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A GENERALIZATION OF THE RATIONAL BÉZIER SURFACES

ABSTRACT

In this thesis, we introduce a generalization of rational Bezier surfaces using
q-Bernstein Bezier polynomilas. We generate these surfaces by a new de Casteljau
type algorithm, which is in affine form. The explicit formula of intermediate points
of de Casteljau algorithm is obtained. These points of the algorithm are expressed
in terms of q-differences and consequently rational q−Bernstein Bezier surfaces are
also expressed in terms of q−differences. The change of basis matrix between tensor
product Bernstein Bezier basis and tensor product q−Bernstein Bezier basis is given.
We study the degree elevation procedure for q−Bernstein Bezier surfaces. Finally, the
convergence properties of tensor product q−Bernstein Bezier surfaces and q−Bezier
triangles are studied.

Keywords: Rational q−Bernstein Bézier surfaces, q−Bernstein polynomials, de
Casteljau algorithm, multivariate approximation.
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RASYONEL BÉZİER YÜZEYLERİNİN BİR GENELLEŞTİRMESİ

ÖZ

q-Bernstein Bezier polinomları kullanılarak rasyonel Bezier yüzeyleri
genelleştirildi. Bu yüzeyler, affine formda olan yeni bir de Casteljau tipi algoritma
kullanılarak elde edildi. de Casteljau algoritmasının ara noktaları q−farklar ile ifade
edildi ve bunun sonucunda da q−Bernstein Bezier yüzeyleri de q−farklar ile ifade
edildi. Tensör çarpım Bernstein Bezier tabanı ve tensör çarpım q−Bernstein Bezier
tabanı arasındaki dönüşüm matrisi verildi. q−Bernstein Bezier yüzeylerinin derecesi
yükseltildi. Son olarak, tensör çarpım q−Bernstein Bezier yüzeyleri ve q−Bezier
üçgenlerinin yakınsaklık özellikleri çalışıldı.

Anahtar sözcükler: Rasyonel q−Bernstein Bézier yüzeyleri, q−Bernstein
polinomları, de Casteljau algoritması, çok değişkenli yaklaşım.
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2.3.2 Rational Bézier Triangles . . . . . . . . . . . . . . . . . . . . 26

CHAPTER THREE - GENERALIZATION of BÉZIER SURFACES . . . 28
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CHAPTER ONE
INTRODUCTION

We first give some basics of Bernstein Bézier polynomials which may be found
in (Farin, 2002). In section 1.2, a generalization of Bernstein Bézier polynomials
introduced by G. M. Phillips is given. Using q−Bernstein Bézier polynomials, one
parameter family of Bézier curves and one parameter family of rational Bézier curves
are given in section 1.3. We investigate certain geometric properties of these curves.
We also obtain a second de Casteljau type algorithm for computing q−Bernstein Bézier
curves that can be found in (Dişibüyük & Oruç, 2008).

1.1 Bézier Curves

One of the most important mathematical representation of curves and surfaces used
in computer graphics and computer-aided geometric design (CAGD) is Bézier
representation. Bézier curves are first publicized by French engineer Pierre Bézier
in 1962. These curves are first used to design automobile bodies. A parametric Bézier
curve of degree n is defined by

P(t) =
n

∑
i=0

bi

(
n
i

)
t i(1− t)n−i, t ∈ [0,1], bi ∈ E2 or E3 (1.1.1)

where En denotes n−dimensional Euclidean space. The points bi are called the control
points and the polygon obtained by joining the control point bi with the control point
bi+1 for i = 0,1, . . . ,n− 1 is called the control polygon. The reason of the popularity
of Bézier curves in CAGD is that the points bi give information about the shape of
the polynomial curve P(t). The shape of P(t) can be predicted using the shape of its
control polygon.

The basis functions

Bn
i (t) =

(
n
i

)
t i(1− t)n−i, i = 0, . . . ,n, (1.1.2)

are called Bernstein Bézier polynomials of degree n. These polynomials are first

1
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introduced by S. Bernstein to give a proof of approximation theorem of Weierstrass
which asserts that for each continuous function f (x), on a closed interval [a,b], and a
given ε > 0 there is a polynomial P(x) approximating f (x) uniformly:

| f (x)−P(x)|< ε.

Bernstein shows that for a function f (x) bounded on [0,1], the relation

lim
n→∞

Bn( f ;x) = f (x)

holds at each point of continuity of x of f ; and the relation holds uniformly on [0,1] if
f (x) is continuous on this interval (see Lorentz, 1986). Here the polynomial Bn( f ;x)
is called the Bernstein polynomial of order n of the function f (x) and defined by

Bn( f ;x) =
n

∑
i=0

f
(

i
n

)(
n
i

)
xi(1− x)n−i.

For the other proofs of theorem of Weierstrass see (Lorentz, 1986).

There is another approach to theorem of Weierstrass type which uses sequence of
positive linear operators. An operator U that maps C[a,b] into itself is positive if f > 0
implies U( f ) > 0. If in addition, when f 6 g we have U( f ) 6U(g) then U is a positive
linear operator (see DeVore & Lorentz, 1993). Bohman-Korovkin theorem states that
for a sequence Un, n = 1,2, . . . of positive linear operators, convergence Un( f )→ f in
uniform norm follows for all f ∈ C[a,b], if it holds for test functions f = 1,x,x2. It
can easily verified that the operators Bn, n = 1,2, . . . are linear monotone operator on
[0,1] and satisfy the conditions of Bohman-Korovkin theorem which gives the uniform
convergence of Bn f to f for all f ∈C[0,1].

In CAGD applications, the choice of basis used for designing parametric curves
and surfaces is important. The most suitable bases for this purpose is the normalized
totaly positive bases. A system of functions {φ0,φ1, . . . ,φn} is called totaly positive
if all its collocation matrices

(
φ j(xi)n

i, j=0

)
are totaly positive, that is all their minors

are nonnegative. In addition if {φ0,φ1, . . . ,φn} is totally positive basis and ∑n
i=0 φi = 1

then {φ0,φ1, . . . ,φn} is called normalized totally positive basis. Goodman (Goodman,
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1996) shows that the power basis

(1,x,x2, . . . ,xn), x > 0

is totaly positive. Moreover, using this fact he shows that Bernstein basis functions
(Bn

0(x),B
n
1(x), . . . ,B

n
n(x)) is totaly positive basis. I. J. Schoenberg discovered that if A

is a totaly positive matrix then it has variation diminishing property, that is the number
of sign changes in a vector does not change upon multiplicity by A. Total positivity
provides a technique for discussing shape properties of approximations, due to the
variation diminishing properties of totaly positive functions, bases and matrices.

Bernstein Bézier polynomials have the following properties that lead to some
geometric properties of Bernstein Bézier curves. The Bernstein Bézier polynomials
have partition of unity property,

1 = ((1− t)+ t)n =
n

∑
i=0

(
n
i

)
t i(1− t)n−i,

which follows from the Binomial Theorem. The end point conditions are

Bn
i (0) = δi,0, Bn

i (1) = δi,n

and
Bn

i (t) = Bn
n−i(1− t)

shows symmetry of the basis functions. Figure 1.1 is the figure of cubic Bernstein
Bézier polynomials for t ∈ [0,1].

The properties of Bézier curves are

1. Convex hull property: The Bernstein Bézier polynomials have partition of unity
property. Furthermore, for t ∈ [0,1] these polynomials are nonnegative. Hence Bézier
curve P(t) is a convex combination of its control points which geometrically means
that P(t) lies in the convex hull of the control points. Convex hull of a set of points is
the smallest region formed by all convex combination of points.
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11112Figure 1.1 Cubic Bernstein Bézier polynomials.

2. Affine invariance property: Since the Bernstein Bézier polynomials sum to one,
the Bézier curves are barycentric (affine) combinations of its control points. Thus the
curve is invariant under affine transformations. This means that the following two
procedures give the same result:

i) Compute P(t) and then apply an affine map to it.

ii) Apply the map to the control points then evaluate P(t).

3. Endpoint interpolation property: The curve interpolate endpoints b0 and bn. That
is

P(0) = b0, P(1) = bn.

4. Variation diminishing property: It comes from the totally positivity of the
Bernstein basis functions and geometrically means that the number of times that any
line intersects the curve is bounded by the number of times the line intersects the
control polygon. Namely the curve does not oscillate about any straight line more
often than the control polygon does.

5. Symmetry property: Let b0, . . . ,bn and ci = bn−i, i = 0, . . . ,n be two control
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polygons. Since the Bernstein Bézier polynomials have symmetry property these two
polygons trace out the same Bézier curve. They differ only in the direction in which
they are traversed,

n

∑
i=0

biBn
i (t) =

n

∑
i=0

bn−iBn
i (1− t).

As a result of these properties, the shape of the curve mimics the shape of its control
polygon.

Although Bézier curves are first publicized in 1962, Paul de Casteljau is the first
one who developed them in 1959 by using an algorithm that gives a point on the curve.

For the given points b0, . . . ,bn and t ∈ R, this algorithm is

Algorithm 1.1: (de Casteljau Algorithm)

br
i (t) = (1− t)br−1

i (t)+ tbr−1
i+1 (t),

{
r = 1, . . . ,n

i = 0, . . . ,n− r
(1.1.3)

where b0
i (t) = bi for all i. Then it can be shown by induction on n that bn

0(t) is the point
with the parameter value t on the Bézier curve P(t). Hence by continuity bn

0(t) = P(t).

There are two important technique, that aim to increase the flexibility of Bézier
curves, subdivision and degree elevation. Subdivision is an application of the de
Casteljau algorithm. We can subdivide a Bézier curve into two Bézier curve segments
which join together at a point t0 ∈ (0,1). The part of the curve that corresponds to
the interval [0, t0] have the control points bi

0(t0), i = 0,1, . . . ,n. It follows from the
symmetry property that the control points for the part corresponding to [t0,1] are given
by bn−i

i (t0), i = 0,1, . . . ,n,(See Farin, 2002).

Thus the curve segments are

P[0,t0](t) =
n

∑
i=0

b
(l)
i Bn

i (t), P[t0,1](t) =
n

∑
i=0

b
(r)
i Bn

i (t)
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1111112Figure 1.2 Subdivision of cubic Bézier curve in the de Casteljau algorithm.

where b
(l)
i denotes bi

0(t0) and b
(r)
i denotes bn−i

i (t0), and

P[0,1](t) = P[0,t0](t)∪P[t0,1](t) =
n

∑
i=0

biBn
i (t).

Degree elevation is a method which enables us to have more flexible curve by
obtaining a new set of control points. For a given Bézier curve of degree n we can
express the same curve as one of more degree. For this purpose write

P(t) = (1− t)P(t)+ tP(t). (1.1.4)

Since (1− t)Bn
i (t) = n+1−i

n+1 Bn+1
i (t) and tBn

i (t) = i+1
n+1Bn+1

i+1 (t) we have

P(t) =
n

∑
i=0

n+1− i
n+1

biBn+1
i (t)+

n

∑
i=0

i+1
n+1

biBn+1
i+1 (t).

Extending the upper limit of the first sum to n+1, shifting the index of the second sum
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to the limits 1 to n+1 and then extending the lower limit to 0 we obtain

P(t) =
n+1

∑
i=0

n+1− i
n+1

biBn+1
i (t)+

n+1

∑
i=0

i
n+1

bi−1Bn+1
i (t).

Then

P(t) =
n+1

∑
i=0

(
n+1− i

n+1
bi +

i
n+1

bi−1

)
Bn+1

i (t). (1.1.5)

Thus, the new control points denoted by b1
i are

b1
i =

i
n+1

bi−1 +
(

1− i
n+1

)
bi, i = 0, . . . ,n+1. (1.1.6)

Notice that control points b1
0, . . . ,b

1
n+1 and b0, . . . ,bn describe the same Bézier curve

with the bases Bn+1
i (t) and Bn

i (t) respectively. Degree elevation process interpolates
the end points, that is b1

0 = b0 and b1
n+1 = bn. Further, if Ck = {bk

0,b
k
1, . . . ,b

k
n+k} is

the set of control points obtained from k times repeated application of degree elevation
then as k→∞, setting i

n+k = t yields bk
i+k → P(t), a point on the curve with parameter

value t (see Farin, 2002).

Bézier curves can be used to represent a wide variety of curves. But the conic
sections which are important in geometric design cannot be represented in Bézier form.
In order to be able to include conic sections in the set of representable curves in Bézier
form, we turn to rational Bézier curves.

A rational Bézier curve of degree n in Ed,d = 2,3 is obtained by projecting an nth
degree Bézier curve in Ed+1 into the hyperplane w = 1. Rational Bézier curve R(t) is
defined by

R(t) =
∑n

i=0 wibiBn
i (t)

∑n
i=0 wiBn

i (t)
, where bi ∈ Ed. (1.1.7)

The positive real values wi are called weights and the points bi are the control points
which is the projection of the d + 1 dimensional control points [wibi wi]T . If the
weights are set to wi = 1 for all i, then we obtain polynomial Bézier curves.

Rational Bézier curves inherit the following properties of Bézier curves.
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1. Convex hull property holds when all wi > 0.

2. Endpoint interpolation property; R(0) = b0,R(1) = bn.

3. Variation diminishing property holds when all wi > 0.

4. Affine invariance property

In addition to above properties, R(t) satisfies projective invariance property.
Projective invariance property means that the following procedures give the same
result:

i) Compute P(t) in Ed+1 and then project it to the hyperplane w = 1 to find R(t) in
Ed.

ii) Project the control polygon points of P(t) to the hyperplane and then evaluate
rational Bézier curve.

Weights add more flexibility to the curves so that if we increase the weight wi then
all points on the curve move towards the control point bi, if we decrease wi then all
points of the curve move away from bi. Hence one can change the shape of the curve
without changing the control points.

Note that the de Casteljau algorithm can be extended to compute rational Bézier
curves by applying it to the homogeneous coordinates [wibi wi]T and projecting each
intermediate point to the hyperplane w = 1.

1.2 q-Bernstein Bézier Polynomials

A great deal of research papers have appeared on q−Bernstein Bézier polynomials
since it is first introduced by G.M. Phillips in (Phillips, 1997) as a generalization of
Bernstein polynomials. In general they fall into two categories; works that display
geometric properties and investigation on its convergence properties. See full details in
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a recent survey paper by G. M. Phillips (Phillips, 2008). One parameter family (q, the
parameter) of Bernstein Bézier polynomials (called q-Bernstein Bézier polynomials)
are defined by

Bn,q
i (t) =

[
n
i

]
t i

n−i−1

∏
s=0

(1−qst), t ∈ [0,1], 0 6 i 6 n, (1.2.1)

where an empty product denotes one and the parameter q is positive real number. The
q−binomial coefficient

[n
i

]
, which is also called a Gaussian polynomial (See Andrews,

1998), is defined as [
n
i

]
=

[n][n−1] · · · [n− i+1]
[i][i−1] · · · [1]

(1.2.2)

for 0 6 i 6 n, and has the value 0 otherwise. Here [i] denotes a q-integer, defined by

[i] =

{
(1−qi)/(1−q), q 6= 1,

i, q = 1.
(1.2.3)

When q = 1 the q−binomial coefficients reduce to the usual binomial coefficients.
They satisfy the following recurrence relations

[
n
i

]
= qn−i

[
n−1
i−1

]
+

[
n−1

i

]
(1.2.4)

and [
n
i

]
=

[
n−1
i−1

]
+qi

[
n−1

i

]
. (1.2.5)

Using (1.2.4) it is easily shown by induction on n that

(1− t)(1−qt) · · ·(1−qn−1t) =
n

∑
i=0

(−1)iqi(i−1)/2
[

n
i

]
t i (1.2.6)

It follows from putting (1.2.4) and (1.2.5) in (1.2.1) that q−Bernstein polynomials
computed recursively by

Bn,q
i (t) = qn−itBn−1,q

i−1 (t)+(1−qn−i−1t)Bn−1,q
i (t). (1.2.7)

and
Bn,q

i (t) = tBn−1,q
i−1 (t)+(qi−qn−1t)Bn−1,q

i (t), (1.2.8)
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(See Oruç & Phillips, 2003).

Using q−Bernstein Bézier polynomials Phillips proposed the following
generalization of the Bernstein polynomials, based on the q−integers (see Phillips,
1997). For each positive integer n, he defines

Bn( f ;x) =
n

∑
r=0

fr

[
n
r

]
xr

n−r−1

∏
s=0

(1−qsx)

where fr = f
(

[r]
[n]

)
. It is shown in (Phillips, 1997) that Bn( f ;x) can be expressed in

terms of q−differences, in the form

Bn( f ;x) =
n

∑
r=0

[
n
r

]
∆r f0xr. (1.2.9)

which gives the difference form of the classical Bernstein polynomials when we set
q = 1. It follows from (1.2.9) that for any polynomial f of degree m, Bn( f ;x) is a
polynomial of degree min(m,n). It is also clear from (1.2.9) that

Bn(1;x) = 1, Bn(x;x) = x and Bn(x2;x) = x2 +
x(1− x)

[n]
.

For a fixed value of q ∈ (0,1) the polynomial Bn(x2;x) does not converge to x2. Thus,
although Bn f ,n = 1,2, . . . are positive linear operators, when 0 < q < 1 is fixed the
Bohman-Korovkin theorem is not applicable and Bn( f ;x) → f requires that f be a
linear function (see Il’inskii & Ostrovska, 2002). In (Phillips, 1997) it is shown that
the generalized Bernstein polynomials of a function f (x) converges to f (x) for all
f (x)∈C[0,1]. For this purpose Phillips choose q−integers depend on the degree of the
Bn f such that [r] = 1−qr

n
1−qn

. Hence taking a sequence q = qn such that [n]→ ∞ as n→ ∞
follows that Bn(x2;x)→ x2. Thus, using Bohman-Korovkin theorem, Bn f → f for all
f ∈C[0,1].

Converge properties of generalized Bernstein polynomials are also investigated for
the case q > 1 (see, for example, (Oruç & Tuncer, 2002), (Ostrovska, 2003)). In this
case Bohman-Korovkin theorem does not applicable, since Bn( f ;x) does not
generate positive linear operators when q > 1. In (Goodman, Oruç & Phillips, 1999)
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q−Bernstein polynomial of a monomial is given in terms of Stirling polynomials of
the second kind such that

Bn(xi;x) =
i

∑
j=0

λ j[n] j−iSq(i, j)x j,

where

λ j =
j−1

∏
r=0

(
1− [r]

[n]

)

with empty product denotes 1, and

Sq(i, j) =
1

[ j]!q j( j−1)/2

j

∑
r=0

(−1)rqr(r−1)/2
[

j
r

]
[ j− r]i, 0 6 j 6 i

or recursively
Sq(i+1, j) = Sq(i, j−1)+ [ j]Sq(i, j), (1.2.10)

with Sq(0,0) = 1, Sq(i,0) = 0 for i > 0 and Sq(i, j) = 0 for j > i (see Oruç, 1998).

Using Stirling polynomial form of Bn(xi;x), it is shown in (Oruç & Tuncer, 2002)
that for a fixed real number q > 1 and any polynomial p

lim
n→∞

Bn(p;x) = p(x).

It is shown in (Ostrovska, 2003) that when q > 1 the approximating properties of
q−Bernstein polynomials may be better than in the case q 6 1, so that in the case q > 1,

Bn( f ;x) converges uniformly to f (x) when f (x) has analytic expansion that is

f (x) =
∞

∑
i=0

aixi with
∞

∑
i=0
|ai|< ∞.

Recently another direction to q−Bernstein polynomials is given by (Dişibüyük &
Oruç, 2007), (Lewanowicz & Woźny, 2004) and (Nowak, 2009), the first one gives
their rational counterpart and the latter two define more general polynomials in which
the second leads to a connection with q−Jacobi polynomials and the latter is a
generalization of Stancu operators that gives q−Bernstein polynomials in a special
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case.

1.3 One Parameter Family of Bézier Curves

One parameter family of Bézier curves, called q−Bernstein Bézier curves, of degree
n is introduced in (Oruç & Phillips, 2003) and defined by

P(t) =
n

∑
i=0

bi

[
n
i

]
t i

n−i−1

∏
j=0

(1−q jt). (1.3.1)

Note that if we set the parameter q to the value 1, we obtain standard Bézier curves.
The properties of q−Bernstein Bézier curves are as follows:

1. Convex hull property holds when 0 < q 6 1 and the Bézier polygon
approximately describe the shape of the curve.

2. Affine invariance property holds.

3. The curve passes through the endpoints b0 and bn.

4. If q ∈ (0,1] then the variation diminishing property holds.

Figure 1.3 depicts two cubic q-Bernstein Bézier curves with the same control
polygon but different values of q.

It is shown in (Phillips, 1996) that q−Bernstein Bézier curves may evaluated by the
following de Casteljau type algorithm:

Algorithm 1.2: For the given control points b0, . . . ,bn ∈ E2 or E3 compute

b̂r
i (t) = (qi−qr−1t)b̂r−1

i (t)+ tb̂r−1
i+1 (t),

{
r = 1,2, . . . ,n

i = 0,1, . . . ,n− r
(1.3.2)

where b̂0
i (t) = bi for all i.
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q=0.9

q=0.1

b0

b1 b2

b3

1111111Figure 1.3 Two q-Bernstein Bézier curves with different values of q.

Note that Algorithm 1.2 does not consist only of convex combinations. Thus
although the q−Bernstein Bézier curve lies in the convex hull of the control points, the
intermediate points of Algorithm 1.2 may not lie in the convex hull of the
control polygon. We now give a second de Casteljau type algorithm for computing
the q−Bernstein Bézier curves. This algorithm is an affine combination and it will
enable us to construct rational q−Bernstein Bézier curves and q−Bernstein Bézier
surfaces.

Algorithm 1.3: For the given control points b0, . . . ,bn ∈ E2 or E3 compute

br
i (t) = (1−qr−i−1t)br−1

i (t)+qr−i−1tbr−1
i+1 (t),

{
r = 1,2, . . . ,n

i = 0,1, . . . ,n− r
(1.3.3)

Algorithm 1.2 differs from Algorithm 1.3 since each step of the latter is in barycentric
(affine) form which evantually make up a curve that remains invariant under affine
maps. Note that in CAGD systems it is desirable to express curves and surfaces in
barycentric form (Farin, 2002). Furthermore q = 1 recovers the standard de Casteljau
algorithm for both of the above algorithms. Further results on Algorithm 1.3 can be
read in (Dişibüyük & Oruç, 2008).



14

1.3.1 One Parameter Family of Rational Bézier Curves

The q−Bernstein Bézier curves are generalized to their rational counterparts as one
parameter family of rational Bernstein Bézier curves in (Dişibüyük & Oruç, 2007). A
rational q−Bernstein Bézier curve of degree n is defined by

R(t) =
∑n

i=0 wibiB
n,q
i (t)

∑n
i=0 wiB

n,q
i (t)

(1.3.4)

where the points bi, i = 0, . . . ,n∈E2 or E3 form the control polygon of rational curve
R(t) and the number wi is called the weight of the associated point bi. Restricting all
wi > 0 guarantees that the bases functions are nonnegative and the curve does not have
any singularities. The properties of rational q−Bernstein Bézier curves are

1. Convex hull property holds when wi > 0 and 0 < q 6 1

2. Endpoint interpolation property

3. Variation diminishing property

4. Affine invariance property

5. Projective invariance property

As an illustration, it is shown in (Dişibüyük & Oruç, 2007) that quadratic rational
q−Bernstein Bézier curves can be used to represent conic sections. The classification
of conic sections is as follows:
Let the weights are w0 = w2 = 1 and w1 = w.

If q =−1 then R(t) is a straight line for any w. R(t) is a parabola for any q 6= 1 when
w = 1. R(t) is an ellipse when q < −1 and w > 1 or when q > −1 and w < 1. R(t) is
an hyperbola if q <−1 and w > 1 or when q >−1 and w > 1.

The following figure shows a hyperbola, a line and an ellipse using same control
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points but different parameter values q.

b0

b1

b2

q=0.5

q=-1

q=-1.5

11111111Figure 1.4 q = 0.5 a hyperbola, q =−1 a line and q = 1.5 an
and it i w ellipse.



CHAPTER TWO
BÉZIER SURFACES

Surfaces have a fundamental role in computer graphics and in CAGD. A
generalization of Bézier curves to higher dimension are called Bézier surfaces.
Similar to a control polygon for curves, Bernstein Bézier surfaces are defined by a
control net. These surfaces are parametrized in two directions where u ∈ [0,1] and
v∈ [0,1]. In this chapter we investigate two such generalizations, tensor product Bézier
surfaces and Bézier triangles. The de Casteljau type algorithms for these surfaces are
given and using the difference form of the intermediate points of the algorithms, the
difference forms of two type of Bézier surfaces are given. We also obtain the same
surfaces by surfaces of higher degree. In section 2.3 rational Bézier surfaces and their
properties are obtained.

2.1 Tensor Product Bézier Surfaces

Bézier curves can be evaluated by de Casteljau algorithm using repeated linear
interpolation (Farin, 2002). Using bilinear interpolation which is an extension of linear
interpolation, Bézier curves can be extended to the Bézier surfaces. As an example
consider four distinct points, b0,0,b0,1,b1,0,b1,1 in E3 the bilinear interpolant X(u,v)
passing through the points bi, j; i, j = 0,1 is

X(u,v) =
[

1−u u
][

b0,0 b0,1

b1,0 b1,1

][
1− v

v

]
.

Initially, we obtain a tensor product Bézier surface S(u,v) of degree (n,n) by using
repeated bilinear interpolation. Suppose that we are given a rectangular array of points
bi, j ∈ E3 i, j = 0, . . . ,n and parameter values (u,v) compute

br,r
i, j =

[
1−u u

][
br−1,r−1

i, j br−1,r−1
i, j+1

br−1,r−1
i+1, j br−1,r−1

i+1, j+1

][
1− v

v

]
,

r = 1,2, . . . ,n

i, j = 0,1, . . . ,n− r,

16
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where b0,0
i, j = bi, j. Then bn,n

0,0(u,v) is a point on the surface with the parameter values
(u,v). The net that formed by bi, j is called control net or Bézier net of the surface. The
Bernstein Bézier form of the surfece is

S(u,v) =
n

∑
i=0

n

∑
j=0

bi, jBn
i (u)Bn

j(v)

where 0 6 u,v 6 1 and Bn
i (u),Bn

j(v) are Bernstein polynomials in u and in v

respectively. This representation can be extended to a tensor product Bézier surface of
degree (m,n). Let the control net points given by bi, j ∈E3, i = 0, . . . ,m and j = 0, . . . ,n,

then the tensor product Bézier surface of degree (m,n) is given by

S(u,v) =
m

∑
i=0

n

∑
j=0

bi, jBm
i (u)Bn

j(v), 0 6 u,v 6 1. (2.1.1)

Note that the set of basis functions

{Bm
i (u)Bn

0(v),B
m
i (u)Bn

1(v), . . . ,B
m
i (u)Bn

n(v)}, i = 0, . . . ,m

is obtained by tensor product of the sets {Bm
0 (u), . . . ,Bm

m(u)} and {Bn
0(v), . . . ,B

n
n(v)}.

Properties of tensor product Bézier surfaces are as follows:

1. Affine invariance property: Since ∑m
i=0 ∑n

j=0 Bm
i (u)Bn

j(v) = 1, S(u,v) is an affine
combinations of its control net points. Thus S(u,v) is affinely invariant.

2. Convex hull property: The basis form partition of unity and additionally they are
nonnegative for the parameter values 0 6 u,v 6 1. Hence S(u,v) is a convex
combination of bi, j and lies in the convex hull of its control net points.

3. Boundary curves: Boundary curves of S(u,v) are evaluated by S(u,0), S(u,1),
S(0,v) and S(1,v). The first two curves are Bernstein Bézier curves in u and the last
two curves are Bernstein Bézier curves in v.

4. Corner point interpolation: The control points of the boundary curves are the
boundary points of the control net of S(u,v). Thus it follows from the end point
interpolation property of Bézier curves that the corner control net points coincide with
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the four corners of the surface. Namely,

S(0,0) = b0,0,S(0,1) = b0,n,S(1,0) = bm,0 and S(1,1) = bm,n.

What follow is the de Casteljau algorithm to compute S(u,v) of degree (m,n).

Algorithm 2.1: Given the control net bi, j ∈ E3, i = 0, . . . ,m, j = 0, . . . ,n. Compute

br,r
i, j =

[
1−u u

][
br−1,r−1

i, j br−1,r−1
i, j+1

br−1,r−1
i+1, j br−1,r−1

i+1, j+1

][
1− v

v

]
(2.1.2)

for r = 1, . . . ,k, i = 0, . . . ,m− r, j = 0, . . . ,n− r where k = min(m,n).

Since m 6= n, performing the de Casteljau algorithm k times will not give a point
on the surface. Then to get a point on the surface after kth application of Algorithm
2.1 we perform Algorithm 1.1 for the intermediate points bk,k

i, j with suitable parameter
value (see Farin, 2002).

We can extend degree elevation procedure for the surfaces. Let S(u,v) be a surface
of degree (m,n). To have the same surface with of degree (m + 1,n) we first write
tensor product Bézier patches in the form

S(u,v) =
n

∑
j=0

b jBn
j(u) (2.1.3)

where b j = ∑m
i=0 bi, jBm

i (v). Thus the problem is reduced to expressing an mth degree
Bézier curve b j by a curve of (m + 1)th degree. From the degree elevation procedure
for b j in the latter equation we obtain

S(u,v) =
m+1

∑
i=0

n

∑
j=0

b
(1,0)
i, j Bm+1

i (u)Bn
j(v),

where

b
(1,0)
i, j =

(
1− m+1− i

m+1

)
bi−1, j +

m+1− i
m+1

bi, j, i = 0, . . . ,m+1, j = 0, . . . ,n.
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Similarly, to obtain the same surface as one of degree (m,n + 1) we need new control
points such that

b
(0,1)
i, j =

(
1− n+1− j

n+1

)
bi, j−1 +

n+1− j
n+1

bi, j, i = 0, . . . ,m, j = 0, . . . ,n+1.

Finally, to obtain S(u,v) as a surface of degree (m+1,n+1), evaluate the new control
points from the product

b
(1,1)
i, j =

[
1− m+1−i

m+1
m+1−i

m+1

][
bi−1, j−1 bi−1, j

bi, j−1 bi, j

][
1− n+1− j

n+1
n+1− j

n+1

]
.

The repeated degree elevation procedure can be used to obtain higher degree surfaces
and when we apply it infinitely many times the control net will converge to the surface.
We also can express S(u,v) in terms of differences, where we define differences in the
u−direction by

∆k+1
1 bi, j = ∆k

1bi+1, j−∆k
1bi, j

for all k > 0 with ∆0
1bi, j = bi, j, and the differences in the v−direction by

∆k+1
2 bi, j = ∆k

2bi, j+1−∆k
2bi, j

for all k > 0 and ∆0
2bi, j = bi, j. Then we also define

∆1∆2bi, j = ∆1(∆2bi, j).

Note that ∆i
1 and ∆ j

2 commute, that is

∆i
1∆ j

2bi, j = ∆ j
2∆i

1bi, j.

Theorem 2.1.1. S(u,v) can be expressed in terms of differences by

S(u,v) =
m

∑
i=0

n

∑
j=0

(
m
i

)(
n
j

)
∆i

1∆ j
2b0,0uiv j. (2.1.4)

Proof. Since (2.1.3) is in Bézier form, using differences form of Bézier curves (see
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Farin, 2002) with differences taken in the v−direction yields

S(u,v) =
n

∑
j=0

(
n
j

)
∆ j

2b0v j.

Then with differences in u−direction for b0 and commutativity property of ∆1∆2 give
the desired result.

2.2 Bézier Triangles

Another generalization of Bézier curves to Bézier surfaces is by Bézier triangles. A
Bézier triangle of degree n is defined by

S(u,v) =
n

∑
i=0

n−i

∑
j=0

bi, jBn
i, j(u,v), 0 6 u,v 6 1 and 0 6 u+ v 6 1,

where bi, j ∈ E3 are control points and Bn
i, j(u,v) are Bernstein polynomial defined by

Bn
i, j(u,v) =

(
n

i , j

)
uiv j(1−u− v)n−i− j (2.2.1)

with the multinomial
( n

i , j

)
= n!

i! j!(n−i− j)! . Note that to obtain an nth degree Bézier

triangle we need (n+1)(n+2)
2 control points. For constructing a triangular patch we use

repeated triangular bivariate interpolation. The control net in triangular de Casteljau
algorithm for surfaces is of a triangular structure (see Farin, 2002). The structure of
control net for a Bézier triangle of degree 2 is in the form

b0,0

b0,1 b1,0

b0,2 b1,1 b2,0

The de Casteljau algorithm for Bézier triangle is

Algorithm 2.2: Let bi, j, i = 0, . . . ,n, j = 0, . . . ,n− i be the control points of the



21

surface. Then compute

br
i, j(u,v) = (1−u− v)br−1

i, j (u,v)+ubr−1
i+1, j(u,v)+ vbr−1

i, j+1(u,v) (2.2.2)

for r = 1,2, . . . ,n; i = 0,1, . . . ,n− r; j = 0,1, . . . ,n− r− i where 0 6 u + v 6 1 and
b0

i, j(u,v) = bi, j. Bézier triangles have the following properties:

1. Affine invariance property: Since

n

∑
i=0

n−i

∑
j=0

Bn
i, j(u,v) = (u+ v+(1−u− v))n = 1,

S(u,v) is an affine combination of its control points and every affine map L leaves the
barycentric combinations invariant, that is

L

(
n

∑
i=0

n−i

∑
j=0

bi, jBn
i, j(u,v)

)
=

n

∑
i=0

n−i

∑
j=0

L(bi, j)Bn
i, j(u,v).

2. Convex hull property: S(u,v) is in the convex hull of its control points since each
basis function Bn

i, j(u,v) is nonnegative for the parameter values 0 6 u+ v 6 1.

3. Boundary curves: Boundary curves of the surface are determined by the boundary

control points. These curves are
n

∑
i=0

bi,0Bn
i (t),

n

∑
i=0

b0,iBn
i (t) and

n

∑
i=0

bi,n−iBn
i (t).

4. Corner point interpolation: Since

Bn
i, j(0,0) = δ0,iδ0, j, Bn

i, j(1,0) = δn,iδ0, j, Bn
i, j(0,1) = δ0,iδn, j

we have S(0,0) = b0,0,S(1,0) = bn,0 and S(0,1) = b0,n.

The following theorem gives the difference form of the intermediate points of
Algorithm 2.2

Theorem 2.2.1. The intermediate points of the Algorithm 2.2 can be expressed in terms
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of differences as

bm
r,s =

m

∑
i=0

m−i

∑
j=0

(
m

i , j

)
∆i

1∆ j
2br,suiv j (2.2.3)

As a corollary of the theorem one can deduce that a Bézier triangle S(u,v) can be
expressed by

S(u,v) =
n

∑
i=0

n−i

∑
j=0

(
n

i , j

)
∆i

1∆ j
2b0,0uiv j. (2.2.4)

It is also possible to use degree elevation procedure for the Bézier triangles. Take an
nth degree Bézier triangle S(u,v),

S(u,v) =
n

∑
i=0

n−i

∑
j=0

bi, j

(
n

i , j

)
uiv j(1−u− v)n−i− j,

multiply both sides of the equation by (u+ v+(1−u− v)) to get

S(u,v) =
n

∑
i=0

n−i

∑
j=0

bi, j

(
n

i , j

)
ui+1v j(1−u− v)n−i− j

+
n

∑
i=0

n−i

∑
j=0

bi, j

(
n

i , j

)
uiv j+1(1−u− v)n−i− j

+
n

∑
i=0

n−i

∑
j=0

bi, j

(
n

i , j

)
uiv j(1−u− v)n+1−i− j.

Shifting and expanding the index of the summations yield

S(u,v) =
n+1

∑
i=0

n+1−i

∑
j=0

bi−1, j

(
n

i−1 , j

)
uiv j(1−u− v)n+1−i− j

+
n+1

∑
i=0

n+1−i

∑
j=0

bi, j−1

(
n

i , j−1

)
uiv j(1−u− v)n+1−i− j

+
n+1

∑
i=0

n+1−i

∑
j=0

bi, j

(
n

i , j

)
uiv j(1−u− v)n+1−i− j.
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Since
( n

i−1 , j

)
= i

n+1

(n+1
i , j

)
,
( n

i , j−1

)
= j

n+1

(n+1
i , j

)
, and

( n
i , j

)
= n+1−i− j

n+1

(n+1
i , j

)
we have

S(u,v) =
n+1

∑
i=0

n+1−i

∑
j=0

{
i

n+1
bi−1, j +

j
n+1

bi, j−1 +
n+1− i− j

n+1
bi, j

}
Bn+1

i, j (u,v).

Thus S(u,v) can be expressed as a surface of degree n+1 with the control points b1
i, j,

where
b1

i, j =
i

n+1
bi−1, j +

j
n+1

bi, j−1 +
(

1− i+ j
n+1

)
bi, j

for i = 0, . . . ,n+1, j = 0, . . . ,n+1− i.

2.3 Rational Bézier Surfaces

As in the rational Bézier curves, rational Bézier surfaces are obtained as the
projection of 4D Bézier surface.

2.3.1 Rational tensor product Bézier surfaces

Rational tensor product Bézier surface of degree (m,n) is defined by

R(u,v) =
∑m

i=0 ∑n
j=0 wi, jbi, jBm

i (u)Bn
j(v)

∑m
i=0 ∑n

j=0 wi, jBm
i (u)Bn

j(v)
, 0 6 u,v 6 1. (2.3.1)

The control points bi, j ∈ E3 with the weights wi, j ∈ R are obtained by projecting the
points [wi, jbi, j wi, j]T ∈ E4 to the hyperplane w = 1. Rational tensor product Bézier
surfaces have the following properties of their nonrational counterparts.

1. Affine invariance property: The basis functions of rational tensor product Bézier
surfaces are

φi, j =
wi, jBm

i (u)Bn
j(v)

∑m
r=0 ∑n

s=0 wr,sBm
r (u)Bn

s (v)
, i = 0, . . . ,m, j = 0, . . . ,n.

Since the basis functions sum to one, R(u,v) is affinely invariant.
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2. Convex hull property: For the parameter values 0 6 u,v 6 1 and positive weights
the basis functions φi, j are nonnegative. Since ∑m

i=0 ∑n
j=0 φi, j = 1, R(u,v) is a convex

combination of its control net points. Thus if wi, j > 0 then R(u,v) lies in the convex
hull of the control net.

3. Boundary curves: Boundary curves of R(u,v) are obtained by projection of
boundary curves of projected tensor product Bézier surface. This curves are R(u,0),
R(u,1), R(0,v) and R(1,v).

4. Corner point interpolation: Since four corner points of a tensor product Bézier
surface coincide with the corner points of its control polygon, their projection also
coincide with the control points of the control net of R(u,v). That is

R(0,0) = b0,0,R(0,1) = b0,n,R(1,0) = bm,0 and R(1,1) = bm,n.

In addition to above properties of tensor product Bézier surfaces, rational tensor
product Bézier surfaces inherit the projective invariance property.

Note that, although rational tensor product Bézier surfaces are obtained by
projection of tensor product surfaces, they are not tensor product surfaces. It comes
from the fact that, the basis functions φi, j(u,v) cannot be factored in the form
φi, j(u,v) = Ai(u)B j(v), (see Farin, 2002).

Projective invariance property allow us to modify Algorithm 2.1 for the rational
tensor product Bézier surface. The algorithm is

Algorithm 2.3: Given the control net bi, j ∈ E3, and the corresponding weights
wi, j ∈ R; i = 0, . . . ,m, j = 0 . . . ,n. Compute

wr,r
i, jb

r,r
i, j =

[
1−u u

][
wr−1,r−1

i, j br−1,r−1
i, j wr−1,r−1

i, j+1 br−1,r−1
i, j+1

wr−1,r−1
i+1, j br−1,r−1

i+1, j wr−1,r−1
i+1, j+1br−1,r−1

i+1, j+1

][
1− v

v

]
(2.3.2)
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for r = 1, . . . ,k, i = 0, . . . ,m− r, j = 0, . . . ,n− r, where k = min(m,n) and

wr,r
i, j =

[
1−u u

][
wr−1,r−1

i, j wr−1,r−1
i, j+1

wr−1,r−1
i+1, j wr−1,r−1

i+1, j+1

][
1− v

v

]

As in nonrational case we turn to de Casteljau algorithm of rational Bézier curves after
kth application of Algorithm 2.3.

The degree elevation procedure for tensor product surfaces can be extended for
rational tensor product Bézier surfaces. Because the similarity we will not give the
required points to obtain a rational tensor product Bézier surface of degree (m,n) as
one of more degree. The following theorem gives the difference form of rational tensor
product Bézier surfaces.

Theorem 2.3.1. R(u,v) can be expressed in terms of differences by

R(u,v) =
∑m

i=0 ∑n
j=0

(m
i

)(n
j

)
∆i

1∆ j
2(w0,0b0,0)uiv j

∑m
i=0 ∑n

j=0
(m

i

)(n
j

)
∆i

1∆ j
2w0,0uiv j

. (2.3.3)

Proof. Let R(u,v) obtained by projection of tensor product Bézier surface S(u,v). The
control points of S(u,v) are ci, j = [wi, jbi, j wi, j]T , i = 0, . . . ,m, j = 0, . . . ,n. Then from
Theorem 2.1.1 we have

S(u,v) =
m

∑
i=0

n

∑
j=0

(
m
i

)(
n
j

)
∆i

1∆ j
2c0,0uiv j. (2.3.4)

Projecting (2.3.4) to the hyperplane gives

R(u,v) =
∑m

i=0 ∑n
j=0

(m
i

)(n
j

)
∆i

1∆ j
2(w0,0b0,0)uiv j

∑m
i=0 ∑n

j=0
(m

i

)(n
j

)
∆i

1∆ j
2w0,0uiv j

.
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2.3.2 Rational Bézier Triangles

Rational Bézier triangle of degree n is defined by

R(u,v) =
∑n

i=0 ∑n−i
j=0 wi, jbi, jBn

i, j(u,v)

∑n
i=0 ∑n−i

j=0 wi, jBn
i, j(u,v)

, 0 6 u,v 6 1 and 0 6 u+ v 6 1. (2.3.5)

These surfaces have the following properties:

1. Affine invariance property

2. Convex hull property

3. Boundary curves

4. Corner point interpolation property

5. Projective invariance property

As in rational tensor product Bézier surfaces, projective invariance property is
important that will lead us to a de Casteljau algorithm for computing rational
q− Bernstein Bézier triangles. Furthermore, using projective invariance property, we
are able to express each intermediate point of de Casteljau algorithm and consequently
rational Bézier triangle in terms of differences. The following is the de Casteljau type
algorithm for rational q−Bernstein Bézier triangles.

Algorithm 2.4: Let bi, j, i = 0, . . . ,n, j = 0, . . . ,n− i be the control points and the
real values wi, j be associated weights. Compute

wr
i, jb

r
i, j = (1−u− v)wr−1

i, j br−1
i, j +uwr−1

i+1, jb
r−1
i+1, j + vwr−1

i, j+1b
r−1
i, j+1 (2.3.6)

for r = 1, . . . ,n, i = 0, . . . ,n− r, j = 0, . . . ,n− r− i where 0 6 u+ v 6 1 and

wr
i, j = (1−u− v)wr−1

i, j +uwr−1
i+1, j + vwr−1

i, j+1.
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The following theorem can be proved by using the projective invariance property

Theorem 2.3.2. The intermediate points of Algorithm 2.4 can be expressed as

bm
r,s =

∑m
i=0 ∑m−i

j=0
( n

i , j

)
∆i

1∆ j
2(wr,sbr,s)uiv j

∑m
i=0 ∑m−i

j=0
( n

i , j

)
∆i

1∆ j
2wr,suiv j

. (2.3.7)

Corollary 2.3.1. The rational Bézier triangle is

R(u,v) = bn
0,0 =

∑n
i=0 ∑n−i

j=0
( n

i , j

)
∆i

1∆ j
2(w0,0b0,0)uiv j

∑n
i=0 ∑n−i

j=0
( n

i , j

)
∆i

1∆ j
2w0,0uiv j

.

The degree elevation procedure can be used for rational Bézier triangles. To find
new control points first, we degree elevate the projected Bézier triangle S(u,v) ∈ E4

and then project each new control point. Thus, to express R(u,v) as a surface of degree
n+1, we need the following control points

b1
i, j =

i
n+1wi−1, jbi−1, j +

j
n+1wi, j−1bi, j−1 + n+1−i− j

n+1 wi, jbi, j

w1
i, j

where the weights w1
i, j are

w1
i, j =

i
n+1

wi−1, j +
j

n+1
wi, j−1 +

(
1− i+ j

n+1

)
wi, j.



CHAPTER THREE
A GENERALIZATION of BÉZIER SURFACES

First, a two-parameter family of tensor product Bézier surfaces is defined. Then
we give the change of basis matrix for tensor product q−Bernstein Bézier surfaces. In
section 3.2 the generalization of Bézier triangles is given. The rational counterparts of
generalized Bézier surfaces are given in section 3.3. Finally, the convergence properties
of tensor product q−Bernstein Bézier surfaces and q−Bézier triangles are investigated
in section 3.4.

3.1 Tensor Product q−Bernstein Bézier Surfaces

In this section we now introduce a two-parameter family of tensor product Bézier
surfaces using q−Bernstein polynomials defined in Chapter 1. A special case of this
surfaces, when the parameter values equal to one, it gives standard tensor product
Bézier surfaces. We define a two-parameter tensor product Bézier surfaces, we will
call tensor product q−Bernstein Bézier surface of degree (m,n) by

S(u,v) =
m

∑
i=0

n

∑
j=0

bi, jB
m,q1
i (u)Bn,q2

j (v) (3.1.1)

where bi, j ∈ E3, i = 0, . . . ,m, j = 0, . . . ,n are control points, Bm,q1
i (u) are q−Bernstein

polynomials of degree m in u with parameter value q1 and Bn,q2
j (v) are q−Bernstein

polynomials of degree n in v, with the parameter value q2. It is not surprising that the
parameters q1 and q2 add extra flexibility to the basis functions and hence they vary
the shape of the Bézier surfaces. A change in q1,q2 results a different surface with
the same control net. In Figure 3.1 we have two surfaces with same control net but
different parameter values.

Properties:

1. Affine invariance property: Since ∑m
i=0 ∑n

j=0 Bm,q1
i (u)Bn,q2

j (v) = 1, S(u,v) is an
affine combination of its control net points. Thus S(u,v) is affinely invariant.

28
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11111111Figure 3.1 Two tensor product q-Bernstein Bézier surfaces
11111111with different values of q.

2. Convex hull property: When 0 < q1,q2 6 1, the basis polynomials are
nonnegative and form partition of unity property. Thus, S(u,v) is a convex
combination of bi, j and lies in the convex hull of its control net points.

3. Boundary curves: Boundary curves of S(u,v) are evaluated by S(u,0), S(u,1),
s(0,v) and S(1,v).

4. Corner point interpolation: The corner control net points coincide with the four
corners of the surface.

Algorithm 2.1 can be modified by using Algorithm 1.3 to compute tensor product
q−Bernstein Bézier surface by a de Casteljau type algorithm. This algorithm is

Algorithm 3.1: Given the control net bi, j ∈ E3; i = 0 . . . ,m, j = 0, . . . ,n. Compute

br,r
i, j =

[
1−qr−i−1

1 u qr−i−1
1 u

][
br−1,r−1

i, j br−1,r−1
i, j+1

br−1,r−1
i+1, j br−1,r−1

i+1, j+1

][
1−qr− j−1

2 v

qr− j−1
2 v

]
(3.1.2)

for r = 1, . . . ,k, i = 0, . . . ,m− r, j = 0, . . . ,n− r where k = min(m,n).

Another way to evaluate a point on the surface S(u,v) is that, first for each
j = 0,1, . . . ,n use Algorithm 1.3 in u−direction with parameter value q1 and
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control points b0, j,b1, j, . . . ,bm, j to obtain a q−Bernstein Bézier curve bm
0, j; j = 0, . . . ,n.

Then apply Algorithm 1.3 in v−direction with parameter value q2 to the control points
bm

0, j; j = 0, . . . ,n.

Using this idea it is possible to express each intermediate point of Algorithm 3.1
explicitly

Theorem 3.1.1. The intermediate points of Algorithm 3.1 are

br,r
i, j =

r

∑
k=0

r

∑
l=0

q−ri
1 q−r j

2 bi+k, j+l

[
r
k

]

q1

uk
r−k−1

∏
s=0

(qi
1−qs

1u)
[

r
l

]

q2

vl
r−l−1

∏
s=0

(q j
2−qs

2v). (3.1.3)

where
[r

k

]
q1

and
[r

l

]
q2

are q−binomial coefficients
[r

k

]
and

[r
l

]
with replacing q by q1

and q2 respectively.

Proof. First, apply r steps of Algorithm 1.3 in u−direction and parameter value q1 to
the points b0, j, . . . ,bm, j for j = 0,1 . . . ,n. Hence the resulting points are br

0, j, . . . ,b
r
m−r, j;

j = 0, . . . ,n. Now apply r steps of Algorithm 1.3 in v−direction and parameter value q2

to the points br
i,0, . . . ,b

r
i,n; i = 0, . . . ,m− r to obtain the point br,r

i, j. Since br,r
i, j is obtained

by Algorithm 1.3 it can be expressed, (see Dişibüyük & Oruç, 2008), as

br,r
i, j =

r

∑
l=0

q−r j
2 br

i, j+l

[
r
l

]

q2

vl
r−l−1

∏
s=0

(q j
2−qs

2v) (3.1.4)

But the points br
i, j+l are also obtained from Algorithm 1.3 which may expressed as

br
i, j+l =

r

∑
k=0

q−ri
1 bi+k, j+l

[
r
k

]

q1

uk
r−k−1

∏
s=0

(qi
1−qs

1u). (3.1.5)

Substituting the last equation in (3.1.4) we obtain

br,r
i, j =

r

∑
k=0

r

∑
l=0

q−ri
1 q−r j

2 bi+k, j+l

[
r
k

]

q1

uk
r−k−1

∏
s=0

(qi
1−qs

1u)
[

r
l

]

q2

vl
r−l−1

∏
s=0

(q j
2−qs

2v).

We now give q−differences form of tensor product q−Bernstein Bézier surfaces.
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q−difference form will lead us some properties on convergence of tensor product
q−Bernstein Bézier surfaces. These properties will be discussed in the following
sections. First we define q−differences in u−direction by

∆k+1
q1

bi, j = ∆k
q1

bi+1, j−qk
1∆k

q1
bi, j

for all k > 0 with ∆0
q1

bi, j = bi, j and the q−differences in v−direction by

∆k+1
q2

bi, j = ∆k
q2

bi, j+1−qk
2∆k

q2
bi, j

for all k > 0 with ∆0
q2

bi, j = bi, j (see Phillips, 2003). Then we also define

∆q1∆q2bi, j = ∆q1(∆q2bi, j).

Note that ∆i
q1

and ∆ j
q2 commute, that is

∆i
q1

∆ j
q2

bi, j = ∆ j
q2

∆i
q1

bi, j.

Theorem 3.1.2. S(u,v) can be expressed in terms of q−differences by

S(u,v) =
m

∑
i=0

n

∑
j=0

[
m
i

]

q1

[
n
j

]

q2

∆i
q1

∆ j
q2

b0,0uiv j. (3.1.6)

Proof. First, write tensor product Bézier surface in the form

S(u,v) =
n

∑
j=0

b jB
n,q2
j (v) where b j =

m

∑
i=0

bi, jB
m,q1
i (u).

Using q−difference form of Bézier curves we write b j in the form, (see Dişibüyük &
Oruç, 2008)

b j =
m

∑
i=0

[
m
i

]

q1

∆i
q1

b0, jui.

Thus

S(u,v) =
n

∑
j=0

{
m

∑
i=0

[
m
i

]

q1

∆i
q1

b0, jui

}
Bn,q2

j (v)
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and after one more rearrangement we will have

S(u,v) =
m

∑
i=0

[
m
i

]

q1

{
n

∑
j=0

∆i
q1

b0, jB
n,q2
j (v)

}
ui.

For i = 0, . . . ,m, the expression in the curly brackets are q−Bernstein Bézier curves in
v with the control points ∆i

q1
b0, j, writing q−difference form of these curves and using

the commutativity property we obtain (3.1.6).

It is also possible to degree elevate a two-parameter tensor product Bézier surface
S(u,v) of degree (m,n) as in the standard case. The control points

b
(1,0)
i, j =

(
1− [m+1− i]q1

[m+1]q1

)
bi−1, j +

[m+1− i]q1

[m+1]q1

bi, j, i = 0, . . . ,m+1, j = 0, . . . ,n

gives S(u,v) as a surface of degree (m+1,n), where [i]q1 denotes the q−integer [i] with
the parameter value q1. Similarly, to obtain the same surface of degree (m,n + 1) we
need new control points b

(0,1)
i, j such that

b
(0,1)
i, j =

(
1− [n+1− j]q2

[n+1]q2

)
bi, j−1 +

[n+1− j]q2

[n+1]q2

bi, j, i = 0, . . . ,m, j = 0, . . . ,n+1.

Finally, to obtain S(u,v) as a surface of degree (m + 1,n + 1) new control points
evaluated from the product

b
(1,1)
i, j =

[
1− [m+1−i]q1

[m+1]q1

[m+1−i]q1
[m+1]q1

][
bi−1, j−1 bi−1, j

bi, j−1 bi, j

]
 1− [n+1− j]q2

[n+1]q2
[n+1− j]q2
[n+1]q2


 .

The repeated degree elevation procedure can be computed by following the univariate
case described in (Oruç & Phillips, 2003).
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3.1.1 Matrix Form and Change of Basis

The tensor product q−Bernstein Bézier patch can be written in matrix form as

S(u,v) = [Bm,q1
0 (u), . . . ,Bm,q1

m (u)]




b0,0 · · · b0,n
...

...
bm,0 · · · bm,n







Bn,q2
0 (v)

...
Bn,q2

n (v)




The basis of the tensor product polynomial space Pm⊗Pn has dimension (m+1)(n+1)
and each basis element may be in the form uiv j, i = 0,1, . . . ,m, j = 0,1, . . . ,n. For
simplicity we take m = n and q1 = q2 = q. Let C = [c0,c1, . . . ,cn]T be a (n + 1)2× 1
block vector with elements ci = [ui,uiv, . . . ,uivn]T and let Bq = [b0,b1, . . . ,bn]T be a
block matrix with block elements

bi = [Bn,q
i (u)Bn,q

0 (v),Bn,q
i (u)Bn,q

1 (v), . . . ,Bn,q
i (u)Bn,q

n (v)]T

for i = 0, . . . ,n. Since the tensor product q−Bernstein Bézier surfaces span the space
of tensor product polynomials, there exists a transformation matrix Mn,q such that

Bq = Mn,qC.

Let us consider

Bn,q
i (u)Bn,q

j (v) =
[

n
i

]
ui

n−i−1

∏
s=0

(1−qsu)
[

n
j

]
v j

n− j−1

∏
s=0

(1−qsv).

Using the property (1.2.6) we deduce that

Bn,q
i (u)Bn,q

j (v) =
n

∑
k=i

(−1)k−iq(k−i
2 )

[
n
i

][
n− i
k− i

]
uk

n

∑
l= j

(−1)l− jq(l− j
2 )

[
n
j

][
n− j
l− j

]
vl.

Rearranging the terms using the definition (1.2.2) we have

Bn,q
i (u)Bn,q

j (v) =
n

∑
k=0

n

∑
l=0

(−1)(k+l)−(i+ j)q(k−i
2 )q(l− j

2 )
[

n
i

][
n− i
k− i

][
n
j

][
n− j
l− j

]
ukvl.
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Since [
n− i
k− i

]
=

[n
k

][k
i

]
[n

i

] (3.1.7)

we obtain

Bn,q
i (u)Bn,q

j (v) =
n

∑
k=0

n

∑
l=0

(−1)(k+l)−(i+ j)q(k−i
2 )+(l− j

2 )
[

n
k

][
k
i

][
n
l

][
l
j

]
ukvl.

As a consequence, one may write Bq = Mn,qC where Mn,q is an upper triangular block
matrix with a generic element

(
(Mn,q

i j )n
k,l=0

)n

i, j=0
= (−1)( j+l)−(i+k)q( j−i

2 )+(l−k
2 )

[
n
j

][
j
i

][
n
l

][
l
k

]
.

Conversely, to express the monomial basis in terms of the q−Bernstein basis we
multiply the equation

n−i

∑
k=0

Bn−i,q
k (u)

n− j

∑
l=0

Bn−l,q
j (v) = 1

by uiv j. Then we have

uiv j =
n−i

∑
k=0

[
n− i

k

]
ui+k

n−i−k−1

∏
s=0

(1−qsu)
n− j

∑
l=0

[
n− j

l

]
v j+l

n− j−l−1

∏
s=0

(1−qsv).

Shifting the limits of the sums and rearranging the terms using the equation (3.1.7)
yields

uiv j =
n

∑
k=i

[k
i

]
[n

i

]Bn,q
k (u)

n

∑
l= j

[l
j

]
[n

j

]Bn,q
l (v).

From definition (1.2.2) one may write

uiv j =
n

∑
k=0

n

∑
l=0

[k
i

][l
j

]
[n

i

][n
j

]Bn,q
k (u)Bn,q

l (v).

It follows that C = M̃n,qBq where M̃n,q is a block matrix with a generic element

(
(M̃n,q

i, j )n
k,l=0

)n

i, j=0
=

[ j
i

][l
k

]
[n

i

][n
k

] .
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Note that M̃n,q is an upper triangular block matrix and (M̃n,q)−1 = Mn,q. Now, we find a
transformation matrix between the q−Bernstein basis and the standard Bernstein basis.
Since C = M̃n,qBq, we express the monomial basis in terms of standard Bernstein basis
when q = 1. So, we have

C = M̃n,1B1,

where B1 is the standard tensor product Bernstein basis and the matrix M̃n,1 is a block
matrix with a generic element

(
(M̃n,1

i, j )n
k,l=0

)n

i, j=0
=

( j
i

)(l
k

)
(n

i

)(n
k

) .

Thus
M̃n,qBq = M̃n,1B1.

Premultiplying both sides by the matrix Mn,q, we obtain

Bq = T n,q,1B1,

where T n,q,1 = Mn,qM̃n,1. It is worth noting that the transformation matrix T n,q,1 makes
it possible to exchange q−Bernstein Bézier and standard Bézier representations of the
surface S(u,v).

3.2 A Generalization of Bézier Triangles

In order to construct a one-parameter family Bézier triangles, called q−Bézier
triangles we generalize Algorithm 2.2 using Algorithm 1.3. For a given triangular
array of points bi, j, i = 0, . . . ,n, j = 0, . . . ,n− i and a fixed real q, 0 < q 6 1 we
modify the de Casteljau type algorithm as follows:

Algorithm 3.2: Given triangular array of points bi, j, compute

bm
r,s = (1−qm−r−1u−qm−s−1v)bm−1

r,s +qm−r−1ubm−1
r+1,s +qm−s−1vbm−1

r,s+1

for m = 1,2, . . . ,n, r = 0,1, . . . ,n−m, s = 0,1, . . . ,n−m− r where 0 6 u + v 6 1.
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Many properties of q−Bézier triangles can be stated based on this algorithm. These
properties are:

1) Affine invariance property: At each step the intermediate points of Algorithm
3.2 is affine combination of the intermediate points that obtained in the previous step.
Thus the q−Bézier triangles are affinely invariant.

2) Boundary curves: Boundary curves of the surfaces are obtained as q−Bernstein
Bézier curves which control points are the boundary points of the control net.

3) Corner point interpolation: If we take u = v = 0 in Algorithm 3.2 then each
intermediate point will be equal to the point b0,0. Hence bn

0,0(0,0) = b0,0. If we take
u = 0 the the algorithm will be in the form

bm
r,s = (1−qm−s−1v)bm−1

r,s +qm−s−1vbm−1
r,s+1

and when r = 0 the above expression turn into the form Algorithm 1.3 with the control
points b0, j, j = 0, . . . ,n and from the end point interpolation property of q−Bernstein
Bézier curves we have bn

0,0(0,1) = b0,n. Similarly we can say that bn,0 is on the surface.
Namely bn

0,0(1,0) = bn,0.

The following result shows that each intermediate point of Algorithm 3.2 can be
written explicitly in terms of q−differences where we define q−differences by

∆k
1br,s = ∆k−1

1 br+1,s−qk−1∆k−1
1 br,s

and
∆k

2br,s = ∆k−1
2 br,s+1−qk−1∆k−1

2 br,s

for k > 0 and ∆0
1bi, j = ∆0

1bi, j = bi, j. Note that ∆k
1 and ∆l

2 commute.

The next result generalizes (2.2.4), the difference form of standard Bézier triangles.
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Theorem 3.2.1. The intermediate points of Algorithm 3.2 are

bm
r,s =

m

∑
i=0

m−i

∑
j=0

qi jq−ri−s j
[

m
i+ j

](
i+ j

i

)
∆i

1∆ j
2br,suiv j. (3.2.1)

Proof. We use induction on m. When m = 0 we have

b0
r,s =

0

∑
i=0

0−i

∑
j=0

qi jq−ri−s j
[

m
i+ j

](
i+ j

i

)
∆i

1∆ j
2br,suiv j = ∆0

1∆0
2br,s = br,s.

Now assume that (3.2.1) holds for m−1. That is

bm−1
r,s =

m−1

∑
i=0

m−1−i

∑
j=0

qi jq−ri−s j
[

m−1
i+ j

](
i+ j

i

)
∆i

1∆ j
2br,suiv j.

Putting bm−1
r,s on the right of Algorithm 3.2 gives

bm
r,s = (1−qm−r−1u−qm−s−1v)

m−1

∑
i=0

m−i−1

∑
j=0

qi jq−ri−s j
[

m−1
i+ j

](
i+ j

i

)
∆i

1∆ j
2br,suiv j

+qm−r−1u
m−1

∑
i=0

m−i−1

∑
j=0

qi jq−(r+1)i−s j
[

m−1
i+ j

](
i+ j

i

)
∆i

1∆ j
2br+1,suiv j

+qm−s−1v
m−1

∑
i=0

m−i−1

∑
j=0

qi jq−ri−(s+1) j
[

m−1
i+ j

](
i+ j

i

)
∆i

1∆ j
2br,s+1uiv j.

Let us split the last equation into three by

bm
r,s = α+β+ γ
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where

α =
m−1

∑
i=0

m−i−1

∑
j=0

qi jq−ri−s j
[

m−1
i+ j

](
i+ j

i

)
∆i

1∆ j
2br,suiv j,

β = qm−r−1u
m−1

∑
i=0

m−i−1

∑
j=0

qi jq−ri−s j
[

m−1
i+ j

](
i+ j

i

)
(q−i∆i

1∆ j
2br+1,s−∆i

1∆ j
2br,s)uiv j

and

γ = qm−s−1v
m−1

∑
i=0

m−i−1

∑
j=0

qi jq−ri−s j
[

m−1
i+ j

](
i+ j

i

)
(q− j∆i

1∆ j
2br,s+1−∆i

1∆ j
2br,s)uiv j.

Now rearrange α,β, and γ independently. Since
[m−1

i+ j

]
= 0 for i = m and for j = m− i,

we can write

α =
m

∑
i=0

m−i

∑
j=0

qi jq−ri−s j
[

m−1
i+ j

](
i+ j

i

)
∆i

1∆ j
2br,suiv j.

Shifting the index of the first summation in β gives

β =
m

∑
i=1

m−i

∑
j=0

q(i−1) jq−ri−s jqm−1
[

m−1
i+ j−1

](
i+ j−1

i−1

)

×(q−i+1∆i−1
1 ∆ j

2br+1,s−∆i−1
1 ∆ j

2br,s)uiv j.

(i+ j−1
i−1

)
= 0 for i = 0, thus the last equation written as

β =
m

∑
i=0

m−i

∑
j=0

qi jq−ri−s jqm− j−1
[

m−1
i+ j−1

](
i+ j−1

i−1

)

×(q−i+1∆i−1
1 ∆ j

2br+1,s−∆i−1
1 ∆ j

2br,s)uiv j.

Since

q−i+1∆i−1
1 ∆ j

2br+1,s−∆i−1
1 ∆ j

2br,s = q−i+1(∆i−1
1 ∆ j

2br+1,s−qi−1∆i−1
1 ∆ j

2br,s)

= q−i+1∆i
1∆ j

2br,s,
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we have

β =
m

∑
i=0

m−i

∑
j=0

qi jq−ri−s jqm−i− j
[

m−1
i+ j−1

](
i+ j−1

i−1

)
∆i

1∆ j
2br,suiv j.

Rearranging and shifting the index of the second summation of γ we obtain

γ =
m−1

∑
i=0

m−i

∑
j=1

qi( j−1)q−ri−s jqm−1
[

m−1
i+ j−1

](
i+ j−1

i

)

×(q− j+1∆i
1∆ j−1

2 br,s+1−∆i
1∆ j−1

2 br,s)uiv j.

Using q− j+1∆i
1∆ j−1

2 br,s+1 − ∆i
1∆ j−1

2 br,s = q− j+1∆i
1∆ j

2br,s,
[ m−1

i+ j−1

]
= 0 for i = m and(i+ j−1

i

)
= 0 for j = 0 we have

γ =
m

∑
i=0

m−i

∑
j=0

qi jq−ri−s jqm−i− j
[

m−1
i+ j−1

](
i+ j−1

i

)
∆i

1∆ j
2br,suiv j.

Hence

bm
r,s =

m

∑
i=0

m−i

∑
j=0

qi jq−ri−s jw∆i
1∆ j

2br,suiv j

where

w =
{[

m−1
i+ j

](
i+ j

i

)
+qm−i− j

[
m−1

i+ j−1

]{(
i+ j−1

i−1

)
+

(
i+ j−1

i

)}}
.

Using the pascal identity we have

w =
{(

i+ j
i

){[
m−1
i+ j

]
+qm−i− j

[
m−1

i+ j−1

]}}
.

From the pascal type identity (1.2.4) of q−binomial coefficients we obtain

bm
r,s =

m

∑
i=0

m−i

∑
j=0

qi jq−ri−s j
[

m
i+ j

](
i+ j

i

)
∆i

1∆ j
2br,suiv j

and the proof is completed.

As a consequence of theorem 3.2.1 one may express q−Bézier triangles explicitly.
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Corollary 3.2.1. q−Bézier triangle of degree n is

S(u,v) = bn
0,0 =

n

∑
i=0

n−i

∑
j=0

qi j
[

n
i+ j

](
i+ j

i

)
∆i

1∆ j
2b0,0uiv j. (3.2.2)

Note that q = 1 recovers the difference form of standard Bézier triangles (2.2.4),
since

( n
i+ j

)(i+ j
i

)
=

( n
i , j

)
.

3.3 A Generalization of Rational Bézier Surfaces

3.3.1 Rational Tensor Product q−Bernstein Bézier Surfaces

Using analogous technique that is used in obtaining rational tensor product Bézier
surface we introduce a generalization of tensor product q−Bernstein Bézier surfaces
by projecting tensor product q-Bernstein Bézier surfaces to the hyperplane w = 1. Let
R(u,v)∈E3 be a point on rational tensor product q−Bernstein Bézier surface of degree
(m,n). The point R(u,v) may be identified as [R(u,v) 1]T ∈ E4. For 0 6 u,v 6 1, this
point is the projection of the point [w(u,v)R(u,v) w(u,v)]T which is a point on the
projecting surface S(u,v) of degree (m,n) in 4D. Hence w(u,v) is a polynomial in u

and v of degree (m,n) and may be expressed in terms of tensor product q−Bernstein
Bézier polynomials of degree (m,n) by

w(u,v) =
m

∑
i=0

n

∑
j=0

wi, jB
m,q1
i (u)Bn,q2

j (v), wi, j ∈ R.

It follows from the homogeneous form [w(u,v)R(u,v) w(u,v)]T that

(
R(u,v)∑m

i=0 ∑n
j=0 wi, jB

m,q1
i (u)Bn,q2

j (v)

∑m
i=0 ∑n

j=0 wi, jB
m,q1
i (u)Bn,q2

j (v)

)
=

m

∑
i=0

n

∑
j=0

(
ci, j

wi, j

)
Bm,q1

i (u)Bn,q2
j (v).
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Namely,

R(u,v)
m

∑
i=0

n

∑
j=0

wi, jB
m,q1
i (u)Bn,q2

j (v) =
m

∑
i=0

n

∑
j=0

ci, jB
m,q1
i (u)Bn,q2

j (v).

Then

R(u,v) =
∑m

i=0 ∑n
j=0 ci, jB

m,q1
i (u)Bn,q2

j (v)

∑m
i=0 ∑n

j=0 wi, jB
m,q1
i (u)Bn,q2

j (v)
.

Finally setting ci, j = wi, jbi, j gives

R(u,v) =
∑m

i=0 ∑n
j=0 wi, jbi, jB

m,q1
i (u)Bn,q2

j (v)

∑m
i=0 ∑n

j=0 wi, jB
m,q1
i (u)Bn,q2

j (v)
. (3.3.1)

The points bi, j form the control net and the numbers wi, j > 0 are called weights
associated with bi, j. The following figure depicts a rational tensor product q−Bernstein
Bézier surface of degree (4,2).

111111111111
111111111111111111111Figure 3.2 Rational tensor product q-Bernstein
111111111111111111111Bézier surface of degree (4,2).
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The basis functions for rational tensor product q−Bernstein Bézier surfaces are

φi, j =
wi, jB

m,q1
i (u)Bn,q2

j (v)

∑m
i=0 ∑n

j=0 wi, jB
m,q1
i (u)Bn,q2

j (v)

which form partition of unity and are positive for the parameter values
0 < q1,q2 6 1. Using the basis functions we find out some of properties of R(u,v)
listed below.

1. Affine invariance property: It is a consequence of the basis functions φi, j sum to
one.

2. Convex hull property: For 0 < q1,q2 6 1, the basis functions are positive.
Furthermore they sum to one and hence R(u,v) has convex hull property.

3. Boundary curves: Boundary curves of R(u,v) are evaluated by R(u,0), R(u,1),
R(0,v), and R(1,v) where the first two are tensor product q−Bernstein Bézier surface
in u and the latter two are tensor product q−Bernstein Bézier surface in v.

4. Corner point interpolation: The corner points of the surface and the corner points
of the control net coincide:

R(0,0) = b0,0,R(1,0) = bm,0,R(0,1) = b0,n, and R(1,1) = bm,n.

5. Projective invariance property: R(u,v) has also the projective invariance property
which is explained in Chapter 1.

The equation (3.3.1) defines a more general Bernstein Bézier surface. If we set
q = 1 then we obtain standard rational tensor product Bernstein Bézier surface (2.3.1).
Taking all weights equal reveals tensor product q−Bernstein Bézier surface (3.1.1).
Moreover, if we set q = 1 and take all weights equal then we obtain standard tensor
product Bernstein Bézier surface (2.1.1).

Figure 3.2 is a part of a hourglass. Using the symmetry of the surface about the
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xy−plane, we obtain a quarter of the hourglass. Since taking symmetry of an object is
an affine map, we can obtain the control net of the resulting surface by symmetry of the
control net of the Figure 3.2. Then using the symmetry of the resulting surface about
the xz−plane, yz−plane and the plane x + y = 0 and combining the results we obtain
Figure 3.3.

111111111111Figure 3.3 A hourglass and its control net.

We also modify Algorithm 3.1 to obtain rational tensor product q−Bernstein Bézier
surfaces. For this purpose we project each intermediate point of Algorithm 3.1 into E3.

The intermediate points for 4D surface are

pr,r
i, j =

[
1−qr−i−1

1 u qr−i−1
1 u

][
pr−1,r−1

i, j pr−1,r−1
i, j+1

pr−1,r−1
i+1, j pr−1,r−1

i+1, j+1

][
1−qr− j−1

2 v

qr− j−1
2 v

]

for r = 1,2, . . . ,k; i = 0,1, . . . ,m− r; j = 0,1, . . . ,n− r; where k = min(m,n) and
p0,0

i, j = pi, j = [wi, jbi, j wi, j]T . Thus the algorithm is

Algorithm 3.3: Given the control net bi, j ∈E3 and the corresponding weights wi, j ∈
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R; i = 0, . . . ,m; j = 0, . . . ,n. Compute

wr,r
i, jb

r,r
i, j =

[
1−qr−i−1

1 u qr−i−1
1 u

][
wr−1,r−1

i, j br−1,r−1
i, j wr−1,r−1

i, j+1 br−1,r−1
i, j+1

wr−1,r−1
i+1, j br−1,r−1

i+1, j wr−1,r−1
i+1, j+1br−1,r−1

i+1, j+1

]
×

[
1−qr− j−1

2 v

qr− j−1
2 v

]
(3.3.2)

for r = 1,2, . . . ,k; i = 0, . . . ,m− r; j = 0, . . . ,n− r; where k = min(m,n) and

wr,r
i, j =

[
1−qr−i−1

1 u qr−i−1
1 u

][
wr−1,r−1

i, j wr−1,r−1
i, j+1

wr−1,r−1
i+1, j wr−1,r−1

i+1, j+1

][
1−qr− j−1

2 v

qr− j−1
2 v

]
(3.3.3)

The following theorem gives the explicit form of intermediate points

Theorem 3.3.1. The intermediate points of Algorithm 3.3 expressed explicitly as

br,r
i, j =

∑r
k=0 ∑r

l=0 wi+k, j+lbi+k, j+l
[r

k

]
q1

uk ∏r−k−1
s=0 (qi

1−qs
1u)

[r
l

]
q2

vl ∏r−l−1
s=0 (q j

2−qs
2v)

∑r
k=0 ∑r

l=0 wi+k, j+l
[r

k

]
q1

uk ∏r−k−1
s=0 (qi

1−qs
1u)

[r
l

]
q2

vl ∏r−l−1
s=0 (q j

2−qs
2v)

(3.3.4)

Proof. We will use projective invariance property. Take control points
pi, j = [wi, jbi, j wi, j]T ∈ E4. Now apply Algorithm 3.1 for pr,r

i, j. We see from the
Theorem3.1.1 that

pr,r
i, j =

r

∑
k=0

r

∑
l=0

q−ri
1 q−r j

2 pi+k, j+l

[
r
k

]

q1

uk
r−k−1

∏
s=0

(qi
1−qs

1u)
[

r
l

]

q2

vl
r−l−1

∏
s=0

(q j
2−qs

2v)

and

wr,r
i, j =

r

∑
k=0

r

∑
l=0

q−ri
1 q−r j

2 wi+k, j+l

[
r
k

]

q1

uk
r−k−1

∏
s=0

(qi
1−qs

1u)
[

r
l

]

q2

vl
r−l−1

∏
s=0

(q j
2−qs

2v).

Projecting pr,r
i, j in E4 onto E3 yields

br,r
i, j =

∑r
k=0 ∑r

l=0 wi+k, j+lbi+k, j+l
[r

k

]
q1

uk ∏r−k−1
s=0 (qi

1−qs
1u)

[r
l

]
q2

vl ∏r−l−1
s=0 (q j

2−qs
2v)

∑r
k=0 ∑r

l=0 wi+k, j+l
[r

k

]
q1

uk ∏r−k−1
s=0 (qi

1−qs
1u)

[r
l

]
q2

vl ∏r−l−1
s=0 (q j

2−qs
2v)

,
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and this completes the proof.

By using the projective invariance property, it is also possible to express the
intermediate points of Algorithm 3.3 explicitly in terms of q−differences.

Theorem 3.3.2. The q−differences form of the intermediate points of Algorithm 3.3 is

br,r
i, j =

∑r
k=0 ∑r

l=0 q−ik
1 q− jl

2
[r

k

]
q1

[r
l

]
q2

∆k
q1

∆l
q2

(wi, jbi, j)ukvl

∑r
k=0 ∑r

l=0 q−ik
1 q− jl

2
[r

k

]
q1

[r
l

]
q2

∆k
q1

∆l
q2

wi, jukvl
. (3.3.5)

Proof. Take pi, j = [wi, jbi, j wi, j]T and apply Algorithm 3.1. We have from theorem
(3.1.1) that

pr,r
i, j =

r

∑
l=0

q−r j
2 pr

i, j+l

[
r
l

]

q2

vl
r−l−1

∏
s=0

(q j
2−qs

2v).

The above expression is the intermediate points of Algorithm 1.3 with control points
pr

i, j; j = 0,1, . . . ,n. Hence using the q−difference form of the intermediate points of
Algorithm 1.3 we obtain

pr,r
i, j =

r

∑
l=0

q− jl
2

[
r
l

]

q2

vl∆l
q2

pr
i, j.

We also know that pr
i, j; j = 0,1, . . . ,n are the intermediate points of Algorithm 1.3 with

the control points p0, j, p1, j, . . . , pm, j for each j and hence pr
i, j can be written as

pr
i, j =

r

∑
k=0

q−ik
1

[
r
k

]

q1

uk∆k
q1

pi, j.

Substituting the last equation in pr,r
i, j and projecting it onto E3 gives

br,r
i, j =

∑r
k=0 ∑r

l=0 q−ik
1 q− jl

2
[r

k

]
q1

[r
l

]
q2

∆k
q1

∆l
q2

(wi, jbi, j)ukvl

∑r
k=0 ∑r

l=0 q−ik
1 q− jl

2
[r

k

]
q1

[r
l

]
q2

∆k
q1

∆l
q2

wi, jukvl
.

We now give the q−difference form of rational tensor product q−Bernstein Bézier
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surface R(u,v).

Theorem 3.3.3. The surface R(u,v) may also be computed by

R(u,v) =
∑m

i=0 ∑n
j=0

[m
i

]
q1

[n
j

]
q2

∆i
q1

∆ j
q2(w0,0b0,0)uiv j

∑m
i=0 ∑n

j=0
[m

i

]
q1

[n
j

]
q2

∆i
q1

∆ j
q2w0,0uiv j

. (3.3.6)

Proof. First write R(u,v) in the form

R(u,v) =
∑n

j=0 d jB
n,q2
j (v)

∑n
j=0 w jB

n,q2
j (v)

where d j = ∑m
i=0 wi, jbi, jB

m,q1
i (u) and w j = ∑m

i=0 wi, jB
m,q1
i (u). Since d j and w j are

q− Bernstein Bézier curves we may write

d j =
m

∑
i=0

[
m
i

]

q1

∆i
q1

(w0, jb0, j)ui; w j =
m

∑
i=0

[
m
i

]

q1

∆i
q1

w0, jui.

Thus,

R(u,v) =
∑n

j=0

{
∑m

i=0
[m

i

]
q1

∆i
q1

(w0, jb0, j)ui
}

Bn,q2
j (v)

∑n
j=0

{
∑m

i=0
[m

i

]
q1

∆i
q1

w0, jui
}

Bn,q2
j (v)

and

R(u,v) =
∑m

i=0
[m

i

]
q1

{
∑n

j=0 ∆i
q1

(w0, jb0, j)B
n,q2
j (v)

}
ui

∑m
i=0

[m
i

]
q1

{
∑n

j=0 ∆i
q1

w0, jB
n,q2
j (v)

}
ui

.

The expressions in curly brackets are q−Bernstein Bézier curves. Then writing the
q−difference form of these curves and using the commutativity property of q−differences
we have

R(u,v) =
∑m

i=0 ∑n
j=0

[m
i

]
q1

[n
j

]
q2

∆i
q1

∆ j
q2(w0,0b0,0)uiv j

∑m
i=0 ∑n

j=0
[m

i

]
q1

[n
j

]
q2

∆i
q1

∆ j
q2w0,0uiv j

.

It can easily be shown using the projective invariance property that rational tensor
product q−Bernstein Bézier surface R(u,v) of degree (m,n) can be expressed as one
of higher degree. Hence the required points are as follows:
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i) express R(u,v) as a surface of degree (m+1,n):

b
(1,0)
i, j =

(
1− [m+1− i]q1

[m+1]q1

)
bi−1, j

w(1,0)
i, j

+
[m+1− i]q1

[m+1]q1

bi, j

w(1,0)
i, j

,

where the corresponding weights are

w(1,0)
i, j =

(
1− [m+1− i]q1

[m+1]q1

)
wi−1, j +

[m+1− i]q1

[m+1]q1

wi, j, i = 0, . . . ,m+1; j = 0, . . . ,n.

ii) express R(u,v) as a surface of degree (m,n+1):

b
(0,1)
i, j =

(
1− [n+1− j]q2

[n+1]q2

)
bi, j−1

w(1,0)
i, j

+
[n+1− j]q2

[n+1]q2

bi, j

w(1,0)
i, j

,

where

w(0,1)
i, j =

(
1− [n+1− j]q2

[n+1]q2

)
wi−1, j +

[n+1− j]q2

[n+1]q2

wi, j, i = 0, . . . ,m; j = 0, . . . ,n+1.

3.3.2 Rational q−Bézier Triangles

We define rational q−Bézier triangle of degree n by

R(u,v) =
∑n

i=0 ∑n−i
j=0 qi j

[ n
i+ j

](i+ j
i

)
∆i

1∆ j
2(w0,0b0,0)uiv j

∑n
i=0 ∑n−i

j=0 qi j
[ n

i+ j

](i+ j
i

)
∆i

1∆ j
2w0,0uiv j

, 0 6 u+ v 6 1

where the q−differences ∆1 and ∆2 are defined in section 3.2. Note that if we choose
the weights wi, j = w, i = 0,1, . . . ,n, j = 0,1, . . . ,n− i, where w > 0 is a fixed real then
we have ∆i

1∆ j
2w0,0 = 0 for any i, j > 1. Thus, we turn to q−Bézier triangles when all

weights are equal.

One can also compute rational q−Bézier triangle by a de Casteljau type algorithm
obtained by projection of each intermediate point of Algorithm 3.2 onto E3. The
algorithm is



48

Algorithm 3.4: Let bi, j, i = 0,1, . . . ,n, j = 0,1, . . . ,n− i be the control points and
the real values wi, j be associated weights. Compute

wm
r,sb

m
r,s = (1−qm−r−1u−qm−s−1v)wm−1

r,s bm−1
r,s +qm−r−1uwm−1

r+1,sb
m−1
r+1,s

+qm−s−1vwm−1
r,s+1b

m−1
r,s+1

where

wm
r,s = (1−qm−r−1u−qm−s−1v)wm−1

r,s +qm−r−1uwm−1
r+1,s +qm−s−1vwm−1

r,s+1

for m = 1,2, . . . ,n, r = 0,1, . . . ,n−m, s = 0,1, . . . ,n−m− r where 0 6 u+ v 6 1.

The properties of rational q−Bézier triangles are

1. Affine invariance property comes from the coefficients of Algorithm 3.4 sum to
one.

2. Boundary curves: q−Bernstein Bézier curves, whose control points are the
boundary net points of R(u,v), form the boundary curves of q−Bézier triangle.

3. Corner point interpolation: R(u,v) coincide with the corner points of its control
net.

R(0,0) = b0,0, R(1,0) = bn,0, and R(0,1) = b0,n.

4. R(u,v) satisfies the projective invariance property

The following result gives the q−difference form of Algorithm 3.4 and can be
proved by induction or using projective invariance property.

Theorem 3.3.4. The intermediate points bm
r,s in Algorithm 3.4 are

bm
r,s =

∑m
i=0 ∑m−i

j=0 qi jq−ri−s j
[ m

i+ j

](i+ j
i

)
∆i

1∆ j
2(wr,sbr,s)uiv j

∑m
i=0 ∑m−i

j=0 qi jq−ri−s j
[ m

i+ j

](i+ j
i

)
∆i

1∆ j
2wr,suiv j
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Corollary 3.3.1. The intermediate point bn
0,0 is a point on the surface

R(u,v) = bn
0,0 =

∑n
i=0 ∑n−i

j=0 qi j[ n
i+ j

](i+ j
i

)
∆i

1∆ j
2(w0,0b0,0)uiv j

∑n
i=0 ∑n−i

j=0 qi j
[ n

i+ j

](i+ j
i

)
∆i

1∆ j
2w0,0uiv j

.

3.4 Multivariate Bernstein Polynomials

Convergence properties of q−Bernstein polynomials are studied in (Oruç & Tuncer,
2002), (Il’inskii & Ostrovska, 2002), (Ostrovska, 2003) and (Wang, 2008). It is shown
in (Oruç & Tuncer, 2002) when 0 < q < 1 that the uniform convergence of f by the
sequence {Bn( f ;x)} requires that f be a linear function. It is also shown in (Oruç
& Tuncer, 2002) that when q > 1, a one parameter family of Bernstein polynomials
converge to f as n→ ∞ if f is a polynomial. On the other hand in (Ostrovska, 2003) it
is shown that when q > 1 Bn f → f if f is analytic. We now aim at finding analogous
results found in (Oruç & Tuncer, 2002) and (Ostrovska, 2003).

Let us recall that tensor product q−Bernstein Bézier surfaces can be expressed in
terms of q−differences by

S(u,v) =
m

∑
i=0

n

∑
j=0

[
m
i

]

q1

[
n
j

]

q2

∆i
q1

∆ j
q2

b0,0uiv j.

A nonparametric surface of the form z = f (x,y) has the parametric representation

S(x,y) = (x,y, f (x,y)).

It is shown in (Phillips, 2003) that for the q−Bernstein Bézier polynomial the following
identity holds:

n

∑
i=0

[i]
[n]

Bn,q
i (t) = t. (3.4.1)

Hence, if we choose the control net points in the form bi, j =
[

[i]
[m]

[ j]
[n] bi, j

]T
, where

bi, j ∈ R and use the identity (3.4.1) we obtain a nonparametric patch.
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We now define q−Bernstein polynomials for a function f (x,y) whose domain is
[0,1]× [0,1] by

Bm,n( f ;x,y) =
m

∑
i=0

n

∑
j=0

fi, jB
m,q1
i (x)Bn,q2

j (y), (3.4.2)

where fi, j = f ( [i]
[m] ,

[ j]
[n]). Note that the Bm,n( f ;x,y) is a monotone linear operator for

0 < q1,q2 6 1, and as a consequence of identity (3.4.1), Bm,n( f ;x,y) reproduce any
polynomial in the form f (x,y) = axy+bx+cy+d. Using (3.1.6) it is clear from (3.4.2)
that

Bm,n( f ;x,y) =
m

∑
i=0

n

∑
j=0

[
m
i

]

q1

[
n
j

]

q2

∆i
q1

∆ j
q2

f0,0xiy j. (3.4.3)

Let f (x,y) = xrys. Since the operator ∆i
q1

∆ j
q2 annihilates any polynomial of total degree

less than i + j, we see from (3.4.3) that Bm,n(xrys;x,y) is a polynomial of total degree
min(m+n,r + s).

In (Goodman, Oruç & Phillips, 1999) q−Bernstein polynomial of univariate
monomial functions are given in terms of Stirling polynomial of the second kind,
Sq(i, j) which is defined recursively by

Sq(i+1, j) = Sq(i, j−1)+ [ j]Sq(i, j)

for i > 1 and j > 1 with Sq(0,0) = 1, Sq(i,0) = 0 for i > 0 and Sq(i, j) = 0 for j > i.

This polynomial can be expressed explicitly as

Sq(i, j) =
1

[ j]!q j( j−1)/2

j

∑
r=0

(−1)rqr(r−1)/2
[

j
r

]
[ j− r]i.

The Stirling polynomial form of the q−Bernstein polynomials leads to some results
on convergence (see, Oruç & Tuncer (2002)). Thus, q−Bernstein polynomial of the
function f (x,y) = xrys is

Bm,n(xrys;x,y) =
r

∑
i=0

s

∑
j=0

λm,q1
i λn,q2

j [m]i−r
q1

[n] j−s
q2

Sq1(r, i)Sq2(s, j)xiy j (3.4.4)

where λn,q
i =

i−1

∏
r=0

(
1− [r]

[n]

)
.
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Theorem 3.4.1. Let q1,q2 > 1 be fixed real numbers. Then, for any polynomial p(x,y),

lim
m,n→∞

Bm,n(p;x,y) = p(x,y).

Proof. Let p(x,y) be a polynomial of total degree k.

p(x,y) =
k

∑
r=0

k−r

∑
s=0

ar,sxrys.

Using linearity property of the operator Bm,n( f ;x,y) we obtain

Bm,n(p;x,y) =
k

∑
r=0

k−r

∑
s=0

ar,sBm,n(xrys;x,y).

Let m+n > k > r + s and consider Bm,n(xrys;x,y) for r = 0,1, . . . ,k, s = 0,1, . . . ,k− r.

Since m+n > r + s, using (3.4.4) yields

Bm,n(xrys;x,y) =
r

∑
i=0

s

∑
j=0

λm,q1
i λn,q2

j [m]i−r
q1

[n] j−s
q2

Sq1(r, i)Sq2(s, j)xiy j.

It is easily seen that, since q1,q2 > 1 the term [m]i−r
q1

converges to 1 as m→∞ for i = r

and converges to 0 for other values of i. Similarly, as n→ ∞ the term [n] j−s
q2 converges

to 1 for j = s and converges to 0 for all other values of j. On the other hand λm,q1
i and

λn,q2
j both converge to 1 as m,n → ∞ for all values of 0 6 i 6 r and 0 6 j 6 s. Hence

we have
Bm,n(xrys;x,y)→ Sq1(r,r)Sq2(s,s)x

rys

as m,n→ ∞. Using Sq(k, l) = 1 when k = l, we have

Bm,n(xrys;x,y)→ xrys.

Thus we obtain

Bm,n(p;x,y) =
k

∑
r=0

k−r

∑
s=0

ar,sBm,n(xrys;x,y)→
k

∑
r=0

k−r

∑
s=0

ar,sxrys

as m,n→ ∞, and this completes the proof.
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We also define q−Bernstein polynomials for the function f (x,y) whose domain is
0 6 x+ y 6 1, x,y > 0 by

Bn( f (x,y);x,y) =
n

∑
i=0

n−i

∑
j=0

qi j
[

n
i+ j

](
i+ j

i

)
∆i

1∆ j
2 f0,0xiy j (3.4.5)

To investigate the convergence properties of Bn( f ;x,y) we need to express (3.4.5)
in terms of Stirling polynomials of the second kind. For this purpose the following
identities, which can easily shown, will be useful

[n]− [ j] = q j[n− j]

for 0 6 j 6 n and [
n
j

]
=

[n] j

[ j]!q j( j−1)/2
λn,q

j

for 0 6 j 6 n. Since, (see Phillips, 2003)

∆k
1 fi, j =

k

∑
r=0

(−1)kqr(r−1)/2
[

k
r

]
fi+k−r, j

and

∆k
2 fi, j =

k

∑
r=0

(−1)kqr(r−1)/2
[

k
r

]
fi, j+k−r

we can write

∆i
1∆ j

2 fr,s =
i

∑
k=0

j

∑
l=0

(−1)k+lqk(k−1)/2ql(l−1)/2
[

i
k

][
j
l

]
fr+i−k,s+ j−l.

Substituting this in (3.4.5) we will get
Bn( f (x,y);x,y) =

=
n

∑
i=0

n−i

∑
j=0

qi j
[

n
i+ j

](
i+ j

i

)
xiy j

i

∑
k=0

j

∑
l=0

(−1)k+lqk(k−1)/2ql(l−1)/2
[

i
k

][
j
l

]
fi−k, j−l.

Let f (x,y) = xrys. Then
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Bn(xrys;x,y) =
n

∑
i=0

n−i

∑
j=0

qi j
[

n
i+ j

](
i+ j

i

)
xiy j

×
i

∑
k=0

j

∑
l=0

(−1)k+lqk(k−1)/2ql(l−1)/2
[

i
k

][
j
l

]
[i− k]r[ j− l]s

[n]r+s .

On the other hand we have

[
n

i+ j

]
=

[n
i

][n−i
j

]
[i+ j

i

] =
[n]iλn,q

i [n− i] jλn−i,q
j

[i]!qi(i−1)/2[ j]!q j( j−1)/2
[i+ j

i

] .

Substituting the last equation in Bn(xrys;x,y) and rearranging it we will have

Bn(xrys;x,y) =
n

∑
i=0

n−i

∑
j=0

{
qi jλn,q

i λn−i,q
j [n]i−r−s[n− i] j

(i+ j
i

)
[i+ j

i

]

×∑i
k=0(−1)kqk(k−1)/2[ i

k

]
[i− k]r

[i]!qi(i−1)/2
∑ j

l=0(−1)lql(l−1)/2[ j
l

]
[ j− l]s

[ j]!q j( j−1)/2
xiy j

}
.

Thus, using the explicit form of Stirling polynomial of the second kind we obtain

Bn(xrys;x,y) =
n

∑
i=0

n−i

∑
j=0

qi jλn,q
i λn−i,q

j [n]i−r−s[n− i] j

(i+ j
i

)
[i+ j

i

]Sq(r, i)Sq(s, j)xiy j. (3.4.6)

Theorem 3.4.2. Let q > 1 be a fixed real number. Then, for any polynomial p(x,y)

lim
n→∞

Bn(p(x,y);x,y) = p(x,y)

if and only if p(x,y) is of total degree 1.

Proof. It is clear from (3.4.6) that Bn(p(x,y);x,y) reproduce polynomials of the form
p(x,y) = ax + by + c. So, we only need to show if lim

n→∞
Bn(p(x,y);x,y) = p(x,y) then

p(x,y) is of total degree 1. Let p(x,y) be a polynomial of total degree m. Since the
monomials in x and y of total degree m are

xm,xm−1y, . . . ,xym−1,ym,
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we can write p(x,y) in the form

p(x,y) =
m

∑
r=0

m−r

∑
s=0

ar,sxrys.

Since Bn( f (x,y);x,y) is a linear operator we can write

Bn(p(x,y);x,y) =
m

∑
r=0

m−r

∑
s=0

ar,sBn(xrys;x,y).

Let n > m > r + s consider Bn(xrys;x,y) for r = 0, . . . ,m, s = 0, . . . ,m− r since
n > r + s we have

Bn(xrys;x,y) =
r

∑
i=0

s

∑
j=0

qi jλn,q
i λn−i,q

j [n]i−r−s[n− i] j

(i+ j
i

)
[i+ j

i

]Sq(r, i)Sq(s, j)xiy j.

Using [n− i] =
[n]− [i]

qi we have [n− i] j =
([n]− [i]) j

qi j and the last equation will be in

the form

Bn(xrys;x,y) =
r

∑
i=0

s

∑
j=0

λn,q
i λn−i,q

j
[n]i

[n]r
([n]− [i]) j

[n]s

(i+ j
i

)
[i+ j

i

]Sq(r, i)Sq(s, j)xiy j.

It is easily seen that

[n]i

[n]r
→ 0 when i < r,

([n]− [i]) j

[n]s
→ 0 when j < s,

[n]i

[n]r
→ 1 when i = r,

([n]− [i]) j

[n]s
→ 1 when j = s,

λn,q
i → 1 for all i and λn−i,q

j → 1 for all j.

Thus,

Bn(xrys;x,y) =

(r+s
r

)
[r+s

r

]Sq(r,r)Sq(s,s)xrys.

Using Sq(i, j) = 1 when i = j, we will have

Bn(xrys;x,y) =

(r+s
r

)
[r+s

r

] xrys.
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Thus, we get
m

∑
r=0

m−r

∑
s=0

ar,s

(r+s
r

)
[r+s

r

] xrys =
m

∑
r=0

m−r

∑
s=0

ar,sxrys.

Hence we must have

(r+s
r

)
[r+s

r

] = 1. But this is true if and only if r + s = 1 or q = 1. This

completes the proof.

As a result of Theorem 3.4.1 and Theorem 3.4.2, we see that when q1,q2 > 1 the
two-parameter Bernstein polynomial Bm,n( f ;x,y) converges to f (x,y) if f (x,y) is a
polynomial. Furthermore, in the case q > 1, Bn( f ;x,y) converges to f (x,y) if f (x,y)
is a polynomial of total degree 1 and in the case q = 1, Bn( f ;x,y) converges to f (x,y)
if f (x,y) is a polynomial of any total degree. Moreover, the results on convergence
of univariate q−Bernstein polynomials on C[0,1] can be carried over multivariate
q−Bernstein polynomials Bm,n f . For example when q1,q2 > 1, in order to achieve
uniform convergence of Bm,n f on C[0,1] × C[0,1] we need to assume f has
multivariate analytic expansion such that

f (x,y) =
∞

∑
i=0

∞

∑
j=0

ai, jxiy j with
∞

∑
i=0

∞

∑
j=0
|ai, j|< ∞.
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of Computational and Applied Mathematics, 151, 1-12.
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