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SCHRÖDINGER OPERATOR

by
Didem COŞKAN
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KARAKILIÇ for her advice, encouragement, patience and belief in me. I want to

thank Prof. Oktay VELIEV for his useful comments and advice.

Also, I would like to thank the Graduate School of Natural and Applied Sciences of

Dokuz Eylül University for supporting this thesis by project number 2007 KB FEN 40.

Finally, I am grateful to my family for their never ending love, trust, encouragement

throughout my life.

Didem COŞKAN
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ON THE PERTURBATION THEORY FOR THE SCHRÖDINGER OPERATOR

ABSTRACT

In this thesis, we obtain asymptotic formulas for the eigenvalues of the Schrödinger

operator with a matrix potential and the Neumann boundary condition.

Keywords: Schrödinger opeartor, matrix potential, Neumann condition, perturbation,

asymptotic formulas.
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SCHRÖDINGER OPERATÖRÜNÜN PERTURBASYON TEORİSİ ÜZERİNE

ÖZ

Bu tezde matris potensiyelli, Neumann sınır koşullu Schrödinger operatörünün

özdeğerleri için asimptotik formüller elde edilmiştir.

Anahtar sözcükler: Schrödinger operatörü, matris potansiyel, Neumann koşulu,

perturbasyon, asimptotik formüller.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

This thesis deals with the study of perturbation of the time independent Schrödinger
operator defined by the differential expression

L(Ψ(x)) = (−∆+V (x))Ψ(x)

which is introduced by Erwin Schrödinger. It is a fundamental operator of quantum
physics. This operator can have the meaning of the energy operator of one or several
particles depending on the form of the potential V (x). It can also describe the
beheviour of an electron in an atom in the case of a periodic potential V (x). From
a mathematician’s point of view, the Schrödinger operator is as inexhaustiable as
mathematics itself.

If the eigenvalues λn and the associated orthonormal eigenfuctions un of a self
adjoint linear differential equation

L(un)+λnun = 0

are known for a prescribed domain (boundary conditions), then the eigenvalues and
the eigenfunctions of an operator corresponding to a ”neighbouring” or ”perturbed”
operator

L(ũn)− εũn + λ̃nũn = 0

can be calculated by methods of approximations which is important in applications,
the so-called Perturbation Theory. It is understood that the boundary conditions and
the domain remain unchanged.

From the late 1930s, originating in the works of F. Rellich and T. Kato, perturbation
theory became a mighty tool to investigate both qualitative and quantitative properties
of linear operators. If we consider the perturbation theory for the Schrödinger
operator it can be easily applied for one dimensional case and asymptotic formulas
for sufficiently large eigenvalues can be obtained. The crucial property in the analysis
of the Sturm-Liouville problem is that the distance between consecutive eigenvalues
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becomes larger and larger, so that the perturbation theory can be applied and asymptotic
formulas for sufficiently large eigenvalues can be obtained. However, in multi
dimensional cases, the eigenvalues influence each other strongly and the regular
perturbation theory does not work.

In this study, we consider the Schrödinger operator with a matrix potential V (x)
which is defined by the differential expression

LΦ =−∆Φ+V Φ (1.1)

and the Neumann boundary condition

∂Φ

∂n
|∂Q= 0, (1.2)

in Lm
2 (Q) where Q is the d dimensional rectangle Q = [0,a1]× [0,a2]× ·· · × [0,ad],

∂Q is the boundary of Q, m ≥ 2, d ≥ 2, ∆ is a diagonal m× m matrix whose
diagonal elements are the scalar Laplace operators ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ · · ·+ ∂2

∂x2
d
, x =

(x1,x2, . . . ,xd) ∈ Rd , V is the operator of multiplication by a real valued symmetric
matrix V (x) = (vi j(x)), i, j = 1,2, . . . ,m, vi j(x) ∈ L2(Q), that is, V T (x) = V (x).

We denote the operator defined by the differential expression (1.1) and the boundary
condition (1.2) by L(V ), the eigenvalues and the corresponding eigenfunctions of the
operator L(V ) by ΛN and ΨN , respectively.

In this thesis, we study how the eigenvalues of the unperturbed operator L(0), that
is, V (x) = 0 in equation (1.1), are effected under perturbation, by using energy as a
large parameter and we obtain high energy asymptotics of ”arbitrary order” for the
eigenvalues ΛN of the operator L(V ) in an arbitrary dimension. For this we use the
methods in Veliev (1987)-Veliev (2008). This is one of the essential problems related
to the Schrödinger operator and is being studied for a long time.

For the scalar case, m = 1, a method was first introduced by O. Veliev in Veliev
(1987), Veliev (1988) to obtain the asymptotic formulas for the eigenvalues of the
periodic Schrödinger operator with quasiperiodic boundary conditions. By some other
methods, asymptotic formulas for quasiperiodic boundary conditions in two and three
dimensional cases are obtained in Feldman, Knoerrer, & Trubowitz (1990), Feldman,
Knoerrer, & Trubowitz (1991), Karpeshina (1992), Karpeshina (1996) and Friedlanger
(1990). When this operator is considered with Dirichlet boundary condition in two
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dimensional rectangle, the asymptotic formulas for the eigenvalues are obtained in
Hald, & McLaughlin (1996). The asymptotic formulas for the eigenvalues of the
Schrödinger operator with Dirichlet or Neumann boundary conditions in an arbitrary
dimension are obtained in Atılgan, Karakılıc. , & Veliev (2002), Karalılıc. , Atılgan, &
Veliev (2005) and Karalılıc. , Veliev, & Atılgan (2005).

For the matrix case asymptotic formulas for the eigenvalues of the Schrödinger
operator with quasiperiodic boundary conditions are obtained in Karpeshina (2002).

In chapter one, we introduce some basic concepts for our further discussions. We
give some properties of periodic functions for which the method of this study is
applicable.

In chapter two, the operators L(0) and L(V0) are introduced where V0 is the matrix
of

∫
QV (x)dx. We introduce the two domains: non-resonance and resonance domains

with respect to which non-resonance and resonance eigenvalues of the operator L(0)
are defined.

Chapter three is the original part of this study, that is, high energy asymptotics
for the eigenvalues of the operator L(V ) are obtained in non-resonance and resonance
domains. In Section 3.1, we consider the operator L(V ) as the perturbation of L(V0)
by V (x)−V0. By the corollaries of this section, we emphisize that differing from the
scalar case the eigenvalues of the matrix V0 are essential for the study of the matrix
case. In Section 3.2, the obtained formulas depend not only on the eigenvalues of the
matrix C(γ,γ1, . . . ,γk) but also on the eigenvalues of the matrix V0.

In chapter four, we summarize the main results of the study.

1.2 Basic Concepts

1.2.1 The Space of Vector Functions

Definition 1.1. Let Rm denote an m-dimensional real vector space. Let
x = (x1,x2, . . . ,xd) ∈ Rd . Then the function y : Rd → Rm,

y(x) = (y1(x),y2(x), . . . ,ym(x))
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is called a vector function. Each of the scalar functions yr : Rd → R, r = 1,2, . . . ,m is
called a component of the vector function y(x).

Definition 1.2. A vector function y : Rd → Rm is said to be continuous at the point
x0 ∈ Rd if all the components of the vector function are continuous at x0. Similarly, a
vector function y(x) is said to be differentiable if its components are differentiable, and
by definition,

∂y
∂xk

= (
∂y1

∂xk
,
∂y2

∂xk
, . . . ,

∂ym

∂xk
), k = 1,2, . . . ,d.

By using the definitions 1.1 and 1.2, for vector functions y, z and a scalar function
f it can be easily seen that

∂(y+ z)
∂xk

=
∂y
∂xk

+
∂z
∂xk

, k = 1,2, . . . ,d,

∂( f y)
∂xk

=
∂ f
∂xk

y+ f
∂y
∂xk

, k = 1,2, . . . ,d,

∂{y · z}
∂xk

=
∂y
∂xk
· z+ y · ∂z

∂xk
, k = 1,2, . . . ,d.

Definition 1.3. Let yi j : Rd → R, i, j = 1,2, . . . ,m be scalar functions. Then we define
an operator function by means of square matrices Y (x) = (yi j(x)) whose elements are
scalar functions yi j, i, j = 1,2, . . . ,m.

Definition 1.4. Let Y (x) be an operator function. Y (x) is said to be continuous at
the point x0 if all its elements yi j(x), i, j = 1,2, . . . ,m are continuous at x0, and to be
differentiable at the point x0 if all the elements yi j(x), i, j = 1,2, . . . ,m are differentiable
at x0.

It follows from the Definition 1.4 that ∂Y
∂xk

, k = 1,2, . . . ,m is the matrix whose

elements are ∂yi j
∂xk

, k = 1,2, . . . ,d, i, j = 1,2, . . . ,m.

Similar to the properties of vector functions we may give the following properties.
By using definitions 1.3 and 1.4, for operator functions Y , Z, a vector function y : Rd→
Rm and a scalar function f : Rd → R

∂(Y +Z)
∂xk

=
∂Y
∂xk

+
∂Z
∂xk

, k = 1,2, . . . ,d,

∂(Y Z)
∂xk

=
∂Y
∂xk

Z +Y
∂Z
∂xk

, k = 1,2, . . . ,d,
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∂( fY )
∂xk

=
∂ f
∂xk

Y + f
∂Y
∂xk

, k = 1,2, . . . ,d,

∂(Zy)
∂xk

=
∂Z
∂xk

y+Z
∂y
∂xk

, k = 1,2, . . . ,d.

Lm
2 (Q) is the set of vector functions u(x) = (u1(x),u2(x), . . . ,um(x)) satisfying

ui(x) ∈ L2(Q) for all i = 1,2, . . . ,m where x = (x1,x2, . . . ,xd) ∈ Q and Q is the
d-dimensional rectangle Q = [0,a1]× [0,a2]× ·· · × [0,ad]. Let f = ( f1, f2, . . . , fm)
and g = (g1,g2, . . . ,gm) be vector functions in Lm

2 (Q) where fk,gk ∈ L2(Q) for
k = 1,2, . . . ,m. Then the norm and the inner product in Lm

2 (Q) are defined by the
formulas

‖ f ‖=
(∫

Q

| f (x) |2 dx
) 1

2

, < f ,g >=
∫
Q

( f (x) ·g(x))dx,

respectively where | · | and ” · ” denote the norm and the inner product in Rm,
respectively. From now on for whole of the study to denote the relevant norm that
we are using, we will use the notation ‖ · ‖ except for the norm in Rm, m≥ 1 which we
denote by | · |.

1.2.2 The Norms for Operators

Let B(X ,Y ) denote the set of all linear operators from the finite dimensional vector
space X , say n = dimX < ∞, to a finite dimensional vector space Y , say m = dimY < ∞.
If X and Y are normed spaces, then B(X ,Y ) is defined to be a normed space with the
norm given by

‖ T ‖= sup
u∈X
u 6=0

‖ Tu ‖
‖ u ‖

= sup
‖u‖=1

‖ Tu ‖= sup
‖u‖≤1

‖ Tu ‖, T ∈ B(X ,Y ).

If we introduce different norms in the given vector spaces X and Y , then B(X ,Y )
acquires different norms accordingly. However, all these norms in B(X ,Y ) are
equivalent. By equivalence of norms in B(X ,Y ) we mean that

c ‖ T ‖≤‖ T ‖′≤ c′ ‖ T ‖
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holds for some positive constants c, c′ and any two different norms ‖ · ‖, ‖ · ‖′ in
B(X ,Y ). Let (ai j), i = 1,2, . . . ,m, j = 1,2, . . . ,n denote the matrix of T with respect to
the bases of X and Y . Then we have the following inequalities

| ai j |≤ d ‖ T ‖, i = 1,2, . . . ,m, j = 1,2, . . . ,n, (1.3)

‖ T ‖≤ d′max | ai j |, (1.4)

where the constants d, d′ depend on the bases of X and Y , but are independent of the
operator T .

To prove the inequalities (1.3) and (1.4), let {x j}n
j=1, {yi}m

i=1 denote the bases of X

and Y , respectively and (ai j), i = 1,2, . . . ,m, j = 1,2, . . . ,n denote the matrix of T with
respect to these bases. One may define a norm for T by ‖ T ‖′= maxi, j | ai j |. Let ‖ T ‖
be another norm for T with respect to the given bases. By equivalence of norms, we
have maxi, j | ai j |≤ c′ ‖ T ‖ from which it follows that | ai j |≤ d ‖ T ‖ holds for some
constant d. On the other hand, if ‖ T ‖ denotes an arbitrary norm for T with respect to
the given bases, then for each x j, j = 1,2, . . . ,n we have

‖ T x j ‖=‖
m

∑
i=1

ai jyi ‖≤
m

∑
i=1
| ai j |‖ yi ‖≤

m

∑
i=1

(
| ai j |max

i
‖ yi ‖

)

= max
i
‖ yi ‖

m

∑
i=1
| ai j |≤ (max

i
‖ yi ‖)(mmax

i
| ai j |)

from which it follows that

‖ T x j ‖
‖ x j ‖

≤ m
maxi ‖ yi ‖
‖ x j ‖

max
i
| ai j |

for any j = 1,2, . . . ,n. By definition of norm, we have ‖T x j‖
‖x j‖ ≤‖ T ‖ for any

j = 1,2, . . . ,n. By definition of supremum, ‖ T ‖≤ mmaxi‖yi‖
‖x j‖ maxi | ai j |, or denoting

mmaxi‖yi‖
‖x j‖ by d′ we have ‖ T ‖≤ d′max | ai j |.

αT +βS is a continuous function of the scalars α, β and the operators T , S∈B(X ,Y ),
and ‖ T ‖ is a continuous function of T . Thus we have the inequality

‖ T S ‖≤‖ T ‖‖ S ‖ f or T ∈ B(Y,Z) and S ∈ B(X ,Y ).
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1.2.3 A Theorem of Lidskii

Perturbation theory is primarily interested in small changes of the various quantities
involves. In chapter three, we need to estimate the relation between the eigenvalues of
two symmetric operators A, B in terms of their difference C = B−A which leads us to
the well known theorem due to Lidskii.

Theorem 1.5. Let αn, βn and γn, n = 1,2, . . . ,N denote the repeated eigenvalues of the

symmetric operators A, B, C where C = B−A. Then

∑
n
| βn−αn |≤∑

n
| γn | .

Proof. For the proof see Kato (1980).

1.3 Properties of Periodic Functions in Rd

In this section, we summarize some properties of periodic smooth functions in Rd .
Thus we see that one of the class of functions which satisfies our assumption on the
potential V (x), (2.33), is the sufficiently periodic smooth functions.

Definition 1.6. A function v(x) where x∈Rd is said to be periodic if there are d linearly
independent vectors w1,w2, . . . ,wd such that

v(x+wi) = v(x), i = 1,2, . . . ,d.

We note that the definition is equivalent to

v(x+w) = v(x) ∀w ∈Ω, (1.5)

where

Ω = {w : w =
d

∑
i=1

miwi,mi ∈ Z, i = 1,2, . . . ,d}

is the lattice generated by the vectors w1,w2, . . . ,wd .
Hence the function v(x) satisfying the condition (1.5) is said to be periodic with respect
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to the lattice Ω and related with this lattice there is a d-dimensional parallelepiped

Q = {
d

∑
i=1

tiwi : 0≤ ti < 1, i = 1,2, . . . ,d}

called the fundamental domain of Ω which is the period parallelepiped of v(x).
We define the dual lattice Γ of Ω by

Γ = 2πΘ,

where the lattice

Θ = {
d

∑
j=1

n jγ j : n j ∈ Z, j = 1,2, . . . ,d}

is called the reciprocal lattice of Ω and the vectors γ1,γ2, . . . ,γd are linearly independent
vectors satisfying

wi · γ j = δi j =

{
1, i = j,
0, i 6= j,

where ” · ” denotes the inner product in Rd , d ≥ 2.
For any w ∈Ω, γ ∈ Γ

w · γ = (
d

∑
i=1

miwi) · (
d

∑
j=1

n jγ j) =
d

∑
i=1

miniwiγi = 2πk,

where k ∈ Z.
The functions ei{γ·x} for γ ∈ Γ are periodic with respect to Ω. Really,

ei{γ·(x+w)} = ei{γ·x}ei{γ·w} = ei{γ·x}ei2πk = ei{γ·x}.

Let v(x) be a real valued and periodic with respect to Ω function of the space

W l
2(Q) = {v : Dαv ∈ L2(Q),∀α≤ l},

where α = (α1,α2, . . . ,αd)∈ Zd , | α |=| α1 |+ | α2 |+ · · ·+ | αd |, Dα = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αd
d

,

l ∈ N and l ≥ (d+20)(d−1)
2 +d +3.

Since {ei{γ·x}}γ∈Γ is a basis for L2(Q), for a function v ∈ L2(Q) we have

v(x) = ∑
γ∈Γ

vγei{γ·x},
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where vγ = (v(x),ei{γ·x}) =
∫
Q

v(x)ei{γ·x}dx are the Fourier coefficients of the function

v(x) with respect to the basis {ei{γ·x}}γ∈Γ, Q is the d-dimensional rectangle
Q = [0,a1]× [0,a2]×·· ·× [0,ad], (·, ·) denotes the inner product in L2(Q).

Now, we give some properties of periodic smooth functions.

Property 1. Let v(x) be a real-valued function which is periodic with respect to Ω.
Then v(x) is a function of W l

2(Q) if and only if the Fourier coefficients vγ of v(x)
satisfy the relation

∑
γ∈Γ

| vγ |2 (1+ | γ |2l) < ∞. (1.6)

Proof. For the proof see Karakılıc. (2004).

Property 2. For a large parameter ρ we can write a periodic function v(x) ∈W l
2(Q) as

v(x) = ∑
γ∈Γ(ρα′)

vγei{γ·x}+O(ρ−pα′), (1.7)

where
Γ(ρ−pα′) = {γ ∈ Γ : 0 <| γ |< ρ

α′},

α′ > 0, p = l−d and O(ρ−pα′) is a function in L2(Q) with norm of order ρ−pα′ . That
is, f (ξ) = O(g(ξ)) if there exists a constant c such that | f (ξ)

g(ξ) |< c at some neigborhood
of infinity.

Proof. For the proof see Karakılıc. (2004).

Property 3. For a periodic function v(x) ∈W l
2(Q), we have

∑
γ∈Γ

| vγ |< ∞. (1.8)

Proof. For the proof see Karakılıc. (2004).



CHAPTER TWO
PRELIMINARIES

2.1 The Operators L(0) and L(V0)

We first investigate the eigenvalues and the eigenfunctions of the operator which is
defined by the differential expression (1.1) when V (x) = 0 and the boundary condition
(1.2). We denote this operator by L(0).

Lemma 2.7. The eigenvalues and the corresponding eigenspaces of the operator L(0)
are | γ |2 and Eγ = span{Φγ,1(x),Φγ,2(x), . . . ,Φγ,m(x)}, respectively where

γ = (γ1,γ2, . . . ,γd) ∈ Γ+0

2
,

Γ+0

2
= {(n1π

a1
,
n2π

a2
, · · · , ndπ

ad
) : ni ∈ Z+

⋃
{0}, i = 1,2, . . . ,d},

Φγ, j(x) = (0, . . . ,0,uγ(x),0, . . . ,0), j = 1,2, . . . ,m,

uγ(x) = cosγ
1x1cosγ

2x2 · · ·cosγ
dxd.

We note that the non-zero component uγ(x) of Φγ, j(x) stands in the jth component.

Proof. We use a standart method, that is, the method of separation of variables.
Suppose that the solution Φ(x) = (Φ1(x),Φ2(x), . . . ,Φm(x)) of the operator L(0) is
of the form Φ j(x) = Φ j1(x1)Φ j2(x2) · · ·Φ jd(xd) for each j = 1,2, . . . ,m.

Then the differential expression −∆Φ(x) = λΦ(x) implies that

−Φ
′′
j1(x1) · · ·Φ jd(xd)−·· ·−Φ j1(x1) · · ·Φ′′jd(xd) = λΦ j1(x1) · · ·Φ jd(xd) (2.9)

for all j = 1,2, . . . ,m. Dividing both sides of the equation (2.9) by
Φ j1(x1)Φ j2(x2) · · ·Φ jd(xd), we get

−
Φ′′j1(x1)

Φ j1(x1)
−

Φ′′j2(x2)

Φ j2(x2)
−·· ·−

Φ′′jd(xd)

Φ jd(xd)
= λ (2.10)

for all j = 1,2, . . . ,m. Letting λ ji denote a scalar for all j = 1,2, . . . ,m, i = 1,2, . . . ,d

10
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such that λ = λ j1 +λ j2 + · · ·+λ jd holds, we get from the equations (2.10) that

−
Φ′′ji(xi)
Φ ji(xi)

= λ ji (2.11)

for all j = 1,2, . . . ,m, i = 1,2, . . . ,d.

On the other hand, from the boundary condition ∂Φ

∂n |∂Q= 0 we get

∂Φ j

∂n
|∂Q= 0 (2.12)

for all j = 1,2, . . . ,m. Since Q = [0,a1]× [0,a2]×·· ·× [0,ad], the boundary
∂Q = {(t1a1, t2a2, . . . , tdad) : t j = 0 or 1 at least for some i, i = 1,2, . . . ,d} lies in the
hyperplanes Πi = {x ∈ Rd : x · ei = 0} or its shifts aiei + Πi, i = 1,2, . . . ,m where
e1 = (1,0, . . . ,0), e2 = (0,1,0, . . . ,0),..., ed = (0, . . . ,0,1). So the normal vectors to
the hyperplanes Πi, aiei +Πi are ei, −ei, i = 1,2, . . . ,d, respectively. Hence it follows
from the equation (2.12) that

∂Φ ji

∂xi
|x∈Πi= Φ j1(x1) · · ·Φ′ji(xi) · · ·Φ jd(xd) |xi=0= 0 (2.13)

and
∂Φ ji

∂xi
|x∈aiei+Πi=−Φ j1(x1) · · ·Φ′ji(xi) · · ·Φ jd(xd) |xi=ai= 0 (2.14)

for all j = 1,2, . . . ,m, i = 1,2, . . . ,d. Since we supposed that Φ(x) 6= 0, it follows from
(2.13) and (2.14) that

Φ
′
ji(0) = 0, Φ

′
ji(ai) = 0 (2.15)

for all j = 1,2, . . . ,m, i = 1,2, . . . ,d.

From the equations (2.11) and (2.15), we get the following Sturm-Liouville
problems

−Φ
′′
ji(xi) = λ jiΦ ji(xi), (2.16)

Φ
′
ji(0) = Φ

′
ji(ai) = 0, (2.17)

for all j = 1,2, . . . ,m, i = 1,2, . . . ,d. It can be easily calculated that the eigenvalues
and the corresponding eigenfunctions of the problem (2.16)-(2.17) are λ ji = (niπ

ai
)2 and

Φ ji(xi) = cos(niπ
ai

xi), ni ∈ Z+ ⋃
{0}, respectively for all j = 1,2, . . . ,m, i = 1,2, . . . ,d.

Thus it follows from (2.10), (2.11) and the solution of (2.16)-(2.17) that the
eigenvalues of the operator L(0) satisfy λ = (n1π

a1
)2 + (n2π

a2
)2 + · · ·+ (ndπ

ad
)2 where
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ni ∈ Z+ ⋃
{0}, i = 1,2, . . . ,d. Letting Γ+0

2 denote the set {(n1π

a1
, n2π

a2
, · · · , ndπ

ad
) : ni ∈

Z+ ⋃
{0}, i = 1,2, . . . ,d} and γ = (γ1,γ2, . . . ,γd) the vectors of the set Γ+0

2 , we have
that the eigenvalues of the operator L(0) are | γ |2.

On the other hand, it follows from Φ j(x) = Φ j1(x1)Φ j2(x2) · · ·Φ jd(xd) and
the solution of (2.16)-(2.17) that Φ j(x) = cos(n1π

a1
x1)cos(n2π

a2
x2) · · ·cos(ndπ

ad
xd),

j = 1,2, . . . ,m. Then since we assumed that Φ(x) = (Φ1(x),Φ2(x), . . . ,Φm(x)),
the eigenfunctions of the operator L(0) are from the span
span{(Φ1(x),0, . . . ,0),(0,Φ2(x),0, . . . ,0), . . . ,(0, . . . ,0,Φm(x))}. Letting uγ(x) denote
the function cosγ1x1cosγ2x2 · · ·cosγdxd where γ = (γ1,γ2, . . . ,γd) = (n1π

a1
, n2π

a2
· · · , ndπ

ad
)∈

Γ+0

2 and Φγ, j(x) the function (0, . . . ,0,uγ(x),0, . . . ,0), j = 1,2, . . . ,m where the
non-zero component uγ(x) of Φγ, j(x) stands in the jth component of Φγ, j(x), we have
that the eigenfunctions Φγ(x) of the operator L(0) corresponding to the eigenvalue
| γ |2 are from the span span{Φγ,1(x),Φγ,2(x), . . . ,Φγ,m(x)}.

To obtain asymptotic formulas for the non-resonance eigenvalues, we consider
the operator L(V ) as the perturbation of L(V0), where V0 =

∫
Q

V (x)dx, by V (x)−

V0. Therefore, we first consider the eigenvalues and the eigenfunctions of the
operator L(V0). We denote the eigenvalues of V0, counted with multiplicity, and the
corresponding orthonormal eigenvectors by λ1 ≤ λ2 ≤ ·· · ≤ λm and ω1,ω2, . . . ,ωm,
respectively. Thus

V0ωi = λiωi, ωi ·ω j = δi j.

Lemma 2.8. The eigenvalues and the corresponding eigenfunctions of the operator

L(V0) are

µγ,i =| γ |2 +λi, and ϕγ,i(x) =
m

∑
j=1

ωi jΦγ, j(x), (2.18)

respectively where | γ |2 is an eigenvalue of the operator L(0), λi, i = 1,2, . . . ,m is an

eigenvalue of the matrix V0, ωi j, i, j = 1,2, . . . ,m are the components of the normalized

eigenvector ωi, i = 1,2, . . . ,m corresponding to the eigenvalue λi of the matrix V0,

Φγ, j(x), j = 1,2, . . . ,m is the function where Φγ(x) ∈ span{Φγ, j(x)} j=1,2,...,m is the

eigenfunction corresponding to the eigenvalue | γ |2 of the operator L(0).

Proof. We verify that
L(V0)ϕγ,i(x) = µγ,iϕγ,i(x). (2.19)

Substituting ϕγ,i(x) =
m
∑
j=1

ωi jΦγ, j(x) into the differential expression (1.1) where
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V (x) = V0, and using −∆Φγ, j(x) =| γ |2 Φγ, j(x) for all j = 1,2, . . . ,m, we get

−∆ϕγ,i(x)+V0ϕγ,i(x) =−∆(
m
∑
j=1

ωi jΦγ, j(x))+V0(
m
∑
j=1

ωi jΦγ, j(x))

=
m

∑
j=1

ωi j(−∆Φγ, j(x))+
m

∑
j=1

ωi j(V0Φγ, j(x))

=
m

∑
j=1

ωi j | γ |2 Φγ, j(x)+
m

∑
j=1

ωi j(V0Φγ, j(x)). (2.20)

On the other hand, using µγ,i =| γ |2 +λi and ϕγ,i(x) =
m
∑
j=1

ωi jΦγ, j(x), we have

µγ,iϕγ,i(x) = (| γ |2 +λi)(
m

∑
j=1

ωi jΦγ, j(x)) =
m

∑
j=1

ωi j | γ |2 Φγ, j(x)+
m

∑
j=1

ωi jλiΦγ, j(x).

(2.21)
Now we show that the second sums in the equations (2.20) and (2.21) are equal. We
have

V0Φγ, j(x) =
m

∑
k=1

vk j0Φγ,k(x) (2.22)

from which it follows that

m

∑
j=1

ωi j(V0Φγ, j(x)) =
m

∑
j=1

ωi j(
m

∑
k=1

vk j0Φγ,k(x)). (2.23)

We also have from V0ωi = λiωi that λiωi j =
m
∑

k=1
vk j0ωik which together with (2.22)

implies that
m

∑
j=1

ωi jλiΦγ, j(x) =
m

∑
j=1

(
m

∑
k=1

vk j0ωik)Φγ, j(x). (2.24)

Since V (x) = V T (x), vk j0 = v jk0 for all j,k = 1,2, . . . ,m. Then

m

∑
j=1

ωi j(
m

∑
k=1

vk j0Φγ,k(x)) =
m

∑
k=1

ωik(
m

∑
j=1

v jk0Φγ, j(x)) =
m

∑
j=1

m

∑
k=1

v jk0ωikΦγ, j(x)

which shows that (2.23) and (2.24) are equal. Thus the second sums in the equations
(2.20) and (2.21) are equal.

Substituting ϕγ,i(x) =
m
∑
j=1

ωi jΦγ, j(x) into the boundary condition (1.2), and using
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∂Φγ, j(x)
∂n |∂Q= 0 for all j = 1,2, . . . ,m, we get

∂ϕγ,i(x)
∂n

|∂Q=
∂

∂n
[

m

∑
j=1

ωi jΦγ, j(x)] |∂Q=
m

∑
j=1

ωi j
∂Φγ, j(x)

∂n
|∂Q= 0.

Thus (2.19) holds.

Lemma 2.9. Let | γ |2 be an eigenvalue of the operator L(0) and Φγ, j(x) its

corresponding eigenfunction. Let ΛN be an eigenvalue of the operator L(V ) and ΨN(x)
its corresponding eigenfunction. Then the following formula holds

(ΛN− | γ |2) < ΨN ,Φγ, j >=< ΨN ,V Φγ, j > . (2.25)

Proof. Multiplying both sides of the equation L(V )ΨN = ΛNΨN by Φγ, j, using
V (x) = V T (x) and the equation L(0)Φγ, j =| γ |2 Φγ, j, we get

< L(V )ΨN ,Φγ, j > = < (−∆+V (x))ΨN ,Φγ, j >

= < ΨN ,(−∆+V T (x))Φγ, j >

= < ΨN(x),−∆Φγ, j > + < ΨN(x),V (x)Φγ, j >

= < ΨN , | γ |2 Φγ, j > + < ΨN ,V (x)Φγ, j >

= | γ |2< ΨN ,Φγ, j > + < ΨN ,V (x)Φγ, j >

and
< ΛNΨN ,Φγ, j >= ΛN < ΨN ,Φγ, j >

which together give

(ΛN− | γ |2) < ΨN ,Φγ, j >=< ΨN ,V Φγ, j > .

We call the formula (2.25) as the ”binding formula”.

Lemma 2.10. Let µγ,i be an eigenvalue of the operator L(V0) and ϕγ,i(x) its

corresponding eigenfunction. Let ΛN be an eigenvalue of the operator L(V ) and ΨN(x)
its corresponding eigenfunction. Then the following formula holds

(ΛN−µγ,i) < ΨN ,ϕγ,i >=< ΨN ,(V (x)−V0)ϕγ,i > . (2.26)
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Proof. Multiplying both sides of the equation L(V )ΨN = ΛNΨN by ϕγ,i, using
V (x) = V T (x) and the equation (2.19), we get

< L(V )ΨN ,ϕγ,i > = < (−∆+V (x))ΨN ,ϕγ,i >

= < ΨN ,(−∆+V T (x))ϕγ,i >

= < ΨN ,(−∆+V (x)−V0 +V0)ϕγ,i >

= < ΨN(x),(−∆+V0)ϕγ,i > + < ΨN(x),(V (x)−V0)ϕγ,i >

= < ΨN ,µγ,iϕγ,i > + < ΨN ,(V (x)−V0)ϕγ,i >

= µγ,i < ΨN ,ϕγ,i > + < ΨN ,(V (x)−V0)ϕγ,i >

and
< ΛNΨN ,ϕγ,i >= ΛN < ΨN ,ϕγ,i >

which together give

(ΛN−µγ,i) < ΨN ,ϕγ,i >=< ΨN ,(V (x)−V0)ϕγ,i > .

We also call the formula (2.26) as the ”binding formula”.

2.2 Resonance and Non-Resonance Domains

As in papers Veliev (1987)-Veliev (2008), we divide the eigenvalues | γ |2 of the
operator L(0) into two groups: Resonance and Non-Resonance eigenvalues. In order
to classify the eigenvalues as resonance and non-resonance eigenvalues, we introduce
resonance and non-resonance domains. In this section, we define these domains and
give some estimations related to these domains.

We divide Rd into two domains: Resonance and Non-resonance domains. In order
to define these domains, let us introduce the following sets.

Let α < 1
d+20 , αk = 3kα, k = 1,2, . . . ,d−1, ρ a large parameter and

Vb(ρα1)≡ {x ∈ Rd : || x |2 − | x+b |2|< ρα1},
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E1(ρα1, p)≡
⋃

b∈Γ(pρα)
Vb(ρα1),

U(ρα1, p)≡ Rd \E1(ρα1, p),

Ek(ραk , p)≡
⋃

γ1,γ2,...,γk∈Γ(pρα)
(

k⋂
i=1

Vγi(ρ
αk)),

where Γ(pρα) ≡ {b ∈ Γ

2 : 0 <| b |< pρα}, the intersection
k⋂

i=1
Vγi(ρ

αk) in Ek is taken

over γ1,γ2, . . . ,γk which are linearly independent vectors and the length of γi is not
greater than the length of the other vectors in Γ

⋂
γiR. The set U(ρα1 , p) is said to

be a non-resonance domain, and the eigenvalue | γ |2 of the operator L(0) is called a
non-resonance eigenvalue if γ∈U(ρα1, p). The domains Vb(ρα1) for all b∈ Γ(pρα) are
called resonance domains, and the eigenvalue | γ |2 of the operator L(0) is a resonance
eigenvalue if γ ∈Vb(ρα1).

The elements of the single resonance domain

Vb(ρα1) = {x ∈ Rd : || x |2 − | x+b |2|< ρ
α1}

are contained between the two hyperplanes

Π1 = {x : || x |2 − | x+b |2|=−ρ
α1}

and
Π2 = {x : || x |2 − | x+b |2|= ρ

α1}.

Π1 and Π2 are indeed the hyperplanes

Π1 = {x : (x+
b
2

+
ρα1b

2 | b |2
) ·b = 0} = (

b
2

+
ρα1b

2 | b |2
)+Πb,

Π2 = {x : (x+
b
2
− ρα1b

2 | b |2
) ·b = 0} = (

b
2
− ρα1b

2 | b |2
)+Πb,

where Πb = {x : x · b = 0} is the hyperplane passing through the origin. This can be
seen by using the following calculation

| x |2 − | x+b |2= (x · x)− [(x+b) · (x+b)] =−2(x ·b)− | b |2=∓ρ
α1 ,
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x ·b+
| b |2

2
∓ ρα1

2
= 0.

We have the following lemma from Karakılıc. (2004).

Lemma 2.11. The non-resonance domain has asymptotically full measure on Rd , that

is,
µ(U(ρα1, p)

⋂
B(ρ))

µ(B(ρ))
→ 1 as ρ→ ∞,

where B(ρ) = {x ∈ Rd :| x |≤ ρ}.

Proof. It is clear that Vb(ρα1)
⋂

B(ρ) is the part of B(ρ) which is contained between
the two parallel hyperplanes Π1 and Π2. Since the distance between these hyperplanes
is ρα1

|b| , we have

µ(Vb(ρα1)
⋂

B(ρ)) = O(ρd−1+α1).

The number of vectors in Γ(pρα) is O(ρdα) and µ(B(ρ)) ∼ ρd , where f (ρ) ∼ g(ρ)
means that there are positive independent of ρ constants c1 and c2 such that
c1 | g(ρ) |<| f (ρ) |< c2 | g(ρ) |. Thus

µ(
⋃

b∈Γ(pρα)

Vb(ρα1)
⋂

B(ρ)) = O(ρd−1+α1+dα) = µ(B(ρ))O(ρdα+α1−1). (2.27)

Using that, Rd = U(ρα1, p)∪E1, and

Rd
⋂

B(ρ) = (U(ρα1, p)
⋂

B(ρ))
⋃

(E1
⋂

B(ρ)),

we have
µ(B(ρ)) = µ(U(ρα1, p)

⋂
B(ρ))+µ(E1

⋂
B(ρ))

which together with (2.27) imply

µ(U(ρα1, p)
⋂

B(ρ)) = µ(B(ρ))(1−O(ρdα+α1−1)).

Thus from (2.27) the result follows, since α1 +dα < 1. That is, the domain U(ρα1, p)
has asymptotically full measure on Rd .

Lemma 2.11 implies that the number of non-resonance eigenvalues is essentially
greater than the number of resonance eigenvalues. Namely, if Nn(ρ) and Nr(ρ) denote
the number of γ ∈U(ρα, p)

⋂
(R(2ρ)\R(ρ)) and γ ∈

⋃
b∈Γ(pρα)

Vb(ρα)
⋂

(R(2ρ)\R(ρ)),
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respectively, then
Nr(ρ)
Nn(ρ)

= O(ρ(d+1)α−1) = o(1) (2.28)

for (d +1)α < 1 where Rρ = {x ∈ Rd :| x |= ρ}.

2.3 Preliminary Results

In this section, we give some relations on the eigenfunctions of the operator L(0)
and the expansion of the potential V (x) with respect to these eigenfunctions which is
obtained in Karakılıç, Atılgan, & Veliev (2005). These will help us to simplify our own
proofs.

Consider the function uγ(x) = cosγ1x1cosγ2x2 · · ·cosγdxd where γ = (γ1,γ2, . . . ,γd)∈
Γ+0

2 , Γ+0

2 = {(n1π

a1
, n2π

a2
, · · · , ndπ

ad
) : ni ∈ Z+ ⋃

{0}, i = 1,2, . . . ,d}. The norm of the
function uγ(x) in L2(Q) is

‖ uγ(x) ‖=
√

a1a2 . . .ad

2d−k ,

where k, 0 ≤ k ≤ d is the number of components γi of the vector γ = (γ1,γ2, . . . ,γd)
such that γi = 0. Equivalently,

‖ uγ(x) ‖=

√
µ(Q)
| Aγ |

,

where µ(Q) is the measure of Q, Aγ = {α = (α1,α2, . . . ,αd) ∈ Γ

2 : | αi |=| γi |, i =
1,2, . . . ,d}, Γ

2 = {(n1π

a1
, n2π

a2
, . . . , ndπ

ad
) : ni ∈ Z, i = 1,2, . . . ,d}, | Aγ | is the number

of vectors in Aγ.

The function uγ(x) = cosγ1x1cosγ2x2 · · ·cosγdxd where γ ∈ Γ+0

2 can be written as

uγ(x) =
1
| Aγ | ∑

α∈Aγ

ei{α·x}. (2.29)

For the sake of simplicity, from now on we will use uγ(x) of the form (2.29).

Lemma 2.12.
( ∑

γ̃∈Aa

ei{γ̃·x})( ∑
α∈Aγ

ei{α·x}) = ∑
γ̃∈Aa

∑
α∈Aγ+γ̃

ei{α·x} (2.30)
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for all γ, γ̃ ∈ Γ

2 .

Proof. For the proof see Karakılıç, Atılgan, & Veliev (2005).

Lemma 2.13. Let uγ(x) = 1
|Aγ| ∑

α∈Aγ

ei{α·x} be the eigenfunction of the operator

(2.16)-(2.17) for any j = 1,2, . . . ,m, for all i = 1,2, . . . ,d. Then

ua(x)uγ(x) =
1
| Aa | ∑

γ̃∈Aa

uγ+γ̃(x)

for all γ ∈ Γ

2 , γ /∈Vek(ρ
α1), k = 1,2, . . . ,d and a ∈ Γ(ρα).

Proof. For the proof see Karakılıç, Atılgan, & Veliev (2005).

It is clear that {uγ(x) = 1
|Aγ| ∑

α∈Aγ

ei{α·x}}
γ∈Γ+0

2
is a complete system in L2(Q). So for

any v(x) in L2(Q) we have

v(x) = ∑
γ∈Γ+0

2

| Aγ |
µ(Q)

(v(x),uγ(x))uγ(x). (2.31)

Using the decomposition (2.31) and the obvious relations

uγ(x) = uα(x), (v(x),uγ(x)) = (v(x),uα(x)), ∀α ∈ Aγ,

Γ

2
=

⋃
γ∈Γ+0

2

Aγ, (v(x),uγ(x)) =
1
| Aγ | ∑

α∈Aγ

(v(x),uα(x)),

we have

v(x) = ∑
γ∈Γ+0

2

| Aγ |
µ(Q)

(v(x),uγ(x))uγ(x)

= ∑
γ∈Γ+0

2

| Aγ |
µ(Q)

1
| Aγ | ∑

α∈Aγ

(v(x),uα(x))uα(x)

= ∑
γ∈Γ

2

1
µ(Q)

(v(x),uγ(x))uγ(x).

So one can write
v(x) = ∑

γ∈Γ

2

vγuγ(x), (2.32)
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where vγ = 1
µ(Q)(v(x),uγ(x)). Since the decompositions (2.31) and (2.32) are

equivalent, for the sake of simplicity, we use the decomposition (2.32) instead of the
decomposition (2.31). (Karakılıç, Atılgan, & Veliev (2005))

Hence, each entry vi j(x) ∈ L2(Q) of the matrix V (x) can be written in its Fourier
series expansion

vi j(x) = ∑
γ∈Γ

2

vi jγuγ(x)

for i, j = 1,2, . . . ,m where vi jγ = (vi j(x),uγ(x))
µ(Q) .

Assumption on the Potential V (x): In this study, we assume that the Fourier
coefficients vi jγ of vi j(x) satisfy

∑
γ∈Γ

2

| vi jγ |2 (1+ | γ |2l) < ∞ (2.33)

for each i, j = 1,2, . . . ,m where l > (d+20)(d−1)
2 +d +3 which implies

vi j(x) = ∑
γ∈Γ+0(ρα)

vi jγuγ(x)+O(ρ−pα), (2.34)

where Γ+0(ρα) = {γ ∈ Γ

2 : 0 ≤| γ |< ρα}, p = l−d, α < 1
d+20 , ρ is a large parameter

and O(ρ−pα) is a function in L2(Rd) whose norm is big-oh of ρ−pα.

Indeed, we have

‖ ∑
γ∈Γ

2 \Γ+0(ρα)

vi jγuγ(x) ‖2=‖ ∑
|γ|>ρα

vi jγuγ(x) ‖2= ∑
|γ|>ρα

| vi jγ |2‖ uγ(x) ‖2

= ∑
|γ|>ρα

| vi jγ |2
a1a2 . . .ad

2d−k ≤ a1a2 . . .ad ∑
|γ|>ρα

| vi jγ |2= a1a2 . . .ad ∑
|γ|>ρα

[
| vi jγ || γ |l

| γ |l

]2

≤ a1a2 . . .ad

[
∑
|γ|>ρα

| vi jγ || γ |l

| γ |l

]2

≤ a1a2 . . .ad

[(
∑
|γ|>ρα

(| vi jγ || γ |l)2
) 1

2
(

∑
|γ|>ρα

1
| γ |2l

) 1
2
]2

= a1a2 . . .ad

(
∑
|γ|>ρα

| vi jγ |2| γ |2l
)(

∑
|γ|>ρα

1
| γ |2l

)
.

The first sum in the last expression is convergent by (2.33). The second sum is big-oh
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of ρ−pα by using the integral test. Thus (2.34) holds.

Furthermore, the assumption (2.33) implies

Mi j ≡ ∑
γ∈Γ

2

| vi jγ |< ∞ (2.35)

for all i, j = 1,2, . . . ,m.

The series (
∑
γ∈Γ

2

| vi jγ |2| γ |2l
) 1

2

converges by (2.33). Since l > (d+20)(d−1)
2 + d + 3 and d ≥ 2, we have 2l > 1. So the

series (
∑
γ∈Γ

2

1
| γ |2l

) 1
2

also converges. Then by using Cauchy-Schwarz inequality, we get

∑
γ∈Γ

2

| vi jγ |= ∑
γ∈Γ

2

| vi jγ || γ |l

| γ |l
≤
(

∑
γ∈Γ

2

| vi jγ |2| γ |2l
) 1

2
(

∑
γ∈Γ

2

1
| γ |2l

) 1
2

from which (2.35) follows.

By means of the relation (2.35), we define the constants

Mi =
m

∑
j=1

Mi j, M j =
m

∑
i=1

Mi j, M2 = max
1≤i≤m

Mi max
1≤ j≤m

M j. (2.36)

If v(x) ∈W l
2(Q) and the support of gradv(x) = ( ∂v

∂x1
, ∂v

∂x2
, . . . , ∂v

∂xd
) is contained in

the interior of the domain Q, then v(x) satisfies the condition (2.33) (see Hald, &
McLaughlin (1996)). Another class of functions satisfying the condition (2.33) is the
class of functions v(x) ∈W l

2(Q) such that v(x) = ∑
γ∈Γ

vγuγ(x) which is periodic with

respect to Ω (see Section 1.3).

Lemma 2.14.

∑
γ̃∈Γ(ρα)

vγ̃uγ̃(x)uγ(x) = ∑
γ̃∈Γ(ρα)

vγ̃uγ+γ̃(x) (2.37)

for all γ ∈ Γ

2 , γ /∈Vek(ρ
α1).
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Proof. For the proof see Karakılıç, Atılgan, & Veliev (2005).



CHAPTER THREE
HIGH ENERGY ASYMPTOTICS

FOR THE EIGENVALUES OF THE OPERATOR L(V )

3.1 Asymptotic Formulas for the Eigenvalues in the Non-Resonance Domain

In this section, we improve the results in Cos.kan, & Karakılıc. (2009) which are
also obtained during this study.

We consider the eigenvalues | γ |2 of the operator L(0) such that | γ |∼ ρ where
| γ |∼ ρ means that | γ | and ρ are asymptotically equal, that is, c1ρ ≤| γ |≤ c2ρ, ci,
i = 1,2,3, . . . are positive real constants which do not depend on ρ and ρ is a large
parameter.

We decompose V (x)Φγ, j(x) with respect to the basis {Φγ′,i(x)}γ′∈Γ

2 ,i=1,2,...,m.
By definition of Φγ, j(x), it is obvious that

V (x)Φγ, j(x) = (v1 j(x)uγ(x), . . . ,vm j(x)uγ(x)). (3.38)

Substituting the decomposition (2.34) of vi j(x) into (3.38), we get

V (x)Φγ, j(x) = ( ∑
γ′∈Γ+0(ρα)

v1 jγ′uγ′(x)uγ(x), . . . , ∑
γ′∈Γ+0(ρα)

vm jγ′uγ′(x)uγ(x))+O(ρ−pα).

(3.39)
Using (2.37) in (3.39), we obtain

V (x)Φγ, j(x) = ( ∑
γ′∈Γ+0(ρα)

v1 jγ′uγ+γ′(x), . . . , ∑
γ′∈Γ+0(ρα)

vm jγ′uγ+γ′(x))+O(ρ−pα)

=
m

∑
i=1

∑
γ′∈Γ+0(ρα)

vi jγ′Φγ+γ′,i(x)+O(ρ−pα). (3.40)

The analogues of the following lemma can be found in Karakılıc. (2004).

Lemma 3.15. Let γ ∈U(ρα1, p), that is, | γ |2 be a non-resonance eigenvalue of the

23
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operator L(0), ΛN an eigenvalue of the operator L(V ) satisfying the inequality

| ΛN− | γ |2|<
1
2

ρ
α1. (3.41)

Then

| ΛN− | γ+b |2|> 1
2

ρ
α1 (3.42)

for all b ∈ Γ(pρα).

Proof. If γ ∈U(ρα1, p) then || γ |2 − | γ+b |2|> ρα1 for all b ∈ Γ(pρα) which together
with | ΛN− | γ |2|< 1

2ρα1 implies

| ΛN− | γ+b |2|≥|| ΛN− | γ |2| − || γ+b |2 − | γ |2||> 1
2

ρ
α1.

We define the following m×m matrices.

D(ΛN ,γ)≡ (ΛN−|γ|2)I−V0,

S(a, p1)≡
p1

∑
k=1

Sk(a),

where
Sk(a) = (sk

ji(a)), k = 1,2, . . . , p1, j, i = 1,2, . . . ,m,

sk
ji(a) =

m

∑
i1,i2,...,ik=1

∑
γ1,γ2,...,γk+1∈Γ+0(ρα)

γ1+γ2+···+γk+1=0

vi1 jγ1vi2i1γ2...viikγk+1

(a− | γ+ γ1 |2)...(a− | γ+ γ1 + · · ·+ γk |2)
.

We note that since V (x) is symmetric, V0 and S(a, p1) are symmetric real valued
matrices. Hence D(ΛN ,γ)−S(a, p1) is a symmetric real valued matrix. We denote the
eigenvalues and the corresponding normalized eigenvectors of the matrix D(ΛN ,γ)−
S(a, p1) by βi ≡ βi(ΛN ,γ,a) and fi ≡ fi(ΛN ,γ,a), respectively. That is,

[D(ΛN ,γ)−S(a, p1)] fi = βi fi, (3.43)

where fi · f j = δi j, i, j = 1,2, . . . ,m.
We denote by A(N,γ) the m×1 vector

A(N,γ) = (< ΨN ,Φγ,1 >,< ΨN ,Φγ,2 >,. . . ,< ΨN ,Φγ,m >).
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Lemma 3.16. Let | γ |2 be a non-resonance eigenvalue of the operator L(0) with

| γ |∼ ρ.

(a) Let βi be an eigenvalue of the matrix D(ΛN ,γ)−S(a, p1) and fi = ( fi1, fi2, . . . , fim)
its corresponding normalized eigenvector. Then there exists an integer N ≡ Ni such

that ΛN satisfies the inequality (3.41) and

| A(N,γ) · fi |> c3ρ
−(d−1)

2 . (3.44)

(b) Let ΛN be an eigenvalue of the operator L(V ) satisfying the inequality (3.41). Then

there exists an eigenfunction Φγ,i(x) of the operator L(0) such that

|< Φγ,i,ΨN >|> c4ρ
−(d−1)

2 (3.45)

holds.

Proof. We prove the lemma by using the same consideration as in Karakılıc. (2004).
(a) We use a result from perturbation theory which states that the Nth eigenvalue of
the operator L(V ) lies in M-neighborhood of the Nth eigenvalue of the operator L(0).
Let the Nth eigenvalues of L(V ) and L(0) be ΛN and | γ |2, respectively. Then there is
an integer N such that | ΛN− | γ |2|< 1

2ρα1 .
On the other hand, since L(V ) is a self adjoint operator, the eigenfunctions {ΨN(x)}∞

N=1

of L(V ) form an orthonormal basis for Lm
2 (Q). By Parseval’s relation, we have

‖
m

∑
j=1

fi jΦγ, j ‖2 = ∑
N:|ΛN−|γ|2|< 1

2 ρα1

|<
m

∑
j=1

fi jΦγ, j,ΨN >|2

+ ∑
N:|ΛN−|γ|2|≥ 1

2 ρα1

|<
m

∑
j=1

fi jΦγ, j,ΨN >|2 . (3.46)

Now, we estimate the last expression in (3.46). By using the Cauchy-Schwarz
inequality and the binding formula (2.25), we get

∑
N:|ΛN−|γ|2|≥ 1

2 ρα1

|<
m

∑
j=1

fi jΦγ, j,ΨN >|2= ∑
N:|ΛN−|γ|2|≥ 1

2 ρα1

|
m

∑
j=1

fi j < Φγ, j,ΨN >|2
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≤ ∑
N:|ΛN−|γ|2|≥ 1

2 ρα1

[
m

∑
j=1
| fi j |2

m

∑
j=1
|< ΨN ,Φγ, j >|2]

= ∑
N:|ΛN−|γ|2|≥ 1

2 ρα1

m

∑
j=1

|< ΨN ,V Φγ, j >|2

| ΛN− | γ |2|2

≤ (
1
2

ρ
α1)−2

∑
N:|ΛN−|γ|2|≥ 1

2 ρα1

m

∑
j=1
|< ΨN ,V Φγ, j >|2

≤ (
1
2

ρ
α1)−2

m

∑
j=1
‖V Φγ, j ‖2

from which together with the relation (2.35) we obtain

∑
N:|ΛN−|γ|2|≥ 1

2 ρα1

|<
m

∑
j=1

fi jΦγ, j,ΨN >|2= O(ρ−2α1).

It follows from the last equation and (3.46) that

∑
N:|ΛN−|γ|2|< 1

2 ρα1

|<
m

∑
j=1

fi jΦγ, j,ΨN >|2= ∑
N:|ΛN−|γ|2|< 1

2 ρα1

| A(N,γ) · fi |2= 1−O(ρ−2α1).

(3.47)
On the other hand, if a∼ ρ, then the number of γ ∈ Γ

2 satisfying || γ |2 −a2 |< 1 is less
than c5ρd−1. Therefore, the number of eigenvalues of L(0) lying in (a2−1,a2 + 1) is
less than c6ρd−1. By this result and the result of perturbation theory, the number of
eigenvalues ΛN of L(V ) in the interval [| γ |2 −1

2ρα1, | γ |2 +1
2ρα1] is less than c7ρd−1.

Thus

1−O(ρ−2α1) = ∑
N:|ΛN−|γ|2|< 1

2 ρα1

| A(N,γ) · fi |2< c7ρ
d−1 | A(N,γ) · fi |2 (3.48)

from which we get the estimation (3.44).
(b) Since L(0) is a self adjoint operator, the set of eigenfunctions {Φγ,i(x)}γ∈Γ

2 ,i=1,2,...,m

of L(0) forms an orthonormal basis for Lm
2 (Q). By Parseval’s relation, we have

‖ΨN ‖2= ∑
γ:|ΛN−|γ|2|< 1

2 ρα1

m

∑
i=1
|< ΨN ,Φγ,i >|2 + ∑

γ:|ΛN−|γ|2|≥ 1
2 ρα1

m

∑
i=1
|< ΨN ,Φγ,i >|2 .

(3.49)
We estimate the last expression in (3.49). For a fixed i = 1,2, . . . ,m using the binding
formula (2.25) together with the relation (2.35), we get
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∑
γ:|ΛN−|γ|2|≥ 1

2 ρα1

m

∑
i=1
|< ΨN ,Φγ,i >|2 = ∑

γ:|ΛN−|γ|2|≥ 1
2 ρα1

m

∑
i=1

|< ΨN ,V Φγ,i >|2

| ΛN− | γ |2|2

≤ (
1
2

ρ
α1)−2

∑
γ:|ΛN−|γ|2|≥ 1

2 ρα1

m

∑
i=1
|< V ΨN ,Φγ,i >|2

≤ (
1
2

ρ
α1)−2 ‖V ΨN ‖2, (3.50)

that is,

∑
γ:|ΛN−|γ|2|≥ 1

2 ρα1

m

∑
i=1
|< ΨN ,Φγ,i >|2= O(ρ−2α1).

From the last equality and (3.49) we obtain

∑
γ:|ΛN−|γ|2|< 1

2 ρα1

m

∑
i=1
|< ΨN ,Φγ,i >|2= 1−O(ρ−2α1).

Arguing as in the proof of part(a), we get

1−O(ρ−2α1) = ∑
γ:|ΛN−|γ|2|< 1

2 ρα1

m

∑
i=1
|< ΨN ,Φγ,i >|2≤ c8ρ

d−1 |< ΨN ,Φγ,i >|2

from which the estimation (3.45) follows.

Theorem 3.17. Let | γ |2 be a non-resonance eigenvalue of the operator L(0) with

| γ |∼ ρ.

(a) For each eigenvalue λi, i = 1,2, . . . ,m of the matrix V0 there exists an eigenvalue

ΛN of the operator L(V ) satisfying

ΛN =| γ |2 +λi +O(ρ−α1). (3.51)

(b) For each eigenvalue ΛN of the operator L(V ) satisfying the inequality (3.41), there

exists an eigenvalue λi of the matrix V0 satisfying the formula (3.51).

Proof. (a) We prove this part of the theorem by using the same consideration as in
Karakılıc. (2004). Let | γ |2 be a non-resonance eigenvalue of the operator L(0) with
| γ |∼ ρ. By the result of perturbation theory, the Nth eigenvalue ΛN of the operator
L(V ) lies in 1

2ρα1 neigborhood of the non-resonance eigenvalue | γ |2 of the operator
L(0). That is, there exists an integer N such that ΛN satisfies the inequality (3.41). We
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consider the binding formula (2.25) for these eigenvalues ΛN and | γ |2.

Substituting the decomposition (3.40) into the binding formula (2.25), we obtain

(ΛN− | γ |2) < ΨN ,Φγ, j >=
m

∑
i1=1

∑
γ1∈Γ+0(ρα)

vi1 jγ1 < ΨN ,Φγ+γ1,i1 > +O(ρ−pα).

Isolating the terms with the coefficient < ΨN ,Φγ,i >, that is, γ1 = 0, for each
i = 1,2, . . . ,m, we get

(ΛN− | γ |2) < ΨN ,Φγ, j >=
m

∑
i=1

vi j0 < ΨN ,Φγ,i >

+
m

∑
i1=1

∑
γ1∈Γ+0(ρα)

vi1 jγ1 < ΨN ,Φγ+γ1,i1 > +O(ρ−pα).

In the second summation of the above equation, since ΛN satisfies (3.41) and γ ∈
U(ρα1, p), γ1 ∈ Γ+0(ρα) with γ1 6= 0, by the inequality (3.42), we obtain

(ΛN− | γ |2) < ΨN ,Φγ, j >=
m

∑
i=1

vi j0 < ΨN ,Φγ,i >

+
m

∑
i1,i2=1

∑
γ1,γ2∈Γ+0(ρα)

vi1 jγ1vi2i1γ2

< ΨN ,Φγ+γ1+γ2,i2 >

(ΛN− | γ+ γ1 |2)
+O(ρ−pα).

Again in the second summation of the above equation isolating the terms with the
coefficient < ΨN ,Φγ,i >, that is, γ1 + γ2 = 0, γ1 6= 0 for each i = 1,2, . . . ,m, we get

(ΛN− | γ |2) < ΨN ,Φγ, j >=
m
∑

i=1
vi j0 < ΨN ,Φγ,i >

+
m

∑
i1,i=1

∑
γ1,γ2∈Γ+0(ρα)

γ1+γ2=0

vi1 jγ1vii1γ2

(ΛN− | γ+ γ1 |2)
< ΨN ,Φγ,i >

+
m

∑
i1,i2=1

∑
γ1,γ2∈Γ+0(ρα)

vi1 jγ1vi2i1γ2

(ΛN− | γ+ γ1 |2)
< ΨN ,Φγ+γ1+γ2,i2 >

+ O(ρ−pα). (3.52)

Writing this equation for j = 1,2, . . . ,m and i = 1,2, . . . ,m, after the first step of the
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iteration we obtain the following system.

[(ΛN− | γ |2)I−V0]A(N,γ) = S1(ΛN)A(N,γ)+R1 +O(ρ−pα),

where I is the m×m identity matrix, S1(ΛN) = (s1
ji(ΛN)) is the m×m matrix whose

entries are

s1
ji(ΛN) =

m

∑
i1=1

∑
γ1,γ2∈Γ+0(ρα)

γ1+γ2=0

vi1 jγ1vii1γ2

(ΛN− | γ+ γ1 |2)
,

j, i = 1,2, . . . ,m and R1 = (r1
j ) is the m×1 vector whose components are

r1
j =

m

∑
i1,i2=1

∑
γ1,γ2∈Γ+0(ρα)

vi1 jγ1vi2i1γ2

(ΛN− | γ+ γ1 + γ2 |2)
< ΨN ,Φγ+γ1+γ2,i2 >,

j = 1,2, . . . ,m.

Now, we continue to iterate the equation (3.52). In the third summation of the
equation (3.52), since ΛN satisfies the inequality (3.41) and γ ∈U(ρα1, p), γ1 + γ2 ∈
Γ+0(2ρα) with γ1 + γ2 6= 0, by the inequality (3.42), we obtain

(ΛN− | γ |2) < ΨN ,Φγ, j >=
m
∑

i=1
vi j0 < ΨN ,Φγ,i >

+
m

∑
i1,i=1

∑
γ1,γ2∈Γ+0(ρα)

γ1+γ2=0

vi1 jγ1vii1γ2

(ΛN− | γ+ γ1 |2)
< ΨN ,Φγ,i >

+
m

∑
i1,i2,
i3=1

∑
γ1,γ2,

γ3∈Γ+0(ρα)

vi1 jγ1vi2i1γ2vi3i2γ3

(ΛN− | γ+ γ1 |2)(ΛN− | γ+ γ1 + γ2 |2)

< ΨN ,Φγ+γ1+γ2+γ3,i3 >

+ O(ρ−pα).

Isolating the terms with the coefficient < ΨN ,Φγ,i > for each i = 1,2, . . . ,m, we get

(ΛN− | γ |2) < ΨN ,Φγ, j >=
m
∑

i=1
vi j0 < ΨN ,Φγ,i >
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+
m

∑
i1,i=1

∑
γ1,γ2∈Γ+0(ρα)

γ1+γ2=0

vi1 jγ1vii1γ2

(ΛN− | γ+ γ1 |2)
< ΨN ,Φγ,i >

+
m

∑
i1,i2,i=1

∑
γ1,γ2,γ3∈Γ+0(ρα)

γ1+γ2+γ3=0

vi1 jγ1vi2i1γ2vii2γ3

(ΛN− | γ+ γ1 |2)(ΛN− | γ+ γ1 + γ2 |2)
< ΨN ,Φγ,i >

+
m

∑
i1,i2,
i3=1

∑
γ1,γ2,

γ3∈Γ+0(ρα)

vi1 jγ1vi2i1γ2vi3i2γ3

(ΛN− | γ+ γ1 |2)(ΛN− | γ+ γ1 + γ2 |2)

< ΨN ,Φγ+γ1+γ2+γ3,i3 >

+ O(ρ−pα).

Again if we write this equation for j = 1,2, . . . ,m and i = 1,2, . . . ,m after the second
step of the iteration we obtain the following system.

[(ΛN− | γ |2)I−V0]A(N,γ) = (S1(ΛN)+S2(ΛN))A(N,γ)+R2 +O(ρ−pα),

where this time S2(ΛN) = (s2
ji(ΛN)),

s2
ji(ΛN) =

m

∑
i1,i2=1

∑
γ1,γ2,γ3∈Γ+0(ρα)

γ1+γ2+γ3=0

vi1 jγ1vi2i1γ2vii2γ3

(ΛN− | γ+ γ1 |2)(ΛN− | γ+ γ1 + γ2 |2)
,

j, i = 1,2, . . . ,m and R2 = (r2
j ),

r2
j =

m

∑
i1,i2,
i3=1

∑
γ1,γ2,

γ3∈Γ+0(ρα)

vi1 jγ1vi2i1γ2vi3i2γ3

(ΛN− | γ+ γ1 |2)(ΛN− | γ+ γ1 + γ2 |2)

< ΨN ,Φγ+γ1+γ2+γ3,i3 >,

j = 1,2, . . . ,m.

If we continue to iterate in this manner after the p1st step where p1 = [ p+1
2 ] and [·]

is the integer function we obtain the following system.

[(ΛN− | γ |2)I−V0]A(N,γ) = (
p1

∑
k=1

Sk(ΛN))A(N,γ)+Rp1 +O(ρ−pα), (3.53)

where
Sk(ΛN) = (sk

ji(ΛN)), k = 1,2, . . . , p1, j, i = 1,2, . . . ,m, (3.54)
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sk
ji(ΛN) =

m

∑
i1,i2,...,ik=1

∑
γ1,γ2,...,γk+1∈Γ+0(ρα)

γ1+γ2+···+γk+1=0

vi1 jγ1vi2i1γ2...viikγk+1

(ΛN− | γ+ γ1 |2)...(ΛN− | γ+ γ1 + · · ·+ γk |2)
,

Rp1 = (rp1
j ), j = 1,2, . . . ,m, (3.55)

rp1
j =

m

∑
i1,i2,...,

ip1+1=1

∑
γ1,γ2,...,

γp1+1∈Γ+0(ρα)

vi1 jγ1 . . .vip1+1ip1γp1+1 < ΨN ,Φγ+γ1+···+γp1+1,ip1+1 >

(ΛN− | γ+ γ1 |2) . . .(ΛN− | γ+ γ1 + · · ·+ γp1 |2)
.

Since ΛN satisfies the inequality (3.41), γ ∈ U(ρα1, p) and γ1 + γ2 + · · ·+ γk ∈
Γ+0(kρα) with γ1 + γ2 + · · ·+ γk 6= 0 , by the inequality (3.42) and the relation (2.35),

|rp1
j | ≤

m

∑
i1,i2,...,

ip1+1=1

∑
γ1,γ2,...,

γp1+1∈Γ+0(ρα)

|vi1 jγ1| . . . |vip1+1ip1 γp1+1 ||< ΨN ,Φγ+γ1+···+γp1+1,ip1+1 > |
|(ΛN− | γ+ γ1 |2)| . . . |(ΛN− | γ+ γ1 + · · ·+ γp1 |2)|

≤ 1
(2ρα1)p1

m

∑
i1,i2,...,ip1+1=1

Mi1 jMi2i1 . . .Mip1+1ip1
,

that is,
‖ Rp1 ‖= O(ρ−p1α1). (3.56)

We have chosen p1 = [ p+1
2 ]. So by definitions of α, α1, l and p, we have the inequalities

p1 ≥
p
2
, p1α1 > pα, p >

(d +20)(d−1)
2

. (3.57)

Thus it follows from the equation (3.53) together with the estimation (3.56) and (3.57)
that

[D(ΛN ,γ)−S(ΛN , p1)]A(N,γ) = O(ρ−pα). (3.58)

Now, let βi be an eigenvalue of the matrix D(ΛN ,γ) − S(ΛN , p1) and fi its
corresponding normalized eigenvector. By Lemma 3.16.a, there exists an integer Ni

such that the eigenvalue ΛNi of the operator L(V ) satisfies the inequality (3.41) and the
estimation (3.44) holds for N = Ni. So letting N = Ni in (3.58) and multiplying both
sides of (3.58) by fi, we obtain

βi[A(N,γ) · fi] = O(ρ−pα).

Using the estimation (3.44) in the above equation, we get

βi = O(ρ−(p− d−1
2α

)α). (3.59)
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On the other hand, since D(ΛN ,γ) and S(ΛN , p1) are symmetric real valued matrices,
by Theorem of Lidskii in Section 1.3, |βi− (ΛN− | γ |2 −λi)| ≤ ‖S(ΛN , p1)‖ where
we have ‖ S(ΛN , p1) ‖= O(ρ−α1). Because since ΛN satisfies the inequality (3.41),
γ ∈ U(ρα1, p) and γ1 + γ2 + · · ·+ γk ∈ Γ+0(kρα) with γ1 + γ2 + · · ·+ γk 6= 0, by the
inequality (3.42) and the relation (2.35),

|sk
ji(ΛN)|

≤
m

∑
i1,i2,...,ik=1

∑
γ1,γ2,...,γk+1∈Γ+0(ρα)

γ1+γ2+···+γk+1=0

|vi1 jγ1||vi2i1γ2| . . . |viikγk+1|
|(ΛN− | γ+ γ1 |2)| . . . |(ΛN− | γ+ γ1 + · · ·+ γk |2)|

≤ 1
(2ρα1)k

m

∑
i1,i2,...,ik=1

Mi1 jMi2i1 . . .Miik

for each k = 1,2, . . . , p1, i, j = 1,2, . . . ,m. Thus

‖ Sk(ΛN) ‖= O(ρ−kα1), ∀k = 1,2, . . . , p1

which implies

‖
p1

∑
k=1

Sk(ΛN) ‖= O(ρ−α1). (3.60)

So we have
βi = ΛN− | γ |2 −λi +O(ρ−α1). (3.61)

Choosing p > d−1
2α

+1, using (3.59) and (3.61), we get the result.
(b) Let ΛN be an eigenvalue of the operator L(V ) satisfying (3.41). By Lemma 3.16.b,
there exists an eigenfunction Φγ,i(x) of the operator L(0) satisfying the estimation
(3.45) from which we have

| A(N,γ) |> c9ρ
−(d−1)

2 . (3.62)

Let | γ |2 be the eigenvalue of the operator L(0) whose corresponding eigenfunction
Φγ,i(x) satisfies the estimation (3.45). We consider the binding formula (2.25) for these
eigenvalues ΛN and | γ |2. Arguing as in the proof of part(a), we get the equation (3.58)

[(ΛN− | γ |2)I−V0]A(N,γ) = S(ΛN , p1)A(N,γ)+O(ρ−pα),

where | γ |2 is a non-resonance eigenvalue of the operator with | γ |∼ ρ. Applying
1

|A(N,γ)| [(ΛN− | γ |2)I−V0]−1 to both sides of the above equation, taking norm of both
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sides, and using the inequality (3.62), we obtain

1≤ ‖[(ΛN− | γ |2)I−V0]−1‖‖
p1

∑
k=1

Sk(ΛN)‖+‖[(ΛN− | γ |2)I−V0]−1‖[O(ρ−(pα− (d−1)
2 )].

By using the estimation (3.60), we get

1≤ max
i=1,2,...,m

1
|ΛN− | γ |2 −λi|

[O(ρ−α1)+O(ρ−(pα− d−1
2 ))].

Choosing p > d−1
2α

+1, we obtain

min
i=1,2,...,m

|ΛN− | γ |2 −λi| ≤ c10ρ
−α1,

where minimum is taken over all eigenvalues of the matrix V0 from which we obtain
the result.

Corollary 3.18. (a) Let µγ,i be an eigenvalue of the operator L(V0) where γ∈U(ρα1, p)
with | γ |∼ ρ and i = 1,2, . . . ,m. Then there is an eigenvalue ΛN of the operator L(V )
satisfying

ΛN = µγ,i +O(ρ−α1). (3.63)

(b) For each eigenvalue ΛN of the operator L(V ) satisfying the inequality (3.41) there

is an eigenvalue µγ,i of the operator L(V0) satisfying the formula (3.63).

Proof. The proof follows from the proof of Theorem 3.17.

Remark 3.19. We note that to obtain the estimations (3.60) and (3.56), we have only
used the assumption that ΛN satisfies the inequality (3.41), that is, ΛN ∈ J where
J = [|γ|2− 1

2ρα1 , |γ|2 + 1
2ρα1 ]. Hence we may write

‖
p1

∑
k=1

Sk(a) ‖= O(ρ−α1), ∀a ∈ J. (3.64)

Similarly, the estimation (3.56) holds for a∈ J. So we may consider the equation (3.58)
for any a ∈ J. That is, we may write

[D(ΛN ,γ)−S(a, p1)]A(N,γ) = O(ρ−pα) (3.65)

for any a ∈ J.

In the proof of Theorem 3.17, we have chosen p > d−1
2α

+1. Now, we let
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c = [d−1
2α

]+1. The estimations (3.44) and (3.45) can be written as

| A(N,γ) · fi |> c11ρ
−cα (3.66)

and
|< Φγ,i,ΨN >|> c12ρ

−cα, (3.67)

respectively. It follows from (3.67) that the estimation (3.62) can be written as

| A(N,γ) |> c13ρ
−cα. (3.68)

We define the following m×m matrices.

F0 = 0, F1 = S1(| γ |2 +λs), Fj = S(| γ |2 +λs +‖Fj−1‖, j), j ≥ 2.

(3.69)
Then we have

‖Fj‖= O(ρ−α1) (3.70)

for all j = 1,2, . . . , p− c. Indeed, since F0 = 0, ‖F0‖ = 0 and if we assume that
‖Fj−1‖ = O(ρ−α1), then since | γ |2 +λs + ‖Fj−1‖ ∈ J, by the estimation (3.64), we
have ‖Fj‖= O(ρ−α1).

Theorem 3.20. Let | γ |2 be a non-resonance eigenvalue of the operator L(0) with

| γ |∼ ρ.

(a) For any eigenvalue λi, i = 1,2, . . . ,m of the matrix V0, there exits an eigenvalue ΛN

of the operator L(V ) satisfying the formula

ΛN =| γ |2 +λi +‖Fk−1‖+O(ρ−kα1), (3.71)

where Fk−1 is given by (3.69), k = 1,2, . . . , p− c.

(b) For any eigenvalue ΛN of the operator L(V ) satisfying the inequality (3.41), there

is an eigenvalue λi of the matrix V0 satisfying the formula (3.71).

Proof. (a) We prove this part of the theorem by using the same consideration as in
Karakılıc. (2004). We use mathematical induction. For k = 1 we obtain the result by
Theorem 3.17.a.
Now, assume that for k = j−1 the formula (3.71) is true, that is,

ΛN =| γ |2 +λi +‖Fj−1‖+O(ρ− jα1). (3.72)
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By (3.70), we have | γ |2 +λs +‖Fj−1‖+O(ρ− jα1) ∈ J. Thus substituting
a≡| γ |2 +λs +‖Fj−1‖+O(ρ− jα1) into S(a, p1) in the equation (3.65), we get

[D(ΛN ,γ)−S(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1), p1)]A(N,γ) = O(ρ−pα). (3.73)

Adding and subtracting the term FjA(N,γ) = S(| γ |2 +λs +‖Fj−1‖, j)A(N,γ) into the
left hand side of the equation (3.73), we obtain

[D(ΛN ,γ)−Fj]A(N,γ)−E jA(N,γ) = O(ρ−pα), (3.74)

where

E j = [S(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1), j)−S(| γ |2 +λs +‖Fj−1‖, j)]

+ (
p1

∑
k= j+1

Sk(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1))).

By the estimation (3.64), we have

‖
p1

∑
k= j+1

Sk(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1)) ‖= O(ρ−( j+1)α1). (3.75)

If we prove that

‖S(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1), j)−S(| γ |2 +λs +‖Fj−1‖, j)‖= O(ρ−( j+1)α1),
(3.76)

then it follows from the estimations (3.75) and (3.76) that

‖E j‖= O(ρ−( j+1)α1). (3.77)

Now, we prove the estimation (3.76). Since | γ |2 +λs + ‖Fj−1‖+ O(ρ− jα1) ∈ J and
| γ |2 +λs +‖Fj−1‖ ∈ J satisfy the inequality (3.41), by the inequality (3.42), we have

| | γ |2 +λs +‖Fj−1‖+O(ρ− jα1)− | γ+ γ1 + · · ·+ γt |2 |>
1
2

ρ
α1,

| | γ |2 +λs +‖Fj−1‖− | γ+ γ1 + · · ·+ γt |2 |>
1
2

ρ
α1 (3.78)

for all γt ∈ Γ(ρα) and t = 1,2, . . . , p1. By its definition, S(a, j) ≡
j

∑
k=1

Sk(a). Thus we

first calculate the order of the first term of the summation in (3.76). To do this, we
consider each entry of this term, and use the inequalities (3.78) and the relation (2.35).
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|s1
li(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1))− s1

li(| γ |2 +λs +‖Fj−1‖)|

≤
m

∑
i1=1

∑
γ1 ,γ2∈Γ+0(ρα)

γ1+γ2=0

|vi1lγ1 ||vii1γ2 |O(ρ− jα1)
|(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1)− | γ+ γ1 |2)||(| γ |2 +λs +‖Fj−1‖− | γ+ γ1 |2)|

≤ c14ρ
−( j+2)α1

for each l, i = 1,2, . . . ,m which implies

‖S1(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1))−S1(| γ |2 +λs +‖Fj−1‖)‖= O(ρ−( j+2)α1).

If we consider each entry of the second term of the summation in (3.76), then again by
the inequalities (3.78) and the relation (2.35), we see

|s2
li(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1))− s2

li(| γ |2 +λs +‖Fj−1‖)|

≤
m

∑
i1,i2=1

∑
γ1 ,γ2 ,γ3∈Γ+0(ρα)

γ1+γ2+γ3=0

|vi1lγ1 ||vi2i1γ2 ||vii2γ3 |O(ρ− jα1)

{ 1
|(a′+O(ρ− jα1)− | γ+ γ1 |2)(a′+O(ρ− jα1)− | γ+ γ1 + γ2 |2)(a′− | γ+ γ1 + γ2 |2)|

+
1

|(a′+O(ρ− jα1)− | γ+ γ1 |2)(a′− | γ+ γ1 |2)(a′+O(ρ− jα1)− | γ+ γ1 + γ2 |2)|
}

≤ c15ρ
−( j+3)α1

for each l, i = 1,2, . . . ,m where we use the notation a′ ≡| γ |2 +λs +‖Fj−1‖ for the sake
of simplicity, which implies

‖S2(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1))−S2(| γ |2 +λs +‖Fj−1‖)‖= O(ρ−( j+3)α1).

Therefore, by direct calculations, it can be easily seen that

‖Sk(| γ |2 +λs +‖Fj−1‖+O(ρ− jα1))−Sk(| γ |2 +λs +‖Fj−1‖)‖= O(ρ−( j+k+1)α1)

from which we obtain the estimation (3.76).

Let βi be an eigenvalue of the matrix D(ΛN ,γ) − S(| γ |2 +λi + ‖Fj−1‖ +
O(ρ− jα1), p1). If we multiply both sides of the equation (3.73) by its corresponding
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normalized eigenvector fi, and use the estimation (3.66), then we obtain

βi = O(ρ−(p−c)α). (3.79)

On the other hand, the matrix D(ΛN ,γ)− S(| γ |2 +λi + ‖Fj−1‖+ O(ρ− jα1), p1) in
(3.73) is decomposed as follows

D(ΛN ,γ)−S(| γ |2 +λi +‖Fj−1‖+O(ρ− jα1), p1) = D(ΛN ,γ)−Fj−E j.

Thus by (3.77), (3.79) and Theorem of Lidskii in Section 1.3,

|βi− (ΛN− | γ |2 +λi)| ≤ ‖Fj‖+O(ρ−( j+1)α1),

where 1≤ j +1≤ p− c, we get the proof of (3.71).
(b) Again we prove this part of the theorem by induction. For j = 1 we obtain the
result by Theorem 3.17.b.
Now, assume that for k = j− 1 the formula (3.71) is true. To prove (3.71) for k = j,
we use the equation (3.74). By using the definition of the matrix D(ΛN ,γ) and (3.74),
we have

[(ΛN− | γ |2)I−D j]A(N,γ) = E jA(N,γ)+O(ρ−pα),

where D j = V0 + Fj. Applying
1

| A(N,γ) |
[(ΛN− | γ |2)I−D j]−1 to both sides of the

above equation, taking norm of both sides, and using the estimations (3.68) and (3.77),
we obtain

1 ≤ ‖[(ΛN− | γ |2)I−D j]−1‖[O(ρ−( j+1)α1]+‖[(ΛN− | γ |2)I−D j]−1‖[O(ρ−(p−c)α)]

≤ max
i=1,2,...,m

1

|ΛN− | γ |2 −λ̃i( j)|
[O(ρ−( j+1)α1)],

or
min

i=1,2,...,m
| ΛN− | γ |2 −λ̃i( j) |≤ c16ρ

−( j+1)α1,

where minimum is taken over all eigenvalues λ̃i( j) of the matrix D j, 1≤ j+1≤ p−c.
By the last inequality and the well known result in matrix theory, |̃λi( j)−λi| ≤ ‖Fj‖,
we obtain the result.

Corollary 3.21. (a) Let µγ,i be an eigenvalue of the operator L(V0) where γ∈U(ρα1, p)
with | γ |∼ ρ and i = 1,2, . . . ,m. Then there is an eigenvalue ΛN of the operator L(V )
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satisfying

ΛN = µγ,i +‖Fk−1‖+O(ρ−kα1), (3.80)

where Fk−1 is given by (3.69), k = 1,2, . . . , p− c.

(b) For each eigenvalue ΛN of the operator L(V ) satisfying the inequality (3.41) there

is an eigenvalue µγ,i of the operator L(V0) satisfying the formula (3.80).

Proof. The proof follows from the proof of Theorem 3.20.

3.2 Asymptotic Formulas for the Eigenvalues in the Resonance Domain

We assume that γ /∈Vek(ρ
α1) for k = 1,2, . . . ,d where e1 = ( π

a1
,0, . . . ,0),

e2 = (0, π

a2
,0, . . . ,0), . . . ,ed = (0, . . . ,0, π

ad
).

Let | γ |2 be a resonance eigenvalue of the operator L(0), that is, γ ∈ (
k⋂

i=1
Vγi(ρ

αk))\

Ek+1, k = 1,2, . . . ,d−1, γi 6= e j for i = 1,2, . . . ,k and j = 1,2, . . . ,d−1.

We define the following sets

Bk(γ1,γ2, . . . ,γk) = {b : b =
k

∑
i=1

niγi,ni ∈ Z, | b |< 1
2

ρ
1
2 αk+1},

Bk(γ) = γ+Bk(γ1,γ2, . . . ,γk) = {γ+b : b ∈ Bk(γ1,γ2, . . . ,γk)},

Bk(γ, p1) = Bk(γ)+Γ(p1ρ
α).

Let hτ, τ = 1,2, . . . ,bk denote the vectors of Bk(γ, p1), bk the number of the vectors
in Bk(γ, p1). We define the mbk×mbk matrix C = C(γ,γ1, . . . ,γk) by

C =


| h1 |2 I Vh1−h2 · · · Vh1−hbk

Vh2−h1 | h2 |2 I · · · Vh2−hbk
...

Vhbk−h1 Vhbk−h2 · · · | hbk |2 I

 , (3.81)
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where Vhτ−hξ
, τ,ξ = 1,2, . . . ,bk are the m×m matrices defined by

Vhτ−hξ
=


v11hτ−hξ

v12hτ−hξ
· · · v1mhτ−hξ

v21hτ−hξ
v22hτ−hξ

· · · v2mhτ−hξ

...
vm1hτ−hξ

vm2hτ−hξ
· · · vmmhτ−hξ

 . (3.82)

The analogues of the following lemma can be found in Karakılıç (2004)(see
Theorem 3.1.1.)

Lemma 3.22. Let | γ |2 be a resonance eigenvalue of the operator L(0), that is, γ ∈

(
k⋂

i=1
Vγi(ρ

αk))\Ek+1, k = 1,2, . . . ,d−1 where | γ |∼ ρ, ΛN an eigenvalue of the operator

L(V ) satisfying

| ΛN− | γ |2|<
1
2

ρ
α1. (3.83)

Then

| ΛN− | hτ− γ′− γ1− γ2−·· ·− γs |2|>
1
6

ρ
αk+1 (3.84)

where hτ ∈ Bk(γ, p1), hτ− γ′ /∈ Bk(γ, p1), γ′ ∈ Γ(ρα), γi ∈ Γ(ρα), i = 1,2, . . . ,s,

s = 0,1, . . . , p1−1.

Proof. The relations hτ ∈ Bk(γ, p1), hτ− γ′ /∈ Bk(γ, p1), 2p1 > p and | γ′ |, | γ1 |, . . . ,
| γp1−1 |< ρα imply that

as = hτ− γ′− γ1− γ2− . . .− γs ∈ Bk(γ, p1)\Bk(γ)

for s = 0,1, . . . , p1−1. To prove the inequality (3.84), we use the decomposition

as = γ+b+a,

where b ∈ Bk and a ∈ Γ(p1ρα). So | b |< 1
2ρ

1
2 αk+1 and | a |< p1ρα. First we show that

|| γ+b+a |2 − | γ |2|> 1
5

ρ
αk+1. (3.85)

To prove the inequality (3.85), we consider the following cases.
Case1: If a ∈ P = span{γ1,γ2, . . . ,γk}, then a+b ∈ P and γ+b+a /∈ Bk(γ) imply that
a+b ∈ P\Bk, that is,

| a+b |≥ 1
2

ρ
1
2 αk+1.



40

Now, if we consider the orthogonal decomposition of γ as γ = x + v where v ∈ P and
x⊥v, then by using x ·a = x ·b = x · v = 0, | a+b |≥ 1

2ρ
1
2 αk+1 and | v |< ρα1 , we get

|| γ+b+a |2 − | γ |2| = || x+ v+b+a |2 − | x+ v |2|

= || v+b+a |2 − | v |2|> 1
5

ρ
1
2 αk+1.

Thus for Case1 the inequality (3.85) is true.

Case2: If a /∈ P, then by definition of γ ∈ (
k⋂

i=1
Vγi(ρ

αk))\Ek+1, we have

|| γ+a |2 − | γ |2|> ρ
αk+1. (3.86)

Consider the difference

|| γ+b+a |2 − | γ |2|=|| γ+b+a |2 − | γ+b |2 + | γ+b |2 − | γ |2|,

where

d1 =| γ+b+a |2 − | γ+b |2, d2 =| γ+b |2 − | γ |2.

Since
d1 =| γ+b+a |2 − | γ+b |2=| γ+a |2 − | γ |2 +2a ·b,

by the inequality (3.86) and | 2a ·b |≤ 2 | a || b |< p1ραρ
1
2 αk+1 < 1

3ραk+1 ,

| d1 |>
2
3

ρ
αk+1.

On the other hand, using | γ+b+a |2 − | γ |2=| v+b+a |2 − | v |2, and taking a = 0,
we get

d2 =| γ+b |2 − | γ |2=| v+b |2 − | v |2= (| v+b | − | v |)(| v+b |+ | v |)

from which it follows that
| d2 |<

1
3

ρ
αk+1.

Then
|| d1 | − | d2 ||>

1
5

ρ
αk+1 .

So in any case the inequality (3.85) is true. Therefore, the inequalities (3.83) and (3.85)
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imply that

| ΛN− | γ+b+a |2|=| ΛN− | γ |2 − | γ+b+a |2 + | γ |2|> 1
6

ρ
αk+1.

Theorem 3.23. Let | γ |2 be a resonance eigenvalue of the operator L(0), that is, γ ∈

(
k⋂

i=1
Vγi(ρ

αk)) \Ek+1, k = 1,2, . . . ,d− 1 where | γ |∼ ρ, λi an eigenvalue of the matrix

V0, and ΛN an eigenvalue of the operator L(V ) satisfying

| ΛN− | γ |2|<
1
2

ρ
α1 (3.87)

and

|< Φγ, j,ΨN >|> c17ρ
−cα. (3.88)

Then there exists an eigenvalue ηs(γ), s = 1,2, . . . ,mbk of the matrix C such that

ΛN = λi +ηs(γ)+O(ρ−(p−c− d
4 3d)α).

Proof. We give the proof by using the same consideration as in Karakılıc. (2004). The
binding formula (2.25) for any hτ ∈ Bk(γ, p1), τ = 1,2, . . . ,bk and the decomposition
(3.40) give

(ΛN− | hτ |2) < ΨN ,Φhτ, j >=
m

∑
i=1

∑
γ′∈Γ+0(ρα)

vi jγ′ < ΨN ,Φhτ−γ′,i > +O(ρ−pα). (3.89)

We first show that

O(ρ−pα) =
m

∑
i=1

∑
γ′∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vi jγ′ < ΨN ,Φhτ−γ′,i > (3.90)

for any j = 1,2, . . . ,m. Here we remark that γ′ 6= 0. If it were the case, then we would
have from hτ− γ′ /∈ Bk(γ, p1) that hτ /∈ Bk(γ, p1) which is a contradiction.
Since ΛN satisfies the inequality (3.87), by Lemma 3.22, we have | ΛN− | hτ− γ′ |2|>
1
6ραk+1 . Using this and the decomposition (3.89) for hτ− γ′ /∈ Bk(γ, p1), it follows that
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m
∑

i=1
∑

γ′∈Γ(ρα)
hτ−γ′/∈Bk(γ,p1)

vi jγ′ < ΨN ,Φhτ−γ′,i >

=
m

∑
i=1

∑
γ′∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vi jγ′
ΛN− | hτ− γ′ |2

m

∑
i1=1

∑
γ1∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vi1iγ1 < ΨN ,Φhτ−γ′−γ1,i1 >

+ O(ρ−pα).

In this manner, iterating p1 times, we get

m
∑

i=1
∑

γ′∈Γ(ρα)
hτ−γ′/∈Bk(γ,p1)

vi jγ′ < ΨN ,Φhτ−γ′,i >

=
m

∑
i,i1,i2,...,ip1=1

∑
γ′,γ1,γ2,...,γp1∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vi jγ′vi1iγ1 . . .vip1 ip1−1γp1

(ΛN− | hτ− γ′ |2)(ΛN− | hτ− γ′− γ1 |2) . . .(ΛN− | hτ− γ′− γ1−·· ·− γp1−1 |2)
< ΨN ,Φhτ−γ′−γ1−···−γp1 ,ip1

> +O(ρ−pα).

Taking norm of both sides of the last equality, using Lemma 3.22, the relation (2.35)
and the fact that p1αk+1 ≥ p1α2 > pα, we obtain

|
m
∑

i=1
∑

γ′∈Γ(ρα)
hτ−γ′/∈Bk(γ,p1)

vi jγ′ < ΨN ,Φhτ−γ′,i >|

≤
m

∑
i,i1,i2,...,ip1=1

∑
γ′,γ1,γ2,...,γp1∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

| vi jγ′ || vi1iγ1 | . . . | vip1 ip1−1γp1
|

| ΛN− | hτ− γ′ |2|| ΛN− | hτ− γ′− γ1 |2| . . . | ΛN− | hτ− γ′− γ1−·· ·− γp1−1 |2|
|< ΨN ,Φhτ−γ′−γ1−···−γp1 ,ip1

>|+O(ρ−pα)

≤ (
1
6

ρ
αk+1)−p1 ∑

γ′,γ1,γ2,...,γp1∈Γ(ρα)
hτ−γ′/∈Bk(γ,p1)

| vi jγ′ || vi1iγ1 | . . . | vip1 ip1−1γp1
|

|< ΨN ,Φhτ−γ′−γ1−···−γp1 ,ip1
>|+O(ρ−pα)
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≤ (
1
6

ρ
αk+1)−p1

m

∑
i,i1,i2,...,ip1=1

Mi jMi1i . . .Mip1ip1−1
|< ΨN ,Φhτ−γ′−γ1−···−γp1 ,ip1

>|

+ O(ρ−pα)

= O(ρ−pα).

That is, the estimation (3.90) holds. Therefore, the decomposition (3.89) becomes

(ΛN− | hτ |2) < ΨN ,Φhτ, j >=
m

∑
i=1

∑
γ′∈Γ+0(ρα)

hτ−γ′∈Bk(γ,p1)

vi jγ′ < ΨN ,Φhτ−γ′,i > +O(ρ−pα). (3.91)

Since hτ− γ′ ∈ Bk(γ, p1), using the notation hξ = hτ− γ′, the decomposition (3.91) can
be written as

(ΛN− | hτ |2) < ΨN ,Φhτ, j >=
m

∑
i=1

∑
hτ−hξ∈Γ+0(ρα)

vi jhτ−hξ
< ΨN ,Φhξ,i > +O(ρ−pα).

Isolating the terms where hτ−hξ = 0, we get

(ΛN− | hτ |2) < ΨN ,Φhτ, j > =
m

∑
i=1

vi j0 < ΨN ,Φhτ,i >

+
m

∑
i=1

∑
hτ−hξ∈Γ(ρα)

vi jhτ−hξ
< ΨN ,Φhξ,i >

+ O(ρ−pα). (3.92)

Considering the decomposition (3.92) for an arbitrary hτ ∈ Bk(γ, p1), τ = 1,2, . . . ,bk

and for all j = 1,2, . . . ,m, we get

(ΛN− | hτ |2)IA(N,hτ) = V0A(N,hτ)+
bk

∑
ξ=1
ξ6=τ

Vhτ−hξ
A(N,hξ)+O(ρ−pα), (3.93)

or

[(ΛN− | hτ |2)I−V0]A(N,hτ) =
bk

∑
ξ=1
ξ6=τ

Vhτ−hξ
A(N,hξ)+O(ρ−pα), (3.94)

where I is an m×m identity matrix, Vhτ−hξ
is given by (3.82), O(ρ−pα) is an m× 1

vector and A(N,hξ) is the m×1 vector

A(N,hξ) = (< ΨN ,Φhξ,1 >,< ΨN ,Φhξ,2 >,. . . ,< ΨN ,Φhξ,m >) (3.95)

for any ξ = 1,2, . . . ,bk.
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Let λi be an eigenvalue of the matrix V0 and ωi the corresponding normalized
eigenvector. Multiplying both sides of the decomposition (3.94) by ωi, we get

[(ΛN− | hτ |2)I−V0]A(N,hτ) ·ωi =
bk

∑
ξ=1
ξ6=τ

Vhτ−hξ
A(N,hξ) ·ωi +O(ρ−pα). (3.96)

For the left hand side of this last equality we have

[(ΛN− | hτ |2)I−V0]A(N,hτ) ·ωi = A(N,hτ) · [(ΛN− | hτ |2)I−V0]ωi

= A(N,hτ) · (ΛN− | hτ |2 −λi)ωi

= (ΛN− | hτ |2 −λi)A(N,hτ) ·ωi. (3.97)

Letting λN,τ,i = ΛN− | hτ |2 −λi, by the equation (3.97), we have from the
decomposition (3.96) that

[λN,τ,iIA(N,hτ)−
bk

∑
ξ=1
ξ6=τ

Vhτ−hξ
A(N,hξ)] ·ωi = O(ρ−pα). (3.98)

Since the set of normalized eigenvectors {ωi}i=1,2,...,m of the matrix V0 forms a basis

for Rm, for any vector λN,τ,iIA(N,hτ)−
bk
∑

ξ=1
ξ6=τ

Vhτ−hξ
A(N,hξ), τ = 1,2, . . . ,bk in Rm by

using Parseval’s relation and the equation (3.98), we have

| λN,τ,iIA(N,hτ)−
bk
∑

ξ=1
ξ6=τ

Vhτ−hξ
A(N,hξ) |2

=
m

∑
i=1
| [λN,τ,iIA(N,hτ)−

bk

∑
ξ=1
ξ6=τ

Vhτ−hξ
A(N,hξ)] ·ωi |2=

m

∑
i=1
| O(ρ−pα) |2 . (3.99)

It follows from (3.99) that

λN,τ,iIA(N,hτ)−
bk

∑
ξ=1
ξ6=τ

Vhτ−hξ
A(N,hξ) = O(ρ−pα). (3.100)

Now, considering the equation (3.100) for all hτ ∈ Bk(γ, p1), τ = 1,2, . . . ,bk, we obtain
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the system
λN,1,iI −Vh1−h2 · · · −Vh1−hbk

−Vh2−h1 λN,2,iI · · · −Vh2−hbk
...

−Vhbk−h1 −Vhbk−h2 · · · λN,bk,iI




A(N,h1)
A(N,h2)

...
A(N,hbk)

=


O(ρ−pα)
O(ρ−pα)

...
O(ρ−pα)

 . (3.101)

We may write the system (3.101) as

[(ΛN−λi)I−C]A(N,h1,h2, . . . ,hbk) = O(ρ−pα), (3.102)

where I is an mbk×mbk identity matrix, C is given by (3.81), A(N,h1,h2, . . . ,hbk) is
the mbk×1 vector

A(N,h1,h2, . . . ,hbk) = (A(N,h1),A(N,h2), . . . ,A(N,hbk))

and O(ρ−pα) is an mbk× 1 vector. Multiplying both sides of the equation (3.102) by
[(ΛN−λi)I−C]−1, and taking norm of both sides, we get

| A(N,h1,h2, . . . ,hbk) |≤‖ [(ΛN−λi)I−C]−1 ‖| O(ρ−pα) | . (3.103)

By the estimation (3.88), together with bk = O(ρ
d
2 3dα) we have the estimations

| A(N,h1,h2, . . . ,hbk) |> c18ρ−cα, | O(ρ−pα) |= O(ρ−(p− d
4 3d)α).

Thus it follows from the inequality (3.103) and the last estimations that

c18ρ
−cα ≤‖ [(ΛN−λi)I−C]−1 ‖ c19ρ

−(p− d
4 3d)α,

min
s=1,2,...,mbk

| ΛN−λi−ηs(γ) |≤ c20ρ
−(p−c− d

4 3d)α,

ΛN = λi +ηs(γ)+O(ρ−(p−c− d
4 3d)α).

Theorem 3.24. Let | γ |2 be a resonance eigenvalue of the operator L(0), that is, γ ∈

(
k⋂

i=1
Vγi(ρ

αk)) \Ek+1, k = 1,2, . . . ,d− 1 where | γ |∼ ρ, λi an eigenvalue of the matrix

V0, ηs(γ) an eigenvalue of the matrix C such that | ηs(γ)− | γ |2|< 3
8ρα1 . Then there is
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an eigenvalue ΛN of the operator L(V ) satisfying

ΛN = λi +ηs(γ)+O(ρ−pα+ d
4 3dα+ d−1

2 ), (3.104)

where ηs(γ), s = 1,2, . . . ,mbk is an eigenvalue of the matrix C which is given by (3.81).

Proof. We prove this theorem by using the same consideration as in Karakılıc. (2004).
By the general perturbation theory, there is an eigenvalue ΛN of the operator L(V ) such
that | ΛN− | γ |2|< 1

2ρ2α1 holds. Thus one can use the system (3.102)

[(ΛN−λi)I−C]A(N,h1,h2, . . . ,hbk) = O(ρ−pα) (3.105)

of Theorem 3.23. Let ηs, s = 1,2, . . . ,mbk be an eigenvalue of the matrix C and θs =
(θ1

s ,θ
2
s , . . . ,θ

bk
s )mbk×1 the corresponding normalized eigenvector, | θs |= 1, where θτ

s =
(θτ1

s ,θτ2
s , . . . ,θτm

s )m×1, τ = 1,2, . . . ,bk. Multiplying the equation (3.105) by θs, we get

[(ΛN−λi)I−C]A(N,h1,h2, . . . ,hbk) ·θs = O(ρ−pα) ·θs. (3.106)

From the left hand side of the equation (3.106) we get

[(ΛN−λi)I−C]A(N,h1,h2, . . . ,hbk) ·θs

= A(N,h1,h2, . . . ,hbk) · [(ΛN−λi)I−C]θs

= A(N,h1,h2, . . . ,hbk) · [(ΛN−λi)Iθs−ηsθs]

= A(N,h1,h2, . . . ,hbk) · (ΛN−λi−ηs)θs

= (ΛN−λi−ηs)A(N,h1,h2, . . . ,hbk) ·θs. (3.107)

Using the equation (3.107) in the equation (3.106), and taking norm of both sides, we
get

| ΛN−λi−ηs || A(N,h1,h2, . . . ,hbk) ·θs |=| O(ρ−pα) ·θs | . (3.108)

From the right hand side of the equation (3.108) by using bk = O(ρ
d
2 3dα), we have

| O(ρ−pα) ·θs |≤| O(ρ−pα) || θs |=
√

mbk(ρ−pα)2 =
√

mbkρ
−pα = O(ρ−pα+ d

4 3dα).
(3.109)
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The equation (3.108) and the estimation (3.109) give

| ΛN−λi−ηs || A(N,h1,h2, . . . ,hbk) ·θs |= O(ρ−pα+ d
4 3dα). (3.110)

Now, we estimate | A(N,h1,h2, . . . ,hbk) ·θs |. Since

| A(N,h1,h2, . . . ,hbk) ·θs |=|
bk

∑
τ=1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|=|< ΨN ,

bk

∑
τ=1

m

∑
i=1

θ
τi
s Φhτ,i >|,

(3.111)
to estimate | A(N,h1,h2, . . . ,hbk) ·θs |, we consider the Parseval’s relation

1 = ‖
bk

∑
τ=1

m

∑
i=1

θ
τi
s Φhτ,i ‖

2=
∞

∑
N=1
|< ΨN ,

bk

∑
τ=1

m

∑
i=1

θ
τi
s Φhτ,i >|2

=
∞

∑
N=1
|

bk

∑
τ=1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2

= ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

|
bk

∑
τ=1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2

+ ∑
N:|ΛN−|γ|2|< 1

2 ρ2α1

|
bk

∑
τ=1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2 . (3.112)

We give an estimation for the first summation in the last expression.

∑

N:|ΛN−|γ|2|≥ 1
2 ρ2α1

|
bk
∑

τ=1

m
∑

i=1
θτi

s < ΨN ,Φhτ,i >|2

= ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

| ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >

+ ∑
τ:|ηs−|hτ|2|≥ 1

8 ρα1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2

< 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

| ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2

+ 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

| ∑
τ:|ηs−|hτ|2|≥ 1

8 ρα1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2 . (3.113)

To estimate the term 2 ∑

N:|ΛN−|γ|2|≥ 1
2 ρ2α1

| ∑

τ:|ηs−|hτ|2|≥ 1
8 ρα1

m
∑

i=1
θτi

s < ΨN ,Φhτ,i >|2 in the
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inequality (3.113), we consider the matrix C as C = A+B where

A =


| h1 |2 I 0

. . .

0 | hbk |2 I

 , B =


0 Vh1−h2 · · · Vh1−hbk

Vh2−h1 0 · · · Vh2−hbk
... . . . ...

Vhbk−h1 Vhbk−h2 · · · 0

 .

(3.114)
Let {eτ,i}τ=1,2,...,bk,i=1,2,...,m be a set of orthonormal vectors such that eτ,i · eξ,k = 1 if
τ = ξ, i = k, eτ,i · eξ,k = 0 otherwise. Multiplying Cθs = (A+B)θs by eτ,i, we get

Cθs · eτ,i = (ηsθs) · eτ,i = ηs(θs · eτ,i) = ηsθ
τi
s ,

and

(A+B)θs · eτ,i = θs · (A+B)eτ,i = θs ·Aeτ,i +θs ·Beτ,i = θ
τi
s | hτ |2 +θs ·Beτ,i.

From the equality of the last two equations we have

(ηs− | hτ |2)θτi
s = θs ·Beτ,i (3.115)

for any τ = 1,2, . . . ,bk, i = 1,2, . . . ,m.
Using Bessel’s inequality, Parseval’s relation, orthogonality of the functions Φhτ,i(x),
τ = 1,2, . . . ,bk, i = 1,2, . . . ,m, the binding formula (3.115) and ‖ B ‖≤M, we have

2 ∑

N:|ΛN−|γ|2|≥ 1
2 ρ2α1

| ∑

τ:|ηs−|hτ|2|≥ 1
8 ρα1

m
∑

i=1
θτi

s < ΨN ,Φhτ,i >|2

= 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

|< ΨN , ∑
τ:|ηs−|hτ|2|≥ 1

8 ρα1

m

∑
i=1

θ
τi
s Φhτ,i >|2

≤ 2
∞

∑
N=1
|< ΨN , ∑

τ:|ηs−|hτ|2|≥ 1
8 ρα1

m

∑
i=1

θ
τi
s Φhτ,i >|2

= 2 ‖ ∑
τ:|ηs−|hτ|2|≥ 1

8 ρα1

m

∑
i=1

θ
τi
s Φhτ,i ‖

2

= 2 ∑
τ:|ηs−|hτ|2|≥ 1

8 ρα1

m

∑
i=1
| θτi

s |2‖Φhτ,i ‖
2
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= 2 ∑
τ:|ηs−|hτ|2|≥ 1

8 ρα1

m

∑
i=1
| θτi

s |2

= 2 ∑
τ:|ηs−|hτ|2|≥ 1

8 ρα1

m

∑
i=1

| θs ·Beτ,i |2

| ηs− | hτ |2|2

≤ 2(
1
8

ρ
α1)−2

∑
τ:|ηs−|hτ|2|≥ 1

8 ρα1

m

∑
i=1
| θs |2‖ B ‖2| eτ,i |2

= O(ρ−2α1). (3.116)

Now, we estimate the term 2 ∑

N:|ΛN−|γ|2|≥ 1
2 ρ2α1

| ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m
∑

i=1
θτi

s < ΨN ,Φhτ,i >|2 in

the inequality (3.113). The assumption | ηs− | γ |2|< 3
8ρα1 of the theorem together

with | ΛN− | γ |2|≥ 1
2ρ2α1 and | ηs− | hτ |2|< 1

8ρα1 imply that | ΛN− | hτ |2|> 1
2ρα1 and

|| γ |2 − | hτ |2|< 1
2ρα1 . So one has

1
ΛN− | hτ |2

=
1

ΛN− | γ |2
∞

∑
n=0

(
| hτ |2 − | γ |2

ΛN− | γ |2
)n

=
1

ΛN− | γ |2
{

k

∑
n=0

(
| hτ |2 − | γ |2

ΛN− | γ |2
)n +O(ρ−(k+1)α1)}. (3.117)

Using the binding formula (2.25) for any hτ ∈ Bk(γ, p1), | ΛN− | hτ |2|> 1
2ρα1 and the

decomposition (3.117), we have

2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

| ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2

= 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

| ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s

< ΨN ,V Φhτ,i >

ΛN− | hτ |2
|2

= 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

| ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θτi
s < ΨN ,V Φhτ,i >

ΛN− | γ |2

{
k

∑
n=0

(
| hτ |2 − | γ |2

ΛN− | γ |2
)n +O(ρ−(k+1)α1)} |2
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≤ 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

(k +1) | ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θτi
s < ΨN ,V Φhτ,i >

ΛN− | γ |2
|2

+ 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

(k +1) | ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θτi
s < ΨN ,V Φhτ,i >

ΛN− | γ |2
| hτ |2 − | γ |2

ΛN− | γ |2
|2

...

+ 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

(k +1) | ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θτi
s < ΨN ,V Φhτ,i >

ΛN− | γ |2
[
| hτ |2 − | γ |2

ΛN− | γ |2
]k |2

+ 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

(k +1) | ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θτi
s < ΨN ,V Φhτ,i >

ΛN− | γ |2
O(ρ−(k+1)α1) |2 .

We estimate

2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

(k +1) | ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s < ΨN ,V Φhτ,i >

(| hτ |2 − | γ |2)r

(ΛN− | γ |2)r+1 |
2,

where r = 0,1,2, . . . ,k and

2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

(k +1) | ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θτi
s < ΨN ,V Φhτ,i >

ΛN− | γ |2
O(ρ−(k+1)α1) |2 .

For an arbitrary r = 0,1,2, . . . ,k using Bessel’s inequality, triangle inequality, | θτi
s |≤ 1,

|| γ |2 − | hτ |2|< 1
2ρα1 and the relations (2.35), (2.36), we have

2 ∑

N:|ΛN−|γ|2|≥ 1
2 ρ2α1

(k +1) | ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m
∑

i=1
θτi

s < ΨN ,V Φhτ,i > (|hτ|2−|γ|2)r

(ΛN−|γ|2)r+1 |2

= 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

(k +1)
| ΛN− | γ |2|2(r+1)

| ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s < ΨN ,V Φhτ,i > (| hτ |2 − | γ |2)r |2

≤ 2(
1
2

ρ
2α1)−2(r+1)(k +1)

∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

|< ΨN , ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s (| hτ |2 − | γ |2)rV Φhτ,i >|2
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≤ 2(
1
2

ρ
2α1)−2(r+1)(k +1) ‖ ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m

∑
i=1

θ
τi
s (| hτ |2 − | γ |2)rV Φhτ,i ‖

2

≤ 2(
1
2

ρ
2α1)−2(r+1)(k +1)( ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m

∑
i=1
‖ θ

τi
s (| hτ |2 − | γ |2)rV Φhτ,i >‖)2

= 2(
1
2

ρ
2α1)−2(r+1)(k +1)( ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m

∑
i=1
| θτi

s ||| hτ |2 − | γ |2|r‖V Φhτ,i ‖)
2

≤ 2(
1
2

ρ
2α1)−2(r+1)(

1
2

ρ
α1)2r(k +1)( ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m

∑
i=1
‖V Φhτ,i ‖)

2.

Thus

O(ρ−4α1) =
k

∑
r=0

2 ∑
N:|ΛN−|γ|2|> 1

2 ρ2α1

(k +1)

| ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s < ΨN ,V Φhτ,i >

(| hτ |2 − | γ |2)r

(ΛN− | γ |2)r+1 |
2 .(3.118)

Similarly, we have

2 ∑

N:|ΛN−|γ|2|≥ 1
2 ρ2α1

(k +1) | ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m
∑

i=1

θτi
s <ΨN ,V Φhτ,i>

ΛN−|γ|2
O(ρ−(k+1)α1) |2

= 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

(k +1)
| ΛN− | γ |2|2

| ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s < ΨN ,V Φhτ,i > O(ρ−(k+1)α1) |2

≤ 2(
1
2

ρ
2α1)−2(k +1)

∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

|< ΨN , ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θ
τi
s O(ρ−(k+1)α1)V Φhτ,i >|2

≤ 2(
1
2

ρ
2α1)−2(k +1) ‖ ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m

∑
i=1

θ
τi
s O(ρ−(k+1)α1)V Φhτ,i ‖

2

≤ 2(
1
2

ρ
2α1)−2(k +1)( ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m

∑
i=1
‖ θ

τi
s O(ρ−(k+1)α1)V Φhτ,i >‖)2

≤ 2(
1
2

ρ
2α1)−2O(ρ−2(k+1)α1)(k +1)( ∑

τ:|ηs−|hτ|2|< 1
8 ρα1

m

∑
i=1
‖V Φhτ,i ‖)

2.
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Thus

O(ρ−8α1) = 2 ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

(k +1)

| ∑
τ:|ηs−|hτ|2|< 1

8 ρα1

m

∑
i=1

θτi
s < ΨN ,V Φhτ,i >

ΛN− | γ |2
O(ρ−(k+1)α1) |2 .(3.119)

By the inequality (3.113) and the estimations (3.116), (3.118) and (3.119), we have

O(ρ−2α1) = ∑
N:|ΛN−|γ|2|≥ 1

2 ρ2α1

|
bk

∑
τ=1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2 .

Therefore, from the decomposition (3.112) we have

1−O(ρ−2α1) = ∑
N:|ΛN−|γ|2|< 1

2 ρ2α1

|
bk

∑
τ=1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2 .

Since the number of indexes N satisfying | ΛN− | γ |2|< 1
2ρ2α1 is less then ρd−1, we

have

1−O(ρ−2α1)≤ ρ
d−1 |

bk

∑
τ=1

m

∑
i=1

θ
τi
s < ΨN ,Φhτ,i >|2

which implies together with the relation (3.111) that

| A(N,h1,h2, . . . ,hbk) ·θs |2≥
1−O(ρ−2α1)

ρd−1 . (3.120)

It follows from the equation (3.110) and the estimation (3.120) that

ΛN = λi +ηs +
O(ρ−pα+ d

4 3dα)

O(ρ−
d−1

2 )

from which we get the result.



CHAPTER FOUR
CONCLUSION

In this study, we consider the Schrödinger operator with a matrix potential V (x)
which is defined by the differential expression

LΦ =−∆Φ+V Φ (4.121)

and the Neumann boundary condition

∂Φ

∂n
|∂Q= 0, (4.122)

in Lm
2 (Q) where Q is the d dimensional rectangle Q = [0,a1]× [0,a2]× ·· · × [0,ad],

∂Q is the boundary of Q, m ≥ 2, d ≥ 2, ∆ is a diagonal m× m matrix whose
diagonal elements are the scalar Laplace operators ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ · · ·+ ∂2

∂x2
d
, x =

(x1,x2, . . . ,xd) ∈ Rd , V is the operator of multiplication by a real valued symmetric
matrix V (x) = (vi j(x)), i, j = 1,2, . . . ,m, vi j(x) ∈ L2(Q), that is, V T (x) = V (x).

We denote the operator defined by the differential expression (4.121) and
the boundary condition (4.122) by L(V ), the eigenvalues and the corresponding
eigenfunctions of the operator L(V ) by ΛN and ΨN , respectively.

We denote the operator defined by the differential expression (4.121) when
V (x) = 0 and the boundary condition (4.122) by L(0). The eigenvalues
and the corresponding eigenspaces of the operator L(0) are | γ |2 and Eγ =
span{Φγ,1(x),Φγ,2(x), . . . ,Φγ,m(x)}, respectively where γ∈ Γ+0

2 = {(n1π

a1
, n2π

a2
, · · · , ndπ

ad
) :

ni ∈ Z+ ⋃
{0}, i = 1,2, . . . ,d}, Φγ, j(x) = (0, . . . ,0,uγ(x),0, . . . ,0), j = 1,2, . . . ,m,

uγ(x) = cosγ1x1cosγ2x2 · · ·cosγdxd. We note that the non-zero component uγ(x) of
Φγ, j(x) stands in the jth component.

We denote the operator defined by the differential expression (4.121) when V (x) =
V0 where V0 =

∫
Q

V (x)dx and the boundary condition (4.122) by L(V0). Letting

λ1 ≤ λ2 ≤ ·· · ≤ λm denote the eigenvalues, counted with multiplicity, of the matrix
V0 and ω1,ω2, . . . ,ωm the corresponding normalized eigenvectors, the eigenvalues and
the corresponding eigenfunctions of the operator L(V0) are µγ,i =| γ |2 +λi, ϕγ,i(x) =

m
∑
j=1

ωi jΦγ, j(x).
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As in papers Veliev (1987)-Veliev (2008), we divide the eigenvalues | γ |2 of the
operator L(0) into two groups: Resonance and Non-Resonance eigenvalues. For this
aim, first we divide Rd into two domains: Resonance and Non-resonance domains.
In order to define these domains, let us introduce the following sets.
Let α < 1

d+20 , αk = 3kα, k = 1,2, . . . ,d−1, ρ a large parameter and

Vb(ρα1)≡ {x ∈ Rd : || x |2 − | x+b |2|< ρα1},

E1(ρα1, p)≡
⋃

b∈Γ(pρα)
Vb(ρα1),

U(ρα1, p)≡ Rd \E1(ρα1, p),

Ek(ραk , p)≡
⋃

γ1,γ2,...,γk∈Γ(pρα)
(

k⋂
i=1

Vγi(ρ
αk)),

where Γ(pρα) ≡ {b ∈ Γ

2 : 0 <| b |< pρα}, the intersection
k⋂

i=1
Vγi(ρ

αk) in Ek is taken

over γ1,γ2, . . . ,γk which are linearly independent vectors and the length of γi is not
greater than the length of the other vectors in Γ

⋂
γiR. The set U(ρα1 , p) is said to

be a non-resonance domain, and the eigenvalue | γ |2 of the operator L(0) is called a
non-resonance eigenvalue if γ∈U(ρα1, p). The domains Vb(ρα1) for all b∈ Γ(pρα) are
called resonance domains, and the eigenvalue | γ |2 of the operator L(0) is a resonance
eigenvalue if γ ∈Vb(ρα1).

We have the following results in the non-resonance domain U(ρα1, p).

Theorem 4.25. Let | γ |2 be a non-resonance eigenvalue of the operator L(0) with

| γ |∼ ρ.

(a) For each eigenvalue λi, i = 1,2, . . . ,m of the matrix V0, there exists an eigenvalue

ΛN of the operator L(V ) satisfying

ΛN =| γ |2 +λi +O(ρ−α1). (4.123)

(b) For each eigenvalue ΛN of the operator L(V ) satisfying the inequality

| ΛN− | γ |2|<
1
2

ρ
α1, (4.124)
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there exists an eigenvalue λi of the matrix V0 satisfying the formula (4.123).

Corollary 4.26. (a) Let µγ,i be an eigenvalue of the operator L(V0) where γ∈U(ρα1, p)
with | γ |∼ ρ and i = 1,2, . . . ,m. Then there is an eigenvalue ΛN of the operator L(V )
satisfying

ΛN = µγ,i +O(ρ−α1). (4.125)

(b) For each eigenvalue ΛN of the operator L(V ) satisfying the inequality (4.124) there

is an eigenvalue µγ,i of the operator L(V0) satisfying the formula (4.125).

We define the following m×m matrices.

S(a, p1)≡
p1

∑
k=1

Sk(a),

where
Sk(a) = (sk

ji(a)), k = 1,2, . . . , p1, j, i = 1,2, . . . ,m,

sk
ji(a) =

m

∑
i1,i2,...,ik=1

∑
γ1,γ2,...,γk+1∈Γ+0(ρα)

γ1+γ2+···+γk+1=0

vi1 jγ1vi2i1γ2 ...viikγk+1

(a− | γ+ γ1 |2)...(a− | γ+ γ1 + · · ·+ γk |2)

and

F0 = 0, F1 = S1(| γ |2 +λs), Fj = S(| γ |2 +λs +‖Fj−1‖, j), j ≥ 2.

(4.126)

Theorem 4.27. Let | γ |2 be a non-resonance eigenvalue of the operator L(0) with

| γ |∼ ρ.

(a) For any eigenvalue λi, i = 1,2, . . . ,m of the matrix V0, there exits an eigenvalue ΛN

of the operator L(V ) satisfying the formula

ΛN =| γ |2 +λi +‖Fk−1‖+O(ρ−kα1), (4.127)

where Fk−1 is given by (4.126), k = 1,2, . . . , p− c.

(b) For any eigenvalue ΛN of the operator L(V ) satisfying the inequality (4.124), there

is an eigenvalue λi of the matrix V0 satisfying the formula (4.127).

Corollary 4.28. (a) Let µγ,i be an eigenvalue of the operator L(V0) where γ∈U(ρα1, p)
with | γ |∼ ρ and i = 1,2, . . . ,m. Then there is an eigenvalue ΛN of the operator L(V )
satisfying

ΛN = µγ,i +‖Fk−1‖+O(ρ−kα1), (4.128)
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where Fk−1 is given by (3.69), k = 1,2, . . . , p− c.

(b) For each eigenvalue ΛN of the operator L(V ) satisfying the inequality (4.124) there

is an eigenvalue µγ,i of the operator L(V0) satisfying the formula (4.128).

We have the following results in the resonance domain (
k⋂

i=1
Vγi(ρ

αk)) \ Ek+1,

k = 1,2, . . . ,d − 1, γi 6= e j for i = 1,2, . . . ,k and j = 1,2, . . . ,d − 1 where e j =
(0, . . . ,0, π

a j
,0, . . . ,0) for j = 1,2, . . . ,d−1.

We define the mbk×mbk matrix C = C(γ,γ1, . . . ,γk) by

C =


| h1 |2 I Vh1−h2 · · · Vh1−hbk

Vh2−h1 | h2 |2 I · · · Vh2−hbk
...

Vhbk−h1 Vhbk−h2 · · · | hbk |2 I

 , (4.129)

where Vhτ−hξ
, τ,ξ = 1,2, . . . ,bk are the m×m matrices defined by

Vhτ−hξ
=


v11hτ−hξ

v12hτ−hξ
· · · v1mhτ−hξ

v21hτ−hξ
v22hτ−hξ

· · · v2mhτ−hξ

...
vm1hτ−hξ

vm2hτ−hξ
· · · vmmhτ−hξ

 , (4.130)

hτ, τ = 1,2, . . . ,bk are the vectors of the set Bk(γ, p1), bk is the number of the vectors in
Bk(γ, p1). The set Bk(γ, p1) is defined by Bk(γ, p1) = Bk(γ)+ Γ(p1ρα) where Bk(γ) =

γ+Bk(γ1,γ2, . . . ,γk), Bk(γ1,γ2, . . . ,γk) = {b : b =
k
∑

i=1
niγi,ni ∈ Z, | b |< 1

2ρ
1
2 αk+1}.

Theorem 4.29. Let | γ |2 be a resonance eigenvalue of the operator L(0), that is, γ ∈

(
k⋂

i=1
Vγi(ρ

αk)) \Ek+1, k = 1,2, . . . ,d− 1 where | γ |∼ ρ, λi an eigenvalue of the matrix

V0, and ΛN an eigenvalue of the operator L(V ) satisfying

| ΛN− | γ |2|<
1
2

ρ
α1 (4.131)

and

|< Φγ, j,ΨN >|> c17ρ
−cα. (4.132)

Then there exists an eigenvalue ηs(γ), s = 1,2, . . . ,mbk of the matrix C such that

ΛN = λi +ηs(γ)+O(ρ−(p−c− d
4 3d)α).
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Theorem 4.30. Let | γ |2 be a resonance eigenvalue of the operator L(0), that is, γ ∈

(
k⋂

i=1
Vγi(ρ

αk)) \Ek+1, k = 1,2, . . . ,d− 1 where | γ |∼ ρ, λi an eigenvalue of the matrix

V0, ηs(γ) an eigenvalue of the matrix C such that | ηs(γ)− | γ |2|< 3
8ρα1 . Then there is

an eigenvalue ΛN of the operator L(V ) satisfying

ΛN = λi +ηs(γ)+O(ρ−pα+ d
4 3dα+ d−1

2 ), (4.133)

where ηs(γ), s = 1,2, . . . ,mbk is an eigenvalue of the matrix C which is given by (4.129).
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Cos.kan, D., & Karakılıç, S. (2009). On the Spectral Properties of the Schrödinger
Operator with a Matrix Potential. Adv. Stud. Contemp. Math., 19(2), 249-259.

Eastham, M. S. P. (1973). The Spectral Theory of Periodic Differential Equations.
Scottish Academic Press, Edinburg.

Feldman, J., Knoerrer, H., & Trubowitz, E. (1990). The Perturbatively Stable Spectrum
of the Periodic Schrödinger Operator. Invent. Math., 100, 259-300.

Feldman, J., Knoerrer, H., & Trubowitz, E. (1991). The Perturbatively Unstable
Spectrum of the Periodic Schrödinger Operator. Comment. Math. Helv., 66, 557-579.

Friedlanger, L. (1990). On the Spectrum for the Periodic Problem for the Schrödinger
Operator. Comm. Partial Differential Equations, 15, 1631-1647.

Hald, O. H., & McLaughlin, J.R. (1996). Inverse Nodal Problems: Finding the
Potential from Nodal Lines. Mem. Amer. Math. Soc., 572, 119, 0075-9266.

Horn, R. A., & Johnson, C.R. (1985). Matrix Analysis. Cambridge: Cambridge
University Press.
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