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A NOVEL MICROSCOPIC MODELLING OF DISORDER EFFECTS
WITHIN THE NON LINEAR SCREENING THEORY IN THE QUANTIZED

HALL REGIME

ABSTRACT

In this thesis, we studied the effects of disorder on the integer quantized Hall ef-
fect within the screening theory, systematically. The disorder potential is analyzed
considering the range of the potential fluctuations. Short range part of the single
impurity potential is used to define the conductivity tensor elements within the self-
consistent Born approximation, whereas the long range part is treated self-consistently
at the Hartree level. Briefly, we discussed the extend of the quantized widths Hall
plateaus considering the mobility of the wafer and the width of the sample, by re-
formulating the Ohms law at low temperatures and high magnetic fields.

In the second part of the thesis, discusses a systematic explanation to the unusual
non-monotonic behavior of the Hall resistance observed in two-dimensional electron
systems. In the calculations used a semi analytical model based on the interaction
theory of the integer quantized Hall effect to investigate the existence of the anoma-
lous, i.e. overshoot, Hall resistance. The observation of the overshoot resistance at
low magnetic-field edge of the plateaus is elucidated by means of overlapping evanes-
cent incompressible strips, formed due to strong magnetic fields and interactions. The
effects of the sample width, depletion length, disorder strength and magnetic field on
the overshoot peaks are investigated in detail.

Keywords: Quantum Hall effect, Disorder, Thomas-Fermi Approximation.
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QUANTİZE HALL BÖLGESİNDE DOĞRUSAL OLMAYAN PERDELEME
TEORİSİ İLE YAPI BOZUKLUKLARININ MİKROSKOBİK

MODELLENMESİ

ÖZ

Bu tezde, tamsayılı kuantum Hall sistemlerinde perdeleme kuramı ile safsızlıkların
etkisi sistematik olarak incelendi. Safsızlık potansiyeli potansiyel dalgalanmaların er-
imi analiz edildi. Safsızlık potansiyeli kısa erimli kısmı öz-uyumlu Born yaklaşım ile
iletkenlik tensörünü tanımlamak için kullanıldı. Uzun erimli kısmı göz önünde bulun-
durularak Hartree düzeyde öz-uyumlu olarak ele alındı. Kısaca, düşük sıcaklıklarda
ve yüksek manyetik alanlar Ohm kanunu yeniden formüle edilerek, örneğin mobilitesi
(hareketliliği) ve genişliği dikkate alınarak Kuantum Hall platosu tartışıldı.

Tezin ikinci kısmında, iki boyutlu elektron sisteminde görülen alışılmamış mono-
tonik olmayan Hall direncindeki değişimi sistematik olarak tartışıldı. Hesaplamalarda,
Hall direncindeki bu anormal davranışı araştırmak için tamsayı Kuantum Hall etk-
isinide etkileşim teorisi üzerine dayalı bir yarı analitik model kullandı. Platoların ke-
narında düşük manyetik alanlarda görülen overshoot direnci, kuvvetli manyetik alan-
larda oluşan sıkıştırılamaz şeritin kalıntılarının üst üste gelmesiyle açıklandı. Over-
shoot, elektronsuz bölgenin uzunluğuna, örnek boyuna, safsızlıkların büyüklüğüne ve
manyetik alana bağlılığı detaylı olarak araştırıldı.

Anahtar sözcükler: Kuantum Hall Olayı, safsızlık, Thomas-Fermi Yaklaşımı.
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CHAPTER ONE

INTRODUCTION

In the past 40 years, semiconductor physics brought a revolution, both in science

and in everyday life. The advent of semiconducting devices and their use in integrated

circuits was a of a social revolution and clearly marked the brink of a new era. Tran-

sistors and diodes became indispensable as they made their way in to pretty much all

of every day life. The two-dimensional electron system (2DES) has proven to be a

remarkable system for studying fundamental physics at the second half of the 20th

century. The 2DES is the subject of the quantum Hall effect.

The quantum Hall effect (QHE) is a transport phenomena occurring in a two

dimensional electron or hole system (2DES or 2DHS) under a high magnetic field.

The value of the Hall resistance plateau in the integer quantum Hall effect (IQHE) is

h/e2i with i = 1,2, .... It was firstly discovered by Klaus von Klitzing in 1980, who

was honored by the Nobel prize in 1985.

The IQHE was soon followed by another unexpected, even more surprising find-

ing. When carrying out Hall measurements on even cleaner samples, higher fields, and

lower temperatures, Tsui, Störmer and Gossard (Tsui et al., 1982) discovered in 1982

that the Hall conductivity becomes quantized also at high magnetic fields or voltages

and acquires certain fractional value of e2/h, such as 1/3, 2/3, 2/5 and so on. Owing to

the logic, this effect was called fractional quantum Hall effect (FQHE) and rewarded

with a Nobel prize in 1998.

In this thesis, we investigated a self-contained calculation scheme to explain

the effect of disorder within the interaction theory of integer quantized Hall effect, the

observed resistance overshoot and local density of states under strong in-plane electric

and perpendicular magnetic fields. The thesis is structured as follows: In chapter 2,

we introduce the essential ingredients of the quantum Hall effect. In chapter 3, we

have shown the calculations of the disorder effect in a two-dimensional electron sys-

1
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tem. We have investigated evanescent incompressible strips as origin of the observed

Hall resistance overshoot. The self consistent calculation to investigate overshooting

has been done within Thomas-fermi approximation (TFA), in chapter 4. Finally, the

conclusions of the complete thesis are presented in chapter 5.



CHAPTER TWO

THE QUANTUM HALL EFFECT

2.1 The Classical Hall Effect

In 1879 Edwin Hall discovered that the application of a magnetic field B perpen-

dicular to a thin conducting slab through which a current flows produces a voltage

across the slab and perpendicular to the current (Fig. 2.1). This voltage is called the

Hall voltage VH and the effect itself is called the Hall effect. So basically the Hall

Figure 2.1 Schematic representation of the classical
Hall effect.

voltage is caused by the Lorentz force acting on the charges moving in the presence

of a magnetic field. In equilibrium the Lorentz force |FL| = qvDB is balanced by the

electric force qVH/Ly, where q is the carrier charge, vD is the drift velocity and Ly is

the width of the sample. So VH = vDBLy exhibits a linear dependence on the magnetic

field B. Writing the current I as the product of the drift velocity vD, the charge den-

sity nq and the cross-sectional area of the sample S = Lyd, we find the perpendicular

resistivity RH = VH/I to be

3
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RH =
B

qned
=

B
qNs

, (2.1.1)

where ne = nq/q is the number of carriers per unit volume and NS is the number of

carriers per unit surface area. Because the Hall resistance RH only depends on the

magnetic field B and the carrier density and not on other material parameters, the Hall

effect has become a standard tool of material characterization. The direct proportion-

ality of the Hall resistivity on the local magnetic field has allowed the development

of scanning Hall probe microscopes which allow for instance a detailed determination

of the magnetic field distribution near the vortices in type II superconductors. The

ordinary Hall effect can be fully explained by classical concepts, considering electron

transport in metals, like the Drude model. The fact that there is a quantum mechanical

follow-up in the form of the quantum Hall effect which adds totally new dimensions

to the study of low dimensional electronic systems, originally came as a complete

surprise in physics as a whole (Galistu, 2010).

2.2 The Integer Quantum Hall Effect

The discovery of the ordinary Hall effect and advent of the quantum Hall effect

(K. von Klitzing, 1980) are one century apart. The quantum Hall effect has already

led to three Nobel prizes in physics, one for the integral quantum Hall effect in 1985

and one for the fractional quantum Hall effect (Tsui , 1999; Laughlin, 1999) in 1998

and in 2010. These robust quantum phenomena on a macroscopic scale, Hall effect

manifest themselves in the transport parameters of the two dimensional electron gas

that are directly measurable, notably the longitudinal resistance (usually denoted by

Rxx or RL) and the Hall resistance (usually denoted by Rxy or RH). Still to date, more

than 30 years after the first discovery, our microscopic understanding of the quantum

Hall effect is far from being complete. The quantum Hall effect is standard observed

in strong perpendicular magnetic fields B and at low temperatures (T = 4K) and it is
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well known that the phenomenon only exists because of the breaking of translational

invariance by random impurities. Instead of the linear dependence of RH with varying

magnetic field B, it now turns out that the Hall resistance is quantized in units of h/e2

RH =
h

ie2 ≈
25812.8

i
kΩ (2.2.1)

Here, i is an integer, h denotes Plancks constant and e is the charge of the electron. It

is now generally accepted that the transitions between adjacent quantum Hall plateaus

are continuous quantum phase transitions that are characterized by a diverging length

scale usually termed the localization length of the electrons near the Fermi energy.

The longitudinal resistance RL shows a peak at the transitions but it vanishes at the

plateau values of RH (Galistu, 2010). The quantization phenomenon is extraordinarily

accurate. This precision led the International Committee for Weights and Measures

(CIPM) to adopt the quantum Hall effect as the new standard for electrical resistance

in 1988.

2.3 Two Dimensional Electron Gas in AlGaAs/GaAs Heterostructure

In the quantum Hall effect community, the two dimensional electron gas (2DEG)

is usually obtained at AlxGa1−xAs/GaAs heterostructures. Such III-V group materials

are preferred to the silicon MOSFET due to its higher electron mobility. A typical

layer sequence to create 2DES based on GaAs/AlGaAs is shown in Fig. 2.3a. By

using molecular beam epitaxy (MBE), the sharp interface between the AlGaAs and

GaAs is realized with perfect crystal quality. Due to a conduction band offset between

AlGaAs and GaAs, the AlGaAs layer doped with silicon atoms gives electrons to the

GaAs layer. These electrons are trapped at the heterojunction since Si+ ions create

an attractive triangular shaped confinement potential (Fig. 2.3b-c). The electrons in

this potential well can freely move in the plane parallel to the interface (x and y di-
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Figure 2.2 Quantum Hall effect measured on a sam-
ple with Hall bar geometry (top left corner). The Hall
voltage VH is measured between contacts 3 and 5 or
4 and 6. The longitudinal voltage VL is measured be-
tween contacts 3 and 4 or 5 and 6. Data taken on
an InGaAs/GaAs quantum well with electron density
ne = 2.71015 m−2 at T = 0.03K).

rections). Their eigenfunctions are plane waves with a wave vector k. In z direction a

quantization of the energy occurs due to the spatial confinement. The energy spectrum

in k-space is therefore described by

εi,kx,ky = εz
i +

h̄2k2
x

2m∗ +
h̄2k2

y

2m∗ , (2.3.1)

where µ∗ ≈ 0.067m0 is the effective electron mass in GaAs. The integer number

i = 1,2,3, .. labels the eigenenergy values in z direction. These quantized levels define

the subband minimum. At low temperature and for low electron density, all electrons

occupy the first subband a two-dimensional electrons system is formed (see Fig. 2.3c).

One specificity of 2DES, is its density of states at zero magnetic field which is constant
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Figure 2.3 Layer sequence of an GaAs/AlGaAs het-
erostructure. b) Bending of the conduction band minimum
and valence band maximum at the junction between the Al-
GaAs layer and the GaAs layer. A triangle-shaped potential
well is formed. c) At respectively low electron density, the
electrons at the interface create a 2DES. (Ahlswede, 2002a)

and equal to

D(ε) = D0 =
m∗
π h̄2 . (2.3.2)

It follows that the Fermi energy, given by

εF =
π h̄2

m∗ ns, (2.3.3)

linearly depends on the sheet electron density ns (Dahlem, 2008).
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2.4 Density of States for Zero Magnetic Field

A two dimensional electron system can be described as a Fermi gas. In such a

picture, the interaction between electrons is neglected. It can be assumed that the

electron mass is an anisotropic effective mass. This electron is free to move along the

x and y directions and a confining potential V (z) along the z direction. We deal with

no disorder system. A system is described by the Schöedinger equation and equal to

[− h̄2

2m∗∇2 +V (z)]ψ(x,y,z) = Eψ(x,y,z) (2.4.1)

where h̄ is the Planck constant, E is the energy and ψ(x,y,z) is the wave function. As

there is no potential along x and y, the motion of the electron along these directions

can be described by plane waves. The solutions of the one-dimensional Schröedinger

equation:

[− h̄2

2m∗
d2

dz2 +V (z)]un = εmum(z) (2.4.2)

where n = 0,1,2, ... is a positive integer and un(z) are the wave functions correspond-

ing to each quantum number n. If V (z) is an infinite square quantum well:

V (z) = {∞ f or|z| ≥ w/2,0 f or|z|< w/2} (2.4.3)

where w is the width of the quantum well, then εn written as

εn =
h̄2π2(n+1)2

2m∗w2 , (2.4.4)

The total energy of the electron in the 2D system given by
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En(k) =
h̄2k2

x
2m∗ +

h̄2k2
y

2m∗ + εn (2.4.5)

where k is the total wave vector, kx is the wave vector along the x direction and and ky

is the wave vector y direction. The quantized energy levels along the z direction are

well resolved and they are referred as electrical subbands. Once we know the allowed

energy levels in the 2D system, we can see how its possible to fill them with electrons.

We consider a system with a known density of electron n2D. The electron density is

given as

n2D =
∫ ∞

−∞
D(E) f (E,EF)dE (2.4.6)

where D(E) is the 2D density of states (DOS), f (E,EF) is the Fermi Dirac occupation

Figure 2.4 Density of states of a 2DES for (a) B = 0,
(b) B 6= 0(no spin).

function and EF is the Fermi energy. In 2D systems, the density of states (DOS) can

be decomposed into contributions from each subband. The DOS per unit area for each

electrical subbands has a constant value, and reads as
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D0 =
m∗

π h̄2 (2.4.7)

The total DOS then is given by

D(E) = D0 ∑
n

ϑ(E− εn) (2.4.8)

where ϑ(x) is step function. The total DOS is represented in Fig. 2.4(a) and is a

step-like function with jumps of D0 occurring when the energy reach the bottom of an

electrical subband εn.

2.5 Density of States for a Perpendicular Magnetic Field

If a perpendicular magnetic field B is applied the 2D systems, then the Schröedinger

equation writes as

[
1

2m∗ (p+ eA)2 +V (z)]ψ(x,y,z) = Eψ(x,y,z) (2.5.1)

where p is the canonical momentum operator and A is the magnetic vector potential.

This magnetic vector potential can be chosen as A = (0,Bx,0). The Schröedinger

equation can be reformulated

[− h̄2

2m∗∇2− ieh̄Bx
m∗

∂
∂y

+
(eBx)2

2m∗ +V (z)]ψ(x,y,z) = Eψ(x,y,z). (2.5.2)

One can see from this equation that B only couples to the motion of the electrons
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in the plane of the 2D system. Through the Lorentz force, the magnetic field drives

the electrons in a circular motion at a frequency ωc, known as cyclotron frequency and

written as

ωc =
|e|B
m∗ (2.5.3)

and with a cyclotron radius rc of

rc =

√
h̄

eB
(2.5.4)

where e is the electron charge. As the magnetic field only affects the motion of electron

within the plane of the 2D system and confining potential along the z direction has only

an additive contribution, the in-plane and transverse part can be solved separately. The

total energy for the electrons

En,r = εn + h̄ωc(r +1/2) (2.5.5)

where n, r = 0,1,2, ... are positive integers and εn are the transverse electrical sub-

bands given by Eq. (2.4.4). The electron energies obtained here and this energies

are independent of k. The electrons condensate into highly degenerate energy levels,

called Landau levels (LLs). For levels originating in the same transverse electrical

subband, the energy gap between two Landau level is h̄ωc while the degeneracy of

each level is 2(eB/h). The DOS of a 2DES subject to a magnetic field is then given by

D(E,B) = 2
eB
h ∑

n,r
δ (E−En,r) (2.5.6)

where δ (x) is the delta function. This DOS, represented in Fig. 2.4(b), is made of a

series of δ -like LLs. When B is swept up, the LLs move away from each other and are
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depopulated when passing through EF . The increase of B also induces a variation of

EF . Indeed, EF moves with the DOS in order to keep the number of electrons constant.

The evolution of EF as a function of B is shown in Fig. 2.4 for a perfect 2D systems

with δ -like LLs.

2.6 Electric-field-broadened Landau Levels

We describe a 2DES in the x-y-plane, subjected to a strong magnetic field B =

(0,0,B) = ∇×A(r) in z-direction, in an effective-field (e.g. Hartree) approximation

by a single-particle Hamiltonian

H =
1

2m∗
(

p+
e
c

A(r)
)2

+V (r), (2.6.1)

where the potential energy V (r) may contain the effect of externally applied static

electric fields, of lateral confinement, and of the average Coulomb interaction with

the other electrons of the 2DES. Once the eigen-functions ψα(r) of the Schrödinger

equation

(H−Eα)ψα(r) = 0 (2.6.2)

are known, one can calculate the electron density

n(r) = ∑
α

fα |ψα(r)|2, (2.6.3)

where the occupation probability fα of the energy eigenstate |α〉may depend on all the

quantum numbers of conserved quantities collected in α , i.e., two for orbital motion

and one for spin.
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2.6.1 Local Density of States (LDOS)

If in Eq. (2.6.3) the occupation probability of the state |α〉 depends only on its

energy eigenvalue, fα = f (Eα), it may be useful to express the density

n(r) =
∫

dE f (E)D(E;r) (2.6.4)

in terms of the “local density of states” (LDOS):

D(E;r) = ∑
α

δ (E−Eα)|ψα(r)|2. (2.6.5)

This formula for the LDOS is easily generalized to include the effect of quasi-

elastic scattering of the electrons by randomly distributed impurities, which leads to a

“collision broadening” of the δ -function in Eq. (2.6.5).

2.6.2 Translation Symmetry in y-direction

We assume that the system is translation-invariant in y-direction, but electric fields

in x-direction, E = (Ex,0,0) = ∇V (x)/e, will be allowed. The translation invariance in

y-direction suggests the Landau gauge A(r) = (0,xB,0) for the vector potential, so that

the single-electron Hamiltonian (2.6.1) becomes cyclic in y and allows the separation

ansatz

ψ(x,y) =
eiky
√

Ly
ϕk(x), (2.6.6)

where Ly (→ ∞) is the normalization length in y direction, and the quasi-continuous

momentum quantum number k assumes the values k = 2πny/Ly, for arbitrary integers

ny. With this ansatz the Schrödinger equation (2.6.2) reduces to the one-dimensional

form

HX ϕn,X(x) = En(X)ϕn,X(x), (2.6.7)
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with the effective Hamiltonian

HX =− h̄2

2m∗
d2

dx2 +
m∗

2
ω2

c (x−X)2 +V (x), (2.6.8)

where X = −`2k denotes the center of the parabolic potential, which describes the

effect of the magnetic field and leads for fixed X to a discrete energy spectrum En(X).

Here and in the following we neglect spin splitting and consider spin by a degeneracy

factor gs = 2. In general the eigenstates 〈r|n,X〉 carry current in y-direction, and the

expectation value of the velocity operator v̂y is given by (Hellmann-Feynman theorem)

〈n,X |v̂y|n,X〉=− 1
m∗ωc

dEn(X)
dX

[
≡ 1

h̄
dEn

dk

]
. (2.6.9)

Then the electron density, Eq. (2.6.3), depends only on x,

n(x) =
gs

2π`2 ∑
n

∫
dX fn,X |ϕn,X(x)|2, (2.6.10)

and is accompanied by a current density

jy(x) =
gse
2π h̄ ∑

n

∫
dX fn,X

dEn(X)
dX

|ϕn,X(x)|2. (2.6.11)

The LDOS, Eq. (2.6.5), reduces to

D(E;x)=
gs

2π`2 ∑
n

∫
dXδ (E−En(X)) |ϕn,X(x)|2. (2.6.12)

If the dependence of En(X) on X is smooth enough to allow for a Taylor expan-

sion around the center coordinate Xn,E defined by En(Xn,E) = E, the X-integral in

Eq. (2.6.12) can be evaluated:

D(E;x) =
gs

2π`2 ∑
n

|ϕn,Xn,E (x)|2
|E ′n(Xn,E)| (2.6.13)
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with E ′n(Xn,E) = dEn/dX(Xn,E). Before we illustrate some properties of this LDOS

with typical examples, we introduce a simple treatment of collision broadening.

2.6.3 Collision Broadening

2.6.3.1 Homogeneous 2DES without Electric Field

For V (x)≡ 0 we get the well known Landau problem with energy eigenvalues and

eigenfunctions

En = h̄ωc(n+
1
2
), ϕn,X(x) =

1√
`

un

(x−X
`

)
, (2.6.14)

respectively, where the normalized oscillator wavefunctions,

un(ζ ) =
( 1

2nn!
√

π

)1/2
Hn(ζ )e−ζ 2/2, (2.6.15)

are given by the Hermite polynomials Hn(ζ ) of order n (Abramowitz, 1964). Since

here the energy eigenvalues are independent of X , the X-integral in Eq. (2.6.12) re-

duces to the normalization integral of the eigenfunctions, and the LDOS reduces to

the well known Landau DOS of the homogeneous system

D(E;x) =
gs

2π`2 ∑
n

δ (E−En), (2.6.16)

which does not depend on the position x. To include the effect of collision broaden-

ing, one has to evaluate the self-energy operator. With weak assumptions (like rotation

symmetry) on the impurity potentials, one can show that Σ(z) and the Green opera-

tor G(z) are diagonal in the Landau representation, and that the matrix elements to-

gether with the eigen-energies En(X) do not depend on X (Scher, 1966; Keiter, 1967;

Bangert, 1968; Gerhardts, 1975-1). Then in Eq. (2.6.16) the singular δ (E −En) is

replaced by a spectral function An(E−En) of finite width. Depending on the approxi-
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mation scheme, several analytical forms for the spectral function have been obtained.

The self-consistent Born approximation (SCBA) (Gerhardts, 1975-1; Ando, 1982)

leads, if scattering between different Landau levels is neglegted, to a semi-elliptical

form,

ASCBA
n (E−En) =

1
πΓn

(
1−

[E−En

2Γn

]2) 1
2
, (2.6.17)

while other approaches yield a Gaussian form, (Gerhardts, 1975-2)

AG
n (E−En) =

1√
2π Γn

exp
(
− 1

2

[E−En

Γn

]2)
. (2.6.18)

In the limit of short-range impurity potentials the matrix elements of the self-

energy and thereby the Γn in Eqs. (2.6.17) and (2.6.18) become even independent of

the Landau quantum number n.

2.7 Exactly Solvable Models

2.7.1 Constant Electric Field

Simple analytic results are also obtained for the case of a constant in-plane electric

field E = (Ex,0,0), leading to the potential V (x) = exEx. Within classical mechanics,

this leads for an ideal 2DES to a constant Hall drift of the centers of the cyclotron

motion, which can be eliminated by a Galilei transformation to a coordinate system

moving with the drift velocity vD = cE×B/B2 = (0,−cEx/B,0). Since all electrons

suffer the same drift velocity, the current density j(x) = −evDn(x) is proportional

to the electron density n(x), and one obtains Ohm’s law j(x) = σ̂(x)E with the Hall

conductivity σyx(x) = (ec/B)n(x) and vanishing longitudinal conductivity, σxx(x)≡ 0.
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2.7.1.1 Eigenstates and LDOS

Inserting V (x) = exEx into the Hamiltonian (2.6.8) results in a shifted parabolic

potential with the new center X̃ = X − eEx/(m∗ω2
c ) and position-independent terms,

which add to the oscillator energies εn = h̄ωc(n + 1/2). The resulting energy eigen-

values and eigenfunctions are

Ẽn(X̃) = εn + eExX̃ +
m∗

2
v2

D = εn + eExX − m∗

2
v2

D ≡ En(X), (2.7.1)

and

ϕn,X(x) =
1√
`

un

(x− X̃
`

)
, (2.7.2)

respectively, with vD = cEx/B. From Eq. (2.6.9) we see that each state carries the same

current −e〈n,X |v̂y|n,X〉= e2Ex/m∗ωc = evD, in analogy to the fact, that the radius of

the classical cyclotron orbit has no influence on the drift velocity of its center. As a

consequence of Eqs. (2.6.10) and (2.6.11) the current density is directly proportional

to the electron density,

jy(x) = evDn(x), (2.7.3)

independent of the occupation probability of the eigenstates, just as in the classical

case.

Due to the linear dependence of Ẽn(X̃) on X̃ , Eq. (2.6.13) can be written as

D(E;x) =
gs

2π`2 ∑
n

1
e|Ex|` u2

n

( Ẽn(x)−E
eEx`

)
. (2.7.4)

This result has been obtained in Ref. (Kramer, 2004) in a much less transparent

way, starting from the symmetric instead of the Landau gauge for the vector potential.
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Figure 2.5 Local density of states for
different values. D0 = m∗/(π h̄2), gs = 2.

The Colored lines in Fig. 2.6 are calculated for a Gaussian spectral function,

Eq. (2.6.18), with n-independent Γn = γ h̄ωc for two values of γ . Apparently the zeroes

of the LDOS, which are due to the zeroes of the energy eigenfunctions, are smeared out

already by a very weak collision broadening, and are of no importance in real samples.

A discussion (Kramer, 2004) of a possible importance of these zeroes for the QHE is

therefore without any relevance. On the other hand, the value of the LDOS in the gap

between two adjacent Landau levels is of importance. In order to yield a plateau in the

IQHE, the gap in an incompressible strip between two adjacent compressible regions

must be sufficiently well developed. As a measure for the quality of such gaps we

may consider the overlap of the contributions of adjacent Landau levels to the LDOS,

according to Eq. (2.7.4). We define the overlap as the product of these contributions

in the middle En,n+1(x) = [Ẽn(x)+ Ẽn+1(x)]/2 between these levels, devided by the

square of the zero-B DOS D0 = m∗/(π h̄2), to make the overlap dimensionless. Since
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gs/(2π`2D0) = h̄ωc, Eqs. (2.7.1) and (2.7.4) yield for the dimensionless overlap of

level n and n+1:

On,n+1(η) =
1

η2 u2
n
(− 1

2η
)

u2
n+1

( 1
2η

)
, (2.7.5)

with η = e|Ex|`/h̄ωc. The results for the lowest gaps, O0,1(η)= exp(−1/2η2)/(2πη4)

and O1,2(η) = O0,1(η)(2−1/η2)2/8, are plotted in Fig. 2.7.

If we say that the gap between Landau level n and n + 1 is well developed if

On,n+1 < 10−8, this defines a critical value ηcr
n,n+1 (ηcr

0,1 ≈ 0.15, ηcr
1,2 ≈ 0.13) and

thereby a critical field-strength Ecr
n,n+1 = ηcr

n,n+1h̄ωc/e`. Only for sufficiently small
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electric fields with

|Ex|. 2.1ηcr
n,n+1(B/10T)3/2×106 V/m (2.7.6)

the gap between the Landau levels n and n+1 is well developed.

2.8 The Edge State Model

One of the theoretical models put forward to explain the QHE, the Edge state

model, at the edges of a real sample the confining potential produces an upward bend-
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ing of the Landau levels. The Fermi energy a one-dimensional edge channel is formed

for each Landau level. This situation corresponds to the trajectories of an electron

moving along the edge of the device in a magnetic field in the classical. As a result,

there exist extended states at the Fermi energy near the sample boundaries. Soon af-

ter the discovery of the QHE, Halperin recognized (Halperin, 1982) the importance

of these edge channels in the transport properties of the 2DEG. Several edge-related

theories were then developed, based on different approaches (Streda, 1983).

However, it was in combination with the Landauer formalism (Landauer, 1957)

for transport that the edge state approach proved to be really very efficient to under-

stand electrical transport at high field. In the following, we very briefly summarize

the approach adopted by Buttiker (Buettiker, 1988), although some pioneering work

was done by Streda et al (Streda, 1983) and by Jain et al (Jain, 1988). For additional

information, excellent review paper have been published on the subject (Buettiker,

1986).

In the Landauer formalism of transport, the current is taken as the driving force

and the electric field can be obtained by calculating the charge distribution due to the

current flow. Using transmission and reflection probabilities, the current is given as

a function of the electrochemical potential at the contacts. For a single edge state k

located between two electron reservoirs at electrochemical potential µ1 and µ2, the

current fed by the contact in the absence of scattering is

I = evdD(E)(µ1−µ2) =
e
h

∆µ, (2.8.1)

where vd is the drift velocity of the electron which is proportional to the slope of the

Landau level and therefore has an opposite sign on each side of the device. The density

of states D(E) is given by D(E) = 2π h̄vd in a one-dimensional channel. The voltage

drop V between the reservoirs is eV = ∆µ and the two-terminal resistance of the edge
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state is R = h/e2. For N channels, one obtains

R =
h
e2

1
N

. (2.8.2)

2.9 Compressible and Incompressible Strips in the Depletion Region of a 2DES

The model of edge states is a single electron picture.The Landau levels are moved

up in energy by the confining potential in this model. The Landau levels are well

divided and the electron density increases from zero at the edge in steps of nL = eB
h .

The electron density and the local filling of the Landau levels as a function of distance

to the edge are shown in Figs. 2.8a, 2.8b. The electron density are very unphysical as

they indicate regions of high electric field which mobile carriers would be expected to

screen. Coulomb interactions were considered by Chklovskii (Chklovskii et all, 1982)

using self consistent descriptions of the edge potential. They found that the sample is

divided into incompressible and compressible strips. In the following we summarize

the findings of Ref.(Chklovskii et all, 1982);

At zero field the electron density increases smoothly from zero at the edge to the

bulk value ns and has the form:

n(x) = (
x−d`

x+d`
)1/2, (2.9.1)

for x > d` where d` is the depletion length and for an etched structure can be approxi-

mated by (Lier, 1994):

d` ≈ 4Vdεε0

πens
(2.9.2)
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Here Vg is the band gap potential. Fig. 2.8d is plotted as a dashed line, n(x). In a

magnetic field the electron distribution obtained from the electrostatics, but the dis-

tribution that is would not be expected to alter significantly. This is because of the

huge amount of work that would need to be performed against the electric field. The

electron distribution in a magnetic field with a self consistent approach is shown that

in Figs. 2.8c and 2.8d. The energy gap between the Landau levels means that the

electrostatic solution derived at zero field is no longer the lowest energy state. In re-

gions where there is a transition between filling one Landau level. For example at x1

in Fig. 2.8c, the energy gap means it is energetically favourable to relocate some elec-

trons from the higher Landau level to the lower one. This relocation of charge forms

dipolar stripes at the positions xd and the Landau level density:

xd =
d`

1+( k
ν )2

, (2.9.3)

where ν is the bulk filling factor and k = int(ν) the number of completely filled Landau

levels. The potential drop across the dipolar stripes equals the energy gap between the

Landau levels h̄ωc, the width of the stripes ak can then be estimated from the zero field

density gradient at the points xd:

ak =
(

2κ∆E

π2e2 dnel(x)
dx |xk

)1/2

, (2.9.4)

where κ is the dielectric constant of the material and ∆E is determined by the single

particle energy gap. The compressibility κ of an electron gas is defined as:

κ−1 = n2
s

∂ µ
∂n

. (2.9.5)

Within the dipolar stripes it costs energy h̄ωc to add an electron, the compressibility is

therefore zero and these regions are described as ‘incompressible’. In the compressible

strip, the electrons can be added with small energies (Suddards, 2007).
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Figure 2.8 Structure of spinless edge states in the integer
quantum Hall regime. (a) and (b) single electron picture. (c)
and (d) Self-consistent electrostatic picture. (a) Bending of the
Landau levels by the confining potential, edge states are then
formed at the intersection of the Landau levels with the Fermi
energy. (b) Electron density as a function of distance to the
boundary, the sudden changes in density would require high
electric fields and are unphysical. (c) 2DEG separates into re-
gions of: (i) non-integer filling factor, where Landau levels are
pinned at the Fermi energy. Here the 2DEG is compressible
and screens the confining potential, and,(ii) regions of integer
filling factor where a dipolar stripe has been formed. Here the
2DEG is incompressible and is unable to screen. (d) Density
as a function of distance from the boundary. The dashed line
shows the density distribution at zero field. At high field this
is not significantly modified except in the regions where the
next Landau level begins to fill. Based upon Ref. (Chklovskii
et all, 1992)



CHAPTER THREE

THE SELF CONSISTENT SCHEME AND THOMAS FERMI

APPROXIMATION

3.1 The Self-consistent Scheme

In this section we summarize the numerical calculation algorithm that provides a

consistent explanation to the IQHE. We consider a 2DES confined to the interval−d <

x < d, where d is the half-width of the sample. The repulsive Coulomb interaction

among the electrons is described by the Hartree potential,

VH(x) =
2e2

κ

∫ d

−d
dx′K(x,x′)nel(x′). (3.1.1)

Here K(x,x′) is the kernel satisfying the boundary conditions, V (−d) = V (d) = 0,

given as

K(x,x
′
) = ln

∣∣∣∣∣

√
(d2− x2)(d2−d′2)+d2− x′x

(x− x2)d

∣∣∣∣∣ . (3.1.2)

Then the total potential (energy) of the electron is determined by

V (x) = Vbg(x)+VH(x), (3.1.3)

where, the first term is the background potential describing the external electrostatic

confinement due to the donors and is given by

Vbg(x) =−E0

√
1− (x/d)2. (3.1.4)

Here E0 = 2πe2n0d/κ is the minimum of the confinement. The solution involves the

self-consistent determination of the electron density via

nel(x) =
∫

dED(E) f (E +V (x)−µ∗) (3.1.5)

which is valid in the approximation of a slowly-varying potential, the namely Thomas-

Fermi approximation (TFA). Here, f (E) = 1/[exp(E/kBT )+1] is the Fermi distribu-
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tion function with kB Boltzmann constant. The density of states D(E) is to be taken

from self-consistent Born approximation (Ando, 1982) and µ∗ is the constant equilib-

rium electrochemical potential. Since, the overshoot effect is independent of the actual

origin of the single particle gap, from now on we assume spin degeneracy and neglect

Zeeman splitting. The density of states (DOS) and local conductivities are determined

assuming an impurity potential having a Gaussian form (Ando, 1982)

V (r) =
VI

πR2
g

exp(− r2

R2 ) (3.1.6)

where the range Rg is of the order of the spacing between 2DES and doping layer,

together with the impurity strength Vimp. In strong magnetic fields, the Landau levels

are broadened due to the scattering from the impurities and the level width is given by

Γ2 = 4πN2
I V 2

imp/(2πl2) = (2/π)h̄ωch̄/τ, (3.1.7)

where NI is the number density of the impurities and τ is the momentum relaxation

time. We express the widths by the magnetic energy to characterize the impurity

strength by the dimensionless ratio γ = Γ/h̄ωc and define the strength parameter as

calculated at 10 T as

γI = [(2NIV 2
0 m∗/π h̄2)(1.73 meV)]1/2. (3.1.8)

The above set of equations allow us to determine the electron density, electrostatic

potential and local conductivities in a self-consistent manner when solved numerically

by means of successive iterations. The details of the calculation scheme is described

in detail elsewhere (Siddiki, 2004).
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3.2 Thomas Fermi Approximation

The Thomas-Fermi theory which based on a semi-classical approximation is a local

density functional which has been put on a mathematically rigorous basis (Lieb, 1981)

and also has been analyzed in 2D in detail by Lieb and group (Lieb, Solovej, 1995).

The theory provides a functional form for the kinetic energy of a non-interacting elec-

tron gas in some known external potential V (r) as a function of the density and has

been successfully applied in the electronic- structure calculations of, e.g., quantum

Hall systems, where the importance of e-e interactions has been addressed (Siddiki,

2003; Siddiki, 2007).



CHAPTER FOUR

THE EFFECT OF DISORDER WITHIN THE INTERACTION THEORY OF

INTEGER QUANTIZED HALL EFFECT

4.1 Introduction

The integer quantized Hall effect (IQHE), observed at two dimensional charge sys-

tems (2DCS) subject to strong perpendicular magnetic fields B. These quantized en-

ergy levels are called the Landau levels (LLs). LLs are given by EN = h̄ωc(n + 1/2),

where ωc = eB/m∗c is the cyclotron frequency of an electron with an effective mass

m∗ (≈ 0.067me) and n is the Landau index and c is the speed of light in vacuum. Dis-

order can be created by inhomogeneous distribution of dopant ions. In the absence of

disorder, the density of states are D(E) =
1

2πl2

∞

∑
N=0

δ (E−EN) (Dirac delta-functions).

Here l =
√

h̄/eB is the magnetic length, and the longitudinal conductivity (σl) van-

ishes. For a homogeneous two dimensional electron system (2DES), by the inclusion

of disorder and due to collisions, LLs become broadened. Therefore the longitudi-

nal conductance becomes non-zero in a finite energy interval. Long range potential

fluctuations generated by the disorder result.

We should note that, after decades of study of the influence of disorder on the

integer quantum Hall effect, the self-consistent treatment of electron-electron interac-

tions and its effect on the disorder potential are not yet investigated from the theoretical

point of view, explicitly at finite temperatures. At this point, we mention the recent

work by A. A. Greshnov and G. G. Zegrya (Greshnov, 2007), where they calculate

the maxima of the conductivity peaks and plateau widths depending on the correlation

length (λ ) of the disorder potential. In this work the conductivities are obtained by

assuming a Gaussian random distribution of the impurities and ranges of the single

impurities are classified to be short and long range compared to the magnetic length.

However, the calculations disregard i) The boundary effects due to confinement ii)

Finite size effects, such as actual widths of the samples iii) The electron-electron in-

teractions even at a mean-field level and iv) Temperature effects. This work might be
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relevant to localization assumption based explanation of the integer quantized Hall ef-

fect, however, the results presented are not clear in physical dimensions (figures have

either no scales or are in arbitrary units) and the presented fluctuations of the Hall con-

ductance at the quantized Hall regime makes the work highly questionable. Our work

takes into account all the points mentioned, meanwhile the Hall plateaus are exactly

quantized at vanishing temperature.

The recent experimental (Ruhe, 2006; Mares, 2009; Siddiki et all., 2009) and

theoretical (Hwang, 2008; MacLeod, 2009) results point the incomplete treatment of

the disorder potential and scattering mechanisms. In particular, the experiments per-

formed at gate defined narrow samples show unexpected asymmetries of the quantized

Hall plateaus. To be explicit, one expects that the high temperature Hall resistance

should cut through the quantized Hall plateau at the center. This magnetic field value

is known as the critical value BC and important parameters of the scaling theory, e.g.

localization length, strongly depends on its symmetry around the plateau. However, at

the above mentioned experiments (and related theories) it is explicitly shown that the

classical line is strongly shifted from the center due to electron-electron interactions

and scattering from the edges. Since, none of the previous theories handle the electron-

electron interactions self-consistently at finite temperatures such an asymmetry cannot

be explained.

In fairly recent theoretical approaches (Guven, 2003) the QH plateaus are ob-

tained by the inclusion of direct Coulomb interaction self-consistently (Siddiki, 2004).

In these approaches, the effect of disorder is two-fold: i) The Landau levels are broad-

ened due to collisions and the actual widths of the levels are calculated within the

self-consistent Born approximation (SCBA) (Ando, 1982). Such a treatment provides

a prescription to calculate longitudinal and transverse conductivities, regardless of

the origin of the disorder, i.e. whether they are due to surface roughness, interface

roughness or due to Coulomb (donor) impurities. To be explicit, the single impu-

rity potentials are assumed to be Gaussian, randomly distributed all over the sample
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and the conductivities are calculated by making spatial averaging over all possible

configurations. ii) The overall electrostatic potential landscape fluctuates due to the

overlap of many impurities, hence, the inclusion of electron-electron interactions in a

self-consistent manner becomes important. In previous works, we explicitly include

the effect of level broadening via SCBA and assumed that the potential fluctuations

are less pronounced at high mobility samples. Later, this effect is also included in a

self-consistent way (Gerhardts, 2008; Siddiki, 2007), however, the investigations of

the plateau widths is somewhat non-systematic.

This work provides a systematic investigation of the disorder potential and its

influence on the quantized Hall effect including direct Coulomb interaction. The in-

vestigation is extended to realistic experimental conditions in determining the widths

of the quantized Hall plateaus. We, essentially study the effect of disorder in two

distinct regimes, namely the short range and the long range. The short range part is

included to the density of states (DOS), thereby influences the widths of the current

carrying edge-states and the entries of the conductivity tensor. The long range part

is incorporated to the self-consistent calculations. In Sec 4.2 we introduce two types

of single impurity potentials, namely the Coulomb and the Gaussian, and compare

their range dependencies considering damping of the dielectric material. In the next

step we discuss the screened disorder potential within a pure electrostatic approach,

by considering an homogeneous two dimensional electron system (2DES) without an

external magnetic field and show that the long range part is well screened, whereas

the short range part is almost unaffected. Section 4.2.3 is devoted to investigate the

screening properties of the impurities numerically, where we solve the Poisson equa-

tion self-consistently in three dimensions. The numerical and analytical calculations

are compared, considering the estimations of the disorder potential range and its vari-

ation amplitude. We finalize our discussion with Sec. 4.3, where we calculate the

plateau widths under experimental conditions for different sample widths and mobili-

ties.
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We would like to note that, the quantized Hall effect and its relation with the dis-

order effects within the single particle non-interacting models are discussed in many

contexts in the last three decades. Therefore it is obviously impossible to mention all

the contributions to the field, however, the essentials can be found in many standard

text books (Datta, 1995) or well accepted reviews. In contrast, our work takes into

account single particle interactions in an explicit and self-consistent manner, whence

we obtain the quantized Hall effect even in the (approximately) no-disorder limit.

4.2 Impurity Potential
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Figure 4.1 (Color online) A single
Coulomb (a) and a Gaussian impurity (b)
located at the center of a 1.5µm×1.5µm
unit cell, approximately 30 nm above the
electron gas (z = z0 = 0). The short range
behaviors are similar, whereas long range
parts are strongly different. Potential pro-
files projected through the center (x, y =
0.75 µm), for the Coulomb (solid (black)
line) and Gaussian impurity (broken (red)
line).
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Figure 4.2 External potential generated
30 nm below a plane containing ten (a)
Coulomb and (b) Gaussian donors. The
range of the Gaussian potential is deter-
mined by the spacer thickness. (c) The
long range part of the Coulomb potential
profile, where only lowest two Fourier
components are back-transformed to con-
figuration space. (d) Gaussian potential
profile plus the long range part of the
Coulomb potential to compare the differ-
ent potential landscapes.

The disorder potential experienced by the 2DES, resulting from the impurities

has quite complicated range dependencies. It is common to theoreticians to calculate

the conductivities from single impurity potentials, such as Gaussian (Ando, 1982),

Lorentzian (Güven, 2003) or any other analytical functions (Champel, 2008; Kramer,

2006).

In this section we first discuss the different range dependencies of the Coulomb

and Gaussian donors located at the center of a unit cell that presumes open bound-

ary conditions. Next, the effect of the spacer thickness on the disorder potential is
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shown, namely the damping of the external (Coulomb) potential, and is compared

with the Thomas-Fermi screening. The different damping/screening dependencies of

the resulting potentials are discussed in terms of range. In the last part we show the

distinguishing aspects of the total screened disorder potential such that the long range

part is suppressed, however, the short range part is still effective.

4.2.1 Coulomb vs. Gaussian

The electrostatic potential at (x0,y0,z0), created by a single, positively charged

particle (ionized donor) placed at x,y,zD is given by

V (x0,y0,z0) =
e2/κ̄√

(x0− x)2 +(y0− y)2 +(z0− zD)2
, (4.2.1)

where zD and z0 labels the z position of the donor layer and the electron gas, respec-

tively, and κ̄ is the average dielectric constant (∼ 12.4 for GaAs). Throughout this

paper we assume that the 2DES resides on z = z0 = 0 plane and the donors are placed

at a the finite distance (spacer thickness) zD > 0, hence, the divergencies that may

occur at the above equation are ruled out. In principle Eq. 4.2.1 provides a correct

description of the impurity potential generated by an ionized donor, however, unfor-

tunately such a description is not useful to define conductivities analytically (Ando,

1982). Instead, one usually considers a Gaussian impurity with an potential amplitude

Vimp generating a potential at the (x0,y0) plane

V (x0,y0,0) =−e2Vimp

κ̄|zD| exp
[
− (x0− x)2 +(y0− y)2

2z2
D

]
. (4.2.2)

These potentials are shown in Fig. 4.1 for a unit cell of a square lattice with a relevant

average dielectric constant κ̄ considering a single donor residing at the center. Since,

the donor is at a finite distance from the plane where the electrostatic potential is cal-

culated, no singularity is observed in the potential distribution. We should note that
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the electrostatic potential created by the donor is damped (we use the term damped,

not to mix with screened) by the dielectric material, which lays between the donor

layer and the plane where we calculate the potential. The Coulomb potential presents

long range part, which leads to long range fluctuations due to overlapping if several

donors are considered within the unit cell, whereas, the Gaussian potential decays ex-

ponentially on the length scale comparable with the separation thickness. In Fig. 4.2

we plot the potential generated by 10 donors distributed randomly at the z = zD ≈ 30

nm plane, both Coulomb type (Fig. 4.2a) and Gaussian type (Fig. 4.2b), together with

the long range part of the Coulomb potential (c). Since the Gaussian potential is rela-

tively short ranged, it is clearly seen that, no overlapping of the single donor potentials

occur. Hence, the external potential experienced by the electrons can be approximated

to a homogeneous potential fairly good on a length scale & 0.5 µm. From the above

observation one can conclude that approximating the impurity potential by Gaussian

potentials is not sufficient to recover the long range part of the disorder potential.

Similar arguments is found also in the literature Efros (1988), Siddiki (2007), Nixon

(1990). In order to overcome the difference observed at the long range potential fluc-

tuations between the Coulomb and the Gaussian impurities, the following procedure

is applied: We perform a two-dimensional Fourier transformation of the Coulomb po-

tential and make a back transformation keeping the first few momentum q components

in each direction, hence only the long range part of the potential is left. Then we add

the long range part of the Coulomb potential to the potential created by donors, i.e. the

confinement potential. We take this as a motivation to simulate the short range part of

the impurity potential by Gaussian impurities, and calculate the Landau level broad-

ening and the conductivities, described within the self-consistent Born approximation

(Ando, 1982) (SCBA). The long range part of the disorder potential is simulated by

a (long range) modulation potential and is added to the confining potential, as we

describe in sec. 4.3.3.
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4.2.2 Pure Electrostatics

We first discuss the different range dependencies of the Coulomb and Gaussian

donors, assuming open boundary conditions. Next, the effect of the spacer thickness

on the disorder potential is discussed, namely the damping of the external (Coulomb)

potential, and is compared with the Thomas-Fermi screening. The different damp-

ing/screening dependencies of the resulting potentials are discussed in terms of range.

The Coulomb potential presents long range part, which leads to long range

fluctuations due to overlapping if several donors are considered. Whereas, the Gaus-

sian potential decays exponentially on the length scale comparable with the separation

thickness. Since the Gaussian potential is relatively short ranged, no overlapping of

the single donor potentials occur. Hence, the external potential experienced by the

electrons can be approximated to a homogeneous potential fairly good. Thus one

can conclude that approximating the total disorder potential by Gaussians is not suffi-

cient to recover the long range part. Similar arguments are also found in the literature

(Nixon, 1990; Efros, 1988; Siddiki, 2007). In order to overcome the difference ob-

served at the long range potential fluctuations between the Coulomb and the Gaussian

impurities, the following procedure is applied: First we calculate the total disorder

potential considering many impurities then we perform a two-dimensional Fourier

transformation of the Coulomb potential and make a back transformation keeping the

first few momentum q components in each direction, hence only the long range part of

the potential is left (Siddiki, 2007). Then we add the long range part of the Coulomb

potential to the potential created by donors, i.e. to the confinement potential. We

take this as a motivation to simulate the short range part of the impurity potential by

Gaussian impurities, and calculate the Landau level broadening and the conductivities,

described within the self-consistent Born approximation (SCBA) (Ando, 1982). Here

we point to the effect of the spacer thickness on the impurity potential experienced in

the plane of 2DES. It is well known from experimental and theoretical investigations
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Figure 4.3 Schematic representation of
the crystal, which we investigate nu-
merically. The crystal is grown on a
thick GaAs substrate, where the 2DES
is formed at the interface of the Al-
GaAs/GaAs hetero-junction. The top
AlGaAs layer is doped with Silicon 30
nm above the interface. The crystal is
spanned by a 3D matrix (128×128×60).

that, if the distance between the electrons and donors is large, the mobility is rela-

tively high and it is usually related with suppression of the short range fluctuations of

the disorder potential. These results agree with the experimental observations of high

mobility samples and are easy to understand from the z dependence of the Fourier

expansion of the Coulomb potential,

V~q(z) =
∫

d~re−i~q·~r
N

∑
j

e2/κ̄√
(~r−~r j)2 + z2

=
2πe2

κ̄q
e−|qz|NS(~q), (4.2.3)

where S(~q) contains all the information about the in-plane donor distribution and N

is the total number of the ionized donors. We observe that if the spacer thickness is

increased, the amplitude of the potential decreases rapidly. We also see that the short

range potential fluctuations, which correspond to higher order Fourier components,

are suppressed more efficiently.
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Next, we discuss electronic screening of the external potential created by the

donors discussed above. For a dielectric material the relation between the external and

the screened potentials are given by,

V q
scr = V q

ext/ε(q), (4.2.4)

where ε(q) is the dielectric function and is given by ε(q) = 1 + 2πe2D0
κ̄|q| , with the con-

stant 2D density of states D0 = m/(π h̄2) in the absence of an external B field, and

is known as the Thomas-Fermi (TF) function. The simple linear relation above, to-

gether with the TF dielectric function essentially describes the electronic screening

of the Coulomb potential given in Eq. 4.2.3, if there are sufficient number of elec-

trons (Efros, 1988) (nel > 0.1 · 1015 m−2). Consider a case where the q component

approaches to zero, then the external (damped) potential is well screened, hence the

long range part of the disorder potential. Whereas, the short range part remain unaf-

fected, i.e. high q Fourier components. Now we turn our attention to the second type

of impurities considered, the Gaussian ones. As well known, the Fourier transform of

a Gaussian is also of the form of a Gaussian, therefore, similar arguments also hold

for this kind of impurity.

We should emphasize once more the clear distinction between the effect of the

spacer on the external potential and the screening by the 2DES, i.e. via ε(q). The

former depends on the Fourier transform of the Coulomb potential and the important

effect is the different decays of the different Fourier components (see Eq. 4.2.3), so

that the short range part of the disorder potential is well dampened, whereas the latter

depends on the relevant DOS of the 2DES and the screening is more effective for the

long range part.

We continue our investigation by solving the 3D Poisson equation iteratively

for randomly distributed single impurities, where three descriptive parameters (i.e.

the number of impurities, the amplitude of the impurity potential and the separation
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thickness) are analyzed separately. Next, we discuss the long range parts of the po-

tential fluctuations investigating the Coulomb interaction of the 2DES, numerically.

The range is estimated from these investigations by performing Fourier analysis and

is related to the samples used in experiments (Horas, 2008) (Sec. 4.4).
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Figure 4.4 (a) Electron density fluctuation considering 3300 impurities 30
nm above the electron gas. (b) The long-range part, arrows are to guide the
distance between two maxima. The calculation is repeated for 50 random
distributions, which lead to a similar range.

4.2.3 3D Simulations

In the previous section we took a rather simple way to study the effect of interac-

tions by assuming an homogeneous 2DES and screening is handled by the TF dielec-

tric function. Here, we present our results obtained from a rather complicated numeri-

cal method. We solve the Poisson equation in 3D starting from the material properties

of the wafer at hand, the typical material we consider is sketched in Fig. 4.3. Namely,

using the growth parameters, we construct a 3D lattice where the potential and the

charge distributions are obtained iteratively assuming open boundary conditions, i.e.

V (x→±∞,y→±∞,z→±∞) = 0. For such boundary conditions, we chose a lattice

size which is considerably larger than the region that we are interested in. We pre-

serve the above conditions within a good numerical accuracy (absolute error of 10−6).
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A forth order grid approach (Weichselbaum, 2003) is used to reduce the computational

time, which is successfully used to describe similar structures (Arslan, 2008).

Figure 4.3 presents the schematic drawing of the hetero-structure which we are

interested in. The donor layer is δ− doped by a density of 3.3× 1016 m−2 (ionized)

Silicon atoms, ∼ 30 nm above the 2DES, which provide electrons both for the po-

tential well at the interface and the surface. It is worthwhile to note that most of the

electrons (∼%90) escape to the surface to pin the Fermi energy to the mid-gap of the

GaAs. In any case, for such wafer parameters there are sufficient number of electrons

(nel & 3.0× 1015 m−2) at the quantum well to form a 2DES. To investigate the ef-

fect of impurities we place positively charged ions at the layer where donors reside.

From Eq. 4.2.3 we estimate the amplitude of the potential of a single impurity to be
e2

κ
Vimp
zD

= 0.033 eV and assume that some percent of the ionized donors are generating

the disorder potential, that defines the long range fluctuations. In our simulations we

perform calculations for a unit cell with areal size of 1.5 µm×1.5 µm which contains

3.3× 1016 donors per square meters, thus with 10 percent disorder we should have

NI ∼ 3300 impurities.

Figure 4.4 presents only the long range part of the density fluctuation, when con-

sidering 3300 impurities. The arrows show the average distance between two maxima,

which is calculated approximately to be 550 nm. To estimate an average range of the

disorder potential, we repeated calculations for such randomly distributed impurities,

where number of repetitions scales with
√

NI . Such a statistical investigation, suf-

ficiently ensembles the system to provide a reasonable estimation of the long range

fluctuations. We also tested for larger number of random distributions, however, the

estimation deviated less than tens of nanometers. We show our main result of this

section in Fig. 4.5, where we plot the estimated long range part of the disorder po-

tential considering various number of impurities NI and impurity potential amplitude

Vimp. Our first observation is that the long range part of the total potential becomes

less when NI becomes large, not surprisingly. However, the range increases nonlin-
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Figure 4.5 Statistically estimated range of the density fluctuations as a
function of number of impurities, considering various impurity strengths
(a) and spacer thicknesses (b). The calculations are done at zero tempera-
ture considering Coulomb impurities. The long range potential fluctuations
become larger than the size of the unit cell if one considers less than %5
disorder.

early while decreasing NI , obeying almost an inverse square law and tend to saturate

at highly disordered system. When fixing the distributions and NI , and changing the

amplitude of the impurity potential we observe that for large amplitudes the range

can differ as large as 200 nm at all impurity densities. We found that for impurity

concentration less than %3, the range of the potential is larger than the unit cell we

consider, i.e R > 1.5µm. In contrast to the long range part, the short range part is

almost unaffected by the impurity concentration, however, is affected by the ampli-

tude. Therefore, while defining the conductivities we will focus our investigation on

Vimp. All of the above numerical observations coincide fairly good with our analytical

investigations in the previous section. However, the range dependency on the impurity

concentration cannot be estimated with the analytical formulas given. We should also

note that, similar or even complicated numerical calculations are present in the liter-

ature (Nixon, 1990; Stopa, 1996). A indirect measure of the screening effects on the

potential can also be inferred by capacitance measurements, supported by the above

calculation scheme in the presence of external field (Mares, 2009).
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To summarize: we performed 3D numerical calculations to estimate the effect

of impurities on the potential landscape experienced by the 2DES. We found that, the

range of the fluctuations strongly depend on the number of impurities. If one adds

more than % 20 percent of impurity, the range of the potential fluctuations are less

than 400-500 nm, however, this (short) range is affected by the amplitude of single

impurity potential. Whereas, if only few percent of disorder is considered the range

becomes approximately more than 650 nm. In contrast to the highly disordered case,

the amplitude of single impurity potential is less pronounced. The spacer thickness

seems not to play an important role in defining the range of the potential fluctuations,

while keeping Vimp constant.

Next section is devoted to investigate the widths of the quantized Hall plateaus

utilizing our findings. We consider mainly two “mobility” regimes, where the long

range fluctuations is at the order of microns (high mobility) and is at the order of

few hundred nanometers, low mobility. However, the amplitude of the total potential

fluctuations will be estimated not only depending on the number of impurities but also

depending on the spacer thickness, range and amplitude of single impurity potential.

4.3 Quantized Hall Plateaus

The main aim of this section is to provide a systematic investigation of the quan-

tized Hall plateau (QHP) widths within the screening theory of the IQHE (Siddiki,

2004), therefore here we summarize the essential findings of the mentioned theory.

In calculating the QHPs one needs to know local conductivities, namely the longitu-

dinal σl(x,y) and the transverse σH(x,y). To determine these quantities it is required

to relate the electron density distribution nel(x,y) to the local conductivities explicitly.

Here we utilize the SCBA (Ando, 1982). However, the calculation of the electron den-

sity and the potential distribution including direct Coulomb interaction is not straight-

forward, one has to solve the Schrödinger and the Poisson equations simultaneously.
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This is done within the Thomas-Fermi approximation which provides the following

prescription to calculate the electron density

nel(x,y) =
∫

dED(E)
1

e(EF−V (x,y))/kBT +1
, (4.3.1)

where D(E) is the appropriate density of states calculated within the SCBA, where kB

is the Boltzmann constant and T temperature. The total potential is obtained from

V (x,y) =
2e2

κ̄

∫
dxdyK(x,y,x′,y′)nel(x,y), (4.3.2)

and the Kernel K(x,y,x′,y′) is the solution of the Poisson equation satisfying the

boundary conditions to be discussed next. In the following we assume a translation in
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Figure 4.6 The Hall resistances versus magnetic field,
calculated at default temperature and considering a 10 µm
sample for different ranges of the single impurity poten-
tial. Inset depicts a larger B field interval, where also the
ν = 4 plateau can also be observed.

variance in y-direction and implement the boundary conditions V (−d) =V (d) = 0 (2d
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being the sample width), proposed at Ref. (Chklovskii et al., 1992), such a geometry

allows us to calculate the Kernel in a closed form. Hence, Eqs. (4.3.1) and (4.3.2) can

be rewritten in the self-consistent form as follows

V (x) =
2e2

κ̄

∫ d

−d
dx′ ln

∣∣∣∣
√

(d2− x2)(d2 + x2)+d2− xx′

(x− x′)d

∣∣∣∣×
∫

dED(E)F [E,kBT,V (x′)],

(4.3.3)

where F(α) is the fermi function. For a given initial potential distribution, the elec-

tron concentration can be calculated at finite temperature and magnetic field, where

the density of states D(E) contains the information about the quantizing magnetic

field and the effect of short range impurities. Here we implicitly assume that the elec-

trons reside in the interval −b < x < b (where, dl = |d− b|/d is called the depletion

length), and is fixed by the Fermi energy, i.e. the number of electrons, hence donors.

As a direct consequence of Landau quantization and the locally varying electrostatic

potential, the electronic system is separated into two distinct regions, when solving

the above self-consistent equations iteratively: i) The Fermi energy equals to (spin

degenerate) Landau energy and due to DOS the system illustrates a metallic behavior,

the compressible region, ii) The insulator like incompressible region, where EF falls

in between two consequent eigen-energies and no states are available (Chklovskii et

al., 1992; Siddiki, 2003). It is usual to define the filling factor ν , to express the elec-

tron density in terms of the applied B field as, ν = 2πl2nel. Since all the states below

the Fermi energy are occupied the filling factor of the incompressible regions corre-

spond to integer values (e.g. ν = 2,4,6...), whereas the compressible regions have

non-integer values, due to partially occupied higher most Landau level. The spatial

distribution and widths of these regions are determined by the confinement potential

(Chklovskii et al., 1992), magnetic field (Lier, 1994), temperature (Oh et al., 1997)

and level broadening (Güven, 2003; Siddiki, 2004). For the purpose of the present

work we fix the confinement potential profile by confining ourselves to the Chklovskii

geometry and keeping the donor concentration (and distribution) constant. Moreover

we perform our calculations at a default temperature given by kBT/E0
F = 0.02, where

E0
F is the Fermi energy calculated for the electron concentration at the center of the
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sample and is typically similar to 10 meV.

The next step is to calculate the global resistances, i.e. the longitudinal RL

and Hall RH resistances, starting from the local conductivity tensor elements. Such a

calculation is done within a relaxed local model that relates the current densities j(x,y)

to the electric fields E(x,y), namely the local Ohm’s law:

j(x,y) = σ̂(x,y)E(x,y). (4.3.4)

The strict locality of the conductivity model is lifted by an spatial averaging process

(Siddiki, 2004) over the quantum mechanical length scales and an averaged conductiv-

ity tensor σ̂(x,y) is used to obtain the global resistances. It should be emphasized that,

such an averaging process also simulates the quantum mechanical effects on the elec-

trostatic quantities. To be explicit: if the widths of the current carrying incompressible

strips become narrower than the extend of the wave functions, these strips become

“leaky” which can not decouple the two sides of the Hall bar and back-scattering takes

place. Therefore, to simulate the “leakiness” of the incompressible strips we perform

coarse-graining over quantum mechanical length scales.

Now let us relate the local conductivities with the local filling factors. Since

the compressible regions behave like a metal within these regions there is finite scat-

tering leading to finite conductivity. In contrast, within the incompressible regions the

back-scattering is absent, hence, the longitudinal conductivity (and simultaneously re-

sistivity) vanishes. Therefore, all the imposed current is confined to these regions.

The Hall conductivity, meanwhile is just proportional to the local electron density.

The explicit forms of the conductivity tensor elements are presented elsewhere (Sid-

diki, 2004). Having the electron density and local magneto-transport coefficients at

hand, we perform calculations to obtain the widths of the quantized Hall plateaus uti-

lizing the above described, microscopic model assisted by the local Ohm’s law at a

fixed external current I. Further details of the calculation scheme is reviewed in Ref.
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(Gerhardts, 2008).
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Figure 4.7 The calculated Hall resistances at default tem-
perature assuming a 5 µm sample considering three char-
acteristic value of the broadening parameter. The lowest
mobility (γI=0.3) shows the narrowest plateau.

4.3.1 Single Impurity Potentials: Level Broadening and Conductivities

Since the very early days of the charge transport theory, collisions played an impor-

tant role. Such a scattering based definition of conduction also applies for the system

at hand, i.e. a two-dimensional electron gas subject to perpendicular magnetic field.

Among many other approaches (Gerhardts, 1975 ;Güven, 2003; Kramer, 2006) the

SCBA emerged as a reasonable model to describe the DOS assuming Gaussian impu-

rities, considering short range scattering. A single impurity has two distinct parame-

ters that represents the properties of the resulting potential, the range Rg (at the order

of separation thickness) and the amplitude of the potential (in relevant units), Ṽimp.
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dl = 70 nm Rg = 10 nm 20 nm 40 nm 80 nm
2d= 2 µm 0.120 0.120 0.100 0.050

3 µm 0.135 0.125 0.090 0.035
5 µm 0.140 0.115 0.070 0.020
8 µm 0.135 0.095 0.050 0.010

10 µm 0.130 0.085 0.040 0.010

dl = 150 nm Rg = 10 nm 20 nm 40 nm 80 nm
2d= 2 µm 0.140 0.140 0.125 0.075

3 µm 0.160 0.150 0.120 0.055
5 µm 0.180 0.150 0.095 0.035
8 µm 0.180 0.130 0.070 0.020

10 µm 0.175 0.120 0.060 0.015

Table 4.1 The ν = 2 plateau widths obtained at default temperature for two depletion lengths
dl (left 75 nm, right 150 nm), while γI = 0.05 is fixed. The widths are given in units of
h̄ωc/E0

F = Ωc/E0
F .

However, these two parameters are not enough to define the widths of the Landau lev-

els, another important parameter is the number of the impurities, NI . In the previous

section we have already investigated these three parameters in scope of potential land-

scape, now we utilize our findings to define the level widths and the conductivities. It

is more convenient to write the single impurity potential of the form,

Vg(r) =
Ṽimp

πR2
g

exp(− r2

R2
g
). (4.3.5)

At this point we would like to make a remark on the concepts short/long range

impurities and short/long range potential fluctuations, which is commonly mixed. By

short range impurity potential we mean that Rg . l, however, by short range potential

fluctuation a length scale of the order of 200− 300 nm is meant. The long range

impurity potential corresponds to Rg > l and long range potential fluctuation is of the

order of micrometers. Thus, when considering short range impurities the potential

fluctuations may be long range, if NI is not large (< %5 of the donor concentration).

We have also observed that, the long-range potential fluctuations are more efficiently
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screened by the 2DES and their range can be at the order of 500 nm at most, when

assuming large impurity concentration, i.e. NI > %10.
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Figure 4.8 a) The calculated Hall resistances at a large B interval at default
temperature, setting 2d = 5 µm, Rg = 20 nm and γI = 0.05, while changing
the depletion length. It is clearly seen that depletion length is much more
important than the single impurity parameters in determining the plateau
widths. (b) The direct comparison of the plateau widths considering differ-
ent sample sizes. The impurity parameters and depletion lengths are kept
constant. Calculations are done at kBT/E0

F = 0.02, whereas the donor den-
sity is 4×1015 m−2 for all sample sizes.

In light of the above findings and formulation we now investigate the widths of

the quantized Hall plateaus. Figure 4.6 presents the calculated Hall resistances at a

fixed temperature for typical single impurity ranges. We observe that, when increasing

Rg the plateau widths remain approximately the same, with a small variation, which

is in contrast to the experimental findings, i.e. if the system is low mobility (small

Rg ⇒ highly broadened DOS) the plateau are larger. In fact changing Rg from 10 nm

to 20 nm should increase the zero B field mobility almost an order of magnitude, when

fixing the other parameters (see e.g table I of Ref. (Siddiki, 2004)). The contradicting

behavior is due to the fact that the levels become broader when increasing the single

impurity range, therefore the incompressible strips become narrower, which results

in a narrower plateau. However, the long range potential fluctuations are completely

neglected, therefore the effect(s) of disorder on the quantized Hall plateaus cannot be

described in a complete manner. To investigate the effect of the single impurity range
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we systematically calculated the plateau widths; table 4.1 depicts the calculated widths

of the Hall plateaus considering different sample widths, depletion lengths, filling fac-

tors and Rg. One sees that the plateau widths are affected by the increase of impurity

range, however, in a completely wrong direction, i.e. plateaus become narrower when

decreasing the mobility. As we show in the next section, it is not sufficient to de-

scribe mobility only considering the range of a single impurity. Moreover, we also

show that the other two parameters defining B = 0 mobility are either not important

or behaves in the opposite direction when calculating the resistances. Next we
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Figure 4.9 Self-consistently obtained Hall resistances for a modulated sys-
tem considering a sample of 3 µm. The depletion lengths and other single
impurity parameters are kept fixed, whereas the parity of the modulation
period is odd (a) or even (b).

investigate the effect of the remaining two parameters, Ṽimp and NI . However, these

two parameters both effect the level width simultaneously, thereby the widths of the

incompressible strips. Hence, one cannot to distinguish their influence on the QHPs

separately. Typical Hall resistances are shown in Fig. 4.7 calculated at default temper-

ature considering different impurity parameters. Similar to the range parameter, we

observe that the plateau widths become narrower when the mobility is low, which also

points that our single particle based level broadening calculations are not in the correct

direction. Such a behavior is easy to understand, when we decrease the mobility either

by increasing the impurity concentration or by the amplitude of the impurity poten-
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tial, the Landau levels become broader due to collisions. This means that, both the

energetic and spatial gap between two consequent levels is reduced, hence the result-

ing incompressible strips are also narrower and fragile even at low temperatures. A

detailed investigation on the incompressible widths depending on impurity parameters

are reported in Ref. (Güven, 2003). It is known that if there exists an incompressible

strip wider than the Fermi wavelength the system is in the quantized Hall regime (Sid-

diki, 2004), therefore, if the gap is reduced the incompressible strips are smeared, thus

the quantized Hall plateau vanish. As a general remark on the single particle theories,

we should note that such a reduced gap is also a gross problem for the non-interacting

models (Laughlin, 1981; Buttiker, 1988; Halperin, 1982), however, one can overcome

this discrepancy by making localization assumptions (Kramer, 2003). Namely, one

assumes that even within the broadened Landau levels there are states, which are lo-

calized, therefore electrons cannot contribute to transport. Hence, although the gap

is small (levels are broad) these localized states serves as a reasonable candidate to

explain the low mobility behavior. In the early days of IQHE it was a great chal-

lenge to describe and observe these localized states (Cai, 1986). Recent experiments

(Ahlswede, 2001; Ilani, 2000; Steele, 2005) show clearly that, the localization as-

sumptions are not relevant in all the cases, i.e. narrow and high mobility samples.

Moreover, the universal behavior of the localization length dictated by these theories

fail (Slevin, 2009).

4.3.2 Size Effects on Plateau Widths

Another important parameter in defining the plateau widths is the depletion length

dl . The slope of the confinement potential close to the edges essentially determines the

widths of the incompressible strips (Chklovskii et al., 1992), which in turn determines

the plateau widths. In Fig. 4.8 we show the ν=2 plateau calculated for two different

depletion lengths, we see that for the larger depletion the plateau is more extended.

Since, the larger the depletion is, the smoother the electron density is. Therefore,
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Figure 4.10 The variation of the Hall resistance considering odd (a) and
even (b) modulation periods, plotted for characteristic modulation ampli-
tudes. All calculations are performed at the default temperature and the de-
pletion length is fixed to 75 nm. The parameters defining the single impurity
potential are kept same, i.e γI = 0.05 and Rg = 10 nm.

resulting incompressible strips are wider, hence the plateau. Such an argument will

fail if one considers a highly disordered large sample, which we discuss in Sec. 4.3.3.

Next, we compare the plateau widths of different sample sizes while keeping constant

the disorder parameters and depletion length. Figure 4.8 depicts the sample size

dependency of ν = 2 plateau width. It is seen that the larger samples present wider

plateaus, if the magnetic field is normalized with the center Fermi energy, E0
F . One

can understand this by similar arguments given above, i.e. if the sample is narrow the

variation of the confinement potential is stronger, therefore the incompressible strips

become narrower, hence, the plateaus. The discrepancy between the experimental

results and the screening theory of the IQHE is solved if one considers not only the

single impurity potentials but also the overall disorder potential landscape generated

by the impurities. In the next part of this section, we investigate the effect of the long

range potential fluctuations on the quantized Hall plateaus and find that, when the

mobility is reduced the plateaus become wider and stabile, as it is observed in many

experiments, (see e.g. Refs. (Haug, 1982; Siddiki et all., 2009).
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Figure 4.11 Line plots of the Hall resistance as a
function of magnetic field considering two sample
widths (2d = 10 µm left panels, 2d = 3 µm right
panels) and impurity concentrations (∼ %3 (a) and
(b), ∼%20 (c) and (d)).

4.3.3 Many Many Impurities: Potential Fluctuations

So far we have investigated the effect of single impurity potentials on the overall

potential landscape in Sec. 4.2.3 and on the widths of the plateaus in Sec. 4.3.1. We

have seen that, at high impurity concentration the overall potential fluctuates over a

length scale of couple of hundred nanometers, whereas for low NI concentration such

length scale can be as large as micrometers. Now we include the effect of this long

range potential fluctuations into our screening calculations via modulation potential

defined as Vmod(x) = V0 cos(2πxmp
2d ) where, the modulation period mp, is chosen such

that the boundary conditions are preserved. At the moment, we consider two modula-

tion periods regardless of the sample width and vary the amplitude of the modulation
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potential. In the next section, however, we select these two parameters from our esti-

mations obtained in Sec. 4.2 and Sec. 4.2.3.

Figure 4.9a depicts the self-consistently calculated Hall resistances, considering

different modulation amplitudes V0 for a fixed sample width (2d = 3 µm) and mp = 5.

We observe that, the plateaus become wider from the high B field side, when V0 is in-

creased, i.e mobility is reduced. Such a behavior is now consistent with the experimen-

tal findings. Since the QHPs occur whenever an incompressible strip is formed (some-

where) in the sample and the modulation forces the 2DES to form an incompressible

strip at a higher magnetic field, therefore the plateau is also extended up to higher field

compared with the (approximately) non-modulated calculation, V0/E0
F < 0.1. It is im-

portant to note that the parity of the modulation period, i.e whether mp is even or odd

number of oscillations, does not play an important when considering narrow samples

at least for the case under investigation, Fig. 4.9b. However, parity of the modulation

period plays a role when one considers a larger sample size (2d = 10 µm) or if the

period is larger. Next we consider a 2d = 10 µm sample: The odd mp (= 5) widens

the plateau from the high field side (Fig. 4.10a). Whereas for the modulation period

mp = 4, the ν = 2 plateau enlarges both from high and low B field, and the center of

the plateau is shifted to the high B side, shown in Fig. 4.10b. The extension at the

low field edge is due to the formation of wide incompressible strips at the edges of the

sample, thus the high temperature resistance crosses the plateau rather at the center.

This odd-even effect is discussed later once more.

Our investigation of the impurities lead us to conclude that, one has to define

mobility at high magnetic fields also taking into account screening effects in general

and furthermore also the geometric properties of the sample such as the width and

depletion length. As an example if we consider an impurity concentration of ≈ %1

the long range part of the potential fluctuation can be approximated to 900 nm. How-

ever, note that the amplitude of this fluctuation varies between %5− 25 of the Fermi

energy, considering different separation thicknesses, therefore the wafer changes from
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low mobility to intermediate one. Another important parameter is the number of mod-

ulations within the system: a sample with an extend of 2 µm and V0/EF = 0.1 is a high

mobility sample with the same mp (only 2 maximum), however, sample with a width

of 10 µm is low mobility (10 maximum). In the next section we study the plateau

widths of different mobility samples, while keeping constant the extend and the am-

plitude of long range potential fluctuations (i.e. V0 and mp) and short range impurity

parameters (Ṽimp, NI and Rg) under experimental conditions.

4.4 Discussion: Comparison with the Experiments

In this final section, we harvest our findings of the previous sections to make quan-

titative estimations of the plateau widths, considering narrow gate defined samples.

Our aim is to show the qualitative and quantitative differences between “high” and

“low” mobility samples, by taking into account properties of the single impurity po-

tentials and the resulting disorder potential. The experimental realizations of these

samples are reported in the literature (Siddiki et all., 2009). We estimated in Sec. 4.2.3

that, the range of the potential fluctuations is . 500 nm for low mobility (NI > 3300)

and is & 1 µm at high mobility. Therefore, the modulation period is chosen such that

many oscillations correspond to low mobility, and few oscillations correspond high

mobility. As an specific example let us consider a 10 µm sample, for the low mobil-

ity we choose mp = 19− 20 and for the high mobility mp is taken as 9 or 10. The

amplitude of the disorder potential is damped to %50 of the Fermi energy when con-

sidering the effect of spacer thickness, however, including screening this amplitude is

further reduced to few percents. In light of this estimations the low mobility will be

presented by a modulation amplitude of V0/E0
F = 0.5, whereas high mobility corre-

sponds to V0/E0
F = 0.05. Therefore, we have 4 different combinations of the disorder

potential parameters yielding four different mobilities considering two sample widths,

as tabulated in table 4.2. The second important aspect of the disorder is the single im-

purity parameters, for low mobility set we choose Rg = 20 nm and γI = 0.3, whereas
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mobility mp (10 µm) mp (2 µm) V0/E0
F

low 19-20 5-6 0.5
intermediate 1 9-10 2-3 0.5
intermediate 2 19-20 5-6 0.05

high 9-10 2-3 0.05

Table 4.2 A qualitative comparison of the mobility in the presence of magnetic field also
taking into account self-consistent screening. Mobility also depends on the size of the sample
when screening is also considered.

for high mobility Rg = 10 nm and γI = 0.05 is set. Remember that, the range of the

single impurity is much less important than γI in determining the plateau width (see

sec. 4.3.1).
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Figure 4.12 Even-odd parity dependency of the Hall plateaus at high impu-
rity concentration. (a) corresponds to a “acceptor” doped wafer, whereas in
(b) the ionized impurities are positively charged.

Figure 4.11 summarizes our results considering above discussed mobility regimes

for two different sample widths. In Fig. 4.11a, we show the calculated Hall resistances

for a sample of 10 microns with the highest mobility (solid (black) line) and interme-

diate 1 mobility (broken (red) line). The solid line is the highest mobility since the

range of the fluctuations are at the order of 1 µm and the amplitude of the modulation

potential is five percent of the Fermi energy. The broken line presents the intermedi-

ate mobility considering a modulation amplitude of fifty percent. We observe that the

lower mobility wafer presents a larger quantized Hall plateau, which is now in com-
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plete agreement with the experimental results. Moreover, our calculation scheme is

free of localization assumptions in contrast to the known literature and we only con-

sidered a very limited level broadening, i.e. γI = 0.05. In fact our results also hold

for Dirac-delta Landau levels, however, for the sake of consistency we choose the

broadening parameters according to the selected disorder parameters. In Fig. 4.11c,

we show two curves for even lower mobilities, the solid line corresponds to the inter-

mediate 2 case, whereas the broken line is the lowest mobility considered here. The

potential fluctuation range (i.e. the modulation period) is chosen to present the low

mobility wafer. We again see that for the lowest mobility the quantized Hall plateau

is enlarged considerably from both edges of the plateau. These results explicitly show

that the quantized Hall plateaus become broader if one strongly modulates the elec-

tronic system by long range potential fluctuations, either by changing the range or the

amplitude of the modulation. Similar results are also obtained for a relatively narrower

sample 2d = 3 µm, Fig. 4.11b and 4.11d, however, we see that decreasing the range

of the potential fluctuation is more efficient in enlarging the quantized Hall plateaus

when compared to the effect of the amplitude of the modulation.

The last interesting investigation is on the parity of the modulation period, i.e.

whether mp is odd or even. Figure 4.12 presents the different behavior when consid-

ering even (a) or odd (b) periods. Here, all the disorder parameters are kept fixed,

other than the parity. We see that for the even parity the plateau is shifted towards

the high field edge, both for ν = 2 and 4, whereas for the odd parity the plateau is

enlarged from both sides. This tendency is also observed for the larger sample (not

shown here). We attribute this behavior again to the formation of the incompressible

strips, however, this time only to the one residing at the center of the sample, i.e. the

bulk incompressible strip. The picture is as follows: If the maxima of the modulation

potential is at the center of the sample, the incompressible strip is formed at a higher

magnetic field value, whereas, the edge incompressible strips become narrower at the

lower field side. Hence, due to the larger incompressible strip at the bulk of the sam-

ple the plateau is shifted to the higher field, in contrast, due to the narrower (compared
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to the unmodulated system) edge strips the plateau is cut off at higher fields. Since,

the edge incompressible strip becomes narrower than the extend of the wave func-

tion. For the odd parity, the edge incompressible strips become wider, therefore, the

plateau extends to the lower B fields. The enhancement at the high field edge results

from the two maximum in the proximity of the center. For a better visualization of the

incompressible strip distribution we suggest reader to look at Fig.2 of Ref.(Siddiki,

2007) and Fig.1 of Ref. (Siddiki, 2002). Such a shift of the quantized Hall plateaus is

also reported in the literature (Haug, 1982). We claim that, the shift due to the mod-

ulation parity change observed in our calculations overlap with their findings. Note

that in our calculations we only consider symmetric DOS, however, replacing a max-

ima with a minima at the confinement potential corresponds to the acceptor behavior

of the dopants. A systematic experimental investigation is suggested to understand

the underlying physical mechanism, where the system is doped with small number of

acceptors.

In summary, we tackled with the long standing and widely discussed question

of the effect of disorder on the quantized Hall plateaus. The distinguishing aspect of

our approach relies on the separate treatment of the long and short range of the disor-

der potential. We show that assuming Gaussian impurities is not sufficient to describe

long range potential fluctuations, however, is adequate to give a prescription in defin-

ing the density of states broadening and conductivities. The discrepancy in handling

the long range potential fluctuations is cured by the inclusion of a modulation potential

to the self-consistent calculations. We estimated the range of these fluctuations from

our analytical and numerical calculations considering the effect of dielectric spacer

and the screening of the 2DES. It is observed that spacer damps the short range fluc-

tuations effectively, whereas the direct Coulomb interaction is dominant in screening

the long range fluctuations. Utilizing the estimations of the range and the amplitude

of potential fluctuations, we classified mobility in four groups and calculated the Hall

resistances within the screening theory of the quantized Hall effect. We found that the

Hall plateaus are wider when decreasing the mobility, not surprisingly. However, the
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most important point of our theory is that, we do not consider any localization assump-

tions and can still obtain correct behavior of the plateau widths. We show that B = 0

and/or short range impurity defined mobility is not adequate to describe the actual mo-

bility at high magnetic fields, moreover, one has to include geometrical properties of

the sample at hand.



CHAPTER FIVE

EVANESCENT INCOMPRESSIBLE STRIPS AS ORIGIN OF THE

OBSERVED HALL RESISTANCE OVERSHOOT

5.1 Introduction

One of the most commonly used material characterization method is to measure

the resistance of the sample. The Hall resistivity is linear in B for a typical three-

dimensional materials, which is drastically altered at two-dimensional systems to a

stepwise behavior. This phenomenon is known as the integer quantized Hall effect

(IQHE) (Klitzing, 1980). However, non-monotonic anomalous peaks at the low B side

of the plateaus are also reported in many different materials and are discussed in a

fairly varying contexts (Richter, 1992; Ramvall, 1998; Griffin, 2007; Shlimak, 2005;

Shlimak, 2006). The non-monotonic increase of the Hall resistance is known as the

overshoot, and is usually attributed to impurity effects, similar to IQHE. Recently,

resistance overshoot is experimentally investigated in relatively narrow samples and

the results are discussed in the context of interaction induced incompressible strips

in a phenomenological manner (Sailer, 2010). We present our results that provide a

self-consistent calculation (Siddiki, 2004; Guven, 2003) scheme to explain the ob-

served resistance overshoot. First, we discuss the formation of the compressible and

incompressible strips an analytical description. We show that, under certain conditions

evanescent incompressible strips assuming different filling factors can co-exist and

contribute to the current, hence Hall resistance. Later, we calculate Hall resistances

within a local version of the Ohm’s law and numerically investigate the dependencies

of the overshoot on disorder and sample size. Finally, we predict that the resistance

overshoot can be manipulated by changing the edge profile of the system.

5.1.1 The Semi-classical Model

In this section we investigated the formation and deformation of the incompressible

strips within the frame work of Chklovskii et. al. and Siddiki et. al., respectively. The

58
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earlier work is constructed on the electrostatic equilibrium condition of the 2DEG in

the presence of an external B field. It is assumed that the 2DES resides on the z = 0

plane, confined by an electrostatic potential due to a homogeneous donor layer with

a constant density n0 and the electrons are depleted from the edges by an amount of

`d , by the virtue of metallic in-plane gates. Translation invariance is imposed in the y

direction. In this case, an electron density distribution of the form

nel(x) =
(

x− ld
x+ ld

)1/2

n0. (5.1.1)

It can be shown that, incompressible strip should form in the vicinity of xk, which

is determined by the condition k = 2πl2nel(xk), k being an integer. The incompress-

ible strip is electrostatically unstable if one neglects electron-electron interactions, the

stability condition yields a finite width of the strip given by

ak =
(

2κ∆E

π2e2 dnel(x)
dx |xk

)1/2

, (5.1.2)

where κ is the dielectric constant of the material and ∆E is determined by the single

particle energy gap. The gap can be either the Landau (h̄ωc) or Zeeman (g∗µBB) gap,

where ωc = eB/m is the cyclotron frequency and µB is the Bohr magneton together

with the effective g∗ factor. We specify the strength of the gap by α = g∗µBB/h̄ωc, if

the gap is due to Zeeman splitting; otherwise is given by 1-α . Note that, at Si/SiGe

hetero-structures an additional gap exists due to valley degeneracy. Although, the

above non-self-consistent scheme seems to be reasonable in handling the electrostatics

of the 2DES, numerical self-consistent calculations show that the Chklovskii picture

fails to describe the electron distribution (Oh et al., 1997; Siddiki et all., 2009). This

is due to the oversimplified assumptions of boundary conditions and essentially is

due to the fact that the 2DES is by no means a perfect metal, as considered at the

mentioned work. Even utilizing the above boundary conditions, self-consistency alters
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Figure 5.1 Analytically calculated incompressible widths
in units of a∗B (≈ 9.81 nm for GaAs). The Fermi wavelength
λF considering a typical density of 3×1015 m−2, horizontal
line. The shaded boxes indicate the quantized Hall interval,
whereas diagonally shaded region depicts the overshoot in-
terval. We set t = 7 a∗B and ld = 20a∗B, leading similar results
with the self-consistent calculations.

the estimated positions and the widths strongly (Siddiki, 2004). We will re-present the

self-consistency below. However, with a slight modification of the density distribution

inspired by the self-consistent calculations one can still obtain the widths that coincide

with the experimental findings (Siddiki, 2010). We describe the electron density by

nel(x) = (1− e−(x−ld)/t)n0, (5.1.3)

where t determines the width of the electron poor region in front of the metallic con-

tacts. The widths can be obtained as

ak =

√
4a∗Bα
πν0

t
e−(xk−ld)/t

, (5.1.4)
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Figure 5.2 The evolution of the incompressible strips as a
function of normalized lateral coordinate (horizontal axis)
and B field (vertical axis), considering ν = 2 dark (red) and
ν = 4 darker (blue). We set ld/d = 0.02, where d = 10 µm,
at default temperature Θd = kT/E0

F = 0.01. Inset depicts
the overlap region.

a∗B being the effective Bohr radius.

In Fig. 5.1, we show the calculated widths of the incompressible strips with

ν = 1..4, considering a fixed width of the electron poor region and an effective g∗,

enhanced by the exchange interactions. We observe that more than one incompress-

ible strip with different ν can co-exist below ν = 2, which we will reconsider their

evanescent properties later. For the moment, we would like to calculate the amount of

current confined to these strips. Note that, within the incompressible strips the drift

velocity (vd(x) ∝ E×B) is finite, whereas at the compressible strips it is zero, since

the Hall field EH(x) equals to zero, due to perfect screening. Then, the current den-

sity can be calculated via jy(x) = −enel(x)vd(x). Recall that, the electron density is

constant within the strip, whereas vd(x) is determined by the electrochemical poten-

tial difference between the source and drain contacts. Hence, one can write the total
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current carried by the strip k as

Ik =
∫ ak/2

−ak/2
jk
y(x)dx =

e
2π

keB
m

. (5.1.5)

Now to determine the Hall voltage, one should also know the local conductivities.

The longitudinal resistivity (or resistance if a square geometry is assumed) is given by

ρl(x) =
1(

σl(x)+σ2
H(x)/σl(x)

) , (5.1.6)

since the longitudinal conductivity σl(x) goes to zero at the incompressible strip (Ando,

1982) and Hall conductivity σH(x) = e2

h ν(x), the only contribution to the Hall voltage

comes from this region (Siddiki, 2004). The only unresolved problem is now to obtain

the quantized Hall voltage, which is not the case if k > 2 since it equals to

VH =
e2

h ∑
k

Ik/k, (5.1.7)

which is not quantized at all. Now we should reconsider the existence of more

than one incompressible strip assuming different integer filling factors. In fact, having

many incompressible strips is due to an artefact of the Thomas-Fermi approximation

which fails to describe the electronic system at hand (Suzuki, 1993; Siddiki, 2004).

If one considers the finite size of the wave-functions, together with the limitations of

the Fermi distribution function at small systems, one immediately notices that if the

incompressible strip becomes narrower than the Fermi wavelength it is no-longer a

perfect channel without backscattering, i.e. σl 6= 0. Hence, only the incompressible

strip having a width larger than the Fermi wavelength λF can carry current. In Fig. 5.1,

we also show the Fermi wavelength to distinguish the evanescent incompressible strips

(ak < λF ) from the well developed ones. Now we can say that, if there exists an in-

compressible strip larger than λF , the Hall potential is quantized. We denote these
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intervals by shaded areas in Fig. 5.1. If ak becomes smaller than the magnetic length,

then the system becomes fully classical and is simply described by the well known

Drude formalism (Siddiki, 2010). The interesting transition takes place when the con-

dition l < ak < λF is satisfied. In this situation, most of the current is flowing from

the evanescent incompressible strip, with some background current spread all over the

sample. In typical samples, due to the strong confinement at the edges or due to the

strong disorder potential fluctuations, these evanescent incompressible strips immedi-

ately vanish, just after the quantized Hall plateau disappears. However, there might

be cases where two or more of these evanescent strips survive and co-exist, satisfying

lb < ak < ak+1... < λF . Such a situation is also observed in Fig. 5.1, where ν = 2 and

ν = 3 incompressible strips co-exist. For this case the Hall resistance will be given by

RH =
h
e2 (1/3+ I2/I(1/2+1/3)), (5.1.8)

satisfying the current conservation, namely I = I2 + I3. The second term in the bracket

reflects the contribution to the current from the ν = 2 evanescent incompressible strip

and one can easily see that, the Hall resistance is higher than the quantized value of
h

3e2 . This is exactly the case of the resistance overshoot: it occurs at the lower B side

of the plateau and strongly depends on the system parameters like the Fermi wave-

length and geometry (edge profile) (Shlimak, 2005; Sailer, 2010). Having determined

the conditions to observe overshoot depending on the existence and properties of the

incompressible strips, next, we investigate overshoot within the framework of interac-

tion theory of the quantized Hall effect.

Fig. 5.2 depicts the calculated filling factor distribution as a function of nor-

malized spatial coordinate x/d and external field B expressed in units of Ωc/E0
F =

h̄ωc/E0
F , where E0

F is the Fermi energy at the center of the sample. The dark colored

croissant like areas highlight the distribution of the incompressible strips. One can see

that, two evanescent incompressible strips with different filling factors, namely ν = 2

and 4, co-exist in the interval 0.4 < B < 0.48. In the following, we will focus on such
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intervals to seek resistance overshoot.

Starting from the self-consistent quantities we calculate the current distribution

within the local Ohm’s law, relating the local electric field ~E(x,y) to the current density

~j(x,y) via ~E(x,y) = σ̂(x,y)~j(x,y). A typical current distribution is shown in Fig. 5.3

considering three characteristic B field values, where a) most of the current is confined

to the inner strip b) the current is shared by both strips, however, flows mainly from

the inner strip and c) the current is almost equally confined to both strips. We would

expect to have resistance overshoot in cases b) and c), whereas a) would present the

classical Hall effect.

We depict the calculated Hall resistance as a function of B in Fig. 5.4, here we

consider two different depletion length and calculations are performed at various R.

One can clearly see the overshoot at the expected B intervals. The disorder potential

leads to an increase in magnitude of the DOS peak. Thus, the energy narrows between

two Landau levels. If R increases, the peaks disappear. So, electron distribution dis-

appears in the center of the sample and there is a unique incompressible strip at each

edge as shown in Fig. 5.4.

We finalize our discussion, by presenting the effects of the impurity strength on

the overshoot in Fig. 5.5. Remarkably, the disorder has a minor influence on the am-

plitude of the overshoot, which is seen by the weak dependence of the peak depending

on γI . This is mainly due to the fact that, the impurities only shrink the widths of the

evanescent incompressible strips via level broadening. However, it’s effect negligible

when compared to the role of temperature. It is important to note that, we did not

include the long-range potential variations to our screening calculations, which are

known to be influential in determining the position and stability of the quantized Hall

plateaus (Siddiki, 2007). The effects resulting from long-range fluctuations is an open

question, which we would like to attack in the near future.
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To summarize, we have shown that the resistance overshoot can be obtained

within the framework of self-consistent screening theory. This calculation scheme al-

lows us to investigate the effects of various experimental parameters on the overshoot.

It is observed that, the overshoot depends on R, in contrast, is immune to short-range

impurity scattering. From our sample width dependent calculations, we conclude that

if the edge effects are dominant the overshoot is enhanced. Explicitly, for the large

samples disorder effects become more important and overshoot duo to edge effects

tends to disappear.

5.2 Predictions and Conclusions

In the light of above results and discussions we predict that, for the smooth edge

defined samples the overshoot effect should be enhanced. The reason is: To have co-

existing evanescent incompressible strips the condition lb < ak,ak+1 < λF should be

satisfied, this can only happen if the electron density varies slowly, so that the deriva-

tive in Eq. 5.1.4 becomes small. Hence the strip becomes large. The experimental test

can be as follows, one can define two narrow (e.g. 2d ∼ 10 µm) Hall bars residing

parallel to each other, where one of the Hall bars is defined by shallow etching and

the other by deep etching. Since, in principle, all the intrinsic properties of the ma-

terial would be the same for both samples the observed difference at the overshoots

(enhanced at the shallow sample) would point out the effects due to the formation of

wide evanescent incompressible strips. A gate defined sample can be utilized as well,

similar to the ones reported in the literature (Siddiki, 2009; Horas, 2008).
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ing default temperature and same parameters
in Fig. 5.2.



67

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 R = 20 nm
 R = 40 nm

 

 

R
H
(h

/e
2
)

B( c/E
0
F)

a)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 R = 20 nm
 R = 40 nm
 R = 80 nm  

 

R
H
(h

/e
2
)

B( c/E
0
F)

b)
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Figure 5.5 Hall resistance versus magnetic field, calculated
for different level broadening γI considering an 4 µm wide
sample at default temperature and depletion length.



CHAPTER SIX

CONCLUSION

The main aim of this thesis is to investigate the effect of disorder and overshoot-

ing in the two-dimensional electron system under the QHE conditions. The calcula-

tions were done with the semi-classical model Thomas Fermi Approximation, which

is much simpler than the corresponding quantum calculations.

This thesis includes two main parts. In the first part of the thesis, we have in-

vestigated the effect of disorder potential on the integer quantized Hall effect within

the screening theory, systematically. The long (& 1µm ) and the short (few hundred

nanometers) range potential fluctuations are examined separately. Short range part of

the single impurity potential is used to define the conductivity tensor elements within

the self-consistent Born approximation. The long range part is treated self-consistently

solving the Poisson and Schrödinger equations at the Hartree level. Using the simple,

however, fundamental Thomas-Fermi screening, we find that the long range disorder

potential is well screened. While, the short range part is approximately unaffected

by screening and is suitable to define the mobility at vanishing and finite magnetic

fields. In light of these range dependencies we discuss the extend of the quantized

Hall plateaus considering the “mobility” of the wafer and the width of the sample,

by re-formulating the Ohm’s law at low temperatures and high magnetic fields. The

obtained results could be summarized as follows, our results is that the plateau widths

mainly depend on the long range fluctuations of the disorder, whereas the importance

of density of states broadening is less pronounced and even is predominantly sup-

pressed. Second one is that we demonstrate that the widths of the quantized Hall

plateaus increase with increasing disorder without any localization assumptions.

In the second part of our study, we use a semi-analytical model, based on the

screening theory of the Integer Quantized Hall Effect (IQHE) to investigate the sample

width, depletion length and disorder effects on the form of the anomalous, i.e. over-

shoot Hall resistance RH , under varying magnetic field. The overshoot of the quantized

68
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Hall resistance is observed at low magnetic field edge of the plateaus. However, if the

magnetic field increases further, RH decreases to its normal value. The effects of the

sample width, disorder strength and magnetic field on the overshoot peaks are inves-

tigated in detail. The obtained results could be summarized as follows: First one of

these results show that the overshoot resistance as a function of magnetic field depends

strongly on the edge electrostatics of the sample. From our sample width dependent

calculations, we conclude that if the edge effects are dominant the overshoot is en-

hanced. Explicitly, for the large samples disorder effects become more important and

overshoot tends to disappear.

As a summary of these investigations were dedicated to search the role of the

disorder effect on a two dimensional electron gas in the presence of a strong perpen-

dicular magnetic fields by using Thomas Fermi Approximation and to analyze the

overshoot resistance for the GaAs/GaAlAs heterojunction with regard to the disorder,

magnetic field and sample width effects. The distinguishing part of these works re-

lies on the fact that, without any complicated numerical or analytical methods we can

obtain the integer quantized Hall plateaus in a good qualitative agreement with the

experiments.
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1761û1764.
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Güven, K., Gerhardts, R. R., Kaya, I. I., Sağol, B. E., & Nachtwei, G. (2002). Two-
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APPENDIX A

A.1 Hermite Polynomials

A.1.1 Generating function

The Hermite polynomials Arfken (1995), Hn(x), may be defined by the generating

function

g(x, t) = e−t2+2tx =
∞

∑
n=0

Hn(x)
tn

n!
(A.1.1)

From the generating function we find that the Hermite polynomials satisfy the re-

currence relations

Hn+1(x) = 2xHn(x)−2nHn−1(x) (A.1.2)

and

H
′
n(x) = 2nHn−1(x). (A.1.3)

From above two relations follow differential equation for Hermite Polynomials

H
′′
n (x)−2nH

′
n(x)+2nHn(x). (A.1.4)

The first five Hermite polynomials are
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H0(x) = 0 (A.1.5)

H1(x) = 2x (A.1.6)

H2(x) = 4x2−2 (A.1.7)

H3(x) = 8x3−12x (A.1.8)

H4(x) = 16x4−48x2 +12 (A.1.9)

A.1.2 Another formalism

Differentiation of the generating function n times with respect to t and then setting

t = 0 yields

Hn(x) = (−1)nex2 dn

dxn (e−x2
) (A.1.10)

Hermite polynomial Hn(x) in series form is

Hn(x) = ex2/2(x− d
dx

)e−x2/2 (A.1.11)
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Another operator representation of Hermite polynomial is

Hn(x) =
[n/2]

∑
s0

(−1)s(2x)n−2s n!
(n−2s)!s!

(A.1.12)



82

APPENDIX B

B.2 The Fourier Expansion of the Coulomb Potential

V (−→q ,z) =
∫

d−→r ei−→q −→r
N

∑
j=1

e2/κ√
(−→r −−→r j + z2)

|−−−→q=2D (B.2.1)

1√
(−→r −−→r j + z2)

=
2

(2π)2

∫ d
−→
Q eiQ(−→r −−→r j )+zẑ

Q2 (B.2.2)

2
(2π)2

∫
dQz

∫ d
−→
Q eiQ(−→r −−→r j )eiQz

Q2
H +Q2

z
(B.2.3)

V (−→q ,z) =
N

∑
j=1

e2/κ
∫

QK

∫
dzei(

−→
QH−−→q )−→r e−iQH

−→r j (B.2.4)

2
(2π)2

∫
dQzeiQzz 1

Q2
H +Q2

z
(B.2.5)

=
N

∑
j=1

e2

κ

∫ ∞

0
dQz

eiQzz

(q2 +Q2
z )

(B.2.6)

V (−→q ,z) =
2πe2

κ
e−|q|z

q
NS(−→q )

πe−|q|z

q
(B.2.7)
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NS(q) =
N

∑
j=1

e−i−→q −→r j (B.2.8)

V (−→q ,z) =
2πe2e−|q|z

κq
(

N

∑
j=1

(e−i
−→
q−→r j )) (B.2.9)
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APPENDIX C

C.3 In-plane Charges and Gates

We assume a two-dimensional split-gate structure lies the interface between two

semiconductors which occupy the half spaces z > 0 and z < 0 with translation invari-

ance in the y-direction (Güven, & Gerhardts, 2003). Two semi-infinite metal gates

extended at x < −d and x > d with constant potentials VL and VR, respectively and

the Hall bar is defined along the y-direction on the x− y plane and in the presence

of a magnetic field applied along the z-direction. Thus, the charge density is only a

function of x and z and has a form ρ(x)δ (z). The surface charge density ρ(x) given

by;

ρ(x) = e(nD−nel(x)), (C.3.1)

Here, nD is positively charged particles and nel is surface densities of electrons. Al-

though the system is symmetric around x = 0, we can obtain an asymmetric charge

density ρ(x) by applying VL−VR 6= 0 between the metal gates. The electrostatic po-

tential V (x,z) is obtained by solving 2D Laplace equation

∇2
x,zV (x,z) = 0, (C.3.2)

using the theory of complex functions as follows. The electrostatic potential, first one

is that the electrostatic potential should be VL and VR, in the regions of the metal gates.

Second one is that the inside the Hall bar, the normal derivative of the electrostatic

potential should be given by the surface charge density ρ(x).

The boundary conditions are defined,

V (x,z = 0) =





VL x <−d,

VR x > d.
(C.3.3)
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The potential V (x,z) depends on the boundary condition resulting from the displace-

ment field of the charge density ρ(x) for |x|< d,

κ>
∂V
∂ z

(x,z = 0+)−κ<
∂V
∂ z

(x,z =−0+) =−4πρ(x), (C.3.4)

and V (x,0) = 0 for |x| > d. Using the conventional theory of analytic functions, one

writes V (x,z) as the imaginary part of a holomorphic function F(ζ ) in the complex

plane, V (x,z) = ImF(ζ ) and ζ = x+ iz.

∂V (x,z)
∂x

=
∂V
∂ζ

= Im
(

dF
dζ

)
(C.3.5)

∂V
∂ z

= i
∂V
∂ζ

= Im
[

i
∂F
∂ζ

]

= Im
[

i
(

Re
(

∂F
∂ζ

)
+ Im

(
∂F
∂ζ

))]

∂V
∂ z

= Re
(

∂F
∂ζ

)
(C.3.6)

where F(ζ ) satisfies the following boundary conditions;

Re
dF
dζ

|
ζ=x+i0+

= r(x) |x|< d, (C.3.7)

Im
dF
dζ

|
ζ=x+i0−

= 0 |x|> d, (C.3.8)

and r(x) is defined as in the Equation C.3.4.

κ>
∂V
∂ z

(x,z)+κ<
∂V
∂ z

(x,z) = −4πρ(x),

(κ> +κ<)
∂V
∂ z

(x,z) = −4πρ(x),

∂V
∂ z

(x,z) = − 4π
κ> +κ<

ρ(x). (C.3.9)
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Here,

κ̄ =
κ> +κ<

2
⇒ ∂V2

∂z
(x,z) =−2π

κ̄
ρ(x) = r(x). (C.3.10)

and κ̄ is the average dielectric constant. The above boundary conditions define the

discontinuity of the auxiliary function which has an identical solution,

h(ζ ) = i
√

d2−ζ 2 ∂F
∂ζ

, (C.3.11)

along the real axis and gives rise to

Imh(x+ i0+) =





r(x)
√

d2− x2 f or |x|< d,

0 f or |x|> d,
(C.3.12)

where
√

d2−ζ 2 is holomorphic, except for the branch cut (|x| > d). In all of space,

this function can be obtained using the Schwartz integral as,

h(ζ ) =
1
π

∞∫

−∞

dx
Imh(x+ i0+)

x−ζ
+ c =

1
π

d∫

−d

dx
r(x)

√
d2− x2

x−ζ
+ c, (C.3.13)

with real constant of integration c. Equation C.3.11 and Equation C.3.13 are equal to

each other. The solution of V2(x) is obtained;

i
√

d2−ζ 2(
∂F
∂ζ

) =
1
π

d∫

−d

dxr(x)

√
d2− x2

x−ζ
+ c, (C.3.14)

and can be written as,

F =−i





1
π

d∫

−d

dx′r(x′)K(x,x′)+

(
c
∫

dζ
1√

d2−ζ 2
+ c1

)

 . (C.3.15)

Thus, the electrostatic potential can be written in the form,

V (x) = VH(x)+VG(x)+VD(x), (C.3.16)
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VH(x,z) = Im(F(ζ )) ⇒ VH(x) =− 1
π

d∫

−d

dx′r(x′)K(x,x′)

(C.3.17)

K(x,x′) = ln

∣∣∣∣∣

√
(d2− x2)(d2− x′2)+d2− xx′

(x− x′)d

∣∣∣∣∣ .

The Hartree potential VH(x) is uniquely determined by Equation C.3.17. Where the

kernel K(x,x′) solves Poisson’s equation under the given boundary conditions. The

donor and the Hartree potentials vanish if r(x) = 0, thus we obtain the gate potential

as;

V = c
∫

dζ
1√

d2−ζ 2
+ c1 = VG, (C.3.18)

∫
dζ

1√
d2−ζ 2

= sin−1(x/d) ⇒ VG = c · sin−1(x/d)+ c1. (C.3.19)

According to the boundary conditions, one determines the real constants to be,

VL =−c
π
2

+ c1 and VR = c
π
2

+ c2, (C.3.20)

with, c1 = 1
2(VL +VR) and c2 = 1

π (VR −VL). Therefore, the gate potential and the

energy are determined by these constants;

VG(x) =
1
π

(VR−VL)sin−1(
x
d
)+

1
2
(VL +VR). (C.3.21)

Assuming VG = 0,

VD +VH =− 1
π

d∫

−d

dx′
(

2πe2

κ̄

)
(nD−nel(x′))K(x,x′), (C.3.22)
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Donor potential is obtained as,

VD = − 1
π

d∫

−d

dx′(
2πe2nD

κ̄
K(x,x′) =−2e2

κ̄
nD

d∫

−d

dx′K(x,x′),

= −2πe2nD

κ̄

(
d

√
1−

( x
d

)2
)

=−E0

√
1−

( x
d

)2
. (C.3.23)

where E0 is the pinch-off energy and defined as (2πe2nDd)/(κ̄) = E0. This poten-

tial results from the positive background charges and has an elliptic shape with the

minimum value at x = 0.
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ABBREVIATIONS and SYMBOLS

QHE Quantum Hall Effect

IQHE Integer Quantum Hall Effect

2DEG Two-dimensional electron gas

LL(s) Landau level(s)

IS(s) Incompressible strip(s)

DOS Density of states

LDOS Local Density of states

TFA Thomas Fermi Approximation

3D Three Dimensional

QHP Quantum Hall Plateu

E Electric Field

m0 Electron mass

m∗ Effective electron mass

mp Modulation period

µ∗ Electrochemical potential

Vbg Background potential

VH Hall potential

Vimp Impurity potential

Vd Drift Velocity

ν Filling Factor

a∗B = κ̄ h̄2/(me2) Effective Bohr radius

a0 = a∗B/2 Screening length

ak = The width of the incompressible stripes

EF Fermi energy

E0 = 2πe2n0d/κ̄ Pinch-off energy

EN Energy of the Nth Landau level

NI The number density of the impurities
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ΓN Width of the Landau level

`B =
√

h̄/mωc Magnetic length

ωc = eB/mc Cyclotron frequency

τ The momentum relaxation time

γI the impurity strength




