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ON THE PERTURBATION THEORY FOR THE SCHRODINGER OPERATOR

ABSTRACT

In this thesis, we obtain asymptotic formulas for the eigenvalues of the Schrédinger

operator with a matrix potential and the Neumann boundary condition.

Keywords: Schrodinger opeartor, matrix potential, Neumann condition, perturbation,

asymptotic formulas.
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SCHRODINGER OPERATORUNUN PERTURBASYON TEORISI UZERINE

(0Y/

Bu tezde matris potensiyelli, Neumann sinir kosullu Schrodinger operatoriiniin

0zdegerleri i¢in asimptotik formiiller elde edilmistir.

Anahtar sozciikler: Schrodinger operatorii, matris potansiyel, Neumann kosulu,

perturbasyon, asimptotik formiiller.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

This thesis deals with the study of perturbation of the time independent Schrodinger

operator defined by the differential expression
L(¥(x)) = (-A+V(x)¥(x)

which is introduced by Erwin Schrodinger. It is a fundamental operator of quantum
physics. This operator can have the meaning of the energy operator of one or several
particles depending on the form of the potential V(x). It can also describe the
beheviour of an electron in an atom in the case of a periodic potential V(x). From
a mathematician’s point of view, the Schrodinger operator is as inexhaustiable as

mathematics itself.

If the eigenvalues A, and the associated orthonormal eigenfuctions u, of a self

adjoint linear differential equation
L(uy) + Ay, =0

are known for a prescribed domain (boundary conditions), then the eigenvalues and
the eigenfunctions of an operator corresponding to a “neighbouring” or “perturbed”
operator

L(iiy) — iy + My = 0

can be calculated by methods of approximations which is important in applications,
the so-called Perturbation Theory. It is understood that the boundary conditions and

the domain remain unchanged.

From the late 1930s, originating in the works of F. Rellich and T. Kato, perturbation
theory became a mighty tool to investigate both qualitative and quantitative properties
of linear operators. If we consider the perturbation theory for the Schrodinger
operator it can be easily applied for one dimensional case and asymptotic formulas
for sufficiently large eigenvalues can be obtained. The crucial property in the analysis

of the Sturm-Liouville problem is that the distance between consecutive eigenvalues



becomes larger and larger, so that the perturbation theory can be applied and asymptotic
formulas for sufficiently large eigenvalues can be obtained. However, in multi
dimensional cases, the eigenvalues influence each other strongly and the regular

perturbation theory does not work.

In this study, we consider the Schrodinger operator with a matrix potential V (x)
which is defined by the differential expression

LO=—-AD+VD (1.1)

and the Neumann boundary condition

0P
n lap=0, (1.2)

in L3'(Q) where Q is the d dimensional rectangle Q = [0,a1] x [0,a2] x --- x [0,a4],
0Q is the boundary of Q, m > 2, d > 2, A is a diagonal m x m matrix whose
92 02

. 2
diagonal elements are the scalar Laplace operators A = aa—z + T, X =
X ox; ox;

(x1,%2,...,x4) € R?, V is the operator of multiplication by a real valued symmetric
matrix V (x) = (v;j(x)), i,j = 1,2,...,m, v;j(x) € L2(Q), that is, VT (x) = V (x).

We denote the operator defined by the differential expression (1.1) and the boundary
condition (1.2) by L(V), the eigenvalues and the corresponding eigenfunctions of the

operator L(V') by Ay and Wy, respectively.

In this thesis, we study how the eigenvalues of the unperturbed operator L(0), that
is, V(x) = 0 in equation (1.1), are effected under perturbation, by using energy as a
large parameter and we obtain high energy asymptotics of “arbitrary order” for the
eigenvalues Ay of the operator L(V) in an arbitrary dimension. For this we use the
methods in Veliev (1987)-Veliev (2008). This is one of the essential problems related

to the Schrodinger operator and is being studied for a long time.

For the scalar case, m = 1, a method was first introduced by O. Veliev in Veliev
(1987), Veliev (1988) to obtain the asymptotic formulas for the eigenvalues of the
periodic Schrédinger operator with quasiperiodic boundary conditions. By some other
methods, asymptotic formulas for quasiperiodic boundary conditions in two and three
dimensional cases are obtained in Feldman, Knoerrer, & Trubowitz (1990), Feldman,
Knoerrer, & Trubowitz (1991), Karpeshina (1992), Karpeshina (1996) and Friedlanger

(1990). When this operator is considered with Dirichlet boundary condition in two



dimensional rectangle, the asymptotic formulas for the eigenvalues are obtained in
Hald, & McLaughlin (1996). The asymptotic formulas for the eigenvalues of the
Schrodinger operator with Dirichlet or Neumann boundary conditions in an arbitrary
dimension are obtained in Atilgan, Karakilic, & Veliev (2002), Karalilic, Atilgan, &
Veliev (2005) and Karalilic, Veliev, & Atilgan (2005).

For the matrix case asymptotic formulas for the eigenvalues of the Schrodinger

operator with quasiperiodic boundary conditions are obtained in Karpeshina (2002).

In chapter one, we introduce some basic concepts for our further discussions. We
give some properties of periodic functions for which the method of this study is

applicable.

In chapter two, the operators L(0) and L(Vj) are introduced where V; is the matrix
of fQ V(x)dx. We introduce the two domains: non-resonance and resonance domains
with respect to which non-resonance and resonance eigenvalues of the operator L(0)

are defined.

Chapter three is the original part of this study, that is, high energy asymptotics
for the eigenvalues of the operator L(V) are obtained in non-resonance and resonance
domains. In Section 3.1, we consider the operator L(V) as the perturbation of L(Vj)
by V(x) — Vp. By the corollaries of this section, we emphisize that differing from the
scalar case the eigenvalues of the matrix Vj are essential for the study of the matrix
case. In Section 3.2, the obtained formulas depend not only on the eigenvalues of the

matrix C(V,v1,...,Y) but also on the eigenvalues of the matrix Vj.

In chapter four, we summarize the main results of the study.

1.2 Basic Concepts

1.2.1 The Space of Vector Functions

Definition 1.1. Let R denote an m-dimensional real vector space. Let
x = (x1,X2,...,%;) € R%. Then the function y : RY — R™,

y(x) = (r1(x),32(x), -, ym(x))
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is called a vector function. Each of the scalar functions y, : R - R, r=1,2,...,m is

called a component of the vector function y(x).

Definition 1.2. A vector function y : R¢ — R™ is said to be continuous at the point
xo € R if all the components of the vector function are continuous at xy. Similarly, a
vector function y(x) is said to be differentiable if its components are differentiable, and

by definition,
dy _ Oy1 92 Oym

——=(5—y5—-.0r,=—), k=12,....d.
8xk 8xk’axk’ ’8xk)’ o ,

By using the definitions 1.1 and 1.2, for vector functions y, z and a scalar function

f it can be easily seen that

dly+z) dy 09z

BXk :a—.xk—i—a—x/(, k:1,2,...7d,
Jdfy) of dy _
an —a—-)q(y+fa—m€, k—1,2,...,d,
oHy-z} _ 9y iz
o 4y T k=1,2,....d.

Definition 1.3. Let y;; : RY = R,i,j=1,2,...,mbe scalar functions. Then we define
an operator function by means of square matrices Y (x) = (y;;(x)) whose elements are

scalar functions y;;, i,j = 1,2,...,m.

Definition 1.4. Let Y (x) be an operator function. Y (x) is said to be continuous at
the point xo if all its elements y;;(x), i, j = 1,2,...,m are continuous at xo, and to be
differentiable at the point xy if all the elements y;;(x), i, j = 1,2,...,m are differentiable

at xp.

It follows from the Definition 1.4 that g—;;, k=1,2,...,m is the matrix whose

dyij ..
elements are %}:,k: 1,2,....d,i,j=1,2,...,m.

Similar to the properties of vector functions we may give the following properties.
By using definitions 1.3 and 1.4, for operator functions Y, Z, a vector function y : RY —

R™ and a scalar function f : R? — R

AY+2z) o oz

=—+4+—, k=1,2,....d
ox ox;  oxy’ R

ovz) o oz
v~ g k=1,2,....d,




afY) of oY B
S _a—myjufa—)%, k=1,2,....d,

d(Zy) JZ dy
axk N 8xky+zaxk’

k=1,2,....d.

L7(Q) is the set of vector functions u(x) = (u1(x),uz(x),...,um(x)) satisfying
ui(x) € Lr(Q) for all i = 1,2,...,m where x = (x1,x2,...,x7) € Q and Q is the
d-dimensional rectangle Q = [0,a;] X [0,a3] X -+ X [0,a4]. Let f = (f1,/2,---,fm)
and g = (g1,82,---,8m) be vector functions in L7'(Q) where fi,gr € L»(Q) for
k=1,2,...,m. Then the norm and the inner product in L5'(Q) are defined by the

formulas
%
1= ([ 170 a) < pes=[(0-gna
0 0
respectively where | - | and ”-” denote the norm and the inner product in R™,

respectively. From now on for whole of the study to denote the relevant norm that
we are using, we will use the notation || - || except for the norm in R, m > 1 which we

denote by | - |.

1.2.2 The Norms for Operators

Let B(X,Y) denote the set of all linear operators from the finite dimensional vector
space X, say n = dimX < oo, to a finite dimensional vector space Y, say m =dimY < co.
If X and Y are normed spaces, then B(X,Y) is defined to be a normed space with the

norm given by

g Tull _
I'T [|=supS—r=== sup [[Tu= sup [[Tu], TeB(X,Y).

X full =1 luf <1

If we introduce different norms in the given vector spaces X and Y, then B(X,Y)
acquires different norms accordingly. However, all these norms in B(X,Y) are

equivalent. By equivalence of norms in B(X,Y) we mean that

cIT(<T < T



holds for some positive constants ¢, ¢ and any two different norms || - ||, || - ||’ in
B(X,Y). Let (a;j),i=1,2,...,m, j=1,2,...,n denote the matrix of 7 with respect to

the bases of X and Y. Then we have the following inequalities
laij|<d || T|, i=12,....m, j=12,...,n, (1.3)

HT“S d’max\aij\, (1.4)

where the constants d, d’ depend on the bases of X and Y, but are independent of the

operator 7.

To prove the inequalities (1.3) and (1.4), let {x;}"_,, {yi}{_, denote the bases of X
and Y, respectively and (a;;),i=1,2,...,m, j=1,2,...,n denote the matrix of 7 with
respect to these bases. One may define a norm for T by || 7' ||'=max; j | a;; |. Let || T ||
be another norm for 7" with respect to the given bases. By equivalence of norms, we
have max; ; | a;j |< ¢’ || T || from which it follows that | a;; |< d || T || holds for some
constant d. On the other hand, if || 7 || denotes an arbitrary norm for 7" with respect to

the given bases, then for each x;, j =1,2,...,n we have

m m m
17 =0 Y e 1< Y i 1 1< Y (g [ max i | )
i=1 i=1 i=1

m

= max || yi | Y | aij [< (max ||y ||)(mmax | a; |)
i=1

from which it follows that

Tx: M v
I mase il
;1 lxill
for any j = 1,2,...,n. By definition of norm, we have | H <|| T || for any
j=1,2,...,n. By definition of supremum, %HHY’”

mmaleyl” by d/ we have ” T H< d/maX | al] ‘

[l

oT +BS is a continuous function of the scalars a., B and the operators 7', S € B(X,Y),

and || T || is a continuous function of 7. Thus we have the inequality

NTSI<|TI|IS| for TeBY,Z) and Se€B(X,Y).



1.2.3 A Theorem of Lidskii

Perturbation theory is primarily interested in small changes of the various quantities
involves. In chapter three, we need to estimate the relation between the eigenvalues of
two symmetric operators A, B in terms of their difference C = B — A which leads us to

the well known theorem due to Lidskii.

Theorem 1.5. Let o, B, and Y, n=1,2,...,N denote the repeated eigenvalues of the
symmetric operators A, B, C where C = B— A. Then

Z|Bn—an|§Z|Yn|-

Proof. For the proof see Kato (1980). L]

1.3 Properties of Periodic Functions in R¢

In this section, we summarize some properties of periodic smooth functions in R.
Thus we see that one of the class of functions which satisfies our assumption on the

potential V(x), (2.33), is the sufficiently periodic smooth functions.

Definition 1.6. A function v(x) where x € R is said to be periodic if there are d linearly

independent vectors wy,ws,...,wy such that

vix+wi) =v(x), i=1,2,....d.

We note that the definition is equivalent to

vix+w)=v(x) YweQ, (1.5)
where
d
Q={w:w= Zmiwi,mi €Z,i=12,...,d}
i=1
is the lattice generated by the vectors wi,wa, ..., wy.

Hence the function v(x) satisfying the condition (1.5) is said to be periodic with respect



to the lattice  and related with this lattice there is a d-dimensional parallelepiped

d
0={) tw;i:0<,<1,i=1,2,....d}
i=1
called the fundamental domain of Q which is the period parallelepiped of v(x).
We define the dual lattice I" of Q2 by

I'=2n0,

where the lattice .
@Z{an’innj €Z,j=12,...,d}
j=1
is called the reciprocal lattice of Q and the vectors V1, 7s, . .., Yy are linearly independent

vectors satisfying

I, i=}],
WiV = & —
TN =0 { 0, i#]
where ” - denotes the inner product in R, d > 2.

Foranywe Q,yeT

d
= (Z miw;) Z nyj) = Zm,n wiY; = 2Tk,
i=1

where k € Z.
The functions e/} for v € I' are periodic with respect to 2. Really,

Aty il pi{vwy _ pi{yx} gizmk _ jifyx}

Let v(x) be a real valued and periodic with respect to Q function of the space

Wi(Q) = {v:D% € L,(Q),Ya < I},

ol

_ d — o_ _ o~
where a0 = (0t1,00,...,04) € Z%, |a|=|ay |+ || +---+ |0 |, D PP

l€Nandl> 20D 43

Since {¥*}},cr is a basis for L(Q), for a function v € L,(Q) we have

=) Vyei{v-x}’

yer
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where vy = (v(x),e' 7<) = [v(x)ei{r~}dx are the Fourier coefficients of the function
Q
v(x) with respect to the basis {e/{Y*} },cr, Q is the d-dimensional rectangle

0 =10,a;] x[0,az] x --- x[0,a4], (+,-) denotes the inner product in L, (Q).
Now, we give some properties of periodic smooth functions.
Property 1. Let v(x) be a real-valued function which is periodic with respect to Q.

Then v(x) is a function of W(Q) if and only if the Fourier coefficients vy of v(x)
satisfy the relation

LI PO+ <ee. (1.6)
yer
Proof. For the proof see Karakilic (2004). [

Property 2. For a large parameter p we can write a periodic function v(x) € Wzl (Q) as

v)= Y we L o(pr), (1.7)
Yer(p®)

where
C(pP*)={yelr:0<|y|<p*},

o >0, p=1[—dand O(p~P%) is a function in Ly(Q) with norm of order p~ 7% That

is, f(&) = O(g(&)) if there exists a constant ¢ such that | % |< ¢ at some neigborhood

of infinity.
Proof. For the proof see Karakilic (2004). 0

Property 3. For a periodic function v(x) € W}(Q), we have

Y vy l<es. (1.8)

yel

Proof. For the proof see Karakilic (2004). [



CHAPTER TWO
PRELIMINARIES

2.1 The Operators L(0) and L(Vp)

We first investigate the eigenvalues and the eigenfunctions of the operator which is
defined by the differential expression (1.1) when V(x) = 0 and the boundary condition
(1.2). We denote this operator by L(0).

Lemma 2.7. The eigenvalues and the corresponding eigenspaces of the operator L(0)
are | Y|* and Ey = span{®y 1 (x), Py 2(x),...,Dym(x)}, respectively where

| F+0
’Y:('Y 7’Y2,...,Yi)€ 2 9
r+0 nmT noT nym
= (== == 0 2. ceZT 0 =1,2,...,d
2 {(01’027 7ad) n € U{ }’ ! [ ’ }’

Py i(x) =1(0,...,0,uy(x),0,...,0), j=1,2,....m,
uy(x) = cosy xicosYPxs - - - cosyixg.

We note that the non-zero component uy(x) of ®y ;(x) stands in the jth component.

Proof. We use a standart method, that is, the method of separation of variables.
Suppose that the solution ®(x) = (®;(x),P;(x),..., D, (x)) of the operator L(0) is
of the form @;(x) = @1 (x1)Pj2(x2) - - - Pja(xq4) foreach j=1,2,...,m.

Then the differential expression —A®(x) = AP(x) implies that
—@f (x1) - @ja(xg) — - = @y (x1) - Dy (xa) = ADPj1(x1) - Pjalxg)  (2.9)

for all j = 1,2,....m. Dividing both sides of the equation (2.9) by
q)jl(xl)q)jz(xz) = 'ijd(xd), we get

@ (x1) D, (x2) D (xg)
Jjl j2 jd
. _ U =\ 2.10
Dj1(x1)  Pja(x2) D ;4(xq) (10

forall j=1,2,...,m. Letting Aj; denote a scalar for all j =1,2,...,m,i=1,2,...,d

10
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such that A = A1 + Ao +---+Aj4 holds, we get from the equations (2.10) that

B q);'/i ()
Dji(xi)

= Aji 2.11)
forall j=1,2,....m,i=1,2,....d.

On the other hand, from the boundary condition % lap= 0 we get

9D,
=7 l=0 (2.12)

forall j=1,2,...,m. Since Q = [0,a;] x [0,a3] X --- x [0,a,4], the boundary

00 = {(n1a1,ha,...,tqaq) : tj =0 or 1 at least for some i, i = 1,2,...,d} lies in the
hyperplanes II; = {x € R? : x-e; = 0} or its shifts a;e; +II;, i = 1,2,...,m where
e1 = (1,0,...,0), e2 = (0,1,0,...,0),..., ¢4 = (0,...,0,1). So the normal vectors to
the hyperplanes I1;, a;e; +11; are e;, —e;, i = 1,2,...,d, respectively. Hence it follows
from the equation (2.12) that

b ::
ax].‘l lver= @1 (x1) -+ @ (x;) - - Pja(xa) [=0="0 (2.13)
l
and
0D .
A |xeaiei+m= —Pj1(x1) - 'q)_ji(xi) o @a(xq) |xi=a;= 0 (2.14)
1

forall j=1,2,...,m,i=1,2,...,d. Since we supposed that ®(x) # 0, it follows from
(2.13) and (2.14) that
@;(0) =0, @(a;)=0 (2.15)

forall j=1,2,....mi=1,2,....d.

From the equations (2.11) and (2.15), we get the following Sturm-Liouville
problems

—CID’j/i(x,-) =Aji®ji(x:), (2.16)

P’;(0) = Pf(ai) =0, (2.17)

forall j=1,2,...,m,i=1,2,...,d. It can be easily calculated that the eigenvalues

and the corresponding eigenfunctions of the problem (2.16)-(2.17) are A.;; = (%)2 and
Dji(x;) = cos("irx:), ni € ZT {0}, respectively forall j=1,2,...,m,i=1,2,....d.

Thus it follows from (2.10), (2.11) and the solution of (2.16)-(2.17) that the
eigenvalues of the operator L(0) satisfy A = (“7)2 4 (25)2 ... 4 (%%)2 where

aj a aq
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n € ZtU{0}, i=1,2,...,d. Letting = 2 " denote the set (a5 28 ) m€

ZtU{0}, i=1,2,...,d} andy= (y',¥%,...,¥?) the vectors of the set F—H), we have
that the eigenvalues of the operator L(0) are | y |>.

On the other hand, it follows from ®;(x) = ®;i(x1)Pja(x2) - Pja(x4) a
the solution of (2.16)-(2.17) that ®;(x) = cos(mxl) (a— ) cos(L )
Jj=1,2,...,m. Then since we assumed that ®(x) = (P;(x), D2(x),...,Pn(x)),
the eigenfunctions of the operator L(0) are from the span
span{(®1(x),0,...,0),(0,P2(x),0,...,0),...,(0,...,0,P,,(x)) }. Letting uy(x) denote
the function cosy' xjcosy’x - - - cosy?xy where y= (y!,v*,...,¥) = (FF, 2k iR €
r_+° and @y ;(x) the function (0,...,0,uy(x),0,...,0), j = 1,2,...,m where the
non-zero component uy(x) of @y ;(x) stands in the jth component of ®y ;(x), we have
that the eigenfunctions ®y(x) of the operator L(0) corresponding to the eigenvalue

| v|? are from the span span{®y(x),Py2(x), ..., Pym(x)}. O

To obtain asymptotic formulas for the non-resonance eigenvalues, we consider
the operator L(V) as the perturbation of L(Vy), where Vy = [V (x)dx, by V(x) —
Q

V. Therefore, we first consider the eigenvalues and the eigenfunctions of the
operator L(Vy). We denote the eigenvalues of Vj, counted with multiplicity, and the
corresponding orthonormal eigenvectors by A; < Ay < --- < A, and ®1,®y, ..., 0,
respectively. Thus
Vow; = 7\.,'0)1', W 0; = 5,']'.

Lemma 2.8. The eigenvalues and the corresponding eigenfunctions of the operator
L(Vp) are

pyi =Y [* A, and  @yi(x Z ; Dy j(x (2.18)

respectively where |y |? is an eigenvalue of the operator L(0), A;, i = 1,2,...,m is an
eigenvalue of the matrix Vo, ;j, i,j=1,2,...,m are the components of the normalized
eigenvector ;, i = 1,2,...,m corresponding to the eigenvalue \; of the matrix Vj,
dy i(x), j=1,2,...,m is the function where ®y(x) € span{®y ;j(x)} =12, . m is the

eigenfunction corresponding to the eigenvalue |y |2 of the operator L(0).

Proof. We verify that
L(V0)@y,i(x) = by, i@y,i(x)- (2.19)

m
Substituting @y;(x) = Y. ®;;®y ;j(x) into the differential expression (1.1) where
=1
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V(x) = Vp, and using —ADy ;(x) =| v |*> Py ;(x) forall j=1,2,...,m, we get
m m

—AQyi(x) + VoPy,i(x) = —A( -21 ; Py j(x)) + Vo ( 21 @; Py, j(x))
= J=

= i 0;j(—ADy j(x)) + i @ (VoPy,j(x))

J=1 j=1
m ’ m

= Y oy |7 Py j(x) + Y 0 (Voy (%)) (2.20)
=1 =1

m
On the other hand, using uy; =| v |*> +A; and @y;(x) = ¥ @;;®y, ;(x), we have
j=1

m
pryi@yi(x) = (|7 P ) Z ; Dy, j (x Z @i | ¥ [? Py j(x) + Y 0ijAiPy j(x).
j=1 j=1 j=1
(2.21)
Now we show that the second sums in the equations (2.20) and (2.21) are equal. We
have
Vody j(x Z Vi joPyx (x) (2.22)
from which it follows that
Z ;j(Vody,j(x Z ;j Z Vi joPy k() (2.23)

j=1

We also have from Vpo; = A;0; that A;w;; = Z Vi joW;x which together with (2.22)

implies that
m m
Z ;A Py, j(x) Z Z Vi jo ik ) Py, j (x (2.24)

Since V (x) = VT (x), vxjo = vjio for all j,k=1,2,...,m. Then

m m
Z ;j Z ijoq)% Z Wik Z V]koq)yj Z Z V]kOO)qu)yJ

which shows that (2.23) and (2.24) are equal. Thus the second sums in the equations
(2.20) and (2.21) are equal.
m
Substituting @y;(x) = Y ;;Py ;(x) into the boundary condition (1.2), and using
j=1
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—aq)gji(x) lap=0forall j =1,2,...,m, we get

0@y i(x) i s 8(1) : )
S 0= a Z @;j Py, (x)] log= Z 2 Jag=0.
Thus (2.19) holds. O

Lemma 2.9. Let |y |* be an eigenvalue of the operator L(0) and ®y;(x) its
corresponding eigenfunction. Let Ay be an eigenvalue of the operator L(V') and Wy (x)

its corresponding eigenfunction. Then the following formula holds

(Av— |7 ?) < ¥y, Pyj >=< Py, VDy; > . (2.25)

Proof. Multiplying both sides of the equation L(V)¥x = Ay¥n by @y j, using
V(x) = VT (x) and the equation L(0)®y ; =| v |*> Py ;, we get
L(V)lPN,(D%j > = < (—A—FV(X))‘PN,(I)%J' >
= <YWy, (-A+VT(x)Dy; >
= <Wn(x),—Ady; >+ < Pn(x),V(x)Dy; >
= <Wy,|Y[* Py >+ < Pr,V(x) Dy >
= |7P< PN, Py > + <y, V(1) Py >

and
< AN\PN,CDYJ >=Ay < ‘PN,CD«{J >

which together give

(Av— 7)< Py, Py j >=< Py, VDy; >

We call the formula (2.25) as the ”binding formula”.

Lemma 2.10. Let uy; be an eigenvalue of the operator L(Vy) and @y;(x) its
corresponding eigenfunction. Let Ay be an eigenvalue of the operator L(V') and Wy (x)

its corresponding eigenfunction. Then the following formula holds

(AN —tyi) <N, @y >=<WPn, (V(x) = Vo) @y > . (2.26)
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Proof. Multiplying both sides of the equation L(V)¥x = AyW¥n by @y, using
V(x) = VT (x) and the equation (2.19), we get

<L(V)¥n, @y > = < (—A+V(x)¥N, @y >
= <WN,(-A+VT ()@ >
= <Py, (—A+V(x)=Vo+Vo)oy >
= <Wn(x),(—A+WV)@yi >+ < Pn(x), (V(x) = Vo) @y >
= < Wn,uy,iQyi >+ <Py, (V(x) = Vo)oy, >
= pyi <N, 0y >+ < Wy, (V(x) —Vo)oy, >

and
<ANYN, @Oy >= Ay <Py, 0y; >

which together give

(AN —tiyi) < Pn, @y >=< P, (V(x) = Vo) @y > .

We also call the formula (2.26) as the “binding formula”.

2.2 Resonance and Non-Resonance Domains

As in papers Veliev (1987)-Veliev (2008), we divide the eigenvalues |y |> of the
operator L(0) into two groups: Resonance and Non-Resonance eigenvalues. In order
to classify the eigenvalues as resonance and non-resonance eigenvalues, we introduce
resonance and non-resonance domains. In this section, we define these domains and

give some estimations related to these domains.

We divide R? into two domains: Resonance and Non-resonance domains. In order

to define these domains, let us introduce the following sets.

Let o < ﬁ, oy = 3ka, k = 1,2,...,d —1, p alarge parameter and

Ve(p®)={xe R ||x P —x+b < p®},



Ei(p*,p)= U Vp(pM),
bel'(pp®)

U(p™,p) =R\ Ei(p™, p),

k
E(%p)= U (NV(p%)),
Yi,Y2,-- €L (pp®) =1

16

k
where I'(pp®) = {b € 5 : 0 <| b |< pp®}, the intersection .ﬂl Vy(p*) in Ey is taken
=

over Y1,Y2,-..,Yx which are linearly independent vectors and the length of v; is not

greater than the length of the other vectors in I'(V;R. The set U(p™, p) is said to

be a non-resonance domain, and the eigenvalue | v |? of the operator L(0) is called a

non-resonance eigenvalue if Yy € U (p*!, p). The domains V;(p*) for all b € I'(pp?®) are

called resonance domains, and the eigenvalue | y | of the operator L(0) is a resonance

eigenvalue if y € V,,(p%1).

The elements of the single resonance domain
Vo) ={xeR": ||x |’ —|x+b[|<p™}
are contained between the two hyperplanes
Oy ={x: ||x|?=|x+b|*|=—p™}

and
M={x: [[x]”—|x+b[*=p™}.

IT; and I1; are indeed the hyperplanes

b p%b b p*b
I ={x: ~t+7—5)b=0} = (5+775)+1
= {x (x—|—2+2|b|2) } (2+2’b|2)+ by
b p*b b p*b

I = {x: - — b= = (z—57—5)+11

where IT, = {x : x- b = 0} is the hyperplane passing through the origin. This can be

seen by using the following calculation

[x P = [x+b P= (xx) = [(x+b) - (x+b)] = =2(x-b)— | b [*=Fp*,
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B> _p™
x-b+ 5 F 7 =0.

We have the following lemma from Karakilic (2004).

Lemma 2.11. The non-resonance domain has asymptotically full measure on R, that

(U™, p)NB())
u(B(p))

where B(p) = {x € R :| x |< p}.

—1 as p— oo,

Proof. 1t is clear that Vj,(p® ) B(p) is the part of B(p) which is contained between
the two parallel hyperplanes I1; and Il,. Since the distance between these hyperplanes

. p‘xl
is fpr, we have

u(Vs(p*)(B(p)) = O(p?~ "),

The number of vectors in I'(pp®) is O(p9*) and u(B(p)) ~ p¢, where f(p) ~ g(p)

means that there are positive independent of p constants ¢y and ¢; such that
ci|g(p) < f(p) [<c2|g(p) | Thus

U Vb 061 mB d 1+oc1+doc) ,u(B(p))O(deH'a'_l). 2.27)
bGFpp“)

Using that, R = U(p*, p) UE], and

RY(B(p) = (U(p*,p)(B(P))U(EI[B(P))
we have

u(B(p)) =pu(U(P™,p)(\B(P)) +u(E1[)B(p))
which together with (2.27) imply

4, p)(B(p)) = u(B(p))(1 - O(p™* 17 1).

Thus from (2.27) the result follows, since o; +do < 1. That is, the domain U (p™, p)
has asymptotically full measure on R?. [

Lemma 2.11 implies that the number of non-resonance eigenvalues is essentially

greater than the number of resonance eigenvalues. Namely, if N, (p) and N,(p) denote

the number of y € U(p%, p) N(R(2p) \ R(p)) and y € ) FL(J )Vb(pa) NR(2p) \R(p)),
el (pp*
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respectively, then

Ne(P) _ ogld+a-1y _
No(p) O(p ) =o(1) (2.28)

for (d+1)o. < 1 where Ry = {x € R?:| x |=p}.

2.3 Preliminary Results

In this section, we give some relations on the eigenfunctions of the operator L(0)
and the expansion of the potential V (x) with respect to these eigenfunctions which is
obtained in Karakili¢, Atilgan, & Veliev (2005). These will help us to simplify our own

proofs.

Consider the function uy(x) = cosy'xjcosy*x, - - - cosy!xy where y= (Y, ¥*,...,¥!) €
FTW, FTW = {(AR mE .. by poeZTJ{0}, i=1,2,...,d}. The norm of the

ay ? ap’? ’ ag

faijay...aq
|| MY(X) H: 2d*k )

where k, 0 < k < d is the number of components Y of the vector Y= (Y,¥%,...,¥)
such that ¥ = 0. Equivalently,

function uy(x) in Lr(Q) is

u(Q)
[ uy(X) [I= [ T
! | Ay |
where u(Q) is the measure of O, Ay = {0 = (0t1,0,...,04) €51 | |=[¥ ], i=
1,2,...,d},g:{(%,%,...,%): n€Z, i=1,2,...,d},|Ay|is the number
of vectors in Ay.

. +0 .
The function uy(x) = cosy'xjcosy*xy - - cosy'xy where y € FT can be written as

wy(x) = 1 Y et (2.29)
| AY | OEAy

For the sake of simplicity, from now on we will use uy(x) of the form (2.29).

Lemma 2.12.
(Y (Y ey = 3y eiland (2.30)

YEA, 0EAy YEAL Q€AY 5
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~-~L
forallvy,ye 5.

Proof. For the proof see Karakili¢, Atilgan, & Veliev (2005). [

Lemma 2.13. Let uy(x) = |A17 Y % pe the eigenfunction of the operator
€Ay

(2.16)-(2.17) for any j=1,2,...,m, foralli=1,2,...,d. Then

g (x)u u
)= 73,75 s

forallye g YE Ve, (p*), k=1,2,...,d and a € T'(p*).
Proof. For the proof see Karakili¢, Atilgan, & Veliev (2005). [

It is clear that {uy(x) = |AY| y et }Y 0 is a complete system in L, (Q). So for
oEAy

any v(x) in L(Q) we have

v(x) = Z 10) (v(x), uy(x))uy(x). (2.31)

uy(x) = ua(x),  (v(x),uy(x)) = (v(x), ua(x)), Voe Ay,

r 1
2 yeLFJ“)AY’ (V(X)MY(X)):magy(V(x),ua(x)),
we have
vix) = |AY| v(x),u
W= L g
= ML V(X), Ug (X)) Ug (X
= T @i L ety
1
" Lgy Mt
So one can write
v(x) = Z;Vv”v(x% (2.32)
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where vy = @(v(x),uy(x)). Since the decompositions (2.31) and (2.32) are
equivalent, for the sake of simplicity, we use the decomposition (2.32) instead of the
decomposition (2.31). (Karakili¢, Atilgan, & Veliev (2005))

Hence, each entry v;j(x) € Ly(Q) of the matrix V(x) can be written in its Fourier

series expansion
vij(x Z Vi pyliy (X

(vij(x),uy(x)) '

fori,j=1,2,...,m where v;;y = 4(0)

Assumption on the Potential V(x): In this study, we assume that the Fourier

coefficients v; jy of v;;(x) satisfy
Y [vig P Oy ) < e (2.33)
ves

(d+20)(

foreachi,j=1,2,...,m where [ > D +d + 3 which implies

vij(x) = Z Vijyity(x) +O0(p~P%), (2.34)
Yer+0(p®)

where T0(p*) = {ye 5:0<|y|<p®}, p=1—d,a< d+1—20, p is a large parameter
and O(p~P%) is a function in L,(R?) whose norm is big-oh of p 7.

Indeed, we have

2 2 2 2
Y i) IP=10 X vipn) [P= ) [vijy [Pl uy() ||

YES\TH0(p%) v/>p® y|>p

\%
= ¥ o PUL Y iy ay Y v P a ¥ [‘ l””ﬁ‘]
[v|>p® [v|>p® [v|>p® vl

1 1

§a102---ad{ y Mrgalaz...adK Y (|wjy||Y|l)2)2( Y 1‘21)2}2

[
[v|>p®* vl [v|>p®* [v|>p® v

:m@“ﬂ4i2|wﬂmyw>(z:—LJ.

21
i>pe yipe | Y1

The first sum in the last expression is convergent by (2.33). The second sum is big-oh
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of p~P% by using the integral test. Thus (2.34) holds.

Furthermore, the assumption (2.33) implies

Ml'jE Z |Vijy|<°° (2.35)

T
YES

foralli,j=1,2,...,m.

The series 1
2
(X i)
vek

converges by (2.33). Since [ > (dﬂozﬂ +d+3and d > 2, we have 2] > 1. So the

series 1
(Erm)
|y ]

T
YeS

also converges. Then by using Cauchy-Schwarz inequality, we get

1 1
[ vijy | v [ 2 1?2
Y vigl= Y <Y i Py Y T

I
v =i vl vl
from which (2.35) follows.
By means of the relation (2.35), we define the constants
m m )
Ml‘:j_lel‘j, Mj:l._leij, M :lr%liaéﬁMilrgrl]t&g(mMj. (236)
If v(x) € WJ(Q) and the support of gradv(x) = (%,aa—xvz,,%) is contained in

the interior of the domain Q, then v(x) satisfies the condition (2.33) (see Hald, &

McLaughlin (1996)). Another class of functions satisfying the condition (2.33) is the

class of functions v(x) € W4(Q) such that v(x) = ¥ vyuy(x) which is periodic with
yel

respect to € (see Section 1.3).

Lemma 2.14.

Z vty (X)uy (x) = Z Vilhy7(X) (2.37)
el (p?) Yer(p%)

forallye g Y& Ve, (p*).



Proof. For the proof see Karakili¢, Atilgan, & Veliev (2005).
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CHAPTER THREE
HIGH ENERGY ASYMPTOTICS
FOR THE EIGENVALUES OF THE OPERATOR L(V)

3.1 Asymptotic Formulas for the Eigenvalues in the Non-Resonance Domain

In this section, we improve the results in Coskan, & Karakilic (2009) which are

also obtained during this study.

We consider the eigenvalues |y |* of the operator L(0) such that | y |~ p where
| Y|~ p means that | y | and p are asymptotically equal, that is, c;p <| v |< c2p, ¢,
i =1,2,3,... are positive real constants which do not depend on p and p is a large

parameter.

We decompose V (x) Py, ;(x) with respect to the basis { Dy ;(x)}
By definition of &y ;(x), it is obvious that

yeli=12,...m’

V(x) Dy j(x) = (vij(x)uy(x),. .., vmj(X)uy(x)). (3.38)

Substituting the decomposition (2.34) of v;;(x) into (3.38), we get

VP jx)=( Y, vijpup@uy(x),.... Y vijpup(x)uy(x)) +0(p~P%).
yer+0(p®) yer+0(p%)
(3.39)

Using (2.37) in (3.39), we obtain

V(x)Dy(x) = ( Z Vi jyttyy (%), Z Vinjytty (%)) + O(p~P%)
yer+0(p®) YET+0(pe)
= ) Y Vig@Ppyix) +0(P7%). (3.40)
i=lyer+0(p®)

The analogues of the following lemma can be found in Karakilic (2004).

Lemma 3.15. Let y € U(p™, p), that is, |y |> be a non-resonance eigenvalue of the

23
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operator L(0), Ay an eigenvalue of the operator L(V) satisfying the inequality
2 1 o
[ Av= [y [l< 5p™. (3.41)

Then |
| An— | y+b 2> EpOcl (3.42)

forall b e T(pp®).

Proof. Ifye U(p™,p) then ||y |*> — | y+b|*|> p™ for all b € T(pp®) which together
with | Ay— | 7 [*|< $p* implies

1
| Av=[v+b PI2[[ Av=[YP[ = v +5 1 = [y [Pl]> 7P

We define the following m x m matrices.

D(An,Y) = (Ax — W) — Vo,

S(a,py) = kilSk(a),

where
Sa) = (s5i(a)), k=1.2,...,p1, ji=12,....m,
s];,-(a) — i Vi Vizirg - ViigYe 1

o v Pela— [y en e+ w )

il =1 vy 1,y €T TO (P
Yt g =0

We note that since V(x) is symmetric, Vy and S(a,p;) are symmetric real valued
matrices. Hence D(Ay,Y) — S(a, p1) is a symmetric real valued matrix. We denote the

eigenvalues and the corresponding normalized eigenvectors of the matrix D(Ay,Y) —
S(a, p1) by Bi = Bi(An,Y,a) and f; = fi(An,Y,a), respectively. That is,

[D(Aw,Y) —S(a, p1)lfi = Bifi; (3.43)

where f;- fj =98;,1,j=1,2,...,m.
We denote by A(N,7) the m x 1 vector

A(N,Y) = (K WN, Py1 >, < Wy, Py2 >, ..., <N, Py >).
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Lemma 3.16. Let | y | be a non-resonance eigenvalue of the operator L(0) with

[ Y[~ p.

(a) Let B; be an eigenvalue of the matrix D(An,Y) — S(a, p1) and fi = (fi,, firs- -+ fi,,)
its corresponding normalized eigenvector. Then there exists an integer N = N; such
that Ay satisfies the inequality (3.41) and

—(d—1)

|[ANY) - fi|>e3p™ 2. (3.44)

(b) Let Ay be an eigenvalue of the operator L(V ) satisfying the inequality (3.41). Then
there exists an eigenfunction ®y;(x) of the operator L(0) such that

~(d=1)
|< Dy i, Wy >[>cap™ 2 (3.45)

holds.

Proof. We prove the lemma by using the same consideration as in Karakilic (2004).
(a) We use a result from perturbation theory which states that the Nth eigenvalue of
the operator L(V) lies in M-neighborhood of the Nth eigenvalue of the operator L(0).
Let the Nth eigenvalues of L(V) and L(0) be Ay and | Y
an integer N such that | Ay— | v|?|< 3p*.

2, respectively. Then there is

On the other hand, since L(V) is a self adjoint operator, the eigenfunctions {¥y(x) }¥_,;

of L(V') form an orthonormal basis for L7'(Q). By Parseval’s relation, we have
< 2 < 2
1Y fii®y 17 = Y 1< Y fii®yj, ¥n >
J=1 N:[Ay—[y2|<dpr J=1

m
+ Y <Y fij®yj, PN >, (3.46)
N:| A=Y=t =1

Now, we estimate the last expression in (3.46). By using the Cauchy-Schwarz

inequality and the binding formula (2.25), we get

m m
Y < Y fij®yj, Wy >*= Y | Y fii < Py Pn>P

N:JAN—y2[>3p% =1 N:AN—[y2[>5p%1 J=1
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IN

m m

Z [Z |flj |ZZ ’<\PN,CI>%J'>|2]

N:JAN—[YP[=5p™ /=1 =1

_ y i |[< Wy, Vdy; >|?

B — 2|2
N:[Ay—[y2|>1p j=1 | Av—[Y[?|

1 m
< (Epal)fz )y Y <N VDy; >
N:| Ay =¥z 5p%1 /=1

1 B m
< (3T Y VP
j=1

from which together with the relation (2.35) we obtain

m
) 1< ¥ £ij®yj, ¥y >[= 0(p ).
N:[Ay—yR|=1p2 =1

It follows from the last equation and (3.46) that

m
Y <X B>P= ) AN fiP=1-007).
NJAN—yPl<zp J=1 N:|Av—[yP|<3p™
(3.47)
On the other hand, if a ~ p, then the number of y € g satisfying || v |2 —a® | < 11is less
than ¢sp9~!. Therefore, the number of eigenvalues of L(0) lying in (a®> — 1,a® + 1) is
less than cgp?~!. By this result and the result of perturbation theory, the number of
eigenvalues Ay of L(V) in the interval [| v [> —3p™,| v |* +1p®] is less than c7p9~1.
Thus

1-0(p™2™") = ) JANY) - fi P<cp®  JAWNLY) - fi P (3.48)
N:|Ay—[y2[<3p™

from which we get the estimation (3.44).

(b) Since L(0) is a self adjoint operator, the set of eigenfunctions {®Py;(x) }YG L1 20m

of L(0) forms an orthonormal basis for L7'(Q). By Parseval’s relation, we have

m m
levlP= Y Yl<evneu>P+ Y Y <Py
TIAv =<3 =1 YAy =2 |> % =1
(3.49)
We estimate the last expression in (3.49). For a fixed i = 1,2,...,m using the binding

formula (2.25) together with the relation (2.35), we get
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M| < Py, VD >

Z Z|<lPN’q)W>’ = Z Z | Av— [ YR

TIAN— Y22 5p% =1 T An— Y| Lpo i=1
1 B m
= (3p%) ’ )3 Y (< Ve, Py >
AN [v2[=3p% =1
L e
<GP VNI, (3.50)

that is,

m
) Y < ¥y, @y >P=0(p ™).
Yol An—[v2[>1p%1 =1

From the last equality and (3.49) we obtain

m
)y Y < ¥y, Py >P=1-0(p ™).
Yl AN —[y2|< Sp® =1

Arguing as in the proof of part(a), we get

m
1—0(p™2™) = ) Y < ¥y, @y >[P< csp? ! |< Py, Dy, >
Yol AN =y < $p® =1

from which the estimation (3.45) follows. O

Theorem 3.17. Let | v |* be a non-resonance eigenvalue of the operator L(0) with
[ Y[~ p.

(a) For each eigenvalue \;, i = 1,2,...,m of the matrix V there exists an eigenvalue
An of the operator L(V) satisfying

An =Y 04 0(p~ ). (3.51)

(b) For each eigenvalue Ay of the operator L(V) satisfying the inequality (3.41), there
exists an eigenvalue \; of the matrix Vyy satisfying the formula (3.51).

Proof. (a) We prove this part of the theorem by using the same consideration as in
Karakilic (2004). Let |y |> be a non-resonance eigenvalue of the operator L(0) with
| Y|~ p. By the result of perturbation theory, the Nth eigenvalue Ay of the operator
L(V) lies in % p% neigborhood of the non-resonance eigenvalue |y |> of the operator
L(0). That is, there exists an integer N such that Ay satisfies the inequality (3.41). We
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consider the binding formula (2.25) for these eigenvalues Ay and |y |%.

Substituting the decomposition (3.40) into the binding formula (2.25), we obtain

m
(A=Y <Pn.®pi>=Y Y vijy <PN, Py > +0(p 7).
i1=ly, eI +0(p®)

Isolating the terms with the coefficient < ¥y, ®y; >, that is, y; = 0, for each

i=1,2,...,m, we get

m
(AN— | Y |2) < lPN,CDy’j >= Z Vijo < lPN,CI)Y,i >
i=1

m
+ Z Z Vig i <INy Py iy > +O(pPY).
i1=ly,er+o(p®)

In the second summation of the above equation, since Ay satisfies (3.41) and y €
U(p™,p), 71 € TH0(p*) with y; # 0, by the inequality (3.42), we obtain

(Av— 7)) < Yy, Py >= Zvijo <Wy,Py; >
i=1

- <N, Pyiy 1,0y > _
+ ) Y viwvaim A | ji 2 5) +0(p~P%).
in,i=ly; el +0(p%) NI

Again in the second summation of the above equation isolating the terms with the
coefficient < Wy, ®Py; >, thatis, y; +y> =0,y #0foreachi=1,2,...,m, we get

m
(Av—1Y[?) < Wn, Dy >= .):1 vijo < ¥y, Py, >
=

m
Vi Viiry
+ Z Z < lPN d)%i >
i],izl Y],Y2€F+O<pa> (AN_ ‘ ’Y—i_ Y] ’2) ’
Y1+12=0
+ in: Z VivjnViriry Wy Do s >
l
(Av—|7+71 %) YN 20

i1,=1y el t0(p®)
+ O(p~ 7). (3.52)

Writing this equation for j = 1,2,...,m and i = 1,2,...,m, after the first step of the
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iteration we obtain the following system.
[(Av— 17 )] = VoJAN,7) = S'(AN)A(N,Y) +R' +0(p™"%),

where I is the m x m identity matrix, S'(Ay) = (s}-i (Ayn)) is the m x m matrix whose

entries are
m

1 Viyjyi Viiiy
sji(An) = Z Z 2
g i1=1yy ypert0(p®) (AN_ |Y+Yl | )’

Y1+72=0

J;i=1,2,...,mand R' = (r}) is the m x 1 vector whose components are

m

1_ Viijni Viairy ]

i . Z Z (AN—|7+71 +72 |2) <N, Pyiyitin >
ini2=ly y,elt0(p)

j=12,....m.
Now, we continue to iterate the equation (3.52). In the third summation of the

equation (3.52), since Ay satisfies the inequality (3.41) and Y€ U(p*,p), Y1+ T2 €
*+0(2p%) with 1 +7v2 # 0, by the inequality (3.42), we obtain

(AN— | ’Y|2) < ‘PN,CI)YJ >= '§1 vijo < ‘PN,CI)W' >

m
Vi Vi
+ Z Z 2 < lPNaqu,i >
i1,i=1 vy} ypert0(pe) (AN— |Y+ Y1 | )
1 +12=0

m
Viijyi Viziia Vizioys
+
§ 712'72 (Av=[v+v P (A= [v+1n+712 ?)
i3=1 y3ert0(p%)
<YW, CI)Y+“{1 P +13.03 >

+ 0(p~").

Isolating the terms with the coefficient < Wy, ®y; > foreachi=1,2,...,m, we get

m
(Av—17[?) < Wn, Dy >= .):1 vijo < PN, Py >
=
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m
Vi Viiiy
"17’2—1 szE;O(P“) (Av—=ly+m |2) T
Y1+12=0
m
Viyjy Viaiiy Viipys
i17izg"_l Y1772,Yg§+0(p0‘) (AN_ |'Y+'Y] |2)(AN— |'y+yl +7 |2) y i
Y+ +13=0
m
Vi jy1 Virii v Vizioys
+ )Y )

= (A= P A= Iy )

iz=1 Y3€F+0(p(x)
< ‘PN7CDY+Y1 Y +13,03 =
+ O(p™ ).

Again if we write this equation for j = 1,2,...,mand i = 1,2,...,m after the second

step of the iteration we obtain the following system.
[(An— [ ) = VOJAN.7) = (S'(Ax) + S*(An))A(N,Y) + R + O(p~"%),

where this time S?(Ay) = (s?i(AN)),

m
2 Vi jyiViaii Vil ys
s "(AN) = )
g il,iZZ’_l oy, (A= Y7 P)Av—[7+71 +72 [7)

Y1+Y2+Y3=0

Ji=1,2,...,mand R* = (r3),

m

2 ViyjniViaiin Visioys
]". g
! § yl,zb. (An—[v+7 D) Av=|Y+N1+72 1)

i3=1 y3€r+0(p(x)

< W, cI)\H-Yl Y +13.03 2

If we continue to iterate in this manner after the p;st step where p; = [%] and [

is the integer function we obtain the following system.
P1
(A=Y= VAN, Y) = (X S AN)AWN.Y) + R +0(p™"%),  (3.53)
k=1

where
SYAN) = (S5(AN), k=1.2,....p1, ji=12,..m, (3.54)
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m
k ViijnViairya -+ ViigYiq1
S AN = )
3i(AN) L L (Av=1v+71 1?) - (Av= |y +vi +- 4% )

1582500k =1 v 7y €T 0 (p%)
YA g 1 =0

RV = ("), j=1,2,...,m, (3.55)
P i Z Vivjn +« - Vip +1ip, Ypy +1 < TN’®Y+YI+"'+YPI+17ip1+I >
s s (A= v ) (A= [y 1)

i/}]+1:1 Yp]+1er+0(9a)

Since Ay satisfies the inequality (3.41), ye U(p™,p) and V1 +V2+ -+ Yk €
[*+0(kp™) with y; 472 +--- + Y # 0 , by the inequality (3.42) and the relation (2.35),

|rp1 ’ < i Z |vl1]’Yl| e |Vip1+1iP]Yp1+1 || < ‘PN’¢'Y+’Y1+“'+’YPI+1JPI+1 > |
L R~ [ A Ve B 6 ot (B o | PP (AW B CIE SR S P D]
ipp+1=1 ¥y, 1€ T0(p%)
1 m

N S T
l1,l2,...7lp1+1:1
that is,

| RPY [|=O(p™71%). (3.56)

We have chosen p; = [pTH] So by definitions of &, o, [ and p, we have the inequalities

(d+20)(d—1)
: .

P12 g, p10 > pa, p> (3.57)

Thus it follows from the equation (3.53) together with the estimation (3.56) and (3.57)
that

[D(AN,Y) —S(An, P1)JA(N,Y) = O(p~P%). (3.58)

Now, let B; be an eigenvalue of the matrix D(Ay,y) — S(An,p1) and f; its
corresponding normalized eigenvector. By Lemma 3.16.a, there exists an integer N;
such that the eigenvalue Ay, of the operator L(V) satisfies the inequality (3.41) and the
estimation (3.44) holds for N = N;. So letting N = N; in (3.58) and multiplying both
sides of (3.58) by f;, we obtain

BilAN.Y)- fil = O(p~"7).
Using the estimation (3.44) in the above equation, we get

Bi = 0(p~ (P~ =)%). (3.59)
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On the other hand, since D(Ay,Y) and S(Ay, p1) are symmetric real valued matrices,
by Theorem of Lidskii in Section 1.3, |B; — (Ay— | ¥ [*> —=A)| < [IS(An, p1)|| where
we have || S(Ay,p1) ||= O(p~®1). Because since Ay satisfies the inequality (3.41),
YeUP™,p) and v+ + - + 7 € TT0(kp™*) with y; +72 + -+ Yk # O, by the
inequality (3.42) and the relation (2.35),

[s5:(An)|

ddd Vi iy | [Visings | - - - Vi |
< Z Y oYl 1 VigYey
it 4y g €T 0500 (AN— | Y+v1 P)].. [(An— | Y+71 + -+ 7 [?)]
"/1+“{2+“‘+"{k+1:0

1 m

(2poc1)k il,iz,;ik—l 1 J"nn 17

foreachk=1,2,...,p1,i,j=1,2,...,m. Thus
| S5(AN) |= 0(p~ ), Vk=1,2,...,p1

which implies

P1
I'Y s (An) = 0(p™™). (3.60)
k=1
So we have
Bi=An—|Y[* —Ai+O(p™™). (3.61)

Choosing p > % + 1, using (3.59) and (3.61), we get the result.

(b) Let Ay be an eigenvalue of the operator L(V) satisfying (3.41). By Lemma 3.16.b,
there exists an eigenfunction ®y;(x) of the operator L(0) satisfying the estimation
(3.45) from which we have

—(d-1)

|A(N,Y) [>cop™ 7. (3.62)

Let | v |* be the eigenvalue of the operator L(0) whose corresponding eigenfunction
d,;(x) satisfies the estimation (3.45). We consider the binding formula (2.25) for these
eigenvalues Ay and |y |>. Arguing as in the proof of part(a), we get the equation (3.58)

[(An—[Y[P) = VoJA(N,Y) = S(An, p1)A(N,Y) +O(p™"%),

where |y |? is a non-resonance eigenvalue of the operator with |y |~ p. Applying

m [(An— | Y |2)I — Vo]~ ! to both sides of the above equation, taking norm of both
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sides, and using the inequality (3.62), we obtain
(d 1
L< |[[(Av— v )= Vol 1||||ZS" AW+ IlAn—= [y )= Vol M [o(p~ P77,
k=1
By using the estimation (3.60), we get

1
i=12,.m |An— | V> —\i]

1

[0(p~) +0(p~ %= 3)].

Choosing p > 4=l —|— 1, we obtain
. 2 —_
min [Ay—[Y]" =il < ciop™™
where minimum is taken over all eigenvalues of the matrix Vj from which we obtain

the result. O

Corollary 3.18. (a) Let uy; be an eigenvalue of the operator L(Vy) where y € U (p*', p)
with | y|~p andi=1,2,...,m. Then there is an eigenvalue Ay of the operator L(V)

satisfying
AN =pyi+O0(p~™). (3.63)

(b) For each eigenvalue Ay of the operator L(V) satisfying the inequality (3.41) there
is an eigenvalue uy; of the operator L(Vy) satisfying the formula (3.63).

Proof. The proof follows from the proof of Theorem 3.17. [l

Remark 3.19. We note that to obtain the estimations (3.60) and (3.56), we have only
used the assumption that Ay satisfies the inequality (3.41), that is, Ay € J where
J=1[v*—3p™,|¥]* + 1p™]. Hence we may write

||ZS’< ) |=0(p™™), Vacl. (3.64)

Similarly, the estimation (3.56) holds for a € J. So we may consider the equation (3.58)

for any a € J. That is, we may write

[D(Aw,Y) = S(a, p1)]JA(N,Y) = O(p~ ") (3.65)

for any a € J.

In the proof of Theorem 3.17, we have chosen p > dz—_al + 1. Now, we let
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c= [%] + 1. The estimations (3.44) and (3.45) can be written as
|A(N,Y)- fi [> cip™ (3.66)
and
|< @y, Py >[> c1op™ Y, (3.67)

respectively. It follows from (3.67) that the estimation (3.62) can be written as

|A(N,Y) [> ci3p™*. (3.68)

We define the following m x m matrices.

Fy=0, Fi=S"(17[* +)), Fi=S(Iv/ +As+ | Fjztll, ), j>2.
(3.69)
Then we have
|Fjll = O(p~*) (3.70)

for all j =1,2,...,p—c. Indeed, since Fy =0, ||Fp|| = 0 and if we assume that
|Fi—1|| = O(p~®), then since | ¥ |* +As+ ||Fj—1]|| € J, by the estimation (3.64), we
have [|Fj| = O(p~™).

Theorem 3.20. Let | v |? be a non-resonance eigenvalue of the operator L(0) with
[7l~p.

(a) Forany eigenvalue \;, i =1,2,...,m of the matrix Vy, there exits an eigenvalue Ay
of the operator L(V) satisfying the formula

AN =| Y A+ [[Fior ||+ O(pF), (3.71)

where Fy._1 is given by (3.69), k=1,2,...,p—c.
(b) For any eigenvalue Ay of the operator L(V) satisfying the inequality (3.41), there
is an eigenvalue \; of the matrix Vyy satisfying the formula (3.71).

Proof. (a) We prove this part of the theorem by using the same consideration as in
Karakilic (2004). We use mathematical induction. For kK = 1 we obtain the result by
Theorem 3.17.a.

Now, assume that for k = j — 1 the formula (3.71) is true, that is,

Ay =[7? +hi+ [|Fj-1 ||+ O(p 7). (3.72)
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By (3.70), we have | y|* +As + ||Fj_1|| + O(p~/*) € J. Thus substituting
a=|v|> +A;+||Fj-1]| +O(p~/*) into S(a, p1) in the equation (3.65), we get

[D(ANY) =S| Y I> +hs + [Fj—t [+ 0(p ™), pr)JAN, ) = O(p™7%).  (3.73)

Adding and subtracting the term F;A(N,Y) = S(| v |> +As + || Fj-1]|, /))A(N,Y) into the
left hand side of the equation (3.73), we obtain

[D(An,Y) — FjJA(N,Y) — E;A(N,Y) = O(p~"%), (3.74)
where

Ej = [S(|vI* +As+[Fimt] +0(p7), j) =S¥ [ +As + | Fj1]l, )]

pi _
+ (Y SR+ Fimil +0(p~ ™).
k=j+1

By the estimation (3.64), we have

Pl ) )
1Y, SUvP A+ Fa ] +0(p 7)) = o(p~ Ut (3.75)
k=j+1

If we prove that

ISUY P +hs +I1Fj—1 | +0(p~7), ) = S [ +As + | Ej-1]l, )| = O(p~UHDo),
(3.76)
then it follows from the estimations (3.75) and (3.76) that

|IEj|| = O(p~ Ut Deny. (3.77)

Now, we prove the estimation (3.76). Since | Y |? +As + ||Fj—1]| + O(p~/*) € J and
| Y |* +As + ||Fj_1]| € J satisfy the inequality (3.41), by the inequality (3.42), we have
_i 1
Y A+ IF 007 ) = [y 443 [ > 5p,

1
Y AA+ | Fjma = [ y+y -+ + % > L (3.78)

J
for all y, € ['(p*) and = 1,2,..., p1. By its definition, S(a, j) = ¥, S¥(a). Thus we
k=1

first calculate the order of the first term of the summation in (3.76_). To do this, we
consider each entry of this term, and use the inequalities (3.78) and the relation (2.35).
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s (|7 12 +s + [ Fji | +0(p~71)) = s3:(| ¥ P A + || Fj-1 )]

<y ¥ i i O

TS e (Y P A IE Al O ) = [v+m P Y P +As+ ([ Fjall= [ v+ )]
Y1 +Y2=0

< Cl4p—(/+2)061

for each [,i =1,2,...,m which implies
IS' (1Y P +As+ [ Fjall+0(p~7*)) = S' (| ¥ [ +hs + [[Fj-1 )| = O(p~ 2.

If we consider each entry of the second term of the summation in (3.76), then again by
the inequalities (3.78) and the relation (2.35), we see

s (| Y [ A+ [[Fj=1 |+ 0(p~7%)) = si(| Y [ +As + | Fja )]

m
< Z Z ‘vil[YI | ’Vi2i|Y2‘|vii2Y3 |0(p7]a1)

i1,2=1 y| vy y3er+0(p%)

Y1 +12+13=0
( 1
(@ +O0(p~ /)= [y+7 [)(@+O0(p~*)— | v+ +v2 [*)(@— [ v+ +v2 ?)]
1
(@ +0(p=7) = [y+71 [2)(@— | v+ 11 ) (@ +O0(p~/)— [ y+V1 + 72 |2>!}
< Clspf(j+3)0c1

foreach /,i =1,2,...,m where we use the notation @’ =| v |* +A+||Fj_1|| for the sake

of simplicity, which implies

1217 P 42+ [ Ej-all 4+ 0(p~7)) = S* (17 P 4+ | Ejal]) | = O(p~ UH)0).
Therefore, by direct calculations, it can be easily seen that

IS Y 1P +hs I+ 0(p 7)) =S¥ Y [P 4+ + | Fj1 )| = O(p~ U Den)

from which we obtain the estimation (3.76).

Let B; be an eigenvalue of the matrix D(An,Y) — S(| v > +Ai + [|[Fj—1]| +
O(p~/®), p1). If we multiply both sides of the equation (3.73) by its corresponding
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normalized eigenvector f;, and use the estimation (3.66), then we obtain
B =O0(p~(P=9)%), (3.79)

On the other hand, the matrix D(An,Y) —S(| Y > +Ai + |Fji=1]| + O(p~/*), p1) in

(3.73) is decomposed as follows
D(AN,Y) = S(| Y[ +hi +[[Fj—t ||+ O(p™ ), p1) = D(An.,Y) — Fj — E}.
Thus by (3.77), (3.79) and Theorem of Lidskii in Section 1.3,
Bi — (A= | 7[> +M)| < [|Fj| +O(p~ U Do),

where 1 < j+1 < p—c, we get the proof of (3.71).

(b) Again we prove this part of the theorem by induction. For j = 1 we obtain the
result by Theorem 3.17.b.

Now, assume that for k = j — 1 the formula (3.71) is true. To prove (3.71) for k = j,
we use the equation (3.74). By using the definition of the matrix D(Ay,7) and (3.74),

we have
[(An— | Y P)T = D,]JA(N,Y) = E;A(N,Y)+O0(p~ "),

1
where D; =V + F;. Applying W[(AN_ v |1 —Dj]_1 to both sides of the

above equation, taking norm of both sides, and using the estimations (3.68) and (3.77),

we obtain

< (= [y P=Dy 0G0 4 [ [(Ay— [y [ =D, [[0(p~ ¢~
<  max ! —— [O0(p~ Ut e,
i=1,2,....m |AN_ | Y |2 _7\4(])|

or
min | Ay—|Y]> —Ai(j) |< crep” VDA,

i=1.2,....m

where minimum is taken over all eigenvalues 7»,( j)of thematrix D;, 1 < j+1<p—c.
By the last inequality and the well known result in matrix theory, |A;(j) — A < ||Fjl|,

we obtain the result. L]

Corollary 3.21. (a) Let uy; be an eigenvalue of the operator L(Vy) where y € U (p*!, p)
with | Y|~ p andi=1,2,...,m. Then there is an eigenvalue Ay of the operator L(V)
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satisfying
AN = pyi+ || Fit || +O0(p™*), (3.80)

where Fy,_1 is given by (3.69), k=1,2,...,p—c.
(b) For each eigenvalue Ay of the operator L(V) satisfying the inequality (3.41) there
is an eigenvalue uy; of the operator L(Vy) satisfying the formula (3.80).

Proof. The proof follows from the proof of Theorem 3.20. [l

3.2 Asymptotic Formulas for the Eigenvalues in the Resonance Domain

We assume that Y ¢ V,, (p*1) fork =1,2,...,d where e| = (;‘—1,
er=(0,20,...,0),...,e4=(0,...,0,2).

Yay) Yay

0,...,0),

k
Let | v |* be a resonance eigenvalue of the operator L(0), that is, Y€ () Vi, (p*)) \
i=1
E1,k=1,2,...,d -1,y #ejfori=1,2,...,kand j=1,2,...,d - 1.

We define the following sets
k 1 1
_ b — YA — 02 %+1
Bk(’yla’YZw"v'Yk)_{b'b_anyl7nlEZ?‘b|< 2p2 }7
i=1

Bi(Y) =Y+ Bi(Y1,V2,---»Y) = {Y+b:beB(Y1,v2,-- -, W) }»

Bi(v,p1) = Be(Y) + T (p1p?).

Let hr, T=1,2,...,b; denote the vectors of By (Y, p1), b the number of the vectors
in By (v, p1). We define the mby x mby matrix C = C(y,v1,...,%) by

| 2T Vi, o+ Vi

Vi, 21 -V,
c=| ™M [ B2 | Pahn (3.81)

_hhk

Vhbk*hl Vhbk*hz o |y ‘2 1
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where V), 5., T,§ = 1,2, ..., by are the m x m matrices defined by
T

V1 1h1—h§ V]th—hé tee Vlth—hg
v21hr—h§ VZZhT—hé T V2mh¢—h§
Vi_h = (3.82)
T S .
leht—hé Vm2ht—h§ t mehﬂc—hg

The analogues of the following lemma can be found in Karakilic (2004)(see
Theorem 3.1.1.)

Lemma 3.22. Let | ¥ |?> be a resonance eigenvalue of the operator L(0), that is, Y €
((k] Vi (P* )\ Exs1, k=1,2,...,d =1 where | Y|~ p, Ay an eigenvalue of the operator
Ll(zilf) satisfying

[ Av=vPI< %p“l- (3.83)

Then |
| Av—| e =Y =11 =12 — =% P> gp"‘kﬂ (3.84)

where hy € Bi(Y, p1), he — Y & Bi(Y, p1), Y € T(p%), i e T(p%), i = 1,2,...,5,
s=0,1,...,p1 — 1.

Proof. The relations iy € Br (Y, p1), he — ¥ & Bi(Y,p1), 2p1 > pand |V |, |11 |,- -,
| Yp,—1 |< p* imply that
as=hy =Y =1 —Y2—...— Y € Be(Y,p1) \ B(Y)
fors =0,1,...,p; — 1. To prove the inequality (3.84), we use the decomposition
ag=Y+b+a,

where b € By and a € T'(p1p%). So | b |< %p%“k“ and | a |< p1p%. First we show that

1
|y+b4al>— |y > gp“k“. (3.85)

To prove the inequality (3.85), we consider the following cases.
Casel: If a € P = span{y1,Y2,..., Yk}, thena+b € P and Y+ b+ a ¢ By (y) imply that
a+Db € P\ By, that is,
1 1
la+b|> §p2ak+ll
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Now, if we consider the orthogonal decomposition of y as Y= x+ v where v € P and
xlv, thenbyusingx-a=x-b=x-v=0,|a+b|> %p%“k“ and | v |< p™, we get

lv+b+al> = [YP| = |lx+v+b+al’ —|x+v ]
1
= |yv+b+ayz—\v\2y>§péak+l.

Thus for Casel the inequality (3.85) is true.
k
Case2: If a ¢ P, then by definition of y € (" Vy,(p*)) \ Ex+1, we have
i=1

ly+al® =y P[> p™. (3.86)
Consider the difference
lv+b+al> = |vPI=lly+b+al = |y+b >+ v+ [F — vl

where

di=|y+b+al>—|[y+b 2 dy=|y+b* — |7

Since
di =|y+b+al* = |y+b |*=|y+a > — | y|* +2a-b,

by the inequality (3.86) and | 2a-b |<2|al| b |< plp“p%o‘k-«-l < %pakJrl’
2
‘ di |> gpakﬂ.

On the other hand, using | y+b+a |> — |Y|?=|v+b-+a|?> — | v |?, and taking a = 0,

we get
dy=[v+b > = |yP=[v+b > = |v = (lv+b| = [v])(|v+b|+]|v])
from which it follows that |
‘ d2 |< gp(xkﬂ.

Then :
i | = |da ||> g,

So in any case the inequality (3.85) is true. Therefore, the inequalities (3.83) and (3.85)
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imply that
1
| An— | Y+b+a P|=| Av— |V = | Y+b+a | + |y [*|> L

]

Theorem 3.23. Let |y |? be a resonance eigenvalue of the operator L(0), that is, ¥ €
k

(N Vy,(P*))\ Ext1, k=1,2,...,d — 1 where | Y|~ p, A; an eigenvalue of the matrix
i=1

Vo, and Ay an eigenvalue of the operator L(V) satisfying
2 1 o
[Av=Tr[l< 5P (3.87)
and
‘< (I)%j,\PN >‘> C17pic(x. (3.88)

Then there exists an eigenvalue Ns(Y), s = 1,2,...,mby of the matrix C such that

Ay =hi+n,(y) +O(p~ 7430,

Proof. We give the proof by using the same consideration as in Karakilic (2004). The
binding formula (2.25) for any h; € Bi(Y,p1), T=1,2,...,b; and the decomposition
(3.40) give

m
(A=) <Pn,@pj>= Y, Y vijy <N Py > +O(p7%). (3.89)
i=lyer+(p%)

We first show that

m
oPp ™)=Y X Viy<¥yPhyi> (3.90)
i=1  ver(p®)
/1‘[*"{/¢Bk<'Y-,[7])
forany j=1,2,...,m. Here we remark that y/ # 0. If it were the case, then we would

have from h; —y/ ¢ By (Y, p1) that hy ¢ By (7, p1) which is a contradiction.

Since Ay satisfies the inequality (3.87), by Lemma 3.22, we have | Ay— | hy — ¥/ |?|>

%po‘kﬂ. Using this and the decomposition (3.89) for iy —y & By (Y, p1), it follows that



m
Y Y vipg<¥N,Ppyi>
i=1  yer(p®)
ht—y¢By(V.p1)

. m
= Z Z An— |VZZ/_ v |2 Z Z Viyiyy < \PN7thr—Y’—Y17i1 >

i=1  yer(p®) it=1 v el(p%)
ht—y1¢By(V:p1) ht—Y¢By(Y,p1)

+ O(p~P%).

In this manner, iterating p; times, we get

m
Z Z Vijp < lPNaq)hTfy/,i >
i=1  yel(p®)

ht—y1¢By(Y.p1)

m
i,i1 ,iz,.“,i[,l =1 vy1.92,-¥p; €T(P%)
ht—y¢By (Y.p1)

vl]’Y/vlll’Yl et vipl ipl—lYpl
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(Av=The =y P) Ay = [ e =y =71 [P) o (AN—= [ he =V =1 =+ = Yp 1 [?)

< ‘PN,q)hT_y/_Yl_"'_Ypl’im > +0(p_pa)'

Taking norm of both sides of the last equality, using Lemma 3.22, the relation (2.35)

and the fact that pjoy 1 > p1oo > po, we obtain

m
D Y iy <N, Pp—yi >|
i=1 yer(p®)
ht—y¢By(V.p1)

< ¥

L1512y esipy =1 VY Y20 Yp) ED(PY)
ht—y1¢By(Y.p1)

| Vijy/ || viliYI | R | Vipliplfl’ypl |
| AN= e =V Pl AN=The =¥ =11 Pl T AN = [ e = =v1 =+ = Yp 1 ]
|< lIIN?(I)h’E*'Ylf'Yl*"'f'Ypl»ipl >| +0(p_p(x)
1 _
S (gpa‘kJrl) p Z ‘ Vin/ || Viliyl | e | viplipl—lYpl ’

Y1 Y20¥py €0(P%)
ht—y¢By(Y.p1)

|< ‘PN,(th_y/_'Yl_... >| +0(p—p0()

_Ypl oIpy
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1 - m
< (gpockﬂ) P1 Z Ml--Mill'...M,'pll.pl_l |< IPN?(I)hr—Y’—Yl—"'—YpI-,ipI >|
i,il,iz,...,il,]:]
+ O(p™")
= 0(p").

That is, the estimation (3.90) holds. Therefore, the decomposition (3.89) becomes

m
(A= he ) <¥n,@n;>=Y Y vijy <Py, Ppo—yi > +O(p %) (3.91)
=1 yerto(po)
ht—Y€By(Y,p1)

Since hy — Y € Bi(Y, p1), using the notation hg = h — 7/, the decomposition (3.91) can
be written as

m
(Av=|h ) < ¥y, @p;>=Y Y Vijheng <N, Pi > +0(p77%).
i=1 hy—he €040 (p)

Isolating the terms where h; — he = 0, we get

m
(AN— ‘ h; |2) < lPN,(Dhﬁj > = ZV,'J'() < lPN7q)hT,i >
i=1
m

+ Y Y Vi <N Pri >
i=1hi—hg €T (p®)

+ 0(p ). (3.92)

Considering the decomposition (3.92) for an arbitrary iy € Br(Y,p1), T=1,2,...,b;

and for all j =1,2,...,m, we get

by
(An— | he PYIA(N, he) = VOA(N, ho) + Y Vi AN, hg) +0(p~P%),  (3.93)
o
or )
k
[(AN— | he |2)I_ VO]A(N7 h‘t) = Z Vhr*th(Nv h&) + O(p—p(JL)? (3.94)
E=1
&£t

where [ is an m x m identity matrix, Vs, _p, is given by (3.82), O(p~7%) is an m x 1
vector and A(N, kg ) is the m x 1 vector

A(N, ]’l{;) = (< \I]Naq)hé,l >, < lPN,CI)h@z >0, < \I]N,q)h@m >) (3.95)

forany §=1,2,...,by.
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Let A; be an eigenvalue of the matrix Vy and ; the corresponding normalized

eigenvector. Multiplying both sides of the decomposition (3.94) by ;, we get

by
[(AN— | hr ’2)1— Vo]A(N,/’lT) - ; = Z VhT_héA(N,hé) -; + O(p_p“). (3.96)

=1
E#t

For the left hand side of this last equality we have

[(An—| e | =VoJA(N, he) -0 = A(N,he)-[(Av— | he [2)] = Voo
= A(N,hq;) . (AN— | /’lf |2 —7\4)(,01'
= (Av— | he [P =M)AN, hey) - @ (3.97)

Letting Ayt = Anv— | It |> —A;, by the equation (3.97), we have from the
decomposition (3.96) that

by
AN AN, o) = Y Vi i AN he )] - @; = O(p~P%). (3.98)
E=1

E4v
Since the set of normalized eigenvectors {®;};—1 2, . of the matrix V forms a basis

by
for R™, for any vector Ay 1 IA(N,h¢) — ) Vhr_héA(N,hé), t=1,2,...,b; in R" by
=1

£
using Parseval’s relation and the equation (3.98), we have

by
| e AN, he) = X, Vi1 AN he) ?
=1

En
m by m
=Y | P d AN he) = Y Vi n AN )] [P= Y [ O(p ") [7. (3.99)
i=1 %;l: i=1
It follows from (3.99) that
by
M il AN he) = Y Vi n AN he) = O(p~P). (3.100)
=1
E#t

Now, considering the equation (3.100) for all i € B(y, p1), T=1,2,..., b, we obtain
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the system
Ml =Vin, o =Viom, A(N,hy) O(p~P%)
B e I L BRERTY
_Vh,;k—hl Vi —hy o Ml A(N;hbk) O(P;pa)
We may write the system (3.101) as
(AN —A)I —CJA(N, hi,ha, ... . hy,) = O(p~P%), (3.102)

where [ is an mby x mby identity matrix, C is given by (3.81), A(N,h1,ha,... hy,) is
the mby, x 1 vector

AN, i, ha, ... ) = (AN, by ), AN, ha), ..., AN, )

and O(p~P%) is an mby x 1 vector. Multiplying both sides of the equation (3.102) by
[(Ay —Ai)I —C)~!, and taking norm of both sides, we get

[ AN by ho, ) [< (A =M)T=CI7H [ O(p™P%) | (3.103)

By the estimation (3.88), together with by = O(p%3d°‘) we have the estimations
|A(N,hy by, ) [> cigp™®, | O(p~P%) |= O(p~ (P~ 532y,

Thus it follows from the inequality (3.103) and the last estimations that

3 — —(p—4
c18p~* <|| [(Ay =) =C] " || crop~ P83,

min | An =N —My(Y) | < capp™ P83
k

s=1,2,..,m
Ay = Ai+my(y) +O(p~ (P53,
[
Theorem 3.24. Let |y |* be a resonance eigenvalue of the operator L(0), that is, Y €
(‘(k]l Vi(P*))\ Ext1, k=1,2,...,d — 1 where |y |~ p, A; an eigenvalue of the matrix
=

Vo, Ns(Y) an eigenvalue of the matrix C such that | ns(y)— | v|*|< %p“l. Then there is
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an eigenvalue Ay of the operator L(V) satisfying
Ay =X +1,(y) +O(p P+ 3o, (3.104)
where Ms(Y), s =1,2,...,mby is an eigenvalue of the matrix C which is given by (3.81).
Proof. We prove this theorem by using the same consideration as in Karakilic (2004).

By the general perturbation theory, there is an eigenvalue Ay of the operator L(V') such
that | Ay— | 7 |?|< 3p>* holds. Thus one can use the system (3.102)

[(An — M) —CJA(N, hy, hy, . .. ,hbk) = 0(97’”) (3.105)

of Theorem 3.23. Letm,, s = 1,2,...,mby be an eigenvalue of the matrix C and 05 =
(8l,02,... 00k )mb,x1 the corresponding normalized eigenvector, | 65 |= 1, where 6] =
(0%1,6%,...,0%) 1, T=1,2,...,br. Multiplying the equation (3.105) by 6;, we get

[(Ax = A —CJA(N, b, o, ...y, ) - 65 = O(p~P™) - . (3.106)

From the left hand side of the equation (3.106) we get

(AN — M) —ClA(N, hy,ha, ... hy,) - O

= A(N,hi,hy,....hy) - [(Any —Ni)I —C]6

= A(N,hi,ha,...,hp,) - [(An — )18, —10,]

= A(N,hi,hy,....hp) - (AN — A — M) 6

= (AN —Ai—Ms)A(N,hi,ha,... hy,) - 6. (3.107)

Using the equation (3.107) in the equation (3.106), and taking norm of both sides, we
get
| AN —Xi =M || AN, by, by, .. hy) -85 |[=| O(pP%) - 65 | (3.108)

From the right hand side of the equation (3.108) by using by = O(p%3d°‘), we have

_ _ _ _ dad
| O(p™7*)- 0, [<| O(p™"*) || B |= \/mby(p~P™)2 = \/mbyp™P* = O(p~P*T4¥%),

(3.109)
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The equation (3.108) and the estimation (3.109) give
| An =i =M || AN, By ha, . hy, ) -85 | = O(p POt 379, (3.110)

Now, we estimate | A(N, hy,ha, ..., hp,) - O |. Since

by m by m
[AWN, o, ) -85 [=] Y Y 67 < Wy, @i >[=|< W, ) Y 60 P >,
1=1i=1 T=1i=1
(3.111)
to estimate | A(N,hy,ha, ..., hy,) -8, |, we consider the Parseval’s relation
S 2_
1 = | Zzencp hei |I7= Z |<1PN,ZZGTZCD ISP
t=1li=1 T=1i=
o by om
= 1YY 6 < Wy, Py, >
N=1 1=1i=1
b
= Y |ZZG“<‘PN,<I>;% >[?
N:[Ay—[y2|>1p? 1=li=]
bk m )
+ Y Y Y O < Wy, P > (3.112)
N:|AN—|y|2|<%p20€1 t=1i=1
We give an estimation for the first summation in the last expression.
)> | ): ZQT’<‘PN,‘1>hTz>|
N:|AN—W|2|2%p20‘1 t=1i=1
m .
= )y | Y Y 6 < Wy, Py, >
N:|AN—[Y2[= 10241 weims—|he 2| < £ p®1 i=1
m
+ ) Y o < Wy, @, >
T[Ny el > gp =]
< 2 ) | ) Y 6] <y, Dy, >
N:‘AN*"YP'Z%F)MI 73|ns*|hr|2|<%pali:1
m
2 > | ) Y o <Wy, @, >>.  (3.113)
N:|AN—Y2[2 3071 Tns—|he[?[> gp*1 i=1
. m .
To estimate the term 2 Y | )y Y 0% < Wy, ®, ; >|? in the

N:|AN=[Y2[2 5071 = |he 22 gp®1 =1
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inequality (3.113), we consider the matrix C as C = A 4+ B where

0 Vin—n, < Vi-n
|h1 |21 O 1 2 1 bk
A= - Cp=| e 0 Voo,
0 |y, |21 ' ' '
‘ thk—hl thk—hz e 0

(3.114)
Let {ei}t=12,...b;,i=1.2,..m De a set of orthonormal vectors such that ec; - eg ; = 1 if
=&, i=k er;- eg = 0 otherwise. Multiplying C8; = (A+B)0; by er;, we get

CO; - er; = (1,8y) - ex; = Ny(Bs - eci) = M,67,
and
(A4 B)Bs-er; =0, (A+B)er; = 05 -Aeq;+ 65 -Ber; = 0% | he |* 46, - Beq,.
From the equality of the last two equations we have
(Ns— |z )65 = 6, Beq; (3.115)
foranyt=1,2,....bt,i=1,2,....m

Using Bessel’s inequality, Parseval’s relation, orthogonality of the functions ®j,_;(x),
t=1,2,...,b, i =1,2,...,m, the binding formula (3.115) and || B ||< M, we have

m
] 2
2 X | )3 L6F <Wy, Dy >|
N:AN—=[Y2[> 5071wy (2> gp*1 =1

= 2 Z |< Yy, Z i@:iq)hﬁi >|2

NeAy PRI b ©in— ol 4po =1
< 2Y) [<W, Y ZGT‘CIDT,>]
N=1 T|n€ ‘h1‘2‘> pot]l

=20 ) Ze"cbr,n2

T |he2|> 4 p™ =1

=2 ) ZIGT’I | @ |17

Tny—|hef2[> 3™ =1
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L

Ty —|he 2> kp =1
. Be. . |2
TN | 2[> g p =1 Ns T

1 _
2(5p™) ) ZIG PIIB ] ex

Tn—|he2[> 3™ =1

= O(p~2%). (3.116)

Now, we estimate the term 2 Yy | Yy % 0% < Wy, D, ;i > ? in
NJAN=PYP[2 507" weng—[hef? < gp®1 i=1

the inequality (3.113). The assumption | n,— | v |?|< %po‘l of the theorem together

with | Ay— | v[2[> 3p%* and | n,— | he [2|< §p™ imply that | Ay— | hz [*[> $p™ and

1v1? = | he |?|< 3p™. So one has

1 — Z |h1’2 |’Y‘2)
Av— | he [? An— Ivl2 — |y
1 ’ht|2 ‘Y’z

Av—vP, Z v AR CRR I AR

Using the binding formula (2.25) for any & € B(Y, p1),

— | i [2[> 5p™ and the
decomposition (3.117), we have

m .
2 Y | ) Y o <Py, @y >

NJAN—YP[2 507" e [hef?|<gp®1 =1

< Wy VO,
SR I Y 1L b e

N:AN—[Y21> 30741 Tng—|he|2|< gp®1 i=1

_ i 9? < ‘PN,VCI);,TJ' >
R, ERUN SN Thy warr:

N'IAwalzl>%pz°‘1 nng—|he2[< g™ =1

2 2
{Z |I’l7:| "|Y’|Y2| ) _{_0(pf(k+1)0c1)} |2
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AL Gn<‘P , Vo i >
D Y DD VD M wan i

N:|Ay—|y?[>3p*™ Tng—|he 2| < gp%1 =

IN

|2

n GT’ < ‘I’N,Vq)hmi > | hy |2 — | Y|2

2
w2 2 — L L A-112 Av-Tvl
N:|An—[y2|>3p?* Ty —|he[2[< Lp®1 =1 N
OO <N VD > b 2= | Y 0
+ 2 (k+1) | | 1"
)3 L Z An—| Y [? Av—|7I?

N:|Ay—[¥2[=5p**1 Ty |he 2| <gp®1 =1
o 6" < ‘PN,VCI)/ZM' >

+ 2 Y (k+1) | Y Z

0(p—(k+1)(x1) |2 .

—|y[?
N:|Ay—[y2[>3p*" Tns—|he 2| < gp%1 i=1
We estimate
n 2 2\r
” (e "= 1Y17)" 2
2 Z (k+1) | Z Zesl <WN,VP ; > (An— |’Y|2)r+1 I,

N:| Ay =¥ (= 30> TN~ || < gp®1 =1
where r =0,1,2,...,k and

IO < Wy, VD, ;>
N L D VD M W Fia

N:|Ay—|y2[>5p> T[Ny~ |2 < gp™1 =

0(pf(k+l)ocl> |2 .

For an arbitrary r =0, 1,2, ...,k using Bessel’s inequality, triangle inequality, | 6% |< 1,
7% — | he |?|< 3p™ and the relations (2.35), (2.36), we have

m . hrz
2 r (k+1) | Y Y OU < Wy, V> % 2
N:|Ay—[y2[= 50 Ty —|he 2| < g p®1 =1
(k+1)

= 2 Z

N:| Ay =12 [> 5971 |

m
| ) Y O <N, VD > (A P = [y D) P
TNy —he 2 < gp®1 =1
1

Epz(xl) (r+l)(k+1)

IN

2

m
Y <, ) Y 65 (L he | — [ ¥[}) Vi >

N:| Ay =y [= 3p**1 TNy — e 2| < gp®1 =1
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= 2

IN

Thus

2(=

2(=

2(2
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1 r

PG Y Y e - YRV I
TNy~ 2 < gp®1 =1

1 ] r

292‘“) 20D (k+1)( Y ZII 0 (| he > = [V [P) Vi >[)
Ty |he 2| <gp®1 =1

1 i i

592“1) 2070 (k1) Y YOI e P = [y PV @i )
Tns—|he[2 < gp®1 =1

1 _ 1 AL

Sp2) 2N (Sp) (k4 1)( Y Y Ve l)?

2 =
T [hef | <gp*1 =1

k
o~y = Y2 Y (k4 1)

=0 NeAv-yP|> 4o

| Z Z s < ANV e (An— |y [2)r+T :

Tns—|he 2| < gp%1 =1

Similarly, we have

m 9§i<lPN,V¢’hT",‘>

2 Yy (k—I— l) ‘ Yy Z T 0<p—(k+1)oc1) ‘2
N:[Av—?[= 5% wny— e | < gp =1
(k+1)
= 2 N
L | An— |7 P2

IN

IN

IN

IA

N:|An—[v2[ 2571

m
| Z Z 9? < ‘Pvaq)hT,i > 0<p_(k+1)al) |2
TN —|he 2| < gp1 =1

1 _
2(592“‘) 2(k+1)
Z |< ‘PN7 Z Ze’tl k+] (Xl)VCI) |2
N:|AN—y2|>3p?"1 TNy —|he |2 < gp1 =1
1
2(592“‘)_2(k+1) | Y 29“ “khenyy g, |2

Tng—|he 2| < gp™ =

1 _
592"“) 2(k+1)( Y Z | 65 0(p~ kv, ;)2
Tng—|he 2| < §p™ =

W0 (T Y V)
T e | <gp® =1

2

2
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Thus

op8) = 2 ) (k+1)

N:|An—[y]2|>3p?

20T < Wy, VD, > —(k+1)ouy |2
Z Z i3 (3.11
| An—7/? o S

= |he[?|< gp1 =1

By the inequality (3.113) and the estimations (3.116), (3.118) and (3.119), we have

by m

O(p~24) = Z | Z Ze;ci <Wy, Py, i >

N:|Ay—[yP[>5p? T=1i=]
Therefore, from the decomposition (3.112) we have

by m

1-0(p™2%) = ) 1Y Y oF <y, @y >

Nel Ay~ <gp? T=1i]

Since the number of indexes N satisfying | Ay— | Y|*|< 3p>* is less then p9~1, we

have
by, m

1—0(p 2 <p 1Y Y 67 < Wy, @y, >

t=1i=1

which implies together with the relation (3.111) that

1-0(p*")

S (3.120)

| AN, by, ha, .. By, ) - 05 7>

It follows from the equation (3.110) and the estimation (3.120) that

0 —po+43do,
Ay = A +Ms+ (p—d:)
Op~ 7))

from which we get the result. 0



CHAPTER FOUR
CONCLUSION

In this study, we consider the Schrédinger operator with a matrix potential V (x)

which is defined by the differential expression
Lo =—-AD+VD (4.121)

and the Neumann boundary condition

0P
P lap=0, (4.122)

in L'(Q) where Q is the d dimensional rectangle Q = [0,a1] x [0,a2] x --- x [0,a4],
0Q is the boundary of Q, m > 2, d > 2, A is a diagonal m X m matrix whose
0

. 2 2 2
diagonal elements are the scalar Laplace operators A = 887 taoztot 887’ X =
1 2 d

(x1,%2,...,x4) € R?, V is the operator of multiplication by a real valued symmetric
matrix V (x) = (v;j(x)), i,j = 1,2,...,m, v;j(x) € L»(Q), that is, VT (x) = V (x).

We denote the operator defined by the differential expression (4.121) and
the boundary condition (4.122) by L(V), the eigenvalues and the corresponding
eigenfunctions of the operator L(V) by Ay and Wy, respectively.

We denote the operator defined by the differential expression (4.121) when
V(x) = 0 and the boundary condition (4.122) by L(0).  The eigenvalues
and the corresponding eigenspaces of the operator L(0) are |y |* and Ey, =
span{®y 1 (x), Dy (x),...,Pym(x)}, respectively where y € FTH) = {(%, %, e ,%) :
n € ZTU{0}, i=1,2,....d}, Py ;(x) = (0,...,0,uy(x),0,...,0), j=12...m,
uy(x) = cosy'xicosy?xy - cosy'xs. We note that the non-zero component uy(x) of

®, ;(x) stands in the jth component.

We denote the operator defined by the differential expression (4.121) when V (x) =
Vo where Vp = [V(x)dx and the boundary condition (4.122) by L(Vp). Letting
0

A <A <--- <A, denote the eigenvalues, counted with multiplicity, of the matrix
Vo and 1, 03, ..., ®,, the corresponding normalized eigenvectors, the eigenvalues and

the corresponding eigenfunctions of the operator L(Vp) are uy; =| ¥ |* +Ai, @yi(x) =
L 0Py j(x).
J:

53



54

As in papers Veliev (1987)-Veliev (2008), we divide the eigenvalues | Y |* of the
operator L(0) into two groups: Resonance and Non-Resonance eigenvalues. For this
aim, first we divide R into two domains: Resonance and Non-resonance domains.

In order to define these domains, let us introduce the following sets.
Leta < ﬁ, oy = 3o, k=1,2,...,d — 1, p alarge parameter and

Ve(p®)={xe R ||x P —x+b[*|<p®},

Ee®p= U (V™)

V1,725 EL (pp®) i=1

where I'(pp®) = {b € 5 : 0 <| b |< pp®}, the intersection ﬂ Vy,(p*) in Ey is taken

over Y1,Y2,--.,Yx which are linearly independent vectors and the length of 7; is not
greater than the length of the other vectors in I'y;R. The set U(p™, p) is said to
be a non-resonance domain, and the eigenvalue |y |> of the operator L(0) is called a
non-resonance eigenvalue if y € U (p™, p). The domains V;,(p®!) for all b € I'(pp?) are
called resonance domains, and the eigenvalue |y |* of the operator L(0) is a resonance

eigenvalue if y € V,,(p™).

We have the following results in the non-resonance domain U (p®1, p).

Theorem 4.25. Let |y |*> be a non-resonance eigenvalue of the operator L(0) with
VI~ P

(a) For each eigenvalue N;, i = 1,2,...,m of the matrix Vy, there exists an eigenvalue
An of the operator L(V) satisfying
An = 7? N+ 0(p™™). (4.123)

(b) For each eigenvalue Ay of the operator L(V) satisfying the inequality

1
[ Av=vPl< 50, (4.124)



55

there exists an eigenvalue A; of the matrix Vi satisfying the formula (4.123).

Corollary 4.26. (a) Let uy; be an eigenvalue of the operator L(Vo) where y€ U (p*', p)
with |y|~pandi=1,2,...,m. Then there is an eigenvalue Ay of the operator L(V)

satisfying
AN = ,u’Y7i + 0<p—(11)‘ (4125)

(b) For each eigenvalue Ay of the operator L(V) satisfying the inequality (4.124) there
is an eigenvalue uy; of the operator L(Vy) satisfying the formula (4.125).

We define the following m x m matrices.

S(a,p1) = i SK(a),
k=1

where
Sk(a):(slji(a)), k=1,2,....,p1, J,i=12,...,m,
m
X Vivjn Visitya -+ ViigYr
sii(a) =
! il,iz;.,ik—l s @ YN P)ela= v+ % )
M+t g1 =0
and
=0,  FA=S(vP+h),  E=SIvP+h+IFal),  iz2

(4.126)

Theorem 4.27. Let |y |* be a non-resonance eigenvalue of the operator L(0) with
[ Y[~ p.

(a) For any eigenvalue \;, i = 1,2,...,m of the matrix Vy, there exits an eigenvalue Ay
of the operator L(V) satisfying the formula

AN =]V > N+ | Fiot ||+ O(pF), (4.127)

where Fy_1 is given by (4.126), k=1,2,...,p—c.
(b) For any eigenvalue Ay of the operator L(V) satisfying the inequality (4.124), there
is an eigenvalue \; of the matrix Vyy satisfying the formula (4.127).

Corollary 4.28. (a) Let uy; be an eigenvalue of the operator L(Vp) wherey€ U (p™, p)
with |y|~pandi=1,2,...,m. Then there is an eigenvalue Ay of the operator L(V)
satisfying

Ay = pyi+ | Feor || +0(p~F), (4.128)
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where Fy,_1 is given by (3.69), k=1,2,...,p—c.
(b) For each eigenvalue Ay of the operator L(V) satisfying the inequality (4.124) there
is an eigenvalue uy; of the operator L(Vy) satisfying the formula (4.128).

k
We have the following results in the resonance domain ([ Vy,(p™)) \ Ex+1,
i=1
k=12,...d-1,7v #ejfori=12...kand j=1,2,....d —1 where e; =
0,...,0,%.0,....0) for j=1,2,...,d — 1.

S g0
aj

We define the mby x mby, matrix C = C(y,v1,-..,%) by

| hy |2 I Vpp, -+ Vhl_hbk
Vi hy 2T - Vi,

c=| "M [ B2 | Pt (4.129)
Vhbk*hl Vhbk*hz o |y ‘2 Y

where Vhr—hg, 1,6 =1,2,...,by are the m X m matrices defined by

Vilhe—he VI2he—he *°° Vimhe—hg
Valhe—he  V22he—he * Vomho—hg
Vie—h, = : (4.130)
T 3 . ? *
Vmlhe—hg  Vm2he—hg """ Vmhe—he

ht, t=1,2,..., by are the vectors of the set Bi(Y, p1), by is the number of the vectors in
By (Y, p1). The set Br(Y, p1) is defined by Bi(Y, p1) = B(Y) + I'(p1p®) where By(y) =

k
Y+Bk(Y17Y27"'7Yk)’ Bk(YhY%"'aYk) = {b b= .glni’ylﬁni € 27 ‘ b |< %p%ak+l}'

Theorem 4.29. Let |y |* be a resonance eigenvalue of the operator L(0), that is, ¥ €
k

(N Vy,(P*)) \ Ext1, k=1,2,...,d — 1 where | Y|~ p, N; an eigenvalue of the matrix
i=1

V()_, and Ay an eigenvalue of the operator L(V) satisfying
2 1 o
[ Av= [y [7l< 5p™ (4.131)

and
|< Dy i, Py >|> crp” ™. (4.132)

Then there exists an eigenvalue Ns(Y), s = 1,2,...,mby of the matrix C such that

AN = Ni4+1,(y) + O(p~ P83
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Theorem 4.30. Let |y |* be a resonance eigenvalue of the operator L(0), that is, Y €
k

(N Vy,(P*))\ Exs1, k=1,2,...,d — 1 where | Y|~ p, \; an eigenvalue of the matrix
i=1

Vo, Ms(Y) an eigenvalue of the matrix C such that | ns(Y)— | v [*|< 2p™. Then there is
an eigenvalue Ay of the operator L(V) satisfying

AN = Ni+M,(y) + O(p PuF 3Gy, (4.133)

wherens(Y), s =1,2,...,mby is an eigenvalue of the matrix C which is given by (4.129).
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