siny)2k+1

=
m

∑
i=0

λi+1z2m−2i
b i

2 c
∑
k=0

(−1)m+1−ka2m+1,i,k(cosy)i−2k(siny)2k+1.
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After these, now we will find f (2m+1)
2 (y,z);

f (2m+1)
2 (y,z) = z

∂ f (2m)
2 (y,z)

∂y
−λsiny

∂ f (2m)
2 (y,z)

∂z

= z
m

∑
i=0

λi+1z2m−2i
b i

2 c
∑
k=0

(−1)m+1−ka2m+1,i,k

[
(2k− i)(cosy)i−1−2k

×(siny)2k+2 +(2k +1)(cosy)i−2k+1(siny)2k
]

−λsiny
m

∑
i=0

λi+1(2m−2i)z2m−2i−1

×
b i

2 c
∑
k=0

(−1)m+1−ka2m+1,i,k(cosy)i−2k(siny)2k+1

=
m

∑
i=0

λi+1z2m−2i+1



b i

2 c
∑
k=0

(−1)m+1−k (2k− i) a2m+1,i,k(cosy)i−1−2k

×(siny)2k+2 +
b i

2 c
∑
k=0

(−1)m+1−k(2k +1)a2m+1,i,k(cosy)i−2k+1(siny)2k




+
m

∑
i=0

λi+2 (2m−2i) z2m−2i−1
b i

2 c
∑
k=0

(−1)m+2−ka2m+1,i,k

×(cosy)i−2k(siny)2k+2.

Substituting equations (4.2.9), (4.2.10) and (4.2.11) into the last equation, we have

f (2m+1)
2 (y,z) =

=
m

∑
i=0

λi+1z2m−2i+1



b i+1

2 c
∑
k=0

(−1)m−k (2k− i−2) a2m+1,i,k−1(cosy)i+1−2k(siny)2k

+
b i+1

2 c
∑
k=0

(−1)m+1−k (2k +1) a2m+1,i,k(cosy)i+1−2k(siny)2k


+

m

∑
i=0

λi+1z2m−2i+1

×
b i+1

2 c
∑
k=0

(−1)m+1−k (2m−2i+2) a2m+1,i−1,k−1(cosy)i+1−2k(siny)2k

=
m

∑
i=0

λi+1z2m−2i+1
b i+1

2 c
∑
k=0

(−1)m+1−k [
(i−2−2k)a2m+1,i,k−1

+(2k +1)a2m+1,i,k +(2m−2i+2)a2m+1,i−1,k−1
]
(cosy)i+1−2k(siny)2k.
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Hence we get,

f (2m+1)
2 =

m

∑
i=0

λi+1z2m+1−2i
b i+1

2 c
∑
k=0

(−1)m+1−ka2m+2,i,k(cosy)i+1−2k(siny)2k.

Theorem 4.2.1. If f ( j)
1 (y,z) and f ( j)

2 (y,z) are sufficiently smooth and satisfy (4.2.3),

(4.2.13) and (4.2.14) then the following relations hold

for j = 2, . . . ,2p+1:

a) y1− y0 +
p

∑
j=1

β j

[
(−1) j f ( j−1)

1 (y1,0)− f ( j−1)
1 (y0,0)

]

=−2

(
y0 +

p

∑
j=1

β j f ( j−1)
1 (y0,0)

)
and

p

∑
j=1

β j

[
(−1) j f ( j−1)

2 (y1,0)− f ( j−1)
2 (y0,0)

]
= 0

(4.2.15)
for y1 =−y0,

b)
p

∑
j=1

β j

[
(−1) j f ( j−1)

2 (y1,0)− f ( j−1)
2 (y0,0)

]
=−2

p

∑
j=1

β j f ( j−1)
2 (y0,0) and

y1− y0 +
p

∑
j=1

β j

[
(−1) j f ( j−1)

1 (y1,0)− f ( j−1)
1 (y0,0)

]
= 0

(4.2.16)
for y1 = y0.

Proof. Let j = 2m+1 for m = 0, . . . , p−1, then f (2m+1)
1 (y,z) becomes

f (2m)
1 (y,z) = f (2m−1)

2 (y,z)

=
m−1

∑
i=0

λi+1z2m−2i−1
b(i+1)/2c

∑
k=0

(−1)m−ka2m,i,k(cosy)i+1−2k(siny)2k

(4.2.17)
by Lemma (4.2.2). Since all terms of previous sum contain z,
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f (2m)
1 (y,0) = f (2m−1)

2 (y,0) = 0 for m = 1, . . . , p. Hence we get the following equations

y1− y0 +
p

∑
j=1

β j

[
(−1) j f ( j−1)

1 (y1,0)− f ( j−1)
1 (y0,0)

]

= y1− y0 +
p

∑
j=1

β j

[
f ( j−1)
1 (y1,0)− f ( j−1)

1 (y0,0)
]
.

(4.2.18)

and

p

∑
j=1

β j

[
(−1) j f ( j−1)

2 (y1,0)− f ( j−1)
2 (y0,0)

]
=

p

∑
j=1

β j

[
− f ( j−1)

2 (y1,0)− f ( j−1)
2 (y0,0)

]
.

(4.2.19)
Letting j = 2m+2 for m = 0, . . . , p−1 and using (4.2.13), we get

f (2m+2−1)
1 (y,z) = f (2m)

2 (y,z)

=
m

∑
i=0

λi+1z2m−2i
bi/2c
∑
k=0

(−1)m+1−ka2m+1,i,k(cosy)i−2k(siny)2k+1

(4.2.20)
Substituting the value z = 0 into (4.2.20), we obtain

f (2m+1)
1 (−y0,0) = f (2m)

2 (−y0,0)

= λm+1
bm/2c
∑
k=0

(−1)m+1−ka2m+1,m,k(cosy0)i−2k
[
−(siny0)2k+1

]

=− f (2m)
2 (y0,0)

=− f (2m+1)
1 (y0,0)

which gives the following relations

f (2m+1)
1 (−y0,0) =− f (2m+1)

1 (y0,0),

f (2m)
2 (−y0,0) =− f (2m)

2 (y0,0).
(4.2.21)
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Using (4.2.21) for y1 =−y0, we obtain the following relations

y1− y0 +
p

∑
j=1

β j

[
(−1) j f ( j−1)

1 (y1,0)− f ( j−1)
1 (y0,0)

]

=−y0− y0 +
p

∑
j=1

β j

[
f ( j−1)
1 (−y0,0)− f ( j−1)

1 (y0,0)
]

=−2

(
y0 +

p

∑
j=1

β j f ( j−1)
1 (y0,0)

)
,

p

∑
j=1

β j

[
(−1) j f ( j−1)

2 (y1,0)− f ( j−1)
2 (y0,0)

]

=
p

∑
j=1

β j

[
− f ( j−1)

2 (−y0,0)− f ( j−1)
2 (y0,0)

]

=
p

∑
j=1

β j

[
f ( j−1)
2 (y0,0)− f ( j−1)

2 (y0,0)
]

= 0

Similarly for y1 = y0 using (4.2.21), we observe that

y1− y0 +
p

∑
j=1

β j

[
(−1) j f ( j−1)

1 (y1,0)− f ( j−1)
1 (y0,0)

]

= y0− y0 +
p

∑
j=1

β j

[
f ( j−1)
1 (y0,0)− f ( j−1)

1 (y0,0)
]

= 0.

and
p

∑
j=1

β j

[
(−1) j f ( j−1)

2 (y1,0)− f ( j−1)
2 (y0,0)

]

=
p

∑
j=1

β j

[
− f ( j−1)

2 (y0,0)− f ( j−1)
2 (y0,0)

]

=−2
p

∑
j=1

β j f ( j−1)
2 (y0,0).

So the assertions (a) and (b) are proved.

We consider the application of Taylor’s decomposition Ashyralyev, & Sobolevskii
(2004) of solution to (4.2.1) on two points xk and xk−1

Y (xk)−Y (xk−1)+
p

∑
j=1

α jY ( j)(xk)h j−
q

∑
j=1

β jY ( j)(xk−1)h j = τk, (4.2.22)



53

where
τk =

(−1)p

(p+q)!

∫ xk

xk−1

(xk− s)q(s− xk−1)p Y (p+q+1)(s)ds, (4.2.23)

and xk = kh, k = 0, . . . ,n, nh = 1, n ∈ N with the stepsize h,

α j =
(p+q− j)!p!(−1) j

(p+q)! j!(p− j)!
, 1 6 j 6 p,

β j =
(p+q− j)!q!

(p+q)! j!(q− j)!
, 1 6 j 6 q .

Neglecting the last term of (4.2.22), we obtain single-step difference schemes of
(p+q)-order of accuracy for the approximate solution to the problem (4.2.1)

Yk−Yk−1 +
p

∑
j=1

α jY
( j)
k h j−

q

∑
j=1

β jY
( j)
k−1h j = 0, (4.2.24)

where Y ( j)
k is the approximate value of Y ( j)

k (xk). For the computation of the eigenvalues
of (4.1.1), putting h = 1 and p = q, the approximation (4.2.24) gives

Y1−Y0 +
p

∑
j=1

(−1) jβ jY
( j)
1 −

p

∑
j=1

β jY
( j)
0 = 0, (4.2.25)

where α j = (−1) jβ j. Writing (4.2.25) with respect to the components and imposing
the boundary conditions z0 = z(0) = y′(0) = 0 and z1 = z(1) = y′(1) = 0, we have the
following equations

y1− y0 +
p

∑
j=1

β j

[
(−1) j f ( j−1)

1 (y1,0)− f ( j−1)
1 (y0,0)

]
= 0 (4.2.26)

and
p

∑
j=1

β j

[
(−1) j f ( j−1)

2 (y1,0)− f ( j−1)
2 (y0,0)

]
= 0. (4.2.27)

Using Theorem 4.2.1.a for y1 =−y0, the equation (4.2.26) becomes

G1(y0,λ) =−2

(
y0 +

p

∑
j=1

β j f ( j−1)
1 (y0,0)

)
= 0 (4.2.28)
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and (4.2.27) is satisfied. And for y1 = y0, (4.2.26) is satisfied by Theorem (4.2.1).b and
the equation (4.2.27) becomes

G2(y0,λ) =−2
p

∑
j=1

β j f ( j−1)
2 (y0,0) = 0. (4.2.29)

The following graph, Figure 4.1 gives the relation between the initial values y0 and the
eigenvalues λ of the nonlinear eigenvalue problem (4.1.1).

lllllllllll
lllllllllmlllFigure 4.1 Bifurcation diagram obtained from (4.2.28) and
lllllllllmlll (4.2.29).

Table 4.1 Corresponding to the initial values y1,0, y2,0, y3,0 and y4,0 for various λ obtained from
(4.2.28) and (4.2.29).

λ y1,0 y2,0 y3,0 y4,0

15 > π2 1.7471 − − −
45 > 4π2 2.8578 1,0092 − −
90 > 9π2 3.0718 2.3413 0.3236 −

160 > 16π2 3.1272 2.7999 2.0239 0.3771

From Figure 4.1 and Table 4.1 we observe that; there is only trivial initial condition
for 0 6 λ 6 π2, there is one nontrivial initial condition from (4.2.28) for π2 < λ 6 4π2,
there are n nontrivial initial conditions for n2π2 < λ 6 (n+1)2π2. These results show
that, the numerical results obtained using Taylor’s decomposition method agree with
the theoretical results of Euler Buckling problem given in Stakgold (1971).
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Now we find an approximate solution to the corresponding initial problem

Y ′(x) = F(Y (x))
Y (0) = Y0

(4.2.30)

that corresponds to Euler Buckling Problem (4.1.1) for an eigenvalue λ and the initial
value y0. Using Taylor’s Decomposition on two points xk−1, xk on the uniform grid

[0,1]h = {xk = kh, k = 0,1, . . . ,n, nh = 1, n ∈ N},

for p = q, we get

Yk−Yk−1 +
p

∑
j=1

(−1) jβ jY
( j)
k h j−

p

∑
j=1

β jY
( j)
k−1h j = 0 and Y0 =

[
y0

z0

]
, (4.2.31)

where y0' y(0), z0 = z(0). Solving the nonlinear system (4.2.31) by Newton’s method,
we obtain the approximate value yk of the eigenfunction y(x) at x = xk with O(h2p).

It is clear that f (0)
2 (y,z) = siny is Lipschitz in y in 2-dimensional box D. Using the

results Lemma (3.2.1) and Theorem (3.2.1), the global error for (4.2.24) is bounded by

||Y (xk)−Yk||6 C0||Y (0)−Y0||+C1
ξh2pMp+1

(2p)!

where C0 = ex̄ 2LB(h)
1−LB(h) , C1 = const.

C0

L
1

1+ β2
β1

h+ . . .+ βp
β1

hp−1
, D is 2-dimensional box in

R2, M = max
(y,z)∈D

{| f (0)
1 (y,z)|, | f (0)

2 (y,z)|}, ξ = max{
b i+1

2 c
∑
k=0

a j,i,k},

j = 1, . . . ,2p, i = 0, . . . , p, and const. is a constant independent of h and p, ‖·‖ denotes
‖ · ‖∞, L = max

16 j6p
{l1, j, l2, j} with l1, j = max

16 j6p
{d1, j,s1, j},

l2, j = max
16 j6p

{d2, j,s2, j}, dk, j = max
(y,z)∈D

∣∣∣∣∣
∂ f ( j)

k (y,z)
∂y

∣∣∣∣∣, sk, j = max
(y,z)∈D

∣∣∣∣∣
∂ f ( j)

k (y,z)
∂z

∣∣∣∣∣,

k = 1,2 and B(h) = L
p

∑
j=1

β jh j−1 for some x̄ > 0.
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4.3 Numerical Results for Euler Buckling Problem

The Taylor’s decomposition method described in the previous sections is applied
to Euler Buckling Problem. The approximate solutions of Euler buckling problem for
λ = 15, λ = 45, λ = 90 and λ = 160 generated using Taylor’s decomposition method

for step-size h =
1
20

are illustrated in Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5
respectively.

llllllmmmmlllll
lllllllllmmmmmlllFigure 4.2 Solution of (4.1.1) corresponding to the
llllllllllmmmmmlllinitial value y0 for π2 6 λ = 15 < 4π2.

llllllmmmmlllll
lllllllllmmmmmlllFigure 4.3 Solution of (4.1.1) corresponding to the
llllllllllmmmmmlllinitial value y0 for 4π2 6 λ = 45 < 9π2.
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lllllllmmmmllll
lllllllllmmmmmlllFigure 4.4 Solution of (4.1.1) corresponding to the
llllllllllmmmmmlllinitial value y0 for 9π2 6 λ = 90 < 16π2.

lllllllmmmmllll
lllllllllmmmmmlllFigure 4.5 Solution of (4.1.1) corresponding to the
llllllllllmmmmmlllinitial value y0 for 16π2 6 λ = 160 < 25π2.



CHAPTER SIX
CONCLUSIONS

Taylor’s decomposition method is applied to solve regular Sturm-Liouville
eigenvalue problem, one-dimensional Bratu problem and Euler buckling problem by
converting them into a system of differential equation with initial conditions. As a
result, we obtained the behavior of eigenvalues and the corresponding eigenfunctions
with high order accuracy for relatively large step sizes and the observed orders are in
good agrement with the predicted ones in the theorem. This method can be extended
to some nonlinear eigenvalue problem to investigate the behavior of the eigenvalues
and eigenfunction. Higher order accuracy difference schemes generated by Taylor’s
decomposition on three points for the boundary value problem of elliptic equations
with the operator acting in an arbitrary Banach space were presented in Ashyralyev, &
Sobolevskii (2004). Hence the Taylor’s decomposition for nonlinear elliptic eigenvalue
problem is an open problem which may be worth investigating.
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APPENDIX A
EXISTENCE, UNIQUENESS, AND SPECTRAL

PROPERTIES OF NONLINEAR EIGENVALUE PROBLEMS

We consider the following nonlinear eigenvalue problem:

(p(x)u′)′+λ f (x,u) = 0, 0 6 x 6 1, (6.0.1)

a0u(0)−a1u′(0) = 0, |a0|+ |a1| 6= 0, (6.0.2)

b0u(1)−b1u′(1) = 0, |b0|+ |b1| 6= 0. (6.0.3)

We suppose that p(x) > 0 and p′(x) is continuous on 0 6 x 6 1 and that f (x,u) satisfies
the following conditions:
H-1: f (x,u) is continuously differentiable in D :

0 6 x 6 1, −∞ < u < ∞.

H-2: 0 < fu(x,u) < ρ(x) on D, where ρ(x) > 0 in 0 6 x 6 1,

H-3: f (x,0) 6= 0 on 0 6 x 6 1.
Our main result is the

Theorem 6.0.1. Let f (x,u) satisfy H-1, 2, 3, and let the constants ai, bi satisfy

ai > 0, bi > 0, (i = 0,1), a0 +b0 > 0.

Then, there exists a unique solution of (6.0.1) , (6.0.2), (6.0.3) for all λ in

0 < λ < µ1{ρ}, where µ1{ρ} is the principal (i.e., least) eigenvalue of

(p(x)u′)′+µρ(x)u = 0, 0 66 1, (6.0.4)

a0u(0)−a1u′(0) = 0, (6.0.5)

b0u(1)+b1u′(1) = 0. (6.0.6)
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Proof. We outline the proof which is based on the technique used recently by Keller
(1966). The initial value problem

(p(x)y′)′+λ f (x,y) = 0,

ay(0)−a1y′(0) = 0,

c0y(0)− c1y′(0) = s, a1c0−a0c1 = 1,

has the unique solution y(s;x). The problem (6.0.1), (6.0.2), (6.0.3) has as many
solutions as there are real roots, s∗, of

φ(s)≡ b0y(s;1)+b1y′(s;1) = 0.

We shall show that φ′s is positive and bounded away from zero, from which it follows
that φ(s) = 0 always has and only one root.

Since y(s;x) is continuously differentiable with respect to s, the derivative
ω(x) = ∂y(s;x)/∂s satisfies the variational problem

(p(x)ω′)′+λ fu(x,y)ω = 0,

a0ω(0)−a1ω′(0) = 0,

c0ω(0)− c1ω′(0) = 1.

Clearly we must show that φ′(s) ≡ b0ω(1) + b1ω′(1) is positive and bounded away
from zero. To do this we consider the linear problem

(p(x)v′)′+λρ(x)v = 0,

av(0)−a1v′(0) = 0,

c0v(0)− c1v′(0) = 0.

(6.0.7)

For a fixed λ ≡ λ1, say, let l be the first value of x > 0 at which b0v(l)+ b1v′(l) = 0.
(That such an l exists will be clear from the formulation of the problem 6.0.8.) Then
the unique solution v1(x) of (6.0.7) also satisfies

(p(x)v′)′+λ1ρ(x)v1 = 0,

a0v1(0)−a1v′1(0) = 0,

b0v1(l)+b1v′1(l) = 0

(6.0.8)
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where λ = λ1(l) is the principle eigenvalue of (6.0.8) and v1(x) is the correspond-
ing eigenfunction normalized so that it satisfies the third equation in (6.0.7). We
now show that b0ω(x) + b1ω′(x) > 0 on 0 < x < l. We do this by contradiction. If
b0ω(x)+b1ω′(x) = 0 for some κ in 0zκ < l, then ω(x) would satisfy

(p(x)ω′)′+λ1 fu(x,y)ω = 0,

a0ω(0)−a1ω′(0) = 0,

b0ω(κ)+b1ω′(κ) = 0.

(6.0.9)

Now, from the usual variational characterization Courant, & Hilbert (1953) of the
principle eigenvalue of problems of the form of (6.0.8), we know that as the
coefficients ρ(x) varies in one sense, the eigenvalue λ1 varies in the opposite sense,
and as the length of the interval varies in one sense, the eigenvalue λ1 varies in the
opposite sense. Thus, for fixed λ = λ1, since fu(x,y) < ρ(x), the third equation in
(6.0.9) can not hold for κ < l. Hence, we conclude that b0ω(x) + b1ω′(x) > 0 on
0 < x < l.

Finally, by once again using the fact that λ(l) varies in the opposite sense from l, we
conclude that if λ < λ1 ≡ µ1ρ, then l > 1. Therefore, φ′(s)≡ b0ω(1)+b1ω′(1) > 0.

REMARK. Actually, condition H-3 is not necessary for our proof. However, if
f (x,y)≡ 0, the unique solution will be the trivial one. If f (x,y) = 0, then the problem
is closely related to one treated thoroughly by Pimbley (1962) . Pimbley’s Theorem 1
gives uniqueness in the same range of λ. The extension to the case f (x,0) 6= 0 is by no
means trivial, however, and the consequences of this condition are pointed out in some
detail in Keller, & Cohen (1967).



APPENDIX B
TAYLOR’S DECOMPOSITION METHOD

7.1 Taylor’s Decomposition Method

This section is from the book of Ashyralyev, & Sobolevskii (2004).

We consider the initial-value problem

y′(t)+a(t)y(t) = f (t), 0 < t 6 T, y(0) = y0 (7.1.1)

assuming a(t) and f (t) to be such that problem (7.1.1) has a unique smooth solution
defined on [0,T ]. The usage of Taylor’s decomposition on two points in the
construction of the single-step difference schemes of a high order of accuracy for
approximate solutions of problem (7.1.1) is based on the following theorem.

Theorem 7.1.1. Let the function v(t) (0 6 t 6 T ) have a (p + q + 1)-th continuous

derivative and tk−1, tk ∈ [0,T ]τ, where

[0,T ]τ = {tk = kτ,k = 0,1, . . . ,N,Nτ = T}. (7.1.2)

Then the following relation holds:

v(tk)− v(tk−1)+
p

∑
j=1

α jv( j)(tk)τ j−
q

∑
j=1

β jv( j)(tk−1)τ j (7.1.3)

=
(−1)p

(p+q)!

∫ tk

tk−1

(tk− s)q(s− tk−1)pv(p+q+1)(s)ds,

where 



α j =
(p+q− j)!p!(−1) j

(p+q)! j!(p− j)!
for any j, 1 6 j 6 p,

β j =
(p+q− j)!q!

(p+q)! j!(q− j)!
for any j, 1 6 j 6 q.

(7.1.4)
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Proof. Using the formula for integration by parts, we obtain the representation

∫ tk

tk−1

(tk− s)q(s− tk−1)pv(p+q+1)(s) ds

=
p+q

∑
γ=0

(−1)p+q−γ((tk− s)q(s− tk−1)p)(p+q−γ)vγ(s)]tktk−1
.

We will calculate the expressions

(−1)p+q− j[(tk− s)q(s− tk−1)p](p+q− j)|s=tk ,

and
(−1)p+q− j[(tk− s)q(s− tk−1)p](p+q− j)|s=tk−1.

If j > p+1, then p+q− j 6 q−1. Therefore

(−1)p+q− j[(tk− s)q(s− tk−1)p](p+q− j)|s=tk = 0.

If 0 6 j 6 p, then

(−1)p+q− j[(tk− s)q(s− tk−1)p](p+q− j)|s=tk

= (−1)p+q− j
p+q− j

∑
i=0

(p+q− j)!
i!(p+q− j− i)!

((tk− s)q)(p+q− j−i)((s− tk−1)p)(i)|s=tk

= (−1)p+q− j
p+q− j

∑
i=0

(p+q− j)!
i!(p+q− j− i)!

q!
( j + i− p)!

×(−1)(p+q− j−i)(tk− s) j+i−p p!
(p− i)!

(s− tk−1)p−i|s=tk

= (−1)p+q− j (p+q− j)!
(p− j)!q!

q!(−1)q p!
j!

τ j

=
(−1)p− j

(p+q)!
(p+q)!(p+q− j)!

(p− j)! j!
p!τ j = (−1)p(p+q)!α j

So,
(−1)p+q− j[(tk− s)q(s− tk−1)p](p+q− j)|s=tk = (−1)p(p+q)!α j.

If j > q+1, then p+q− j 6 p−1. Therefore

(−1)p+q− j[(tk− s)q(s− tk−1)p](p+q− j)|s=tk−1 = 0.
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If 0 6 j 6 q, then

(−1)p+q− j[(tk− s)q(s− tk−1)p](p+q− j)|s=tk−1

= (−1)p+q− j
p+q− j

∑
i=0

(p+q− j)!
i!(p+q− j− i)!

((tk− s)q)(p+q− j−i)((s− tk−1)p)(i)|s=tk−1

= (−1)p+q− j
p+q− j

∑
i=0

(p+q− j)!
i!(p+q− j− i)!

q!
( j + i− p)!

×(−1)(p+q− j−i)(tk− s) j+i−p p!
(p− i)!

(s− tk−1)p−i|s=tk−1

= (−1)p+q− j (p+q− j)!
p!(q− j)! j!

q!(−1)q− j p!
0!

τ j

=
(−1)p− j

(p+q)!
(p+q)!(p+q− j)!q!

(q− j)! j!
τ j = (−1)p(p+q)!β j

So,
(−1)p+q− j[(tk− s)q(s− tk−1)p](p+q− j)|s=tk−1 = (−1)p(p+q)!β j.

Theorem (7.1.1) is proved.

Note that relation (7.1.3) is called Taylor’s decomposition of function v(t) on two
points.

Now, we will consider applications of Taylor’s decomposition of function on two
points. From (7.1.3) it is clear that for the approximate solution of problem (7.1.1) it is
necessary to find y( j)(tk) for any j, 1 6 j 6 p and y( j)(tk−1) for any j, 1 6 j 6 q. Using
the equation

y′(t) =−a(t)y(t)+ f (t),

we obtain
y( j)(t) = a j(t)y(t)+ f j(t), (7.1.5)

where




a1(t) =−a(t), f1(t) = f (t),
a j(t) = a′j−1(t)−a j−1(t)a(t), f j(t) = f ′j−1(t)+a j−1(t) f (t),
for any j, 2 6 j 6 p.

(7.1.6)
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Replacing y( j)(t) by (7.1.5) and neglecting the last term, we obtain the single-
step difference schemes of (p + q)-order of accuracy for the approximate solution of
problem (7.1.1)

uk−uk−1

τ
+

p

∑
j=1

α ja j(tk)τ j−1uk−
q

∑
j=1

β ja j(tk−1)τ j−1uk−1 = ϕp,q
k , (7.1.7)

ϕp,q
k =−

p

∑
j=1

α j f j(tk)τ j−1 +
q

∑
j=1

β j f j(tk−1)τ j−1, 1 6 k 6 N, u0 = y0.

Now let us give some examples for the constructed difference schemes.

In the case p+q = 1 from formulas (7.1.4), (7.1.6) and (7.1.7) it follows that

uk−uk−1

τ
+a(tk−1)uk−1 = f (tk−1), 1 6 k 6 N, u0 = y0

(an explicit Euler ’s difference scheme of first order of accuracy for the initial-value
problem (7.1.1) ), and that

uk−uk−1

τ
+a(tk)uk = f (tk), 1 6 k 6 N, u0 = y0

(an implicit Euler ’s difference scheme of first order of accuracy for the initial-value
problem (7.1.1) ).

In the case p+q = 2 from formulas (7.1.4),(7.1.6) and (7.1.7) it follows that

uk−uk−1

τ
+(a(tk−1)+

τ
2
(a′(tk−1)−a2(tk−1)))uk−1

= f (tk−1)+
τ
2
( f ′(tk−1)−a(tk−1) f (tk−1)), 1 6 k 6 N, u0 = y0

(an explicit difference scheme of second order of accuracy for the
initial-value problem (7.1.1)); and that

uk−uk−1

τ
+

τ
2
(a(tk)uk +a(tk−1)uk−1) =

1
2
( f (tk)− f (tk−1)), 1 6 k 6 N, u0 = y0
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(a Crank-Nicolson difference scheme of second order accuracy); and that

uk−uk−1

τ
+(a(tk)+

τ
2
(−a′(tk)+a2(tk)))uk

= f (tk)− τ
2
( f ′(tk)−a(tk) f (tk)), 1 6 k 6 N, u0 = y0

(an implicit difference scheme of second order of accuracy for the
initial-value problem (7.1.1) ).

Now, we consider the initial-value problem

y′(t)+a(t)y(t) = f (t,y(t)), 0 < t 6 T, y(0) = y0 (7.1.8)

assuming a(t) and f (t,y(t)) to be such that problem (7.1.8) has a unique smooth
solution defined on [0,T ]. Using the equation

y′(t) =−a(t)y(t)+ f (t,y(t)),

we obtain
y( j)(t) = a j(t)y(t)+ f j(t,y(t)), (7.1.9)

where




fλ(t,y(t)) = f (t,y(t)), λ = 1,

fλ+1(t,y(t)) =
∂λ

∂tλ f (t,y(t))

+
λ

∑
i=1

(
λ
i

)
∂λ

∂tλ−i∂yi
f (t,y(t)) fi(t,y(t)), 0 6 λ 6 p−1.

(7.1.10)

Replacing y( j)(t) by (7.1.9) and neglecting the last term, we obtain the single-step
difference schemes of (p + q)-order of accuracy for an approximate solution of
problem (7.1.8)

uk−uk−1

τ
+

p

∑
j=1

α ja j(tk)τ j−1uk−
q

∑
j=1

β ja j(tk−1)τ j−1uk−1
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= ϕp,q
k (uk,uk−1),ϕ

p,q
k (uk,uk−1) =−

p

∑
j=1

α j f j(tk,uk)τ j−1

+
q

∑
j=1

β j f j(tk−1uk−1)τ j−1, 1 6 k 6 N, u0 = y0.

Now, we consider the initial-value problem

y′(t)+A(t)y(t) = f(t), 0 < t 6 T, y(0) = y0 (7.1.11)

where f(t) be a column vector whose components are known vector function of t.
Using the equation

y′(t) =−A(t)y(t)+ f(t),

we obtain
y( j)(t) = A j(t)y(t)+F j(t), (7.1.12)

where





A1(t) =−A(t),F1(t) = f(t),
A j(t) = A(1)

j−1(t)−A j−1(t)A(t), F j(t) = F′j−1(t)+A j−1(t)f(t),
for any j, 2 6 j 6 p.

Replacing y( j)(t) by (7.1.12) and neglecting the last term, we obtain the single-step
difference schemes of (p + q)-order of accuracy for an approximate solution of
problem (7.1.11)

uk−uk−1

τ
+

p

∑
j=1

α jA j(tk)τ j−1uk−
p

∑
j=1

β jA j(tk−1)τ j−1uk−1 = ϕp,q
k ,

ϕp,q
k =−

p

∑
j=1

α jFj(tk)τ j−1 +
q

∑
j=1

β jFj(tk−1)τ j−1, 1 6 k 6 N, u0 = y0.

Note that using Taylor’s decomposition on two points, we can extend our discussion to
construct the difference schemes of an arbitrary high order of accuracy for approximate
solutions of the initial-value problem for the first order nonlinear system of ordinary
differential equations

y′(t)+A(t)y(t) = f(t,y(t)), 0 < t 6 T, y(0) = y0.
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where f(t,y(t)) is a column vector and A(t) be an m×m matrix function of t.
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