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GENETIC ALGORITHM BASED OUTLIER DETECTION USING 

INFORMATION CRITERION 

 
ABSTRACT 

 

 Outlier, abnormal or unusual observation can be defined as an observation that lies 

outside the overall pattern of a distribution. Diagnostic methods for identifying a single 

outlier or influential observation in a linear regression model are relatively simple from 

both analytical and computational points of view. However, if the data set contains more 

than one outlier, which is likely to be the case in most data sets, the problem of 

identifying such observations becomes more difficult because of the masking and 

swamping effects.  

 

 In this thesis, Genetic Algorithm (GA) based outlier detection using information 

criteria in multiple regression models has been studied. A GA was allowed simultaneous 

detection of outliers in data sets. Thus, this method is to overcome the problems of 

masking and swamping effects. It is derived additional penalized value of information 

criteria for Akaike Information Criterion (AIC) and Information Complexity Criterion 

(ICOMP) and named as AIC' and ICOMP' respectively in this study. They have been 

used as the fitness function of genetic algorithms to detect outliers in multiple 

regression. The simulation study has been performed to compare consistency and 

robustness properties of AIC' and ICOMP' against corrected Bayesian Information 

Criterion (BIC'). Simulation results of AIC', BIC' and ICOMP' obtained from different 

number of sample sizes, different penalized Kappa values of information criterion and 

different number of explanatory variables for different percentage of outlier in 

dependent variables. The numerical example and simulation results clearly show a much 

improved performance of the proposed approach in comparison to existing method 

especially followed by applying the ICOMP' approach in order to accurately (robustly) 

detect the outliers. 

  

Keywords: Genetic algorithms, Simultaneous outlier detection, Information criterion, 

AIC, BIC, and ICOMP Information criterion, Variable Selection, Multiple regression, 

Penalization. 
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BİLGİ KRİTERLERİ KULLANARAK GENETİK ALGORİTMA TABANLI 

AYKIRI DEĞER TESPİTİ 

 

ÖZ 

 

 Aykırı değer, normal olmayan veya alışılmadık gözlem, bir dağılımın genel modeli 

dışında kalan gözlem olarak tanımlanabilir. Doğrusal regresyon modelinde, tek bir 

aykırı değeri veya etkili gözlemi belirleme yöntemleri analitik ve sayısal açıdan nispeten 

daha basittir. Bununla birlikte, birçok veri setinde karşılaşılan ve veri setinin birden 

fazla aykırı değer içermesi durumlarında, bu tür gözlemlerin belirlenmesi maskeleme ve 

batırma, sürükleme etkisinden dolayı oldukça güçleşmektedir. 

 

 Bu tezde, bilgi kriterleri kullanarak Genetik Algoritma (GA) tabanlı çoklu regresyon 

modellerinde aykırı değerlerin belirlenmesi çalışılmıştır. GA, veri kümelerinden eş 

zamanlı olarak aykırı değerlerin tespit edilmesini sağlar. Böylelikle, bu yöntem 

maskeleme ve batırma, sürükleme etkilerinin oluşturmuş olduğu sorunların üstesinden 

de gelmektedir. Çalışmada Akaike Bilgi Kriteri (AIC) ve Bilgi Karmaşıklığı Kriteri 

(ICOMP) için ek cezalandırma değeri türetilmiş ve bu bilgi kriterleri AIC' ve ICOMP' 

olarak adlandırılmıştır. Bu kriterler, çoklu regresyonda aykırı değerlerin tespiti için 

genetik algoritmanın uygunluk fonksiyonu olarak kullanılmıştır. AIC' ve ICOMP' bilgi 

kriterlerinin tutarlılık ve sağlamlılık özelliklerinin, tutarlı Bayes Bilgi Kriterine (BIC') 

karşı karşılaştırmak için benzetim çalışması gerçekleştirilmiştir. AIC', BIC' ve 

ICOMP'’ın benzetim çalışması sonuçları, farklı sayıda örneklem büyüklükleri, farklı 

cezalandırma değeri, farklı sayıda açıklayıcı değişken ve bağımlı değişkenin farklı 

miktarda aykırı değer içermesi durumlarında elde edilmiştir. Çeşitli örnekler ve 

benzetim çalışması sonuçları açıkça göstermiştir ki önerilen yaklaşımlardan özellikle 

ICOMP' yaklaşımı aykırı değerleri doğru bir şekilde tespit etmektedir. 

 

Anahtar sözcükler: Genetik algoritma, Eş zamanlı aykırı değer tespiti, Bilgi kriteri, 

AIC', BIC' ve ICOMP' bilgi kriteri, Değişken seçimi, Çoklu regresyon, Cezalandırma. 
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CHAPTER ONE 

 INTRODUCTION  

 

1.1 Introduction 

 

A genetic algorithm is a search technique used in computing to find true or 

approximate solutions to optimization and search problems. It is a particular class of 

evolutionary algorithms that use techniques inspired by evolutionary biology such as 

inheritance, mutation, selection, and crossover. 

 

For the last decade or so, the dimension of machine-readable data sets has increased 

impressively. Moreover, some processes such as on-line analytic processing allow rapid 

retrieval of data from data warehouse or huge databases. Presently, many of the 

advanced computational methods for extracting information from large quantities of 

data, or data mining methods, are developed, e.g., artificial neural networks, Bayesian 

networks, decision trees, genetic algorithms, and statistical pattern recognition. These 

developments have created a new range of challenges and opportunities for data 

analysis. However, there are potential quality problems with real data and databases 

which are generally contain amount of exceptional values or outliers.  

 

Outliers are defined as the observations or records which appear to be inconsistent 

with the remainder group of the data. A well quoted definition of outliers is given by 

Hawkins (1980). This definition described an outlier as an observation that deviates so 

much from other observations as to arouse suspicion that is generated by a different 

mechanism. They may be generated by a different mechanism corresponding to normal 

data and may be due to sensor noise, process disturbances, instrument degradation, 

and/or human-related errors. It is futile to do data based analysis when data are 

contaminated with outliers because outliers can lead to model misspecification, biased 

parameter estimation and incorrect analysis results. The majority of outlier detection 

methods are based on an underlying assumption of identically and independently 

distributed data, where the location and the scatter are the two most important statistics 

for data analysis in the presence of outliers (Liu et al., 2004). 
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In the quest for data analysis, the issue of data quality has been found to be one of 

the important ones. It is commonly accepted that one of the most difficult and costly 

tasks in large-scale data analysis. Data quality process is trying to obtain clean and 

reliable data. Isolated outliers may also have positive impact on the results of data 

analysis. Many have estimated that as much as half to three fourths of a project’s effort 

is typically spent on this part of process. 

 

 In many data analysis tasks a large number of variables are being recorded or 

sampled. One of the first steps towards obtaining a coherent analysis is the detection of 

outlying observations. An exact definition of an outlier often depends on hidden 

assumptions regarding the data structure and the applied detection method.  

 

 Although outliers are often considered as an error or noise, they may carry 

important information. Detected outliers are candidates for aberrant data that may 

otherwise adversely lead to model misspecification, biased parameter estimation and 

incorrect results. It is therefore important to identify them prior to modeling and 

analysis, especially if the data set contains more than one outlier, which is likely to be 

the case in most data sets, the problem of identifying such observations becomes more 

difficult because of the masking and swamping effects (Acuna & Rodriguez, 2004; 

Shekhar & Chawla, 2002). 

 

Outlier detection methods have been suggested for numerous applications, such as 

credit card fraud detection, clinical trials, voting irregularity analysis, data cleansing, 

weather prediction, and other databases tasks. There are numerous methods for outlier 

detection in the literature. Barnett and Lewis (1994) give a lot of information about the 

outliers and their detection methods. Existing researches try to define algorithms to 

detect outliers based on distance or density. Some existing techniques for detecting 

outliers are clustering based methods, distance based methods, density based methods, 

subspace based methods, and statistical approaches (Aggarwal & Yu, 2001; Aggarwal & 

Yu, 2005; Agrawal et al., 2005; Breuning et al., 2000; Ester et al., 1998; Knorr & Ng, 

1998 ). Among these techniques, statistical approaches and distance based outlier 

detection methods are the most popular in use.  
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 The main aim of this study is to develop on outliers detecting method by using 

genetic algorithm. We propose that a simultaneous procedure for identification of 

outliers using new approaches of information criterion (AIC', BIC' and ICOMP') which 

can identify and test multiple outliers without suffering masking and swamping effects. 

The performance of these new information criterion approaches considered with 

generating experimental data. It is shown the behavior of new approaches for different 

sample sizes and different percentages of contaminated outliers by simulation on 

multiple regression models. That is, the outliers were produced by adding a given 

amount of percentages to each dependent variable. It is also studied on the effects of 

Kappa coefficients which are the penalized values of information criteria and obtained 

results for different values of them. Chapter 2 gives information about the Evolutionary 

and the Genetic Algorithm methods. Chapter 3 contains information about the outlier in 

databases and the outlier detection. Chapter 4 contains summary information about the 

information criteria such as Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), and Information Complexity Criterion (ICOMP) which have been used 

as a fitness function of GA for detecting of outliers from multiple regression models. 

Chapter 5 contains information about the outlier detection methods using information 

criteria that are recently proposed and described our new approaches of information 

criteria. Details are given information on the performance of the method that we propose 

multiple outlier detection procedures for various configurations of data sets with 

outliers. Also the simulation results and conclusions are given in this chapter. 
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CHAPTER TWO 

THE EVOLUTIONARY AND GENETIC ALGORITHMS 

 

2.1 The Evolutionary Algorithm  

  

Evolution is a method of searching among an enormous number of possibilities for 

solutions. In biology the enormous set of possibilities is the set of possible genetic 

sequences, and the desired solutions are organisms well able to survive and reproduce in 

their environments. Evolution can also be seen as a method for designing innovative 

solutions to complex problems. The fitness of a biological organism depends on many 

factors for example, how well it can weather physical characteristics of its environment 

and how well it can compete with or cooperate with the other organisms around it. The 

fitness criteria continually change as creatures evolve, so evolution is searching a 

constantly changing set of possibilities. Searching for solutions in the face of changing 

conditions is precisely what is required for adaptive computer programs. Furthermore, 

evolution is a massively parallel search method rather than work on one species at a 

time, evolution tests and changes millions of species in parallel (Mitchell, 1999). 

 

The idea behind evolutionary algorithms comes from the biological method of 

evolution where selective pressures are applied to populations of organisms to evolve 

behaviors and features to allow for survival. Basically, if a difficult and complex search 

space exists with a solution somewhere inside it, that solution can be found by properly 

specifying the survival criterion of individuals and allowing for the evolutionary 

algorithm to search the space. The survival criterion is generally referred to as the 

fitness of a candidate solution. Since each individual in a genetic population represents a 

possible solution, that solution can be evaluated and given a fitness describing how well 

it solves the problem. Then, the fitness of each candidate solution in a population is used 

to drive the creation of a new population.  

 

As with all algorithms, evolutionary algorithms take an input and return the desired 

output. However, in the case of evolutionary algorithms, it is not known how good the 

output will be. A desired performance is specified, but may be too complex for the 
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algorithm to find output and produces desired performance. Evolutionary algorithms can 

be represented by the general algorithm: 

 

  s(v(x[t]))1]x[t =+                                                    (2.1) 

 

Fogel (1998) described this algorithm: a population of candidate solutions to the 

problem at some time is denoted by x[t]. Random variations v, and selection methods s, 

are applied to the population at x[t] to produce a new population at the next time step, 

x[t+1] (Fogel,1998). 

 

The general scheme of an Evolutionary Algorithm can be given as in Figure 2.1.  

 

 

 

 

 

 

 

 

        Figure 2.1 The evolutionary algorithm in pseudo-code 

 

It is easy to see that this scheme falls in the category of generate and test 

algorithms. The evaluation function represents a heuristic estimation of solution quality 

and the search process is driven by the variation and the selection operators. 

Evolutionary Algorithms (EA) set a number of features that can help to position them 

within in the family of generate and test methods, these are: 

 

• EA is population based, they process a whole collection of candidate solutions 

simultaneously, 

• EA mostly uses recombination to mix information of more candidate solutions 

into a new one and, 

• EA is stochastic.  

BEGIN 

INITIALISE population with random candidate solutions; 

EVALUATE each candidate; 

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO 

1 SELECT parents; 

2 RECOMBINE pairs of parents; 

3 MUTATE the resulting offspring; 

4 EVALUATE new candidates; 

5 SELECT individuals for the next generation; 

END 
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There are the various dialects of evolutionary computing. For instance, the 

representation of a candidate solution is often used to characterize different streams. 

Typically, the candidates are represented by strings over a finite alphabet in Genetic 

Algorithms (GA), real-valued vectors in Evolution Strategies (ES), finite state 

machines in classical Evolutionary Programming (EP) and trees in Genetic 

Programming (GP). Technically, a given representation might be preferable over others 

if it matches the given problem better, that is, it makes the encoding of candidate 

solutions easier or more natural. For instance, for solving an optimization problem the 

straightforward choice is to use bit-strings of length n, where n is the number of logical 

variables, hence the appropriate EA would be a Genetic Algorithm. For evolving 

computer programs that can play checkers trees are well-suited, thus a GP approach is 

likely (Eiben & Smith, 2003). 

 

2.2 The Genetic Algorithms (GAs) 

 

 It is very likely to be most widely known type of EA which is applied in science and 

engineering as stochastic search algorithms for solving optimization problems. The 

Figure 2.2 shows classes of search algorithms and where is the genetic algorithm in 

these search algorithms.  

 

 

Figure 2.2 Classes of search algorithms (http://deron.csie.ncue.edu.tw/oop/GATutorial_deron.pdf) 
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 In contrast to optimization techniques, GAs work with coding of parameters, rather 

than the parameters themselves. It is based on the genetic process of biological 

organisms. Over many generations, natural populations evolve according to the 

principle of natural selection and survival of the fittest.  

 

GAs were first introduced by John H. Holland in his fundamental book Adaptation 

in Natural and Artificial Systems in 1975 (Bäck, 1996; Holland, 1975). Holland 

presented the algorithm as an abstraction of biological evolution and his schema theory 

laid a theoretical foundation for GAs. By mimicking this process, genetic algorithms 

are able to evolve solutions to real world problems, if they have been suitably encoded. 

 

The power of GAs comes from the fact that the technique is robust, and can deal 

successfully with a wide range of problem areas, including those which are difficult 

for other methods to solve. GAs are not guaranteed to find the best solution to a 

problem, but they are generally good at finding global optimum solutions with a 

resonable amount of time and computational effort. The properties of GAs; 

 

• The most important point is that GAs are parallel. Most other algorithms are 

serial and can only explore the solution space to a problem in one direction at a 

time, and, if the solution they discover turns out to be suboptimal, there is 

nothing to do but abandon all work previously completed and start over. 

However, since GAs have multiple offspring, they can explore the solution 

space in multiple directions at once. If one path turns out to be a dead end, they 

can easily eliminate it and continue work on more promising avenues, giving 

them a greater chance each run of finding the optimal solution (Goldberg, 1989; 

Mitchell, 1999). 

 

• Another area in which GAs excel is their ability to manipulate many parameters 

simultaneously (Forrest, 1993). Many real world problems cannot be stated in 

terms of a single value to be minimized or maximized, but must be expressed in 

terms of multiple objectives, usually with tradeoffs involved: one can only be 

improved at the expense of another. GAs are very good at solving such 
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problems: in particular, their use of parallelism enables them to produce 

multiple equally good solutions to the same problem, possibly with one 

candidate solution optimizing one parameter to another candidate optimizing a 

different one, and a human overseer can then select one of these candidates to 

use (Haupt & Haupt, 1998). 

 

• One of the qualities of GAs which might at first appear to be a liability turns out 

to be one of their strenghts: namely, GAs know nothing about the problems they 

are deployed to solve. Instead of using previously known domain specific 

information to guide each step and making changes with a specific eye towards 

improvement, as human designers do, they are blind watchmakers (Dawkins, 

1996); they make random changes to their candidate solutions and then use the 

fitness function to determine whether those changes produce an improvement. 

 

Although GAs has proven to be an efficient and powerful problem solving method, 

they have certain limitations. Some of them are as follows, 

 

• The first and most important, consideration in creating a genetic algorithm is 

defining a representation for the problem. The language used to specify 

candidate solutions must be robust. There are two main ways of achieving this. 

The first, which is used by most genetic algorithms, is to define individuals as 

lists of numbers: binary valued, integer valued, or real valued, where each 

number represents some aspect of a candidate solution. In another method, 

genetic programming, the actual code does change. It represents individuals as 

executable trees of code. 

 

• The problem of how to write the fitness function must be carefully considered 

so that higher fitness is attainable and actually does equate to a better solution 

for the given problem. If the fitness function is chosen poorly or defined 

imprecisely, the genetic algorithm may be unable to find a solution to the 

problem, or may end up solving the wrong problem. An example of this can be 

found in (Graham, 2002), in which researchers used an evolutionary algorithm 
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in conjunction with a reprogrammable hardware array, setting up the fitness 

function to reward the evolving circuit for outputting an oscillating signal. 

 

• One type of the problem that GAs have difficulty dealing with are problems 

with deceptive fitness function, those where the locations of improved points 

give misleading information about where the global optimum is likely to be 

found (Mitchell, 1999).  

 

• One well known problem that can occur with a GA is known as premature 

convergence. If an individual that is more fit than most of its competitors 

emerges early on in the course of the run, it may reproduce so abundantly that it 

drives down the population’s diversity too soon, leading the algorithm to 

convergence on the local optimum that individual represents rather than 

searching the fitness landscape thoroughly enough to find the global optimum. 

(Forrest, 1993). This is an especially common problem in small populations 

where even chance variations in reproduction rate may cause one genotype to 

become dominant over others.  

 

• Finally, Forrest (1993), Haupt and Haupt (1998) advise against using GAs on 

analytically solvable problems. It is not that GAs cannot find good solutions to 

such problems; it is merely that traditional analytic methods take much less time 

and computational effort than GAs and, unlike GAs, are usually mathematically 

guaranteed to deliver the one exact solution. Of course, since there is no such 

thing as a mathematically perfect solution to any problem of biological 

adaptation, this issue does not arise in nature. 

 

This chapter is organized as follows. Firstly, it is given biological terminology for a 

better understanding of GA. Then, the next and other subsections provide details of 

individual’s steps of a typical genetic algorithm and introduce several popular genetic 

operators. Also, subsections give a brief overview of designing principled efficiency-

enhancement techniques to speed up genetic algorithms. 
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2.2.1 Biological Terminology and Explanation of Genetic Algorithms 

 

 Each cell of a living creature consists of a certain set of chromosomes which are 

made of genes. Each gene encodes one or more characters that can be passed on to the 

next generation. Each gene can be in different states, called alleles. Genes are located at 

certain positions on the chromosome. The cell many creatures has more than one 

chromosome. The entire set of chromosomes in the cell is called the genome. In the 

natural reproduction process, pieces of gene material are exchanged between the two 

parents’ chromosomes to form new genes. This process is called recombination or 

crossover. Genes in the offspring are subject to mutation, in which a certain block of 

DNA in the gene undergoes a random change (Michalewicz, 1996; Mitchell, 1999). 

 

 In the GAs, a chromosome is used to represent a potential solution to a problem. 

Each solution has a representation made up of numbers of genes in GA. The various 

combinations of these genes of different alleles can produce different structures 

(genotypes) all of which can be seen as a different solution. Table 2.1 presents the 

explanations of the terms used in GA (Gen & Cheng, 2000). 

 

Table 2.1 Explanation of genetic algorithm terms 

Genetic Algorithms Explanation 

Chromosome (string, 

inidividual) 

Solution (Coding) 

Genes (bits) Part of the solution 

Locus Position of gene 

Alleles Value of gene 

Genotype  Encoded solution 

Phenotype Decoded solution  

 

To understand the substructure of GA is important and the concept is explained as 

follows: 

• Each individual in the population is called a chromosome which is denoted a string 

of symbols in GA, for example it is used a binary string form in Figure 2.3. 
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        Figure 2.3 Structure of a chromosome       

 

The chromosomes evolve through successive iterations, and the fitness of 

chromosomes is evaluated using fitness function. Fitter chromosomes have higher 

probabilities of being selected. After several generations, the algorithms converge to 

the best chromosome, which hopefully represents the optimal or suboptimal solution to 

the problem. For example, in a problem such as the traveling salesman problem, a 

chromosome represents a route, and a gene may represent a city (Goldberg, 1989).  

 

• The gene is binary encoding of a single parameter. 

•  Alleles are denoted to be a gene and these are value of a gene. In biology, alleles 

are one of the functional forms of a gene. 

• The genotype is the genetic composition of an organism. The information 

contained in the chromosomes, and 

• The phenotype is the environmentally and genetically determined traits of an 

organism. These traits are actually observed at phenotype while not observed at 

genotype. Genetic operators work on the level of the genotype, whereas the 

evaluation of the individuals is performed on the level of the phenotype.  

 

2.2.2 General Structure of Genetic Algorithm 

 

 GA is stochastic search techniques based on the mechanism of natural selection and 

natural genetics. It imitates basic principles of life and applies genetic operators like 

mutation, crossover, or selection to a series of alleles which is the equivalent of a 

chromosome in nature (Holland, 1975). 

 

 A GA operates on a population of individuals or chromosomes representing 

potential solutions to a given problem. Each chromosome is assigned a fitness value 



12 

 

according to the result of the fitness function. The selection mechanism favors 

individuals of better fitness function value to reproduce more often than worse ones 

when a new population is formed. Recombination allows for the mixing of parental 

information when this is passed to their descendants, and mutation introduces 

innovation in the population. Usually, the initial population is randomly initialized and 

evolution process is stopped after a predefined number of iterations (Azzaro-Pantel et. 

al., 1998). The general structure of GA is shown as Figure 2.4 (Grupe & Jooste, 2004). 

 

 

 

 

 

  

 

 

 

 

 

 

    Figure 2.4 The General structure of genetic algorithm (Grupe & Jooste, 2004)    

 

This process can be iterated until a candidate with sufficient solution is found or a 

previously set computational limit is reached. In this process there are two fundamental 

forces that form the basis of evolutionary systems (Eiben & Smith, 2003); 

 

• Variation operators create the necessary diversity and, 

• Selection acts as a force pushing quality. 

 

The combined application of variation and selection generally leads to improving 

fitness values in sequence populations. It is easy to see such a process as if the 

evolution is optimizing, or at least approximating, by approaching optimal values 

closer and closer over its course. Evolution is often seen as a process of adaptation. 

1. [Initialize] The initial population of n chromosomes is generated randomly across the search 

space. 

2. [Evaluate] Evaluate the fitness f(c) of each chromosome c in the population. 

3. [Offspring] Create a new population by executing the following steps. 

a. [Selection] Select n parent chromosomes from the population according to 

their fitness. 

b. [Crossover] Recombine the parents with a certain crossover probability to 

form new offspring. 

c. [Mutation] Mutate the new offspring with certain mutation probability at each 

locus (position in chromosome). 

4. [Replace] Replace the current population with the newly generated population. 

5. [Test] If the termination conditions is satisfied, stop, and return the best chromosome found; 

otherwise go to step 2. 
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From this perspective, the fitness is not seen as an objective function to be optimized, 

but as an expression of environmental requirements. Matching these requirements more 

closely implies an increased viability, reflected in a higher number of offspring. The 

evolutionary process makes the population adapt to the environment better and better. 

 

During selection fitter individuals have a higher chance to be selected than less fit 

ones, but typically even the weak individuals have a chance to become a parent or to 

survive. For recombination of individuals the choice of which pieces will be 

recombined is random. Similarly for mutation, the pieces that will be mutated within a 

candidate solution, and the new pieces replacing them, are chosen randomly.  

 

 The GA begins, like any other optimization algorithm by defining the optimization 

variables, the fitness function and fitness value. It ends by testing for convergence. A 

path through the components of GAs is shown as a flowchart in Figure 2.5 (Lee & El-

Sharkawi, 2008). 
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Figure 2.5 Flowchart of genetic algorithms (Lee & El-Sharkawi, 2008) 

 

The major questions to consider are firstly the size of population, and secondly the 

method by which the individuals are chosen. The choice of the population size has been 

approached from several theoretical points of view, although the underlying idea is 

always of trade-off between efficiency and effectiveness. Intuitively, it would seem that 

there should be some optimal value for a given string length, on the grounds that too 

small a population would not allow sufficient room for exploring the search space 

effectively, while too large a population would so impair the efficiency of the method 

that no solution could be expected in a reasonable amount of computation. 
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The first stage of building genetic algorithm is to decide on the representation of a 

candidate solution to the problem. Without representations, no use of GA is possible; 

therefore, some representations are explained as follows. 

 

2.2.3 Representation of Individuals or Encoding 

 

The fitness function measures the fitness of an individual to survive, mate, and 

produce offspring in a population of individuals or chromosomes for a given problem. 

The GA will seek to maximize the fitness function by selecting the individuals. 

Therefore, chromosome representation is a very critical issue in the success of the GA 

for this reason. An appropriate representation must be capable of representing any 

possible solution for the problem and at the same the representation scheme must not 

support to include the infeasible solutions in the population if it is possible to do so. In 

contrast to traditional optimization techniques, GAs work with coding of parameters, 

rather than the parameters themselves. It is important to choose the right representation 

for the problem being solved. Getting the representation right is one of the most 

difficult parts of designing a good evolutionary algorithm. Often this only comes with 

practice and a good knowledge of the application domain. 

 

 Rothlauf (2006) defined the genotypic search space as gϕ  which is either discrete 

or continuous, and the function R :)x(f g →ϕ  assigns an element in R to every 

element in the genotype space gϕ . The optimization problem is defined by finding the 

optimal solution   , f(x)maxx̂ g x ϕ∈=  where x is a vector, and x̂  is the global 

maximum. When using a representation it is had to introduce phenotypes and 

genotypes. Thus, the fitness function f can be decomposed into two parts. The first 

maps the genotypic space gϕ  to phenotypic space pϕ , and the second maps 

phenotypic space to the fitness space R. Using the phenotypic space pϕ , it is obtained: 

 

          
R  :)x(f

 :)x(f

ppp

pggg

→ϕ

ϕ→ϕ
                                    (2.2) 
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where ))x(f(f f  ff ggpgp =°=  is described by Rothlauf (2006). The genotype-

phenotype mapping gf  is the used representation. pf  represents the fitness function and 

assigns a fitness value )x(f pp  to every individual ppx ϕ∈ . The genetic operators are 

applied to the individuals in gϕ  that means on the level of genotypes.  

 

 It is important note that the recombination and mutation operators working on 

candidates must match the given representation. In the following section it is looked 

more closely at some commonly used representations and the genetic operators that 

might be applied to them. It is important to stress, however that while the 

representations described here are commonly used. Although it is presented the 

representations and their associate operators separately, it frequently turns out in 

practice that using mixed representations is a more natural and suitable way of 

describing and manipulating a solution than trying to different aspects of a problem 

into a common form. 

 

I.  Binary Representations: This is the one of the earliest and simplest 

representations. Each gene is coded the bit string chromosome. The bit string length 

depends on the required numerical precision. The genotype consists simply of a string 

of binary digits a bit string (Eiben & Smith, 2003). When using the binary encoding, 

the search space is denoted by l}1,0{g =φ ,where l  is the length of a binary vector 

[0,1]       xand {0,1} }x,...,x,x{ x pgg
2

g
1

g ∈∈= l

l
 (Goldberg,1989).Each integer phenotype 

}x,...,2,1{  x maxp
p =φ∈  is represented by a binary genotype gx  of length 

)]x([log max2=l . The genotype-phenotype mapping fg is defined as; 

 

       ∑
−

=

==
1i

0i

g
i

ig
g

p x2)(xfx                            (2.3) 

 

with g
ix  denoting the ith bit of gx  (Rothlauf, 2006). An example of genotype-phenotype 

mapping is illustrated in the Figure 2.6. 
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         Figure 2.6 Genotype - phenotype mapping      

 

 For a particular application it must decide how long the string should be, and how it 

will interpret to produce a phenotype. In choosing the genotype-phenotype mapping 

for a specific problem, one has to make sure that the encoding allows that all possible 

bit strings denote a valid solution to the given problem and that, vice versa, all 

possible solutions can be represented. 

 

 One of the problems of coding numbers in binary is that different bits have different 

significance. This can be helped by using Gray coding, which is a variation on the way 

that integers are mapped on bit strings. The standard method has the disadvantage that 

the Hamming distance between two consecutive integers is often not equal to one 

(Eiben & Smith, 2003). For some problems, particularly those concerning Boolean 

decision variables, the genotype-phenotype mapping is natural, but frequently bit 

strings are used to encode other non-binary information. For example, we might 

interpret a bit-string of length 80 as ten 8-bit integers, or five 16-bit real numbers. 

Usually this is a mistake, and better results can be obtained by using the integer or real 

valued representations directly. 

 

II. Integer Representations: Binary representations are not always the most suitable 

if the problem more naturally maps onto a representation where different genes can 

take one of a set of values. One obvious example of when this might occur is the 

problem of finding the optimal values for a set of variables that all take integer values. 

These values might be unrestricted, or might be restricted to a finite set: In either case 

an integer encoding is probably more suitable than binary encoding. When designing 

the encoding and variation operators, it is worth considering whether there are any 

natural relations between the possible values that an attribute can take (Eiben & Smith, 
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2003). If this representation is used, there are lx different individual possibilities and 

the size of search space increases from .x   to2 gg
ll =ϕ=ϕ  

 

III. Real-Valued or Floating-Point Representations: Often the most sensible way to 

represent a candidate solution to a problem is to have a string of real values. This 

occurs when the values that it is wanted to represent as genes come from a continuous 

rather than a discrete distribution. Of course, on a computer the precision of these real 

values is actually limited by the implementation so we will refer to them as floating-

point numbers. When using real valued representations, the search space gϕ  is defined 

as lRg =ϕ  where l  is the length of the real valued chromosome. 

 

IV.  Permutation Representations: Many problems naturally take the form of 

deciding on the order in which a sequence of events should occur. The most natural 

representation of such problems is as a permutation of a set of integers. One 

immediate consequence is that while an ordinary GA string allows numbers to occur 

more than once, such sequences of integers will not represent valid permutations. It is 

clear that we need new variation operators to preserve the permutation property that 

each possible allele value occurs exactly once in the solution. This representation is 

used as firstly ith element of the representation denotes the event that happens in that 

place in the sequence. In the second, the value of the ith element denotes the position in 

the sequence in which the ith element happens. For example; for the four cities [A, B, 

C, D], and the permutation [3, 1, 2, 4], the first encoding denotes the tour [C, A, B, D] 

and the second [B, C, A, D] (Eiben & Smith, 2003). 

 

2.2.4 Initial Population Generation 

 

 The initial population for GA is the first group of solutions among which the search 

begins. As declared in Reeves and Rowe (2003), the point in generating the initial 

population is that “every point in the search space or in other words any solution to the 

original problem could be reached from the solutions in the initial population by 

crossover only” and this could only be satisfied by the existence of each possible value 
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for each gene in the initial population. This emphasizes the importance on the way the 

initial population is generated. 

 

The most common way of generating the initial population is doing this randomly 

without any control on the existence of alleles for genes. While this approach is in 

accordance with the stochastic nature of the GAs, individuals generated in this way do 

not necessarily cover the solution space. 

 

Population size on the other hand, usually depends on the nature of the problem 

and, it is usually a user specified parameter, is one of the important factors affecting the 

scalability and performance of genetic algorithms. Reeves and Rowe (2003) denotes 

that the underlying idea of the population size is trade off between efficiency and 

effectiveness. As the population size decreases, the chances for exploring the search 

space effectively also decrease. Small population sizes might lead to premature 

convergence and yield substandard solutions However if the population size is too 

large, the efficiency of the application decreases due to the increased computation 

time. On the other hand, large population sizes lead to unnecessary expenditure of 

valuable computational time (Sastry et al., 2005). 

 

2.2.5 Fitness Function  

 

 In nature the fitness relates to the ability of the organism to survive and, reproduce, 

that is, organisms with a better fitness score are more likely to be selected for 

reproduction, in genetic algorithms the fitness is the evaluated result of a user defined 

objective function (Mitchell, 1999). Each chromosome is evaluated and assigned a 

fitness value after the creation of an initial population. On the basis of this value, the 

selection process decides which of the genomes are chosen for reproduction. 

 

The fitness function is a black box for the GA. Internally; this may be achieved by 

a mathematical function, a simulation model, or a human expert that decides the 

quality of a chromosome. At the beginning of the iterative search, the fitness function 

values for the population members are usually randomly distributed and wide spread 
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over the problem domain. As the search evolves, particular values for each gene begin 

to dominate. The fitness variance decreases as the population converges. This 

variation in fitness range during the evolutionary process often leads to the problem of 

premature convergence and slow finishing. 

 

Premature convergence occurs when the genes from a few comparatively fit 

individuals may rapidly come to dominate the population, causing it to converge on a 

local maximum. To overcome this problem, the way individuals are selected for 

reproduction must be modified. One needs to control the number of reproductive 

opportunities each individual gets so that it is neither too large nor too small. 

 

Slow finishing is the converse problem to premature convergence. After many 

generations, the population will have largely converged, but may still not have 

precisely located the global maximum. The average fitness will be high, and there may 

be little difference between the best and average individuals. As with premature 

convergence, fitness scaling can be prone to over compression due to just one super 

poor individual (Beasley et al., 1993). 

 

2.2.6 Parent Selection Methods 

 

 Selection is a process in which chromosomes are copied according to their fitness 

function value. It is used for two objectives; for determining the mates to reproduce 

and for determining the fitter chromosomes which will be maintained in the next 

generation. This method has a magnificent effect on results. If the selector picks only 

the best individual, then the population will quickly converge to that best value. The 

selector should also pick individuals that are not so good, but have good genotype to 

avoid from early convergence. For a detailed explanation of a variety of techniques, 

Haupt and Haupt (1998), Reeves and Rowe (2003), Beasley et al. (1993), Goldberg 

and Deb (1991) could be referred to. There are several parent selection techniques. 

Some of these could be summarized as follows. 
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I. Fitness Proportional Selection (FPS): After the fitness values for the 

chromosomes are calculated, selection probabilities related to each chromosome is 

calculated regarding the total fitness of the population. FPS includes methods such as 

roulette wheel selection (Goldberg, 1989; Holland, 1975) and stochastic universal 

selection (Baker, 1985; Grefensette & Baker, 1989). In roulette wheel selection, each 

individual in the population is assigned a roulette wheel slot sized in proportion to its 

fitness. That is, in the biased roulette wheel, good solutions have a larger slot size than 

less fit solutions. The roulette wheel is spun N (population size) to obtain a 

reproduction candidate. The roulette wheel selection procedures are detailed as 

follows in Figure 2.7 (Sastry et al., 2005): 

 

 

 

 

 

 

 

 

 

 

 

      Figure 2.7 The Roulette wheel selection procedures (Sastry et al., 2005) 

  

 For each choice, the probability that an individual fi is selected for mating is 

∑ =

n

1j j

i

f

f
 that is to say that the selection probability depends on the absolute fitness 

value of the individual compared to the absolute fitness values of the rest of the 

population. To illustrate, consider a population with four chromosome, n=4, with the 

fitness as shown in the below. The total fitness, ∑
=

n

1j
jf =25 + 15+ 12 +18= 70. The 

probability of selecting an individual and the corresponding cumulative probabilities are 

also shown in below. 

1.  Evaluate the fitness, if , of each individual in the population. 

2.  Compute the probability ip , of selecting each member of the population 

∑
=

= n

1j
j

i
i

f

f
p , where n is the population size. 

3.  Calculate the cumulative probability iq , for each individual ∑
=

=

i

1j
ji pq  

4.  Generate a uniform random number ].1,0(r ∈  

5.  If r < 1q  then select the first chromosome, 1c , else select the chromosome 

ic . 

6.  Repeat steps 4 and 5 n times to crate n candidates in mating pool. 
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Chromosome Number 1 2 3 4 

Fitness, fi 25 15 12 18 

Probability, ip  25/70=0.35 0.22 0.18 0.25 

Cumulative probability, iq  0.35 0.57 0.75 1 

 

It is assume that a random number r is 0.64, then the third chromosome is selected as 

q2=0.57< 0.64 ≤ q3=0.75. 

 

 There are some problems with this selection mechanism for instance, when fitness 

values are all very close together, there is almost no selection pressure, since the parts 

of the roulette wheel assigned to the individuals are more or less the same size, so 

selection is almost uniformly random and having a slightly better fitness is not very 

useful to an individual. Therefore, later in a run when some convergence has taken 

place and the worst individuals are gone, the performance only increases very slowly. 

 

II. Ranking Selection: Rank based selection is another method that was inspired by 

the observed drawbacks of fitness proportionate selection. It preserves a constant 

selection pressure by sorting the population on the basis of fitness and then allocating 

selection probabilities to individuals according to their rank, rather than according to 

their actual fitness values. The mapping from rank number to selection probability is 

arbitrary and can be done in many ways, for example, linearly or exponentially 

decreasing, of course with the condition that the sum over the population of the 

probabilities must be unity (Eiben & Smith, 2003). 

 

 The usual formula for calculating the selection probability for linear ranking 

schemes is parameterized by a value s (1< s≤ 2). In the case of a generational GA, 

where µ is the total number of ranks. If this individual has rank µ, and the worst has 

rank 1, then the selection probability for an individual of rank i is (Eiben & Smith, 

2003): 

       
1)µ(µ

1)2i(s

µ

s)(2
P rank(i)lin

−

−
+

−
=−                                      (2.4) 
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 An example of how the selection probabilities differ for a population of three 

different individuals with fitness proportionate and rank-based selection with different 

values is showed that in below. FP is fitness proportionate and LR is linear ranking 

selection (Eiben & Smith, 2003). 

 

 Fitness Rank PsetFP PsetLR (s=2) PsetLR (s=1,5) 

A 1 1 0.1 0 0.167 

B 5 3 0.5 0.67 0.5 

C 4 2 0.4 0.33 0.33 

Sum 10  1 1 1 

  

 When a linear mapping is used from rank to selection probabilities the amount of 

selection pressure that can be applied is limited. This arises from the assumption that, 

on average, an individual of median fitness should have one chance to be reproduced, 

which in turn imposes a maximum value of s=2. If a higher selection pressure is 

required i.e., more emphasis on selecting individuals of above average fitness an 

exponential ranking scheme is often used of the form (Eiben & Smith, 2003):  

 

          
c

e1
P

i

rank(i)exp

−
=−                                                   (2.5) 

 

The normalization factor c is chosen so that the sum of the probabilities is unity, 

i.e., it is a function of population size.  

 

III. Tournament Selection: The previous two selection methods and the algorithms 

used to sample from their probability distributions relied on knowledge of the entire 

population. In certain situations, for example, if the population size is very large or if the 

population is distributed in some way obtaining this knowledge is either highly time 

consuming or at worst impossible. In yet other cases there might not be universal fitness 

definition at all (Eiben & Smith, 2003). 
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 Tournament selection is an operator with the useful property that it does not require 

any global knowledge of the population. Instead it only relies on an ordering relation 

that can rank any two individuals. It is therefore conceptually simple and fast to 

implement and apply. The application of tournament selection to select µ parents work 

according to the procedure is showed in Figure 2.8 (Eiben & Smith, 2003). 

 

 

       Figure 2.8 Tournament selection algorithm (Eiben & Smith, 2003) 

  

 The probability that an individual will be selected as the result of a tournament 

depends on four factors, namely: 

 

• Its rank in the population. Effectively this is estimated without the need for 

sorting the whole population.  

 

• The tournament size k. The larger the tournament, the more chance that it will 

contain members. 

 

• The probability p that the most fit member of the tournament is selected. Usually 

this is 1 for deterministic tournaments, but stochastic versions are also used with 

p< 1. Clearly in this case there is lower selection pressure. 

 

• Whether individuals are chosen with or without replacement. In the second case 

with deterministic tournaments, the k-1 least-fit members of the population can 

never be selected, whereas if the tournament candidates are picked with 
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replacement, it is always possible for even the least-fit member of the population 

to be selected. 

 

2.2.7 Crossover Operators 

 

After parents have been selected through one of the methods introduced above, they 

are randomly paired. The genetic operators are applied on these paired parents to 

produce offspring and it is the most important operator in a genetic algorithm. The 

purpose of crossover is to vary the individual quality by combining the desired 

characteristics from two parents (Booker et. al., 1997; Spears, 1997). 

 

 In most crossover operators, two parents are randomly selected and recombined 

with a crossover probability cp  which determines the chance that a chosen pair of 

parents undergoes this operator (Eiben & Smith, 2003). That is, a uniform random 

number r, is generated and if cpr ≤ , the two randomly selected individuals undergo 

recombination. Otherwise, that is if cpr > , the two offspring are simply copies of their 

parents. The value of cp  can either be set experimentally, or can be set based on 

schema theorem principles (Goldberg, 1989; Godlberg, 2002; Sastry et. al., 2005). 

 

 The net effect is that in general the resulting set of offspring consists of some 

copies of the parents, and other individuals that represent previously unseen solutions. 

Over the years, numerous variants of crossover have been developed in the GA 

literature, and comparisons also have been made among these methods (Eshelman et. 

al., 1989). However, most of these studies rely on a small set of test problems, and 

thus it is hard to draw a general conclusion on which method is better than others. 

 

 A number of commonly used crossover techniques are explained as follows: 

 

I. Crossover Operators for Binary Representations: There are three types of 

crossover techniques for binary representations of chromosomes. These are defined as 

below. 
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• One-Point Crossover: This is the traditional and the simplest way of crossover: a 

position is randomly chosen as the crossover point and then the two parts of the 

parents after the selected point are swapped to make two offspring. The Figure 2.9 

shows this operation. 

 

 

   Figure 2.9 One-point crossover 

 

• N-Point Crossover: One-point crossover can easily be generalized to n-point 

crossover, where the representation is broken into more than two segments of 

contiguous genes, and then offsprings are created by taking alternative segments from 

the two parents. In practice this means choosing n random crossover points in [0, k-1], 

k is crossover point, which is illustrated in below Figure 2.10 for n=2. 

 

 

Figure 2.10 N-point crossover 

 

• Uniform Crossover: The previous two operators work by dividing the parents into a 

number of sections of contiguous genes and reassembling them to produce offspring. In 

contrast to this, uniform crossover works by certain probability ep , known as the 

swapping probability. Usually the swapping probability value is taken to be 0.5. In each 

position, if the value is below a parameter the gene is inherited from the first parent; 

otherwise from the second. The second offspring is created the inverse mapping. For 

example the array [0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36] of random 

variables drawn uniformly from [0,1] was used to decide inheritance and the offsprings 

are shown in the Figure 2.11 (Eiben & Smith, 2003; Spears, 1994; Syswerda, 1989). 
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Figure 2.11 Uniform crossover (Eiben & Smith, 2003) 

 

II. Crossover Operator for Integer Representation: For each gene has a higher 

number of possible allele values such as integers it is normal to use the same set of 

operators as for binary representations.  

 

III. Crossover Operators for Floating-Point Representation: There are two options 

for recombining two floating-point strings: 

 

•  An allele is one floating-point value instead of one bit. This has the disadvantage 

that only mutation can insert new values into the population since recombination 

only gives us new combinations of existing floats. Recombination operators of this 

type for floating-point representations are known as discrete recombination and 

have the property that if an offspring z is creating from parents x and y then the 

allele value for gene i is given by zi→xi or yi with equal likelihood (Haupt & 

Haupt, 1998). 

 

• Using an operator that in each gene position creates a new allele value in the 

offspring that lies between those of parents xi, yi. Using the terminology (2.6), 

 

           Child= αxi +(1- α)yi                                            (2.6) 

 

for some α in [0,1]. In this way recombination is now able to create new gene 

material, but it has the disadvantage that as result of the averaging process the 

range of the allele values in the population for each gene is reduced. Operators of 

this type are known as arithmetic recombination. This is the most commonly used 

operator and works by taking the weighted sum of the two parental alleles for each 
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gene (Wright, 1991). For example is chosen below terminology for crossover 

operator (Eiben & Smith, 2003), 

 

       xα)(1yαChild2yα)(1xαChild1 −+=−+=                          (2.7) 

 

According to this terminology and for α=1/2 two offsprings will be identical for this 

operator and their values are as follows. 

 

 

    Figure 2.12 Crossover operators for floating-point representation (Eiben & Smith, 2003) 

 

IV. Crossover Operators for Permutation Representation: A number of specialized 

crossover operators have been designed for permutations, which aim at transmitting as 

much as possible of the information contained in the parents especially that held in 

common. There are several operators for permutation problems of which the best 

known is order crossover. Order Crossover operator was designed by Davis (1991) for 

order based permutation problem. It recombined parents as (Eiben & Smith, 2003); 

 

1. Choose two crossover points at random and copy the segment between them from 

the first parent (P1) into the first offspring. 

 

2. Starting from the second crossover point in the second parent, copy the remaining 

unused numbers into the first child in the order that they appear in the second parent, 

wrapping around at the end of the list. 

 

3. Create the second offspring in an analogous manner with the parent roles reversed. 
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Figure 2.13 Crossover operators for permutation representation (Eiben & Smith, 2003) 

 

Figure 2.13 is illustrated: step 1; copy randomly selected segment from first parent 

into offspring. Step 2 is illustrated below, copy rest of alleles in order they appear in 

second parent treating string as circle. 

 

 

     

Figure 2.14 Crossover Operators for Permutation Representation (Eiben & Smith, 2003) 

 

2.2.8 Mutation Operators  

 

 Mutation is a background operator which produces instinctive random changes in 

various chromosomes. A simple way to achieve mutation would be alter one or more 

genes. In GA, mutation serves the crucial role of either: replacing the genes lost from 

the population during the selection process so that they can be tried in a new context 

or, providing the genes that were not presented in the initial population. 

 

Mutation use only one parent and create one child by applying some kind of 

randomized changed to the genotype. The form taken depends on the choice of 

encoding used, as does the meaning of the associated parameter, which is often 

referred to as the mutation rate. The mutation rate is defined as the percentage of the 

total number of genes in the population. The mutation rate controls the rate at which 

new genes are introduces into the population for trial. If it is too low, many genes that 

would have been useful are never tried out. If it is too high, there will be much random 

disorder, the offspring will start losing their resemblance to the parents, and the 

algorithm will lose the ability to learn from the history of the search.  
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I. Mutation Operator for Binary Representations: The most common mutation 

operator used for binary encoding considers each gene separately and allows each bit 

to flip (i.e. from 1 to 0 or 0 to 1) with a small probability pm. The actual number of 

values changed is thus not fixed, but depends on the sequence of random numbers 

drawn, so for an encoding of length L on average (L*pm) value will be changed. A 

number of studies and suggestions have been made for the choice of suitable values 

for the bitwise mutation rate and it is worth noting at the outset that the most suitable 

choice to use depends on the desired outcome. For example does the application 

require a population in which all members have high fitness, or simply that one highly 

fit individual is found? However, most binary coded GAs use mutation rates in a range 

such that on average between one gene per generation and one gene per offspring is 

mutated.  

 

II. Mutation Operator for Integer Representations: For integer encodings there are 

two principal forms of mutation used both of which mutate each gene independently 

with user-defined probability pm. 

 

Random Resetting Mutation: At this juncture the bit-string mutation of binary 

encodings is extended to random resetting, so that with probability pm a new value is 

chosen at random from the set of allowed values in each position. This is the most 

suitable operator to use when the genes encode for cardinal attributes, since all other 

gene values are equally likely to be chosen (Eiben & Smith, 2003). 

 

Creep Mutation: This mutation was designed for ordinal attributes and works by 

adding small value to each gene with probability p. Generally these values are sampled 

randomly for each position from a distribution that is symmetric about zero and is 

more likely to generate small changes than large ones. It should be noted that creep 

mutation requires a number of parameters controlling the distribution from which the 

random numbers are drawn and hence the size of the steps that mutation takes in the 

search space. Finding appropriate settings for these parameters may not be easy and it 

is sometimes common to use more than one mutation operator in joining from integer-

based problems (Eiben & Smith, 2003). 
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III. Mutation for Floating-Point Representations: For floating point 

representations, the allele values as coming from a continuous rather than a discrete 

distribution so the forms of mutation described above no longer applicable. Instead, it 

is common to change the allele value of each gene randomly within its domain given 

by a lower Li and upper Ui bound resulting in the following transformation:  

 

{ } { } { }iiii21n11 U,Lxwherex,...,x,x,...xx,x ⊂′′′′→  

 

Two types can be distinguished according to the probability distribution from 

which the new gene values are drawn: uniform and non-uniform mutation (Eiben & 

Smith, 2003). 

 

Uniform Mutation: For this operator the values of xi
’ are drawn uniformly 

randomly from { }ii U,L . This is the most straightforward option, analogous to bit-

flipping for binary encoding and the random resetting sketched above for integer 

encodings. It is normally used with a position form mutation probability Eiben & Smith, 

2003). 

 

Non-Uniform Mutation with a Fixed Distribution: Perhaps the most common 

form of non-uniform mutation used with floating-point representations takes a form 

analogous to creep mutation for integers. It is designed so that usually but not always the 

amount of change introduced is small. This is achieved by adding to the current gene 

value an amount drawn randomly from a Gaussian distribution with mean zero and user 

specified standard deviation and then curtailing the resulting value to the range { }ii U,L  

if necessary. The Gaussian distribution has the property that approximately two thirds of 

the samples drawn lie within one standard deviation. This means that most of the 

changes made will be small but there is nonzero probability of generating very large 

changes since tail of the distribution never reaches zero. It is normal practice to apply 

this operator with probability one per gene and instead the mutation parameter is used to 

control the standard deviation of the Gaussian and hence the probability distribution of 

the step sizes taken (Eiben & Smith, 2003). 
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Mutation Operators for Permutation Representations: For permutation 

representations it is no longer possible to consider each gene independently rather 

finding legal mutations is a matter of moving alleles around in the genome. This has 

the immediate consequence that the mutation parameter is interpreted as the 

probability that the string undergoes mutation rather than that a single gene in the 

string is altered. The three most common forms of mutation used for order-based 

problems. Whereas the first three operators below work by making small changes to 

the order in which allele values occur for neighborhood problems these can huge 

numbers of links to be broken and so inversion is more commonly used (Eiben & 

Smith, 2003).  

 

• Swap Mutation: This operator works by randomly picking two positions (genes) 

in the string and swapping their allele values. This is illustrated in below, where the 

values in positions two and five have been swapped.  

 

 

 Figure 2.15 Swap mutation (Eiben & Smith, 2003) 

 

• Insert Mutation: This operator works by picking two alleles at random and 

moving one so that it is next to other, shuffling along the others to make room. This 

is illustrated below, where the values two and five have been chosen. 

 

 

 Figure 2.16 Insert mutation (Eiben & Smith, 2003) 

 

• Inversion Mutation: Inversion mutation works by randomly selecting two 

positions in the string and reversing the order in which the values appear between 

those positions. It effectively breaks the string into three parts with all links inside a 

part being preserved and only two links between the parts broken.  
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Figure 2.17 Inversion mutation (Eiben & Smith, 2003) 

 

2.2.9 Termination Criteria 

 

Termination is the criterion by which the genetic algorithm decides whether to 

continue searching or stop the search. Each of the enabled termination criterion is 

checked after each generation to see if it is time to stop. Some types of termination 

criteria as follows (Mitchell, 1996; Whitley, 1994): 

 

• Generation Number: A termination method that stops the evolution when the 

user-specified max numbers of evolutions have been run. This termination method is 

always active. 

 

• Evolution Time: Termination method that stops the evolution when the elapsed 

evolution time exceeds the user-specified max evolution time. By default, the 

evolution is not stopped until the evolution of the current generation has completed, 

but this behavior can be changed so that the evolution can be stopped within a 

generation. 

 

• Fitness Threshold: A termination method that stops the evolution when the best 

fitness in the current population becomes less than the user-specified fitness 

threshold and the objective is set to minimize the fitness. This termination method 

also stops the evolution when the best fitness in the current population becomes 

greater than the user-specified fitness threshold when the objective is to maximize 

the fitness. 

 

• Fitness Convergence: A termination method that stops the evolution when the 

fitness is deemed as converged. Two filters of different lengths are used to smooth 

the best fitness across the generations. When the smoothed best fitness from the long 

filter is less than a user-specified percentage away from the smoothed best fitness 
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from the short filter, the fitness is deemed as converged and the evolution 

terminates. 

 

• Population Convergence: A termination method that stops the evolution when the 

population is deemed as converged. The population is deemed as converged when 

the average fitness across the current population is less than a user-specified 

percentage away from the best fitness of the current population. 

 

• Gene Convergence: A termination method that stops the evolution when a user-

specified percentage of the genes that make up a chromosome are deemed as 

converged. A gene is deemed as converged when the average value of that gene 

across all of the chromosomes in the current population is less than a user-specified 

percentage away from the maximum gene value across the chromosomes.
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CHAPTER THREE 

OUTLIERS AND OUTLIER DETECTION METHODS 

 

 In this chapter, it is discussed outliers and outlier detection methods. A variety of 

outlier detection techniques in databases will be reviewed. In particular, outlier 

management will be summarized in various aspects including their detection methods, 

causes and treatments.  

 

3.1 Database Systems 

 

 Knowledge of database technology increases in importance day to day. It is a key 

components of e-commerce and other web-based applications and they lay at the heart 

of organization-wide operational and decision support applications. Databases also are 

used by thousands of workgroups and millions of individuals. In fact, estimates of the 

number of active databases in the world today exceed millions (Kroenke, 2003). 

  

 A database management system (DBMS), is software designed to assist in 

maintaining and utilizing large collections of data, and the need for such systems, as 

well as their use, is growing rapidly. The alternative to using a DBMS is to use ad hoc 

approaches that do not carry over from one application to another; for example to store 

the data and write application-specific code to manage it (Ramakrishnan & Gehrke, 

2000). 

 

 Several vendors (e.g., IBM, DB, Oracle) have extended their systems with ability to 

store new data types such as images and text, and with the ability to ask more complex 

queries. Specialized systems have been developed by numerous vendors for creating 

data warehouses, consolidating data from several databases, and for carrying out 

specialized analysis. Database management continues to gain importance as more and 

more data is brought on-line, and made ever more accessible through computer 

networking. Today the field is being driven by exciting visions such as multivariate 

databases and digital libraries (Ramakrishnan & Gehrke, 2000). 
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 Although the most common use of database is arguably to discover relationships or 

patterns in data with minimal human intervention, an often overlooked but important 

task is the ability to detect outliers or exceptions in data for the best quality of data. 

Indeed, for some applications e.g., credit card fraud or telephone calling card fraud, the 

patterns may be well-established, but it is often the exceptions to those patterns that 

merit special attention. 

 

3.2 The Quality of Data in Databases 

 

The quality of data sets depend on a number of issues, but the source of the data is 

crucial factor. Data entry is inherently prone to errors, both simple and complex. Much 

effort can be allocated to this front-end process with respect to reduction in entry error 

but the fact often remains that errors in large data set are common. While one can 

establish a process to obtain high quality data sets, this does not little to address the 

problem of existing data. The field errors rates in the data acquisition phase are typically 

around 5% or more (Iglewicz & Hoaglin, 1993). 

 

Caring about data quality is a key to safeguarding and improving it. Discovering 

whether data are of acceptable quality is a measurement task, and not a very easy one. 

This observation becomes all the more important in this information age, when explicit 

and meticulous attention to data is of growing importance if information is not to 

become misinformation. If data are fit for use in their intended operational, decision 

making and other roles, data are of high quality (Maronna et. al., 2006). 

 

In many settings, especially for intermediate products, it is also convenient to define 

quality as Conformance to Standards that have been set, so that fitness for use is 

achieved. These two criteria link the role of the employee doing work (conformance to 

standards) to the client receiving the product (fitness for use). When used together, these 

two can yield efficient systems that achieve the desired accuracy level or other specified 

quality attributes. Unfortunately, the data of many organizations do not meet either of 

these criteria (Maronna et. al., 2006). 
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For existing data sets the logical solution is to attempt to cleanse the data in some 

way. That is, explore the data set for possible problems and endeavor to correct the 

errors. A manual process of data cleansing is also laborious, time consuming, and itself 

prone to errors. Useful and powerful tool that automate or greatly assist in the data 

cleansing process are necessary and may be the only practical and cost effective way to 

achieve a reasonable quality level in existing data (Iglewicz & Hoaglin, 1993). 

 

The serious need to store, analyze and investigate such very large data sets has given 

rise to fields of databases and data mining. Without clean and correct data the usefulness 

of databases and data mining are mitigated. Thus, data cleansing is a necessary 

precondition for successful knowledge discovery in databases (Iglewicz & Hoaglin, 

1993). 

 

Several areas in computer and other science have in the past treated related and 

overlapping problems; at the same time, and statistical models and methodologies that 

have proved to be of major importance in grounding the data quality research area. It is 

showed that in Figure 3.1 research areas related to data quality (Batini & Scannapieca, 

2006). 

 

 

        Figure 3.1 Research areas related to data quality (Batini & Scannapieca, 2006) 
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As seen in Figure 3.1 data quality is an important issue for many areas and data 

cleansing processes are tied directly to data acquisition and to improve data quality in an 

existing system. The following three phases define a data cleansing process (Iglewicz & 

Hoaglin, 1993): 

 

• Define and determine error types, 

• Search and identify error instances, 

• Correct the uncovered errors. 

 

Each of these phases constitutes a complex problem in itself, and a wide variety of 

specialized methods and technologies can be applied to each. While data integrity 

analysis can uncover a number of possible errors in a data set, it does not address more 

complex error. Errors involving relationships between one or more fields are often very 

difficult to uncover. These types of errors require deeper inspection and analysis. One 

can view this as a problem in outlier detection. Simply put: if a large percentage (e.g., 

99.9%) of the data elements conform to general form, then the remaining (e.g.,0.1%) 

data elements are likely error candidates. These data elements are considered outliers. 

Two things are done here; identifying outliers or strange variations in a data set and 

identifying trends or normality in data (Iglewicz & Hoaglin, 1993).  

 

Knowing what data is supposed to look like allows errors to be uncovered. However, 

the fact of the matter is that real world data is often very diverse and rarely conforms to 

any standard statistical distribution. This problem is especially acute when viewing the 

data in several dimensions. Therefore, more than one method for outlier detection is 

often necessary to capture most of outliers. Some of the general methods that can be 

utilized for error detection are; statistical outlier detection methods for example 

Chebyshev’s theorem, clustering methods, pattern-based methods and association rules. 

In the next subsection gives information about these and other methods.  
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3.3 Outliers in Databases 

 

 Outliers exist extensively in real world, any they are generated from different 

sources: a heavily tailed distribution or errors in inputting the data. Mostly, they are “so 

different from other observations as to arouse suspicions that it was generated by a 

different mechanism” (Hawking, 1980). According to Barnett and Lewis (1994), an 

outlier is one that appears to deviate markedly from other members of the sample in 

which it occurs. Similar definition is pointed out by Beckman and Cook (1983): 

Observations that stand apart from the bulk of the data are termed as outliers, discordant 

observations, contaminants, surprising values, or dirty data.  

 

 The statistical definition of an outlier depends on the underlying distribution of the 

variable in question. Thus, Mendenhall et. al., (1993) apply the term outliers to values 

that lie very far from the middle of the distribution in either direction. This intuitive 

definition is certainly limited to continuously valued variables having a smooth function 

of probability density. However, the numeric distance is not the only consideration in 

detecting continuous outliers. The importance of outlier frequency is emphasized in a 

slightly different definition, provided by Pyle (1999): “An outlier is a single, or very low 

frequency, occurrence of the value of a variable that is far away from the bulk of the 

values of the variable”. The frequency of occurrence should be an important criterion for 

detecting outliers in categorical data, which is quite common in real-world databases. A 

more general definition of an outlier is: an observation which appears to be inconsistent 

with remainder of that set of data. 

 

 Outliers may be the result of recording errors or data entry errors, but these may also 

be legitimate data. In fact, outliers may be point out surprising, suspicious, and 

fraudulent activities (Knorr, 2002; Pyle, 1999). 

  

 The isolation of outliers is important both for improving the quality of original data 

and for reducing the impact of outlying values in the process in databases. Most existing 

method of outlier detection is based on manual inspection of graphically represented 

data (Last & Kandel, 2001). The real cause of outlier occurrence is usually unknown to 



40 

 

data users or analysis. Sometimes, this is a flawed value, resulting from the poor quality 

of data set i.e., a data entry or a data conversion error. Physical measurements, 

especially when performed with malfunctioning equipment, may produce a certain 

amount of distorted values. In these cases, no useful information is conveyed by the 

outlier value. However, it is possible that an outlier represent correct, though 

exceptional information. For example, if clusters of outliers result from fluctuations in 

behavior of a controlled process, their values are important for process monitoring (Last 

& Kandel, 2001).  

 

Outlier detection purpose of to find the small portion of data which are deviating 

from common patterns in the database. Studying the extraordinary behavior of outliers 

helps uncovering the valuable knowledge hidden behind them. The hidden knowledge 

obtained can be useful in the detection of several areas. Although outliers are commonly 

measurement or recording errors, some of them can represent event of interest, 

something significant from the viewpoint of the application domain. Consequently, 

simply rejecting all outliers may lose useful information, and lead to inaccurate or 

incorrect results in data analysis tasks. For example, in fraud detection, suspicious credit 

card transactions may indeed be fraudulent, but, could also be those looking-suspicious, 

but legitimate ones. In hand-written character recognition, a good outlier might be an 

atypical but legitimate pattern, while a bad outlier might be a garbage pattern. Isolating 

outliers may also have a positive impact on the result of data analysis in databases. 

Simple statistical estimates, like sample mean and standard deviation can be 

significantly biased by individual outliers that are far away from the middle of the 

distribution. 

 

In order to judge whether an outlier is informative or useful in practical context, 

other information is often needed, such as relevant domain or common-sense 

knowledge, or the experience of data analysts in relation to judging outlying data points, 

etc. To date, the progress in the explicit management of outliers has been largely 

restricted to the automated detection but manual analysis of outliers, as in the 

investigation of credit card fraud and inside dealing at stock markets, in hand-written 

character recognition, or in the study of customer behavior (Goonatilake et. al.,1995). 
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Only after the knowledge becomes available and represented in a computable format, is 

it possible to developed automated methods to prevent the useful outliers from being 

precluded by statistical evolutionary methods. For example, genetic algorithm will be 

used for outlier detection. 

 

3.4 Causes of Outliers in Databases 

 

 Outliers can have harmful effects on statistical analyses in databases. First, they 

generally serve to increase error variance and reduce the power of statistical tests. 

Second, if non-randomly distributed they can decrease normality in multivariate 

analyses, violate assumptions of sphericity and multivariate normality, altering the odds 

of making both Type I and Type II errors. Third, they can seriously bias or influence 

estimates that may be of substantive interest. 

 

Outliers can arise from several different mechanisms or causes. Anscombe (1960) 

sorts outliers into two major categories: those arising from errors in the data, and those 

arising from the inherent variability of the data. Not all outliers are illegitimate 

contaminants, and not all illegitimate scores show up as outliers (Barnett & Lewis, 

1994). It is therefore important to consider the range of causes that may be responsible 

for outliers in a given data set. Reasons of outliers are classified as the follows in (Hair 

et. al., 1998; Osborne & Overbay, 2004).  

 

• Outliers from data errors: Outliers are often caused by human error, such as errors 

in data collection, recording, or entry. Data from an interview can be recorded 

incorrectly upon data entry. Thus, if sufficient information is available, recalculation 

is a method of saving important data and eliminating an obvious outlier. If outliers 

of this nature cannot be corrected they should be eliminated as they do not represent 

valid population data points.  

 

• Outliers from intentional or motivated mis-reporting: There are times when 

participants purposefully report incorrect data to experimenters or surveyors. 

Depending on the details of the research, one of two things can happen: inflation of 
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all estimates, or production of outliers. If all subjects respond the same way, the 

distribution will shift upward, not generally causing outliers. However, if only a 

small subsample of the group responds this way to the experimenter, or if multiple 

researchers conduct interviews, then outliers can be created. 

 

• Outliers from sampling error: Another cause of outliers is sampling. It is possible 

that a few members of a sample were inadvertently drawn from a different 

population than the rest of the sample. 

 

• Outliers from standardization failure: Outliers can be caused by research 

methodology, particularly if something anomalous happened during a particular 

subject’s experience. 

 

• Outliers as legitimate cases sampled from the correct population: Finally, it is 

possible that an outlier can come from the population being sampled legitimately 

through random chance. It is important to note that sample size plays a role in the 

probability of outlying values. Within a normally distributed population, it is more 

probable that a given data point will be drawn from the most densely concentrated 

area of the distribution, rather than one of the tails. As a researcher casts a wider 

network and the data set becomes larger, the more the sample resembles the 

population from which it was drawn, and thus the likelihood of outlying values 

becomes greater. In other words, there is only about a 1% chance you will get an 

outlying data point from a normally-distributed population; this means that, on 

average, about 1% of your subjects should be 3 standard deviations from the mean. 

 

 In the case that outliers occur as a function of the inherent variability of the data, 

opinions differ widely on what to do. Due to the deleterious effects on power, 

accuracy, and error rates that outliers can have, it might be desirable to use a 

transformation or recoding/truncation strategy to both keep the individual in the data 

set and at the same time minimize the harm to statistical inference. 
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• Outliers as potential focus of inquiry: Outliers can represent a nuisance, error, or 

legitimate data.  Before discarding outliers, researchers need to consider whether 

those data contain valuable information that may not necessarily relate to the 

intended study, but has importance in a more global sense. 

 

 In the following sections examined that approaches to detecting outliers, both inside 

and outside the statistics community. In particular, it is given that graphical methods, 

distribution- based methods, dept-based methods, basic robust methods, and data 

clustering algorithms, machine learning, and sequential exceptions. 

 

3.5 Literature Review for Handling Outliers 

 

 Outlier detection methods can be divided between univariate and multivariate 

methods that usually form most of the current body of research. Another fundamental 

taxonomy of outlier detection methods is between parametric methods and 

nonparametric methods that are model-free (Williams et al., 2002). Statistical parametric 

methods either assume a known underlying distribution of the observations (Barnett & 

Lewis, 1994; Hawkins, 1980; Rousseeuw & Leory, 1987) or, at least, they are based on 

statistical estimates of unknown distribution parameters (Caussinus & Roiz, 1990; Hadi, 

1992). These methods flag as outliers those observations that deviate from the model 

assumptions. They are often unsuitable for high-dimensional data sets and for arbitrary 

data sets without prior knowledge of the underlying data distribution (Papadimitriou et 

al., 2002). Within the class of non-parametric outlier detection methods one can set apart 

the data mining methods, also called distance-based methods. These methods are usually 

based on local distance measures and are capable of handling large databases (Bay & 

Schwabacher, 2003; DuMouchel & Schonlau, 1998; Fawcett & Provost, 1997; Jin et al., 

2001; Hawkins et al., 2002; Knorr & Ng, 1997; Williams & Huang ,1997). Another 

class of outlier detection methods is founded on clustering techniques, where a cluster of 

small sizes can be considered as clustered outliers (Acuna & Rodriguez, 2004; Hu & 

Sung 2003), whom proposed a method to identify both high and low density pattern 

clustering, further partition this class to hard classifiers and soft classifiers.  
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Traditional studies on detecting outliers lie in the field of statistics, and a number of 

statistical tests, called discordancy tests are developed (Barnett & Lewis, 1994; 

Hawkins, 1980). In some practices like monitoring a manufacturing process, a 3σ rule is 

generally adopted. All these methods are developed to detect a single outlier, and they 

may fail when multiple outlier exist. Some researches proposed different methods for 

detecting outliers in multivariate data without the a-priori assumption of the distribution. 

Knorr and Ng (1998) gave their definition of distance-based (DB) outliers. Ramaswamy 

et al., (2000) argued that the DB(p,D) outliers are too sensitive to the parameter p and D. 

They defined a k-nearest neighbor outlier. They calculate the kth nearest distances for 

all data points and rank the points according to these distances, and then pick the top n 

as outliers. Breunig et al., (2000) proposed another notion of local outliers. They think 

that a data point is an outlier which a local neighborhood of the points. They assign each 

object with an outlier degree, which they call local outlier factor. Thus, they use a 

continuous score to measure the outlier instead of give the binary result yes or no. 

Aggarwal et al., (2001) claim about the distance-based and local outliers do not work 

well for high dimensional dataset since the data are sparse, and outliers should be 

defined in sub-space projections. They proposed an evolutionary algorithm to find the 

outliers. 

 

 Mentioned these methods are developed to detect individual outliers, and the 

association of outliers has been studied by Song and Donald (2002). They present an 

outlier-based data association method. Instead of defining outlier for individual record, 

they considered to build the outlier measure for a group of data points. These data points 

are similar on some attributes and are different on other attributes. If these common 

characteristics are quite unusual, or in other words, they are outliers, these data points 

are well separated from other points. 

 

 Ahmet Kaya (2004) used in his article “Outlier effects in databases”, outlier detection 

algorithm based model to simulate finding outliers in databases. He was concerned with 

outliers in time series which have two special cases, innovational outlier (IO) and 

additive outlier (AO). The occurrence of AO indicates that action is required, possibly to 

adjust the measuring instrument or at least to print an error message on the database. 



45 

 

 Sanjoy Kumar Sinha (1997) suggested a robust sequential procedure for the 

identification of multiple outliers in multivariate normal data in his master thesis. This 

thesis deals with the problem of identifying and testing a set of a number k of extreme 

sample points as significant outliers in a sample of size n drawn from a p-dimensional 

normal distribution with unknown parameters. 

  

 Mark Last and Abraham Kandel presented (2001) automating the process of 

detecting and isolating outliers. This process was based on modeling the human 

perception of exceptional values by using the fuzzy set theory.  

  

 Another related class of methods consists of detection techniques for spatial outliers. 

These methods search for extreme observations or local instabilities with respect to 

neighboring values, although these observations may not be significantly different from 

the entire population (Lu et al., 2003; Shekhar & Chawla, 2002). A broad review of 

outlier detection techniques for numeric as well as symbolic data is presented by 

Agyemang et al., (2006). An extensive review of novelty detection techniques using 

neural networks and statistical approaches has been presented in Markou and Singh 

(2003), Patcha and Park (2007) and Snyder (2001) present a survey of outlier detection 

techniques used specifically for cyber-intrusion detection. 

 

3.6 Classification of Outlier Detection Methods 

 

 Outlier detection has been used for centuries to detect and, where appropriate, 

remove anomalous observations from data. Their detection can identify system faults 

and fraud before they escalate with potentially catastrophic consequences. It can identify 

errors and remove their contaminating effect on the data set and as such to purify the 

data for processing. The original outlier detection methods were arbitrary but now, 

principled and systematic techniques are used, drawn from the full gamut of computer 

science and statistics. There are three fundamental approaches to the problem of outlier 

detection (Victoria & Austin, 2004): 
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 Type 1: Determine the outliers with no prior knowledge of the data. This is 

essentially a learning approach analogous to unsupervised clustering. The approach 

processes the data as a static distribution, pinpoints the most remote points, and flags 

them as potential outliers. Type 1 assumes that errors or faults are separated from the 

normal data and will thus appear as outliers. There are two sub-techniques commonly 

employed, diagnosis and accommodation (Rousseeuw & Leroy, 1996). An outlier 

diagnostic approach highlights the potential outlying points. An alternative methodology 

is accommodation that incorporates the outliers into the distribution model generated 

and employs a robust classification method. These robust approaches can withstand 

outliers in the data and generally induce a boundary of normality around the majority of 

the data which thus represents normal behavior. In contrast, non-robust classifier 

methods produce representations which are skewed when outliers are left in.  

 

Type 2: Model both normality and abnormality. This approach is analogous to 

supervised classification and requires pre-labeled data, tagged as normal or abnormal. A 

type 2 approach can be used for on-line classification, where the classifier learns the 

classification model and then classifies new exemplars as and when required against the 

learned model. If the new exemplar lies in a region of normality it is classified as 

normal, otherwise it is flagged as an outlier. Classification algorithms require a good 

spread of both normal and abnormal data, i.e., the data should cover the entire 

distribution to allow generalization by the classifier.  

 

Type 3: Model only normality or in a very few cases model abnormality (Fawcett & 

Provost 1999; Japkowicz et al., 1995). Authors generally name this technique novelty 

detection or novelty recognition. It is analogous to a semi-supervised recognition or 

detection task and can be considered semi-supervised as the normal class is taught but 

the algorithm learns to recognize abnormality. The approach needs pre-classified data 

but only learns data marked normal. It is suitable for static or dynamic data as it only 

learns one class which provides the model of normality. It can learn the model 

incrementally as new data arrives, tuning the model to improve the fit as each new 

exemplar becomes available. It aims to define a boundary of normality.  
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Most of the existing outlier detection techniques solve a specific formulation of the 

problem. The formulation is induced by various factors such as nature of the data, 

availability of labeled data, type of anomalies to be detected, and etc. Often, these 

factors are determined by the application domain in which the anomalies need to be 

detected. Researchers have adopted concepts from diverse disciplines such as statistics, 

machine learning, data mining, information theory, spectral theory, and have applied 

them to specific problem formulations. Figure 3.2 shows the above mentioned key 

components associated with any outlier detection technique (Chandola et. al., 2007). 

 

 

        Figure 3.2 Components associated with an outlier detection technique (Chandola et. al., 2007) 

 

 Outlier detection has been the topic of a number of surveys and review articles, as 

well as books. In the literature outlier detection methods can be divided between 

univariate methods and multivariate methods. One of the above-mentioned classes is 

seen in Figure 3.3. 
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              Figure 3.3 Classification for outlier detection 

 

 Another fundamental taxonomy of outlier detection methods is between parametric 

and non-parametric methods. Statistical parametric methods either assume a known 

underlying distribution of the observations or, at least, they are based on statistical 

estimates of unknown distribution parameters. These methods flag as outliers those 

observations that deviate from the model assumptions. They are often unsuitable for 

high dimensional data sets and for arbitrary data sets without prior knowledge of the 

underlying data distribution. Within the class of non-parametric outlier detection 

methods one can set apart the data mining techniques, also called distance based 

methods. These methods are usually based on local distance measures and capable of 

handling large databases. A class of outlier detection method is founded on clustering 

techniques, where a cluster of small sizes can be considered as clustered outliers. 

 

 Barnett & Lewis (1994) and Rousseeuw & Leroy (1996) describe and analyze a 

broad range of statistical outlier techniques and Marsland (2001) analyses a wide range 

of neural methods. Victoria and Austin (2004) provided an extensive survey of outlier 

detection techniques developed in machine learning and statistical domains. Their study 

is categorized and analyzed broad range of outlier detection methodologies. They 

pinpoint how each handles outliers and make recommendations for when each 

methodology is appropriate for clustering, classification and recognition. They have 
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observed that outlier detection methods are derived from four fields of computing: 

statistics (proximity-based, parametric, non-parametric and semi-parametric), neural 

networks (supervised and unsupervised) and machine learning. Victoria and Austin 

(2004) classes is seen in Figure 3.4. 

 

 

    Figure 3.4 Classification for outlier detection (Victoria & Austin, 2004) 

 

 Chandola et. al., (2007) attempt to provide a structured and a broad overview of 

extensive research on outlier detection techniques spanning multiple research areas and 

application domains. Most of the existing surveys on outlier detection either focus on a 

particular application domain or on a single research area. Agyemang et al., (2006) and 

Victoria & Austin (2004) are two related works that group outlier detection into multiple 

categories and discuss techniques under each category. Chandola et. al., (2007) add two 

more categories of outlier detection techniques, information theoretic and spectral 

techniques, to the four categories discussed in Agyemang et al., (2006) and Victoria & 

Austin (2004). For each of the six categories, Chandola et. al., (2007) not only discusses 

the techniques, but also identify unique assumptions regarding the nature of outlier 

made by the techniques in that category. These assumptions are critical for determining 

when the techniques in that category would be able to detect outliers, and when they 

would fail. For each category, Chandola et. al., (2007) provide a basic outlier detection 
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technique, and then show how the different existing techniques in that category are 

variants of the basic technique. This template provides an easier understanding of the 

techniques belonging to each category, and also, for each category are identified the 

advantages and disadvantages of the techniques. They provide a discussion on the 

computational complexity of the techniques since it is an important issue in real 

application domains. Chandola et. al., (2007) classes for outlier detection is seen in 

Figure 3.5. 

 

 

    Figure 3.5 Classification for outlier detection (Chandola et. al., 2007) 
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An important aspect of an outlier detection technique is the nature of the desired 

outlier. According to Chandola et. al., (2007) outliers can be classified into following 

three categories:  

 

I.  Point Outlier: If an individual data instance can be considered as outlier with 

respect to the rest of data, then the instance is termed as a point anomaly. This is the 

simplest type of outlier and is the focus of majority of research on anomaly detection.  

 

For example, in Figure 3.6 points o1 and o2 as well as points in region O3 lie 

outside the boundary of the normal regions, and hence these are point anomalies since 

they are different from normal data points. 

 

 

   Figure 3.6 An Example of outliers in a 2 dimensi- 
            onal data set (Chandola et. al., 2007) 

 

As a real life example, consider credit card fraud detection. Let the data set 

correspond to an individual's credit card transactions. For the sake of simplicity, let us 

assume that the data is defined using only one feature: amount spent. A transaction for 

which the amount spent is very high compared to the normal range of expenditure for 

that person will be a point outlier. 

 

II. Contextual Outlier: If a data instance is anomalous in a specific context, then it 

is termed as a contextual anomaly also referred to as conditional anomaly (Song et al., 

2007). The notion of a context is induced by the structure in the data set and has to be 

specified as a part of the problem formulation. Each data instance is defined using 
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contextual and behavioral attributes: The contextual attributes are used to determine the 

context or neighborhood for that instance. For example, in spatial data sets, the 

longitude and latitude of a location are the contextual attributes. In time series data, time 

is a contextual attribute which determines the position of an instance on the entire 

sequence. The behavioral attributes define the non-contextual characteristics of an 

instance. For example, in a spatial data set describing the average rainfall of the entire 

world, the amount of rainfall at any location is a behavioral attribute (Chandola et. al., 

2007). 

  

Contextual outliers have been most commonly explored in time-series data 

(Salvador & Chan 2003; Weigend et al., 1995) and spatial data (Kou et al., 2006; 

Shekhar et al., 2001). Figure 3.7 shows one such example for a temperature time series 

which shows the monthly temperature of an area over last few years. A temperature of 

35F might be normal during the winter (at time t1) at that place, but the same value 

during summer (at time t2) would be an outlier (Chandola et. al., 2007). 

 

 

       Figure 3.7 Contextual outlier* (Chandola et. al., 2007) 

 

 III. Collective Outlier: If a collection of related data instances is anomalous with 

respect to the entire data set, it is termed as a collective outlier. The individual data 

instances in a collective anomaly may not be anomalies by themselves, but their 

occurrence together as a collection is anomalous. Figure 3.8 illustrates an example 

which shows a human electrocardiogram output (Goldberger et al., 2000). The 

                                                 
* t2 in a temperature time series. Note that the temperature at time t1 is same at that at time t2 but occurs in 
a different context and hence is not considered as an outlier. 
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highlighted region denotes an anomaly because the same low value exists for an 

abnormally long time corresponding to an Atrial Premature Contraction. Note that, that 

low value by itself is not an outlier (Chandola et. al., 2007). 

 

 

      Figure 3.8 Collective anomalies† (Chandola et. al., 2007) 

 

It should be noted that while point outliers can occur in any data set, collective 

outliers can occur only in data sets in which data instances are related. In contrast, 

occurrence of contextual outliers depends on the availability of context attributes in the 

data. A point anomaly or a collective anomaly can also be a contextual anomaly if 

analyzed with respect to a context. Thus a point outlier detection problem or collective 

outlier detection problem can be transformed to a contextual outlier detection problem 

by incorporating the context information (Chandola et. al., 2007). 

 

 The existing surveys mention the different applications of outlier detection and it is 

provided a detailed discussion of the application domains which are mentioned. In the 

next subsections, it is described some of the above mentioned techniques are explained 

below. 

 

 

                                                 
† Corresponding to an atrial premature contraction in an human electrocardiogram output. 
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3.6.1 Statistical Methods for Outlier Detection 

 

Statistical approaches are the earliest methods for outlier detection. In fact, many of 

the techniques were described in both Barnett & Lewis (1994) and Rousseeuw & Leroy 

(1996). 

 

Statistical methods can be used to summarize or describe a collection of data. These 

techniques fit a statistical model to the given data using parametric or non-parametric 

methods and then apply a statistical inference test to determine if an unseen instance 

belongs to this model or not. In addition, patterns in the data may be modeled in a way 

that accounts for randomness and uncertainty in the observations, and are then used to 

draw inferences about the process. 

 

Parametric and non-parametric techniques have been applied to fit a statistical model. 

While parametric techniques assume the knowledge of underlying distribution and 

estimate the parameters from the given data (Eskin, 2000), non-parametric techniques 

do not generally assume knowledge of underlying distribution (Desforges et. al., 1998). 

In the next two subsections it is discussed parametric and non-parametric outlier 

detection techniques. 

 

 3.6.1.1 Parametric Methods for Outlier Detection 

 

Parametric methods allow the model to be evaluated very rapidly for new instances 

and are suitable for large data sets; the model grows only with model complexity not 

data size. However, they limit their applicability by enforcing a pre-selected distribution 

model to fit the data. If the user knows their data fits such a distribution model then 

these approaches are highly accurate but many data sets do not fit one particular model 

(Victoria & Austin, 2004).  

 

 I. Distribution Based Methods: If a model cannot provide an adequate fit or a 

statistical explanation for an outlier that is not to say that a better model will be found. 

For example, measurement and recording errors are common causes of outliers, and 
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these outliers cannot necessarily be explained by a better model. Distribution based 

methods have been developed for different circumstances, depending on: 

 

• the data distribution, 

• whether or not the distribution parameters are known, 

• the number of expected outliers , and even 

• the types of expected outliers.  

 

However, these methods suffer from the following two serious problems. These tests 

may not be well-suited to large datasets. First, almost of them are univariate (i.e., single 

attribute). This restriction makes them unsuitable for multidimensional datasets. Second, 

all of them are distribution-based, one or more parameters of the distributions are 

unknown. In numerous situations where we do not know whether a particular attribute 

follows a normal distribution, a gamma distribution, and so on, we have to perform 

extensive testing to find a distribution that fits the attribute.  

 

One such single dimensional method is Grubbs’ method (extreme studentized 

deviate) (Grubbs, 1969) which calculates a Z value as the difference between the mean 

value for the attribute and the query value divided by the standard deviation for the 

attribute where the mean and standard deviation are calculated from all attribute values 

including the query value. 

  

II. Depth Based Methods: Ruts and Rousseeuw (1996) proposed a depth based 

method to detect the outliers. The data points are organized in layers in data space 

according to the value of the point depth. The depth of a point p to a one–dimensional 

dataset n21 x,...,x,xX =  is the minimum of the number of data points to the left of p and 

the number of data points to the right of p. The depth of a d-dimensional data point 

)p,...,p,(pp d21=  is defined as the smallest depth of pi in the i-dimensional projection of 

the dataset, where d.i1 ≤≤  Outliers are expected to be in the layers with smaller depth. 

Such methods do not have the distribution fitting problem. Peeling and depth contours 

are two different notions of depth studied. These depth-based methods avoid the 

previously mentioned problem of distribution fitting, and conceptually allow 
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multidimensional data objects to be processed. However, in practice, the computation of 

d-dimensional layers relies on the computation of d-dimensional convex hulls. Because 

the lower bound complexity of computing a d-dimensional convex hull for N data 

objects is (N[d/2]), depth-based methods are not expected to be practical for more than 

four dimensions for large datasets. In fact, existing depth-based methods only give 

acceptable performance for dimension k ≤ 2. 

 

Rousseeuw and Leroy (1996) approached the minimum volume ellipsoid estimation 

(MVE) which fits the smallest permissible ellipsoid volume around the majority of the 

data distribution model (generally covering 50% of the data points). This represents the 

densely populated normal region shown in Figure 3.6 (with outliers shown) and Figure 

3.9 (with outliers removed). 

 

 

             Figure3.9 A data distribution classified by 
              type 3 outlier recognition 

 

III. Regression Model Based: The basic regression model based outlier detection 

technique consists of two steps. In the first step, a regression model is fitted on the data. 

In the second step, for each test instance, the residual for the test instance is used to 

determine the anomaly score. The residual is the part of the instance which is not 

explained by the regression model. The magnitude of the residual can be used as the 

anomaly score for the test instance, though statistical tests have been proposed to 

determine outliers with certain confidence information (Chandola et. al., 2007). 
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Torr and Murray (1993) proposed peel away outlying points by iteratively pruning 

and re-fitting. They measure the effect of deleting points on the placement of the least 

squares standard regression line for a diagnostic outlier detector. The LS line is placed 

to minimize equation (3.1): 
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Torr and Murray’s method (1993) repeatedly deletes the single point with maximal 

influence (the point that causes the greatest deviation in the placement of the regression 

line) thus allowing the fitted model to stay away from the outliers. They refit the 

regression to the remaining data until there are no more outliers, i.e., the next point with 

maximal influence lies below a threshold value. Least squares regression is not robust as 

the outliers affect the placement of the regression line so it is best suited to outlier 

diagnostics where the outliers are removed. 

 

Robust regression provides an alternative to least squares regression that works with 

less restrictive assumptions. Outliers violate the assumption of normally distributed 

residuals in the least squares regression. Robust regression methods are Least Median of 

Squares (LMS), Least Trimmed Squares (LTS), Huber M Estimation, MM Estimation, 

Least Absolute Value Method (LAV) and S Estimation. 

 

 3.6.1.2 Non-Parametric Methods for Outlier Detection 

 

The outlier detection techniques in this category use non-parametric statistical 

models, such that the model structure is not defined a priory, but is instead determined 

from given data. Such techniques typically make fewer assumptions regarding the data, 

such as smoothness of density, when compared to parametric techniques.  

 

I. Graphical Methods: Laurikkala et al., (2000) used informal box plots to pinpoint 

outliers in both univariate and multivariate data sets. This produces a graphical 

representation (see Figure 3.10 for an example box plot) and allows a human auditor to 
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visually pinpoint the outlying points. Outliers can be detected graphically in up to 3 

dimensions. For the univariate case (1-D), observations can simply be plotted on a line 

and outliers can be visually detected as those points that lie noticeably apart from the 

rest of the data. 

 

A box-plot can also be used to display univariate data/outliers. An example is shown 

in Figure 3.10 and an explanation of its properties is as follows. The box is defined by 3 

long horizontal line segments which mark the upper quartile, median and lower quartile; 

this covers 50% of the data. A vertical line segment extends from the upper quartile to 

the most extreme observation that is within a distance of (1.5* interquantile range) of 

the upper quartile (and similarly for the lower quartile). Short horizontal line segments 

simply denote the ends of these ranges. Finally, any observations lying outside of the 

range delimited by these short horizontal line segments are marked with a dot: such 

observations are outliers. 

 

 

          Figure 3.10 Boxplot graph 

 

The box-plot in Figure 3.10 shows that the interquantile is 15-12.5=2.5, the median 

is 13.5 the rest of the data (except outliers) lies between 8 and 28, the interquantile range 

skewed slightly to the higher values, and there are 3 outliers. 

 

For visualization in 2-D, a scatterplot can be used and for 3-D a spin plot can be 

used. Note that, except for boxplots, the detection of outliers using graphical methods 

can be quite subjective. Disadvantages of graphical methods give limited information 

about relative strength of an outlier. 
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II. Histogram Based: The simplest non-parametric statistical technique is to use 

histograms to maintain a profile of the normal data. Such techniques are also referred to 

as frequency based or counting based. Histogram based techniques are particularly 

popular in detection community (Eskin, 2000). These techniques require normal data to 

build the histograms (Anderson et al., 1994). For multivariate data, a basic technique is 

to construct attribute wise histograms. The basic histogram based technique for 

multivariate data has been applied to system call intrusion detection (Endler, 1998), 

network intrusion detection (Yamanishi et al., 2004). 

 

III. Kernel Function Based. Kernel-based methods estimate the density distribution 

of the input space and identify outliers as lying in regions of low density. Roberts & 

Tarassenko (1994) and Bishop (1994) use Gaussian mixture models (GMM) to learn a 

model of normal data by incrementally learning new exemplars. The GMM is 

represented by equation (3.2), 
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where M is the number of kernels )x( , jαϕ  the mixing coefficients, x the input vector 

and t the target vector. Roberts and Tarassenko (1994) classify EEG signatures to detect 

abnormal signals which represent medical conditions such as epilepsy. In both 

approaches, each mixture represents a kernel whose width is autonomously determined 

by the spread of the data. In Bishop’s approach the number of mixture models is 

determined using cross-validation. This technique adds new mixture models 

incrementally. If the mixture that best represents the new exemplar is above a threshold 

distance, then the algorithm adds a new mixture. 

 

3.6.2 Nearest Neighbor Based Methods for Outlier Detection 

 

These methods are simple to implement and make no prior assumptions about the 

data distribution model. They are suitable for both type 1 and type 2 outlier detection. 
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Nearest neighbor based anomaly detection techniques require a distance or similarity 

measure defined between two data instances. Distance or similarity between two data 

instances can be computed in different ways. For continuous attributes, Euclidean 

distance is a popular choice but other measures can be used (Tan et al., 2005). For 

categorical attributes, simple matching coefficient is often used but more complex 

distance measures can be used (Boriah et al., 2008; Chandola et al., 2008). For 

multivariate data instances, distance or similarity is usually computed for each attribute 

and then combined (Tan et al., 2005). 

 

According to Chandola et. al., (2007) nearest neighbor based anomaly detection 

techniques can be broadly grouped into two categories: 

 

• Techniques that use the distance of a data instance to its kth
 nearest neighbor as the 

anomaly score. 

• Techniques that compute the relative density of each data instance to compute its 

anomaly score. 

 

 3.6.2.1 Distance Based Methods for Outlier Detection 

 

A basic nearest neighbor anomaly detection technique is based on the following 

definition: The anomaly score of a data instance is defined as its distance to its kth 

nearest neighbor in a given data set. The neighbors are taken from a set of objects for 

which the correct classification (or, in the case of regression, the value of the property) 

is known. This can be thought of as the training set for the algorithm, though no explicit 

training step is required. In order to identify neighbors, the objects are represented by 

position vectors in a multidimensional feature space. It is usual to use the Euclidean 

distance, though other distance measures, such as the Manhattan distance could in 

principle be used instead. The k-nearest neighbor algorithm is sensitive to the local 

structure of the data. Usually Euclidean distance is used as the distance metric; however 

this will only work with numerical values. In cases such as text classification another 

metric, such as the overlap metric (or Hamming distance) can be used. The best choice 

of k depends upon the data; generally, larger values of k reduce the effect of noise on the 
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classification, but make boundaries between classes less distinct. A good k can be 

selected by various heuristic techniques, for example, cross-validation. 

 

Distance Based Methods can be explain as: Let N be the number of objects in 

dataset T, and let F be the underlying distance function that gives the distance between 

any pair of objects in T. For a object O, the neighborhood of O contains the set of 

objects Q∈T that are within distance D of O })D)Q,O(F:TQ{e.i( ≤∈ .The fraction p is 

the minimum fraction of objects in T that must be outside the D-neighborhood of an 

outlier. For simplicity of discussion, let M be the maximum allowable number of objects 

within the D-neighborhood of an outlier (i.e., M=N(1-p)). 

 

From the formulation above it is obvious that given p and D the problem of finding 

DB(p,D) outliers can be solved by answering a nearest neighbor range query centered at 

each object O. More specifically based on a standard multidimensional indexing 

structure, it can execute a range search with radius D for each object O. As soon as we 

find (M+1) neighbors in the D neighborhood, it is stopped the search and declare O a 

non-outlier. Otherwise it is reported O as an outlier. 

 

Several variants of the basic technique have been proposed to improve the 

efficiency. Some techniques prune the search space by either ignoring instances that 

cannot be anomalous or by focusing on instances that are most likely to be anomalous. 

Bay and Schwabacher (2003) show that for a sufficiently randomized data, a simple 

pruning step could result in the average complexity of the nearest neighbor search to be 

nearly linear. After calculating the nearest neighbors for a data instance, the algorithm 

sets the anomaly threshold for any data instance to the score of the weakest anomaly 

found so far. Using this pruning procedure, the technique discards instances that are 

close, and hence not interesting. 

 

Wu and Jermaine (2006) use sampling to improve the efficiency of the nearest 

neighbor based technique. The authors compute the nearest neighbor of every instance 

within a smaller sample from the data set.  
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Many nearest neighbor search algorithms have been proposed over the years; these 

generally seek to reduce the number of distance evaluations actually performed. Some 

optimizations involve partitioning the feature space, and only computing distances 

within specific nearby volumes. Several different types of nearest neighbor finding 

algorithms include: k-Most Similar Neighbor (k-MSN), Linear scan, Kd-trees, Balltrees, 

Metric trees, Locality Sensitive Hashing (LSH), Agglomerative-Nearest-Neighbor, 

Redundant Bit Vectors (RBV). 

 

Knorr et al., (1998) comment that on two contemporary studies for identifying 

exceptions in large, multidimensional datasets. The techniques employed are 

significantly different from those of DB outliers, yet the spirit is similar: the anomalies 

(outliers) that are identified are intuitively surprising.  

 

Ramaswamy et al., (2000) modified the definition of outlier introduced by Knorr and 

Ng and consider as outliers the top n points p whose distance to their kth nearest 

neighbor is greatest. To detect outliers, a partition-based algorithm is presented that, 

first, partitions the input points using a clustering algorithm and, then, prunes those 

partitions that can not contain outliers. The experiments, up to 10 dimensions, show that 

the method scales well with respect to both data size and dimensionality. 

 

Fabrizio Angiulli et al., (2006) introduced the concept of outlier detection solving set 

S, a subset of D that includes a sufficient number of points from D to allow that to 

consider only the distances among the pairs in SxD to obtain the top n outliers. They 

presented an algorithm that computes the solving set and obtained the top n outliers in D 

and the weight w* by avoiding to calculate the distance of an object to each other to 

obtained its k nearest neighbors. Finally, they show that the solving set S, besides 

containing the top n outliers in D, it allowed to effectively classify each new unseen 

object as outlier or not by approximating its weight with regard to D with its weight with 

regard to S. 
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 3.6.2.2 Density Based Methods 

 

 Density based anomaly detection techniques estimate the density of the neighborhood 

of each data instance. An instance that lies in a neighborhood with low density is 

declared to be anomalous while an instance that lies in a dense neighborhood is declared 

to be normal. Density based techniques perform poorly if the data has regions of varying 

densities. For example, consider a two dimensional data set shown in Figure 3.11. Due 

to the low density of the cluster C1 it is apparent that for every instance q inside the 

cluster C1, the distance between the instance q and its nearest neighbor is greater than 

the distance between the instance p2 and the nearest neighbor from the cluster C2, and 

the instance p2 will not be considered as anomaly. Hence, the basic technique will fail to 

distinguish between p2 and instances in C1. However, the instance p1 may be detected 

Chandola et. al., (2007). 

 

 

            Figure 3.11 Advantage of local density based  
         techniques over global density based techniques 
        (Chandola et. al., 2007) 

 

Breunig et al., 2000 assign an anomaly score to a given data instance, known as 

Local Outlier Factor (LOF). For any given data instance, the LOF score is equal to ratio 

of average local density of the k nearest neighbors of the instance and the local density 

of the data instance itself. To find the local density for a data instance, the authors first 

find the radius of the smallest hyper-sphere centered at the data instance that contains its 

k nearest neighbors. The local density is then computed by dividing k by the volume of 

this hyper-sphere. For a normal instance lying in a dense region, its local density will be 

similar to that of its neighbors, while for an anomalous instance, its local density will be 
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lower than that of its nearest neighbors. Hence the anomalous instance will get a higher 

LOF score. In the example shown in Figure 3.11, LOF will be able to capture both 

anomalies (p1 and p2) due to the fact that it considers the density around the data 

instances. 

 

3.6.3 Clustering Based Methods 

 

Clustering algorithms assign similar objects in a dataset to the same classes. The 

algorithms can be divided into two broad categories: partitioning and hierarchical. In 

both cases, each data object is assigned to at least one cluster. Hierarchical clustering 

algorithms perform pile and division on the underlying dataset, with disadvantage that 

the agglomeration and division efforts can not be reversed. Partitioning algorithms, on 

the other hand, permit points to go back and forth among clusters k, if k is not known. 

 

A few clustering algorithms, such as CLARANS, DBSCAN, and BIRC, are 

developed with exception-handling capabilities. Outliers are those points that are 

sufficiently far from a cluster, but they may appear on the border of a cluster.  However, 

their main objective is to find clusters in the dataset. As such, their notions of outliers 

are defined indirectly through the notion of clusters, and they are developed only to 

optimize clustering, but not to optimize outlier detection. While it is true that some of 

the objects which do not form clusters are outliers, it is also true that some of the 

clusters may contain points that are outliers. Furthermore, one or more relatively small 

clusters that are separate from the main body of data may be totally comprised of 

outliers. Outliers actually serve as a bridge between two unrelated clusters inadvertently 

turning those two clusters into a single cluster. 

 

Several variations of the clustering of techniques have been proposed (Eskin et al., 

2002; He et. al. 2003; Pires & Santos-Pereira, 2005; Otey et. al., 2003). The technique 

proposed by He et al., (2003), called Find Cluster-Based Local Outlier Factor (CBLOF), 

assigns an anomaly score known as for each data instance. The CBLOF score captures 

the size of the cluster to which the data instance belongs, as well as the distance of the 

data instance to its cluster centroid. 
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3.6.4 Classification Based Methods for Outlier Detection 

 

A classifier that can distinguish between normal and anomalous classes can be learnt 

in the given feature space. Classification is used to learn a model (classifier) from a set 

of labeled data instances (training) and then, classify a test instance into one of the 

classes using the learnt model (testing) (Tan et al., 2005). Classification based anomaly 

detection techniques operate in a similar two-phase fashion. The training phase learns a 

classifier using the available labeled training data. The testing phase classifies a test 

instance as normal or anomalous using the classifier. A variety of outlier detection 

techniques which are use different classification algorithms to build classifiers as 

following; 

 

I. Rule Based Technique: The rule-based module may be either a classifier learning 

classification rules from both normal and abnormal training data or a recognizer trained 

on normal data only or learning rules to pinpoint changes that identify fraudulent 

activity. Rule based techniques have been applied in multi-class as well as one-class 

setting. A basic multi-class rule based technique consists of two steps. First step is to 

learn rules from the training data using a rule learning algorithm, such as RIPPER, 

Decision Trees, and etc. Each rule has an associated confidence value which is 

proportional to ratio between the number of training instances correctly classified by the 

rule and the total number of training instances covered by the rule. Second step is to 

find, for each test instance, the rule that best captures the test instance. The inverse of 

the confidence associated with the best rule is the anomaly score of the test instance. 

Several minor variants of the basic rule based technique have been proposed (Salvador 

& Chan, 2003). 

 

II. Neural Network Based Technique: Neural network approaches are generally 

non-parametric and model based, they generalize well to unseen patterns and are 

capable of learning complex class boundaries. After training the neural network forms a 

classifier. However, the entire data set has to be traversed numerous times to allow the 

network to settle and model the data correctly. They also require both training and 

testing to fine tune the network and determine threshold settings before they are ready 
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for the classification of new data. Many neural networks are susceptible to the curse of 

dimensionality though less so than the statistical techniques. The neural networks 

attempt to fit a surface over the data and there must be sufficient data density to discern 

the surface. Most neural networks automatically reduce the input features to focus on the 

key attributes. But nevertheless, they still benefit from feature selection or lower 

dimensionality data projections (Victoria & Austin, 2004). 

 

Several variants of the basic neural network technique have been proposed that use 

different types of neural networks, Multi Layered Perceptron (MLP), Neural Trees, 

Auto-associative Networks, Adaptive Resonance Theory Based, Radial Basis Function 

Based, Hopfield Networks, Oscillatory Networks. The MLP interpolate well but 

perform poorly for extrapolation so cannot classify unseen instances outside the bounds 

of the training set. It is trained by minimizing the square error between the actual value 

and the MLP output value given by equation (3.3): 
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from Bishop (1994) where tj is the target class, yj is the actual class, p(x) is the 

unconditional probability density and yj(x;w) is the function mapping. 

 

Supervised networks require a preclassified data set to permit learning. If this 

preclassification is unavailable then an unsupervised neural network is desirable. 

Unsupervised neural networks contain nodes which compete to represent portions of the 

data set. As with perceptron based neural networks, decision trees or k-means, they 

require a training data set to allow the network to learn. They autonomously cluster the 

input vectors through node placement to allow the underlying data distribution to be 

modeled and the normal/abnormal classes differentiated. They assume that related 

vectors have common feature values and rely on identifying these features and their 

values to topologically model the data distribution. Self organizing maps (SOM), 
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Kohonen, (1997) are competitive, unsupervised neural networks. SOMs perform vector 

quantization and non-linear mapping to project the data distribution onto a lower 

dimensional grid network whose topology needs to be pre-specified by the user. Each 

node in the grid has an associated weight vector analogous to the mean vector 

representing each cluster in a k-means system. The network learns by iteratively reading 

each input from the training data set, finding the best matching unit, updating the 

winner’s weight vector to reflect the new match like k-means. However, the SOM also 

updates the neighboring nodes around the winner unlike k-means.  

 

 III. Support Vector Machines (SVM): Support vector machines for type 2 

classification which use linear models to implement complex class boundaries. They 

project the input data onto higher dimensional kernels using a kernel function in an 

attempt to find a hyper-plane that separates normal and abnormal data. Support vectors 

functions are positive in the dense regions of the data distribution and negative in the 

sparsest regions of the distribution where the outliers lie. A support vector function is 

defined by equation (3.4): 
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where K is the Kernel function, sign is a function returning +1 if the data is positive and 

-1 if the data is negative, Lj is the class label, b is the bias, z the test input and xj the 

trained input. The data points that define the class boundary of normality are the support 

vectors. Only this small set of support vectors need be stored often less than 10% of the 

training set so a large data set can effectively be stored using a small number of 

exemplars. 

 

A variant of the basic technique (Tax, 2001) finds the smallest hyper-sphere in the 

kernel space, which contains all training instances, and then determines which side of 

that hyper-sphere does a test instance lie. If a test instance lies outside the hyper-sphere, 

it is declared to be anomalous. Song et al., (2002) use Robust Support Vector Machines 
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(RSVM) which are robust to the presence of anomalies in the training data. RSVM have 

been applied to system call intrusion detection (Hu et al., 2003). 

 

3.6.5 Other Methods for Outlier Detection 

 

Different paradigms were suggested to improve the efficiency of various data 

analysis tasks including outlier detection. One possibility is to reduce the size of the data 

set by assigning the variables to several representing groups. Another option is to 

eliminate some variables from the analyses by methods of data reduction, such as 

methods of principal components and factor analysis. Another means to improve the 

accuracy and the computational tractability of multiple outlier detection methods is the 

use of biased sampling. Kollios et al., (2003) investigate the use of biased sampling 

according to the density of the data set to speed up the operation of general data-mining 

tasks, such as clustering and outlier detection.  

 

Information theoretic techniques analyze the information content of a data set using 

different information theoretic measures such as Kolmogorov Complexity, entropy, 

relative entropy, etc. Such techniques are based on the following key assumption: 

anomalies in data induce irregularities in the information content of the data set. The 

advantages of information theoretic techniques are as follows Chandola et. al., (2007): 

 

• They can operate in an unsupervised setting. 

 

• They do not make any assumptions about the underlying statistical distribution for 

the data. 

 

The disadvantages of information theoretic techniques are as follows: 

 

• The performance of such techniques is highly dependent on the choice of the 

information theoretic measure. Often, such measures can detect the presence of 

anomalies only when there are significantly large numbers of anomalies present in 

the data. 



69 

 

• Information theoretic techniques applied to sequences and spatial data sets rely on 

the size of the substructure, which is often nontrivial to obtain. 

 

• It is difficult to associate an anomaly score with a test instance using an 

information theoretic technique. 
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CHAPTER FOUR 

INFORMATION CRITERIA 

 

 In recent years, the statistical literature has placed increasing emphasis on model-

evaluation criteria. The problem is posed as the choice of the best approximating model 

among a class of competing models by suitable model evaluation criteria given a data 

set. Model evaluation criteria are figures of merit, or performance measures, for 

competing models. That model which optimizes the criterion is chosen to be the best 

(Bearse et. al., 1997).  

 

In general statistical modeling and model evaluation problems, the concept of model 

complexity plays an important role. At the philosophical level, complexity involves 

notions such as connectivity patterns and the interactions of model components. Without 

a measure of overall model complexity, prediction of model behavior and assessing 

model quality is difficult (Bozdogan & Bearse, 2003). Information theoretic ideas is a 

measure of overall model complexity in statistical modeling to help provide new 

approaches relevant to statistical inference. 

 

Information theory is applied in a variety of fields and its abstract formulations as are 

applicable to any probabilistic or statistical system of observations. It plays an important 

role in modern communication theory, which formulates a communication system as a 

stochastic or random process (Kullback, 1997). Figure 4.1 shows many areas which are 

applied to information theory. 
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     Figure 4.1 Areas which are applied to information theory (Kullback, 1997) 

 

If a model should not be fitted to the data too closely; this is called over-fitting. 

Conversely, if the model is not well fitted to the data, it is said under-fitting. In both the 

cases, the model often becomes unstable and also has difficulty in prediction. Figure 4.2 

shows a rough sketch of the relationship between model size - number of parameters and 

fitting error - prediction error for a generic information criterion. 
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         Figure 4.2 Information criterion as a function of model size 

 

As the figure shows, information criteria are used to find the model that best balances 

model error against model size so as to prevent over-fitting or under-fitting of the data. 

It is considered that the minimum of the information criterion corresponds to the best 

optimal model size and the smaller the value, the better the model (Akaike, 1974; Judd, 

2003). 

 

4.1 Statistical Models to the Information Criterion 

 

If the role of a statistical model is understood as being a tool for extracting 

information, it follows that a model is uniquely determined for a given object, but rather 

that it can assume a variety of forms depending on the viewpoint of the modeler and the 

available information. In other words, the purpose of statistical modeling is not to 

estimate or identify the unique or perfect model, but rather to construct a good model as 

a tool for extracting information according to the characteristics of the object and the 

purpose of the modeling. This means that, as a general rule, the results of inference and 

evaluation will vary according to the specific model. A good model will generally yield 

good results; however, one cannot expect to obtain good results when using an 

inappropriate model (Konishi & Kitagawa, 2008).  
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The general evaluation of the goodness of a statistical model is important to assess the 

closeness between the predictive distribution f(x) defined by the model and true 

distribution g(x), rather than simply minimizing models in terms of Kullback-Leibler 

information. 

 

Estimation of Kullback-Leibler information is a crucial part of deriving a statistical 

model selection procedure which, like AIC, is based on the likelihood principle. In this 

section, it is given background information to allow a heuristic understanding of criteria 

used in selecting a model for making inferences from data. The first type of criteria AIC 

is estimates of Kullback-Leibler information or distance and attempt to select a good 

approximating model for inference, based on the principle of parsimony. The second 

type of criteria BIC is dimension consistent in that they attempt to consistently estimate 

the dimension of the true model. These latter criteria assume that a true model exists, 

that it is in the set of candidate models and that the goal of model selection is to find the 

true model, which in turn requires and that sample size is very large. The Kullback-

Leibler based criteria do not assume a true model exists, let alone that it is in the set of 

models being considered. Based on a review of these criteria, also it is given ICOMP 

criteria.  

 

4.2 Kullback-Leibler Information 

 

Let }x,...,x,{xx n21n =  be a set of n observations drawn randomly and 

independently from an unknown probability distribution function G(x) which refer to 

the probability distribution function. It generates data as the true model or true 

distribution. In contrast, let F(x) be an arbitrarily specified model. If the probability 

distribution function G(x) and F(x) have density functions g(x) and f(x), respectively 

then they are called continuous models or continuous distribution models. If, given 

either a finite set or a countable infinite set of discrete points ,...}x,...,x,x{ k21 , they are 

expressed as probabilities of events; 
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then these models are called discrete models or discrete distribution models. It is assume 

that the goodness of the model f(x) is assessed in terms of the closeness as a probability 

distribution to the true distribution g(x). As a measure of this closeness, it is used the 

following Kullback-Leibler information. It is abbreviated as K-L information (Konishi 

& Kitagawa, 2008): 
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where EG represents the expectation with respect to the probability distribution G. K-L 

information can express for the discrete and continuous models as follows: 
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The K-L information has the following properties (Konishi & Kitagawa, 2008): 

 

i. I(g;f) > 0, whenever g(x) ≠ f(x), 

ii. I(g;f) =0 ⇔  g(x)=f(x). 

iii. If ( n21 x,...,x,x ) are independent and identically distributed (i.i.d) random 

variables, then K-L information for the whole samples f)nI(g;f)(g;In = . 
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In view of these properties, it is considered that the smaller the quantity of K-L 

information, the closer the model f(x) is to g(x). The last property says that if the 

random variables are independent, K-L information is additive. K-L information can be 

used in actual modeling only in limited cases, since it contains the unknown distribution 

g, so that its value cannot be calculated directly. K-L information can be decomposed as 

following (Konishi & Kitagawa, 2008): 

 

                         [ ])]x(f[logE)x(glogE
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=                       (4.4) 

 

The first term on the right-hand side is a constant that depends solely on the true model 

g, it is clear that in order to compare different models, it is sufficient to consider only the 

second term right-hand side. This term is called the expected log-likelihood. The larger 

this value is for a model, the smaller its K-L information is and the better the model is. 

Since the expected log-likelihood can be expressed as (Konishi & Kitagawa, 2008). 
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it still depends on the true distribution g and is an unknown quantity that eludes explicit 

computation. However, if a good estimate of the expected log-likelihood can be 

obtained from the data, this estimate can be used as a criterion for comparing models. K-

L information can express for the discrete and continuous models as follows (Konishi & 

Kitagawa, 2008): 
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4.2.1 Bias Correction for the Log-Likelihood 

 

In practical applications, it is difficult to precisely capture the true structure of given 

event a limited number of observed data. For this reason, it can be constructed several 

candidate statistical models based on the observe data at hand and select the model that 

most closely approximates the mechanism of the occurrence of the event. If it is 

considered the situation in which multiple models }m1,2,...,j );|z(f{ jj =θ  exist, and the 

maximum likelihood estimator jθ̂  has been obtained for the parameters of the model jθ . 

It appears that the goodness of the model specified by jθ̂ , that is, the goodness of the 

maximum likelihood model )ˆ|z(f jj θ , can be determined by comparing the magnitudes 

of the maximum log-likelihood )ˆ( jj θl . However, it is known that this approach does 

not provide a fair comparison of models, since the quantity )ˆ( jj θl  contains a bias as an 

estimator of the expected log-likelihood )]ˆ|z(f[lognE jjG θ , and the magnitude of the 

bias varies with the dimension of the parameter vector (Konishi & Kitagawa, 2008). 

 

It is supposing that n observations nx  generated from the true distribution g(x) are 

realizations of the random variable T
n21n )x,...,x,(xX = , and let, 

 

                                       ∑
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represent the log-likelihood of the statistical model ))x(ˆ|z(f nθ  estimated by the 

maximum likelihood method. The bias of the log-likelihood as an estimator of the 

expected log-likelihood from )z(dG)ˆ|z(flog)]ˆ|z(f[logEG ∫ θ=θ is defined by  

 

              ))]]x(ˆ|z(f[lognE))x(ˆ|x(f[logE)G(b n)z(Gnn)x(G n
θ−θ=                       (4.8) 

 

where the expectation )x(G n
E  is taken with respect to the joint distribution 

)x(G)x(G n
n

1 =∏ α=α , of the sample xn, and )z(GE  is the expectation on the true 

distribution G(z). It is seen that the general form of the information criterion can be 

constructed by evaluating the bias and correcting for the bias of the log-likelihood as 

follows: 
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         (4.9) 

 

In general, the bias b(G) can take various form depending on the relationship 

between the true distribution generating the data and the specified model and on the 

method employed to construct a statistical model.  

 

4.2.2 Estimation of Bias 

 

The bias depends on the unknown probability distribution G that generated the data 

through )(I 0θ  and )(J 0θ . It must be estimated based on observed data. Let Ĵ and Î be 

the consistent estimators of )(I 0θ and )(J 0θ . In this case, it is obtained an estimator of 

the bias b(G) using, 

 

                                              )ĴÎ(trb̂ 1−= .                                                            (4.10) 
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)(I 0θ and )(J 0θ  matrices can be estimated by replacing the unknown probability 

distribution g(z) by empirical distribution function )z(ĝ based on the observed data as 

follows: 
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4.3 Akaike Information Criterion (AIC) 

 

The Akaike Information Criterion has played a significant role in solving problems 

in a wide variety of the fields as a model selection criterion for analyzing actual data. 

Akaike (1973) adopted Kullback-Leibler definition information. AIC is an 

asymptotically unbiased estimator of minus twice this expected log-likelihood. The AIC 

is defined by, 

 

  )parameters   free of2(number )likelihood-log  2(maximumAIC +−=     (4.13) 

 

The AIC is an evaluation criterion for the badness of the model whose parameters 

are estimated by the maximum likelihood method, and it indicates that the bias of the 

log-likelihood b(G) approximately becomes the number of free parameters contained in 

the model. The bias is derived under the assumption that the true distribution g(x) is 

contained in the specified parametric model });|x(f{ pℜ⊂Θ∈θθ , that is, there exists a 

Θ∈θ0  such that the equality )|x(f)x(g 0θ=  holds. The bias (4.9) of the log-likelihood 

is asymptotically given by, 
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where Ip the identity matrix of dimension p. Hence, the AIC, 
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can be obtained by correcting the asymptotic bias p of the log-likelihood. 

 

The AIC does not require any analytical derivation of the bias correction terms for 

individual problems and does not depend on the unknown probability distribution G, 

which removes fluctuations due to the estimation of the bias. 

 

The first term in equation (4.15) provides us with a measure of model inaccuracy 

badness of fit or lack of fit when the maximum likelihood estimators of the parameters 

in the model are used. The second term serves as a penalty for bias induced in the first 

term when additional free parameters are included in the model. Since the decision rule 

is to minimize AIC over the set of competing models, the best approximating model is 

chosen to be the one with the highest information gain (Peter et al., 1997).  

 
There are several characteristics of AIC concerning the selection of a model using 

the AIC. These are explained in the following (Konishi & Kitagawa, 2008); 

 

•••• The objective of modeling is to obtain a good model, rather than a true model. In 

situations where there are only a small number of observations, considering the 

instability of the parameters being estimated, the AIC reveals the possibility that a 

higher prediction accuracy can be obtained using models having lower orders. 

 

•••• Shibata’s (1976) described, if the true order is assumed, the asymptotic distribution 

of orders selected by the AIC can be a fixed distribution that is determined solely by 

the maximum order and the true order of family of models. This indicates that the 

AIC does not provide a consistent estimator of orders. However, that when the true 

order is finite, the distribution of orders that is selected does not vary when the 

numbers of observations is increased. In this case, even if a higher order is selected, 

when the number of observations is large, each coefficient estimate of a regressor 

with an order greater than the true order converges to the true value 0 and that a 

consistent estimator can be obtained as a model. 
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•••• Although the information criterion makes automatic model selection possible, the 

model evaluation criterion is a relative evaluation criterion. This means that 

selecting a model using an information criterion is only a selection from a family of 

models that have specified. Therefore, the critical task for researches is to up more 

appropriate models by making use of knowledge regarding that object. 

 

4.4 Bayesian Information Criterion (BIC) 

 

The Bayesian information criterion (BIC) or Schwarz’s information criterion 

proposed by Schwarz (1978) is an evaluation criterion for models defined in terms of 

their posterior probability. AIC does not directly involve the sample size n and it has 

been criticized as lacking properties of consistency (Bozdogan, 1987). A popular 

alternative to AIC presented by Schwarz (1978) which does incorporate sample size is 

BIC. 

 

 Let r1 M,...,M  be r candidate statistical models, and assume that each model Mi is 

characterized by a parametric distribution )Θ(θ  )θ|(xf ki
 iiii ℜ⊂∈  and the prior 

distribution )( ii θπ  of the ki dimensional parameter vector iθ . When n observations 

}x,...,x,{xX n21n =  are given, then, for the thi  model Mi, the marginal distributions 

or probability of xn is given by,  

 

         iiiinini d)()|x(f)x(p θθπθ= ∫                            (4.16) 

 

This quantity can be considered as the likelihood of the ith model and is referred to as 

the marginal likelihood of the data. According to Bayes’ theorem, the posterior 

probability of the ith  model is given by,  
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This posterior probability indicates the probability of the data being generated from 

ith model when data xn are observed. Therefore, if one model is to be selected from r 

models, it would be natural to adopt the model that has the largest posterior probability. 

This principle means that the model that maximizes the numerator )M(P)x(p ini  must 

be selected, since all models share the same denominator. If it is assumed that the prior 

probabilities P(Mi) are equal in all models, it follows that the model that maximizes the 

marginal likelihood pi(xn) of the data must be selected. Therefore, if an approximation to 

the marginal likelihood expressed in terms of an integral of pi(xn) can readily be 

obtained, the need to compute the integral on a problem by problem basis will vanish, 

thus making the BIC suitable for uses a general model selection criterion. The BIC is 

actually defined as the natural logarithm of the integral multiplied by 2− , and it is 

obtained (Konishi & Kitagawa, 2008), 

 

{ }
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        (4.18) 

 

where iθ̂  is the maximum likelihood estimator of the ki dimensional parameter vector iθ  

of the model )|x(f ii θ . Consequently, from the r models that are to be evaluated using 

the maximum likelihood method, the model that minimizes the value of BIC can be 

selected as the optimal model for the data. Thus, even under the assumption that all 

models have equal prior probabilities; the posterior probability obtained by using the 

information from the data servers to contrast the model and helps to identify the model 

that generated the data.  

 

4.5 Information Complexity Criterion (ICOMP) 

 

 As an alternative to AIC, Bozdogan developed a new entropic statistical complexity 

criterion called ICOMP for model selection in general multivariate linear and non-linear 

structural models. 
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 Motivated by considerations in AIC, Bozdogan’s ICOMP criterion is based on the 

complexity of an element or set of random vectors via a generalization of van Emden’s 

(1971) entropic covariance complexity index. Using an information theoretic 

interpretation, ICOMP views complexity as the discrimination information of the joint 

distribution of the parameter estimates against the product of their marginal 

distributions. Discrimination information is equal zero if the distributions are identical 

and is positive otherwise. The most general version of ICOMP is based on the estimated 

inverse Fisher information matrix (IFIM) of the model. For a general multivariate linear 

or nonlinear model defined by (Bozdogan & Bearse, 2003), 

  

Statistical model = signal + noise.           (4.19) 

 

ICOMP is designed to estimate a loss function: 

  

 Complexity ofProfusion  Parsimony  ofLack  Fit  ofLack  Function Loss ++=    (4.20) 

 

in several ways. This is achieved by using the additivity properties of information 

theory. In the loss function, by the third term, profusion of complexity, it is mean that 

the interdependencies or the correlations among the parameter estimates and the random 

error term of a model (Bozdogan, 2000). 

  

 The development and construction of ICOMP is based on a generalization of the 

covariance complexity index instead of penalizing the number of free parameters 

directly, ICOMP penalizes the covariance complexity of the model. It is defined by 

(Bozdogan & Haughton, 1998), 

 

       )Σ̂ ( 2C )θ̂2logL(ICOMP Modelk +−=                           (4.21) 

 

where )θ̂L( k  is the maximized likelihood function, kθ̂  is the maximum likelihood 

estimate of the parameter vector kθ under the statistical model kM , and C represents a 
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real-valued complexity measure and Model
ˆ)ˆCov( Σ=θ  represents the estimated 

covariance matrix of the parameter vector of the model. 

 

4.6 Information Criteria for Multiple Regression Models 

 

 In recent years, the statistical literature has placed more and more emphasis on model 

selection criteria. The problem is to choose the best approximating model among a class 

of competing models by a suitable model selection criterion given a finite data set. That 

model which optimizes the criterion is chosen to be the best model. In many situations 

where regression analysis is useful, the investigator has strong justification for including 

certain variables in the equation. 

 

Model selection can be traced to back AIC criterion. Since then, a number of criteria 

have been proposed. While the AIC was proposed as an approximately unbiased 

estimator of the mean expected log-likelihood of a model, the BIC is an approximation 

to the posterior probability that a model is the best model. The ICOMP approximates the 

sum of two distances, one measuring the badness-of fit of the model, and one measuring 

its complexity (Bozdogan & Haughton, 1998). 

 

AIC, BIC, and Information Complexity criterion are defined in multiple regressions 

as follows.  

 

4.6.1 Akaike Information Criterion for Multiple Regression Models 

 

 The AIC is a frequently used method for regression and autoregressive model 

selection. In small samples, or when the number of fitted parameters is a moderate to 

large fraction of the sample size AIC can drastically underestimate the expected 

Kullback-Leibler information, and such bias can lead to severe overfitting. To remedy 

this shortcoming, it is proposed corrected of the AIC (AICc) statistic which is less biased 

and consequently tends to select much better models. For linear regression model 

selection AICc is an unbiased estimate for the Kullback-Leibler information. However, 
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AICc tends to overfit when the sample size increases (McQuarrie et al., 1997). These are 

explained as follows. 

 

Suppose that the observations αy  are independently and normally distributed with mean 

αµ  and variance 2σ . Then the density function of αy  can be written as, 
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σ̂β̂xµ̂ , then, the AIC for a Gaussian linear 

regression model is given by,  

 

   1)2(pn)σ̂nlog()nlog(2AIC 2
n)(Regressio ++++π=              (4.23) 

 

where p is the number of estimated parameters ( )p10
ˆ,...,ˆ,ˆ βββ . 

 

 The bias corrected in AIC is approximated by the number of parameters which are 

constant and have no variability. Sugiura (1978) proposed corrected AIC as AICC in 

multiple regression model for small samples. AICC was used first by Hurvich and Tsai 

(1989). It is as follows,  

 

    
2pn

n
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AIC criterion may be viewed as an asymptotically unbiased estimator of the 

Kullback-Leibler information which is a measure of discrepancy between statistical 

models (Kullback & Leibler, 1951). Thus, selection of a model has minimizing AIC 

means that the selected model may be the best approximating model to the true model. 

For the data for which the true model has infinite order, AIC provides an asymptotically 

efficient selection of a finite order model. However, for the data for which the true 
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model has finite order, minimizing AIC does not produce consistent model order 

selection, which pursues the selection of the most parsimonious model. This defect is 

more evident when the sample size is very large. In other words, the existing 

asymptotically efficient criteria (e.g. AIC) which do not provide consistent order 

selection tend to overfit unless the maximum allowable order of the model is specified. 

This overfitting problem leads to more unsatisfactory model order selection when 

sample size is small, or when the number of free parameters is a relatively larger than 

the sample size. In this case, the overfitting stems from the fact that AIC is strongly 

negatively biased (Kwon, et al., 1998).  

 

A key feature of an AIC type criterion is that it adds a penalty of the same order as 

the model dimension to the negative maximized log-likelihood. The significance of this 

is that with the penalty added as bias correction, the criterion value is of the same order 

as the sum of the squared bias and the estimation error. Consequently, when the number 

of the relevant models is under control, the comparison of the criterion value is pretty 

much similar to comparing the sum of the squared bias and the estimation error over the 

models. In light of the well known fact that the best trade-off between the squared bias 

and the estimation error typically produces the minimax optimal rate of convergence for 

both parametric and nonparametric function classes and, the AIC type criteria then have 

the property that they usually yield minimax-rate optimal estimators of the regression 

function under a squared error type loss. (Yang, 2003) 

  

4.6.2 Bayesian Information Criterion for Multiple Regression Models 

 

In multiple regression Schwarz (1978) Criterion is defined by, 

 

  )nlog(pn)ˆlog(n)2log(nBIC 2
)gression(Re ++σ+π=                     (4.25) 

 

where n is the number of observations.  

 

AIC(1973) and Schwarz (1978) are derived from distinct perspectives: AIC intends 

to minimize the Kullback-Leibler divergence between the true distribution and the 
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estimate from a candidate model and BIC tries to select a model that maximizes the 

posterior model probability. Due to the rather different motivations, it is not surprising 

that they have different properties (Yang, 2003). 

 

The most well-known properties of AIC and BIC are asymptotic (loss) optimality and 

consistency (in selection), respectively. Simply put, when f is among the candidate 

families of regression functions, the probability of selecting the true model by BIC 

approaches 1 as ∞→n . On the other hand, if f is not in any of the candidate families 

and if the number of models of the same dimension does not grow very fast in 

dimension, the average squared error of the selected model by AIC is asymptotically 

equivalent to the smallest possible offered by candidate models. These two properties of 

AIC and BIC are respectively called consistency and asymptotic optimally. Note that in 

general, AIC is not consistent and BIC is not asymptotically optimal in the 

nonparametric case (Yang, 2003). 

 

4.6.3 ICOMP Based on Complexity Measures for Multiple Regression Models 

 

 In the literature many consistency results on AIC and BIC criteria are based on the 

central assumption that one of the models considered is true model. However, notably in 

the context of multiple regression, this assumption often does not hold, since one or 

more variables have been omitted from the model (Bozdogan & Haughton, 1998). 

Bozdogan and Haughton (1998), introduced a concept of consistency for this case, and 

established a consistency property for ICOMP criterion. Each formulation of ICOMP 

has the attractive feature of implicitly adjusting for the number of parameters, the 

sample size, and controlling the risks of both insufficient and over parameterized 

models. ICOMP inverse Fisher information matrix (ICOMP(IFIM)) is shown as for 

multiple regression [Bozdogan, 2000; Bozdogan, 2004). 

 

 ))θ̂(F̂(Cn)σ̂nlog(π)nlog(2)ICOMP(IFIM 1
1

2
Mul.Reg

−+++=      (4.26) 

 

Where 
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    (4.27) 

 

 

 

where 2σ̂  is the estimated variance of regression model, and p explanatory variables in 

regression model. As the number of parameters increases (i.e., as the size of X 

increases), the error variance 2σ̂  gets smaller even though the complexity gets larger. 

Also, as 2σ̂  increases, 1X)X( −′  decreases. Therefore ))θ̂(F̂(C 1
1

− achieves a trade-off 

between these two extremes and guards against multicollinearity. To preserve scale 

invariance, it is used the correlational form of information fisher information matrix 

(IFIM), that is used 1F̂−  and define the correlational form of ICOMP(IFIM) regression 

given by (4.26) (Bozdogan, 2004). 
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CHAPTER FIVE 

INFORMATION CRITERIA METHOD TO DETECT OUTLIERS IN 

MULTIPLE REGRESSION USING GENETIC ALGORITHMS 

 

Statistical models, particularly regression models, are most useful devices for 

extracting and understanding the essential features of datasets. However, most of the 

databases a particular amount of abnormal values, generally termed as outliers. An 

accurate identification of outliers plays a significant role in statistical analysis especially 

regression models. Nevertheless, many classical statistical models are blindly applied to 

data sets containing outliers; the results can be misleading at best. The appearance of 

outliers can exert negative influences on the fit of the multiple regression models. 

 

This thesis integrates novel statistical modeling procedures based on an information 

theory. It is formed a three way hybrid between: the information criterion for outlier 

detection, multiple regression models, and genetic algorithm. It is demonstrated 

information criteria for outlier detection on a real and simulated data using GA. The 

format of this chapter is as follows: 

 

• Information criterion for multiple regression models, 

• GA for outlier detection, 

• Real data examples and simulation studies for outlier detection in multiple 

regression models using genetic algorithms. 

 

5.1 Detecting Outliers in Multiple Regression 

 

An observation may have influence on estimates of the regression coefficients, the 

estimated variance of these estimates or the fitted values. The primary goal of the 

researcher should determine which influence to consider. After the detection of 

influential observation an even more task is the attempt to understand or explain the 

source of the influence. In this subsection begins with some background material on 

least squares regression estimation and diagnostics to identify a single outlier. The 

discussion expands to address the multiple outlier problems.  
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The study of outliers has interested practicing statisticians and other scientists for a 

great number of years. Thomson (1935) was the first author to drop both assumptions 

about population mean and standard deviation. Anscombe (1960) and Daniel (1960) 

were among the first authors to propose the use of standardized residual for detecting a 

single outlier in linear regression models.  

 

Particular classes of diagnostic methods that are intended to aid in assessing the role 

those individual observations play in determining a fitted model. It seems that spurious 

observations may not always be outliers. It is therefore important for an analyst to be 

able to identify such observations, and assess their effect on various aspects of the 

analysis. Such observations called influential observations. A definition, which seems 

most appropriate, is given by Belsley et al., (1980): “An influential observation is the 

one which, either individually or together with several other observations, has a 

considerably larger impact on the calculated values of various estimates than is the case 

for the most other observations”. 

 

Isolating a single or a few outliers can be done quite easily using routine single-case 

diagnostics, that is, for example the Cook’s squared distance (Cook, 1979) measures the 

change in the regression coefficients that would occur if a case was omitted. But the 

ordinary least squares (OLS) estimates and inference can be affected with the presence 

of even two outliers. However, the standard single-case diagnostic measures often suffer 

from masking and swamping. Masking is the inability of the procedure to detect the 

outliers, while swamping is the detection of clean observations as outliers. 

 

5.2 Outlier Detection Methods in Multiple Regression 

 

In regression type problems whether it is in multiple regression analysis, in logistic, 

or in ordinal logistic regression, model building and evaluation and selection of relevant 

subset of predictor variables on which to base inferences is a central problem in 

databases to reduce the “curse of dimensionality,” a term coined by Richard Bellman 

(Bellman, 1961). Often a quantitative, binary, or ordinal level response variable is 

studied given a set of predictor variables. In such cases it is often desirable to determine 
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which subsets of the predictors are most useful for forecasting the response variable, and 

to interpret a large number of regression coefficients, since this can become unwieldy 

even for moderately sized data, better estimation and clearer interpretation of the 

parameters included in these models (Bozdogan, 2004). 

 

The problem of selecting the best regression models is a significant exercise, 

particularly when a large number of predictor variables exist and the researcher lacks 

precise information about the exact relationships among the variables. In many cases the 

total possible number of models reaches over thousands (e.g., more than 20 predictor 

variables) and evaluation of all possible combinations of subsets is unrealistic in terms 

of time and cost (Bozdogan, 2004). Therefore, numerical optimization techniques and 

strategies for model selection are needed to explore the vast solution space. In general 

the problem of subset selection using numerical techniques requires two components: 

the efficient searching of the solution space, and a criterion or measure for the 

comparison of competing models to help guide the search. 

 

Most statistical packages for statistical analysis provide a backward and forward 

selection strategy for choosing the best subset model. However, it is well known that 

both backward and forward stepwise selection in regression analysis do not always find 

the best subset of predictor variables from the set of p variables. Major criticisms 

leveled on backward and forward stepwise selection are that little or no theoretical 

justification exists for the order in which variables enter or exit the algorithm and the 

arbitrary choices of the probabilities specified a priori to enter and remove the variables 

in the analysis. Another criticism is that stepwise searching rarely finds the overall best 

model or even the best subset of a particular size. Lastly, and most importantly, because 

only local searching is employed, stepwise selection provides extremely limited 

sampling from a small area of the vast solution space. Stepwise selection, at the best, 

can only produce an adequate model (Bozdogan, 2004).. 

 

Based on the above shortcomings of existing problems in regression analysis, in this 

chapter, it is introduced and developed a computationally feasible information criteria 
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based on the GA and information-based criteria for outlier detection in multiple 

regression models.  

 

 If outliers occur in the data, the errors can be thought to have a distribution different 

from the above. In multiple regression, outliers are typically modeled by either a shift in 

mean or via a shift in variance. It is adopted a variance inflation model for outliers in 

thesis. We assume that the errors with probability π)(1−  come from a 

)σN(0, 2 distribution, and with probability π  from )σN(0, 22ϕ . Here π  is the 

probability of an outlier and 2ϕ  is the variance inflation parameter. 

 

 The detection of outliers is an important issue for regression analysis, not only for 

their own sake, but also because the inferences drawn from the model will be biased if 

outliers are neglected. Belsley et al., (1980) described many of the well known outlier 

detection procedures for regression models (Belsley et al., 1980). Potential outliers can 

be incorporated into multiple regression models by the use of dummy variables in this 

study. A dummy variable is 1n ×  vector that has a value of one for the outlying 

observation, and zero for all other observations. Each outlier would have a 

corresponding a dummy variable like below data formulation. 
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Figure 5.1 Regression models by the use of dummy variables 

 

For example, we assume that the last observation is an outlier, then one dummy variable 

to be added to the model, and the explanatory variable matrix could be as below, 

 

 

 



92 

 

 

 

 

 

 

 

       Figure 5.2 The explanatory variable matrix with one dummy variable 

 

A dummy variable in the regression model is therefore equivalent to detected outlier, 

and the problem here is the selection of the best model, where the candidate models 

have different combinations of all possible dummy variables as explanatory variables.  

 

5.3 Information Criteria for Outlier Detection 

 

The outlier detection problem in multiple regression can be viewed as two issues: 

The first is to define which data can be considered as inconsistent or exceptional in a 

given data set, and the second find an efficient method to detection of outliers. Based on 

these issues, in this part of the thesis, it is introduced detection of outliers is based on the 

use of information criteria in multiple regression models. Numerous methods have been 

proposed in the literature for outlier detection using AIC or its variants in linear 

regression.  

 

 Kitagawa & Akaike (1982) and Kitagawa (1984) have applied AIC in detection of 

outliers by using quasi Bayesian approach with predictive likelihood in place of the 

usual likelihood function.  

 

Outlier detection is a statistical problem that has received considerable attention, both 

from the Bayesian and frequents perspectives. A common approach consists in assuming 

that the possible outliers are generated by contaminating models different from the one 

generating the rest of the data. In the usual formulation, data is assumed to be a random 

sample n21 x,...,x,x  from a model )x(f θ . In the outlier detection scenario, some few 

specific observations are suspected to be outliers, that is, to be generated by some other 
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contaminating models hi. If the model hi are specified, the result is another possible 

model for all the data. In this way, outlier detection can be reduced to a problem of 

model selection and the appropriate Bayesian procedures could then be used (Bayarri & 

Morales, 2003).  

  

 Bayesian approach for outlier detection in multivariate samples is also proposed by 

Guttman (1973). The approach assumes that the underlying distribution is ),(N Σµ and 

there is one observation which comes from ),(N Σα+µ . Guttman suggests using the 

posterior distribution of α  to detect outliers. Another Bayesian approach was proposed 

by Varbanov (1998). This approach uses the posterior distribution of the squared norm 

of the error terms to detect outliers in the multivariate linear models. Other contributions 

to detection of multivariate outliers are included in Gnanadesikan & Kettering (1972), 

Hawkins (1980), Rousseuw & Leroy (1987), Varbanov (1998). Ting et al., (2007) 

introduced a Bayesian way of dealing with outlier infested sensory data and developed a 

block box approach to the removed outliers in real time. 

 

 The model selected by BIC is consistent with the true model asymptotically. It is 

known that BIC tends to underestimate the size of parameters in general; however, the 

properties in small samples are not well checked (Shono, 2000). 

 

 Bozdogan (2003) modified the ICOMP criteria for masking issues within the vector 

autoregression (VAR) context. 

 

5.4 Adapting Information Criteria to Outlier Detection by Adding Penalty Terms 

 

 All the outlier detection effort in this study is based on the use of information criteria. 

There is large number of possible information criteria to choose from. The AIC, BIC 

and ICOMP will be used here, since they usually perform quite well in various 

situations. These methods mentioned above show the local influence, and they can not 

be resistant to masking and swamping effects as discussed in Su rez Rancel & Gonz lez 

Sierra (1999). Therefore the information criteria can be modifying in order to handle the 

outliers. Bozdogan (2003) modified the ICOMP criteria for masking issues within the 
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vector autoregression (VAR) context. Tolvi (2004) used corrected BIC for outlier 

detection in multiple regression. 

 

For multiple regression models with dummy variables the BIC criteria can be 

calculated as, 

 

 mlog(n)/n)σ̂log(BIC 2 +=                                                          (5.1) 

 

where 2σ̂  is the estimated variance of regression model. The total number of parameters 

in the estimated model are dmp1m ++= ,which consists of parameters for the constant, 

p is number of independent variables, and dm is number of outlier dummies in 

regression model. In the equation, n is the number of observations. Generally a good 

model has small residuals, and few parameters, then it is preferred chosen with the 

smallest value of BIC. 

 

A problem in using the BIC for outlier detection is that it tends to include 

unnecessary outlier dummies by itself. To circumvent this problem, a correction to the 

criterion is used. The corrected BIC takes into account the different nature of outlier 

dummies and other variables, and has a different penalty term for different variables. 

This takes the form of an extra penalty for the dummies. The corrected BIC is denoted 

CBI ′ , and it is given by Tolvi (2004), 

 

 ,n/)nlog(mn/)nlog()p1()ˆlog(CBI d
2 κ+++σ=′                                              (5.2) 

 

where the Kappa )1( >κ  is the extra penalty given to outlier dummies, and dm  is 

number of dummy variables in regression model for each outlier observation.  

 

In this thesis, we derive an AIC' and ICOMP' criteria alternative to CBI ′  approach 

for outlier detection in multiple regression. Our objective is to provide a more judicious 

penalty term than CBI ′ , since counting and penalizing the number of parameters for 

outlier dummies in a model is necessary.  
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We generate and investigate penalty terms versions of AIC and ICOMP for outlier 

detection in multiple regression models, they are denoted AIC' and ICOMP'. The 

penalty term for the dummies in AIC' and ICOMP' criteria is defined as )nlog(mdκ . 

They are given as follows, respectively. 

 

AIC' for outlier detection in multiple regression models is given by, 

 

  

)nlog(m)1p(2n)ˆlog(n)2log(n         

         

)nlog(mAICCAI

d
2

d

κ++++σ+π=

κ+=′

                (5.3) 

 

Also, ICOMP' for outlier detection in multiple regression models defined by, 

 

  

)log(nκm))θ̂(F̂(Cn)σ̂nlog( π)nlog(2                                  

                                     

log(n)κm)ICOMP(IFIM)ICOMP(IFIM
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1
2

dMul.Reg
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+=′

−

     (5.4) 

 

where, 

 

         (5.5) 

 

 

 

We illustrate the practical utility and the importance of this new outlier detection 

criterion by providing simulation examples for comparing their performance against 

BIC'. Also, simulation experiments are conducted to determine relevant different values 

of  Kappa ( κ ) for outlier detection. 

 

5.5 Genetic Algorithms Based Outlier Detection 

 

Heuristic search methods such as genetic algorithms, swarm intelligence, ant colony 

optimization algorithms, tabu search, simulated annealing have been used to solve 
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various problems and produce good solutions with probably good run times. The most 

widely used form of evolutionary computation is the genetic algorithm. GAs have 

proven to be a very successful meta-heuristic technique for many NP-complete 

optimization problems (Chen et al., 2007; Maaranen, 2007; Toroslu & Arslanoglu, 

2007). GAs are stochastic search methods that have been successfully applied in many 

search, timetabling, scheduling, and machine learning problems and have been 

especially used in engineering, biology, and medicine (Uğur, 2008). GAs are inspired by 

evolutionary biology such as inheritance, mutation, selection, and crossover (Goldberg, 

1989). Note that, the outline of GA is given in Figure 2.5. 

 

 Traditionally, solutions are represented in binary as strings of 0s and 1s, but other 

encodings are also possible. The evolution usually starts from a population of randomly 

generated individuals and happens in generations. In each generation, the fitness of 

every individual in the population is evaluated, multiple individuals are stochastically 

selected from the current population (based on their fitness), and modified to form a new 

population. The new population is then used in the next iteration of the algorithm. 

 

 GAs are useful optimization tool for statistical modeling, also it has been used for 

outlier detection and model selection of linear regression models or times series. 

Crawford and Wainwright (1995) presented genetic algorithms capable of generating 

subsets for multiple-case outlier diagnostics. The genetic algorithms are used the 

diagnostics as evaluation functions to drive the search for good subsets. Jann (2000) 

describes GAs for the detection of level shifts in a time series. Ishibuchi et al., (2001) 

used GAs for the feature selection in data mining and they gave a lot of references about 

this literature. Additionally, the use of GAs for outlier detection and variable selection is 

proposed by Tolvi (2004). 

 

 In this subsection, a GA has been applied to detection of outliers in multiple 

regression as an optimization search algorithm. An important issue in applying genetic 

algorithms is to represent a candidate solution as a chromosome. Therefore, it is given 

chromosome representation method and properties of genetic algorithm operators for 

outlier detection. The GA for outlier detection is written using Matlab environment and 
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GA codes are given appendice 1. The primary elements of GAs for outlier detection are 

shown as follows in details. 

 

• Parameter Encoding and Chromosome Structure: The coding of the candidate 

solutions for outlier detection is straightforward. Each solution also called an individual 

or chromosome, is fully described by a binary vector d, it is defined as 

)d,...,d,...,(dd ni1= , where 0d i =  indicates no outlier dummy and 1d i =  indicates an 

outlier dummy for observation i , for each n,...,1i = . A dummy variable for outlier 

observation must be created during the GA is run on a data set. 

 

 The structure of a chromosome in GAs is shown in Figure 5.3 for this study. It has n 

genes which is the number of observations in the data set. Each chromosome consists of 

p genes, where p is the number of outliers given in a model. For instance, the second and 

(n-1)th observations are outliers and d vector is defined as )010...0 1 0(d = . 

 

 

 

Figure 5.3. The Structure of a chromosome in genetic algorithm 

 

• The Population and Generations: The population size is the number of 

chromosomes in each generation. Initial population is usually generated randomly. 

Multiple individuals are selected from current population and used to form new 

generations. The individuals with smallest values of the fitness function are more likely 

to pass their genes onto the next generation.  

 

 Multiple regression models corresponding to these individuals are then estimated by 

using the observed data, and information criterion values for them are computed.  

• Fitness Function: Fitness function is a function that quantifies of a solution 

chromosome or individual in a genetic algorithm. A new population is obtained through 

selecting the most promising individuals. Since the individuals with a high fitness value 
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are more frequently selected, there is pressure for the fitter individuals to be 

incorporated into the population.  

 

 The fitness of an individual is computed by one of the information criterion 

( (IFIM)PICOM ,CBI ,CAI ′′′ ) for multiple regression models with the corresponding 

dummy variables in this study. 

 

• Selection Operator: The selection strategy is largely dependent upon the fitness 

level of the individuals actually existing in the population. There are various selection 

strategies based on fitness, the most commonly used one of which is the fitness 

proportion selection. Tournament selection and ranking selection are the other two 

alternative strategies.  

 

Stochastic uniform selection function is used for GA in this study. This function lays 

out a line in which each parent corresponds to a section of the line of length proportional 

to its scaled fitness value. The algorithm moves along the line in steps of equal size. At 

each step, algorithm allocates a parent from the section it lands on. It is noted that the 

results can be improved if a small number of the best individuals. These are kept the 

same from one generation to the next. The best two individuals are kept as elite 

population. 

 

• Crossover Operator: Crossover is a genetic operator that combines (mates) two 

chromosomes (parents) to produce a new chromosome (offspring). This operator is seen 

Figure 5.4, where the "|" symbol indicates the randomly chosen crossover point. 

 

 

         Figure 5.4 Crossover operator 

 

 The idea behind crossover is that the new chromosome may be better than both of the 

parents if it takes the best characteristics from each of the parents. Crossover is 

performed during evolution according to a user-defined crossover probability with CP . 
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This procedure is repeated until the same numbers of individuals are constructed in the 

previous generation.  

 

• Mutation Operator: Mating of the individuals from the previous generation will not 

be enough for diversity of population. In evolutionary terms, small changes in 

chromosomes are needed for genetic variations. To this end, the individuals of each 

generation are also mutated before model estimation. Each gene of each individual is 

flipped, from zero to one or vice versa with mutation probability mP . 

 
Table 5.1 Summarize the parameters of GA for the simulated models in this study. 

 
 
 
 
 
 
 
  

 
 

In addition to crossover and mutation, a condition for the maximum number of 

dummies is used to alter the population. Since only a few dummies will be allowed in 

the final model, this condition is used in order to keep the candidate models from having 

too many variables. The rule states that if a candidate model has more than n/2 dummy 

variables, or outliers is more than 50% of the number of observations, it is ignored 

consideration. Depending on the particular crossover and mutation rates mC P and P , the 

next generation will be composed entirely of offspring models or of a mixture of 

offspring and parent models.  

 

5.6 Design of Simulation Study and Experimental Results 

 

To gain a better understanding of (IFIM)PICOM ,CBI ,CAI ′′′  criterion performance 

for the outlier detection problem with multiple outliers using GAs, it is run a designed 

experiment using Monte Carlo simulation. The experiment has varies characteristics not 

only of the data set, but also the Kappa value of information criteria in order to quantify 

Table1. The Parameters of the GA for the Simulated Model 

Number of Generations 250 
Population Size 40 
Fitness Value (IFIM)PICOM ,CBI ,CAI ′′′  

Selection Operator Stochastic uniform selection 
Crossover Probability  1 
Mutation Probability 0.01 
Elitism For two parents 
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the expected performance of information criterion. In the next subsection, it is showed 

that real data examples, the steps of data generation and simulation results of new 

approaches to detect outliers by means of a simulation study.  

 

5.6.1 Real Data Examples for Outlier Detection using Genetic Algorithms 

 

Two experimental data sets have been used to illustrate outlier detection in MLR 

modeling. References to these, and other information, including where to obtain the data 

can be found in (Hoeting et. al., 1996)‡. In this subsection, it is investigated that detect 

outliers from these data sets with GA. Some information on the data sets and results are 

following; 

 

i  Scottish Hill Racing: The first example involves data supplied by Scottish Hill 

Runners Association (Hoeting et al., 1996). The purpose of the study is to investigate 

the relationship between record time of 35 hill races and two explanatory variables: 

distance is the total length of the race, measured in feet. One would expect that longer 

races and larger climbs would be associated with longer record times. 

 

Several authors have examined these data sets using both predictors in their analysis 

(Atkinson, A.C., 1986; Hadi, 1986; Hoeting et .al., 1996). They concluded that races 7th 

and 18th observations are outliers. After they removed observations 7 and 18, their 

methods indicated that observation 33 is also an outlier. Thus observations 7 and 18 

mask observation 33. After race numbers 7,18, and 33 are removed from the data, 

standard diagnostic checking does not reveal any gross violations of the assumptions 

underlying MLR models (Fox, 1997; Hoaglin & Tukey, 1983; Hoeting et al., 1996). The 

scatter plot of this data set is shown in Figure 5.5. 

 

                                                 
‡ These data sets are available from one of the authors’ website. This web address is 
http://www.stat.colostate.edu/~jah/index.html 
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     Figure 5.5 Scatter Plot of Scottish Hill Racing Data.§ 

 

 The GA described earlier was run many times with this data; all runs result in the 

same outliers being detected, at observations 7,18, and 33. The solution was always 

found quickly by the GA and it is seen Figure 5.6. There are four windows in Figure 5.6. 

The first window showed that the vector entries of the individual with the best fitness 

function’s value in each generation. It is found the best individuals 7, 18, 33. The second 

window showed that the best function value in each generation versus iteration number.  

Then, the optimal fitness function value of GA has a CBI ′  value 4.13. The third window 

is showed that the fitness of each individual in each iteration. The last window is 

showed that stopping criteria levels. It is specifies the maximum number of iterations the 

genetic algorithm performs. It is selected 100 in GA for this example. 

 

                                                 
§ Numbers correspond to Race Numbers 7, 18, 33. Distance is given in miles, time is given in minutes, 
and climb is given in feet. 
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Figure 5.6 The output of genetic algorithm for the Scottish Hill Racing data 

 

 ii The Stack Loss Data: The stack loss data consist of 21 days of operation form a 

plant for the oxidation of ammonia as a stage in the production of nitric acid. The 

response is called stack loss which is the percent of unconverted ammonia that escapes 

from the plant. There are three explanatory variables. The air flow is first independent 

variable which measures the rate of operation of the plant. The second independent 

variable measures the inlet temperature of cooling water circulating through coils in this 

tower and the last independent variable is proportional to the concentration of acid in the 

tower. Small values of the respond correspond to efficient absorption of the nitric 

oxides. In earlier research (Atkinson, 1986; Hoeting et. al., 1996) been identified as 

outliers four observations. These are 1,3,4, and 21 observations. This data set provides 

an interesting extreme example of masking (Atkinson, 1986). The detection of any of 

these outliers is very difficult if only one observation at a time is examined. But the 

simultaneous methods are able to detect all of four outliers at a time. 

  

 The GA was run a lot of times with this data. The entire run gives to result in the 

same outliers being detected, at observations 1,3,4, and 21. The best outlier combination 
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was always found quickly by the GA as seen in Figure 5.7. The optimal fitness function 

value of GA has a CBI ′  value 2.29. 

 

 

                        Figure 5.7 The output of genetic algorithm for the Stack Loss data 

 

5.6.2 Generating Simulated Data Sets 

 

In this subsection, it is performed Monte Carlo experiments to evaluate the 

performance comparisons of new approaches information criterion. To carry out 

simulations run, it is preceded on different regression models, these are explained as 

follows.  

 

The response vector is generated as εXβY +=  where X is the design matrix of 

variables from the normal distribution. β  is the vector of known parameters and ei is the 

vector of random errors from a standard normal distribution. A detailed description of 

the regression models can be summarized in Table 5.2. 
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Then n regression observations were generated randomly according to the models in 

Table 5.2. For every set of n observations that have been used in this research. This 

experiment for simulated data sets include 4 factors, these are chosen as below, 

 

Factors  Levels 

Number of regressor variables (p) 2, 3, 4, 5 

Number of observations in data set (n) 20, 30, 40, 50, 60, 70, 80, 90, 100 

The percentage of outliers in iy  )(ω  5, 10 

The penalized value )(κ  3, 4, 5 

 

These can be defined as n: number of observations, p: number of explanatory variables 

in regression model, ω : percentage of outliers contaminating the sample. The outlier 

density levels are selected as 5% and 10%, and κ  is penalized value of information 

criteria. 

  

 Firstly, the response variable iy  is generated for each of sample sizes. After the iy  

generated from normal distribution, the outliers are generated from the uniform 

distribution which lie at least +3 standard deviations from the mean of Y  taken into 

account of percentage of outliers. The number of outliers must be added in Y for each 

sample sizes and the percentages of outliers are given in Table 5.3. 

 

 

 

 

 

Table 5.2 Multiple regression models and varieties 

Multiple Regression Models Xi Errors 

i2i1ii ex48.1x08.110.0y +++=  

ii32i1ii ex32.11.38x1.06x10.0y ++++=  

ii43i2ii1i ex88.11.10x1.34xx21.110.0y +++++=  

ii5i43i2ii1i ex73.1x16.11.33x1.15xx60.110.0y ++++++=  )1,5.2(N~X

)1,3.2(N~X

)1,3(N~X

)1,2(N~X

 )1,0(N~X

5

4

3

2

1

 

 
 

 
)1,0(N~ei  
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Table 5.3 The Number of Outliers must be added in Y for each Sample Sizes and the Percentage of                           
.                Outliers 

 n 

ω  20 30 40 50 60 70 80 90 100 

5 1 2 2 3 3 4 4 5 5 
10 2 3 4 5 6 7 8 9 10 

 

For each of the combinations of parameters in Table 5.3 are generated 100 data sets 

take into account dimension of regression models, so, it is generated a total of 7200 data 

sets. Then, data sets are applied to (IFIM)PICOM  and  ,CBI ,CAI ′′′  information criterion 

with their penalized values for Kappa=3, 4, and 5. 

 

5.6.3 Comparison of Performances of Some Information Criteria for Outlier 

Detection using Genetic Algorithm 

 

In this subsection, the GA is used for outlier detection and variable selection in 

multiple regression model and information criteria are used as the fitness function of 

GA. The GA is proceeded to find the optimal solution through for each combination of 

experiments. Each dataset containing known percentage of outliers and the genetic 

algorithm was exceptionally detecting these outliers in all of the dataset tested. The best 

models have been chosen according to value of information criteria from most of the 

generations by GA, and GA can detect the outliers simultaneously search in the solution 

space, therefore GA based outlier detection method allows for detection of multiple 

outliers, not just one at a time.  

 

 Performance of (IFIM)PICOM  and  ,CAI ′′  information criteria are compared against 

through simulation experiments. The value of information based selection criterion is 

calculated for observation as a measure of the fitness of dependent variable in multiple 

regression models and also it is used in different penalized value Kappa ( κ ) for each 

information criterion.  

 

 The simulation results are reported in Table 5.4 to Table 5.7 and the values are the 

percentage of outliers ( outP ) for 100 replicates. The outP  score tested the performance of 

new approaches of information criterion. It tests the performance of information 
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criterion under two components. These are numbers of incorrectly identified 

observations as outliers ( outI ) and numbers of failure to identify any of the outliers ( outF ) 

in all iterations for each subsets. outP  is calculated by, 

 

      %100
T

FI
P

out

outout
out ×

+
=                                               (5.6) 

 
where outT  is total numbers of outliers for all iterations in each subsets. Percentages of 

outliers are given in Table 5.4 to Table 5.7 and these are obtained by 100 replications for 

all contaminating samples and levels of Kappa values, in which penalized value tend to 

increase performance of information criterion for outlier detection. 

 

 The results of simulations for percentage of outliers 5% in Y against all sample sizes 

and all dimensions are given in Table 5.4 and Table 5.5. It illustrates the ability of the 

information criterion in detecting outliers for all situations. For n=20 and κ <5 both the 

(IFIM)PICOM  and  ,CAI ′′  criteria perform better than the CBI ′  and, also (IFIM)PICOM ′  

criteria outperforms CBI ′ . When 30n ≥  the tendency to overfit for all criteria decreases 

slightly, but (IFIM)PICOM ′  provides the best detection of outliers.  

 

 The results of simulations for percentage of outliers 10% in Y against sample sizes 

and all dimensions are seen in Table 5.6 and Table 5.7. When n>30, a tendency to 

overfit for all criteria decreases slightly against dimension of regression models, but 

(IFIM)PICOM ′  provides the best detection of outliers in regardless of dimensions of 

regression model. 

 

 

 

 

 

 

 

 



107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tablo 5.4 outP  for 5% Outlier in Y using GA by Fitness Function                                    

.                   (IFIM)PICOM ,CBI ,CAI ′′′  

  p=2  p=3 

  Kappa Values  Kappa Values 

n Information C. 3 4 5  3 4 5 

 
AIC' 

 
3.00 

 
1.00 

 
0.00 

  
10.00 

 
28.00 

 
24.00 

BIC' 2.00 5.00 1.00  131.00 58.00 24.00 

 
20 

ICOMP' 0.00 0.00 0.00  1.00 0.00 0.00 

         

AIC' 0.00 0.00 0.50  0.50 0.00 0.00 

BIC' 3.00 0.00 0.00  17.50 1.50 0.00 

30 

ICOMP' 0.00 0.50 0.00  2.00 0.00 0.00 

         

AIC' 2.00 0.50 0.00  1.00 1.50 1.00 

BIC' 5.50 1.50 0.50  8.00 2.00 1.00 

40 

ICOMP' 1.50 0.50 0.00  2.50 1.00 1.50 

         

AIC' 0.67 0.33 1.00  3.00 2.33 1.00 

BIC' 1.33 0.33 0.33  6.33 4.00 2.67 

50 

ICOMP' 0.67 0.67 1.00  3.33 1.67 2.67 

         

AIC' 2.67 2.00 1.00  3.67 2.33 3.33 

BIC' 1.00 1.00 1.00  7.33 1.67 3.67 

60 

ICOMP' 2.00 2.33 0.67  3.33 2.33 2.00 

         

AIC' 3.50 2.75 3.25  4.75 4.25 2.50 

BIC' 2.50 2.00 2.00  7.00 4.25 2.25 

70 

ICOMP' 1.50 3.25 2.75  5.50 4.00 3.25 

         

AIC' 3.75 4.25 5.00  6.00 7.25 5.50 

BIC' 4.25 4.00 4.00  11.25 7.00 7.00 

80 

ICOMP' 6.25 3.25 4.00  6.75 6.25 4.75 

         

AIC' 6.20 10.80 9.00  6.80 8.00 6.00 

BIC'  15.60 6.80 7.80  10.40 7.80 5.20 

90 

ICOMP' 6.00 7.80 7.60  11.00 7.40 7.00 

         

AIC' 12.00 11.40 9.00  15.00 11.80 9.00 

BIC' 9.80 9.80 10.00  17.60 12.20 11.20 

100 

ICOMP' 10.00 8.20 9.20  11.40 9.60 8.20 
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Tablo 5.5 outP  for 5% Outlier in Y using GA by Fitness Function                                  

.                    (IFIM)PICOM ,CBI ,CAI ′′′  

  p=4  p=5 

  Kappa Values  Kappa Values 

n Information C. 3 4 5  3 4 5 

 
AIC' 

 
332.00 

 
193.00 

 
110.00 

  
519.00 

 
360.00 

 
294.0 

BIC' 341.00 160.00 71.00  601.00 413.00 232.0 

 
20 

ICOMP' 2.00 1.00 0.00  3.00 2.00 2.00 

         

AIC' 36.00 1.00 1.00  40.00 48.50 1.50 

BIC' 17.50 6.00 4.00  54.50 3.00 5.50 

30 

ICOMP' 1.00 0.50 0.00  0.50 0.00 0.50 

         

AIC' 1.00 1.50 0.00  15.50 4.50 0.00 

BIC' 8.00 2.00 1.00  18.00 3.00 1.50 

40 

ICOMP' 1.50 2.00 0.00  1.00 0.00 0.50 

         

AIC' 1.00 0.00 0.67  7.67 3.67 1.33 

BIC' 3.67 1.00 2.00  7.33 3.00 2.67 

50 

ICOMP' 1.33 0.67 0.67  3.67 2.33 1.00 

         

AIC' 3.33 2.67 2.00  5.67 3.33 1.67 

BIC' 8.00 3.67 3.00  5.67 3.00 2.33 

60 

ICOMP' 4.00 2.67 3.00  3.00 4.00 1.67 

         

AIC' 6.50 35.50 3.75  5.50 3.25 3.25 

BIC' 7.00 4.25 3.50  6.00 3.75 4.25 

70 

ICOMP' 6.50 4.00 3.25  3.25 3.75 4.75 

         

AIC' 5.25 5.75 6.00  6.75 5.00 4.25 

BIC' 8.00 8.25 5.25  6.75 5.75 6.75 

80 

ICOMP' 6.00 4.75 4.25  5.75 4.50 3.50 

         

AIC' 8.40 8.80 6.00  10.20 8.20 7.00 

BIC' 10.20 7.40 8.00  8.80 7.40 7.40 

90 

ICOMP' 9.20 6.20 6.60  7.20 8.20 5.60 

         

AIC' 21.80 19.00 15.60  13.00 11.40 10.00 

BIC' 22.80 18.80 16.00  10.40 11.80 10.20 

100 

ICOMP' 19.60 16.60 15.40  10.00 12.20 9.60 
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Tablo 5.6 outP  for 10% Outlier in Y using GA by Fitness Function   

.                    (IFIM)PICOM ,CBI ,CAI ′′′  

  p=2  p=3 

  Kappa Value  Kappa Value 

n Information C. 3 4 5  3 4 5 

 
AIC' 

 

 
3.50 

 
0.00 

 
0.00 

  
20.50 

 
12.00 

 
2.00 

BIC' 23.50 0.50 0.00  112.50 79.00 8.00 

 
20 

ICOMP' 0.00 0.00 0.00  1.50 0.00 0.00 

         

AIC' 0.00 0.33 0.67  1.00 0.00 0.00 

BIC' 0.67 0.00 0.00  11.67 1.00 1.00 

30 

ICOMP' 0.00 0.00 0.33  1.33 0.00 0.00 

         

AIC' 4.00 1.00 1.25  8.50 1.00 1.50 

BIC' 4.00 1.00 1.25  8.50 1.00 1.50 

40 

ICOMP' 1.00 0.25 2.50  0.50 0.50 0.50 

         

AIC' 0.80 15.0 16.80  1.80 2.00 12.80 

BIC' 0.80 5.80 3.60  5.40 5.00 17.60 

50 

ICOMP' 0.80 0.60 4.80  2.00 1.20 13.00 

         

AIC' 1.50 14.0 19.33  8.00 17.83 22.83 

BIC' 0.67 3.00 7.83  4.33 3.67 10.67 

60 

ICOMP' 0.83 1.17 16.17  1.50 0.83 20.17 

         

AIC' 8.57 11.71 37.14  16.43 31.71 36.00 

BIC' 2.43 8.57 20.29  5.14 14.57 24.43 

70 

ICOMP' 1.00 1.43 27.86  3.29 1.29 24.57 

         
AIC' 11.25 28.63 52.63  23.50 40.13 70.38 

BIC' 5.00 18.50 43.50  5.13 14.50 38.63 

80 

ICOMP' 1.75 3.88 45.75  2.75 1.88 52.63 

         

AIC' 13.44 57.4 72.67  67.44 56.78 72.33 

BIC' 2.33 30.0 61.22  5.67 25.56 68.11 

90 

ICOMP' 2.78 9.44 41.44  4.56 11.33 74.89 

         

AIC' 24.10 62.8 73.40  56.40 71.60 75.70 

BIC' 11.00 30.2 62.00  7.60 33.00 75.50 

100 

ICOMP' 2.90 18.2 64.40  4.50 14.00 72.10 
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Tablo 5.7 outP  for 10% Outlier in Y using GA by Fitness Function                                              

.                    (IFIM)PICOM ,CBI ,CAI ′′′  

  p=4  p=5 

  Kappa Value  Kappa Value 

n      Information  C. 3 4 5  3 4 5 

 
AIC' 

 
237.50 

 
112.50 

 
75.00 

  
252.00 

 
221.00 

 
150.0 

BIC' 212.00 150.50 47.50  348.00 244.50 168.5 

 
20 

ICOMP' 1.50 0.50 0.00  2.00 0.50 0.50 

         
AIC' 21.00 2.67 0.33  27.67 6.33 0.00 

BIC' 29.67 2.00 0.33  54.67 7.67 5.67 

30 

ICOMP' 0.33 0.33 0.00  1.00 0.00 0.00 

         
AIC' 8.00 1.00 0.25  10.00 1.25 0.50 

BIC' 8.00 1.00 0.25  10.00 1.25 0.50 

40 

ICOMP' 1.00 0.75 2.25  1.50 0.00 1.50 

         
AIC' 5.80 9.00 19.00  5.20 0.80 0.00 

BIC' 3.00 1.80 8.40  5.00 3.20 2.80 

50 

ICOMP' 0.20 0.40 10.20  2.20 0.80 7.00 

         
AIC' 9.17 20.33 28.83  2.50 0.00 0.17 

BIC' 2.00 1.00 3.50  2.83 2.50 9.17 

60 

ICOMP' 2.17 0.67 19.17  1.33 1.67 9.33 

         
AIC' 16.00 42.00 33.86  4.14 6.43 27.14 

BIC' 4.00 9.86 29.29  3.00 6.14 20.14 

70 

ICOMP' 3.14 2.71 42.29  2.43 2.00 27.00 

         
AIC' 3.25 22.88 44.13  3.63 6.25 34.88 

BIC' 6.13 18.88 43.63  3.50 17.25 35.88 

80 

ICOMP' 4.25 10.00 53.88  2.63 1.13 44.13 

         
AIC' 3.67 21.44 61.11  4.22 20.56 38.67 

BIC' 9.22 25.00 51.33  6.22 29.44 48.33 

90 

ICOMP' 3.89 18.22 71.89  4.33 3.78 52.44 

         
AIC' 8.00 30.20 59.00  4.30 35.10 59.60 

BIC' 8.80 36.70 59.10  5.50 29.90 52.10 

100 

ICOMP' 4.80 20.50 70.60  4.90 11.90 64.20 
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 These comparisons are graphically presented in from Figure 5.8 to Figure 5.11. 

Results of experiments are illustrated only the Kappa value for three in Figure 5.8 to 

Figure 5.11. Since the conclusions are the same for Kappa values four and five, hence 

the plots of results for these values will not be given here. 

 

 Comparisons of performances for detection outliers when sample size is 20 are 

presented in Figure 5.8 and Figure 5.9. So, it seems that in Figure 5.8(a-h) there is high 

dependency between dimension of regression model and CBI  and CAI ′′  information 

criterion. However, the (IFIM)PICOM ′  is not affected by dimension of regression model 

for detection of outliers. Also, comparisons of performances for detecting of outliers 

when sample size is n>30 is presented in Figure 510 and 5.11. It seems that in Figure 

5.10, there is a relationship between sample size and  CAI ′  information criterion when 

ω=10%, in which  CAI ′  information criterion fails as the sample sizes increases. In 

comparison the (IFIM)PICOM ′  information criteria is far less sensitive to sample sizes 

when ω=10%. 
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Figure 5.8(a-d) Performance comparisons of information criterion against dimension of p=2,3 when                       
.                          n=20.  
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Figure 5.8(e-h). Performance comparisons of information criterion against dimension of p=4,5 when                                                                         
.                           n=20.  
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. 

 
Figure 5.9(a-f). Performance comparison of each information criterion against dimension of regression .                       
.                          models when n=20. 

 
It is seen that in Figure 5.9(c-d) the CBI ′  criteria is very poor in the detection of outliers 

for n=20, however the ICOMP' criteria is the robust procedure in detecting the outliers, 

because the ICOMP' criteria results more consistent than other criteria, they are not 
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affected by dimension of regression model or percentage of outliers. The results for 

these figures are summarized as the following: 

 

• Performance of the AIC': The performance of the AIC' for contamination 5% is 

shown in Figure 5.8 (a-h) and Figure 5.9 (a-b), where it can be noted that this procedure 

works well under small percentage of outliers and p=2. Also, it performs quite well for 

contamination 5%, p=2. Moreover, the AIC' has the general failure of the minimum 

information criterion in all cases for n=20 and it incorrectly selects the observations as 

outliers.  

 

• Performance of the BIC': The BIC' properly finds outliers for low dimensional data 

which is p=2 as shown in Figure 5.8(a-d) and Figure 5.9(c-d) However, the BIC' fails in 

all cases for n=20 than other criteria. It also incorrectly selects the observations as 

outliers. 

 

• Performance of the ICOMP': The ICOMP' is considered as the consistent method in 

other criterion, where we clearly see that it works very well across for all dimensional 

data and all percentages of contaminates ω=5%-10%. Also, it is important to note that 

the more explanatory variables are selected, the better outlier detection is performed.  

 

The performance of information criterion with different percentages of outliers in Y is 

depicted in Figure 5.10(a-h) and Figure 5.11(a-f) for 30n ≥ . 
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Figure5.10(a-d). Performance comparisons of information criterion against each dimension of regression                 
.                           models p=2,3 when 30n ≥ . 

 
 In Figure 5.10 (a-d), it is plotted the outP  values of (IFIM)PICOM  and ,CBI ,CAI ′′′  as a 

function of sample sizes. When n>60, and p=2,3 the outP  values of 

(IFIM)PICOM  and  ,CBI ′′  slowly increasing except for AIC' which values are rapidly 

increases for ω=10%. Moreover (IFIM)PICOM  and  ,CBI ′′ curves closely follows for 

contamination 10% and p=3, while the AIC criteria drastically underestimates outliers. 
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Figure 5.10(e-h). Performance comparisons of information criterion against each dimension of regression 
.                            models p=4,5 when 30n ≥ . 

 
It can be clearly observed that from Figure 5.10(e-h) for sample size and dimensions of 

regression models are increased the (IFIM)PICOM  and ,CBI ,CAI ′′′ information criterion 

more accurate performs to outlier detection. Moreover, the ICOMP' performs better than 

the other criteria as sample sizes increases. As it is increased the contamination for the 

same size and dimension of models for p=4, 5, the performance of the AIC', BIC', and 

ICOMP' information criterion are became more accurate. 
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Figure 5.11(a-f). Performance comparison of each information criterion against dimension of regression        
.                            models when 30n ≥ . 

 
Performance comparison of information criterion against all dimensions when 30n ≥  in 

Figure 5.11(a-f) are summarized as the following, 
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•  The performance of the AIC' for ω=5-10% is shown in Figure 5.11(a)-5.11(b), 

where it can be noted that this procedure works well under small percentage of outliers 

and p=2, 3. Also, it performs quite well for ω=10%, p=4, 5 except for n=30. Moreover, 

the AIC' is the general selects truly the observations as outliers when small sample sizes 

and dimension of regression models. The performance of AIC' criteria decrease as the 

sample size increases. 

 

•  The BIC' information criteria is considered truly found outliers for high dimensional 

data p>2 and ω=5%. However, the performance of BIC' criteria for outlier detection 

decrease as the sample size and percentage of contamination increase. The BIC' fails for 

n< 40. It incorrectly selects the observations as outliers for high dimension of regression 

models. 

 

•  The ICOMP' information criteria is considered the most trusted (robust) approach, 

where we clearly see that is works very well across for all dimensional data and all 

percentages of contaminates ω=5%-10% than other criteria. However, the sample size 

and dimension of regression models are increased tend to have larger outP  values. 

 

One important result from these figures was the run time of information criterion 

tends to increase linearly as both the number of observations and the number of outliers 

are increased. 
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CHAPTER SIX 

CONCLUSIONS 

 

In many data analysis tasks a large number of variables are being recorded or 

sampled. One of the first steps towards obtaining a coherent analysis is the detection of 

outlying observations. Although outliers are often considered as an error or noise, they 

may carry important information. Detected outliers are candidates for aberrant data that 

may otherwise adversely lead to model misspecification, biased parameter estimation 

and incorrect results. It is therefore important to identify them prior to modeling and 

analysis (Williams et al., 2002; Liu et al., 2004). An exact definition of an outlier often 

depends on hidden assumptions regarding the data structure and the applied detection 

method. Yet, some definitions are regarded general enough to cope with various types of 

data and methods. Hawkins (1980) defines an outlier as an observation that deviates so 

much from other observations as to arouse suspicion that it was generated by a different 

mechanism. Barnett and Lewis (1994) indicate that an outlying observation, or outlier; is 

one that appears to deviate markedly from other members of the sample in which it 

occurs.   

 

Identification of the outlying observations allows the disturbance effects are 

removed. A clean data set is then available for modeling and forecasting purposes. It 

may happen that, for deeper understanding of the disturbances and for better forecasting, 

models have to be set up for outliers. The preliminary identification of the effects of the 

disturbances can help to correctly handle parametric procedures for model building. 

Outlier detection is a long-lasting issue in regression analysis and the problem will 

become very complex when it come to multiple regression modeling where outliers, or 

extreme observations, are on one or a combination of variables. The presence of outliers 

can exert negative influences on the fit of the multiple regression models. There are 

some traditional approaches to detecting outliers and they have to be done separately for 

outlying observations. 

 

The case of unknown location and type of the outlying observations has been 

considered extensively in the literature for outliers in isolation. The case of multiple 
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outliers is more difficult to study because of the great number of alternatives and of the 

masking and swamping effects. If a stretch of n observations is available, the simple 

alternative if any observation is or not an outlying one generates 12n −  sets. The 

tentative multiple regression model is determined using a stochastic search technique 

termed Genetic Algorithm (GA) with all observations included. Once the tentative 

model is selected, the predictor subset will stay fixed and will be fitted repeatedly during 

the process. By using the same subset of predictors, put on an equal scale is the 

measurement of each observation in the sample. The technique GA is used to select 

optimal subsets of variables and it represents the presence or absence of a predictor 

variable using 1 or 0, respectively, on a binary string representing the full multiple 

regression model. This algorithm makes possible the rapid selection of variable subsets 

and avoids the computational burden of exhausting all possible combinations of 

predictor variables. 

 

A genetic algorithm is an optimization tool which mimics the evolution of a 

population towards fitness to the natural environment. The key feature of a GA is the 

manipulation of a population whose individuals are characterized by possessing a 

chromosome. This latter can be coded as a string of characters of given length. Each 

string represents a feasible solution of the optimization problem. The coding of the 

individuals depends on the correspondence between strings and chromosomes. A 

genetic algorithm has been proposed for the identification of the outliers in a multiple 

regression models. Our rather standard formulation of the algorithm proved to be quite 

effective in the presence of such a large space of candidate solutions. Notice that in the 

genetic algorithm iterative procedure, unlike other iterative methods, outliers are not 

identified and removed one at a time, but, for each chromosome, the fitness is computed 

on the whole encoded outliers' pattern. This feature seems to be able to cope efficiently 

with the swamping effect, which arises when observations, that are consistent with most 

of the data, are yet incorrectly detected as outliers, possibly because of some kind of 

accidental diversity from that immediately after or before, and with the problem of 

masking, which is peculiar in this context, where consecutive outliers are very likely to 

occur in practice. 
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A simultaneous choice, as in our algorithm, should be more appropriate in this 

respect. The fitness functions for this GAs are built on using information criteria. They 

are used both to select the variables of the model, and to determine the outlying 

observations.  

 

 Main contribution of this thesis is to be the first study evaluating the different 

information criteria for genetic algorithms based outlier detection in multiple regression. 

We have derived and investigated criterion for outlier detection in multiple regression 

using genetic algorithms. It seems that the GAs are able to avoid the potential problems 

of swamping and masking, which sometimes cause problems for reliable outlier 

detection. In addition, simultaneous outlier detection is possible by GAs. 

 

 The core idea behind our approach is to use penalized information criterion to 

determine an outlier observation for multiple regression. The penalized procedure has 

the advantage to remove outliers and it does not suffer from masking or swamping 

problems. Moreover, a large simulation study is undertaken to compare the performance 

of new approaches (AIC' and ICOMP') to BIC' criteria. Synthetic data are generated for 

different number of sample sizes and independent explanatory variables. Performances 

(Scalability) and the efficiency (robustness) of the method for new approaches 

information criterion are presented. The numerical example and simulation results 

clearly show a much improved performance of the proposed approach in comparison to 

existing methods especially followed by applying the ICOMP' approach in order to 

accurately (robustly) detect the outliers. One important result from these comparisons 

was that the run time of information criterion tends to increase linearly as both the 

number of observations and the number of outliers is increased. In the case that the 

number of observations goes to infinity, the criterion will estimate the right percentage 

of outliers or even detects properly the most of outliers. 

 

 In Figure 5.10 (a-d), it is shown that the plots of the outP  values of 

(IFIM)PICOM  and ,CBI ,CAI ′′′ as a function of sample sizes. When n>60, p=2, 3, the outP  

values of (IFIM)PICOM  and  ,CBI ′′ slowly increasing except for AIC' which values are 

rapidly increases for ω=10%. Moreover (IFIM)PICOM  and  ,CBI ′′ curves closely follows 
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for contamination 10% and p=3, while the AIC criteria drastically underestimates 

outliers. 

 

 It can be clearly observed that from Figure 5.10(e-h) for sample size and dimensions 

of regression models are increased the (IFIM)PICOM  and ,CBI ,CAI ′′′ information 

criterion more accurate performs to outlier detection. Moreover, the ICOMP' performs 

better than the other criteria as sample sizes increases. As it is increased the 

contamination for the same size and dimension of models for p=4, 5, the performance of 

the AIC', BIC', and ICOMP' information criterion are became more accurate 

  

 The ICOMP' information criteria is considered the most trusted (robust) approach, 

where we clearly see that is works very well across for all dimensional data and all 

percentages of contaminates ω=5%-10% than other criteria in Figure 11(a-f). However, 

the sample size and dimension of regression models are increased tend to have larger 

outP  values. 

 

In conclusion, we note that numerical results clearly demonstrate an excellent 

performance of ICOMP' criteria as compared to AIC' and BIC' when it is used in outlier 

detection in multiple regression.  
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Appendices - 1 Matlab Codes for Outlier Detection in Multiple Regression using 

Information Criteria for p=5. 

 

1.1 GA Procedure 
 
 
clc 
clear all 
close all 
  
global varX 
global varY 
global DegiskenSayisi 
global savedScores; 
global outlier; 
global deg2; 
  
M1=xlsread('x1'); 
M2=xlsread('x2'); 
M3=xlsread('x3'); 
M4=xlsread('x4'); 
M5=xlsread('x5'); 
M6=xlsread('y'); 
  
for i=1:100 
     
    varX=[M1(:,i) M2(:,i) M3(:,i) M4(:,i) M5(:,i)]; 
    varY=M6(:,i);. 
 
options = []; 
  
savedScores = []; 
  
  
 Plot options 
options = gaoptimset(options, 'PlotFcns', {@gaplotbestindiv, ... % the best individual 
                                           @gaplotbestf, ... % the best function value 
                                           @gaplotscores, ... % the scores 
                                           @gaplotstopping}); % the stopping criteria 
  
% Population options 
 
options = gaoptimset(options, 'PopulationType', 'bitString'); 
  
options = gaoptimset(options, 'PopulationSize', 40, … 
                  'EliteCount', 2);  
  
% Display options 
 
options = gaoptimset(options, 'Display', 'iter');  
options = gaoptimset(options, 'CrossoverFcn',@crossoversinglepoint);  
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% Modifying the stopping criteria 
 
options = gaoptimset(options, 'Generations', 250, ...  
                  'StallGenLimit', 100, ...  
                  'StallTimeLimit', 60000);  
  
DegiskenSayisi =length(varY); 
 
[katsayilar,fval,reason,output] = ga(@tolvifitness,DegiskenSayisi,options);   
  
fprintf(1,'\n'); 
 
for k=1:DegiskenSayisi 
 
    degiskenler(k) = bin2dec(num2str(katsayilar(k)));  
 
end 
  
if sum(degiskenler) > (length(degiskenler) /2)  
 
    degiskenler = 1 - degiskenler; 
end 
  
for k=1:DegiskenSayisi 
 
    if degiskenler(k) > 0 
        fprintf(1,'bulunan: %u. ornek bir outlier .\n',k); 
        xlswrite('k',k); 
         deg2 = [deg2 k]; 
    end 
end 
 
outlier=[]; 
outlier=[outlier deg2']; 
 
savedScores = reshape(savedScores, [40 length(savedScores(:))/40]); 
savedScores = savedScores'; 
figure 
subplot(211), plot(savedScores,'.') 
subplot(212), plot(min(savedScores,[],2),'.') 
xlswrite('saveScores',savedScores); 
end 
 
 
1.2 Fitness Function of GA 
  
function scores=tolvifitness(katsayilar) 
   
global varX 
global varY 
global DegiskenSayisi 



143 

 

global savedScores; 
  
n=DegiskenSayisi; 
  
degiskenler = []; 
deg2 = []; 
 
for k=1: n 
 
    if katsayilar(k)  
        sutun=zeros(n,1); 
        sutun(k,1)=1; 
        degiskenler = [degiskenler sutun];  
 
    end 
 
end 
  
  [temp p]=size(varX); 
 
size(degiskenler) 
 
if sum(size(degiskenler)) > 0  
    X = [ones(size(varY)) varX degiskenler]; 
else 
    X = [ones(size(varY)) varX]; 
end 
  
A=pinv(X)*varY; 
 
A=A(:); 
  
temp=varY-X*A; 
 
%vartah=temp'*temp/n; 
 
%scores=log(temp'*temp/n)+(p+1)*log(n)/n+3*sum(katsayilar)*log(n)/n;  
 
%savedScores = [savedScores scores]; 
  
%CFisher=(p+1)*log((trace(vartah*(X'*X)^-1)+2*vartah^2/n)/p+1)- 
                   log(det(vartah*(X'*X)^-1))-log(2*vartah^2/n); 
 
%scores=n*log(2*pi)+n*log(vartah)+n+CFisher+3*sum(katsayilar)*log(n); 
   
 scores= n*log(2*pi)+n*log(temp'*temp/n)+ n+2*(p+1)+3*sum(katsayilar)*log(n);   
 
savedScores = [savedScores scores]; 


