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VIBRATION ANALYSIS AND MEASUREMENT OF BEAMS HAVING 

MULTIPLE CRACKS 

 

ABSTRACT 

 

Vibration based methods are widespread through the non-destructive methods for 

detection and identification of cracks in mechanical and structural systems including 

beam type elements. The methods are effective since any damage leads to changes in 

vibration characteristics that are easily measured. However, identification of cracks 

can be more difficult for general beam elements having several complexities. 

 

This thesis presents continuous methods for flexural vibration analyses of multiple 

cracked beams and detection methods for single and double cracked beams. 

Vibration of beams are analysed with different geometric, boundary, and crack 

properties. Vibration analyses of the beams having multiple transverse cracks, 

multiple height-edge cracks, and asymmetric double edge cracks are all presented. 

Both open and breathing crack models are considered. Energy based numerical 

solution method is used in the analyses by describing the energies consumed caused 

by each crack. Interactions between the crack effects are also described. 

 

Contour lines representing natural frequency ratios are employed for detecting 

single crack. As a contribution to current literature addressing the inverse problems, 

a frequency based algorithm is developed for detection of double cracks. An 

automated single and double crack detection system is established by using 

theoretical and measured natural frequencies. In measurement, stable natural 

frequencies are obtained by means of a statistical approach (RSZF) using an 

interpolation technique (DASI). Direct and inverse methods presented in this thesis 

simplify the crack detection, are convenient for different structures, ideal for 

automation, and require low process time, memory and disc capacity.  

 

Keywords : Multiple cracked beams, flexural vibration, energy used continuous 

solution, crack detection, natural frequency contour lines, RSZF, DASI.  
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ÇOK ÇATLAKLI ÇUBUKLARIN TİTREŞİM ANALİZİ VE ÖLÇÜMÜ 

 

ÖZ 

 

Titreşim esaslı metotlar, çubuk tipi elemanlar içeren mekanik ve yapısal 

sistemlerdeki çatlakların tespit edilmesi ve tanımlanması için kullanılan tahribatsız 

metotlar arasında yaygındır. Bu metotlar, her hasarın kolaylıkla ölçülen titreşim 

karakteristiklerinde değişimlere neden olmasından dolayı etkilidirler. Fakat, çeşitli 

karmaşıklıklara sahip genel çubuk elemanları için çatlakların tanımlanması daha zor 

olabilir. 

 

Bu tez çok çatlaklı çubukların eğilme titreşim analizleri için sürekli metotlar ile 

birlikte tek ve çift çatlaklı çubuklar için tespit metotlarını sunmaktadır. Çubukların 

titreşimi farklı geometri sınır ve çatlak koşulları ile analiz edilmiştir. Çoklu dik 

çatlaklara, çoklu yan kenar çatlaklarına ve asimetrik çift taraflı çatlaklara sahip 

çubukların titreşim analizleri gösterilmiştir. Açık ve nefes alan çatlak modellerinin 

ikisi de incelenmiştir. Analizler içinde her çatlağın sebep olduğu enerji yutumları 

tanımlanarak enerji esaslı nümerik çözüm metodu kullanılmıştır. Çatlak etkileri 

arasındaki etkileşimler ayrıca tanımlanmıştır. 

 

Tek çatlağın tespiti için doğal frekans oranlarını gösteren kontur çizgileri 

kullanılmıştır. Şu anki ters problemleri işaret eden literatüre katkı olarak, iki çatlağın 

tespiti için frekans esaslı bir algoritma geliştirilmiştir. Teorik ve ölçülen frekansları 

kullanarak bir otomatik tek ve çift çatlak tespit sistemi kurulmuştur. Ölçümde, 

değişmeyen doğal frekanslar bir interpolasyon tekniği (DASI) kullanan bir istatistik 

yaklaşım (RSZF) yardımıyla elde edilmiştir. Bu tezde sunulan direk ve ters metotlar 

çatlak tespitini basitleştirirler, farklı yapılar için uygundurlar, otomasyon için 

idealdirler ve düşük işlem zamanı, hafıza ve disk kapasitesi gerektirirler. 

 

Anahtar sözcükler : Çok çatlaklı çubuklar, eğilme titreşimi, enerji kullanan sürekli 

çözüm, çatlak tespiti, doğal frekans kontur çizgileri, RSZF, DASI. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

Mechanical systems or their structures frequently employ beam type elements 

which have to resist physical or chemical loading effects such as impacts, fatigues, 

corrosions, welds, etc. All these influences can result in flaws that lead to change of 

the dynamic behaviour of the structures. The most common damage type is the 

fatigue crack in beam shaped mechanical or structural elements under dynamic 

loading. Understanding the vibration effects of cracks enables their recognition in 

practical applications of vibration monitoring. Therefore, the vibration identification 

of cracked beams has been universally interested by many researchers. 

 

Exact identification of dynamic behaviours is significant for the success of 

vibration based crack identification methods which are supported by the theoretical 

vibration models. Crack identification methods on direct use of several practical 

applications of measurements and vibration monitoring may not need a theoretical 

vibration model. These methods are generally based on the inspection of mode shape 

changes and need measurements with very high quality which use expensive data 

acquisition and monitoring systems having the properties such as multiple sensors, 

high sensitivity, large hard disc capacity, and fast processing. Ideal system settled for 

the crack identification should be inexpensive, non-invasive and automated, so that 

subjective operator differences are avoided. 

 

This doctorate thesis study presents direct and inverse methods for multiple crack 

identification based on flexural vibrations of the beams. Motivation of the thesis is 

shaped according to lacks observed by the literature review presented in the 

following chapter. A global continuous approach valid for the beams having different 

geometric, boundary and crack properties has not been presented yet. Multiple 

cracked beams are not frequently considered. In addition, any multiple crack 

detection method has not been proposed yet by using only the natural frequency 

1 
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contours. This is significant lack for crack detection since natural frequency is the 

most effortlessly measured modal parameter and contour lines of natural frequency 

ratios can be the most simple observation technique. 

 

1.2 Aims and Objectives 

 

This thesis has two general aims to achieve.  

 

First objective is to develop a general vibration analysis method including a crack 

modelling for multiple cracked beams. Proposed method should be adoptable for 

different physical and boundary conditions of beams and different crack types. The 

specifications such as accurate results, short solution time, and convenience for 

inverse methods are also aimed for achievements of the developed analysis method. 

Instead of finite element based approaches, function based continuous approaches 

including analytical and numerical solution methods are investigated due to their 

advantage of short solution time. 

 

Secondly, it is aimed to develop a crack detection method for multiple cracked 

beams. The method should be non-invasive, robust, and convenient for automation. It 

should need minimum numbers of parameters and data samples to use in experiment. 

Parameters should be easily measured. Therefore, methods based on natural 

frequency changes are investigated instead of the methods using mode shape control. 

Flexural vibration frequencies are used due to their easy observation through the low 

frequency band in measurement. To develop processes resulting in maximum data 

quality with minimum samples is also aimed for increasing the success of the crack 

detection method in applications.  
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1.3 Thesis Organisation 

 

This thesis is divided into eight chapters summarised as follows: 

  

Chapter 1 discusses the importance of using continuous approaches in cracked 

beams vibration analyses and using crack detection methods which are simple, 

effective, accurate and automated as much as possible. Aims and objectives are given 

for determining the scope of the thesis. 

 

Chapter 2 gives comprehensive review of the studies presented in existing 

literature. So many studies about the cracked beam vibration analysis, crack 

modelling, and crack detection are mentioned in the separate sections. 

 

Chapter 3 introduces the vibration analysis of the un-cracked beams and presents 

continuous methods for the beams with multiple cracks and additional masses. 

Vibration effects of cracks modelled by rotational springs are investigated by the 

analytical and numerical methods employing local and continuous flexibility models 

respectively. While additional masses are modelled by lumped masses in the 

analytical solution, they are considered as solid in the energy used numerical 

solution. 

 

Chapter 4 presents the vibration analysis of multiple cracked non-uniform Euler–

Bernoulli beams using the distributions of the energies consumed caused by the 

transverse open cracks. A rotational spring model is used for describing the energy 

consumed that is equal to total strain change distributed along the beam length. In the 

cases of multiple cracks, the energy consumed caused by one crack varies with the 

influence of other cracks. 

 

Chapter 5 presents a vibration analysis of non-uniform Euler–Bernoulli beams 

having multiple height-edge open cracks. Change of the strain energy distribution 

given for the transverse cracks is modified for height-edge cracks. If the beam has 
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multiple cracks, it is assumed that the strain disturbance caused by one of the cracks 

is damped as much as the depth ratio of the other cracks at their locations. 

 

Chapter 6 presents a method for the flexural vibration of non-uniform Rayleigh 

beams having double-edge transverse cracks which are symmetric or asymmetric 

around the central layer of the beam’s height. The breathing crack models are 

employed. Distribution of the energy changes along the beam length is determined 

by taking the effects of tensile and compressive stress fields into account. Effects of 

neutral axis deviations are also included in the model. 

 

Chapter 7 presents an algorithm for identification of double cracks in beams and 

the processes minimising the measurement errors in experiment. Theoretical natural 

frequency prediction tables prepared by using the single cracked beam model are 

employed in crack detection. Single cracks are identified by plotting frequency 

contour lines. Double cracks are detected by the algorithm that searches convenient 

position pairs over the frequency map. Measurement sensitivity of the experimental 

data is increased by presented process including a statistical approach and an 

interpolation technique. 

 

Chapter 8 gives general contributions of the thesis, overview of the specific 

conclusions, and scopes for the future works.  

 



CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Comprehensive review of the previous studies is presented here for the vibration 

analysis of cracked beams and detection of the cracks. Overviews of the methods 

examining the changes in dynamic behaviours and measured vibration responses to 

detect, locate, and characterise damage are given by Dimarogonas (1996) and 

Doebling, Farrar, & Prime (1998). Specifically, effects of structural damages on 

natural frequencies and crack identification methods based on the frequencies are 

summarised by Salawu (1997). Sabnavis, Kirk, Kasarda, & Quinn (2004) summarise 

the studies presented for detection of the cracks. Good overview for vibration based 

condition monitoring techniques used in time, frequency or modal domains are 

presented by Carden & Fanning (2004). More recently, Yan, Cheng, Wu, & Yam 

(2007) review the developments in modern-type crack detection methods such as 

wavelet, genetic algorithms, and neural networks in addition to the traditional 

methods. The papers presented for multiple crack effects and identification methods 

are reviewed by Sekhar (2008). The papers including the crack modelling approaches 

based on fracture mechanics are reviewed by Papadopoulos (2008).  

 

In literature, presented methods can be considered under main titles as cracked 

beam vibration analysis, crack modelling, and crack detection. 

 

2.2 Cracked Beam Vibration Analysis 

 

Structures can be damaged by various external or internal influences such as 

impacts, fatigues, corrosions and welds. All these influences can result in flaws that 

lead to change of the dynamic behaviour of the structures. The most common 

damage type for beam shaped mechanical or structural elements under dynamic 

loading is the fatigue crack. Understanding the vibration effects of cracks is critically 

significant for recognising cracks in practical applications of vibration monitoring. In 

5 
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the literature, vibration analyses of the cracked beams are inspected both analytically 

and numerically.  

 

Bending vibration of an un-cracked uniform beam is simply analysed by well 

known continuous solution method. In the method, singular values are determined 

for the matrix including the terms of the equation set obtained by deflection, slope, 

moment, and shear changes along the beam. Sinusoidal and hyperbolic sinusoidal 

terms of the equation set satisfying the boundary conditions at the two ends of the 

beam form the  matrix. When the cracks exist, terms of the 4 new equations 

obtained from continuity and compatibility conditions are added into the matrix for 

each crack location. At result,  cracks cause 

44×

n ( )14 +n  equations. Matrix size and 

accordingly solution time undesirably increase as the number of cracks increases. It 

should also be noted that to construct the linear system by using this method for a 

general case of n  cracks is not a simple task. This should be the main reason for 

which cases of just one crack (Dado, 1997; Nandwana & Maiti, 1997a; Rizos, 

Aspragathos, & Dimaragonas, 1990) and two cracks (Douka, Bamnios, & Trochidis, 

2004; Ostachowicz & Krawczuk, 1991) are considered in the literature. 

Consequently, this method is not so convenient for the vibration analyses of the 

multiple cracked beams. Shifrin & Ruotolo (1999) extend this base method by using 

 equations for analysing the vibration of the beams with n cracks.  2+n

 

Solution of the equation set can also be simplified by the analytical transfer matrix 

method that contributes the analyses of the cracked beams by reducing the size of the 

matrix. Lin (2004) uses this method for the analyses of the single cracked beams. 

However, advantage of the analytical transfer matrix method comes into existence 

when the multiple cracked beams are considered as given in the studies of Khiem & 

Lien (2001, 2004), Lin, Chang, & Wu (2002), Patil & Maiti (2003), and Tsai & 

Wang (1997). Fernandez-Saez & Navarro (2002) presents another analytical 

approach including the eigenvalue problems formulated by closed-form expressions 

for the successive lower bounds of the fundamental frequency. Matveev & 

Bovsunovsky (2002) and Mei, Karpenko, Moody, & Allen (2006) present some other 

analytical approaches for flexural vibration analysis of the beams. 
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It should be noted that analytical solution is very difficult for the non-uniform 

beams due to the geometric nonlinearities causing nonlinear equations. Therefore, 

limited number of studies is presented for the analytical solution of non-uniform 

beams. Li (2001, 2002) presents an approach that is used for determining natural 

frequencies and mode shapes of cracked stepped beams having varying cross-section 

and cracked non-uniform beams having concentrated masses. However, only some 

specific forms of non-uniformities can be dealt with in these papers. Analytical 

methods also suffer from the lack of the fact that the stress field induced by the crack 

is decaying with the distance from the crack.  

 

Some researchers take into account the exponentially decaying effects of 

strain/stress fields due to cracks. These effects also cause the nonlinearities and 

require different approaches in solution. The energy used methods, employing 

exponentially decaying stress/strain functions based on a variational principle, are 

proposed to develop and solve vibration equations for these continuous models. 

Chondros, Dimarogonas, & Yao (1998, 2001) and Chondros (2001) use the 

variational formulation to develop the differential equation and boundary conditions 

of single-edge and double-edge cracked beams as one dimensional continuum. The 

differential equation and associated boundary conditions for a nominally uniform 

Euler–Bernoulli beam containing one or more pairs of symmetric cracks are derived 

by Christides & Barr (1984). Shen & Pierre (1994) solve the varying energy 

distribution problem for single cracked beams by using many termed Galerkin’s 

method. Carneiro & Inman (2001) review this paper by modifying the derivation of 

the equation of motion in order to overcome the lack of self-adjointness. Another 

approach based on the stiffness definition of cracked beams using strain energy 

variation around the crack is proposed by Yang, Swamidas, & Seshadri (2001), for 

single and double cracked beams. The case where two or more cracks lie in close 

proximity to each other is not analysed in this study. All these approaches suffer 

from the overlap of exponential functions when the multiple cracks interact with 

each other. An approach for defining interaction of strain disturbances is presented 

by Mazanoglu, Yesilyurt, & Sabuncu (2009) on the first three flexural vibration 
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modes of multiple cracked non-uniform beams. The Rayleigh–Ritz approximation 

method is used in solution. Interaction of strain disturbances presented for transverse 

cracks is then modified for cracks on unusual edge of an Euler–Bernoulli beam 

(Mazanoglu & Sabuncu, 2010a) and for asymmetric double-edge breathing cracks on 

the Rayleigh beam (Mazanoglu & Sabuncu, 2010b).  

 

Except for the methods based on a variational principle, some other methods are 

also presented for the vibration analysis of cracked beams. Fernandez-Saez, Rubio, 

& Navarro (1999) describe the transverse deflection of the cracked beam by adding 

the polynomial functions to the deflection of the un-cracked beam. With this new 

admissible function, which satisfies the boundary and kinematic conditions, and by 

using the Rayleigh method, fundamental frequency is obtained. Chaudhari & Maiti 

(1999, 2000) propose a method for defining transverse vibrations of tapered beams 

and geometrically segmented slender beams with a single crack using the Frobenius 

technique. Even though the beams have a single crack, their results are quite coarse. 

An approach, which uses modified Fourier series, is developed by Zheng & Fan 

(2001) for computing natural frequencies of a non-uniform beam with arbitrary 

number of cracks. A semi-analytical model for nonlinear vibrations based on an 

extension of the Rayleigh–Ritz method is presented by El Bikri, Benemar, & 

Bennouna (2006). The results, which are mainly influenced by the choice of the 

admissible functions, are restricted with a single crack and fundamental frequency. 

 

Many of the other approaches are based upon the finite element methods. 

Gounaris & Dimarogonas (1988) and Papaeconomou & Dimarogonas (1989) 

construct the special cracked element for the vibration of the cracked beam. They 

develop a compliance matrix for the behaviour of the beam in the vicinity of the 

crack. Mohiuddin & Khulief (1998) develop a finite element model for a tapered 

rotating cracked shaft. Yokoyama & Chen (1998) present the matrix equation for free 

vibrations of the cracked beam that is constructed from the basic standard beam 

elements combined with the modified line–spring model. Zheng & Kessissoglou 

(2004) describe an overall additional flexibility instead of the local additional 

flexibility for adding into the flexibility matrix of the corresponding intact beam 
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element. Kisa & Gurel (2006, 2007) present a numerical model that combines the 

finite element and component mode synthesis methods for the modal analysis of 

multi-cracked beams and single cracked stepped beams with circular cross-section. 

Tabarraei & Sukumar (2008) present the extended finite element method for mesh 

independent modelling of the discontinuous fields like cracks. Use of the finite 

element methods to solve the forward problem of crack identification is presented by 

numerous researches (Dharmaraju, Tiwari, & Talukdar, 2004; Lee, 2009a; Lee, 

2009b; Orhan, 2007; Ozturk, Karaagac, & Sabuncu, 2009; Yuen, 1985). Finite 

element models may be preferable since they can be applicable for any structural 

members. However, there are so many parameters that can be varied in flexural 

vibration of structural members with cracks that it would be very difficult to present 

and compare results for all cases. Parameters may vary mainly with modelling of the 

crack and meshing properties. Indiscriminate application of the frequencies 

calculated using the finite element methods, without consideration of the 

assumptions under which the crack models are derived, might lead to gross errors. 

On the other hand, careful observation of the behaviour of these damage models can 

lead to extension of their utility in practical engineering. Behaviour of the damages 

can be observed by the special element or connection models. If the FEM includes no 

special models for the cracks, method should be supported by extremely refined 

meshes near the cracks for an accurate solution even though the computation time 

increases. 

 

2.3 Crack Modelling 

 

In the literature, researchers use several crack models for describing the effects of 

crack on dynamic behaviour of the beam. In general, there exist three basic crack 

models, namely the equivalent reduced section model, the local flexibility model 

from the fracture mechanics and the continuous crack flexibility model. Most studies 

include the local flexibility model which use massless rotational spring or locally 

reduced cross-section. Magnitudes of the flexibility changes are estimated by the 

theoretical and experimental outputs of fracture mechanics (Sih, 1973; Tada, Paris, & 

Erwin,1973). 
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In most papers, parts of the beam separated by the cracks are connected by using 

rotational springs providing compatibility and continuity conditions at the crack 

locations. The effect of rotational spring is considered as the effect of hinge causing 

local flexibility between two parts of the beam. This model can be used in the 

fundamental solution of the cracked uniform beams, (Dado, 1997; Douka, Bamnios, 

& Trochidis, 2004; Ostachowicz & Krawczuk, 1991; Nandwana & Maiti, 1997a; 

Rizos, Aspragathos, & Dimaragonas, 1990; Chang & Chen, 2005) and analytical 

transfer matrix method (Khiem & Lien, 2001, 2004; Patil & Maiti, 2003). The papers 

presented by Chaudhari & Maiti (1999, 2000), Fernandez-Saez & Navarro (2002), 

Khiem & Lien, (2002), Lee (2009b), Morassi & Rollo (2001), Yang, Chen, Xiang, & 

Jia (2008) can be selected throughout many other studies that use rotational spring 

model in their solution methods for identifying local flexibility effects of crack on 

vibration. Similarly, Yokoyama & Chen (1998) present line-spring crack model used 

especially in the finite element based solutions. In the continuous crack flexibility 

models, crack caused additional flexibility effects are distributed along the beams 

with exponentially decaying functions. The energy change or the additional 

flexibility calculated by fracture mechanics formulations are distributed along the 

beam based on a variational principle presented by Carneiro & Inman (2001), 

Chondros, Dimarogonas, & Yao (1998, 2001), Chondros (2001), Christides & Barr 

(1984), Hu & Liang (1993), Shen & Pierre (1994). Another distribution function is 

proposed by Yang, Swamidas, & Seshadri (2001) when the beam is under the effect 

of only additional strain. Mazanoglu, Yesilyurt, & Sabuncu (2009) modify the 

distribution function for multiple cracked beams. The energy consumed calculated 

from the fracture mechanics is verified by means of rotational spring located at the 

crack tip and is modified by additional rotational spring corresponding to the effects 

of stress fields near the crack tip. The formulations written for the energy consumed 

and its distribution form are revised for the height-edge cracks (Mazanoglu & 

Sabuncu, 2010a) and double-edge cracks (Mazanoglu & Sabuncu, 2010b). 

 

In literature, cracks are also considered with two models that assume the cracks 

always open or breathing in time. The nonlinear effect of a breathing crack on the 
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flexural vibration of cracked structures is discussed in some papers (Cheng, Wu, 

Wallace, & Swamidas, 1999; Chondros, Dimarogonas, & Yao, 2001; Friswell & 

Penny, 2002; Luzzato, 2003; Matveev & Bovsunovsky, 2002; Qian, Gu, & Jiang, 

1990). Mazanoglu & Sabuncu (2010b) combine the open and breathing cracks in the 

same model. The difference of solutions between the open and breathing crack 

models is quite small when the amplitude is not so large, and the difference becomes 

large as the amplitude increased. Thus, most researchers assume the crack remains 

open in their models to simplify the problem by ignoring nonlinear influences. 

However, it is clear that there exists frequency modulation caused by the strain/stress 

difference during the breathing of crack. Therefore, some researchers investigate this 

effect in measured data by means of several crack detection techniques (Douka & 

Hadjileontiadis, 2005; Loutridis, Douka, & Hadjileontiadis, 2005; Prabhakar, Sekhar, 

& Mohanty, 2001; Pugno, Surace, & Ruotolo, 2000; Saavedra & Cuitino, 2002; 

Sekhar, 2003). 

 

Different crack models classified according to the position and propagation 

characteristics. Most of the researchers present vibration analysis of a beam with 

transverse edge crack which is the most critical in respect of fracture of the beam. 

Vibration effects of the transverse double edge cracks with symmetric depths are also 

investigated (Al-Said, 2007; Al-Said, Naji, & Al-Shukry, 2006; Chondros, 

Dimaragonas, & Yao, 1998; Christides & Barr, 1984; Lin, 2004; Ostachowicz & 

Krawczuk, 1991). In addition, Mazanoglu & Sabuncu (2010b) present a model for 

the symmetric and asymmetric double-edge cracks that is also true for the single-

edge cracks. The cracks on the unusual surface of the beam, called height-edge 

cracks, are also modelled by Mazanoglu & Sabuncu (2010a). Nandwana & Maiti 

(1997a) investigate the vibration of the beams with inclined edge or internal cracks. 

Fracture mechanics formulations for many different cases of the cracks are given by 

Tada, Paris, & Irwin (1973). Different crack cases can also be considered by means 

of advanced mesh techniques. Extended finite element meshing procedure developed 

by Tabarraei & Sukumar (2008) is shown on the examples of double-edge crack and 

inclined central crack. 
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2.4 Crack Detection 

 

Numerous methods and approaches are presented for detection and identification 

of cracks. In many cases, exact identification of the changes in dynamic behaviour is 

significant for the success of vibration based crack identification methods which are 

supported by the theoretical vibration models. Contrarily, crack identification 

methods based on direct use of several practical applications of measurements and 

vibration monitoring sometimes may not need a theoretical vibration model. These 

methods are generally based on the inspection of mode shape changes and need 

measurements with very high quality which use expensive data acquisition and 

monitoring systems having the properties such as multiple sensors, high sensitivity, 

large hard disc capacity, and fast processing. Ideal system settled for the crack 

identification should be inexpensive, non-invasive and automated, so that subjective 

operator differences are avoided.  

 

In the literature, cracks are identified by observing the changes in modal 

parameters like natural frequencies and mode shapes. These variations can be 

detected by means of several monitoring systems that use signal processing 

techniques or algorithms. In very rare cases, previously modelling of the system may 

not be required for crack detection in non-model based approaches. Crack detection 

methods proposed in the literature are summarised here by considering them under 

subtitles of frequency based methods, mode shape based methods, and other 

methods. 

 

2.4.1 Frequency Based Methods 

 

Natural frequencies and frequency spectra of any system directly represent 

characteristic vibration behaviour of that system. Changes in frequency parameters 

can easily be observed in measurements without the requirement of extended 

measuring systems. Therefore, crack detection methods based on natural frequencies 

are the most popularly proposed and used by the researchers. 
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The majority of studies are related with the identification of single transverse 

crack in a beam using the lowest three natural frequencies represented in the 

frequency contour graph. Liang, Choy, & Hu (1991) propose that the location and 

the size of a crack can be identified through finding the intersection point of three 

frequency contour lines. The scheme is adapted to the crack detection in stepped 

beams (Nandwana & Maiti, 1997b), geometrically segmented beams (Chaudhari & 

Maiti, 2000) and truncated wedged beams (Chinchalkar, 2001). Chen, He, & Xiang 

(2005) present an experimental detection of single crack using frequency contour 

lines of the first three vibration modes. Measurement errors are minimised by means 

of the method of zoom fast Fourier transform which improves the frequency 

resolution. Yang, Swamidas, & Seshadri (2001) also use the frequency contours for 

crack identification. Owolabi, Swamidas, & Seshadri (2003) report the damage 

detection schemes depending on the measuring changes in the first three natural 

frequencies and the corresponding amplitudes of the frequency response functions. It 

is also suggested that two measurements are sufficient to detect a crack in a beam. 

Dado (1997) presents a comprehensive algorithm, which uses the lowest two natural 

frequencies as inputs, for detection of a crack in beams under different end 

conditions. Kim & Stubbs (2003) and Kim, Ryu, Cho, & Stubbs (2003) present a 

crack detection algorithm to locate and size cracks in beam type structures using a 

few natural frequencies. Lin (2004) determines the crack location and its sectional 

flexibility by measuring any two natural frequencies used in characteristic equation. 

The crack size is then computed by using the relationship between the sectional 

flexibility and the crack size. Dharmaraju, Tiwari, & Talukdar (2004) develop a 

general identification algorithm to estimate crack flexibility coefficients and the 

crack depth based on the force-response information. The general identification 

algorithm is extended to overcome practical limitations of measuring with a few 

degrees of freedom. The static reduction scheme is incorporated into the 

identification algorithm for reducing the number of response measurements. Al-Said 

(2007) proposes a crack identification technique, which uses shift of first three 

natural frequencies, for stepped cantilever beam carrying a rigid disk at its tip. In 

many cases, the theoretical natural frequencies do not exactly intersect with the 

frequencies observed in measurement. Therefore, the zero-setting procedure is 
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recommended and thus results are shown by frequency falling ratios. In experiment, 

natural frequency shifts are generally obtained by the spectral investigation of the 

frequency response function. 

 

Another frequency used method, called mechanical impedance, is based upon 

spatial or spectral investigation of anti-resonance frequencies in experiments. Zeros 

of frequency response functions, where the output velocities have peak values, are 

known as anti-resonance frequencies. Prabhakar, Sekhar, & Mohanty (2001) suggest 

the measurement of mechanical impedance for crack detection and condition 

monitoring of rotor-bearing systems. Bamnios, Douka, & Trochidis (2002) 

analytically and experimentally investigate the influence of transverse open crack on 

the mechanical impedance of cracked beams under various boundary conditions. 

Dilena & Morassi (2004) deal with the identification of single open crack using the 

method based on measurements of damage-induced shifts in natural frequencies and 

anti-resonant frequencies. Dilena & Morassi (2005) also present the same method for 

identification of a single defect in a discrete beam–like system with lumped masses. 

However, experiments of Dharmaraju & Sinha (2005) conducted on a free–free beam 

show that sharp slope change cannot be observed through the change of first anti-

resonance frequencies obtained as a function of measuring location. 

 

In consideration of the papers presented for the multiple cracks, although most of 

studies address the forward problem, some of the papers present also the multiple 

crack detection methods using the knowledge of dynamic response of the beam. 

Simultaneous detection of location and size of multiple cracks in a beam is much 

more involved and complex than the detection of single crack. A frequency 

measurement based method that combines the vibration modelling through transfer 

matrix method and the approach given by Hu & Liang (1993) is presented by Patil & 

Maiti (2003) for detection of multiple open cracks. Khiem & Lien (2004) apply the 

dynamic stiffness matrix method to detect multiple cracks in beams using natural 

frequencies. A diagnostic technique, which uses the changes of first three natural 

frequencies, is presented by Morassi & Rollo (2001) for a simply supported beam 

with two cracks having equal severity. Douka, Bamnios, & Trochidis (2004) use the 
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anti-resonance changes, complementary with natural frequency changes, in a 

prediction scheme for crack identification in double crack beams. Chen, Zi, Li, & He 

(2006) propose dynamic mesh-refinement method, which sets the relationship 

between the natural frequency ratios and crack parameters, for identification of 

multiple cracks. Lee (2009a) presents a simple method for detecting n cracks using 

2n natural frequencies by means of the finite element and the Newton–Raphson 

methods. Detailed review of the studies presented for solving forward and inverse 

problem of the vibration based identification of multiple cracks are given by Sekhar 

(2008). The use of contour graphs for detecting multiple cracks has not been 

presented yet. 

 

2.4.2 Mode Shape Based Methods 

 

Mode shape is the other significant modal parameter changing with existence of 

the damages. When technical and procedural requirements in measurements are 

considered, investigation of the mode shape changes is much more difficult than the 

frequency based techniques. However, if these requirements are provided, mode 

shape changes supported by the powerful signal processing techniques can be 

successful indicators of the damages. 

 

In literature, many studies are presented for crack detection by using the changes 

in mode shapes or their derivatives without the use of any advanced processing 

techniques. West (1984) presents possibly the first systematic use of mode shape 

information for the location of structural damage without the use of prior finite 

element model. The mode shapes are partitioned using various schemes, and the 

change in modal assurance criteria across the different partitioning techniques is used 

to localise the structural damage. Rizos, Asparagathos, & Dimarogonas (1990) 

identify the depth and location of a crack by observing the mode shape of the 

structure from the measured amplitudes. Pandey, Biswas, & Samman (1991) 

demonstrate that absolute changes in mode shape curvature can be a good indicator 

of damage for the finite element beam structures they considered. Farrar & Jauregui 

(1998) compare the changes in properties such as the flexibility or stiffness matrices 
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derived from measured modal properties and changes in mode shape curvature for 

locating structural damage. Ratcliffe (1997) proposes a damage detection method 

that uses modified Laplacian operator on mode shape data. Narayana & Jeberaj 

(1999) present a new technique for locating crack using a few vibration mode shapes 

of a beam and one of the modal parameters that changes globally. Matveev & 

Bovsunowsky (2002) develop the algorithm of consecutive calculation of cracked 

beam mode shapes amplitudes, to investigate the regularities of mode shapes and to 

study the non-linear distortion level of displacement. Kim et al. (2003) formulate a 

damage index algorithm to identify damage from monitoring changes in modal strain 

energy. 

 

In recent years, spatial investigation of mode shape changes is considered together 

with the advanced processing techniques. Many of them are based on the spatial 

wavelet analyses. Initial studies for crack identification with the application of 

wavelet theory in spatial domain are presented by Liew & Wang (1998), Quek, 

Wang, Zhang, & Ang (2001) and Angelo & Arcangelo (2003). In the paper presented 

by Rucka & Wilde (2006), the theory is applied to the deflected beam whose 

deflection rate is continuously obtained by the support of image processing. 

However, crack depth cannot be estimated in these papers. Douka, Loutridis, & 

Trochidis (2003) analyse the fundamental vibration mode of a cracked cantilever 

beam using continuous wavelet transform in spatial domain and estimate both 

location and size of the crack. An intensity factor is defined to relate size of the crack 

with the coefficients of the wavelet transform. Lam, Lee, Sun, Cheng, & Guo (2005) 

estimate the location and extend of a crack on the obstruction area where vibration 

responses are not available. Presented crack detection method for partially obstructed 

beams is developed from the spatial wavelet transform and the Bayesian approach. 

Chang & Chen (2005) and Chasalevris & Papadopoulos (2006) present methods that 

combine the spatial wavelet analysis to find the locations of multiple cracks and 

natural frequency changes to find the severity of the cracks. Similarly, multiple 

cracks on stepped beams are located by wavelet analysis in the paper of Zhang, 

Wang, & Ma (2009). Based on the identified crack locations, a simple transform 
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matrix method requiring only the first two tested natural frequencies is used to 

identify the crack depths. 

 

Hadjileontiadis, Douka, & Trochidis (2005a) estimate the location and size of the 

crack by analysing the fundamental vibration mode with fractal dimension measure. 

They also analyse the modal changes by using kurtosis values obtained from the 

vibration data taken along the beam (Hadjileontiadis, Douka, & Trochidis, 2005b). 

 

2.4.3 Other Methods 

 

Investigation of the changes in damping parameter due to cracks does not pay 

attention among the researchers. In early years, a few studies are presented to test the 

variation characteristics of damping parameter as a result of crack propagation. 

Morgan & Osterle (1985) propose probably first damping based method which 

employs an abnormal increase in damping coefficients, suggesting more energy 

dissipation, can indicate damage in the structure as observed experimentally in most 

cases. 

 

Time–frequency analyses are also presented for identifying the presence of a 

crack. In the paper of Sekhar (2003), wavelet is applied to the time data taken from 

selected position of a rotor. A model based wavelet approach is proposed for online 

identification of a crack in a rotor while it is passing through its flexural critical 

speed. Douka & Hadjileontiadis (2005) reveal the nonlinear behaviour of the system 

by using time–frequency methods as an alternative to Fourier analysis methodology. 

They utilise from empirical mode decomposition, Hilbert transform and 

instantaneous frequency methods in crack detection. Zhu & Law (2006) estimate the 

locations and depths of the cracks by wavelet analysis of the data taken from single 

measuring point. However, spatial changes of the wavelet coefficients are obtained 

by means of load moving along the beam. Leonard (2007) uses phase and frequency 

spectrograms to directly obtain the breathing effects of crack causing nonlinear 

vibration.  
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In the last two decades, genetic algorithms have been recognised as promising 

intelligent search techniques for difficult optimization problems. Genetic algorithms 

are stochastic search techniques based on the mechanism of natural selection and 

natural evolution. Mares & Surace (1996) employ a genetic algorithm to identify 

damage in elastic structures. Solution procedures employing genetic algorithms by 

means of the results obtained by the finite element model are proposed for detecting 

multiple cracks in beams (Ruotolo & Surace, 1997) and for detecting shaft crack in 

rotor–bearing system (He, Guo, & Chu, 2001). Krawczuk (2002) uses the wave 

propagation approach combined with a genetic algorithm for damage detection in 

beam–like structures. In recent years, Vakil-Baghmisheh, Peimani, Sadeghi, & 

Ettefagh (2008) present a method employing an analytical model and a genetic 

algorithm to monitor the possible changes in the natural frequencies of the cantilever 

beam.  

 

Lee (2009b) presents a simple method to identify multiple cracks in a beam using 

vibration amplitudes. The inverse problem is solved iteratively for the crack 

locations and sizes using the Newton–Raphson method and the singular value 

decomposition method. An iterative neural network technique is proposed by Chang, 

C.C., Chang, T.Y.P., Xu, & Wang (2000) for structural damage detection. Mahmoud 

& Kiefa (1999) propose a neural network, which uses six natural frequencies as 

inputs, for detecting crack size and crack location. Suresh, Omkar, Ganguli, & Mani 

(2004) use less number of modal frequencies to train a neural network for identifying 

both the location and depth of a crack. A statistical neural network is proposed by 

Wang & He (2007) to detect the crack through measuring the reductions of natural 

frequencies. 

 



CHAPTER THREE 

CONTINUOUS APPROACHES FOR FLEXURAL VIBRATION OF THE 

BEAMS WITH ADDITIONAL MASSES AND MULTIPLE CRACKS 

 

3.1 Introduction 

 

This chapter presents the methods for continuous vibration analyses of multiple 

cracked beams. Vibration of the beam with additional masses is also considered as a 

specific case of the beam. First of all, the theories of analytical and energy based 

numerical solution methods are explained for the flexural vibration of beams without 

crack. Many components such as discs, gears, etc. can be considered as additional 

masses on the beams when they have the effect that is not negligible on vibrations. 

Therefore, the theories are expanded to cover the vibration of beams with additional 

masses. Lumped and solid mass models are employed in analytical and numerical 

solution methods respectively. Cracks are modelled by rotational springs describing 

the flexibility changes locally and continuously. Local and continuous flexibility 

models are used in the analytical and numerical solution methods respectively. 

Convenient flexibility changing functions are presented for both models. 

 

Results of the methods are compared with the results of a commercial finite 

element program. Efficiencies of all methods are discussed on fixed-fixed beam with 

an additional mass. Vibration effects of the additional mass, one crack, and two 

cracks are presented on the results of methods considered. Good agreements are 

observed between the results of the methods employed. 

 

3.2 Flexural Vibration of Un-cracked Beams 

 

Free bending vibration of a uniform beam is identified by following differential 

equation. 
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where, E, I, and ρ  represent elasticity module, area moment of inertia, and density 

respectively. Flexural displacement is symbolised by w, and variables z, t are the 

position along the beam length and time respectively. Exact analytical method or 

approximate numerical methods can be employed for the solution of Equation (3.1). 

 

3.2.1 Analytical Solution 

 

In analytical solution, Equation (3.1) is separated into independent variables of w 

and t. Frequency parameter, which depends upon the natural frequency, can be 

written as: 

 

 4
2

EI
Aωρβ = ,                   (3.2) 

 

which is located into following solution form of uniform beam. 

 

zCzCzCzCzW ββββ sinhcoshsincos)( 4321 +++= .             (3.3) 

 

1C , , , and  are the coefficients of harmonic and hyperbolic terms in the 

mode shape function, . Linear algebraic equation set is formed by using mode 

shape and its derivatives corresponding to slope, moment, and shear force. Each 

function should satisfy the boundary conditions such as fixed, free, and pinned. For 

fixed end, displacement and slope should be zero. Contrarily, moment and shear 

force are equated to zero for free end. There is no displacement and moment near the 

pinned joint. Four functions are obtained by using the conditions at two ends. 

2C 3C 4C

)(zW

β  

values causing singularity in 44×  matrix, which is formed by harmonic and 

hyperbolic terms of functions, are found.  
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3.2.2 Numerical Solution 

 

Vibration problem of beams can also be solved approximately by using the energy 

based approaches such as Rayleigh and Rayleigh–Ritz methods. These methods are 

based on the principle of energy conservation which dictates the maximum values of 

potential and kinetic energies should be equal.  

 

0=− KEPE ,                   (3.4) 

 

where,  and PE KE  represent maximums of potential and kinetic energies that can 

be formulated for Euler–Bernoulli beams as follow: 
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Formulation of maximum kinetic energy is modified for the Rayleigh beams, 

which take into account the effect of rotary inertia around the axis perpendicular to 

the bending plane, as follows: 
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If jκ  is defined as the coefficient of admissible mode shape function, the 

derivatives of Equation (3.4) or those of Rayleigh quotient derived from Equation 

(3.4) should be equal to zero. 
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If )(zjχ  are a series of functions satisfying the end conditions, the mode shape 

function can be written as: 
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)()( χκ .                  (3.9) 

 

The functions, )(zjχ , are given in Table 3.1 for several end conditions. The 

natural frequencies can be found by minimising the determinant of the matrix, which 

is formed by the derivatives of function series, obtained from Equation (3.8). 

 
Table 3.1 The functions satisfying several end conditions. 

 
End conditions )(zjχ  

Fixed-Fixed ( ) ( )21 1 LzLz j −+

Pinned-Pinned ( ) ( )LzLz j −1  

Fixed-Free ( ) ( ) 12 1 −− jLzLz

Fixed-Pinned ( ) ( )LzLz j −+ 11  

 

3.3 Flexural Vibration of the Beams with Additional Masses 

 

3.3.1 Analytical Solution Using Lumped Mass Model 

 

In simplified analytical solution, additional masses can be modelled using lumped 

masses as shown in Figure 3.1. Effects of additional masses are contributed into 

beam’s vibration by describing compatibility and continuity conditions at their 

locations. Displacements and slopes are assumed equal at just left and right sides of 

lumped masses. 
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In addition, following compatibility conditions should be satisfied for identifying 

the vibration of a beam with lumped masses. 
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where ii λµ ,  can be defined as follows: 
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im  and  describe iiJ th lumped mass and polar mass moment of inertia respectively. 

If a beam with  sections separated by n masses is analysed, vibration form of 

each section can be expressed by a function including harmonic and hyperbolic terms 

as follows: 
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Figure 3.1 Beam model with lumped masses. 
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As a result, totally four boundaries at two ends, and four boundaries at each mass 

location give  functions. Zero determinant of the matrix obtained by harmonic 

and hyperbolic terms of the functions gives the frequency parameter, 

44 +n

β . 

 

3.3.2 Numerical Solution Using Solid Mass Model 

 

In more realistic model, the additional masses can be considered with thicknesses 

as shown in Figure 3.2. In this case, the problem can be solved by one of the energy 

used numerical methods. In the method, following equation representing the kinetic 

effects of the additional masses is contributed into the kinetic energy expressions 

given in Equations (3.6) and (3.7). 
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Figure 3.2 Beam model with additional masses having thickness. 

 

If the additional masses are the parts of the beam or joined into the beams by 

powerful welding, minor changes in potential energy caused by the additional stress 

fields around the masses can also be considered. These stress fields decaying with 

the distance from the masses should be described by a function. Unless, this decaying 

function is described, using a few termed deflection function in the energy methods 

can result in deficient approximation due to the instantaneous potential energy 
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change. The issue of stress fields caused by the additional masses, which stays out of 

the scope of this research, is not investigated. In many cases, the additional stress 

fields due to the additional masses remain minor. In these cases, potential effects of 

the additional masses can be neglected for simplicity. 

 

3.4 Flexural Vibration of the Beams with Multiple Cracks  

 

3.4.1 Analytical Solution Using Local Flexibility Model 

 

In general analytical approaches, cracks are modelled by rotational springs, which 

are joints of the sections separated by the cracks, as shown in Figure 3.3. Existence 

of n cracks requires the expression of n local flexibility changes for connecting n+1 

sections. Vibration form of each section can be expressed by harmonic and 

hyperbolic terms that are represented by the function written in Equation (3.3). 

Continuity at the crack location is provided by the continuity conditions come 

through with negligible effects of crack width. Deflection, bending moment and 

shear force are assumed to be equal at right hand and left hand sides of the crack as 

follow: 

 

)()( 1 zWzW ii += , 

)('')('' 1 zWzW ii += , 

)(''')(''' 1 zWzW ii += , ni ,....,1= .              (3.16) 

 

In addition, compatibility condition relates bending moment with the difference of 

slopes between both sides of the crack as represented in following equation: 
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α  is the parameter related with stiffness that defined as follows: 

 

 



 26

EI
ki

i =α ,                  (3.18) 

 

where  represents the local rotational stiffness caused by iik th crack, and it is 

described by the fracture mechanics theory.  
 

1+ic  ic  

 

Figure 3.3 Multiple cracked beam with rotational spring crack model.  

 

Local stiffness of the cracked beam has been explained by two common 

formulations in the literature. One of them is presented in the studies of Dado (1997), 

Douka, Bamnios, & Trochidis (2004), Li (2001), Rizos, Aspragathos, & 

Dimaragonas (1990), and Shifrin & Ruotolo (1999). The other formulation possibly 

presented by Ostachowicz & Krawczuk (1991) at first and employed in the studies of 

Chaudhari & Maiti (2000), Chen, He, & Xiang (2005), Lin (2004), Nandwana & 

Maiti (1997a) is given as follows: 
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where, b and h symbolise width and depth of the beam respectively.  is called 

as flexibility compliance function of i

)( iaf
th crack that is formulated as follows: 
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As a result, the equation set having size, 44 +n , is formed by 4n equations of 

continuity and compatibility conditions and 4 equations of the end conditions. Matrix 

shaped by harmonic and hyperbolic terms of the equation set must be singular for 

determining natural frequencies. 

 

3.4.2 Numerical Solution Using Continuous Flexibility Model 

 

In continuous flexibility model, flexibility change caused by the crack is described 

as exponentially decaying strain change distributed along the beam. Energy 

correspond of this strain change is used in solution.  The energy change due to crack 

opening can be balanced as the energy stored by a rotational spring located at the 

crack tip or a linear spring located at the crack mouth as shown in Figure 3.4. Since 

there is no spring in reality, the energy stored by the spring model is lost somewhere 

and is called ‘the energy consumed’. Fracture mechanics theory describes the change 

of structural strain/stress energies with crack growth (Sih, 1973). The strain stored 

due to a crack is determined by means of the stress intensity factor for the Mode I 

crack and thus strain energy release rate. Clapeyron’s Theorem states that only half 

of the work done by the external moment is stored as strain/stress energy when a 

crack exists on a beam. The remaining half is the energy consumed by the crack that 

can be formulated as follows: 

 
2)()( czMaDCEU ==∆ ,                (3.21) 

 

where,  is the bending moment at the crack location of beam that is 

formulated as: 

)( czM
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2
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dz
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zIEzM c
cc = .               (3.22) 

 

'E  is replaced by E  for plane stress, or ( )21 ν−E  for plane strain.  is the 

coefficient defined by the following equation for a strained beam having a transverse 

crack: 
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In Equation (3.23),  is the function given for )(aF 6.0/ ≤cha  as follows: 

 

( ) ( ) ( ) ( )432 /14/8.13/33.7/4.112.1)( cccc hahahahaaF +−+−= .          (3.24) 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Spring models for the crack opening. 
 

The crack opening results in additional angular displacement of the beam causing 

also tensile stresses in the vicinity of crack tips. The energy of the tensile stress can 

be considered as the energy of the rotational spring model located at the un-stretched 

side of the beam as shown in Figure 3.4. When this effect is considered, the energy 
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consumed is determined by taking the difference between the energy effects of the 

crack opening and tensile stress caused by the bending of the beam. In this case, the 

coefficient  is found as follows (Mazanoglu, Yesilyurt, & Sabuncu, 2009): )(aD
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The energy consumed is distributed along the beam as follows (Yang, Swamidas, 

& Seshadri, 2001): 
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where  and  are the terms which can be defined as follow (Yang, 

Swamidas, & Seshadri, 2001); 
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If a crack exists on a beam, since the work is done by using the available 

maximum potential energy, the energy consumed results in a decrease of maximum 

potential energy with the assumption that there is no mass loss at the crack location. 

In this case, Equation (3.4) is modified by contributing the energy consumed as 

follows: 
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Natural frequencies or mode shapes of cracked beams can be determined by using 

Equation (3.29) in one of the energy used numerical methods. In the cases of 

multiple cracks, stress/strain disturbances caused by different cracks are interacted 

with each other. When the cracks have reasonable distance from each other, 

interaction effect remains minor due to the exponentially decaying distribution form 

of the energy consumed. Since the cracks in close distance are not analysed in this 

chapter, interaction of consumed energies caused by different cracks is explained in 

the following chapters. 

  

3.5 Results and Discussion 

 

Vibration of the beams with additional masses are analysed by both the analytical 

and numerical methods considered and the commercial finite element program 

(ANSYS©). Comparative study between the methods is also carried out for multiple 

cracked beams with an additional mass. In the finite element program, cracks are 

considered as slots which are formed by subtracting thin transverse blocks from the 

“solid95” beam. Element size is set to 0.005 m with the “esize” command, and crack 

widths are chosen as 0.0004 m. The “solid95” block is used for modelling additional 

mass attached to the beam. Smaller element size requirements in the vicinity of 

discontinuous regions are provided by the “smrtsize,1” command, and free meshing 

procedures are applied. Finite element model of the beam is shown in Appendix B, 

Figure B.1. Natural frequencies are obtained by using the analysis type called “modal 

analysis” in the program. Changes in the element number caused by the variation of 

crack location and crack size, have negligible effects on the results.  

 

3.5.1 Case Study: A Fixed–Fixed Beam with a Mass 

 

A fixed–fixed steel beam is considered with the additional mass at the central 

location of the beam. Cross-section of the beam, having length 60 cm, is square with 

edge dimensions of 10 mm. Steel rectangular mass, with 30 mm edge dimensions 

and 10 mm thickness, symmetrically encloses the beam. Properties of steel material 
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are taken as: density 3mkg7800=ρ , modulus of elasticity , and 

Poisson ratio . 

GPa210=E

3.0=v

 

Natural frequencies of the un-cracked uniform beam and the beam with additional 

mass are given in Table 3.2. Results of the analytical method and the Rayleigh–Ritz 

method employing the deflection function with six terms are compared with results 

of the finite element program. All methods give close values for the uniform beam. 

However, when the results obtained for the beam with additional mass are compared, 

it is seen that the Rayleigh–Ritz method employing solid mass model gives results 

better than the analytical method employing lumped mass model. Since a thin beam 

is used in the analysis, there are very small differences between the results of the 

Euler–Bernoulli and Rayleigh beam models. 

 
Table 3.2 Natural frequencies of beam models obtained by several analysis methods. 
 

Beam model Analysis methods 
First mode natural 

frequency (Hz) 

Second mode natural 

frequency (Hz) 

Analytical method 148.156 408.398 
Uniform Euler–

Bernoulli beam 
Rayleigh–Ritz 

method 
148.156 408.398 

Uniform Rayleigh beam 
Rayleigh–Ritz 

method 
148.135 408.180 

Uniform finite element 

beam 

The finite element 

program 
148.174 407.467 

Beam with additional 

lumped mass 
Analytical method 126.05 409.003 

Euler–Bernoulli beam 

with additional solid 

mass 

Rayleigh–Ritz 

method 
130.130 407.516 

Rayleigh beam with 

additional solid mass 

Rayleigh–Ritz 

method 
130.115 407.300 

Finite element beam 

with additional solid 

mass 

The finite element 

program 
129.420 406.586 
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If the vibration of the beam is analysed by simulating a transverse crack, natural 

frequencies fall down as one would expect. Analysis is repeated by considering the 

crack at different locations with the depth ratio of 0.3. Resulting natural frequency 

ratios obtained by the local flexibility model used in the analytical solution, the 

continuous flexibility model used in the Rayleigh–Ritz method, and the finite 

element model used in the commercial program are given in Figure 3.5. Results show 

that the methods in consideration present good agreement with each other. Small 

deviations are obtained near the additional mass and fixed end.  

( zc / L ) 

( ω
c 
/ ω

o )
 

( b ) 

( a ) 

 

Figure 3.5 Natural frequency ratios for the ( a ) first and ( b ) second mode vibrations of 

the beam with variably located single crack having depth ratio of 0.3. Results of ( * ) the 

Ansys©, ( o ) analytical solution, and ( –― ) Rayleigh–Ritz approximation. 

 

Methods are also comparatively examined by considering the beam with two 

cracks. One of the cracks is simulated at the normalised location, 0.45, with the depth 

ratio, 0.3, and the other crack, moved along second half of the beam, is considered 

with the depth ratio of 0.2. Cracks are not considered in the same side of the 
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additional mass for neglecting the interaction effects of strain disturbances caused by 

different cracks. Description of these interaction effects required for the Rayleigh–

Ritz method is given in the following chapters. There are good agreements between 

the results of the methods as shown in Figure 3.6. Expectedly, small deviations 

between the results for single crack at the normalised location of 0.45, are moved to 

frequency ratios determined for the double cracked beams. 

( zc / L ) 

( ω
c 
/ ω

o )
 

( a ) 

( b ) 

 

Figure 3.6 Natural frequency ratios for the ( a ) first and ( b ) second mode vibrations of 

the beam with two cracks; first crack at the normalised location, 0.45, with depth ratio 

of 0.3, and variably located second crack having depth ratio of 0.2. Results of ( * ) the 

Ansys©, ( o ) analytical solution, and ( –― ) Rayleigh–Ritz approximation. 

 

Ratios obtained by the finite element program can be assumed accurate near the 

additional mass, since the results of the analytical method deviate with the effect of 

simplified model using lumped mass. On the contrary, the analytical method can give 

accurate ratios near the fixed end, since the finite element results deviate with the 

effect of resolution problem in thin surface meshing. However, it should not be 
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forgotten that, errors in analytical solution for the vibration of un-cracked beams with 

lumped mass are moved to solution of the cracked beams. This means, although the 

local flexibility model presents well identification for flexibility change caused by 

the crack, analytical solution method requires additional flexibility identifications for 

other discontinuities like additional masses or steps on the beams. The Rayleigh–Ritz 

method also needs identifying flexibility changes in distributed form for providing 

continuity along the beam. But, results are quite satisfactory even if the additional 

mass caused stress fields are not considered. Small differences can be decreased 

more with the use of deflection function including higher number of terms.  

 

In analytical solution, matrix size increases for each discontinuity requiring 

compatibility and continuity condition to describe. In example, vibration of a double 

cracked beam with a mass is analytically solved by finding singular values of 1616×  

matrix. As the matrix size increases, determining singular values will be

difficult and will take more process time. However, vibration of that beam is 

analysed by using deflection function with 6 terms resulting in use of 66×  matrix in 

the numerical solution. Therefore, analytical solution with local flexibi model can 

only be convenient for uniform beams with a few numbers of cracks. 

 

 more 

lity 

3.6 Conclusion 

 this chapter, the methods for continuous vibration analyses of the multiple 

cra

 vibration analysis of the beam with additional mass, it is observed that error of 

the analytical method employing lumped mass model is larger than that of the 

 

In

cked beams with the additional masses are presented. Lumped and solid mass 

models are employed in analytical and numerical solution methods respectively. 

Cracks are modelled by rotational springs describing the flexibility changes locally in 

analytical method and continuously in the energy method. Results of the methods are 

compared with the results of a commercial finite element program. Efficiencies of all 

methods are discussed on fixed–fixed beams. Good agreements are observed 

between the results of the methods. 

 

In
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nu

sing deflection 

function with a few terms even if the beams have multiple discontinuities including 

cra

 separated by the commonly used rotational spring 

model. Because, flexibility change is modelled by using only one rotational spring 

loc

 

convenient for the analyses of uniform beams with a few numbers of cracks. It is 

alm

merical method employing solid mass model. Description of the additional 

stiffness caused by the additional mass cannot be avoided for the analytical solution 

especially when the thickness of mass increases. However, the energy method gives 

quite satisfactory result without the use of additional stiffness model. 

 

Low mode vibrations of beams are successfully analysed by u

cks and additional masses. However, number of terms in deflection function used 

for the analytical solution increases with each discontinuity. Normally, using more 

terms in deflection function causes larger matrix which requires more solution time 

for finding its singular values.  

 

Types of the cracks are not

ated at the centre of beam. This needs the explanation of flexibility change for 

each different type of cracks. On the other hand, as will be shown in the following 

chapters, crack types can be identified by the rotational springs located at crack tips. 

 

It is seen that, analytical method with local flexibility model can only be

ost impossible to analyse vibration of non-uniform beams by using analytical 

method. On the contrary, the energy method can be successfully used in different 

conditions of beam shaped structures. Therefore, energy used numerical solution is 

proposed in this thesis and it is employed in following chapters for non-uniform 

beams with different types of cracks. 

 

 



CHAPTER FOUR 

FLEXURAL VIBRATION ANALYSIS OF NON-UNIFORM BEAMS WITH 

MULTIPLE TRANSVERSE CRACKS 

 

This chapter is reorganization of the paper published as “VIBRATION 

ANALYSIS OF MULTIPLE CRACKED NON-UNIFORM BEAMS” in Journal of 

Sound and Vibration (Mazanoglu, Yesilyurt, & Sabuncu, 2009). 

 

4.1 Introduction 

 

Flaws in the components of a structure can influence upon the dynamic behaviour 

of the whole structure. It is well known from the literature that one form of damage 

that can lead to catastrophic failure if undetected is transverse cracking of the 

structure elements. The recognition of the vibration effects of cracks is important in 

practise since vibration monitoring has revealed a great potential for investigation of 

cracks in the last three decades. 

 

This chapter presents the vibration analysis of multiple cracked non-uniform 

beams using the distributions of the energies consumed caused by the transverse 

open cracks. The energy consumed is obtained by the change of the strain energy 

distribution given by Yang, Swamidas, & Seshadri (2001) for cracked surface of the 

beam together with the effect of stress field due to the angular displacement of the 

beam. The energy consumed is also determined by arranging the variation of the 

strain disturbances for defining the vibration of the multiple cracked non-uniform 

beams. Results obtained by the present method are compared with the results of 

Zheng & Fan (2001) and a commercial finite element program (ANSYS©) for 

several non-uniform cantilever beams.  

 

4.2 Vibration of the Beams with a Crack 

 

According to fracture mechanics theory, structural strain energy increases with the 

crack growth. Increase in strain energy, which is assumed equal to the energy 

36 
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consumed, under the constant external bending moment is defined as follows (Sih, 

1973; Tada, Paris, & Irwin, 1973); 

 

∫==∆
a

c dabGCEU
0

.                  (4.1) 

 

G  is called the strain energy release rate that can be written as '2
1 EKG =  for the 

transverse vibration of the beam by taking only the effects of bending stresses into 

account and neglecting the effects of shear stresses on the crack. 'E  is equal to E  for 

plain stress, or ( )21 ν−E  for plain strain. Stress intensity factor for the first mode 

crack  is given as: ( 1K )
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cc
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where  and  are given in Equations (3.22) and (3.24). Finally, the energy 

consumed can be written using the Equation (4.1) as: 

)( czM )(aF

 

[ ]2)()( czMaDCE = ,                  (4.3) 

 

where the coefficient, , is also given in Equation (3.23). )(aD

 

The expressions given above for the energy consumed (Yang, Swamidas, & 

Seshadri, 2001) are valid only when the increase in strain energy through the cracked 

side of beam is taken into account. Increase in strain energy through the cracked 

beam surface can correspond to the energy of linear springs located along the crack-

edge that can be transformed into the energy of rotational springs placed along the 

crack tip. 
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However, when slope change at the crack location of the beam is considered, 

angular displacement of the crack ( )cθ∆  also results with the angular displacement 

of the beam ( c )φ∆  at the crack location as shown in Figure 4.1. Angular 

displacement of the beam causes the additional stress field in the vicinity of crack tip. 

Similar to the additional strain energy definitions, stress energy change  can 

also be defined by using linear or rotational spring models 

( V∆ )

( ))()( , φ
c

v
c kk  seen in Figure 

4.1. As the strain caused by the crack decreases the potential energy, additional stress 

field increases it. Thus, angular displacement of the beam due to the bending 

decreases the energy consumed. Here, it should be noted that negative compressive 

strain field required to be considered under the neutral layer in the vicinity of crack, 

is assumed to be approximately equal to strain at the crack tip. These minor effects 

neutralise each other and thus can be neglected in the model. Resultantly, the energy 

consumed can be written as follows: 
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where, c
c

c h
a θφ ∆=∆ .  The stiffness relation can also be established by providing 

bending moment equivalence as: 
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M 
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Figure 4.1 Angular displacement of the beam caused by a crack. 

 

Thus, Equation (3.23) can be redefined for 5.0≤cha , to include the effects of 

stress field caused by the angular displacement of the beam.  
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The energy consumed is distributed along the beam as given in Equations (3.26), 

(3.27), and (3.28) (Yang, Swamidas, & Seshadri, 2001). 

 

According to the principle of conservation of energy, maximum potential and 

kinetic energies should be equal along the beam when there is no crack. If a crack 
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exists on a beam, the energy consumed results with the decrease in maximum 

potential energy with the assumption of no mass loss at the crack location. As a 

consequence, balance of maximum energies can be obtained as follows: 

 

( )( )∫
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=Γ−Γ−Γ
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KECEPE dz
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0 ,                 (4.9) 

 

where,  and  represent the distributions of the maximum potential and 

kinetic energies as: 
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Equation (4.9) can be approximated to zero using the Rayleigh–Ritz method 

explained in Section 3.2.2. Equation (3.8) is rewritten as follows: 
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4.3 Energy Balance in Multiple Cracked Beams 

 

In the case of multiple cracks, parameters in Equations from (4.1) to (4.8) can be 

modified as  where )()()( ,,,, icicicii bhzar ntoi 1= . The effect of interference of cracks 

on the distribution of the energy consumed for a multiple cracked beam is considered 

throughout the beam length. Typical distributions are shown in Figure 4.2 for the 

case of three cracks as an example. It can be noticed that, the distributions cannot be 

directly superposed, because the overlap of the distributions is considerably 

influential on the result especially when the cracks approach each other. Therefore, 
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the contribution of each crack to the maximum potential energy can be arranged 

according to the change of strain disturbance at other crack locations. In this respect, 

although the energy consumed caused by crack 1 results with the decrease of 

maximum potential energy in part 1 and part 2, strain disturbance as a result of crack 

1 changes phase at , and the energy consumed caused by crack 1 results with the 

increase of maximum potential energy in part 3. Strain disturbance changes phase 

again at , and crack 1 negatively effects the maximum potential energy in part 4. 

Similarly, contributions of other cracks on maximum potential energies are seen in 

Figure 4.2.  

)2(cz

)3(cz

 

 
Figure 4.2 Example distributions of the energies consumed caused by three cracks and 

contributions of these distributions to the maximum potential energy. 

 

As a consequence, if n  cracks exist on the beam surface, the following equations 

can be written for  parts; 1+n
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Thus, the energy balance can be obtained by satisfying the following equation: 
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Equation (4.14) can also be approximated to zero by using the Rayleigh–Ritz 

method. 

 

4.4 Results and Discussion 

 

Results are represented by applying the method on several non-uniform cantilever 

beams which are dimensioned as seen in Figure 4.3. Relations between heights and 

length, or widths and length for tapered beams can be defined as follows; 
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Figure 4.3 Geometry of a beam. 

 

Four different cantilever beams have the same density, 3mkg7800=ρ  and 

modulus of elasticity, . The beams have also the following geometric 

and material properties; 

GPa210=E

 

Beam1; 1,25.0,m02.0,m6.0 121211 ======= bbhhbhL bh αα ,  

3.0=ν  

Beam2; 1,2,m02.0,m6.0 11 ===== bhbhL αα ,  3.0=ν  

Beam3; 5.0,25.0,m02.0,m6.0 11 ===== bhbhL αα ,  3.0=ν  

Beam4; 0,1,5.0,m02.0,m8.0 11 ====== ναα bhbhL  (Zheng & Fan, 

2001). 

 

The mode shape function of the beams is given in Table 3.1. 

 

Results of the method are compared with the results of commercial finite element 

program (ANSYS©) for Beam1, Beam2, and Beam3. Cracks are considered as the 

slots causing discontinuities on the beams. They are formed by subtracting thin 
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transverse blocks from “solid95” beams in the program. Element size is set to 0.009 

m with the “esize” command, and crack widths are chosen as 0.0004 m. Much 

smaller sized elements are unavoidable in the vicinity of cracks to observe the effects 

of discontinuities. Smaller sizes are automatically provided by the use of 

“smrtsize,1” command in the free meshing procedures. As a result, modal 

frequencies are obtained by using “modal analysis” as the analysis type. It should be 

noted that, changes in the element number caused by variation of crack location and 

crack size, have negligible effects on the results. Natural frequencies of the un-

cracked beams obtained by the Rayleigh–Ritz approximations and the finite element 

program can be seen in Table 4.1. 

 
Table 4.1 Natural frequencies of the un-cracked beams. 

 

Beams Vibration 
modes 

Frequencies 
(Hz) obtained 
by Rayleigh–
Ritz (4 terms) 

Frequencies 
(Hz) obtained 
by Rayleigh–
Ritz (5 terms) 

Frequencies 
(Hz) obtained 
by Rayleigh–
Ritz (6 terms) 

Frequencies 
(Hz) obtained 

by finite 
element 
program 

Beam1 
1 
2 
3 

55.3163 
215.4652 

- 

55.3157 
214.4026 
520.6647 

55.3153 
214.4007 
514.4896 

55.350 
214.183 
511.814 

Beam2 
1 
2 
3 

43.4178 
374.8819 

- 

43.3889 
373.7616   

1146.4491 

43.3870 
373.7518 

1146.4276 

43.4305 
369.933 
1114.86 

Beam3 
1 
2 
3 

66.0191 
230.7768 

- 

66.0146 
228.8314   
540.6372 

66.0144 
228.8170 
529.9834 

66.036 
228.550 
527.355 

Beam4 
1 
2 
3 

28.4894 
136.7583 

- 

28.4866 
136.6345   
355.5734 

28.4863 
136.4713   
354.0987 

- 
- 
- 

 

Vibrations of the beams defined above are inspected in the cases of single, double, 

and multiple cracks as represented in the following examples. 

 

4.4.1 Example 1: Tapered Beams with a Crack 

 

Beam1, Beam2, and Beam3 are examined by following crack properties; 

 

)variable(,3.0,15.0 11 cc zhha =  
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Results of the method are in good agreement with the results of the finite element 

program for single crack cases of different beams as shown in Figures 4.4, 4.5, and 

4.6. The method is valid for the crack depth ratio, 5.0≤cha  as defined before. It is 

for this reason that, normalised crack locations of Beam1 and Beam3 are considered 

between 0.2 and 1 for , and between 0.5 and 1 for . Application 

of the Rayleigh-Ritz approximation with 4, 5, and 6 terms is sufficient to obtain the 

best agreement with the first, second, and third mode of vibrations respectively. It is 

clear that higher vibration modes require the use of larger number of terms. 

115.0 ha = 13.0 ha =

 

If the trends of the natural frequency ratios are comparatively examined for the 

cracks on Beam1 and Beam2, some distinctions can be obtained. Natural frequency 

reductions of Beam1 is lower than that of Beam2 when non-dimensional crack 

locations are lower than 0.8. Besides, node points, where no natural frequency 

reduction is obtained, are shifted from root to tip with the decreasing truncation 

factor. On the other hand, relatively minor influences of second taper on natural 

frequency ratios can be observed when Figure 4.4 is compared with Figure 4.6. 

Variation of the mass and inertia moment together with the variation of crack depth 

ratio along the beam are all influential on the observation of the natural frequency 

ratios seen in the figures. 

 

4.4.2 Example 2: Tapered Beam with Two Cracks 

 

Beam3 is examined by following crack properties; 

 

)variable(,91.0,3.0,15.0,3.0 )2()1(11211 cc zLzhhaha ===  

 

Natural frequency ratios obtained by the method are also quite agreeable with 

those obtained by the finite element program for double cracked Beam3 as shown in 

Figure 4.7. It can be observed that, as crack 2 comes closer to crack 1, the natural 
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frequency ratios of the double cracked beams have a tendency of approaching the 

natural frequency ratio of beams having single crack at . )1(cz
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Figure 4.4 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration of 

Beam1 with variably located crack having depths (a) 115.0 ha = , and (b) . ( o ) Ansys 

results,     ( —– ) approximation with 4 terms, ( – – ) approximation with 5 terms, ( --- ) 

approximation with 6 terms. 

13.0 ha =
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Figure 4.5 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration of 

Beam2 with variably located crack having depths (a) 115.0 ha = , and (b) . ( o ) Ansys 

results,     ( —– ) approximation with 4 terms, ( – – ) approximation with 5 terms, ( --- )  

approximation with 6 terms. 

13.0 ha =
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Figure 4.6 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration of 

Beam3 with variably located crack having depths (a) 115.0 ha = , and (b) . ( o ) Ansys 

results,     ( —– ) approximation with 4 terms, ( – – ) approximation with 5 terms, ( --- )  

approximation with 6 terms. 

13.0 ha =

 

4.4.3 Example 3: Tapered Beam with Four Cracks 

 

Beam4 has the following crack properties; 
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Figure 4.7 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration of 

double cracked Beam3 with variably located second crack having depths (a) , and (b) 

. ( o ) Ansys results, ( —– ) approximation with 4 terms, ( – – ) approximation with 5 

terms, ( --- )  approximation with 6 terms. 

12 15.0 ha =

12 3.0 ha =

 

Natural frequency ratios of Beam4 having four cracks are seen in Figures 4.8 and 

4.9 for the first and second mode of vibration respectively. Good agreement with the 

results of Zheng & Fan (2001) is obtained by using four term approximation for the 
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first mode of vibration as seen in Figure 4.8. However, small differences between the 

results of two methods for a beam with four cracks can be seen in Figure 4.9 which 

depicts the second mode natural frequency ratios. Negligible differences increase as 

the crack depth increases. It can be observed that, as the number of terms in 

deflection function increases, the difference between the results decreases as 

expected. In Figure 4.9, the natural frequency ratios coincide for all considered crack 

depths at the normalised locations 0 and 0.75. 

 

It should be noted that performing the finite element program with the acceptable 

number of elements that results with the correct solution is not possible for the 

Beam4 having four cracks. Furthermore, processes can exceed the memory 

limitations of computers with the previously defined crack and meshing properties, 

especially when the cracks are too close each other. 
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e 4.8 Natural frequency ratios of the first mode vibration of Beam4 with variably 

d fourth crack having depths ( —– ) 14 1.0 ha = , ( ···· ) , ( --- ) 

 as given in the paper of Zheng & Fan (2001); and findings of method with 4 

 ( o ). 
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Figure 4.9 Natural frequency ratios of the second mode vibration of Beam4 with variably 

located fourth crack having depths ( —– ) 14 1.0 ha = , ( ···· ) , ( --- ) 

 as given in the paper of Zheng & Fan (2001); and findings of method with 4 

terms ( o ), 5 terms ( ⁬ ), and 6 terms ( ∆ ). 

14 2.0 ha =

14 3.0 ha =

 

4.5 Conclusion 

 

The energy based method presented by Yang, Swamidas, & Seshadri (2001) is 

modified to obtain the vibration of multiple cracked non-uniform Euler–Bernoulli 

beams. Effects of the stress field caused by the angular displacement of the beam in 

addition to strain energy change caused by the crack are both taken into account in 

the energy consumed. In the cases of multiple cracks, the energy consumed caused 

by one crack varies with the influence of other cracks. Examples are presented on 

several tapered cantilever beams. The results of the method presented agree well with 

the results of the finite element program when the beam has single or double cracks. 

Additionally, the first mode frequencies obtained for the multiple cracked Beam4 has 

an excellent agreement with the results of Zheng & Fan (2001), although small 

differences are obtained in the second mode. 

 

Instead of the analytical methods, uses of the energy distributions in numerical 

approaches simplify the solution of non-uniform beams. However, these approaches 
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suffer from the interaction of crack effects in multiple cracked beams. Proposal for 

the solution of this problem is presented in this chapter. It is observed that double 

cracked beam behaves like a single cracked beam when both cracks come closer to 

each other, as one would expect.  

 

Coupling effects are neglected in this study. It should be remembered that 

bending-torsion coupling cannot be influential on lower vibration modes of non-

uniform Euler–Bernoulli beams. Furthermore, when the beams have cracks with 

acceptable depth ratios, bending-torsion coupling has still negligible influence on 

lower vibration modes as seen in the figures representing the comparatively 

examined method results. However, this coupling may be more influential on the 

vibration of the stepped beams. 

 

Significant advantage of the method can be performing the processes in quite 

short durations in the order of seconds. Thus, natural frequencies required for the 

frequency based inverse methods like prediction schemes or contour graphs can be 

easily obtained for each different beam. In practical applications, natural frequencies 

may be measured in some error interval that can be kept in minimum by taking large 

sampling frequencies. 

 

Effects of truncation factors are evaluated with respect to variation of the natural 

frequency ratios. Results show that cracks cause lower natural frequency ratios when 

the beam has lower truncation factor except for the cracks near the root of beam. It is 

clear that, the truncation factor of beam’s height is much more effective than the 

truncation factor of beam’s width. Another finding can be the shift of node points 

from root to tip with decreasing truncation factor. 

 

 



CHAPTER FIVE 

FLEXURAL VIBRATION ANALYSIS OF NON-UNIFORM BEAMS WITH 

MULTIPLE CRACKS ON UNUSUAL EDGE 

 

This chapter is reorganization of the paper published as “VIBRATION 

ANALYSIS OF NON-UNIFORM BEAMS HAVING MULTIPLE EDGE CRACKS 

ALONG THE BEAM’S HEIGHT” in International Journal of Mechanical Sciences 

(Mazanoglu & Sabuncu, 2010a). 

 

5.1 Introduction 

 

All damages instantaneously change the vibration characteristics of the structures. 

It is for this reason that, definition of changes in vibration parameters is essential key 

for identification of damages. In existing literature, almost all researchers deal with 

the bending vibration of beams having width-edge crack at the stretched surface. 

More endurance fall and consequently more natural frequency decrease may be the 

reason of this interest. However, vibration of beams having height-edge crack may 

also be significant if the external forces bend the beam in the plane of crack tip axis. 

Stress/strain behaviour of the cracked planes under tension is given in a handbook 

presented by Tada, Paris, & Irwin (1973) together with many cases of the cracked 

structures. A thin slender beam can be considered in this scope to analyse its 

vibration in both planes. If the cracked beam has considerable thickness, vibration 

effects of the height-edge cracks should be different from those of width-edge cracks. 

This issue is not presented in existing literature. 

 

This chapter presents a vibration analysis of non-uniform beams having multiple 

height-edge open cracks. The method uses the changes in the strain energy 

distribution caused by the cracks. Change of the strain energy distribution given by 

Yang, Swamidas, & Seshadri (2001) is modified for height-edge crack to obtain the 

distribution of the energy consumed. The effect of additional bending of the beam 

due to the crack is determined by developing a simple spring model at the crack 

location. Coupling effects are neglected for low bending vibration modes of the 

53 
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Euler–Bernoulli beam. In the case of multiple cracks, a strain disturbance model is 

presented to overcome the problem of the methods based on a variational principle, 

which can be described as interaction of the crack effects. Results obtained by the 

present method are compared with the results of a commercial finite element 

program (ANSYS©) for several tapered cantilever beams and a fixed–fixed beam. 

Influences of the taper, boundary and crack location on modal frequencies are given 

in the figures. 

 

5.2 Theoretical Explanations 

 

According to fracture mechanics theory, structural strain energy increases with the 

crack growth. Increase in strain energy, which is equal to the energy consumed, 

under the constant external bending moment is defined as follows: 

 

∫==∆
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c dahGCEU
0

.                  (5.1) 

 

G  is called the strain energy release rate that can be written as '2
1 EKG =  for the 

transverse vibration of the beam by taking the effects of only bending stresses into 

account and neglecting the effects of shear stresses on the crack. 'E  is equal to E  for 

plain stress, or ( )21 vE −  for plain strains (Tada, Paris, & Irwin, 1973). 

 

Stress intensity factor for the first mode edge crack in semi-infinite body  is 

given as: 
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where  is the bending moment that formulated in Equation (3.22). The energy 

consumed can be written using the Equation (5.1) as: 

)( czM
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[ ]2)()( czMaDCE = ,                  (5.3) 

 

where  can be formulated for the edge crack as follows: )(aD
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π

= .                  (5.4) 

 

Equation (5.4) is true for the plane stresses or strains and consequently for the 

slender beam that has . When the edge cracked beam has the considerable 

height, ( ), Equation (5.4) is incomplete unless the beam is assumed to be only 

strained due to the crack as given in many works in the literature. However, opening 

of the crack also causes additional bending of the beam during the transverse 

vibration. In this case, average strain along the height of beam and thus stress amount 

should be half of the maximum values. This means, the stress intensity factor is 

halved for the considered opening mode of crack. Consequently, Equation (5.4) 

should be multiplied by the factor of 

cc bh <<

ch

41=ε  for the rectangular beams. 

 

Strains are neutralised by the tensile stresses at the un-cracked cross-sections. 

However, additional strains come into existence at the crack location. Since the open 

crack model is used, only additional strains are considered, that is why the neutral 

layer is not mentioned in this chapter. Nevertheless, 'E  is modified as ( )225.01 ν−E  

for a beam with height-edge open crack to contribute the effect of breathing. Increase 

in strain energy through the stretched surface can correspond to the energy of linear 

springs located at the opened side of the height-edge crack when the beam is under 

the effect of bending moment in zw−  plane. The energy of linear springs can be 

transformed into the energy of rotational springs placed at the closed side as shown 

in Figure 5.1. 
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Figure 5.1 Assumed opening form of the crack as the external moment applied to the beam. 

 

Since the cross-section decreases at the crack location, angular displacement of 

the crack ( )y~θ∆  results in the angular displacement of the beam ( )φ∆ . Strain is 

neutralised by the tensile stress at the un-cracked part of crack location and thus 

energy is not consumed in this region. That means strain energy of ( )φ∆  should be a 

base for the additional strain energy at the crack location. At result, Equation (5.6) 

can be modified as follows: 
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Relation between the opening angles ( φ∆ , 0θ∆ ) at the tip ( ) and mouth 

( ) of the crack can be settled as: 

ay =~

0~ =y

 

( ) 0
3 θφ ∆=∆ cha .                    (5.8) 

 

Average angular displacement avθ∆  is equal to 20θ∆ . If bending moment 

equivalence is provided on the stretched surface, relation between the stiffness and 

angular displacements can be written as: 
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Varying opening angles and stiffness can be defined by following equations: 
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Thus, Equation (5.7) can be arranged using Equations (5.8)-(5.11) as follows: 
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Consequently, Equation (5.4) can be redefined for ( ) 5.03 ≤cha  and 5.0≤cba  

as following equation:  
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Increase in strain energy corresponding to the energy consumed is distributed 

along the beam length as formulated by Equations (3.26), (3.27) and (3.28) given in 

Chapter 3. The only difference is described in Equation (3.28) which is modified for 

the height-edge crack as follows: 
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π .               (5.14) 

 

If a crack exists on a beam, the energy consumed results in the decrease of 

maximum potential energy with the assumption of no mass loss at the crack location. 

As a consequence, balance of maximum energies can be obtained by Equation (4.9) 

that is approximated to zero by means of the Rayleigh–Ritz method. Resulting 

formulation for the mode shape function is given in Equation (3.9). The mode shape 

function includes series of functions satisfying the end conditions tabulated in Table 

3.1. 

 

5.3 Energy Balance in Beam with Multiple Height-Edge Cracks 

 

In the case of multiple height-edge cracks, some parameters used in previous 

equations can be modified as  where )()()( ,,, icicici bhza ntoi 1= . Each height-edge 

crack partially interferes (as much as its depth ratio) the strain disturbances created 

by the other cracks. By means of this assumption, the distribution of the energy 

consumed throughout the beam length is modified for the multiple cracked beams by 

affecting the influence ratios described below. 
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Figure 5.2 Distribution of the energy consumed caused by  crack. thi

 

Sketch of the distribution of the energy consumed caused by crack is shown in 

Figure 5.2. It can be noticed that, the energy consumed is maximum at the crack 

mouth where there is no stress and maximum strain. Stress and strain values are 

approximately equal at the crack tip and remaining section of the beam’s width at the 

crack location. Consequently, the energy consumed becomes zero on this line as seen 

in Figure 5.2. In our assumption, rotation of the beam around the z axis is neglected 

since the ratios (

thi

)(ici ba , ( 3
)(ici ha ) ) related with the crack depths are less than 0.5 

and the rectangular beam bends in zw−  plane. Therefore, the energy consumed 

immediately spreads along the beam’s width with the influences of the inner stresses 

of the beam. The energy consumed caused by  crack decreases at the other crack 

locations where the strain waves are partially damped. The ratio of strain waves 
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passing from the remaining un-cracked section of the location of crack i+1 is equal to 

)1(11 ++− ici ba . As a result, the energy consumed observed in the neighbour parts of 

 crack decreases at this ratio in part i+2 as shown in Figure 5.2. If thi )(),( ipicγ  defines 

the influence ratio of the energy consumed caused by crack i on part i, influence 

ratios of crack i on the neighbour parts can be written as follow: 
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At this point of view, the influence ratios of the energy consumed in parts δi +  

and  are generalised as follow: δi −
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The distributions of the energy consumed are obtained similarly for the other 

cracks also. Thus, the decrease of potential energy in each part of the beam is 

obtained by superposing the consumed energies caused by all cracks. If n  height-

edge cracks exist on the beam, the following energy balance equations can be written 

for  parts: 1+n
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Thus, the total energy given in Equation (4.14) is approximated to zero by using 

the Rayleigh–Ritz method. 
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5.4 Results and Discussion 

 

Results are represented by applying the method on several fixed–fixed and 

cantilever beams of which dimensions are shown in Figure 5.3. Variation of the 

height and width of the beams is given in Equations (4.15) and (4.16) respectively. 

 

Three different beams considered have the same density 3mkg7800=ρ , 

modulus of elasticity , and Poisson ratio GPa210=E 3.0=ν . The beams also have 

the following geometric properties: 

 

Beam1; 75.0,5.0,m02.0,m6.0 12b12h11 ======= bbhhbhL αα  

Beam2; 75.0,5.1,m02.0,m6.0 bh11 ===== ααbhL  

Beam3; 25.2,5.0,m02.0,m6.0 bh11 ===== ααbhL . 

 

 

Figure 5.3 Geometry of a beam. 
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All these beams are considered as cantilevers fixed from Lz = . In addition, 

Beam1 is reconsidered as fixed–fixed beam. 

 

Results obtained by the present study are compared with the results of commercial 

finite element program (ANSYS©) for the beams considered. Properties of finite 

element program presented in Section 4.4 for modal analysis of the beam with 

transverse cracks are used also for modal analysis of the beam with height-edge 

cracks. Natural frequencies of the un-cracked beams obtained by Rayleigh–Ritz 

approximations and the finite element program can be seen in Table 5.1. 

 
Table 5.1 Natural frequencies of the un-cracked beams. 
 

Beams Vibration 
Modes 

Frequencies 
(Hz) obtained 
by Rayleigh-
Ritz (4 terms) 

Frequencies 
(Hz) obtained 
by Rayleigh-
Ritz (6 terms) 

Frequencies 
(Hz) obtained 
by Rayleigh-
Ritz (8 terms) 

Frequencies 
(Hz) obtained 

by Finite 
Element 
program 
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54.9031 
249.6583 
689.958 

54.8964 
249.2314 
636.7900 

54.8963 
249.2008 
632.941 

54.945 
248.75 
629.05 
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48.8426 
344.3177 
1053.128 

48.8420 
344.0024 
996.4606 

48.8420 
344.0013 
995.1637 

48.91 
341.69 
976.5 
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40.311 
225.5448 
633.242 

40.3082 
224.9975 
609.3576 

40.3082 
224.9894 
607.0943 

40.36 
224.62 
603.60 
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217.6039 
598.556 

1181.955 

217.6028 
597.4309 
1169.652 

217.6027 
597.4229 
1169.194 

217.6 
594.42 
1155.6 

 

 

Vibrations of the beams having single, double, and triple cracks are investigated 

as follows.  
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5.4.1 Example 1: Tapered Cantilever Beams with a Crack 

 

Beam1, Beam2 and Beam3 are examined by following crack properties: 

 

)(var4.0,2.0 11 iablezbba cc =  
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Figure 5.4 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration 

of cantilever Beam1 with variably located crack having depths 12.0 ba =  and . 

Results of Ansys for  ( o ), and for 

14.0 ba =

12.0 ba = 14.0 ba =  ( * ). Results of approximations 

with 6 terms ( --- ), and 8 terms ( —– ). 
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Results of the present method are in good agreement with the results of the finite 

element program for single crack cases of three different tapered cantilever beams as 

shown in Figures 5.4, 5.5 and 5.6. The analyses are performed for different crack 

location intervals in which acceptable ratios of crack depths are provided.  
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Figure 5.5 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration 

of cantilever Beam2 with variably located crack having depths 12.0 ba =  and . 

Results of Ansys for  ( o ), and for 

14.0 ba =

12.0 ba = 14.0 ba =  ( * ). Results of approximations 

with 6 terms ( --- ), and 8 terms ( —– ). 
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Figure 5.6 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration of 

cantilever Beam3 with variably located crack having depths 12.0 ba =  and . 

Results of Ansys for  ( o ), and for 

14.0 ba =

12.0 ba = 14.0 ba =  ( * ). Results of approximations 

with 6 terms ( --- ), and 8 terms ( —– ). 

 

Application of Rayleigh–Ritz approximation with six terms is sufficient to obtain 

good agreement with the natural frequency ratios of the first and second mode 

vibrations. However, use of the method with eight terms gives better results for the 

third mode of vibration as seen in the figures. Natural frequencies of the un-cracked 

beams given in Table 5.1 can be used to determine required number of terms to be 
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used in the method. It can be observed that, the number of terms, which is sufficient 

to obtain accurate natural frequencies for the un-cracked beams, also becomes 

sufficient for the cracked beams. In this sense, four termed approximation can be 

applicable for only the first vibration mode as can be observed in the table.  
 

If the trends of the natural frequency ratios are comparatively examined for the 

cracks on the beams, some distinctions can be observed. Increase of the height taper 

factor, hα , results in the highest natural frequency reduction near the root of the 

beam that can be seen by the comparison of Figures 5.4 and 5.5. Similarly, higher 

width taper factor, bα , causes the more natural frequency reductions near the root as 

seen in Figure 5.6. In addition, node points, where no natural frequency reduction is 

obtained, are shifted from tip to root with the increasing taper factor. It can be clearly 

seen that hα  is more influential than bα . Resultantly, variation of the mass and 

inertia moment together with the variation of crack depth ratio along the beam are all 

influential on the natural frequency ratios seen in the figures. 

 

5.4.2 Example 2: Tapered Fixed–Fixed Beam with a Crack 

 

Beam1 is fixed from both ends and it is examined by following crack properties: 

 

)(var4.0,2.0 11 iablezbba cc =  

 

Figure 5.7 shows that the application of the method when analysing a beam whose 

both ends are fixed, gives good results that agree well with the results of the finite 

element program. Although the natural frequencies of the fixed–fixed beam are 

higher than those of cantilevers due to the increased rigidity, one sees that the 

accuracy of the present method does not depend on the different boundary 

conditions. Figure 5.7 also shows that the analysis of a fixed–fixed beam using six 

terms instead of eight suffices and gives results which agree with the finite element 

program. However, when the six termed function is used in the analysis of the 

cantilever, there is a discrepancy especially for the third mode frequency ratios. 

Maximum natural frequency drops are seen in Figure 5.7 when the cracks are located 
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near the ends of the beam where maximum bending moments occur. Comparing 

Figure 5.7 to Figures 5.4, 5.5, and 5.6 shows that there exists one more node points 

where there is no natural frequency reduction. This is a result of the bending 

moments at the two ends of the fixed–fixed beam. 
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Figure 5.7 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration of 

fixed-fixed Beam1 with variably located crack having depths 12.0 ba =  and . 

Results of Ansys for  ( o ), and for 

14.0 ba =

12.0 ba = 14.0 ba =  ( * ). Results of approximations 

with 6 terms ( --- ), and 8 terms ( —– ). 
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5.4.3 Example 3: Tapered Cantilever and Fixed–Fixed Beams with Two Cracks 

 

Beam1 is examined by the following crack properties: 
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Figure 5.8 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration of 

double cracked cantilever Beam1 with variably located second crack having depths 

 and  as 12 2.0 ba = 12 4.0 ba = 11 2.0 ba = . Results of Ansys for 12 2.0 ba =  ( o ), and for 

 ( * ). Results of approximations with 6 terms ( --- ), and 8 terms ( —– ). 12 4.0 ba =
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Natural frequency ratios obtained by the method agree with those obtained by the 

finite element program for the double cracked cantilever and double cracked fixed–

fixed Beam1 as shown in Figures 5.8 and 5.9. Agreements are achieved with the 

same number of terms used for single cracked beams. 
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Figure 5.9 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration of 

double cracked fixed-fixed Beam1 with variably located second crack having depths 

 and  as 12 2.0 ba = 12 4.0 ba = 11 2.0 ba = . Results of Ansys for 12 2.0 ba =  ( o ), and for 

 ( * ). Results of approximations with 6 terms ( --- ), and 8 terms ( —– ). 12 4.0 ba =
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Trends of the natural frequency reductions of the double cracked cantilever and 

both ends fixed beams are similar to the trends obtained from single cracked beams 

seen in Figures 5.4 and 5.7 except for the cases of proximity of the cracks. The 

difference arises from partially damped strain disturbances caused by the cracks 

which interact with each other.  
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Figure 5.10 Natural frequency ratios for the (i) first, (ii) second and (iii) third mode vibration 

of triple cracked cantilever Beam1 with variably located third crack having depths 

 and  as 13 2.0 ba = 13 4.0 ba = 121 2.0 baa == . Results of Ansys for  ( o ), 

and for 

13 2.0 ba =

13 4.0 ba =  ( * ). Results of approximations with 6 terms ( --- ), and 8 terms ( —– ). 
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It is clear that, maximum frequency ratio of the double cracked Beam1 should be 

equal to the frequency ratio of the Beam1 having one crack located at the position, 

. Interestingly, using the presented method or the finite element program gives 

the same results, which indicates that there is no clear effect of coupling on the 

considered vibration modes even if the beams have two cracks. 

)1(cz

 

5.4.4 Example 4: Tapered Cantilever Beam with Three Cracks 

 

Beam1 has the following crack properties: 
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Natural frequency ratios of cantilever Beam1 having three cracks are seen in 

Figure 5.10 for the first three modes of vibrations. Good agreements are also 

obtained. As seen in the figures for single, double and triple cracked beams, eight 

termed approximation is sufficient to obtain good agreement with the finite element 

program for the first three modes of vibration. Thus, it can be said that the number of 

cracks along the beam is not effective on the number of terms required to be used in 

the approximation. As seen in the figures, crack depths are also not influential over 

the number of terms required. 

 

It should be noted that performing the finite element program with the acceptable 

number of elements that results in the correct solution requires very long 

computation time when the cracks are too close to each other for double and triple 

cracked beams. Processes can exceed the memory limitations of computers with 

defined cracks and meshing properties. 

 

5.5 Conclusion 

 

The energy method presented by Yang, Swamidas, & Seshadri (2001) is modified 

to obtain the vibration of multiple height-edge cracked non-uniform Euler–Bernoulli 
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beams. Fracture mechanics theory is adapted to the height-edge open cracks via a 

proposed model for the vibration behaviour of crack. The energy consumed is 

determined by forming the opening of the crack and distributing the strain 

disturbance along the beam’s length. If the beam has multiple cracks, it is assumed 

that the strain disturbance caused by one of the cracks is damped as much as the 

depth ratio of the other cracks at their locations. Consumed energies caused by the 

cracks are superposed to obtain the overall energies consumed from the potential 

energy. Thus, interaction of the multiple crack effects, which is the problem for the 

methods based on a variational principle, is defined by the strain disturbance model 

presented in this chapter. 

 

When the results of the method are compared with the results of a commercial 

finite element program for a fixed–fixed beam and the cantilever beams having 

different taper factors, good agreements are found. Significant advantage of the 

method can be performing the processes in quite short durations in the order of 

seconds when the method compared with the finite element program. Even if the 

beam has multiple cracks, the solution time of the method does not rise as much as 

the solution time of the finite element program, because the mode shape function 

used in the approximation method is not changed in the analysis of the multiple 

cracked beam. Thus, natural frequencies required for the frequency based inverse 

methods like prediction schemes or contour graphs can easily be obtained for each 

different beam. In practise, it is not impossible to obtain exact natural frequency 

ratios represented in figures. Sensitivity and resolution of the measurement system 

should be satisfactory. Restriction caused by the sampling can be kept to a minimum 

by the acquisition of long data with sufficient sampling frequency. Furthermore, 

sensitivity in the frequency domain can be improved by several statistical methods. 

 

Vibration of the beam with height-edge cracks can also be described as the unique 

plane vibration of width-edge cracked beam. Vibrations in the plane perpendicular to 

crack tip axis are well-known with many papers presented in literature. Unique plane 

vibrations obtained by the present method can be critical in measuring and crack 

identification. Determination of the vibration characteristics in two planes results in 
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adequacy of lower frequency modes especially if the cross-section of the beam is not 

square. 

 

Coupling effects are neglected in this chapter. Bending-torsion, which is probably 

the most coupling type, can have considerable influence if the cracks become deep 

enough. However, admissible sized cracks do not have clear influence of coupling on 

the lower modes of bending vibrations as obtained from the present results. It is 

certain that coupling is effective at the higher modes of vibration even if the beam is 

un-cracked. 

 

 



CHAPTER SIX 

FLEXURAL VIBRATION ANALYSIS OF NON-UNIFORM BEAMS 

HAVING DOUBLE-EDGE BREATHING CRACKS 

 

This chapter is reorganization of the paper published as “FLEXURAL 

VIBRATION OF NON-UNIFORM BEAMS HAVING DOUBLE-EDGE 

BREATHING CRACKS” in Journal of Sound and Vibration (Mazanoglu & 

Sabuncu, 2010b). 

 

6.1 Introduction 

 

Understanding the vibration effects of cracks enables their recognition in practical 

applications of vibration monitoring. However until date, there has been no work 

analysing asymmetric double-edge crack in the literature, mainly because the 

definition of a crack advancement function for all different depth combinations of the 

double-edge crack would be quite a complicated task. 

 

This chapter presents a method for the flexural vibration of non-uniform Rayleigh 

beams having double-edge transverse cracks which are symmetric or asymmetric 

around the central layer of the beam’s height. The breathing crack models are 

employed because the external moments change direction in a period of vibration. 

Distribution of the energy changes along the beam’s length is determined together 

with contributing the effects of tensile and compressive stress fields that occur in the 

vicinity of the crack tips due to the additional angular displacement of the beam. 

Effects of neutral axis deviations are also included in the model. The Rayleigh–Ritz 

method is applied on total energy distribution for analysing the vibration of the 

beam. Cantilever and simply supported beams are presented as examples and good 

agreements are obtained when the employed method results are compared with the 

results of the Chondros, Dimarogonas, & Yao (1998) and the results of the 

commercial finite element program (ANSYS©). The effects of crack’s asymmetry 

and positions of cracks on the natural frequency ratios are shown graphically. 
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Finally, the results obtained by open and breathing crack models are discussed 

comparatively. 

 

6.2 Vibration of Beams with a Single-Edge and Double-Edge Crack 

 

Fracture mechanics theory describes the change of structural strain/stress energies 

with crack growth (Sih, 1973). The strain stored due to a crack is determined by 

means of the stress intensity factor for the Mode I crack and thus strain energy 

release rate. Clapeyron’s Theorem states that only half of the work done by the 

external moment is stored as strain/stress energy when a crack exists on a beam. The 

remaining half is the energy consumed by the crack that is given in Chapter 3 by the 

Equations (3.21)-(3.24). 

 

The energy consumed given in Equation (3.21) can also be explained by the 

spring model. The energy change due to crack opening can be balanced by the 

energy stored by a rotational spring model located at the crack tip. Since there is no 

spring in reality, the energy stored by the spring model is lost somewhere and is 

called ‘the energy consumed’. The crack opening results in additional angular 

displacement of the beam causing also tensile stresses in the vicinity of crack tips. 

The energy of the tensile stress can be considered as the energy of the rotational 

spring model located at the un-stretched side of the beam as shown in Figure 6.1(a). 

When this effect is considered, the energy consumed is determined by taking the 

difference between the energy effects of the crack opening and tensile stress caused 

by the bending of the beam. In this case, the coefficient  is modified as given in 

Equation (4.8) (Mazanoglu, Yesilyurt, & Sabuncu, 2009). 

)(aD

 

In deriving Equation (4.8), minor effects of crack closing and compressive 

stresses caused by the bending of the beams are neglected. This open crack model 

can be sufficient for single-edge cracked beams vibrating in small amplitudes. When 

beams having double-edge cracks are bent, the crack on the stretched side opens up, 

and the crack on the compressed side of the beam closes. This makes it inevitable to 

use the breathing crack model for analysing the double-edge cracked beam. As 
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shown in Figure 6.1(b), this model covers the superposition of two cases: elongation 

of the beam due to crack opening and shortening of the beam due to crack closing. It 

is clear that, an additional crack will make the beam bend more, mainly because of 

the additional cross–section decrease and thus the stiffness loss of the beam. The 

beams will posses extra displacement near the open crack, in contrast to the 

displacement in negative direction near the closed crack. Tensile and compressive 

stresses also occur in the vicinity of the crack tips. Since some of the lost energy 

caused by the displacement changes is restored by the effect of the stress changes, 

the net energy consumed can be described by the following expression for the 

maximum deflection of a beam having double-edge breathing crack: 

 

( )
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            (6.1) 

 

The energy changes for the breathing crack can be obtained by the model 

including the equivalent rotational springs shown in Figure 6.1(b). Additional 

rotational springs are located on the tip of the crack opening, for obtaining the energy 

of the compressive stress and are located on the tip of the closed crack for obtaining 

the energy change due to the displacement in negative direction. This model, which 

includes the extensions to the open crack model, is valid for the total depth ratio of 

the cracks in pair, , for less then 0.5. The energy consumed can be 

formulated by the energy of the equivalent springs as follows: 
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Figure 6.1 Models for (a) single-edge and (b) double-edge cracks. 
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The stiffness relation can also be established by providing bending moment 

equivalences at the stretched and compressed sides of the beam. 
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If Equations (6.3)-(6.6) are substituted into Equation (6.2), the following equation 

is obtained: 
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The additional rotations of the open ( adθ∆ ) and closed ( adψ∆ ) cracks are 

influenced by three parameters which can be stated as; the cross-section decrease (d), 

the neutral axis yawing (y) due to the angular displacement difference between the 

cracks opening and closing, and the neutral axis shift (s) due to the crack’s 

asymmetry. Thus, the additional rotations are formulated as follows: 

 

sydcdcad θθθθθθ ∆+∆+∆=∆−∆=∆ ,                (6.8) 

 

syddcad ψψψψψ ∆+∆−∆=∆=∆                 (6.9) 

 

where dθ∆  and dψ∆  are the additional rotations caused by the direct effect of the 

cross-section decreases. The depth of a crack on one edge influences the opening and 
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closing amounts of the crack on the other edge. Thus, additional rotation of the open 

crack due to the closed crack based cross-section drop is defined as follows: 
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Similarly, the additional rotation of the closed crack is written as follows: 
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Neutral axis is not mentioned in the determination of the coefficient, , given 

in Equation (4.8), since the crack is assumed always open and hence the beam bends 

with extra displacement and tensile stress only (Mazanoglu, Yesilyurt, & Sabuncu, 

(2009). However, the breathing crack model makes it also necessary to take both the 

crack closing and the compressive stress effects into consideration. Nonlinear effects 

of the breathing cracks arise with the neutral axis modulation around the central axis 

during the period of vibration. The relation between the 

)(aD

dθ∆  and dψ∆  can also be 

described by using yawing of the neutral axis , which is caused by the difference 

between these additional rotations. Thus, yawing of the neutral axis is obtained as 

follows: 
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Yawing of the neutral axis leads to another additional rotation symbolised by yθ∆  

and yψ∆  in Equations (6.8) and (6.9). The sign of the yψ∆  in Equation (6.9) is 

negative, since the angular displacement due to the closed crack is always less then 

that caused by the crack opening. This means that the neutral axis always moves 

towards the closed crack during the bending. It is clear that, yawing effects reach a 

maximum when the cracks are located at the centre of mass of the beam and decrease 
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as the cracks approach to the beam’s ends. The yawing effects function can be 

represented by multiplying the maximum yawing with a Normalised Gaussian 

function, , having unit amplitude. The mean value of this function is then located 

on the mass centre and the standard deviation of the function is . As a 

consequence, additional rotation of the beam due to the yawing of the neutral axis 

can be defined by the following relations: 

NG
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The neutral axis will deviate from the central axis if there is an asymmetry in the 

depths of the open and closed cracks. The neutral axis shift is given by the 

parameter ; sX
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and the additional rotations due to this shift is described by the following equations: 
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The signs of sθ∆  and sψ∆  are determined by the sign of . If Equations (6.10)-

(6.17) are considered together with Equations (6.8) and (6.9), the relations for 

additional angular displacement effects for open and closed cracks can be easily 

found as: 

sX
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Resistances to these additional rotations, which are modelled by the rotational 

springs, can be determined by equating the bending moments at the stretched and 

compressed sides of the beam which in return gives us the following stiffness 

equations: 
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Hence, the energy consumed is obtained by substituting the additional rotation 

and stiffness expressions into Equation (6.7): 
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Extensions to the open crack model, seen in Figure 6.1, are extracted from 

Equation (6.22) and added into Equation (4.8) which should be modified as the 

formulations below, for opening and closing cases of single-edge or double-edge 

breathing cracks. 
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Of course when a beam vibrates, it will be bending in two opposite directions 

which will result in the exchange of the positions of the open and closed cracks. If 

the open and closed cracks are subscripted by the numbers also, Equation (3.21), 

defining the energy consumed for a single-edge open crack, is modified as below for 

the single-edge and double-edge breathing cracks: 
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It should be remembered that the moment terms in Equations (6.25) and (6.26) 

include different expressions for open and closed cracks due to the difference in 'E . 

The energy consumed is distributed along the beam length as follows (Yang, 

Swamidas, & Seshadri, 2001): 
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where 
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Equations (6.28) and (6.29) can be modified for the crack at the second edge. 

 

The conservation of energy law dictates that, for a beam with no cracks, the 

maximum potential energy should be equal to maximum kinetic energy. If a crack 

exists on a beam, the energy consumed results in the decrease of maximum potential 

energy with the assumption of no mass loss at the crack location. As a consequence, 

balance of maximum energies can be obtained by Equation (4.9) that is approximated 

to zero by means of the Rayleigh–Ritz method. Since the Rayleigh beam model is 

used in this chapter, kinetic energy distribution given in Equation (4.11) is modified 

as follows: 
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The second term in Equation (6.30) describes the effect of rotary inertia around 

the axis perpendicular to the bending plane. Resulting formulation for the mode 

shape function is given in Equation (3.9). The mode shape function includes series of 

functions satisfying the end conditions tabulated in Table 3.1. 

 

6.3 Results and Discussion 

 

Results are presented by applying the developed method on simply supported and 

cantilever beams. Simply supported aluminium and steel beams having single-edge 

or symmetric double-edge cracks at the mid-span range are analysed and the results 

are compared. The aluminium beam has the following geometric properties; length 

, width , and height m235.0=L m006.0=b m0254.0=h . The material properties 

of the beam are 3mkg2800=ρ  as density, GPa72=E  as modulus of elasticity, 

and 35.0=ν  as poisson ratio. A double-edge cracked steel beam of length, width, 

and height are given as m575.0=L , m00952.0=b , and  

respectively. The beam has the following material properties; density 

m03175.0=h

3mkg7800=ρ , modulus of elasticity GPa206=E , and poisson ratio 35.0=ν . A 
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six termed deflection function is employed in the Rayleigh–Ritz method, and a 

breathing crack model is used in the analysis. Frequency ratios obtained by the 

method agree with the results of the models presented by Chondros, Dimarogonas, & 

Yao (1998) as seen in Figures 6.2 and 6.3. 

1.0 
 
 
 
0.9 
 
 
 
0.8 

 
Figure 6.2 First mode vibration frequency ratios of the simply 

supported aluminium beam with mid-span single-edge crack. (a) 

Lumped crack flexibility model (Chondros, Dimarogonas, & Yao, 

1998), (b) continuous crack model (Chondros, Dimarogonas, & 

Yao, 1998), (c) model of Christides & Barr (1984), (o) 

experimental results (Chondros, Dimarogonas, & Yao, 1998), and 

(♦) the present model. 

 

The method is also applied to a tapered cantilever beam having density 
3mkg7800=ρ , modulus of elasticity GPa210=E , and poisson ratio 3.0=ν . 

Variation of the height and width of the tapered beam can be expressed by the 

functions in Equations (4.15) and (4.16). The beam has also geometric properties as 

, , m6.0=L m02.011 == bh 5.012 == hhhα , and 75.012 == bbbα . The 

geometry of the tapered beam is shown in Figure 6.4. 
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Figure 6.3 First mode vibration frequency ratios of the simply supported steel beam with mid-

span symmetric double-edge crack. (a) Lumped crack flexibility model (Chondros, 

Dimarogonas, & Yao, 1998), (b) continuous crack model (Chondros, Dimarogonas, & Yao, 

1998), (c) model of Christides & Barr (1984), (o) experimental results (Chondros, Dimarogonas, 

& Yao, 1998), and (♦) the present model. 

 

Results obtained by the present method are compared with the results of the 

commercial finite element program (ANSYS©) for the tapered beam in 

consideration. Analysis properties of the finite element program presented in Section 

4.4 for the beam with transverse cracks are used also for the beam with double-edge 

cracks. Finite element model of the double–edge cracked beam considered is given in 

Appendix B, Figure B.2. It should be remembered that, changes in the element 

number caused by the variation of crack location and crack size, have negligible 

effects on the results. Natural frequencies of the un-cracked beams obtained by the 

Rayleigh–Ritz approximations and the finite element program closely agree with 

each other as shown in Table 6.1. 
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Figure 6.4 Geometry of a beam. 

 
Table 6.1 Natural frequencies of the un-cracked beam. 
 

Vibration 

Modes 

Frequencies (Hz) 

obtained by Rayleigh–

Ritz (6 terms) 

Frequencies (Hz) 

obtained by Rayleigh–

Ritz (9 terms) 

Frequencies (Hz) 

obtained by Finite 

Element program 

1 

2 

54.8890 

249.059 

54.8890 

249.029 

54.935 

248.75 

 

The vibration of a beam having different combinations of symmetric and 

asymmetric double-edge breathing cracks with the same total depth  

is investigated as an example. The vibration of a single-edge cracked beam is also 

examined. The following crack cases are examined for the beam considered with 

variable crack locations: 

( )121 3.0 haa =+

 

Case 1: 1211 15.0,15.0 haha == ; Case 2: 1211 10.0,20.0 haha == ; 

Case 3: 1211 05.0,25.0 haha == ; Case 4: 1211 00.0,30.0 haha == . 

 

2h ch                1h
1a  

2b  
cb                1b

y 

z 

z (m) 
0            z       L c

w   y 

w 

z 
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Figure 6.5 First mode vibration frequency ratios of the tapered cantilever beam 

with several depth combinations of cracks in pair. (– –), (---),(—), and (– -) are the 

results obtained by the method with six termed deflection function in Case 1, Case 

2, Case 3, and Case 4 respectively. (*), (∆), (o), and (⁬) are the results of the 

Ansys© for mentioned cases. 

 

The analyses are performed for the beams having the cracks located through 

 in which the total crack depth ratio remains under 0.5. The results of the 

present method, which uses the six termed deflection function, agree well with the 

results of the finite element program for the first mode of vibration as shown in 

Figure 6.5. Second mode frequencies obtained by the method also match with the 

results of the finite element program for the beam having single-edge crack. 

However, in the cases of double-edge cracks, the matching of the second mode 

frequencies decreases when cracks exist through the 

LL −2.0

LL 4.02.0 −  as seen in Figure 

6.6. Better agreement can be observed in higher vibration modes when the deflection 

function used in the analysis is expanded with the larger number of terms 

(Mazanoglu, Yesilyurt, & Sabuncu, 2009). As shown in Figure 6.7, improved 

matching of the second mode frequencies is obtained by a nine termed 

approximation function for the beam with a double-edge crack. This result shows 
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that in the analysis of the double-edge cracked beam, the number of terms used in the 

deflection function should be more than the size of the function used in the analysis 

of the single-edge cracked beam. It is also seen from the figures that natural 

frequency ratios decrease with increasing asymmetry of the cracks in pair. 

 

 

(ω
c 
/ ω

o)
 

( zc / L ) 

 
Figure 6.6 Second mode vibration frequency ratios of the tapered cantilever beam 

with several depth combinations of cracks in pair. (– –), (---),(—), and (– -) are the 

results obtained by the method with six termed deflection function in Case 1, Case 

2, Case 3, and Case 4 respectively. (*), (∆), (o), and (⁬) are the results of the 

Ansys© for mentioned cases. 

 

The differences between the results of open and breathing crack models are shown 

in Figure 6.8. The effects of crack closing, compressive stresses, additional rotations, 

and neutral axis changes are not included in the open crack model. Results show that 

better matching with the finite element program can be obtained when the breathing 

crack model is used in the analysis of a double-edge cracked beam. It is also seen 

from the figure that the differences between the results of open and breathing crack 

models become smaller when larger asymmetry exists between the cracks. 
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Figure 6.7 Second mode vibration frequency ratios of the tapered cantilever beam 

with several depth combinations of cracks in pair. (– –), (---), and (—) are the 

results obtained by the method with nine termed deflection function in Case 1, Case 

2, and Case 3 respectively. (*), (∆), and (o) are the results of the Ansys© for 

mentioned cases. 

 

6.4 Conclusion 

 

A method is presented to obtain the vibration of non-uniform beams having 

symmetric and asymmetric double-edge breathing cracks. The open crack model 

presented by Mazanoglu, Yesilyurt, & Sabuncu (2009) is modified by taking into 

account the effects of crack closing and compressive stress in addition to crack 

opening and tensile stress for modelling the breathing cracks. In addition to the direct 

effect of extra cross-section decrease, the effects of neutral axis yawing due to the 

difference between the opening and closing amounts and neutral axis shift due to the 

depth difference of the cracks in pair are also included in the model. The energy 

effects of the rotary inertia are also taken into consideration. Overall energy is 

analysed by the Rayleigh–Ritz approximation method. 
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) 

Figure 6.8 (a) First mode and (b) second mode natural frequen

method using (a) six termed and (b) nine termed deflection

including breathing (—), and open (---) crack models are com

the Ansys© figured by (*), (∆), and (o) representing Case 

respectively. 

 

This chapter presents the first application of the vibrati

beams having double-edge cracks. Up until now, there ha

literature for analysing the vibration of beams with asym

although symmetric double-edge crack models have be

beams. The model presented in this chapter is valid 

 

( zc / L 

 

cy ratios obtained by the 

 functions. The method 

pared with the results of 

1, Case 2, and Case 3 

on analysis of non-uniform 

s been no work in existing 

metric double-edge crack 

en presented for uniform 

for both single-edge and 
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symmetric double-edge cracks. The model has also the capability of analysing the 

vibration of beams with different depth combinations of asymmetric double-edge 

cracks. 

 

Results of the method including open and breathing crack models are compared 

and examined in this chapter. When the results we obtain for the double-edge 

cracked beams are compared with the results of the finite element program, we see 

that the results of the breathing crack model are more accurate than that of the open 

crack model. The differences between the results of open and breathing crack models 

become negligible for the single-edge cracks.  

 

In the chapter, it is shown that higher modes of vibration frequencies require 

larger number of terms to use in the deflection function. It is also observed that an 

extended number of terms are required for analysing the vibration of double-edge 

cracked beams. This means vibration analysis of the double-edge cracked beams 

needs more time than that of the single-edge cracked beams. However, a significant 

advantage of the method is the performing of the calculation process in a short period 

of seconds when the method compared with the finite element program. Thus, 

natural frequencies required for the frequency based inverse methods can be easily 

obtained for different beams.  

 

 



CHAPTER SEVEN 

A FREQUENCY BASED ALGORITHM FOR DETECTING DOUBLE 

CRACKS ON THE BEAM VIA A STATISTICAL APPROACH USED IN 

EXPERIMENT 

 

7.1 Introduction 

 

Any physical or chemical influences can result in flaws that lead to change of the 

dynamic behaviour of the structures. Exact identification of these changes is 

significantly important for the success of vibration based crack identification 

methods which are supported by the theoretical vibration models. Crack 

identification methods on direct use of several practical applications of 

measurements and vibration monitoring may not need a theoretical vibration model. 

These methods are generally based on the inspection of mode shape changes and 

need measurements with very high quality. They require expensive data acquisition 

and monitoring systems having the properties such as multiple sensors, high 

sensitivity, large hard disc capacity, and fast processing. Ideal system for the crack 

identification should be inexpensive, non-invasive and automated, so that subjective 

operator differences are avoided.  

 

This chapter presents a method for identification of double cracks in beams and 

the processes minimising the measurement errors in experiment. Energy based 

numerical method is used in the vibration analyses for determining the natural 

frequencies of the cracked beam. Prediction tables including the natural frequency 

ratios are prepared by using the theoretical model for different depth and location of 

single crack on the beam. Prediction table is expanded by interpolating the data in 

both crack location and crack size directions. In resulting frequency map, contour 

lines representing the measured frequency ratios are easily utilised for identification 

of a single crack. However, if the beams have two cracks, contour lines cannot be 

directly used due to the necessity of plotting contours for all different location and 

depth combinations of cracks. This problem is solved by an algorithm presented in 

this chapter. Algorithm makes it available the approximation to the exact location 

92 
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and size of both cracks after initial estimation done for one of the crack. Efficiency 

of the algorithm is checked by both experimental frequency ratios and the ratios 

obtained by commercial finite element program (ANSYS©). Errors in measured 

natural frequencies are minimised by means of presented statistical approach called 

‘Recursively scaled zoomed frequencies (RSZF)’. In this approach, measured 

frequencies are corrected by mean value of the natural frequencies observed from the 

interpolated frequency data determined in different frequency scales. A process 

called ‘Derivative aided spline interpolation (DASI)’ is used as an interpolation 

method for obtaining changes in peak characteristics in the frequency spectra. 

Methods are verified by the experimental natural frequencies measured from the 

cantilever beams. Measured natural frequency ratios, which will be obtained more 

sensitively by means of RSZF, are given as inputs into the algorithm. Experiments 

show that both cracks are detected with acceptable deviations. 

 

7.2 Algorithm for Detecting Double Cracks 

 

A prediction table formed by the natural frequency ratios obtained for all location 

and depth ratio of single crack is used as base data. Any correct cracked beam 

vibration model can be utilised for preparing the prediction table. However, speed of 

solution method and its adaptation to the automation is critically significant. Map of 

the frequency falling ratios is formed by interpolating prediction table in both 

location ( ) and depth ratio ( ) directions. Measured frequency ratios are meshed 

with the frequency ratios in the map and corresponding contour lines are plotted. If 

the contour lines for the first three modes are intersected at the same position in the 

map, it is known that there is one crack at that position which gives the location and 

depth ratio of the crack. However, if the contour lines intersect at the different 

positions, it can be judged that there is more than one crack. In this case, a position 

for one of the crack is predicted under the contour lines of measured frequency 

ratios. Because, the frequency ratio caused by one predicted crack should be found 

higher than the frequency ratio caused by two cracks. Remaining frequency fall 

should be the effect of the second crack and helps for determining the position of that 

crack in the map. 

cz cr
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Here, the relation between the frequency ratios of a double cracked beam and the 

frequency ratios of two beams each sharing those cracks should be described. In 

most cases, minor effect of cracks interaction can be neglected such that a local 

flexibility model is used. Thus, the frequency ratio of the double cracked beam can 

be simply formulated as: 

 

)2()1()( cfcfdcf rrr = ,                   (7.1) 

 

where  and  are the frequency ratios obtained from the separate single 

cracked beams. 

)1(cfr )2(cfr

 

When one of the positions is selected for the first crack, frequency ratios 

corresponding to this position, , are found. Frequency ratio caused by the 

second crack, , can be determined by using the ratio of measured frequencies as 

the ratio of double cracked beam, , in Equation (7.1). Since the estimated crack 

position is not exactly true, contour lines plotted for the second crack caused 

frequency ratios of different vibration modes will intersect at the different positions 

in the map. Four contour lines corresponding to four natural frequencies are used in 

the algorithm. If the first four natural frequencies are used, intersection positions of 

the contour lines for the mode couples 1-2, 1-3, and 1-4 are determined. Sometimes, 

there can be more than one intersection points for one mode couple. In this case, 

intersection points causing the trio having minimum positional variance are selected 

as critical intersection points. Positional variance values are calculated by 

multiplying the standard deviations in both location and depth ratio directions. In the 

inner loop, minimum positional variances are calculated for the first crack’s selected 

position and four surrounding positions of it. Distance from the surrounding 

positions to the selected position is identified by the step size. 

)1(cfr

)2(cfr

)(dcfr
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Figure 7.1 Schematic example for the selection of the new converged position in the loop. 

he new converged position of the first crack and the next step size are 

de

Intersection points of the 
contour lines for the 
modes 1 and 4 

 
  

 

T

termined in the judge module. Normally, the position, which results in the lowest 

of the minimum positional variance, should be the next selected position in the loop 

logically closer to the first exact crack position. If the lowest of minimum positional 

variances is obtained for the selected or previously selected first crack’s positions, 

new position is selected through the remaining surrounding points. In the inner loop, 

sometimes contour lines for one of the mode couples may not be intersected, and 

thus the intersection point is not observed for that mode couple. Therefore, this point 

is also eliminated in selection. This case is represented in Figure 7.1 as an example. 

In the figure, the point of first crack symbolised by cross-circle does not cause 

intersection of the contour lines for the modes 1 and 4. It is also seen that the other 

first crack’s points result in two possible intersection points of contour lines for the 

modes 1 and 4. Through them, the points causing minimum positional variances are 

selected for the mode couple 1-4. Since the lowest of the minimum positional 

variances is obtained by the point symbolised by a star, this will be the next selected 

point in the loop as shown in Figure 7.1. When the contour lines of all mode couples 

are not intersected, which means there is no corresponding frequency ratio of the 
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predicted position in the map, second crack is positioned out of map. In this case, 

first crack is directed toward contra position which causes the second crack come 

into the map. 

 

Input measured 
frequency ratios 

 

Figure 7.2 Schematic representation of the algorithm for detecting double cracks. 

Two threshold values are prescribed by using minimum positional variances. First 

thr

 

eshold sets the size of the step. Step size is multiplied or divided by two if the 

lowest of the minimum positional variances is respectively higher or lower than the 

first threshold. However, step size should be limited from the top and the bottom. 

Upper limit can be varied according to user preference, but base step size should be 
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equal to the distance between the neighbour points in the map. For each estimated 

first crack position, corresponding second crack position can be determined as mean 

of the mode intersection points. Process continues until the lowest of the minimum 

positional variances decreases under the second threshold value defined for stopping 

the outer loop. Schematic representation of the algorithm is presented in Figure 7.2. 

 

7.3 Processes for Obtaining the Best Frequency Ratios in Measurement 

 is well known that natural frequencies of the structure can be easily found by 

the

 

It

 frequency response function (FRF) which gives the relation between the 

excitation and response in frequency domain. FRF can be simply defined as the ratio 

of the Fourier transform of response to the Fourier transform of the excitation. 

Discrete Fourier transform of any signal can be formulated as follows: 

 

N
nkiN

n
enskS

π21

0
)()(

−−

=
∑=   0=k  to 1−N               (7.2) 

 

owever, measured frequencies are bounded by several limits such as sensor 

sen

 statistical method supported by interpolation of the frequency data can be useful 

for

H

sitivity and resolution. In the frequency spectra, the frequency index spacing can 

be minimised by using many samples or low sampling frequency. Nyquist criterion 

states that half of the sampling frequency cannot be lower than the aimed measured 

frequencies. Moreover, even if this criterion is satisfied, sensitivity decreases as the 

frequency approaches to the Nyquist limit. In addition, long time data requires more 

disk capacity for storing and more memory for processing.  
 

A

 minimising the measurement errors even if larger sampling frequency and shorter 

time data are used. The method of RSZF presented in this chapter minimises the 

measurement errors without the need of repeating the experiments for taking 

statistical data. Several frequency spectra are obtained in one experiment by 

decreasing the length of time data N  to XN − . Correspondingly, in the interval 

20 sff <≤ , while there are N equ les with spacing ( )idistant samp Nff s 2=δ  at 
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first, reduced data include XN −  samples with spacing ( )( )XNff s −= 2δ . 

Observed natural frequencies change due to the use of different frequency scale. In 

addition, there can be changes in peak characterisation for all different frequency 

scales. More approximate peak values are obtained by interpolating the frequency 

data. Classical spline interpolation may be utilised directly on the frequency data, but 

changes in peak characterisation are obtained better by applying the DASI method. If 

)(kS  is the frequency data indexed by 0=k  to 1−N  derivative of )(kS  can be 

n as follows: 

 

writte

( ))()1(1)( kSkS
f

k −+=
δ

,  dS 0=k  to 2−N              (7.3) 

 

yadic spline interpolation is applied on the derivative of the frequency data and 

int

D

erpolated derivative, )(int kdS  is obtained for 0=k  to 1)1(2 −−N . Then, inverse 

differentiation gives the (int k ngth 12interpolated frequency data, having le)S  −N . 

 

S )0()0(int S= ,  

)1(
12

)1 +−()( intintint −
−

= kdS
N
f

SkS s ,  k 1=k  to .            (7.4) 

 

his process is repeated as long as the frequency data reach to the length meeting 

req

22 −N

T

uired sensitivity. After R reputation of the dyadic interpolation, length of the 

interpolated data will be ( ) 112int −−= NN R . 

 

As a result, frequency data are rescaled by reducing data length for each return 

and different natural frequencies are obtained for all different frequency scales, 

although the interpolation minimise the discrepancies. Therefore, mean value of the 

natural frequencies found in each return is taken as exact natural frequency. The 

processes for the RSZF and DASI are schematically summarised in Figure 7.3. 
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Time data Frequency data
FRF Derivative aided 

 
  Figure 7.3 Schematic representations for RSZF and DASI processes. 

7.4 Results and Discussion 

uccess of the algorithm is checked by using the natural frequency ratios of the 

do

n aluminium alloy cantilever beam, which is utilised in the experiment, is also 

sim

 

 

S

uble cracked cantilever beam obtained by the commercial finite element program. 

These ratios are given as inputs into the algorithm which uses prediction tables 

prepared by theoretical frequency ratios. Modal properties used in the finite element 

program are given in Section 3.5.  

 

A

ulated in the finite element program for checking the efficiency of the algorithm. 

In the first example, cracks are simulated at the normalised locations of 0.3 and 0.6 

which are positioned from the free end. Their depth ratios are taken to be 0.35 and 

0.25 respectively. These cracks are detected using the algorithm at the normalised 

location 0.63 with depth ratio 0.23 and the normalised location 0.31 with depth ratio 

0.375.  Small differences between the exact and detected positions are caused by the 

differences between the theoretical frequency ratios and the ratios obtained by the 

commercial finite element program. The algorithm is checked by selecting four 

spline interpolation

Decreased data 
t 

Interpolated 

length in the nex
loop 

frequency data 

Save natural 
frequencies

Series of natMean Exact natural ural 
frequencies 

Recursively scaled zoomed frequencies

Frequency data 

frequencies 

Differentiation 
Derivatives of the frequency data 

Interpolat

on Dyadic spline interpolati

ed derivatives 
Inverse differentiation 

Derivative aided spline interpolation 

 



 100

different starting positions in the map as shown in Figure 7.4. Contour lines represent 

the input frequency ratios of the first four modes. In another example, cracks are 

considered at the normalised locations 0.45 and 0.65 with the depth ratios 0.30 and 

0.27 respectively. Figure 7.5 shows that cracks are successfully detected by the 

algorithm starting from three different positions. In a final example, cracks simulated 

at the normalised locations 0.25 and 0.80 are considered with depth ratios 0.35 and 

0.15 respectively. Figure 7.6 shows the approximate detection of the cracks as a 

result of searching the crack positions by starting from four different predicted first 

crack positions.  
 

 
Figure 7.4 Results of the algorithm for simulated beam slotted from the normalised 

ti
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locations 0.3 and 0.6 with the depth ratios 0.35 and 0.25 respectively. (o) Initial 

predictions for the first crack, (―, – –, – · –, ····) paths from predicted points to resulting 

positions, (∆ ) resulting first crack position, (□) resulting second crack position. Input 

frequency ra os: First mode 0.9908, second mode 0.969, third mode 0.9535, fourth mode 

0.9846. 
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Figure 7.5 Results of the algorithm for simulated beam slotted from the normalised 

at

As seen in Figures 7.4, 7.5 and 7.6, the algorithm searches the suitable orbit of the 
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locations 0.45 and 0.65 with the depth ratios 0.30 and 0.27 respectively. (o) Initial 

predictions for the first crack, (―, – –, ····) paths from predicted points to resulting 

positions, (∆ ) resulting first crack position, (□) resulting second crack position. Input 

frequency r ios: First mode 0.984, second mode 0.9667, third mode 0.9805, fourth 

mode 0.9827. 

 

 

st mode contour for the predicted crack, and then follows that orbit since the 

convenient contour lines for the second crack are investigated by using the first mode 

contour lines intersected with the lines of other modes. Searching continues on that 

orbit until the positional variance of possible second crack position decreases under 

the predetermined threshold for stopping the search. When second crack goes out of 

the map, it comes into the map by means of the first crack directed toward contra 

position. 
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SZF and DASI methods, which increase the sensitivity and resolution of the 
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Figure 7.6 Results of the algorithm for simulated beam slotted fr

predictions for the first crack, (―, – –, – · –, ····) paths from predicted points to resulting 

positions, (∆ ) resulting first crack position, (□) resulting second crack position. Input 

frequency ratios: First mode 0.9922, second mode 0.9869, third mode 0.9619, fourth 

mode 0.9609

R

asured data, are verified experimentally. An aluminium alloy cantilever beam is 

used in experiment. The beam has the following geometric properties: 1010×  mm2 

cross-section and 36.0=L m length. Its elasticity module and density is determined 

as 69=E GPa and 78 26=ρ kg/m3 respectively. Poisson ratio is taken as 3.0=ν . 

Cracks are simulated as slots sawed by a fretsaw on site for supplying stable test 

condition. Data acquisition is achieved by exciting the beam using impact hammer 

and by taking the vibration response using a miniature accelerometer with negligible 

weight 0.8g. Photos of test structure and measurement devices are given in Appendix 

C. 30000 samples are collected with 6000 Hz sampling frequency to observe the first 

four peaks of the natural frequencies in the frequency spectrum obtained from only 

one experiment. When there is no crack on the beam, measured natural frequencies 
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or the frequencies obtained after applying the presented processes are taken as 

reference frequencies.  

 

10 mm 10 mm 

2.5 mm 
3.5 mm 

(a) (b) 
 
  Figure 7.7 Photos of slots simulated as (a) first crack and (b) second c

irst slot is constituted at the location having 0.27 m distance from the free end 

wi

rack. 

 

F

th an approximate depth ratio of 0.25 as shown in Figure 7.7(a). Natural frequency 

ratios are obtained and the crack is identified by the intersection position of the 

contour lines plotted for the first three natural frequency ratios. In Figure 7.8, the 

ratios determined from the direct FRF results are presented by using 30000 and 3000 

samples without any additional processes of RSZF. Corresponding to these data 

lengths, frequency data are indexed by the spaces 0.2 Hz and 2 Hz respectively. 

Lower frequency index space requires larger data to store with more process time, 

memory and disk capacity. On the other hand, larger frequency index space causes 

insufficient resolution especially for detecting the decrease ratio of the lower mode 

frequencies. Results show that contour lines plotted for the measured natural 

frequency ratios cannot be intersected at the same position of the map due to the 

insufficient resolution even if the 30000 samples are used. When the data length is 

reduced to the 3000 samples, frequency resolution will be very poor for usage of 

FRF directly. Contour lines of the first and second mode frequency ratios are not 

seen in Figure 7.8(b), since the ratios are found “1” as a result of very poor frequency 
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resolution. The unchanged frequencies can be observed from the FRF results 

represented by zooming of the spectra around the first two natural frequencies shown 

in Figure 7.9(a). 
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Figure 7.8 Contour lines of the measured natural frequency ratios obtained by the 
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s a consequence, it is critically significant to obtain satisfactory results by 

ad

A

ditional processes applied to the lower sized data. When only zooming process 

using DASI is applied to the data having 3000 samples, measured frequencies are a 

little modified. This change is recognised in the interpolated frequency spectra seen 

in Figure 7.9(b) for the first two vibration modes.  
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(i)
 

ii)
 

(a) (b)

(

 

Figure 7.9 Frequency spectra of (—) un-cracked and (---) cracked beam’s data 

zoomed around (i) first and (ii) second natural frequencies (a) without any 

 

How m each other and do not intersect at the 

same position of map as shown in Figure 7.10(a). Here, the RSZF method including 

DA

additional process, (b) with DASI process. 

ever, contour lines are still apart fro

SI gives the best results. In the application of methods, frequency data are 

interpolated 4 levels ( 4=R ), and time data are rescaled 20 times by decreasing the 

data length 15 samples in each return. Results show that the best approximation is 

observed for detecting the position of single crack in the map as shown in Figure 

7.10(b). 

 

Five different data are taken from the un-cracked and cracked conditions of the 

same beam to ensure robustness of the experiment. In each measurement, the 

observed natural frequencies change a little for higher vibration modes since the 

sensitivity decreases as the frequencies increase. 
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Figure 7.10 Contour lines of the natural frequency ratios obtained by (a) zooming 
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first mode 0.9865, second mode 0.9978, third mode 0.9879. 

 

herefore, the success of the RSZF method can be rechecked by using the average 

na

T

tural frequency ratios obtained from the five experiments. Average natural 

frequency ratios obtained by FRF of the 30000 samples and RSZF of the first 3000 

samples are shown in Figures 7.11(a) and 7.11(b) respectively. It is seen that the 

contour lines obtained by the RSZF method close to each other in the vicinity of 

crack position although the data are bounded by only 3000 samples. Furthermore, 

even if the first 1000 data samples are used, satisfactory results are obtained by using 

RSZF method as shown in Figure 7.11(c). 
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Figure 7.11 Contour lines of the natural frequency ratios obtained by (a) FRF using 

30000 samples, (b) RSZF using 3000 samples and (c) RSZF using 1000 samples. 

 

Modal frequency ratios: (a) First mode 0.9864, second mode 0.9988, third mode 

0.9878, (b) first mode 0.9864, second mode 0.9982, third mode 0.9881, (c) first 

mode 0.9868, second mode 0.9982, third mode 0.9883. 
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The e free 

end w  the single crack results that the 

best approximations are obtained when the measured natural frequency ratios are 

co

5 respectively. (o) 

Initial predictions for the first crack, (―, – –, – · –, ····) paths from predicted points to 

 

 

 beam is slotted again from the location having 0.20 m distance from th

ith approximate depth ratio 0.35. It is seen from

rrected by RSZF. Therefore, when two cracks are investigated in the beam, RSZF 

results obtained by using 3000 samples of data are given as inputs into the presented 

algorithm. As shown in Figure 7.12, both cracks are positioned with acceptable 

deviations in the map by means of the first four natural frequency ratios used in the 

algorithm. The algorithm successfully approximates to the same crack positions 

although it is started from four different predicted positions. Deviations from the 

accurate crack positions are caused by the difference between the theoretical model 

and the experiment. 
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Figure 7.12 Results of the algorithm for the beam used in experiment slotted from the 

normalised locations 0.55 and 0.75 with the depth ratios 0.35 and 0.2

resulting positions, (∆ ) resulting first crack position, (□) resulting second crack position. 

Input frequency ratios: First mode 0.9751, second mode 0.9646, third mode 0.9875, fourth 

mode 0.9580. 
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7.5 

 

In this chapter, an algorithm that uses the map of the natural frequency ratios is 

resented for detecting double cracks in beams. Sensitivity of the measured natural 

increased by means of a statistical approach called ‘Recursively 

scaled zoomed frequencies (RSZF)’ that uses an interpolation method called 

‘D

gives satisfactory results for obtaining natural frequency prediction table. The 

nu

cracks cause low frequency 

falls. The methods are verified experimentally on cantilever beams which are 

co

Conclusion 

p

frequencies are 

erivative aided spline interpolation (DASI)’ for obtaining increased resolution. 

 

Success of the algorithm highly depends on the correctness of both the frequency 

table and the measured natural frequencies. The frequency table is prepared by the 

theory presented for single cracked beam. In the method, nine termed approximation 

merical method allows forming a prediction table in a short time. It is convenient 

for non-uniform beams. Success of the algorithm and the theoretical frequency table 

are verified by double cracked beam’s frequency ratios obtained by the commercial 

finite element program and used as inputs for the algorithm. The relation between the 

frequency ratios of the single cracked and double cracked beams is simply settled by 

using local flexibility model. The crack interaction effects can be negligible unless 

the cracks are advanced and are too close to each other. 

 

Measurement errors due to insufficient sensitivity and resolution are successfully 

minimised by RSZF using DASI. Success of the processes is quite significant for 

detecting cracks in the algorithm especially when the 

nsidered to have single crack and double cracks. It is shown that RSZF supplies 

higher sensitivity using lower data length. Thus, it prevents the user from the 

additional process time, memory and disc capacity. DASI, which increases the 

success of RSZF, interpolates the frequency data by considering the derivatives that 

includes the effects of peak characterisation. The processes will especially be helpful 

in detection of the higher modal frequencies obtained by low sensitivities and in 

detection of the lower modal frequencies obtained by insufficient resolution in 

measurement.  
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Robustness of the algorithm is represented in the examples using the input 

frequencies obtained by the commercial finite element program and the experiment. 

Although, the algorithm is started from different positions of the maps, cracks are 

sat

owever, in many cases, there can be differences between the theoretical 

and the measured natural frequencies of the un-cracked beams mainly for higher 

mo

isfactorily positioned unless the first prediction is too far from the accurate 

position.  

 

The methods presented in this chapter contribute to the automated crack detection 

systems. H

dal vibrations. Therefore, un-cracked beam’s data are used as references for zero 

setting procedure in application. This procedure prevents complication in the 

automated crack detection systems. 

 

 



CHAPTER EIGHT 

CONCLUSIONS 

 

8.1 General Contributions of the Thesis 

 

This doctorate study presents the flexural vibration analyses of multiple cracked 

beams at first, to use in detection of the cracks. The work does not only consist of the 

presentation of classical vibration theory, but also contains theoretical developments. 

Vibrations of the multiple cracked non-uniform Euler–Bernoulli and Rayleigh beams 

are analysed by the energy based numerical method. Vibration behaviours are 

modelled for several types of multiple cracks in rectangular cross-sectioned beams. 

In addition to the transverse edge cracks considered frequently in the literature, the 

unusual cracks on the height-edge of the beams and the double-edge cracks with 

asymmetric depths are also considered. Open and breathing cracks are modelled by 

the rotational springs. Amount of the energy consumed due to the cracks and its 

distribution along the beam are described for all types of cracks. Interactions of the 

cracks in multiple cracked beams are also presented for different crack types. 

 

In inverse problems, the method based on the frequency contour lines is employed 

for detecting only one crack on the beams. As a contribution to current literature 

addressing the inverse problems, a frequency based algorithm is developed for 

detection of the double cracks on the beams. An automated single and double crack 

detection system is settled by using the theoretical natural frequencies as references 

and the measured frequencies as inputs. Another contribution is presented for more 

reliable natural frequencies by supporting it with a statistical approach and an 

interpolation technique. Measured frequencies are modified by the process that 

results in more stable natural frequencies, which have minor changes in each 

experiment, as the sensitivity and resolution of the data are increased. The process 

results in the adequacy of the data having much less samples than the collected data. 

Consequently, it prevents the user from the additional process time, memory and disc 

capacity to use. 
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8.2 Overview of the Conclusions 

 

Chapter 2 reviews current literature including the studies presented for cracked 

beam vibration analyses and detection of the cracks. It is seen that a few study are 

presented for continuous vibration analyses of cracked non-uniform beams 

considered with the special forms. Furthermore, there is no work including general 

formulations for the analyses of the multiple cracked non-uniform beams having 

different boundaries and different crack models except for the papers extracted from 

this thesis. In the most study, the transverse crack models are considered. However, a 

good method used in the analysis should be adaptable for different conditions of 

cracks and beams.  

 

In measurement, frequency parameter is obtained easier to use in crack detection 

when compared with determination of the other modal parameters. In addition, 

measuring flexural vibration is much easier than measurements of the torsional and 

the longitudinal vibrations that come into exist in higher frequency bands. Therefore, 

the methods employing the natural frequencies of flexural vibration are generally 

proposed in literature for detection of the cracks. However, a method for multiple 

crack detection using only natural frequency drops has not been presented yet. These 

lacks in current literature determine the scope of this doctorate study. 

 

Chapter 3 introduces with the vibration analysis of the un-cracked beams and 

presents continuous methods for the beams with multiple cracks and additional 

masses. Results show that, analytical method with local flexibility model can only be 

convenient for the analyses of uniform beams with a few numbers of cracks. 

Furthermore, it requires defining local flexibility for each different discontinuity like 

additional masses or steps. It also requires explaining solution form for each different 

non-uniformity. On the contrary, the energy method can be successfully used in 

different conditions of beam shaped structures. Therefore, energy used numerical 

solution is proposed in this thesis and it is employed in following chapters for non-

uniform beams with different types of cracks. 
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Chapter 4 presents the modified energy method to obtain the vibration of multiple 

cracked non-uniform Euler–Bernoulli beams. It is shown that, both the effects of the 

stress field caused by the angular displacement of the beam and the strain energy 

change caused by the crack should be taken into account for calculating the energy 

consumed. Instead of the analytical methods, usage of the energy distributions in 

numerical approaches simplifies the solution of non-uniform beams. However, these 

approaches suffer from the interaction of crack effects in multiple cracked beams. 

Proposal for the solution of this problem is presented in this chapter. It is observed 

that double cracked beam behaves like a single cracked beam when both cracks come 

closer to each other, as one would expect. Effects of truncation factors are evaluated 

with respect to variation of the natural frequency ratios. It is clear that, the truncation 

factor of beam’s height is much more effective than the truncation factor of beam’s 

width. 

 

In chapter 5, fracture mechanics theory is adapted to the height-edge open cracks 

via a proposed model for the vibration behaviour of crack. The energy consumed is 

determined by forming the opening of the crack and distributing the strain 

disturbance along the beam’s length. If the beam has multiple cracks, it is shown that 

the strain disturbance caused by one of the cracks is damped as much as the depth 

ratio of the other cracks at their locations. Thus, interaction of the multiple crack 

effects, which is the problem for the methods based on a variational principle, is 

defined by the strain disturbance model presented for the height-edge cracks. Unique 

plane vibrations obtained by the present method can be critical in measuring and 

crack identification. Determination of the vibration characteristics in two planes 

results in adequacy of lower frequency modes especially if the cross-section of the 

beam is not square. It is observed that even if the beam has multiple cracks, the 

solution time of the method does not rise as much as the solution time of the finite 

element program. 

 

In chapter 6, a method is presented to obtain the vibration of non-uniform 

Rayleigh beams having symmetric and asymmetric double-edge breathing cracks. 

The open crack model is modified by taking into account the effects of crack closing 
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and compressive stress in addition to crack opening and tensile stress for modelling 

the breathing cracks. It is shown that, extra cross-section decrease, neutral axis 

yawing due to the difference between the opening and closing amounts, and neutral 

axis shift due to the depth difference of the cracks are all influential for modelling the 

vibration of symmetric and asymmetric double-edge breathing cracks. The model is 

valid also for single-edge cracks. When the results are compared with the results of 

the finite element program, we see that the results of the breathing crack model are 

more accurate than that of the open crack model. The differences between the results 

of open and breathing crack models become negligible for the single-edge cracks. 

Results show that higher modes of vibration frequencies require larger number of 

terms to use in the deflection function. It is also observed that an extended number of 

terms are required for analysing the vibration of double-edge cracked beams. This 

means vibration analysis of the double-edge cracked beams needs more time than 

that of the single-edge cracked beams.  

 

In the chapters covering the methods presented for vibration analysis of cracked 

beams, coupling effects are neglected. Bending-torsion, which is probably the most 

coupling type, can have considerable influence if the cracks become deep enough. 

However, admissible sized cracks do not have clear influence of coupling on the 

lower modes of bending vibrations as obtained from the results. Advantages of the 

numerical method can be its speed and its convenience for non-uniform beams. Thus, 

natural frequencies required for the frequency based inverse methods like prediction 

schemes or contour graphs can be easily obtained for each different beam. In 

practise, it is not impossible to obtain exact natural frequency ratios represented in 

figures. Sensitivity and resolution of the measurement system should be satisfactory. 

Restriction caused by the sampling can be kept to a minimum by the acquisition of 

long data with sufficient sampling frequency. Furthermore, sensitivity in the 

frequency domain can be improved by several statistical methods. 

 

In chapter 7, an algorithm that uses the map of the natural frequency ratios is 

presented for detecting double cracks in beams. Sensitivity of the measured natural 

frequencies are increased by means of a statistical approach called ‘Recursively 
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scaled zoomed frequencies (RSZF)’ that uses an interpolation method called 

‘Derivative aided spline interpolation (DASI)’ for obtaining increased resolution. 

Success of the algorithm highly depends on the correctness of both the frequency 

table and the measured natural frequencies. Frequency table is prepared by the theory 

presented for a single cracked beam. Success of the RSZF and DASI processes is 

quite significant for detecting cracks in the algorithm especially when the cracks 

cause low frequency falls. The methods are verified experimentally on cantilever 

beam which is considered with single crack and double cracks. It is shown that RSZF 

supplies higher sensitivity using lower data length. Thus, it prevents the user from 

the additional process time, memory and disc capacity. DASI, which increases the 

success of RSZF, interpolates the frequency data by considering the derivatives that 

includes the effects of peak characterisation. The processes will especially be helpful 

in detection of the higher modal frequencies obtained by low sensitivities and in 

detection of the lower modal frequencies obtained by insufficient resolution in 

measurement. The algorithm proposed for detection of double cracks is found robust. 

Although, the algorithm is started form different positions of the maps, cracks are 

satisfactorily positioned unless the first prediction is too far from the accurate 

position. The methods presented in this chapter contribute to the automated crack 

detection systems. However, in many cases, there can be differences between the 

theoretical and the measured natural frequencies of the un-cracked beams especially 

for higher modal vibrations. Therefore, uncracked beam’s data are used as references 

for zero setting procedure in application. This procedure prevents complication in the 

automated crack detection systems. 

 

8.3 Scopes for the Future Works 

 

Following research and development studies can be performed for vibration 

analyses of the cracked beams and detection of the cracks: 

 

Continuous vibration theories can be studied for different structures having cracks 

such as stepped beams, frames, and plates. First of all, the cracked beam vibration 
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theory presented in this thesis can be adapted to multi-cracked stepped beams having 

additional masses in near future. 

 

The types of the cracks can be identified by using the experimental natural 

frequencies measured in two vibration planes of bending. In addition, natural 

frequency based inverse method used can be improved for detecting three or more 

cracks in beams. 

 

Spatial analysis methods can be developed for detection of cracks by using spatial 

data taken from rarely located points. Advanced spatial data can be shaped by 

proposed interpolation methods. In addition to spatial analysis by finding the global 

values of considered parameters, the data set can be analysed in spatial–time domain 

by investigating instant parameters such as frequency, damping and several statistical 

values. 

 

A theoretical crack model can be developed for the cracks in profile beam 

elements called for example: U shaped, I shaped and T shaped profiles. Vibration 

effects of cracks in different cross-sectioned beams like an airplane wings can also be 

investigated in future works. 
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APPENDICES 

 

APPENDIX A 

NOMENCLATURE 

 

a crack depth 

A area of cross-section 

b width of a beam 

BE energy balance equation. 

C coefficients of harmonic and hyperbolic terms 

CE the energy consumed 

E modulus of elasticity 

f natural frequency in the unit Hertz 

sf  sampling frequency 

G strain energy release rate 

NG  normalised Gaussian function 

h height of a beam 

I second moment of inertia 

J polar mass moment of inertia 

k (1) stiffness, (2) frequency data index 

1K  stress intensity factor for the first mode crack 

KE maximum kinetic energy 

L length of the beam 

m (1) total number of terms of polynomial mode shape function, (2) lumped 

mass 

M bending moment 

n (1) total number of discontinuities like cracks or additional masses, (2) time 

data index 

N number of the data samples 

PE maximum potential energy 

cr  crack depth ratio, (  cha / )
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fr  ratio between the frequencies of the cracked and un-cracked beams 

s time data 

S frequency data 

w coordinate axis along the beams height 

W transverse vibration mode shape of the beam. 

X (1) deviation of the neutral axis, (2) decreasing amount of the data length 

y coordinate axis along the beams width 

z coordinate axis along the beams length 

α  (1) truncation (taper) factor of beam’s height or width, (2) displacement–

slope compatibility coefficient for crack location 

β  (1) additional effects of the closed crack on negative strain and compressive 

stress, (2) frequency parameter 
γ  (1) influence ratio of the energy consumed, (2) additional effects of the open 

crack on strain and tensile stress 

Γ  distribution of the energy 

fδ  spacing between consecutive samples in frequency data 

u∆  linear displacement at the opened side of crack 

U∆  change in strain energy 

v∆  linear displacement at the crack tip with the effect of material stress 

V∆  change in stress energy 

θ∆  angular displacement corresponding to the crack opening 

φ∆  angular displacement of the beam due to the positive strain at the crack 

location 

ψ∆  angular displacement corresponding to the crack closing 

ϕ∆  angular displacement of the beam due to the negative strain at the crack 

location 

ε  a coefficient caused by the opening form of the edge crack 

κ  coefficient of the term of polynomial mode shape function. 

λ  slope–bending moment compatibility coefficient for lumped mass location 
µ  displacement–shear force compatibility coefficient for lumped mass location 

ν  poisson ratio 
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ρ  mass density 
χ  term of polynomial mode shape function. 

ω  circular frequency 

0ω  natural frequency of un-cracked beam 

  

c, dc subscript for the words “crack” and “double-edge crack” 

d subscript for defining the direct effects of cross-section decreases 

i crack and part numerator 

j numerator of the mode shape terms 

p abbreviation for the word “part” 

s subscript for defining the effects of neutral axis shift 

y subscript for defining the effects of neutral axis yawing 

δ  difference between the numerators of crack and part 
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APPENDIX B 

SOME OF CRACKED BEAMS MODELLED IN ANSYS 

 

   Figure B.1 Transverse crack on the beam with an additional mass. 

 

 
   Figure B.2 Double-edge crack on tapered beam. 
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APPENDIX C 

PHOTOS OF TEST STRUCTURE AND MEASUREMENT DEVICES 

 

 
 

Figure C.1 Cantilever beam used in experiment. 

 

 

Figure C.2 Impact hammer and miniature accelerometer. 

 

 
 

  Figure C.3 Data acquisition and monitoring system. 

 


