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NONLINEAR DYNAMICAL STATE FEEDBACK DESIGN FOR TRACKING 

AND CHAOTIFICATION 

ABSTRACT 

 

The thesis develops methods and tools; i) for designing controllers which work 

well under real-time and real environmental conditions, ii) for designing and 

updating controllers online directly from the plant’s input-output measurement data 

for tracking problems and iii) for designing controllers modifying the asymptotical 

behaviors of the plants in order to provide the ability of tracking the chaotic 

trajectories. One of the main contributions of the thesis is the implementation of a 

microcontroller based low-cost real-time simulation-emulation platform managed by 

a graphical user interface for controller design-test-and-redesign. The platform 

provides a set of novel real-time operating modes as well as the well-known real-

time simulation modes. The second main contribution is the design of a novel 

nonlinear dynamical adaptive control scheme based on the introduced error 

minimization learning algorithm using input-output measurement data. The third 

contribution is the development of a new chaotification method based on dynamical 

state feedback which is valid for any input feedback linearizable nonlinear control 

system including linear controllable ones as special cases. The proposed 

chaotification method is demonstrated by experimentation to be very efficient in 

terms of the consumed energy in liquid mixing actuated by a chaotified DC motor. 

 

Keywords: Real-time simulation, Controller design, Nonlinear control, Adaptive 

control, Dynamical state feedback control, Chaotification. 
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YÖRÜNGE İZLEME VE KAOTİKLEŞTİRME İÇİN DOĞRUSAL 

OLMAYAN DİNAMİK DURUM GERİBESLEME TASARIMI  

ÖZ 

 

Tez; i) gerçek zaman ve gerçek çevre şartları altında iyi çalışan denetleyici 

tasarımı, ii) yörünge izleme problemleri için doğrudan sistem giriş-çıkış ölçüm 

verilerine dayalı denetleyici tasarımı ve çevrim-içi güncellenmesi ve iii) kaotik 

yörüngeleri izleme yeteneği kazandırmak için sistemin asimptotik davranışlarını 

değiştiren denetleyicilerin tasarımı için yöntemler ve araçlar geliştirmiştir. Tezin ana 

katkılarından birincisi, denetleyici tasarım-test-yeniden-tasarım işlemi için görsel bir 

kullanıcı ara yüzü tarafından yönetilen mikrodenetleyici tabanlı düşük-maliyetli bir 

gerçek-zaman benzetim platformu gerçekleştirilmesidir. Platform, iyi bilinen gerçek 

zamanlı benzetim çalışma biçimlerinin yanında, yeni gerçek zamanlı benzetim 

çalışma biçimleri de sağlamaktadır. İkinci ana katkı, önerilen hata enazlama öğrenme 

algoritmasına dayalı olarak giriş-çıkış ölçüm verilerini kullanarak çalışan yeni bir 

doğrusal olmayan dinamik uyarlamalı denetleyici tasarım yönteminin 

geliştirilmesidir. Üçüncü ana katkı, doğrusal denetlenebilir olanlar özel durum olmak 

üzere giriş geri-beslemesi ile doğrusallaştırılabilen herhangi bir doğrusal olmayan 

sistem için geçerli olan dinamik durum geri-besleme tabanlı yeni bir kaotikleştirme 

yöntemi geliştirilmesidir. Önerilen kaotikleştirme yönteminin, kaotikleştirilen bir DC 

motor tarafından sürülen sıvı karıştırma işleminde tüketilen enerji açısından çok 

verimli olduğu deneysel olarak gösterilmiştir. 

 

Anahtar sözcükler: Gerçek zaman benzetimi, Denetleyici tasarımı, Doğrusal 

olmayan denetleme, Uyarlanır denetleme, Dinamik durum geri-besleme denetimi, 

Kaotikleştirme. 
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1 

CHAPTER ONE 

INTRODUCTION 

 

Control is a problem of finding a suitable control input deriving a given system, 

say plant, to have a desired behavior (Bolton, 2004; Dorf & Bishop, 2008; Doyle et 

al., 1992; Goodwin et al., 2001; Mandal, 2006). A general control system briefly 

consists of a plant, a controller, sensors and actuators as depicted in Figure 1.1. The 

feedback control system realizations require designing and implementing a controller 

which produces the necessary control in terms of the feed-backed actual (plant) 

output and a reference signal representing the desired (plant) output.  

 

Controller

Actuators

Sensors
Plant

 
Figure 1.1 General Control System 

 

Regulation, tracking, stabilization and identification are four fundamental 

problems of control systems. (Chen & Narendra, 2004; Fradkov, 1994; Isidori, 1995; 

Levin & Narendra, 1993; Narendra & Mukhopadhyay, 1997). Regulation, which is 

known historically the oldest control problem, is defined as keeping the actual output 

of the system as constant at a set-point (Chen & Narendra, 2004; Isidori, 1995; 

Landau & Zito 2006). Tracking is a problem of maintaining the actual output of the 

control system close to a (reference) trajectory (Boyd & Barratt, 1991; Fradkov & 

Pogromsky, 1999; Isidori, 1995; Nagrath & Gopal, 2006; Sanner & Slotine, 1992). 

Stabilization is applied to obtain a stable closed loop dynamics so forcing the system 

trajectory to an attractor, e.g. to an equilibrium point as in the regulation and to a 

non-constant trajectory as in the tracking (Isidori, 1995; Isidori & Byrnes, 1990; 

Khalil, 1996; Levin & Narendra, 1993). Designing a controller to meet the 

mentioned control goals requires having a reasonable model for the plant which is 

obtained by system identification. Identification is, indeed, a system representation 
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problem which might be tackled in many ways such as finding a state model or an 

input-output relationship fitting the measured input-output data or a model obeying 

physical laws governing the dynamics (Landau & Zito, 2006; Ljung, 1999). 

  

To tackle the outlined control problems which may be defined in the linear or in 

the nonlinear settings and also may be subject to the plant parameter variations and 

noisy environmental conditions, a vast amount of control design methods including 

adaptive and robust ones is developed in the literature (Abdallah et al., 1991; 

Ackermann & Blue, 2002; Astrom & Hagglund, 1995; Astrom & Wittenmark, 1994; 

Doyle, 1983; Dullerud & Paganini, 2000; Hedrick & Girard, 2005; Khalil, 1996; 

Lewis et al., 2004; Lin, 2007; Sastry & Bodson, 1989; Slotine, 1988; Slotine & Li, 

1991; Zhou et al., 1996). However, there is a growing need in developing control 

design methods which perform, in a way better than the conventional ones, for highly 

nonlinear dynamical systems under the model and parameter uncertainties about the 

plant and its environment. One of the common approaches to deal with these 

modeling difficulties due to changes in environment or aging is to use input-output 

data based adaptive controller design methods. On the other hand, nonlinear 

dynamics, in particular, chaotic ones are observed to be useful in some real control 

engineering applications (Fradkov & Evans, 2005; Ott, 1993; Ottino & Wiggins, 

2004; Pecora & Carroll, 1990). So, modifying the asymptotical behavior of a control 

system to a desired chaotic oscillation, that is the chaotification of the control system, 

as a preferred solution for certain control applications in contrast to driving systems 

towards stable equilibrium or, in some cases, limit cycle dynamics provides new 

potentials to control systems area (Chen, 1999; Chen & Dong, 1993; Ditto et al., 

1990; Fradkov & Evans, 2005; Fradkov & Pogromsky, 1999; Morgül & Solak, 1996; 

Vanecek & Celikovsky, 1994; Wang & Chen, 2000; Wang et al., 2000; Zhang et al., 

2004). 

      

In the above control systems perspective, this thesis focuses on the following 

three issues: i) designing controllers which work well under real-time and real 

environmental conditions, ii) designing and updating controllers online directly from 

the plant’s input-output measurement data for tracking problems and iii) designing 



 

 

3

controllers modifying the asymptotical behaviors of the plants in order to provide the 

ability of tracking the chaotic trajectories. To address these issues, the thesis 

develops i) a new real-time simulation/emulation design, test and redesign platform, 

ii) a new input-output data based nonlinear dynamical adaptive controller design 

algorithm, and iii) a new chaotification method based on dynamical state feedback 

which is valid for any input feedback linearizable nonlinear control system including 

linear controllable ones as special cases. The three main contributions of the thesis 

are described in the sequel. 

 

Real time design, test and redesign platform: The design of a controller working 

well for a given real plant in a real environment, which is indeed the ultimate goal of 

control system design, needs the consideration of the real behavior of the plant under 

the real operating conditions (Betin et al., 2007; Güvenç & Güvenç, 2002; Keel et al., 

2003; Lin, 1997; Mehta & Chiasson, 1998; Pellegrinetti, & Bentsman, 1996; 

Rodriguez & Emadi, 2007; Yamamoto et al., 2009). Such a controller design 

problem can be attempted to be solved by examining the simulated controller on the 

simulated plant under the simulated operating conditions (Boyd, & Barratt 1991; 

Goodwin et al., 2001) in one extreme case or by testing and tuning the controller 

hardware on the real plant under the real environment (Astrom and Hagglund, 1995; 

Ogata, 1994, 1997; Ziegler & Nichols, 1942) in the other extreme case. Testing the 

proposed controllers’ performance on the simulated or real plant is followed by a 

redesigning or parameter tuning process performed offline or online. Both 

approaches have its own advantages/disadvantages and also difficulties for 

experimentation. For most of the cases, examining the controller candidates directly 

on the real plant may not be possible in the laboratory environment or might be 

dangerous due to possible damages caused (Bishop, 2008; Zeigler & Kim, 1993). On 

the other hand, mimicking the real plant in real-time and in real environmental 

conditions especially together with its analog/digital interface units is not only 

complicated in software simulations but also it, with a great possibility, yields 

unreliable simulators which are highly sensitive on the unavoidable modeling errors 

occurred at each simulated unit (Bacic, 2005; Maclay, 1997). The developed 

Controller-Design-Test-Redesign-Platform (CDTRP) which consists of a simulator 
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together with a software manager in PC, i.e. Graphical User Interface (GUI), 

microcontroller based emulator and a hardware peripheral unit is intended to have 

the advantages of using simulated or emulated plants in the controller design and also 

of testing the candidate (simulated, emulated or real) controllers on the almost real 

operating conditions. The CDTRP platform is developed according to a controller 

design-test-redesign methodology which can be stated as to provide a high level of 

flexibility of choosing and testing controller and plant models from a wide variety by 

the simulator unit in the early stages of the controller design and then to create 

environmental conditions as close as possible to the real world by the emulator and 

peripheral units in the final stage of the controller design process. 

 

Simulation of control systems is preferred, in general, i) for understanding the 

behavior of the plant together with its actuator and sensory devices based on their 

identified models obtained beforehand, i.e. for the analysis, and ii) for testing the 

designed controllers if the design specification are met, i.e. for the synthesis. In the 

controller synthesis case which is the main concern in this chapter, testing the 

controllers is followed by a redesign and/or tuning procedure. Depending on the 

implementation of the controller, plant and peripheral unit as simulation, emulation 

or real hardware, the developed platform CDTRP can be operated in 24 different real 

time operation modes (See Tables 3.1-3.) which are also called as real time 

simulation modes meaning the same thing throughout this thesis. The simulator and 

emulator in all of the 24 modes of CDTRP are designed for performing real-time 

simulations, however they can be run faster or slower for different purposes; e.g. fast 

running plant emulator or simulator can be used for model reference adaptive 

control. So, the simulation modes that can be realized in the platform are not 

restricted to the mentioned 24 real time modes. Some of the real time simulation 

modes correspond to the well-known “hardware-in-the-loop simulation” (Dufour et 

al., 2007; Facchinetti & Mauri, 2009; Hanselmann, 1996; Isermann et al., 1999; Li et 

al., 2006; Lu et al., 2007; Steurer et al., 2009) where the controller is realized as 

hardware and the plant is implemented in the PC or in the emulator (See Tables 3.1-

3.). On the other hand, some of the other modes correspond to the well-known 

“control prototyping” and “software-in-the-loop simulation” (Isermann et al., 1999) 
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both simulate the controller in the PC but differ from each other in the plant part; the 

first one is the real and the second is implemented in the PC (See Tables 3.1-3.). 

  

CDTRP can be used i) for the design-test-redesign of the controllers under the 

framework of a chosen specific controller design method, such as an adaptive or 

robust method or else, ii) for comparison of the performances of the different 

controller design methods, techniques and algorithms on the simulated, emulated or 

real plants with the emphasis of the controller design in real-time and real 

environment, so supporting the selection of the best controller for a specific 

applications, on the other hand serving as a test-bed for researchers in examining 

their immature controller design method in its development phase, iii) for 

verification and validation of a plant-model (Balcı, 2003; Özer et al., 2004; Sargent, 

2004; Smith & Doyle, 1992) based on the simulated and emulated plants with the 

emphasis running in the real-time and in the real environment, iv) for controller 

design requiring a parameter training procedure based on the measurements and also 

calculations on an emulated (identified) plant model as in done artificial neural 

networks based controller design methods (Fukuda & Shibata, 1992; Li et al., 2006; 

Narendra, 1996; Spooner et al., 2002; Suykens et al, 1996), and v) for low cost real 

time implementation of control systems based on the benchmark plants which are of 

educational value but hard or impossible to be realized in an educational laboratory 

(Şahin et al., 2009). 

 

Similar real-time simulation platforms have been realized in the literature (Betin 

et al., 2007; Facchinetti & Mauri, 2009; Mehta & Chiasson, 1998; Rodriguez & 

Emadi, 2007; Tarte et al., 2006; Wang et al., 2000), however; i) they are not 

dedicated to be a general purpose design-test-redesign controller platform, ii) they 

are restricted either to a specific control application, e.g. robot, specific electrical 

motors, pantograph or dynamometer or to a certain type simulation mode such as 

software-in-the-loop or hardware-in-the-loop, iii) none of them possesses a (real 

world) hardware peripheral unit which comprises all of the (real) analog and digital 

actuators, sensory devices, the external disturbance, parameter perturbation signal 

derivers and analog/digital controller hardware components, so they have the ability 
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to recreate a real environment in a more restricted sense than CDTRP, iv) the 

frequency limits for the real time simulation modes realized by these platforms have 

not been reported in contrast to the CDTRP, and v) they do not have such a GUI unit 

capable of monitoring and controlling of the overall simulation platform that the 

CDTRP possesses. 

 

Learning algorithms for adaptive nonlinear dynamical controller design: 

Adaptive control is an attractive area due to its capability of producing efficient 

solutions to nonlinear control problems. Flight control, motor control, and process 

control are among the numerous applications to be mentioned (Astolfi et al., 2008; 

Aseltine et al., 1958; Astrom & Wittenmark, 1994, 1997; Blanchini et al., 2009; 

Ioannou & Sun, 1996; Khalil, 1996; Kokotovic, 1992; Krener, 2003; Krstic et al., 

1992; Krstic et al., 1994; Lavretsky, 2009; Lewis et al., 2004; Narendra & 

Annaswamy, 1989; Narendra & Venkataraman, 1995; Pan & Başar, 1998; 

Salomonsson et al, 2008; Sastry, 1999;  Sastry & Bodson, 1989; Sastry & Isidori, 

1989; Seto et al., 1994; Tang et al., 2009; Wu et al., 2007). 

 

The adaptive control is a control method where the controller parameters are 

changed in an online fashion according to the changes in the plant and/or 

environment. Adaptive control methods can be categorized into two groups: i) direct 

methods and ii) indirect methods (Astrom, 1987; Astrom & Wittenmark, 1994; Data 

& Ioannou, 1994; Guo & Chen, 1991; Krstic et al., 1994; Middleton et al., 1988; 

Narendra & Kudva, 1974; Narendra & Venkataraman, 1995; Sastry & Bodson, 1989; 

Slotine & Li, 1991; Wittenmark, 1995). Controller parameters in the direct methods 

are changed as a function of the output of the plant. Gain scheduling and Model 

Reference Adaptive Control (MRAS) are examples for direct control. In MRAS, 

there is also a reference model so that the controller parameters are changed as a 

function of its output which is, in fact, desired to be tracked by the control system in 

an adaptive way. On the other hand, the controller parameters in the indirect methods 

are changed in accordance with the plant parameters which are estimated by certain 

techniques. Self tuning regulator and dual control are examples for indirect methods. 
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In any kind of adaptive control, the controller becomes nonlinear and/or time-

varying even if the plant and the chosen model for controller are linear and time-

invariant. An adaptive control system has two loops: i) the feedback loop ii) the 

controller parameter calculation loop. In the latter loop, the controller parameters are 

updated in accordance with plant output, controller output and reference input 

(Astrom, 1987; Astrom & Wittenmark, 1980, 1994, 1997; Karacan et al., 1997; 

Kosmatopoulos, 2008; Krstic et al., 1994; Lee et al., 2001; Middleton et al., 1988; 

Narendra & Balakrishnan, 1994; Narendra & Kudva, 1974; Narendra & 

Venkataraman, 1995; Sastry & Bodson, 1989; Sen & Pena, 1997; Slotine & Li, 

1991; Pan & Başar, 1998; Tang et al., 2009; Wang & Lee, 1988; Widrow et al., 

1993; Widrow & Plett, 1996; Wu et al., 2007; Yang & Huang, 1992). 

  

In this thesis, a new input-output data based nonlinear dynamical adaptive 

controller design method is developed. The developed adaptive control algorithm, 

which employs ARMA and NARMA input-output models both for plant and the 

closed-loop system consisting of plant and controller, is suitable to run online based 

on measurement data. In the linear case, it can be viewed as an algorithm solving 

Diophantine equation in real-time using data measured from the plant not a model of 

the plant (Astrom, 1987; Astrom & Wittenmark, 1994). The proposed learning 

algorithm for adaptive control has the possibility of implementing it as an Artificial 

Neural Network (ANN) choosing appropriate basis functions in NARMA models 

(Chen & Narendra, 2001, 2003; Ge et al., 1999; Ge & Wang, 2002; Huang et al., 

2007; Levin & Narendra, 1996; Lin & Shen, 2006; Sanner & Slotine, 1992; Zhang et 

al., 1999). As opposed to the inverse system based ANN controllers, it attempts to 

find a closed loop system to possess a desired behavior rather than attempting to find 

an inverse of the plant yielding a unity closed loop system. 

 

   The developed adaptive control scheme defines a kind of Model Reference 

Adaptive Control (MRAC) when the desired output of the plant is provided by a 

stable reference model and the controller parameters are updated directly based on 

the measured plant outputs in real-time without taking into account previous 

measurements. On the other hand, it defines a self-tuning adaptive control when the 
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measured plant input-outputs within a chosen time window are first used for 

identifying a plant model and then for updating the controller parameters not at each 

time but at the sampled times with sampling period not less than the window length 

used for identification. 

    

Considering wide interest in Proportional Integral Derivative (PID) controllers, a 

special version of the introduced adaptive control method is also developed for 

determining and/or tuning PID parameters. The developed adaptive nonlinear 

dynamical controllers, in particular PID controller, are designed and tested in the 

CDTRP and also is applied for controlling a real DC motor. In the literature, finding 

PID parameters (Astrom & Hagglund, 2004; Baek & Kuc, 1997; Benaskeur & 

Desbiens, 2002; Cao et al., 2008; Galotto et al., 2007; Liu & Daley, 2000; Omatu & 

Yoshioka, 1997; Skoczowski et al., 2005; Toscano, 2005; Yamamoto et al., 2009) 

and controlling real DC motor (Baek & Kuc, 1997; Cao et al., 2008; Mehta & 

Chiasson, 1998; Salomonsson et al, 2008) issues are still attractive areas. 

 

The developed adaptive control scheme is suitable to be improved by introducing 

robustifying mechanism into the controller parameter learning process and also into 

the plant parameter identification subroutine, so handling nonlinearities and 

model/parameter uncertainties in specific control problems. 

 

Dynamical state feedback chaotification of input state linearizable systems: Most 

of the researches on deterministic chaotic systems are devoted to the analysis and 

implementation of a set of well-known chaotic systems and their variants (Chua et 

al., 1993; Lorenz, 1963; Lü & Chen, 2002; Ott et al., 1990; Sprott, 2000). On the 

other hand, there is a growing interest on the real world applications of chaotic 

systems as seeking an answer to the question how to get benefit of random like yet 

deterministic complex behavior of chaotic dynamical systems which can be produced 

even within a very simple system structure. Secure communication, encryption, 

pseudorandom generation numbers (Monte Carlo method), information and signal 

processing, chaotic liquid mixing are among the potential applications in this 

direction of chaos research (Burghelea et al., 2004; Fradkov & Evans, 2005; 
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Kavaslar & Güzeliş, 1995; Leung & Qin, 2001; Ott, 1993; Ottino & Wiggins, 2004; 

Paul et al., 2004; Pecora & Carroll, 1990; Savaci et al., 2003; Yaowen et al., 2000). 

In such applications, in contrast to the usual chaos control methods driving the 

chaotic system to a limit cycle or to an asymptotically stable equilibrium (Ott et al., 

1990), chaos is a desired property such that the chaotic behavior is tried to be 

sustained for originally chaotic systems or created by a chaotifying control (called 

also as anti-control or chaotization) applied to originally non-chaotic systems. 

Synchronization of the chaotic systems is one of the main issues investigated largely 

in the first class of chaos applications where the well known chaotic systems are 

employed for obtaining necessary chaotic signals (Cuomo et al, 1993; Kavaslar & 

Güzeliş, 1995; Kocarev & Parlitz, 1995; Morgül, 2003; Morgül & Solak, 1996; 

Pecora & Carroll, 1990; Rosenblum et al., 1996; Savaci et al., 2003). For the second 

class of chaos applications, the chaotification is achieved either by periodic 

excitation of the systems in a feed-forward way or by feedback control exploiting 

time-delay or static nonlinearity in the feedback path (Chen, 1999; Chen & Dong, 

1993; Ditto et al., 1990; Fradkov & Evans, 2005; Fradkov & Pogromsky, 1999; 

Morgül & Solak, 1996; Sinha et al., 2000; Soong & Huang, 2007; Vanecek & 

Celikovsky, 1994; Wang & Chen, 2000; Wang et al., 2000; Zhang et al., 2004). 

 

This thesis introduces a novel chaotification method which employs a suitable 

dynamical state feedback to the system under consideration to match a part of its 

dynamics, in fact the last row of its state equation system in the Brunovsky canonical 

form, to a part of a chaotic reference model. The developed method is indeed the 

extension of the model based static feedback chaotification method proposed in 

(Morgül & Solak, 1996) to the dynamical feedback case. The developed dynamical 

state feedback chaotification method has the following features distinguishing it from 

the other chaotification methods: i) It can chaotify any input-state linearizable and 

observable system, ii) Any chaotic system of arbitrary dimension can be used as the 

reference model with no need to transform it into a special form, so providing the 

advantage of exploiting the vast amount of information on chaotic systems and their 

implementations available in the literature, iii) It is a state feedback control scheme 

which  requiring, in general, that all states are available either by direct measurement 
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or by estimation, iv) It is a dynamical feedback scheme that augments the degree of 

the original system at most by one below the degree of the reference chaotic system, 

i.e. by two for a third order reference chaotic system and v) It admits the matching 

between the last state equation of the system to be chaotified and any of the state 

equations of the reference chaotic system as a valid matching, so possessing a large 

set of implementation alternatives from which the most efficient one can be chosen. 

            

To demonstrate its potential in real world applications, the dynamical state 

feedback chaotification is applied to a permanent magnet DC motor as matching the 

closed loop dynamics to the well known Chua’s chaotic circuit. The chaotified DC 

motor, on which an impeller is mounted, is then used as a tool for mixing liquids to 

reach homogenous mixture under less energy consumption and/or within less time 

consumption as compared to the conventional constant or periodical speed mixing. 

Corn syrup added acid-base reaction (Ascanio et al., 2002) is considered as a 

benchmark test for liquid mixing in order to compare the mixing performances of 

different DC motor speed modes, i.e. constant, periodical and chaotic. It is observed 

in a non-intrusive way that the chaotic mode for DC motor speed provides much 

more efficient mixing as compare to the constant and also periodical motor speed 

modes in terms of the neutralization time under the same power consumption. 

      

The liquid mixing problem is considered in the thesis as the application area for 

the developed chaotification method because of its importance in a diverse 

application area including chemical, petroleum, food and pharmaceutical industries 

(Paul et al., 2004). Energy and time efficient mixing is a very attractive issue in these 

industrial sectors since the annual cost which might be saved by efficient industrial 

mixing is estimated for US as much as ten billion dollars (Harnby et al., 1992). In the 

last decade, several chaotic mixing methods for obtaining efficient mixing are 

proposed and their superiority to constant and periodical mixing is reported (Alvarez-

Hernández et al., 2002; Takigawa et al., 2000; Ye & Chau, 2007; Zhang & Chen, 

2005). In a part of these methods, a chaotic signal produced, for instance, by a 

Chua’s circuit or Lorenz system is used for driving a DC motor which actuates either 

an impeller mounted on its shaft or the tank containing the liquid. This kind of 
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chaotic mixing methods is of open loop chaotic mixing where the control input is 

chaotic but there is no guarantee that the mixing system, herein the impeller or tank 

actuated by DC motor, has chaotic motions (Zhang & Chen, 2005). In the closed 

loop chaotic mixing methods including the one proposed in this thesis, the DC motor 

speed is feed backed, so there is a possibility of applying a suitable control algorithm 

for the mixing system to track a chaotic motion. It is observed in the realized 

experiments that the developed closed loop chaotic mixing method employing a 

nonlinear dynamical state feedback provides more efficient mixing as compare to the 

available methods including the one proposed in (Ye & Chau, 2007) which exploits 

the time-delay feedback type chaotification of (Wang et al., 2000). 

   

  The organization of the chapters of this thesis is as follows. Chapter 2 gives a 

background on control systems modeling; input-output and state space 

representations; stability, controllability and observability; feedback linearization; 

artificial neural networks based controller design and adaptive control. In Chapter 3, 

the developed real-time simulation/emulation design, test and redesign platform is 

explained in details together with some benchmark implementations. The operating 

modes of the real-time simulations are stated in a comparative way in an introduced 

taxonomy. The proposed design, test and redesign procedure for controller system 

design is also given in this section. Chapter 4 presents the developed adaptive control 

scheme which is based on the input-output data in the linear and nonlinear settings. 

Chapter 4 also presents an adaptive PID control algorithm as a special case of the 

general nonlinear dynamical adaptive control algorithm. Chapter 5 explains the 

introduced dynamical state feedback chaotification method as an extension of the 

reference chaotic system based static state feedback chaotification method available 

in the literature. Chapter 5 gives also the experimental results on chaotic liquid 

mixing actuated by a chaotified DC motor. Conclusions and future directions in the 

context of the research realized in the thesis studies are outlined in Chapter 6.  
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CHAPTER TWO 

BACKGROUND ON CONTROL SYSTEMS MODELING, ANALYSIS 

AND DESIGN 

 

In this chapter, a brief background on control systems modeling, analysis and 

design concepts are introduced. These concepts, including black box and state space 

representations, qualitative analysis of control systems and controller design 

methods, will be used in the subsequent chapters. 

 

2.1 Control Systems Modeling 

 

Control systems modeling is a problem of finding an appropriate mathematical 

representation for a given plant desired to be controlled (Astrom & Murray, 2008; 

Cassandras & Lafortune, 2008; Dorf & Bishop, 2008; Hellerstein et al., 2004). This 

representation, say model, is a key element for designing a controller working well 

for a real plant under real environmental conditions. So, modeling constitutes one of 

the most important theoretical and practical issues in control area (Rojas et al, 2007; 

Chen & Narendra, 2004; Loh & Lu 2002; Narendra & Lewis, 2001). 

 

Modeling can be done mainly in two different ways: The first approach employs 

physical laws, such as Newton’s laws and Kirchoff’s laws, to derive an internal 

representation, usually constituting a set of differential equations, for the plant under 

consideration. The second one uses the input-output measurement data to identify a 

plant model and then to identify its parameters. These two stages are called as model 

and, respectively, parameter identification; both as system identification. In both of 

the approaches, modeling aims to find a simple yet enough representation to describe 

the qualitative and quantitative properties of plants in an efficient way.  

 

As will be explained in Subsection 2.1.2, system identification can be based on an 

internal representation, for instance, a state model which consists of n first order 

differential equations defining derivatives of the states in terms of the states and 
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inputs and algebraic equations defining outputs in terms of states and inputs. In this 

case, the identification turns out first finding suitable expressions for nonlinearities 

intrinsic to the relations among the state variables, inputs and outputs of the system 

and then determining parameters defining these relations. The resulting state space 

representation not only provides a basis for designing controller but also for 

qualitative analyses including Lyapunov stability, controllability and observability of 

the considered system. 

  

As explained in Subsection 2.1.1, system identification can also be realized based 

on a black box representation which neither needs knowledge about the inside of the 

plant nor tries to build up an internal representation for the plant. In contrast to state 

models, black box models do not allow certain qualitative analyses such as Lyapunov 

stability but they are easier to be obtained in an efficient way with high accuracies 

from the input-output measurement data, they usually constitute efficient models 

and, in some cases, they provide a unique choice in modeling a system under several 

uncertainties. 

   

Although stochastic models can also be used in control systems modeling, only 

deterministic models are considered throughout this thesis work.    

 

2.1.1 Black Box Representation 

 

A black box model shown in Figure 2.1 can be constructed first by considering a 

general purpose input-output model which is supposed to fit the input-output data 

and then determining model parameters from measured input-output data using a 

suitable algorithm (Ljung, 1999; Pintelon & Schoukens, 2001, Sjoberg et al., 1995). 
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Inputs
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Figure 2.1 Black-box modeling 

 

Any black box model provides a relation among the input and outputs of the 

system. The relation can be, in the most general case, an implicit one where the 

outputs can not be determined as functions of inputs. The relation is rarely algebraic 

but usually a dynamical relation defining outputs at a specific time instant as explicit 

functions of the past outputs as well as the current and past inputs.  Such relations are 

usually called as Auto Regressive Moving Average (ARMA) or Nonlinear Auto 

Regressive Moving Average (NARMA) depending on the existence of nonlinear 

dependence among the input and/or output variables. As will be cleared by their 

definitions in Equation 2.1 and Equation 2.2 of Subsection 2.1.1.1, the auto-

regressive term recalls the dependence of the current output on the past outputs and 

the moving average recalls that the current output is determined also by a weighted 

average of the current and finite number of past inputs taken place in a finite duration 

moving window.  

 

2.1.1.1 ARMA-NARMA Models 

 

Although continuous-time and time-varying versions are also possible to be 

defined, discrete-time time-invariant versions will be considered in this thesis due to 

their convenience to handle input-output measurement data and due to the emphasis 

of the thesis focused on time-invariant systems. In a discrete-time (time-invariant) 

NARMA model, the current output is given, in the most general case, as a nonlinear 

function of N past outputs and the current and M past inputs as in Equation 2.1.   
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)](,),1(),();(,),2(),1([)( MkukukuNkykykyky −−−−−Η= LL         (2.1) 

 

Where, RR MN →Η ++ 1:)(o  is a nonlinear algebraic function. If the system has 

more than one input, the current and past values of these inputs also would be added 

into the inside of the bracket at the right hand side of the relation in Equation 2.1. If 

the system has more than one output, then for each output there should have a 

relation as in Equation 2.1.  

 

In the linear case, NARMA model in Equation 2.1 takes the following (ARMA) 

form where the first sum corresponds to AR part while the second to MA part 

(Cabrera & Narendra, 1999; Levin & Narendra, 1996; Yegnanarayana, 1981).  
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Where, Ri ∈α  and Rj ∈β  with Ni ,,1L=  and Mj ,,1,0 L=  are the linear 

weights, so called AR and MA parameters, respectively. 

  

NARMA and especially ARMA models are widely used as plant models in 

control systems identification and as controller models in control system design, and 

also employed in a diverse area such as prediction models for time series analysis in 

many fields including weather forecast, for speech coding and recognition in 

communication and for feature extraction for instance in biomedical signal 

processing (Brown, 2004; Chen & Billings, 1989; Chen & Narendra, 2003; 

Hyvärinen & Oja, 1997; Narendra & Mukhopadhyay, 1997; Rank, 2003; Wang et al., 

2003; Zhan & Jay-Kuo, 2001).  

   

The NARMA model in Equation 2.1 is quite general covering a large class of 

nonlinear systems. However, there is a need to introduce special NARMA forms 

suited to specific applications, i.e. the simpler NARMA models bringing analysis and 

design efficiency yet having sufficient generality to model the input-output behavior 
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of the system. One special case is given in Figure 2.3 supposing that the effects of 

the past outputs and inputs are integrated in an additive way. 

 

)](,),1(),([)](,),2(),1([)( MkukukuGNkykykyFky −−+−−−= LL      (2.3) 

 

Simpler but still powerful NARMA architectures which can be exploited in 

specific applications are outlined range from Equation 2.4 to Equation 2.11.   
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Where, RRH →:)(o , RRF N →:)(o , RRG M →+1:)(o , RRF N
i →:)(o  and 

RRG M
j →:)(o  with Ii ,,2,1 L=  and Jj ,,1,0 L= are nonlinear (algebraic) 

functions. And, Ri ∈α , Rj ∈β  and R∈β with Ni ,,2,1 L=  and Mj ,,1,0 L= . The 

NARMA models in Equation 2.6 and Equation 2.10 are introduced in this thesis as 

the models for which the nonlinear version of the data dependent controller design 

algorithm developed in this thesis can be applicable.  

 

Discrete-time ARMA models are very advantageous with respect to design and 

implementation issues. Their parameters can be found by linear analysis techniques 

such as using a least square approach. It can be implemented in the structure of 

Figure 2.2 just by a linear weighted summing unit and by time delay units ( 1−z ’s).  

 

∑

1−z

1−z
M

M

jβ)(ku

iα

)(ky

1−z

1−z  

Figure 2.2 Architecture of an ARMA model 

 

On the other hand, for NARMA models, nonlinearities can be handled in many 

ways. Universal function expansions/approximations based on specific sets of basis 

functions and uniform architectures are quite common to tackle this nonlinear 

function representation problem. Artificial Neural Networks serve efficient solutions 

to such nonlinear function approximation/representation issues.  
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2.1.1.2 Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) are widely used in control systems area since 

1980s. Since ANNs define, in general, a nonlinear algebraic function, they can cope 

with nonlinearities inherent in control systems possessing complex dynamics. On the 

other hand, ANNs are universal function approximators which are capable of 

approximating to any continuous function in a compact set within arbitrary degree of 

accuracy (Cybenko, 1989). Due to its parallel architecture, they are fault tolerant. 

There are many efficient ANN architectures and many associated efficient learning 

algorithms for designing them by a finite set of training data with providing a 

powerful generalization ability of responding well for the test data not learned 

before. ANNs can learn in supervised or unsupervised ways depending on the 

availability of data class labels, in a more general setting, say desired outputs. The 

information is coded in the connection weights associated to the pairs of neurons 

which are the functional units of the ANN. In any kind of learning, learning is 

defined as an optimization problem and is accomplished by a changing rule for 

connection weights minimizing the cost of the optimization problem which is, for 

instance, the difference between desired and actual outputs for supervised learning 

cases. 

  

As in the general ANN literature, the mostly widely used ANN model in 

identification and control is the Multi Layer Perceptron (MLP) due to its function 

approximation capability and the existence of an efficient learning algorithm, so 

called back-propagation, associated to it (Ahmed, 2000; Lightbody & Irwin, 1995; 

Limanond & Si, 1998; Meireles et al., 2003; Noriega & Wang, 1998; Omidvar & 

Elliott, 1997). MLP is a multilayer, algebraic neural network of neurons, called as 

perceptrons, which are multi-input, single-output functional units taking firstly a 

weighted sum of their inputs and then pass it through a sigmoidal nonlinearity to 

produce its output (See Figure 2.4.). As shown in Figure 2.3, a multi-input, multi-

output MLP with one hidden layer can be used as a NARMA model. 
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Figure 2.3 MLP implementing NARMA model 
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Figure 2.4 Perceptron as a hidden neuron 

 

MLP is usually designed, in a supervised way, by determining connection weights  

v  and w  using the celebrated error Back-Propagation (BP) algorithm which is indeed 

a gradient descent technique used for finding an acceptable local minimum of the 

squared error in Equation 2.12 between the desired and actual outputs.  

 

2)(
2
1 yr −=ε                     (2.12) 

 

Where, yre −=  represents the error for a unique data sample. BP calculates the 

partial derivatives of the output error in Equation 2.12 with respect to the connection 

weights by employing chain rule as shown in Equation 2.13 and 2.14  
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Where, )(oσ ′  denotes the derivative of the sigmoidal nonlinearity which can be 

calculated without differentiation just in terms of the sigmoidal function itself for the 

tangent hyperbolic sigmoid case. The partial derivatives calculated are then used for 

updating the connection weights in the opposite of the gradient direction towards one 

of the local minima with a sufficiently small step size ζ , called also as learning rate: 
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If the updates are implemented according to the above recursions allowing the 

connection weights to be changed for each sample, then BP is called as pattern mode 

or data mode BP. Otherwise, it is called as batch mode or group mode allowing an 

update for the whole set of training samples once at each time instant which requires 

summing up the individual gradients obtained for each specific sample to take a step. 

The other ANN models have their own architectures and learning algorithms 

possessing advantageous in one hand and disadvantageous in the other, so one can 

choose one of them depending on the nonlinearities and the measurement data 

properties intrinsic to the considered control system. Gradient based learning 

algorithms for those ANNs have the same structure with the one given in Equations 

2.15 and 2.16 but with other basis functions different than the above sigmoidal ones, 

for instance Gaussian functions as in Radial Basis Function Networks (RBFNs) 

(Mao, 2002; Park, et al., 2002; Selver & Güzeliş, 2009; Uykan et al., 2000) and with 

different connection topologies, requiring some modifications in the learning 

algorithms. Moreover, some ANNs, for instance RBFNs, may employ hybrid 

learning algorithms, i.e. they use an unsupervised method, e.g. clustering, for 

learning the parameters of the first layer neurons and a gradient based supervised 
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method for learning the parameters of output layer neurons (Mao, 2002; Park, et al., 

2002; Selver & Güzeliş, 2009; Uykan et al., 2000). 

 

Especially due to their nonlinear nature, learning and generalization abilities, 

ANNs are widely preferred in nonlinear, adaptive and robust identification and 

control (Chen & Narendra, 2004; Lewis et al., 1995; Narendra, 1993; Narendra & 

Parthasarathy, 1990; Poggio & Girosi, 1990a, 1990b; Yeşildirek & Lewis, 1994).  

 

2.1.1.3 Artificial Neural Network for Identification 

 

In control systems literature, there are two kinds of the ANN based identification 

model: Parallel and series–parallel. The parallel model is shown in Figure 2.5; the 

ANN identification model is fed by the model outputs and plant inputs yielding the 

ARMA model in Equation 2.10 for a linear ANN (Narendra & Parthasarathy, 1990).  

 

∑∑
==

−+−=
M

j
j

N

i
i jkuikyky

01
)()(ˆ)(ˆ βα              (2.17) 

 

Plant
u(k)

ŷ(k)

y(k)

ANN
Identification 

Model

.

.

.

.

Plant
u(k)

ŷ(k)

y(k)

ANN
Identification 

Model

.

.

.

.

  delay

  delay

 
Figure 2.5 ANN based parallel identification model  

 

On the other hand, the ANN based series-parallel model in Figure 2.6 is fed by the 

inputs and also the outputs of the plant yields the ARMA model for a linear ANN 

(Narendra & Parthasarathy, 1990).  
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Figure 2.6 ANN based series-parallel identification model  

 

Series-parallel identification model is widely used in the control literature 

(Barreto & Araujo, 2004; Narendra & Parthasarathy, 1990) because it does need the 

initial condition of the plant to be identical of the model. Both parallel and series 

parallel identification approaches define the following NARMA model in the most 

general case. 

 

)](,),1(),();(,),2(),1([)( MkukukuNkykykyky −−−−−Η= LL    (2.19) 

 

2.1.1.4 Artificial Neural Networks Based Controllers 

 

As a consequence of their capabilities in handling nonlinearities and uncertainties, 

and also of their adaptation abilities crucial for changing plants and/or environments, 

ANNs are used as controllers with a growing acceptance since 1980s (Narendra 

1991, 1996; Astrom & Hagglund, 1995; Kawato et al., 1987; Kwan et al., 1998; 

Lewis, 1996; Lewis et al., 1999; Lewis et al., 2004; Narendra & Parthasarathy, 1990; 

Nguyen & Widrow, 1990; Psaltis et al., 1988; Seong & Widrow, 2001a, 2001b; 

Widrow & Bilello, 1993; Werbos, 1991). 

 

ANN based controller design methods can be categorized into two groups: i) feed-

forward ANNs (can also be said as algebraic ANNs.) and ii) recurrent ANNs (can 

also be said as dynamical ANNs.). The feed-forward ANNs define static mappings. 

The inputs in the feed-forward ANN based controllers are fed by the current and/or 
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past input-output data pairs of the plant. On the other hand, the recurrent ANNs 

define dynamic mappings. The inputs of the recurrent ANNs are chosen similar to 

the feed-forward ANNs. However, in addition to these inputs, the outputs of the 

ANN are also used as extra inputs in recurrent ANNs (Ku & Lee, 1995; Narendra & 

Parthasarathy, 1990; Sundareshan & Condarcure, 1998; Suykens et al., 2000).  
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ANNc
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u(k)r(k)

 
Figure 2.7 Inverse system based ANN controller 

 

The basic step of designing a controller is to find an optimum control signal for 

the system to be controlled. This objective can be accomplished by choosing the 

inverse of the plant as the controller such that the overall system becomes a unity 

system as shown in Figure 2.7. 

 

Psaltis et al. (1988) and also Narendra (1996) classify ANN based control 

appeared in the literature into four main groups according to their structure as: i) 

direct inverse control, ii) feed-forward inverse control, iii) specialized learning 

control and iv) internal model control. The basic issue with all of these inverse 

system based methods is on the assumption of the existence of the inverse plant 

which is not always true. 

  

Direct inverse control: Direct inverse control is based on two identical ANN 

controllers in Figure 2.8. The first one is used to produce the control input )(ku  from 

the desired output (i.e. the reference input.) )(kr . The other one is used to produce a 

signal )(ˆ ku to match the control input )(ku  from the actual output )(ky . Each of the 

identical controllers becomes the inverse of the plant whenever the error )(ke = )(ku -

)(ˆ ku is zero. 
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Figure 2.8 Training stage of direct inverse control  

 

In fact, minimization of this error is, in general, not equivalent to the minimization 

of the output error defined as the difference between the actual )(ky  and desired 

outputs )(kr . This may cause erroneous results in practice. 

  

Feed-forward inverse control: Feed-forward inverse control requires, in the 

training stages, two different ANNs as in the direct inverse control. As can be seen in 

Figure 2.9, one of the ANNs is used for identification and the other for the inverse of 

the plant. The ANN used for identification, i.e. PANN , is trained by measured input-

output data pairs of the plant not in the reverse direction but in the forward direction. 

Training of the inverse system controller CANN  is realized based on the 

minimization of plant’s output error, for instance, by BP algorithm as holding fixed 

the connection weights of PANN  already determined by the identification procedure. 
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Figure 2.9 Training stage of feed-forward inverse control   

 

Specialized learning control: Specialized learning control was proposed by Psaltis 

et al. (1988). It requires the knowledge of the Jacobian of the real plant in order to 

update weights of the ANN controller. This method is similar to the feed-forward 
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inverse control. The Jacobian of the real plant is used in specialized learning control 

whereas the Jacobian of the identified plant model PANN  is used in feed-forward 

inverse control. Moreover, the connection weights of PANN , i.e. the controller 

parameters are updated online, so providing an adaptive control system depicted in 

Figure 2.10. 
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Figure 2.10 Specialized learning control 

 

Internal model control: Internal model controller is widely used for chemical 

processes. The training of the ANN controller weights are implemented, in an off-

line fashion, through the cascade of ANN controller and ANN identification model 

as in the feed-forward inverse control. However, PANN  remains in the control 

system when the training stage is finished, so constituting an internal model. The 

connection weights of ANN controller CANN  are hold fixed after the training. It 

should be observed from the configuration of the internal model control in Figure 

2.11 that the output of the plant )(ky  becomes equal to the reference )(kr when the 

identification error (or say model error) )(ke  and ANN controller is the exact inverse 

of the plant (Narendra, 1996). Moreover, feed-backing the model error may improve 

the performance of the inverse controller. 
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Figure 2.11 Internal model control  
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2.1.2 State Space Representations 

 

In this subsection, state space representations for linear and/or nonlinear time-

invariant cases are introduced in continuous and/or discrete time systems. These 

cases are used for modeling, analysis and designing of control systems. 

 

 2.1.2.1 Linear Time-Invariant Cases 

 

State equations are ordinary differential equations having a special form in which 

the variables, whose time derivatives appear in the equation, take place at the right 

hand side together with the inputs and the derivatives of these variables take place at 

the left hand (See Equation 2.20) for the linear time-invariant case.). System models 

based on the state equation, called as state space models, was started to be used for 

control systems at beginning of 1960s by Kalman (Kalman, 1960; 1961). State space 

models constitute a suitable framework for modeling, analysis and designing of 

control systems as well as for studying Lyapunov stability, controllability, 

observability etc. 

  

The state space representation allows a compact expression for linear and also for 

nonlinear systems. (Chen, 1984; Doyle et al., 1989; Franklin et al., 2000; Goodwin & 

Sin, 1984; Landau et al., 1997; Landau & Zito, 2006; Phillips & Troy, 1997). For the 

Linear Time Invariant (LTI) case, the state model of a multi-input, multi-output 

continuous-time system is defined by the A, B, C and D matrices as follows. 

 

DuCxy
BuAxx

+=
+=&

                     (2.20) 

 

Where, nxnRA∈ , nxmRB∈ , pxnRC∈ , pxmRD∈ , nRx∈ , mRu∈  and pRy∈ . 

The first equations of the state model are called as state equations while the second 

as the output equations. The states and outputs which are the variables of interest can 
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be completely determined in terms of A , B , C , D  matrices and the initial 

conditions )x( 0t . 

 

Any system defined by Equation 2.20 can be implemented by a set of integrators, 

pure summers and also linear weighted summers defined by the A, B, C and D 

matrix-vector multiplications shown in Figure 2.12. 
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Figure 2.12 State-space block diagram representation of linear, time-invariant continuous-time 

systems  

 

In order to see the connection between the ARMA model and the state equations, 

it will be shown that any linear, constant coefficient, nth order differential equation 

in Equation 2.21 which is, indeed, the continuous-time version of a special ARMA 

model, where the left hand side defines AR part and the right hand side is the current 

value of the input, can be recast into a special form of state equations in Equation 

2.2.  
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Where, )(tu  is the input, )(ty  is the output and )(,),(),( 01

1

00 ty
dt
dty

dt
dty n

n

−

−

L  with 

0tt ≥  are the initial conditions. Let the output and its first n-1 derivatives be defined 

as state variables:   

 

1

1

21 ˆ,,ˆ,ˆ −

−

=== n

n

n dt
ydx

dt
dyxyx L                (2.22) 

 

Then, the corresponding state equation can be written as follows.    
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          (2.23) 

 

The state equations defined by A  and B  matrices in Equation 2.23 has a special 

form, called as controllable canonical state equation form in the control literature. It 

is known that any (single-input) LTI controllable system in Equation 2.20 can be 

transformed into the controllable canonical form by a linear change of 

variables Tx:x = , so the resulting state and input matrices obtained as ATTA 1−=  

and bTb 1−= . Where, the controllability of the LTI system in Equation 2.20 can be 

defined as the existence of a suitable control input ][ 0 fttu  which transfers the 

system from an arbitrarily given state )( 0tx at time 0t  to any other arbitrarily given 

state )( ftx at time ft  (Rugh, 1996). 

   

The necessary and sufficient condition for the controllability of an LTI system in 

Equation 2.20 is that the controllability matrix in Equation 2.32 has rank n (Rugh, 

1996). 
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] [ BABAABBM 1n2
C

−= L                (2.24) 

 

Checking this condition gives information about the transformability of the state 

equations into the controllable canonical form Equation 2.23, and identically into the 

ARMA system in Equation 2.21, in a reversible manner, when the output is chosen 

as equal to the first state variable. The controllability condition ensuring the 

existence of the controllability canonical form Equation 2.23 will be used in this 

thesis as the sufficient condition for the applicability of the developed dynamical 

state feedback chaotification method.  

 

The discrete-time versions of the state model Equation 2.20 and the corresponding 

block diagram in Figure 2.12 are given in Equation 2.25 and in Figure 2.13, 

respectively. 
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Figure 2.13 State-space block diagram representation of linear, time-invariant discrete-time 

systems  

 

The definition of the controllability, the controllability matrix, the necessary and 

sufficient condition for the controllability and the transformability conditions into the 
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following controllability canonical form are all the same for discrete-time system in 

Equation 2.25. It should be observed that a single-input, single-output, controllable 

LTI discrete-time system defined by the state equations Equation 2.26 in the 

controllable canonical form yields the ARMA model in Equation 2.27. 
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Equation 2.27 can be rewritten as in Equation 2.28. 

 

)()()2()1()( 021 nkunkyakyakyaky nn −+−−−−−−= −− L        (2.28) 

 

Another important property which is actually the dual concept of the 

controllability and can be studied in a rigorous way by state space representation is 

the observability. An LTI system in Equation 2.20 is said to be observable if and 

only if the initial condition )( 0tx  can uniquely be determined from the observation of 

the output ][ 0 ftty  (Rugh, 1996).  It is known (Rugh, 1996) that both for the 

continuous-time in Equation 2.20 and discrete-time in Equation 2.25 models, the 

necessary and sufficient condition for the observability is that the rank of the 

following observability matrix is equal to n.  
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One can identify that the systems in Equation 2.23 and Equation 2.26 are 

observable. 

 

2.1.2.2 Nonlinear Time-Invariant Case 

 

The most general state space form for nonlinear time-invariant systems is given in 

Equation 2.30. 

 

u)h(x,y
uxfx

=
= ),(&

                      (2.30) 

 

Where, nmn RRR:)f( →xo  and  pmn RRR:)h( →xo  are nonlinear functions. In 

this subsection, the bilinear form in Equation 2.31 with no exogenous input in the 

output equation is assumed for studying feedback linearization concepts for a Multi 

Input Multi Output (MIMO) system.  
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                  (2.31) 

 

Where, nn RR:)f( →o , nn RR:)(g →oi , pn RR:)h( →o and RR:)( →oiu . 

Such a bilinear system may naturally arise as a state dependent A, B and C matrices 

by a system modeling/identification procedure or can be obtained by a state 

transformation from a general state model in Equation 2.31 as depicted in Figure 

2.14.  
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Figure 2.14 Bilinear state model obtained by transformation of a general state model 

 

The controllability, observability and associated canonical forms outlined in the 

previous section are well established issues in linear systems theory. They are 

generalized into the nonlinear case by using Lie theory (Brockett, 1973; Cheng et al., 

1985; Fliess, 1990; Hermann & Krener, 1977; Isidori, 1985; Jurdjevic & Sussmann, 

1972; Kucera, 1967; Sontag, 1990). Nonlinear state space canonical forms including 

so called Brunovsky form and sufficient conditions on their existence are reviewed in 

the sequel. It should be noted that Brunovsky canonical form is employed in the 

thesis for the application of developed dynamical state feedback chaotification 

method. 

   

The idea behind the nonlinear state space canonical forms is to transform 

nonlinear systems into linear ones having a suitable state representation as the same 

with the controllable canonical form presented in the previous section. As will be 

seen below, this can be achieved by a (nonlinear) state transformation )(xz Φ=  and 

by applying a nonlinear static state feedback control vu )()( xx βα += , i.e. an input 

transformation, introducing a new control input v . This procedure, which is indeed 

the nonlinear version of the transformation mapping the state equations into the 

controllable canonical form, is called as input-state (feedback) linearization (Isidori, 

1985; Slotine & Li, 1991). There is another type of feedback linearization, so called 

input-output linearization which provides a linear dynamical input-output relation 

rather than a linearized state equation system by an appropriate static state feedback 

control vu )()( xx βα += introducing a new control input v  while decoupling the 

nonlinear effects between the output and this newly defined input. 
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Input state linearization assumes the bilinear form in Equation 2.31 for state 

equations. It should be noted that single-input system in Equation 2.32 will be 

considered for the input-state linearization issues in the thesis for simplicity. 

  

ug(x)f(x)x +=&                     (2.32) 

 

Where, nn RR:)f( →o , nn RR:)g( →o  and RR:)( →ou . The input-state 

feedback linearization is different from the conventional approximate linearization 

based on the Taylor expansion around an equilibrium point. If there are more than 

one equilibrium points around which linearization is applied, the first type 

linearization results in more than one each locally defined linear state models, so a 

gain-scheduling type control would be used for handling such a control system 

model (See Subsection 2.3.2.1.). On the other hand, the feedback linearization is an 

exact linearization and it provides a unique globally defined linear state model which 

is valid for all equilibrium points of the original nonlinear system (Conte et al., 1999; 

Grizzle & Kokotovic, 1988; Hunt et al., 1983; Isidori, 1995; Khalil, 1996; Krener, 

2003; Sastry, 1999; Sastry & Isidori, 1989; Slotine & Li, 1991; Sontag, 1990; 

Vidyasagar, 1993). The differences between the abovementioned types of 

linearization are depicted in Figure 2.15 where zA and zb define a controllable 

canonical form.  
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Figure 2.15 Linearization around equilibrium versus input-state feedback linearization  

 

Input – State Linearization: The idea behind the input-state linearization can be 

explained as follows. If the nonlinear state equations with a scalar input have the 
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Brunovsky canonical form in Equation 2.33 and 0)( ≠xg , then there exists a state 

feedback control ])([
)(

1:)()( vf
g

vu +−=+= x
x

xx βα  transforming the state equations 

in Equation 2.33 into the linear controllable canonical form in Equation 2.23 for the 

new input v .  
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Where, RR:)( n →of  and RR:)( n →og . The resulting linear system can then 

be controlled by a linear control law, for instance, by a static state feedback control 

as shown in Figure 2.16.  
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Figure 2.16 Linear static state feedback control of input-state linearized Brunovsky  

 

Now, three questions arise as: i) What are the conditions for a given SISO system 

in Equation 2.32 to be transformed into the system in Equation 2.33? ii) What are the 

conditions for )(xg  to be nonzero? iii) Do the resulting state equations have the same 

qualitative properties? Theorem 2.1 gives the answer as the input-state 

linearizability, which is rigorously defined below, to all these questions. 
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Definition 2.1 (Slotine & Li, 1991): A single-input system ug(x)f(x)x +=&  where 
nRf(x)∈  and nRg(x)∈  with nRx∈  are smooth vector fields is said to be input-state 

linearizable if there exists a region nRΩ⊆ , a kC diffeomorphic state transformation 
nn RR:)Φ( →o  and a nonlinear static state feedback control 

vu )()( Φ(x)Φ(x) βα += such that the transformed state equations with the new state 

variables )(xz Φ=  and the new input ))((
)(

1)()( Φ(x)
Φ(x)

Φ(x)Φ(x) α
β

−=+= uugfv  

has the following linear time-invariant state equation form: 
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 □ 

 

Theorem 2.1 (Slotine & Li, 1991): Let ug(x)f(x)x +=&  be a single-input 

nonlinear system where nRf(x)∈  and nRg(x)∈  with nRx∈  are smooth vector 

fields. Then, the system is input–state linearizable if and only if there exists a region 
nRΩ⊆  on which the following conditions are satisfied: 

i) The set of vector fields },,,{ 1ggg ff
−nadad K  is linearly independent in 

nRΩ⊆ . 

ii) The set of (linearly independent) vector fields },,,{ 2ggg ff
−nadad K  is 

involutive, i.e. the Lie bracket of any pair of vector fields in the set is a 

linear combination of the vector fields in this set. Herein, gfad  denotes 

the Lie bracket [ ] gffggf, )()( ∇−∇=  with ∇ being the gradient operator 

with respect to x . □ 

 

Linear static state feedback control Kz=v  with [ ]nkkk L21=K  can be 

applied after input-state linearization as in Figure 2.17.  
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Figure 2.17 Linear static state feedback control of input-state linearized system 

 

For the original system states x , the linear static state feedback control scheme 

for the input-state linearized system is depicted in Figure 2.18. 
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Figure 2.18 Input-state linearization in detail diagram 

 

Input – Output Linearization: Despite the input-state linearization providing a 

linear state equation system for a new state vector and a new input, input-output 

linearization constructs a linear, dynamical input-output relation for the same system 

output with a newly defined input v . As will be explained below, input-output 

linearization follows a procedure of differentiating outputs with respect to time until 
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the inputs appear and then apply an appropriate static state feedback control input 

introducing the new input v  while decoupling the nonlinearities. Herein, the aim is 

to obtain a dynamical input-output relation whose degree is as much as close to the 

dimension of the state space. 

  

Let the Single-Input, Single-Output (SISO) bilinear, time-invariant systems in 

Equation 2.35 be considered for simplicity. 
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                   (2.35) 

 

Where . nn RR:)f( →o , nn RR:)g( →o , RR:)( →ou  and RR:)( n →oh . The 

output function RRh n →∈(.)  is assumed to be smooth nonlinear function having 

continuous partial derivatives of any required degree (Hauser et al., 1992; Isidori et 

al., 1981; Marino & Tomei, 1993; Slotine & Li, 1991). 

  

It can be seen from Equation 2.35 that a relation between the output y and the 

current input u  such that no states x  appearing in the relation can be constructed by 

taking the derivatives of the output y with respect to time. So, let the first time 

derivative of y be taken in an open connected region nRΩ⊆ as in Equation 2.36.  
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Where, ff )(: hhL ∇=  scalar function denotes the Lie derivative of the scalar 

function )(xh  with respect to the vector field f(x)  (Slotine & Li, 1991). If 0≠hLg  

for some Ω∈Qx , then the input-output relation vy =&  valid in a finite neighborhood 
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of Ω∈Qx  is constructed by the locally defined input transformation 

vv
hLhL

hLu )()(1 xx
gg

f βα +=+−= . 

 

If 0=hLg for all Ω∈x , then y&  is differentiated one more time as in Equation 

2.37. 
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Where, higher order Lie derivatives are defined in a recursive way as in Equation 

2.38.  
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If 0=hLL fg for all Ω∈x , then the procedure is repeated until 01 ≠− hLL γ
fg  for 

some Ω∈Qx . Then, the input transformation in Equation 2.39 provides a simple 

dynamical input-output relation vy :)( =γ which is defined locally in a finite 

neighborhood of Ω∈Qx . Herein, γ  is called as the well-defined relative degree of 

the system (Slotine & Li, 1991). 
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If the relative degree γ  is equal to n which is the dimension of the state space, 

then the input-output linearization yields the input-state linearization. As seen from 
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Equation 2.40, for n=γ , the state transformation )(xΦz :=  with [ ]Tnzzz ,,, 21 K& =z  

defined in Equation 2.40 maps the bilinear form in Equation 2.35 into the Brunovsky 

canonical form Equation 2.33. 
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Then, the obtained Brunovsky form system Equation 2.33 can be transformed into 

the controllable canonical form Equation 2.34 by the input transformation in 

Equation 2.41.  
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f βα +=+−= −−         (2.41) 

 

The relative degree cited above is indeed an extension of the definition of relative 

degree in linear systems, i.e. )(#)(# zerospoles −=γ . Using the above procedure, one 

can derive the input-output relation in Equation 2.42 for the system given by the 

controllable canonical form in Equation 2.23 whose relative degree n=γ . 
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Once the linear dynamical input-output relation is obtained for relative 

degree n=γ , one can employ a linear (output) feedback control as shown in Figure 

2.19. 
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Figure 2.19 Linear output feedback control for systems in Brunovsky form 

 

The input-output realization depicted in terms of the transformed z  variables in 

Figure 2.19 can be also in terms of the original system variables x  as shown in 

Figure 2.20. 
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Figure 2.20 Linear output feedback control of input-output linearized systems of relative degree n  

 

If the relative degree of a nonlinear system is less than the dimension of its state 

space, i.e. n<γ , a given nonlinear system in Equation 2.35 can be transform into its 

normal form defined with Equation 2.43 and 2.44 by a state transformation 

[ ]Tn γγ ψψμμ −== LL 11::Φ(x)z  where [ ] [ ]TT yyy 1
1 :: −== γ

γμμ L&Lμ  

(Doyle et al., 1996; Khalil, 1996; Sastry, 1999; Slotine & Li, 1991). 
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Where )()( xψ, f hLa γμ =  and )()( 1 xψ, fg hLLb −= γμ . The input can not be seen in 

the equation ψ),w(ψ μ=&  since 0)( =xψg iL  for γ−= ni ,,1K . On order to control 

the overall system, the nonlinear system is required to be asymptotically minimum 

phase, i.e. the following zero dynamics should be asymptotically stable (Slotine & 

Li, 1991). 
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2.2 Qualitative Analysis of Control Systems 

 

The controllability and observability which are two crucial qualitative properties 

in a control system design are explained briefly within a state space context in 

Section 1. The equilibrium dynamics, stability, periodical and chaotic oscillations are 

among the other issues involved with modeling, identification and control of 

dynamical systems. The fundamental concepts related with these issues are described 

below in connection with the main concerns of the thesis which are real-time data 

dependent controller design for tracking problems and modification of asymptotic 

behaviors of the systems, namely form the equilibrium dynamics towards chaotic 

oscillations. 

  

A control system defined by the state equation ))((ˆ t,uxfx =&  for some control law 

),()( tt xu α= can define a time-varying state equation )( ,txfx =& with 

)),((ˆ:)( t,,t xxfxf α= . Throughout this section, the systems are assumed defined as 
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)( ,txfx =&  with nn RRR:)f( →xo  being sufficient smoothness implying the 

existence and uniqueness of the solutions. 

  

2.2.1 Equilibrium Dynamics 

 

The equilibrium is the simplest qualitative behavior of dynamical control systems. 

On the other hand, one of the most common control problems is to find a control 

input regulating the system output around a desired position, in other words around 

an equilibrium point. 

  

Definition 2.2 Equilibrium Point: n
0 Rx ∈  is an equilibrium point of ,t)(xfx =&  

at t0 if and only if 0xf 0 =,t)( [ )∞∈∀ ,0tt . □ 

 

2.2.1.1 Stability in the Sense of Lyapunov  

 

Any solution nRRx →∈)(* o  to the state equation )( ,txfx =&  can be translated 

into the zero equilibrium solution of another state equation )( ,txfx =&  by a simple 

coordinate transformation *: xxx −= . Where, )()()()(:)( *** ,t,t,t,t,t xfxxfxfxfxf −+=−= . 

So, it is sufficient to define Lyapunov stability of a zero solution. 

 

Definition 2.3 Stability of an Equilibrium Point: The zero solution of )( ,txfx =&  

is said to be stable at 0t in the sense of Lyapunov if and only if for each 0>ε  there 

exists 0),( 0 >tεδ such that ε<)xx( 0,, 0tt  for all ),( 0tεδ<0x  and for 

all 0tt ≥ . Where, 0t  is the initial time, )( 0txx0 = is the initial state and )xx( 0,, 0tt  

is the solution due to the initial state )( 0txx0 =  at the initial time 0t □ 

 

As illustrated by Figure 2.21, Lyapunov stability of the zero solution can be 

interpreted as that restricting the initial state 0x  to a sufficiently small 0),( 0 >tεδ  
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ball centered at the origin results in that trajectory remains forever in a prescribed 

ball of radiusε .  

 

ε

δ
00x

 

Figure 2.21 Geometrical interpretation 

of the stability of an equilibrium point 

in the sense of Lyapunov  

 

Definition 2.4 Asymptotic Stability of an Equilibrium Point: The zero solution 

of )( ,txfx =&  is said to be asymptotically stable at 0t in the sense of Lyapunov if and 

only if the zero solution of )( ,txfx =&  is stable in the sense of Lyapunov and if there 

exists 0)( 0 >tr  such that )( 0tr<0x  implies )xx( 0,, 0tt  goes to zero as ∞→t . □ 

 

If the analytical solution of a considered state equation is known, then one can try 

to apply Definitions 2.2 and 2.3. However, this is not the case for almost all 

nonlinear systems. Theorem 2.1 based on Lyapunov stability theory provides a 

solution for determining stability of nonlinear systems with no need to know the 

solution of the state equations. 

 

Theorem 2.2 Local Lyapunov Stability (Slotine & Li, 1991): Let ),( tV x  be a 

scalar function with continuous partial derivatives, which is defined in a 
0RB  local 

neighborhood of the origin with 00 >R . Then, if ),( tV x  is positive definite in
0RB , 

i.e. 0),( >tV x for all x other than origin in 
0RB  and its time derivative along 
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trajectory is negative semi-definite
0RB , i.e. 0),( ≤tV x& for all x in

0RB , then the 

equilibrium point is zero in the sense of Lyapunov. □ 

 

If the negative semi-definiteness condition for ),( tV x& in Theorem 2.1 is replaced 

with the negative definiteness, i.e. 0),( <tV x& for all x other than the origin in
0RB , 

then Theorem 2.1 provides the uniform asymptotic stability of the zero equilibrium 

point. 

  

2.2.1.2 Input-Output Stability 

 

Stability is studied based on the state space model in the previous section. 

Stability can also be studied in an input-output context as briefly explained below. 

Let n
pL  denote the norm defined in the n-valued function space as 

 

pp

p
dtt

1
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⎜

⎝

⎛
= ∫

∞

uu o                  (2.46) 

 

Where, )(o  is the usual vector norm. Let n
peL  denote the extended n

pL  norm 

obtained by truncating the functions up to time T . 

 

 Definition 2.5 Finite Gain pL Stability (Sastry, 1999): A casual nonlinear 

operator n
pe

n
pe LL:)Α( →o  is said to be finite gain pL  stable if and only if i) for any 

given input n
pL)u( ∈o , the output n

pL))Α(u( ∈o  and ii)  there exist 0, >βk  such that, 

for any given n
peL)u( ∈o , the output n

peL))Α(u( ∈o  satisfies β+≤
T

)u())Α(u( oo k
T

 

for all 0>T . □ 

 

 The small gain theorem provides a tool for analyzing input-output stability of a 

closed-loop control system. 
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Theorem 2.3 Small Gain Theorem (Sastry, 1999): Consider the system in Figure 

2.22 where the individual systems oi n
pe

n
pe LL:)(G →o1 , io n

pe
n
pe LL:)(G →o2  with inputs 

1r , 2r and outputs 1y , 2y  are both causal and finite gain stable, i.e. there exist 

2121 ,,, ββkk  such that 

 

22
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tkt
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Figure 2.22 Interconnected control systems  

 

Assume that the loop is well posed in the sense that for any given in
peL)(r ∈o1 , 

on
peL)(r ∈o2  there are unique in

pe21 L)(y),(e ∈oo  and on
pe12 L)(y),(e ∈oo  satisfying the 

loop equations below  
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               (2.48) 

 

Then, the closed loop system is finite gain stable from 1r , 2r  to 1y , 2y  if 121 <kk . 

□ 
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2.2.2 Periodical and Chaotic Oscillations 

 

Periodical and chaotic steady-state behaviors arise in dynamical control systems 

due to the feedback and intrinsic nonlinearities usually unintentionally (Alvarez-

Hernández et al., 2002; Takigawa et al., 2000; Ye & Chau, 2007; Zhang & Chen, 

2005). These complex dynamics are also desired to be created for some engineering 

applications such as chaotification of DC motor (Ye & Chau, 2007; Zhang & Chen, 

2005). 

  

Definition 2.6 Periodical Solution (Parker & Chua, 1987a, 1987b). A solution 

)x( 00 ,, xtt  to )( ,txfx =&  is said to be periodical if and only if there exists a 0>T such 

that )x()x( 0000 ,,,, xtTtxtt +=  for all t . Where, the smallest 0>T is called as the 

period. □ 

 

A periodic solution has a discrete Fourier spectrum consisting of 
T

f 1
=  as the 

main harmonic and 
T
k  as sub-harmonics. In control literature, asymptotically stable 

periodical solutions are called as limit cycle. Limit cycle and stable periodical 

behaviors of a control system )( ,txfx =& can be studied based on the results given in 

the previous subsection. 

  

A more complex dynamical behavior is the quasi periodicity defined below. 

 

Definition 2.7 Quasi-Periodical Solution: A solution )x( 00 ,, xtt  to )( ,txfx =&  is 

said to be quasi-periodic if and only if there exist a set of periodic functions 

)(tpi each of which has period iT  such that ∑=
i

i tpxtt )(,; 00 )x( . Where, the 

periodic functions set may not be finite but 
i

i T
f 1
=  can be written as an integer-



 

 

47

weighted combination of a finite set },,{ 1 Pff L  of base frequencies, i.e.  

∑=
P

j
jji fkf with Zk j ∈ . □ 

 

Quasi periodic solutions may arise in periodically excited systems originally 

possessing a limit cycle, for instance the non-autonomous version of van der Pol 

system (Parker & Chua, 1987a, 1987b). The quasi periodicity of a system can be 

identified best from its k-torus limit set in the state space. 

 

The most complicated dynamics for deterministic systems is currently known as 

chaos. The limit set of a chaotic dynamics is of fractal dimensional as opposed to the 

equilibrium dynamics having zero dimensional limit set, periodical and quasi-

periodical dynamics having one or higher integer dimensional limit sets. They have 

broad band frequency spectra. Chaotic dynamics, which has bounded trajectories as 

stable equilibrium and limit cycle, has three distinguishing features; i) sensitive 

dependency on initial conditions, ii) topological transitivity, also called as mixing 

property, and iii) denseness of periodic orbits. 

  

Definition 2.8 Chaotic Invariant Set (Wiggins, 1992): Let )(xfx =&  be an 

autonomous system with a continuously differentiable function nn RR:)f( →o . 

Assume its flow )(x t,Φ  exists for all 0≥t . Let nRΛ∈  be a compact set which is 

invariant under the flow )(x t,Φ . Then, the invariant set nRΛ∈  is said to be chaotic 

if  

i. )(x t,Φ  is sensitive dependent on the initial conditions in nRΛ∈ , i.e. 

0≥∃ε such that Λ∈∀x and for some U neighborhood of x , U∈∃x̂ and 

0>∃t  such that ε>− t),xΦ(t)Φ(x, ˆ . 

ii. )(x t,Φ  is topologically transitive on Λ , i.e. for each pair of Λ⊂VU ,  open 

sets Rt∈∃  such that φ≠∩Φ VtU )( , . Where, φ  stands for empty set. 

iii. Periodical trajectories of the flow )(x t,Φ  are dense in Λ , i.e. in each open 

neighborhood of a periodical trajectory there must exist another periodical 

trajectory. □ 
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Sensitive dependence on initial conditions implies a local expansion, in other 

words divergence of two neighboring trajectories. Lyapunov exponents which can be 

calculated using trajectories give information about the chaotic behavior: For a 

chaotic behavior, the largest Lyapunov exponent λ defined by Equation 2.49 is 

positive (Peitgen et al., 1992; Sastry, 1999; Wolf et al., 1985). 
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λ               (2.49) 

 

Where, x , x̂  denote two trajectories due to the initial states 0x , 0x̂ . If the largest 

Lyapunov exponentλ  is zero, then the associated (bounded solution) system is a 

limit cycle. If 0<λ , it is a stable equilibrium. 

   

2.3 Controller Design 

 

Stages of a controller design can be given as follows (Doyle et al., 1992): 

• Set up the real system to be controlled with sensors and actuators 

• Model the system and identify its properties. 

• Design controller to meet performance specifications  

• Analyze the system by simulation  

• Implement controller hardware and/or control algorithm software 

• Tune the controller parameters in a real-time application. 

 

One of the most important issues in controller design is to find a suitable 

controller to meet given performance specifications for a control system under 

consideration. This issue can be solved by linear controllers such as Proportional 

Integral Derivative (PID), high gain, state and output feedbacks (Goodwin et al., 

2001; Dorf, 1989; Franklin et al., 1991; Kuo, 1995; Ziegler & Nichols, 1942). PID is 

widely used in industrial applications sharing ninety percent of overall controllers 

due to its high efficiency compared to its simplicity (Astrom & Hagglund, 1995). 

The main control design methods are described in this subsection.  
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2.3.1 Feedback Control 

 

Feedback control methods can be grouped into static and dynamical feedbacks 

(Goodwin et al., 2001). The dynamical feedback control structure is shown in Figure 

2.23 for linear, time-invariant, discrete-time case. 
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Figure 2.23 Dynamical feedback control scheme 

 

 The feedback control in Figure 2.23 becomes static feedback when )()( kHyku = . 

 

2.3.1.1 State and Output Feedbacks 

 

Both static and dynamical feedback methods can also be classified into state and 

output feedback subgroups (Cao et al., 1998; Ding, 1999; Ding, 2002; Ezal et al., 

1999; Pimpalkhare & Bandyopadhyay, 1994; Trofino-Neto & Kucera 1993; Syrmos 

et al., 1994). If the feedback is in terms of the outputs, then it is called as output 

feedback. Otherwise, if it is in terms of states then it is called as state feedback. 

 

2.3.1.2 Proportional Integral Derivative (PID) Controllers 

 

A PID controller is defined by Equation 2.50 in the time-domain or by Equation 

2.51 in the s-domain (Astrom & Hagglund, 1995; Goodwin et al., 2001; Katsuhiko, 

2002; Zhang et al, 2004). 
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Where, u is the controller output, e  is the controller input, pK , iK  and dK  stands 

for proportional, integral and derivative gain, respectively. The above given 

descriptions provide input-output representations. A state space model for PID 

controller can be obtained as in Equation 2.52 and 2.53 by assuming 21 : xx =&  and 

ex :2 =  which imply ex =1& and ex && =2 . 
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As seen more clearly from Figure 2.24, a PID is cascade of a pure differentiator 

with a 2-dimensional state model whose input is the derivative e&  of the error.  
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Figure 2.24 Block diagram for state representation of PID control  

 

It is interesting to note that PID is a dynamical output feedback controller and it is 

controllable for all choices of PID gains and observable whenever 0≠iK . 
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2.3.2 Nonlinear Control 

 

In real world applications, linear controllers are not enough when dealing with 

nonlinear systems having nonlinearities in plant, sensor and/or actuator etc. Feedback 

linearization which is already described in Subsection 2.1.2.1 and adaptive control 

are two essential methods widely used in nonlinear control area (Khalil, 1996; 

Kokotovic, 1992; Krener, 2003; Krstic M.et al., 1992; Sastry, 1999; Sepulchre et al., 

1997; Vidyasagar, 1993; Xu & Ioannou, 2003). The idea of feedback linearization is 

to transform a given nonlinear system into a linear one, so applying linear control 

methods. Adaptive control considers nonlinearities as changes in the plant and/or in 

the environments, so employs an adaptive control for handling these changes. 

 

2.3.2.1 Adaptive Control 

 

The adaptive control is a control method where the controller parameters are 

changed in an online fashion according to the changes in the plant and/or 

environment. Adaptive control methods can be categorized into two groups: i) direct 

methods and ii) indirect methods. 

  

Controller parameters in the direct methods are changed as a function of the 

output of the plant. Gain scheduling and Model Reference Adaptive Control (MRAS) 

are examples for direct control. In MRAS, there is also a reference model so that the 

controller parameters are changed as a function of its output which is, in fact, desired 

to be tracked by the control system in an adaptive way. 

 

On the other hand, the controller parameters in the indirect methods are changed 

in accordance with the plant parameters which are estimated by certain techniques. 

Self tuning regulator and dual control are examples for indirect methods.  

 

In any kind of adaptive control, the controller becomes nonlinear and/or time-

varying even if the plant and the chosen model for controller are linear and time-
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invariant (Astrom, 1987; Astrom & Wittenmark, 1994, 1997; Middleton et al., 1988; 

Narendra & Kudva, 1974; Sastry & Bodson, 1989; Slotine & Li, 1991; Pan & Başar, 

1998; Wu et al., 2007). As shown in Figure 2.25, an adaptive control system has two 

loops: i) the feedback loop ii) the controller parameter calculation loop. In the latter 

loop, the controller parameters are updated in accordance with plant output, 

controller output and reference input.  

 

Calculating
Parameters

Controller Plant+ -

r e u y

 
Figure 2.25 General adaptive control schemes  

   

Gain Scheduling Method: Gain scheduling is a switching technique for controlling 

nonlinear systems via a set of linear controllers each of which works for a different 

operating point of the system. Controller’s parameters are chosen according to 

measured variables as observing the plant. This measured variable is called gain and 

its changing is called schedule, so this method is called as gain scheduling. Gain 

scheduling does not need parameter estimation from the plant, so it responses very 

quickly to plant changes (Astrom, 1987; Astrom & Wittenmark, 1994; Blanchini, 

2000; Leith & Leithead, 2000). 
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Figure 2.26 Gain scheduling adaptive control scheme  
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Model Reference Adaptive Control (MRAC) Method: In MRAC, parameter tuning 

process takes into account the outputs of the reference model, actual plant and 

controller. The reference model of MRAC which is, indeed, a stable model of the 

plant, provides to cope with external disturbances and parameter uncertainties. The 

difference between the actual plant output and reference model output serves as 

model error. Gradient based algorithms for minimizing squared model error are 

widely used for updating controller parameters. MIT rule is such a method (Astrom 

& Wittenmark, 1994; Hatwell et al., 1991; Narendra & Balakrishnan, 1997; Slotine 

& Li, 1991). 
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Figure 2.27 MRAC scheme  

 

The reference model is chosen according to the degree of the model. Its structure 

should fit to the actual closed loop system structure. 

 

Self Tuning Regulators (STR) Method: In STR, the controller parameters are 

updated according to the estimation of the plant parameters and given performance 

criteria. The basic idea of STR can be stated as first find plant parameters in an 

online fashion by an identification method, and then update the controller parameters 

again online (Astrom & Wittenmark, 1994; Slotine & Li, 1991). 
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Figure 2.28 STR adaptive controls  

 

Dual Control Method: As opposed to the above given three adaptive control 

methods all of which do not take into account parameter uncertainties, dual control 

employs nonlinear stochastic control theory for handling uncertainties in parameter 

estimation. In dual control, the controller takes special actions under poor knowledge 

about the plant parameters. (Astrom & Wittenmark, 1994; Filatov & Unbehauen, 

2000; Wittenmark, 1995). As shown in Figure 2.29, the controller comprised two 

parts; i) nonlinear estimator and ii) feedback controller. The estimator generates the 

hyperstate, i.e the conditional probability distribution of the state, from the 

measurements.   

 

Hyperstate
calculation

PlantNonlinear
controller

yur

 
Figure 2.29 Dual adaptive control scheme  

 
 

 

 

 

 

 

 



 

55 

CHAPTER THREE 

REAL TIME SIMULATION FOR CONTROLLER DESIGN, TEST AND 

REDESIGN  

 

A microcontroller based low-cost platform managed by a graphical user interface 

for the design-test-and-redesign of controllers through examining the simulated, 

emulated or real controller candidates on the simulated, emulated or real plants are 

under the real-time and real environmental conditions, e.g. analog disturbances, 

created by a hardware peripheral unit. The platform provides a set of novel real-time 

operating modes as well as the well-known simulation modes such as hardware-in-

the-loop and software-in-the-loop etc. The operating modes are described in a 

comparative way by an introduced taxonomy and also softly categorized based on 

their suitability to the design, test and redesign stages of an introduced controller 

design procedure. The simulation modes and design procedure offered are verified 

on several benchmark plants and on a real plant, i.e. a micro DC motor. The reliable 

operating frequency ranges of the platform are determined by an investigation 

through a set of experiments. It is observed that synchronization of coupled 

oscillators, chaotic ones in particular, where the master system realized in one sub-

unit and the slave in the other constitutes a useful benchmark for validation of such 

real-time simulation platforms requiring synchronized operation of different sub-

units, herein the PC, microcontroller and hardware peripheral unit. 

 

3.1 Structure and Functions of the CDTRP  

 

The developed platform CDTRP comprises four main units which are a real-time 

simulator running in a PC, a real-time plant emulator realized in a plant emulator 

card, a hardware peripheral unit for recreation a real environment for the plant 

emulator, and a GUI in the PC which manages the whole platform. The structure and 

the interconnection of the sub-units of CDTRP are depicted in Figure 3.1. The first 

unit is the software simulator implemented in the PC. It aims to simulate the 

controller, the plant and/or the peripheral unit components depending on the 



 

 

56

operating modes of the platform, i.e. it simulates, for instance, the plant if it is active 

in the chosen mode of operation. The simulation program is in terms of the 

MATLAB codes and it requires controller algorithm and plant model as MATLAB’s 

M-files. The simulator is designed to run essentially in real-time; however, it can run 

in any time step faster or slower than real-time which might be preferred depending 

on the application.  

 

User

Plant 
Emulator

Graphical
User
Interface 
(GUI) Unit
in PC

Controller/
Plant
Simulator
in PC

Digital 
Interfaces

Hardware 
Peripheral 
Unit Card

•Controller
•Actuators
•Sensors
•Disturbance &
Perturbation
Signal Drivers

Analog & 
Digital 
Interfaces

Plant Emulator Card
 

 Figure 3.1 Structure of Controller-Design-Test-Redesign-Platform (CDTRP) 

 

The second unit is the emulator card whose core is the PIC microcontroller 

18F452. The microcontroller is devoted to emulate the controller, the plant and/or the 

peripheral unit components depending on the operating modes of the platform. The 

plant emulator card also possesses digital and analog interfaces for the 

communication of the plant emulator with the other units of CDTRP, i.e. the GUI 

and the Hardware Peripheral Unit Card. The PIC is programmed by PICC software 

ran in the PC before installing it into the plant emulator card, so become ready to be 

managed by GUI and to communicate with the simulator in the PC and with the 

hardware peripheral unit card via the GUI. (The details on the hardware realization 

of the emulator card are given at the end of this section, i.e. Subsection 3.4.) The 

third unit of the CDTRP, i.e. the hardware peripheral unit card is the most flexible 

part of the platform: Depending on the application, it contains (analog and/or digital) 

hardware controller, actuators, sensory devices and signal drivers corresponding to 

the external disturbance and parameter perturbations to recreate the real 

environmental conditions for the plant emulator. The fourth unit, the GUI, of the 

CDTRP provides the management of whole platform. The GUI is implemented with 
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more than 2000 lines of MATLAB codes in the MATLAB’s GUI designer tool. The 

GUI serves to the users as a monitoring and controlling unit for the platform. The 

GUI manages all operating modes listed in Tables 3.1-3 and the environmental 

conditions provided by the hardware peripheral card. A view of the front panel of the 

GUI is given in Figure 3.2 where the monitoring and controlling tools supplied to the 

users by the GUI are visible.  

 

 
          Figure 3.2 Front panel of the GUI for the platform 
 

The main features and management (i.e. monitoring and controlling.) facilities of 

the GUI are listed below: 

• It is a user-friendly GUI, i.e. easy to be used via a set of interface entries such 

as start, stop, export to excel, randomizing and all zeroing of the initial 

conditions of the simulator and the emulator.  

• Selection buttons exist for switching the simulation type for the plant as 

simulator in PC or emulator on the plant emulator card, so for determining 

the operation mode of the CDTRP. It should be noted that there is no 

restriction on the numbers of input and output of the plant in the simulator, 

but the emulator allows up to 8 inputs and 2 outputs for the plants. The 

emulator is actually designed for realizing the plants which are single-input, 

single-output. If the inputs such that the one reserved for the additive (to the 

control input) disturbance signal, three of them for the multiplicative (to the 
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possible three states) parameter perturbation signals and the rest four for 

sensory devices and/or for other peripheral units are used in the specific 

application, then they may be used for the plant emulator as extra input and 

output terminals.       

• A set of benchmark plants are available in the menu of CDTRP such that one 

of them can be chosen by the user via the associated button in the front panel 

in order to test a considered controller. The users can also define, in the user-

defined button, their own plant models as in the form of state equations by 

uploading the MATLAB’s M-file corresponding to the considered plant via 

browser.   

• The controller algorithm to be run in the PC simulator can be loaded on the 

front panel via browser as a MATLAB’s M-file.  

• The time steps for the controller and the plant can be determined in an 

arbitrary way and also independently from each other irrespective to whether 

or/not the plant is implemented in the simulator or in the emulator.  The final 

time can be set by using the final time box in the front panel of the GUI to a 

real time value or set to “inf” option which means the simulator or the 

simulator to run indefinitely. 

• The external analog signals, which are intended to be generated in the 

hardware peripheral unit and then fed to the emulator, are selected by using 

the menu of ADC inputs, i.e. U, X1, X2, X3, D_U, D_X1, D_X2 and D_X3 

which take place in the front panel. U, X1, X2 and X3 are for hardware-in-

the-loop simulations (See Tables 3.1-3). 

• “Speeding-up the emulator” option controlled from the front panel can be 

used if the emulator is communicated with the hardware peripheral unit only 

and there is no need to transfer data from the emulator to the GUI in any way. 

It inactivates the interconnection between the emulator and the GUI so 

allowing the emulator to spare its computing power for the communication 

with the hardware peripheral unit. 

• Noise box in the front panel is used for magnifying or reducing the amplitude 

of the noise constituting a part of the external analog signals generated D_U 



 

 

59

in the hardware peripheral unit card which is aimed to be used as additive to 

the control signal. 

• Parameter variation signals, which constitute a second part of the external 

analog signals generated in the hardware peripheral unit, can be applied via 

D_X1, D_X2 and D_X3 ports of the plant emulator card in a multiplicative 

way to each state of the plant emulator. D_U, D_X1, D_X2 and D_X3 values 

are displayed in real-time on the fourth row of the LCD display of the plant 

emulator card.  

• The multiplicative output disturbance set-up of the front panel, which is 

included for applying an single short pulse disturbance multiplicative to the 

plant output, enables to set the time when the pulse is applied and the pulse 

amplitude for the operating modes such as S-S-S, S-E-S, S-E-E, S-R-R in 

Tables 3.1-3.  

• The initial conditions for the plant implemented both in the PC simulator and 

in the emulator can be assigned in a random way as using by a randomizing 

button placed in the front panel which activates MATLAB’s standard 

randomizing function and also they can be set to the user defined values.  

• The front panel of the GUI has five monitors, each displays one of the 

implemented control system’s variables, i.e. the desired (plant) outputs, the 

error signals which are indeed the inputs of the controller, the control signals 

which are the outputs of the controller and at the same time the inputs of the 

plant excluding the environmental signals, the state variables of the plant (up 

to three states), and the actual outputs of the plant. It should be noted that the 

monitors corresponding to more than one variable displays all the variables 

together in the same plane where the horizontal axis, i.e. the time and the 

vertical axis are in the same scale. Only the state variable monitor has an 

additional feature of replacing the time axis with one of the state variables, so 

enabling to plot the two-dimensional projections of the state space, i.e. the 

phase portraits.  

• The front panel has also monitors indicating the precise (MATLAB) values 

(up to eight digit lengths) of the states of the plant, the control signal and the 

actual plant output at the current time step set for the plant. 
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• Two (digital to analog) converters’ outputs of the plant emulator card can be 

configured via the output options menu in the front panel as to be devoted to 

two of the system states and/or the actual output and/or the control signal. 

The operating ranges of the outputs of the converters are also adjusted again 

by the output options menu.  

• The data related to the control systems variables, which are all monitored via 

the GUI, can be exported to the excel file as a data logger.  

 

3.2 Taxonomy of Real Time Simulation Modes Realized by CDTRP 

 
With the features of the GUI mentioned in Subsection 3.1, the developed 

simulation platform CDRTP becomes self-contained and it can implement 24 

different real time operating modes given in Tables 3.1-3 where three letters coding 

is used for representing operating modes. The first, second and third letters of them 

stand for the controller, plant and peripheral unit, respectively.       

 

Table 3.1 Taxonomy of real-time simulation modes of CDTRP: peripheral unit implemented in the 

simulator (PC) 

 
                     Plant 
Controller 

Simulator (in PC) 
 

Emulator Real (Hardware) 

Simulator (in PC) S-S-S S-E-S S-R-S 
Emulator E-S-S E-E-S E-R-S 

Real (Hardware) R-S-S R-E-S R-R-S  

 

Table 3.2 Taxonomy of real-time simulation modes of CDRTP: peripheral unit implemented in the 

emulator 

 
                     Plant 
Controller 

Simulator (in PC)
 

Emulator Real (Hardware) 

Simulator (in PC) S-S-E S-E-E S-R-E 
Emulator E-S-E E-E-E E-R-E 

Real (Hardware) R-S-E R-E-E R-R-E 
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Table 3.3 Taxonomy of real-time simulation modes of CDRTP: peripheral unit implemented as 

real hardware 

 
                     Plant 
Controller 

Simulator (in PC) 
 

Emulator Real (Hardware) 

Simulator (in PC) - S-E-R S-R-R 
Emulator - E-E-R E-R-R 

Real (Hardware) - R-E-R R-R-R 
- The first column modes are not realized in CDTRP without using an additional analog interface 

extension for the PC. 
 

The operating modes in Tables 3.1-3 are obtained depending on the 

implementation of controller, plant and peripheral unit as the simulator (PC), 

emulator or real (analog/digital) hardware. Other than S-S-S, E-E-E and R-R-R 

modes, all modes will be called as mixed modes since at least two of controller, plant 

and peripheral unit is implemented in different units of CDTRP, i.e. the simulator 

(PC), the emulator and real hardware. Note that the controllers are applied to the 

plants in the unity feedback configuration in all modes. However, the modes are by 

no means restricted to this particular (yet quite general) feedback configuration 

which means the other possible configurations can be created by making some 

modification on the introduced GUI. The simulator and emulator of CDRTP can be 

run faster than real time or run without hard time limitations but these cases 

(mentioned in Isermann et al., 1999) are out of consideration in the presented work 

since the focus is on test and design of controllers under the criterion of working well 

for real time operations. 

 

The first column modes in Table 3.3 can not be realized in CDTRP without using 

an analog interface feeding the output of the real peripheral unit to the PC where the 

plant is simulated. (Of course such an extension is possible but with an additional 

cost.) The actuator, sensors, disturbance and parameter perturbation effects which are 

created in the peripheral unit using analog/digital hardware can be embedded to the 

emulator by means of the emulator interface. So, the S-E-R, E-E-R and R-E-R modes 

of CDTRP constitute a contribution to the real time simulation literature since there 
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is no such an interface possibility of the simulators running on the PCs and the 

available emulators in the literature. 

  

R-R-R operating mode corresponds to a real control system not a simulation 

mode. S-S-S mode where all parts of the control system are simulated in a PC is the 

most commonly used mode in the literature so that many software tools are available. 

All of the real time S-S-S, S-E-S, E-S-S, E-E-S, S-S-E, S-E-E, E-S-E and E-E-E 

operating modes where the controller, plant and peripheral unit are all implemented 

in the simulator (PC) or possibly in the emulator would be considered as so called 

“software-in-the-loop simulation” in the literature (Isermann et al., 1999). In a 

similar way, the modes S-R-S, E-R-S, R-R-S, S-R-E, E-R-E, S-R-R and E-R-R 

where the plant under test is real would be considered as so called “prototyping 

mode” (Isermann et al., 1999) and the modes R-S-S, R-E-S, R-S-E, R-E-E and R-R-

E where the controller is implemented as real hardware while the plant as simulated 

would be considered as so called “hardware-in-the-loop” simulation (Dufour et al., 

2007; Facchinetti & Mauri, 2009; Hanselmann, 1996; Isermann et al., 1999; Li et al., 

2006; Lu et al., 2007; Steurer et al., 2009). It should be noted that giving a single 

name for different modes yields confusion, so it might be better to use the three-letter 

based index provided in the Tables 3.1-3 for distinguishing different modes. A 

different alternative might be the separation of the modes into subclasses such as 

simulated-controller, simulated-plant, simulated-peripheral, emulated-controller, 

emulated-plant, emulated-peripheral, real-controller, real-plant or real-peripheral 

classes of modes each of which refers to a set of modes whose common property is 

specified by the class name, e.g. the real-plant class consists of all modes where the 

plant is real but the controller and peripheral might be simulated, emulated or real. 

Throughout the paper three-letter index will be used for the individual modes and the 

lastly mentioned classes will be used for the associated set of modes whenever 

appropriate. 

 

On the other hand, the set of operating modes can be extended by assigning extra 

letters for each element of peripheral sub-unit, i.e. actuator, sensor, disturbance and 

perturbation depending on their implementation in simulator or emulator or as real 
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hardware. Hardware realization for controllers and components of the peripheral unit 

is application specific, i.e. depending on the application the hardware might be a 

fully analog system (as in the chaotic synchronization application presented in next 

Subsections) or a microcontroller or digital signal processor card equipped with 

analog interface to communicate emulated or real plant. 

 

3.3 Categorization of Modes of CDTRP Based on the Suitability to the Design, 

Test and Redesign Stages 

 
According to the main issue addressed which is to design controllers having high 

performance on the real plant under real environmental conditions, a controller 

design procedure following a three stage path is proposed as follows:  

 

(Initial) Design Stage: Use a simulation mode of CDTRP which enables to 

implement any kind of controller, plant and peripheral components without any 

insufficiency in terms of memory and time and with a high flexibility of changing the 

models and parameters of controller, plant and peripheral components in an efficient 

way. Of course, the most suitable mode for the initial design stage is the S-S-S. 

Depending on the control application, on the chosen (initial) set of candidate control 

methods and also on the experience and knowledge of the control system designer, 

the modes taking place at the first rows and columns of Tables 3.1-3 can be preferred 

well in the initial design stage.  

 

Test Stage: Use an operating mode of CDTRP which examines the control 

methods in terms of their performances under the conditions as close as possible to 

the real world and so provides a tool for eliminating the controller candidates of poor 

performances on the real plant under real environment. In other words, the modes 

suitable to the test stage are the ones which provide real world performance features 

giving information enough to make a right decision on their usability in real world 

applications and yet have the flexible implementation efficiency with the ability of 

creating and changing the models and their parameters for controller, plant and 

peripheral components, of course in a lesser extent as compared to the initial design 
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stage. In this sense, the modes taking place at the last rows and columns of Tables 

3.1-3 would be preferred in the test stage. However, even S-S-S mode can be used 

for test purposes to eliminate some controller candidates in the early phases of the 

design process. On the other hand, before starting the design process one of the first 

issues which should be clarified is the final operating mode for the control system 

under consideration. In order to understand beforehand how the real control system 

will behave under real world conditions, the final test mode should be chosen close 

to the real operating conditions. Depending on the control application, hardware 

realization possibilities, plant dynamics and research/educational needs, the final test 

mode might be chosen as the R-R-R mode or any other mode reflecting the reality 

sufficiently yet implementable in the laboratory conditions. For instance, R-R-R 

seems to be the most appropriate choice for final test of the analog chaotic control 

systems since their simulation and emulation do not reflect reality due to the their 

large bandwidth dynamics (See also coupled Lorenz systems example in Subsection 

3.6.3 studied for another purpose.). As another example, S-R-R mode of CDTRP is 

chosen for the final test in the control application where the PC is used for hardware 

implementation of the controller (Facchinetti & Mauri, 2009; Li et at., 2006; Lin, 

1997; Lu et al., 2007; Rodriguez & Emadi, 2007; Yamamoto et al., 2009) and also 

the controller design process for DC motor in Subsection 3.6.2).  

 

Redesign Stage: Redesign may be defined as going back to the design stage for 

updating models and/or parameters of controller, plant and/or peripheral units and 

then test new controller candidates in the same or in new environments. In one 

extreme case, redesign requires to enlarge the set of control methods to be applied. In 

the other extreme case, it requires tuning the controller parameters only. In the 

former ones, redesign may end after many loops of design-test-redesign. In this 

setting, the operating modes which can be used in the redesign stage would be said 

the ones suitable to the initial design and test stages. However, it can be stated that 

the operating modes taking place at the last rows and columns of Tables 3.1-3 would 

more likely be preferred in the redesign stage since a small set of models and 

parameters remain to be tested, so it is needed less implementation flexibility and 

also less distance to real world after early phases of the design process.  
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The above design procedure defines a soft category specifying which operating 

modes are suitable to the initial design, test and redesign stages. Actually, the 

suitability of an operating mode to a considered stage of a controller design process 

is highly dependent on the control application, i.e. on the plant, actuator, sensors and 

environmental conditions. So, it seems to be impossible to give a crisp category of 

modes based on their suitability to the design, test and redesign stages. However, for 

a specific control application, it may be possible to determine the best suitable 

operating mode to the design, test and redesign stages by successive implementation 

of some operating modes and then assessing/evaluating the eventually selected 

controller’s performance, so observing which mode yields the controller having the 

best real world performance. 

 

3.4 Implementation of the Plant Emulator Card with PIC Microcontroller 

 

Microcontrollers which are single-chip computers with limited computer’ features 

(İbrahim, 2006) are widely used for control applications usually for implementing 

controllers together with digital and analog input interfaces. The plant emulator card 

of CDTRP has been realized with a PIC18F452 microcontroller. The main reasons 

for such a choice for the emulator hardware are as follows: i) It is quite cheap and 

easy to be programmed device, so can be reproducible easily by the instructors and 

the students for some educational purposes, by the engineers for industrial 

applications and also by the researchers for examining their controllers on emulated 

plants. ii) Its capability is enough to implement many benchmark plants and even 

synchronization systems (linear dynamical and Lorenz oscillators), and also analog 

and digital interfaces needed to communicate with peripheral units for recreation a 

real environment in the developed controller-design-test-redesign-platform. 

 

The schematic diagram of the implemented hardware of the plant emulator card is 

given in Figure 3.3. The PIC18F452 microcontroller based plant emulator card has i) 

32KB of internal flash Program Memory, ii) 1536-byte RAM area, iii) 256-byte 

internal EEPROM, iv) eight channel analog inputs via 10-bit A/D converter, v) four 

channel digital input/outputs, and vi) two analog output ports via D/A converter. An 
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LCD character display with four lines and 20 columns is also connected to the 

microcontroller to indicate the outputs and the control inputs of the emulated plant 

with respect to current time. Where the PIC18F452 microcontroller is programmed 

with 5672 lines of C program codes which uses 95% of the ROM and 27% of the 

RAM of the microcontroller.   

 

 
 Figure 3.3 The schematic diagram of the hardware of the plant emulator card 

 

 An image of the hardware realization of the plant emulator card is given in 

Figure 3.4 where the physical locations of the blocks depicted in the schematic 

diagram of the plant emulator card are indicated with description tags.  

 

 
Figure 3.4 The real hardware of the plant emulator card  
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3.5 Experimental Set-up of the Developed CDTRP 

 

The experimental set-up of the developed CDTRP platform is given in Figure 3.5. 

It has been used for the design-test-redesigning controllers of the benchmark plants 

in Table 3.4 by means of operating modes in Table 3.1-3. The CDTRP platform set-

up is composed of a plant emulator card, a PC, a signal generator, power supplies 

and an oscilloscope. The specifications of the plant emulator card are already given 

in Subsection 3.4. The PC is chosen as having a Centrino processor and a 1GB 

memory which constitute a minimum configuration necessary for running MS 

Windows XP and MATLAB 7.04 software. The signal generator as a part of the 

hardware peripheral unit card is included as providing an external analog signal noise 

(D_U). Power supplies constituting another part of the hardware peripheral unit card 

are used as dc variacs changed manually for generating the perturbations of the plant 

variables (D_X1, D_X2 and D_X3).  

 

      

 
 Figure 3.5 The experimental set-up for the whole CDTRP platform  
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3.6 Verification and Validation of the CDTRP Platform Based on Benchmark 

Plants 

 

This subsection presents verification and validation of the CDTRP platform based 

on benchmark plants which are implemented as simulation, emulation or real 

hardware.  

 

3.6.1 Benchmark Plants Implemented in CDTRP for Verification of Operating 

Modes: 

 

In this subsection, the benchmark plants which are implemented as simulation, 

emulation or real hardware for verification of the operating modes of the CDTRP 

platform are listed. A set of benchmark plants which can be chosen by the users via 

the plant selection button in the front panel of the GUI are included in the menu of 

the CDTRP Platform for helping the users to examine their control methods on these 

selected benchmark plants in a quick way. This menu is open to be extended by the 

users to cover a larger class of benchmarks or any other plants of interest which must 

be defined by at most three dimensional state equations (This restriction is due the 

capacity limit of the chosen emulator hardware, i.e. PIC18F452.). 

 

The benchmark plants available in the menu which are listed in Table 3.4 are used 

in this presented work also for the verification of the operating modes of the 

developed controller-design-test-redesign-platform. The benchmark plants in Table 

3.4 are chosen among the benchmarks extensively used in the literature in order to 

compare the system identification methods and/or to compare the controller design 

methods (It means that they are hard to be identified and/or hard to be controlled.) or 

they are of practical importance in some sense. 
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Table 3.4 Benchmark Plants of Control-Design-Test-Redesign-Platform  

Benchmark 
Plant (BP) State Model  Descriptions and Associated References Operating 

Modes 
BP1 
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A second-order plant: control input )(ku , output 
)(ky ,  states of the plant )(1 kx  and 
)(2 kx (Narendra, 1996; Narendra & 

Mukhopadhyay, 1997). 
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One-link robot (flexible joint mechanism): control 
torque input )(ku , the output )(ky  and the angular 
positions of the plant )(1 kq  and )(2 kq . Parameters: 

Moments of inertia 2031.0 kgmI =  and 2004.0 kgmJ = , 
mass-gravity-distance NmMgL 8.0= , spring constant 

Nm/rad 31=k   (Abdollahi et al., 2006, Ghorbel et 
al., 1989; Khalil 1996, Slotine & Li, 1991; Spong et 
al., 1987; Spooner et al. 2002). 
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A DC motor: )(ku control input, )(ky output, )(1 kx  
and )(2 kx states of the plant. Parameters: Ω= 5R , 

HL 5.0= , inertia 2m-kg 0.1J = , damping constant 
m/rad/s-N 0.2bm = , and constant 

sVkm −=1 (Lewis et al., 2004). 
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S-E-E, S-E-R 
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An inverted pendulum: control input )(ku , 
output )(ky ,  states of the plant )(1 kx  and )(2 kx . 
Parameters: The parameters: kgM 2= , mass of the 
ball kgm 1.0= , and m 0.5=l  (Ogata, 1997). 
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A biomechanical elbow: control input )(ku  is 
difference between flexion muscle 

fF  and 

extensor muscle
eF  forces, output )(ky   states of 

the plant )(1 kx  and )(2 kx . Parameters: the inertia 
of the link 225.0 kgmI = , the moment arms 

m 0.04=r , and damping constant Nms/rad 0.2=B  
(Micera et al., 1999). 
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An oscillator system (Undamped linear pendulum): 
States of the plant )(1 kxr

and )(2 kxr
. If the oscillator 

system’s state )(1 kxr
is chosen as )(1 kxt

which 
could be one of the states of another oscillator, this 
system is used for synchronization of coupled 
oscillators. Parameter: 0>w .  
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S-E-E, S-E-R, 
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R-E-R 
 
 

BP9 

3213

31212

121

5
20

)(

tttt

ttttt

ttt

bxxxx
xxxrxx

xxx

−=
−−=

−=

&

&

& σ
 

Realized Lorenz chaotic transmitter: states of the 
plant )(1 kx , )(2 kx and )(3 kx . The equations are 
chosen as in (Cuomo & Openheim, 1993) but with 
different parameters 12.2=σ , 120.5=r  and 6.10=b  
in order to reduce into the main harmonics around 
1.5 Hz. 
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Realized Lorenz chaotic receiver: states of the 
plant )(1 kx , )(2 kx  and )(3 kx . 
Parameters: 12.2=σ , 120.5=r  and 6.10=b . 

S-S-S, S-E-S, 
S-E-E, S-E-R, 
R-E-S, R-E-E, 
R-E-R 
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3.6.2 Controller-Design-Test-Redesign by CDTRP Platform on a Real Plant: DC 

Motor Case 

 
This subsection is devoted to demonstrate how to implement the controller 

design-test-redesign procedure introduced in former Section for reaching a controller 

working well for a real plant under the real environmental conditions. A micro DC 

motor is chosen as the real plant and the final operating mode is determined as S-R-R 

where the PC is used as the controller, the real plant is the micro DC motor, the 

sensor and actuator i.e. the encoder and driver are realized in a PIC microcontroller 

driver card (See Figure 3.6). In the initial design stage of the controller design-test-

redesign procedure, S-S-S mode was found the most suitable mode as a consequence 

of the simulation efficiency of the simple yet realistic DC motor models in addition 

to its implementation flexibility as observed in a set of experiments conducted within 

the S-S-S, S-E-S and S-E-E modes. In the test stage, S-E-E mode was firstly 

implemented for testing the considered controller design methods on the emulated 

plant under emulated environmental conditions. Then, the controller candidates were 

examined in S-E-R mode. It was found that S-E-R mode is the most suitable mode 

for testing the considered control methods since it provides to examine the controller 

candidates under quite realistic conditions still having flexibility in simulating 

different controller candidates efficiently. In the redesign stage, S-R-S and S-R-E 

modes were implemented at the beginning and then S-R-R mode was implemented 

as the final mode where the parameters of the controller found the best in the test 

stage were tuned. The details of the above explained steps of the implementation of 

the controller design-test-redesign procedure for the DC motor example are given in 

the sequel. 

 

Implementation of the real plant together with its real actuator and sensor units: 

A micro DC motor was considered. The DC motor driver card (See Figure 3.6) was 

realized with a PIC18F452 microcontroller driver unit which has a serial interface to 

communicate with the PC. The speed of the motor was considered as the output and 

was measured by an encoder to feedback to the system. The microcontroller based 

driver unit drives the DC motor speed revolutions per minute (rpm) via pulse width 

modulation (PWM) changing between 0% and 100%. That is to say, in the 
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implemented S-R-S, S-R-E and S-R-R operating modes, control signal from CDTRP 

converted into PWM signal and can control real DC motor speed rpm. 

 

 
Figure 3.6 Real DC motor hardware whose driver unit is based on PIC 

for S-R-R mode 

 

Identification of DC motor to obtain a model to be simulated and emulated: In 

order to simulate and also emulate the real DC motor in the simulated-plant and 

emulated-plant modes to be used for the design and test stages, a system 

identification procedure was applied to the real DC motor and then may be the 

simplest yet realistic model for the considered micro DC motor was obtained. (It 

should be noted that although more complicated models better suited to the real data 

measured from the DC motor can be derived, it was preferred to work with this 

simple model for the plant not only for taking the advantage of efficient simulation 

and emulation of the DC motor but also for focusing more on testing the controllers’ 

performances on the considered DC motor and on its simulated/emulated model in a 

comparative way rather than on simulating/emulating the DC motor more 

realistically by more complicated models. In fact, it was observed that choosing a 

simple first order dynamical model for the DC motor which was identified by using a 

step response method provides sufficiently close responses to the ones measured 

from the real DC motor and also provides to see the differences among the 

performances of the different controllers implemented.) 
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A step function, which is obtained by changing PWM sharply, has been fed to the 

real DC motor plant. The input-output data pairs of the plant necessary for the 

identification have been measured via the hyper-terminal of the PC. After the process 

of data gathering, the transfer function of the plant is found under the assumption of 

single-input single-output (SISO) linear dynamical system for the plant. It is known 

(Khalil, 1996; Wang, 2009) that the real DC motor plant has been well modeled as a 

first-order delayed dynamical system according to the response of the plant due to 

the step input. The step response of the first-order system defined with three 

parameters is given in the Laplace and time-domain, respectively, as follows. 
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Where, T is the time constant, L is the dead-time and K is the gain (Astrom & 

Hagglund, 1995). If the dead-time L is too small compared to the time-constant T of 

the plant, the step response of the system can be approximated as shown in Equation 

3.2. Thus, a first order micro DC motor model (BP5 in Table 3.4) has been found 

according to the measured maximum motor speed 4224 rpm, the time constant 0.5 

second and the dead-time 0.011 second. This model has been used for the S-S-S, S-

E-S, S-E-E, and S-E-R operating modes of the developed platform CDRTP. 

Although the first order system is enough to model the real micro DC motor for 

testing the candidate controllers, a second order model is also identified and 

implemented for validating the emulator of the platform through examining the 

emulation performance of the platform with a more realistic model. The considered 

second-order delay dynamical system model is defined in the Laplace domain as 

follows.  
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Where, K is the gain, L is the dead-time, ζ  is the damping ratio and nw  is the 

natural frequency. The damping ratio and natural frequency are determined by view 

of Po overshoot percentage in Equation 3.4 and sT  settling time in Equation 3.5 

(Astrom & Hagglund, 1995). The second order micro DC motor model has been 

found according to the measured Po as 10%, sT  as 4.46 and the dead-time as 0.011 

second. 

 

Recreation of disturbance and parameter perturbation effects: The disturbance 

and parameter perturbation effects which can be embedded to the emulator by means 

of the signal generator and power supplies components of the hardware peripheral 

unit were produced in the implemented S-E-R, and S-R-R modes for recreating a real 

environment. Since there is no such an interface possibility of the simulators running 

on the PCs and emulators in the simulation/emulation platforms available in the 

literature, it makes the emulator of the developed CDTRP platform superior to the 

other platforms. 

   

Controller design-test-redesign stage: DC motor speed tracking problem was 

chosen as the case. The following four different types of controllers were designed 

using mainly the S-S-S, S-E-S and S-E-E modes, then tested using S-E-E and S-E-R 

modes on the identified model BP5 and finally using S-R-S, S-R-E and S-R-R modes 

on the realized micro DC motor: i) The Proportional-Integral-Derivative (PID) 

controller designed by Ziegler-Nichols (ZN) method (Astrom & Hagglund, 1995; 

Ogata, 1997; Ziegler & Nichols 1942), ii) The PID controller designed by Chien, 

Hrones and Reswick (CHR) method (Chien et al., 1952), iii) The robust controller 

designed by the Partitioned Robust Control (PRC) method (Craig, 1986) and iv) The 
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direct adaptive controller designed by the Model Reference Adaptive Control 

(MRAC) method (Astrom & Wittenmark, 1994).  

 

A PID controller defines the control signal u in terms of the error is given as 

follows. 
  

eKedtKeKu dip &++= ∫                  (3.6) 

 

Where, e stands for the error between the desired and actual output of the plant, e&  

for the derivative of the error, Kp for the proportional, Ki for the integral and Kd for 

the derivative parameters. In the first method, the parameters of the PID controller 

have been calculated based on the BP5 plant model as .5454p =K , 3.2479i =K  and 

0.3d =K  by using Ziegler-Nichols step response method. In the second method 

(CHR) which is preferred for yielding minimum overshooting (Astrom & Hagglund, 

1995), the PID controller parameters have been calculated (It might be said 

redesigned!) as .1843p =K , 6.1635i =K  and 0.1995d =K . The partitioned robust 

controller is designed as having two separate parts: i) Proportional-Derivative (PD) 

control ue and ii) auxiliary control uy (Craig, 1986; Hsia, 1989). In this method, given 

a plant model buaxx +−=&  (e.g. BP5 model), control signal is calculated as follows. 

 

axaxeKeKuuu pvye Δ−−+=+= &              (3.7) 

 

Where, Kv and Kp gains related to the control input eu  have been chosen greater 

than zero and for the auxiliary controller uy aa 2.1ˆ =  has been chosen for removing 

the parameter perturbations and plant uncertainties. In the fourth method, the MRAC 

controller is composed of a first order reference model mx& , two adaptive controller 

parameters kru& , kyu&  and a control signal u as follows 
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Where, y stands for the actual output, r stands for the reference signal, designed 

parameter is chosen as 5.0=λ  and the values of the reference model parameters ma  

and mb  are two times the values of the BP5 plant parameters. The equations in (3.8) 

generate the control signal.  

 

The simulation, emulation and real measurement results obtained along the whole 

design process implemented by CDTRP: The step responses of the real DC motor 

and the BP5 implemented in the emulator, which are both controlled by the same 

controllers designed with the above mentioned methods, for the desired output 2500 

rpm are given in Figures 3.7 (a), (b), (c) and (d), respectively. It can be seen from the 

responses depicted in Figure 3.7 that one may prefer the first two controllers, i.e. the 

ones designed by ZN and CHR methods since the step responses of the emulator 

have relatively short rising times and are close to the reference signal, i.e. the step 

function. However, the responses of the real DC motor controlled by these two 

controllers for the same step input are not close to the emulated first order model’s 

responses such that the real DC motor demonstrates second order dynamical 

behavior rather than a first order. (As seen in Figure 3.7 (a)-(b), the responses of the 

emulated second order system model are much closer to the real DC motor 

responses.) On the contrary, the responses of the real DC motor and the emulated 

first order model to the step input are so close to each other for the MRAC case. It 

can be concluded the followings: i) It can be expected that the real plant will behave 

similar to the emulator for the PRC and MRAC controllers even if the plant model is 

poor to reflect the behavior of the real plant. ii) It can be expected that the real plant 

will behave similar to the emulator for the PID controllers designed by the ZN and 

CHR methods only when the plant model is realistic as capable of well reflecting the 

behavior of the real plant. So, the analysis results obtained from the developed 

CDTRP platform in the operating modes needing the emulator (and also the 
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simulator) to run are reliable on the realistic plant models for any kind of controller 

design methods and further reliable even on poor plant models for the PRC and 

MRAC controller design methods. 
 

  

  
Figure 3.7 Real DC motor S-R-R results (dashed), real-time emulator S-E-S results for 1st order model 

(solid) and real-time emulator S-E-S results for 2nd order model (dotted) with (a) PID whose 

parameters are designed by ZN method, (b) PID whose parameters are designed by CHR method, (c) 

PRC robust controller and (d) MRAC controller.  

 

Recreation of parameter perturbations in the S-E-R mode: Parameter 

perturbations are created as a multiplicative effect for the model parameters. The 

perturbation signals are provided by DC power supplies in 0-5 Volt (DC) range and 

are fed to the hardware peripheral unit card via D_X1 port which is activated by the 

ADC options in GUI.  Where, 1V for D_X1 corresponds to the nominal plant 

parameters case. The observed responses of the emulated BP5 controlled by the PRC 

robust controller for four different parameter values are given in Figure 3.8 (a). The 

responses observed for the MRAC controller case are given in Figure 3.8 (b). In 

addition, the responses obtained for the PRC and MRAC controllers are compared 

each other in terms of their performances for two parameter perturbation values in 

Figure 3.9. No results are depicted for PID controller case since they behave very 
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poorly due to the parameter variations. It can be said that the responses under 

parameter variations are close to each other for the PRC and MRAC controllers. As 

observed in the above analysis part, i) choosing more realistic models yield better 

emulation results to be obtained by the CDTRP platform and ii) for the MRAC 

controller and in a lesser extent for the PRC controller cases, the responses of the 

emulator are very close to the real plant. In the light of these facts, it may be 

concluded that the performances of the controllers on the real plants under parameter 

perturbations can be examined using S-E-R mode in such a way by the developed 

CDTRP platform.   
 

  
Figure 3.8 The responses of BP5 to the step input for the parameter variation coefficients as 0.5 

(dashed,--), 1 (solid,-), 1.5 (dotted-solid,-•) and 2 (dotted on solid,-•-). Note that the coefficient values 

are the factors multiplying the nominal parameter value to obtain the perturbed parameter. The 

responses in (a) and (b) are for PRC and for MRAC controllers, respectively.   

 

  
Figure 3.9 The responses of BP5 to the step input for the parameter variation coefficients as 2 in (a) and 

0.5 in (b). The responses (solid) and (dotted-solid,-•) were obtained for PRC controller and for MRAC 

controller, respectively. 
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Recreation of noise disturbance in the S-E-R mode: Noise disturbances were 

created as additive to the control signal i.e. input of the plant model. The noise signal 

was provided by the signal generator whose range is given in Table 3.5. It was fed to 

the hardware peripheral unit card via D_U port which is activated by the ADC 

options in GUI. The noise signal amplitude can be scaled via the front panel of the 

GUI for CDTRP platform applications. For the noise signal du=0.1sin(2πf) with 

f=1Hz which was created by the noise scaling factor of 0.1 set by using the front 

panel of the GUI, the corresponding responses obtained for PID, PRC and MRAC 

controllers are given in Figure 3.10. As expected, CDTRP platform confirms that the 

PID has a quite poor performance under the applied additive noise despite the PRC 

and MRAC perform well. It should be noted that the MRAC shows the best 

performance in the steady state. 

 
Table 3.5 Noise Disturbances Range Scaling 

Volt (AC) from Signal Generator Volt (DC) for ADC  

+1V 5V 

0V 2.5V 

-1V 0V 
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Figure 3.10 Responses of the emulator controlled by PID 

controller (dashed,--), PRC controller (solid,-) and MRAC 

controller (dotted-solid,-•) under the noise du=0.1sin(2π1)).  
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Response to single short-in-time large-in-amplitude pulse disturbance in the S-E-

R and S-R-R modes: Recreation of the effects of relatively small amplitude noise 

disturbances in the emulation are already presented above. Now, another kind of 

disturbance effect, i.e. single short-in-time large-in-amplitude pulse disturbance 

effect was created and applied to both of the emulated BP5 model and the real DC 

motor for a better understanding of the validity of the developed platform in 

mimicking the behavior of the real plants under real disturbances. The disturbance 

was created as a multiplicative effect to the output of the model. The pulse time and 

amplitude were chosen in the front panel of the GUI. In the tests, the pulses were 

created after the transient regime (e.g. at 10th seconds as shown in Figure 3.11) to 

mimic the disturbances appearing in the steady state working conditions for the plant. 

The measured responses of the real DC motor and the emulator controlled by the 

PID, robust and MRAC controllers are given in Figure 3.11. 

 

  

 
Figure 3.11 Responses of the real DC motor and the emulator controlled by the PID (whose 

parameters calculated with ZN method), robust and MRAC controllers are given, respectively, in (a), 

(b) and (c). The pulse amplitude is chosen as k=0.6 and the time when the pulse is applied 10th 

second. Note that (dashed,--) is for the real plant and (solid,-) for the emulator of CDTRP. 
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3.6.3 Investigation of Reliable Operating Frequency of Mixed Modes of CDTRP: 

Coupled Oscillators as Benchmarks 

 
All mixed operating modes of CDTRP require at least two of controller, plant and 

peripheral components to be implemented in different units of CDTRP, i.e. in two of 

the simulator (PC), the emulator and hardware peripheral unit. So, the mixed modes 

need the real time compatibility of the PC, emulator and hardware peripheral unit. In 

other words, these units have to communicate in a (real time) synchronized fashion. 

To examine this ability of the CDTRP platform, Lorenz systems based chaotic 

synchronization is chosen as the benchmark application. As will be seen below, 

chaotic synchronization is a good example to understand the operating (frequency) 

limits of the CDTRP platform. 

  

It was observed in a set of experiments conducted that i) the emulator and the 

simulator can not be synchronized to each other and to an external hardware due to 

the high frequency dynamics intrinsic to the chaotic (Lorenz) system, ii) as a 

consequence of the maximum achievable sampling frequency which can be realized 

in the MATLAB environment used for the PC simulator and in the emulator 

implemented by using PIC microcontroller, the simulator and the emulator of the 

developed CDTRP platform can be synchronized to each other when implementing 

the dynamics up to 25 Hz while the simulator and the emulator can implement the 

dynamics up to 300 Hz and up to 25 Hz, respectively, if they are operated as 

uncoupled, and iii) the frequency range of the simulated/emulated system dynamics 

for which mutual synchronization among the emulator, the simulator and the external 

hardware are achievable can be enlarged by using a suitable feedback control. (It 

should be noted that the last (interesting) observation can be interpreted as: The 

interfaces among the simulator, emulator and external hardware have delays due to 

the interrupt routines which can be modeled by (complex frequency) poles 

determining an upper cutoff frequency. And, these poles limiting the frequency 

range, where the synchronization is achieved, can be shifted to a higher frequency 

point by using a feedback control.)  
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In the sequel, the experimental results obtained for a set of different kind 

implementations of synchronized coupled Lorenz systems are given first, and then, in 

order to find the limit for the frequency which enables synchronous operation for the 

implemented dynamics, i.e. the coupled linear undamped pendulums are examined.  

  

Analog Hardware Implementation of Synchronized Lorenz Chaotic Systems: 

Before examining the CDTRP platform in the E-R-R and R-E-R operating modes for 

the synchronized system of coupled Lorenz systems, the systems were firstly 

implemented as analog hardware, i.e. in the R-R-R mode. The master-slave 

configuration proposed in (Cuomo et al., 1993) was used for the implementation. The 

transmitter and receiver circuits of the Lorenz chaotic systems, whose scaled state 

equations are given, respectively, as BP9 and BP10 in Table 3.4, were realized with 

the circuit configuration in Figure 3.12 using the analog multiplier AD633, opamp 

LF353 and passive circuit elements (R1,R2,R6,R7=100kΩ, R3,R5,R8,R10=10kΩ, 

R4,R9=1MΩ, RV1,RV3=100kΩ, RV2,RV4=220kΩ and C1,…,C6=100nF).  

 

 
Figure 3.12 Realized analog circuit for master-slave synchronization of Lorenz chaotic systems 

 

(Note that the circuit configuration is chosen as given in (Horowitz, 2009) but the 

BP9-BP10 coefficients as 10=σ , 6.65=r  and 02.5=b  for which Lorenz systems 

produce chaotic oscillations with the main harmonics around 8.5Hz.) The 
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synchronization result for the analog hardware realization of the master-slave 

synchronization of the coupled systems is shown in Figure 3.13.  

 

 
Figure 3.13 A snapshot on the X-Y mode of the oscilloscope 

where the signals in the X and Y channels are, respectively, the 

first state variables of the master and slave Lorenz circuits 

 

Synchronization of (Lorenz transmitter) Emulator with a Real Analog (Lorenz 

Receiver) Plant: As a second implementation of master-slave synchronization of 

coupled Lorenz systems, the CDTRP platform was operated in the E-R-R mode such 

that the transmitter BP9 was implemented in the emulator of the CDTRP and the 

receiver implemented as an analog hardware shown in Figure 3.12 was used as the 

plant. X1 state was observed from the hardware peripheral unit card via DAC port 

which was activated by the DAC options in GUI. The implementation of the E-R-R 

mode is given in Figure 3.14. As seen in Figure 3.15, when operating in the HE-RP 

mode, the emulator of the CDTRP platform can roughly mimic the chaotic behavior 

of the Lorenz system. However, during the experiments realized, the master-slave 

coupled Lorenz systems one of which was realized in the emulator of the CDTRP 

and the other was realized as the analog hardware, were never observed as 

synchronized. 
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Figure 3.14 Implementation of the E-R-R mode of the CDTRP for the synchronized 

Lorenz systems 
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Figure 3.15 Phase portrait for the xt1 and xt2 states of the 

emulated BP9 Lorenz chaotic system (Observed via GUI 

when the CDTRP platform is operated in the E-R-R mode.) 

 

Synchronization of (Lorenz Receiver) Emulator with a Real Analog (Lorenz 

Transmitter) Hardware: As a third implementation of master-slave synchronization 

of coupled Lorenz systems, the CDTRP platform was operated in the R-E-R mode 

such that the receiver BP10 was implemented in the emulator of the CDTRP and the 

transmitter implemented as an analog hardware shown in Figure 3.12 was used as the 

master. X1 state was applied to the emulator of the CDTRP via the hardware 

peripheral unit card by X1 port which was activated by the ADC options in GUI. The 

implementation of the R-E-R mode is given in Figure 3.16.  
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Figure 3.16 Implementation of the R-E-R mode of the CDTRP for 

the synchronized Lorenz systems 

 

As seen in Figure 3.17, when operating in the R-E-R mode, the emulator of the 

CDTRP platform fails to mimic the chaotic behavior of the Lorenz system. However, 

during the experiments realized, the master-slave coupled Lorenz systems one of 

which was realized in the emulator of the CDTRP and the other was realized in the 

analog hardware card, were never observed as synchronized. 

 

 
Figure 3.17 First state variables of the analog transmitter and     the 

emulated receiver in the R-E-R mode for synchronized Lorenz 

systems (The receiver state is the above one; the other is the 

transmitter state.) 
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Synchronization of (Lorenz Transmitter) Simulator with (Lorenz Receiver) 

Emulator: As a fourth implementation of master-slave synchronization of coupled 

Lorenz systems, the CDTRP platform was operated in the S-E-E mode such that the 

receiver BP10 was implemented in the emulator of the CDTRP and the transmitter 

was implemented in the simulator of the CDTRP. As seen in Figure 3.18, although 

both of the simulator and emulator can roughly mimic the chaotic behavior of the 

Lorenz system, they fail to be synchronized to each other in the master-slave 

configuration.  
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Figure 3.18 Time-waveforms of the first states of the 

Lorenz transmitter and receiver which are implemented, 

respectively, in the simulator and the emulator 

 

Effect of Feedback on Chaotic Synchronization: The above implemented master-

slave configuration for chaotic synchronization is indeed an open loop control system 

where the receiver is the plant and the transmitter output is the reference signal to be  

tracked by this plant. One can argue that not only the lack of implementing the high 

frequency components of the chaotic signals is the source of failing to get the chaotic 

synchronization but also the master-slave configuration which, as an open loop 

control, is sensitive to internal/external disturbances and also to delays, is another 

source of dissynchronization. In order to clarify this point, in a unity feedback closed 

loop configuration, a PID controller with the parameters 1p =K , 100i =K  and 

0.01d =K  is used to provide a suitable control input to the receiver Lorenz system for 

deriving its output to track the reference chaotic signal produced by the transmitter 
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Lorenz system.  As seen in Figure 3.19, the PID controller with unity feedback 

closed-loop configuration provides the desired synchronization for the Lorenz 

receiver system whose output tracks the reference chaotic signal at least for the main 

harmonics corresponding to low frequency components. 
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Figure 3.19 First state variable of the receiver Lorenz 

system as compare to the reference signal which is the 

first state variable of the transmitter Lorenz system in 

the S-E-E mode 

 

The above mentioned limits of the CDTRP platform in implementing the 

synchronized Lorenz systems are natural consequences of the chaotic dynamics of 

the Lorenz systems intrinsically possessing high frequency components and also the 

maximum achievable sampling frequencies which can be realized in the MATLAB 

environment used for the PC simulator and in the emulator implemented by the PIC 

microcontroller. As seen in the last closed loop implementation of coupled Lorenz 

systems based on a simple PID controller, the synchronization can be achieved by 

using a suitable feedback at least for the main (low frequency) harmonics of the 

chaotic signals. The exact frequency range for the control systems’ dynamics which 

allows synchronous operations of the units of the CDTRP platform in implementing 

these dynamics was investigated by considering the linear undamped pendulums may 

be the simplest yet challenging example. 

 



 

 

87

3.6.3.1 The Synchronization of Coupled Linear Undamped Pendulums 

 

Firstly, two identical BP8 models, i.e. the pendulums of which the natural 

oscillation frequencies are the same are attempted to be synchronized in the open 

loop master-slave configuration (See Figure 3.20(a)). Then, a PID controller with the 

parameters 1p =K , 100i =K , and 0.001d =K  in the unity feedback closed-loop 

configuration is used to control the receiver pendulum to track the output of the 

transmitter pendulum.  
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Figure 3.20 Linear undamped pendulums master-slave configurations for S-S-S or S-E-E modes (a) 

open loop (b) closed loop. 

 

For both of the configurations, the CDTRP platform is operated in the S-S-S mode 

and also in the S-E-E mode. It is observed that both of the implemented modes yield 

similar results, so the results obtained for the S-S-S mode are given in Figure 3.21. In 

the open loop configuration, the synchronization which is achieved for f=1Hz is 

observed to be failed after f=10Hz. On the other hand, it is observed for the closed 

loop configuration (See Figure 3.21(b)) that the synchronization is sustained up to 

f=20Hz which actually determines the limit of the frequency for the control systems 

dynamics whose real-time implementations in the simulator and the emulator units of 

the CDTRP platform are reliable in the sense that they can be considered as valid 

real-time implementations. 
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Figure 3.21 (a) Master-slave synchronization for coupled pendulums oscillating at f=1Hz. (b) Master-

slave synchronization failure at f=10Hz. (c) Master-slave synchronization failure at f=20Hz. (d) PID 

based closed-loop synchronization for coupled pendulums oscillating at f=1Hz. (e) PID based closed-

loop synchronization for coupled pendulums oscillating at f=10Hz. (f) PID based closed-loop 

synchronization failure at f=20Hz. Note that (dashed,--) is for the receiver signal and (solid,-) for the 

(reference) transmitter signal. 

 

3.6.3.2 Synchronization of (Linear Undamped Pendulum) Receiver with (Signal 

Generator) Transmitter Simulator 

 

In order to determine the reliable operating frequency range for the simulator and 

emulator when communicating with each other, firstly, a signal generator was used 
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as a transmitter in a master-slave configuration for deriving the emulator or simulator 

where BP8 pendulum model was implemented (See Figure 3.22(a).). Then, a PID 

controller with the parameters 1p =K , 100i =K  and 0.001d =K  in the unity feedback 

closed-loop configuration was used to control the receiver pendulum to track the 

output of the signal generator. For both of the configurations, the CDTRP platform 

was operated in the S-E-E mode and also in the S-S-S mode (See Figure 3.22(b).). It 

was observed that both of the implemented modes yield almost identical results up to 

f=25Hz, as shown by the results obtained for the S-S-S mode given in Figure 3.23.  
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Figure 3.22 (a) Receiver emulator or simulator was derived by a simulated signal generator (xt1) in open 

loop master-slave configuration for S-S-S or S-E-E modes of the CDTRP platform. (b) Receiver emulator 

or simulator was derived by a simulated signal generator (xt1) in closed loop for S-S-S or S-E-E modes of 

the CDTRP platform.  

 
In the open loop configuration, the synchronization which was achieved for f=1Hz 

was observed to fail after f=10Hz. On the other hand, it was observed for the closed 

loop configuration that the synchronizations are sustained up to f=100Hz and f=25Hz 

in the S-S-S mode and the S-E-E mode, respectively. These observations actually 

determine the limit of the operating frequency for the control systems dynamics 

whose real-time implementations in the S-E-E and S-S-S modes of the CDTRP 

platform are reliable in the sense that they can be considered as valid real-time 

implementations, or say simulations. 
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Figure 3.23 (a) Master-slave synchronization at f=1Hz. (b) Master-slave synchronization failure at 

f=10Hz. (c) Master-slave synchronization failure at f=100Hz. (d) PID based closed-loop synchronization 

at f=1Hz. (e) PID based closed-loop synchronization at f=10Hz. (f) PID based closed-loop 

synchronization at f=100Hz. Note that (dashed,--) is for the receiver (pendulum) signal and (solid,-) and 

for the transmitter (generator) signal in S-S-S mode of CDTRP platform 

 

Synchronization of (linear undamped pendulum) receiver emulator with (signal 

generator) transmitter: In order to determine the reliable frequency range for the 

emulator in the R-E-E and R-E-R modes of CDTRP platform where it receives signal 

from an external analog hardware, the receiver BP8 was implemented in the emulator 
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and analog signal generator test equipment was used for the transmitter as shown in 

Figure 3.24. xt analog signal is applied to the emulator via the hardware peripheral 

unit card by U port which is activated by the ADC options in the GUI. The difference 

between the experiments done in S-E-E mode of Figure 3.15 and in the R-E-E and R-

E-R modes of Figure 3.24 is in the transmitter part such that in the former one the 

transmitter realized in the simulator and in the other one the transmitter is an analog 

hardware. The analog signal received by the emulator and also the output of the 

pendulum created in the emulator are transferred from the emulator to the GUI. 

Therefore, the unique additional source of limiting the frequency range of the 

emulated dynamics in this experiment is the usage of input U port of the emulator 

supplied by the ADC. As shown in Figure 3.25, it is observed that in the open loop 

configuration of Figure 3.24(a), the synchronization is achieved up to f=1.52Hz. It 

should be noted that the frequency range relatively narrower than the one obtained 

for S-E-E mode is reduced due to the ADC interface of the PIC microcontroller. 

  

Figure 3.24(b) shows that the above given frequency limit can be extended up to 

f=2.92 Hz (See Figure 3.26) by using a PID controller with the parameters 1p =K , 

100i =K , and 0.001d =K  in the unity feedback closed-loop configuration for 

controlling the receiver pendulum to track the output of the analog signal generator. 

Where, the PID controller is implemented as analog hardware (Leybold LH 734 06 

PID-Controller Lab Equipment is used.), so the CDTRP was operated in the (closed-

loop) R-E-E and R-E-R modes.  
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Figure 3.24 (a) Receiver (pendulum) emulator was derived by analog signal generator (b) Receiver 

(pendulum) emulator controlled by a PID tracks transmitter signal in R-E-E and R-E-R modes. 
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Note that the frequency limit is lower than f=25Hz which is the one observed for 

the closed loop (signal generator–pendulum) synchronization in the S-E-E mode 

since the analog output of the DAC interface of the plant emulator card is also used 

in addition to the analog input of the ADC interface of the emulator (Observe from 

Figure 3.24(b) that the analog output of the emulator is fed to the oscilloscope and 

also to the analog PID hardware.). The above results show that the real-time 

implementations of the control systems dynamics realized in the R-E-E and R-E-R 

modes are reliable up to the f=2.92 Hz frequency. 
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Figure 3.25 Master-slave synchronization between analog 

generator signal and first state of pendulum realized in the 

emulator (Observed from data transferred to GUI.)  

 

 
 

Figure 3.26 A snapshot on the X-Y mode of the oscilloscope 

where the signals in the X and Y channels are, respectively, the 

signal generator signal and the pendulum emulator output in 

the R-E- E and R-E-R modes.  
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3.6.3.3 Synchronization of a Real Analog (Lorenz Receiver) Hardware with 

Transmitter Emulator 

 

As the last implementation, the emulator implementing transmitter was used for 

deriving an analog receiver, i.e. the Lorenz system. Then, the reliable frequency 

range for the emulator in the E-R-E and E-R-R modes of CDTRP platform was 

examined. The pure sinusoidal signal generated in the emulator was applied via the 

DAC interface of the emulator in additive way to the first state of Lorenz system 

implemented in the hardware peripheral unit card (See Figure 3.27). Note that the 

Lorenz system is realized by the capacitances for reducing the main harmonics of the 

chaotic signal around the maximum reliable real time operation frequency of the 

emulator. The source of limiting the frequency range of the implemented dynamics 

in this experiment is the usage of analog output of the DAC interface of the plant 

emulator card. As shown in Figure 3.28 and 3.29, it is observed that the 

synchronization is achieved up to f=4.05Hz in the open loop configuration of Figure 

3.27 and achieved up to f=9.09Hz for the closed loop configuration with a PID 

controller with the parameters 1p =K , 100i =K , and 0.001d =K  in the unity feedback 

in Figure 3.29. (Where, LH 734 06 PID-Controller Lab Equipment is used again.) It 

should be noted that the Lorenz system derived by the pure sinusoidal transmitter 

signal is observed no more chaotic Lorenz signal for the large amplitude values of 

transmitter signal and that the synchronization is indeed achieved for the main 

harmonic of the disturbed Lorenz signal, so the phase synchronizations seen from 

Figures 3.28 and 3.30 are not exact due to the sub-harmonics of the disturbed Lorenz 

signal. The results show that the real-time implementations of the control systems 

dynamics realized in the E-R-E and E-R-R modes are reliable up to the f=9.09Hz 

frequency.    
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Figure 3.27 Transmitter emulator derives analog Lorenz system receiver 

in E-R-E and E-R-R modes of the CDTRP (A chaotic state modulation 

system where message signal is injected to chaotic system as additive to 

the first state.)     

 

 
 

Figure 3.28 A snapshot on the X-Y mode of the oscilloscope 

where the signals in the X and Y channels are, respectively, the 

transmitter signal and the first state variable of Lorenz system 

 



 

 

95

 
 

Figure 3.29 PID based closed loop control for Lorenz system receiver to 

track transmitter emulator’s output in E-R-E and E-R-R mode of the 

CDTRP  

 

 
 

Figure 3.30 A snapshot on the X-Y mode of the oscilloscope 

where the signals in the X and Y channels are, respectively, the 

transmitter signal and the first state variable of the Lorenz 

system in PID based closed loop control 
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CHAPTER FOUR 

LEARNING ALGORITHMS FOR ADAPTIVE NONLINEAR DYNAMICAL 

CONTROLLER DESIGN 

 

This chapter presents a novel adaptive control method which depends on real 

plant data. A new input-output data based nonlinear dynamical adaptive controller 

design method is proposed with adaptive control algorithm. It employs ARMA and 

NARMA input-output models both for plant and the closed-loop system. In the linear 

case, it can be viewed as an algorithm solving Diophantine equation in real-time 

using data measured from the plant not a model of the plant (Astrom, 1987; Astrom 

& Wittenmark, 1980, 1994, 1997). The proposed adaptive controller has the 

possibility of implementing as an Artificial Neural Network (ANN) choosing 

appropriate basis function, e.g. Radial Basis Function Network (RBFN). 

 

The developed adaptive nonlinear dynamical controllers, in particular PID 

controller, are designed and tested in the CDTRP and also is applied for controlling a 

real DC motor. The linear and nonlinear versions of the proposed adaptive control 

method and PID special case together with the ideas and fundamental concepts 

which the method relies on are given in the following subsections.  

 

4.1 Control System Design as Supervised Learning of Partially Known Systems  

 

A closed loop control system is a partially known system. The known part is the 

plant to be controlled which is usually given by an identified model with known 

parameters. The unknown part is the controller. So, design of a control system is 

equivalent to find controller parameters when feedforward and feedback 

configurations are already determined in an early phase of the design. 

  

A general feedback control scheme with two degrees of freedom (Astrom, 1987; 

Astrom & Wittenmark, 1980, 1994, 1997) is depicted in Figure 4.1. The reference 

)(kr  constitutes the closed loop system input and the plant output )(ky  constitutes 
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the actual output of the closed loop system.  The desired output )(kyd of the closed 

loop system might be a constant or time-varying reference signal )(kr  or the output 

of a reference model )(kym .  

 

Plant
)(kr )(ku )(ky

Controller

 

Figure 4.1 General two degrees of freedom control scheme  

 

So, designing control systems of two degrees of freedom can be defined as a 

supervised learning problem for a partially known input-output system model. In 

explicit terms, the design of the controller in Figure 4.1 can be posed as the 

minimization of the error between the desired output )(kyd  and actual output )(ky  

corresponding to reference input signal )(kr  in terms of the parameters of the 

controller. Such a controller is trained in the closed loop configuration and it 

becomes, in general, a nonlinear dynamical controller. Moreover, such a controller 

design approach is suitable for ANN implementations and for adaptive and also 

robust control schemes to be incorporated in order to handle changes in the plant and 

environment. 

 

Two successive subsections present, in the linear and nonlinear setting, 

respectively, the proposed nonlinear dynamical adaptive control method developed 

based on the approach posing the controller design as supervised learning of a 

partially known system. It should be noted that the introduced approach is different 

from all of the inverse system based ANN controller design approaches described in 

Subsection 2.1.1.4 where the controllers are trained under the open loop 
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configurations. However, the method has similarities with the model reference 

adaptive control and self-tuning regulator methods of adaptive control literature 

where the controller parameters are updated, according to the changes in the plant, in 

a direct way for the former and in an indirect way for the latter method.  

 

4.2 Linear Case 

 

Assume the following ARMA model for a SISO plant in Figure 4.1.  

 

)()()(
01

nkubnkyaky
M

n
n

N

n
n −+−= ∑∑

==

               (4.1) 

 

Equation 4.1 can also be written in an implicit form Equation 4.2 with 10 −=a . 
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Next, assume that the controller with two degrees of freedom in Figure 4.1 has an 

ARMA representation in Equation 4.2. 
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Equation 4.2 can also be written in an implicit form with 10 −=f . 
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To obtain an input-output representation for the closed loop system, one can take 

the weighted sum of the both sides of the plant ARMA representation in Equation 4.2 

with mf  weights, so obtain Equation 4.5. 
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The control input can be eliminated using Equation 4.4 and interchanging the 

sums over m and n in the second term of Equation 4.5, so the closed ARMA 

representation is obtained as in Equation 4.6. 
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With newly defined parameters nα  and nβ , the closed loop ARMA representation 

takes the following form. 
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Where, { }QMNPN ++= ,max:ˆ  and RMM +=:ˆ . The relations among the closed 

loop parameters nα , nβ , the plant ARMA parameters na , nb  and the controller 

parameters  mf , mc , md  can be obtained for different choices of RMNP ,,, andQ . 

These relations can be given as in Equations 4.8-4.12, assuming QRPMN ====  

so NMN 2ˆˆ ==  without loss of generality. 
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The Equations 4.8-4.10 indeed define the well known Diophantine equation 

(Astrom, 1987; Astrom & Wittenmark, 1980, 1994, 1997). Different control 

schemes, so called model following control, pole placement, self tuning regulator 

adaptive control and model reference adaptive control (Astrom, 1987; Astrom & 

Wittenmark, 1980, 1994, 1997) can be derived based on the closed loop ARMA 

representation given by Equations 4.7-4.12. The linear version of the adaptive 

control method proposed in this thesis is also derived from the above closed loop 

ARMA representation as described in the sequel. 

 

Consider two sets of input-output measurements [ ] [ ]{ }K
sNsyNsu 1,,,( =  and 

[ ] [ ]{ }L
sd NsyNsr 1,,,( =  where [ ] [ ])(,),1(),(:, NsxsxsxNsx −−= L  represents the vector 

of current and past 1−N sample values of a signal )(kx  at time instant s . The former 

set is obtained from the plant during an arbitrary time interval [ ]Kkk +, with length 

K  while the latter defines a desired input-output behavior for the closed loop system 

in an arbitrary time interval [ ]Lll +, with length L .  

 

Identification of the plant parameters in the time interval [ ]Kkk +, can be realized, 

in the first stage, by any algorithm minimizing the following identification error in 

Equation 4.13 in terms of the plant ARMA parameters na , nb . 
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On the other hand, the controller parameters can be determined, in the second 

stage, by minimizing the following closed loop output (tracking) error in Equation 
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4.14 in terms of the controller parameters mf , mc , and md  which are related to the 

closed loop parameters nα , nβ  via the Equations 4.8-4.12.  
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The second stage, where control parameters are determined, defines a new kind of 

controller design method which is, indeed, a supervised learning scheme applied on a 

partially known system since a part of the system parameters, i.e. the plant 

parameters, is already known in this stage. The introduced controller design method 

can lead algorithms for determining controller parameters which can be computed in 

constant and adaptive modes. In the former mode, the plant parameters are 

determined first by minimizing Equation 4.13 for the whole set of plant input-output 

measurements and then the controller parameters mf , mc , and md  are found as 

minimizing Equation 4.14 for the whole set of closed loop system input-output 

samples. In the adaptive mode, the plant parameters are updated whenever a change 

in the plant is identified according to K  samples [ ] [ ]{ }K
sNsyNsu 1,,,( =  and then the 

controller parameters mf , mc , and md  are updated according to L  samples 

[ ] [ ]{ }L
sd NsyNsr 1,,,( = . Where, K  and L  are chosen sufficiently large for estimating 

plant and controller parameters within reasonable accuracies and on the other hand 

chosen sufficiently small for responding changes in the plant reasonably fast.    

  

4.3 Nonlinear Case  

 

Consider a SISO discrete-time nonlinear plant which is input-output linearizable 

system. The transformed state model of such a system can be given as in Equation 

4.15. 
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The input-output relation corresponding to Equation 4.15 is given in Equation 

4.16. 
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The NARMA system in Equation 4.16 can be rewritten as in Equation 4.17. 
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Where, [ ] [ ])(,),2(),1(:,1 nkykykynky −−−=− L  and [ ] 0),1( ≠− nkyg , so there 

exists RRn →:)(oα  and RRn →:)(oβ  providing the input in terms of the current 

and future outputs as given in Equation 4.18. 

 

[ ] [ ] )()0,1()0,1()( nkynkynkyku +−++−+= βα         (4.18) 

 

Where [ ] [ ])(,),2(),1(:0,1 kynkynkynky L−+−+=−+ . 

 

It should be noted that Equation 4.17 and also 4.18 require exact knowledge of the 

degree n of the plant. In order to have a practically more meaningful identification, 

Equation 4.17 and 4.18 are extended, in this thesis, into the following ones. Where, 

N  is chosen not less than n  based on some knowledge about the upper bound for the 

degree of the plant. 
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Now, further assume that RRf n →:)(o , RRg n →:)(o , RRn →:)(oα , 

RRn →:)(oβ , RRg n
i →:)(o  and RRn

i →:)(oβ  are all in the range of a set of basis 

functions { }J
jj 1=

ϕ , so the following NARMA representations in Equations 4.21-4.24 

are obtained. 
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It should be noted that { }J
jj 1=

ϕ  may be the basis functions of a well known 

transformation, e.g. wavelet, or a function approximation, e.g. Gaussian or sigmoidal 

functions which are used ANN based implementations. 

 

Based on the above four NARMA models for the plant which are all originated 

from input-output linearization and considering some special form of the following 

general NARMA representation for the controller, several closed loop 

representations can be obtained by eliminating the control input terms. 
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In the sequel, controller NARMA is assumed to have the following form. 
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Now, further assuming NARMA-III model for plant, one can obtain in Equation 

4.27. 
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The relation Equation 4.27 can be rewritten as in Equation 4.28 in order to see 

more clearly that Equation 4.27 gives a NARMA representation for the closed loop 

system such that the system output is linear in terms of the controller parameters.  
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In a similar way to the linear case studied in Subsection 4.2, in the first stage one 

can minimize the following identification error Equation 4.29 in terms of the plant 

NARMA parameters ja  and ijb  for a given set of plant input-output measurements 

[ ] [ ]{ }K
sNsyNsu 1,,,( =  
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So, in the second stage, one can minimize the following closed loop output 

(tracking) error in Equation 4.30 in terms of the controller NARMA parameters mc  

and md  for a given set of (reference input)-(desired output) sample pairs 
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4.4 Convergence and Stability Issues  

 

The linear, nonlinear, constant and adaptive versions of the methods developed in 

the previous two sections should also be analyzed further in regards of the 

convergence of a variety of algorithms originated from these methods and in regards 

of the stability of the resulting closed loop systems. 

  

Since both of the identification and tracking errors are quadratic and convex in 

terms of the optimization variables, i.e. the plant and, respectively, controller 

parameters, then offline and online gradient descent algorithms converge to the 

minimum that is desired to be found for sufficiently small step sizes.  

 

Stability can be studied either in the BIBO sense, for instance, applying small gain 

theorem or in the Lyapunov sense in different ways. In both senses, the stability 

analysis is not a trivial issue: Finding gains in BIBO analysis and finding a Lyapunov 

function which is valid for the most general closed loop model (4.28) either in fixed 
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plant and controller parameter case or in time-varying plant and/or controller 

parameter case. 

 

Another approach to study the Lyapunov stability is to determine the contractivity 

of the discrete time mapping in Equation 4.28 in different update modes and different 

special cases. In this direction one can attempt to find the Lipschitz constant of the 

closed loop model in Equation 4.28 at least for some special cases in an analytical 

way. 

     

4.5 Simulation Results 

4.5.1 Proposed Adaptive Controller versus MRAC   

 

In this example, MRAC and the proposed adaptive controllers are compared to 

each other in terms of their performances on a very simple tracking problem for 

conceptual understanding difference between two methods. 

 

Consider the linear dynamical first-order system given by Equation 4.31. 

 

ubyay pp +−=&                     (4.31) 

 

Where pa  and pb  stands for the plant parameters, u  is the control input and y  is 

the output of the system (Astrom & Wittenmark, 1994). For MRAC controller 

design, a stable plant model given in Equation 4.32 is considered as the reference 

model. 

 

rbyay mmmm +−=&                    (4.32) 

 

The reference model has the transfer function in Equation 4.33 which is given for 

simulation purposes (See Figure 4.2.).  
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Controller signal is selected as a function depending on the reference input and 

the actual output.  

 

ykrku yr +=                      (4.34) 

 

Where, the controller parameters rk  and yk  are subject to be updated. Optimum 

controller parameters rk  and yk  can be found as matching the closed loop system 

obtained by the control input in Equation 4.34 to the stable reference system:  

 

rbyayrkbykbay mmmmrpypp +−=↔+−−= && )(          (4.35) 
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Now, MRAC law responding plant parameter changes can be derived by 

considering tracking error equation as follows. Let rk̂ and yk̂  be estimates for control 

parameters. Let *ˆ:~
rrr kkk −=  and *ˆ:~

ryy kkk −=  be the controller parameter estimation 

errors and myye −=:  be the tracking error. So, the tracking error equation and its 

steady-state solution can be found as in Equation 4.36.  
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Where the first term in the steady-state tracking error is due to the estimation error 

yk~  and the second is due to rk~ . So, the update rules for the controller parameters are 

derived as given in Equation 4.37.  
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The overall MRAC system has the block diagram in Figure 4.2.   
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Figure 4.2 MRAC controller with two parameters update 

 

The simulation block diagram for the plant parameters 1=pa  and 5.0=pb , the 

stable plant model with 2=ma  and 2=mb  is depicted in Figure 4.3 and the 

simulated time waveforms are given in Figure 4.4 (Astrom & Wittenmark, 1994).  

 

 
 

Figure 4.3 MRAC for first order plant (Astrom & Wittenmark, 1994) 
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Figure 4.4 Time-waveforms of the MRAC for first order plant 

 

Now, consider the linear version of the proposed adaptive control method by the 

following control law with two parameters. 
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Figure 4.5 Proposed adaptive controller for first order plant 

 

In this case, plant ARMA parameters a  and b  can be calculated as 

5.0
1

1
=

+
=

pa
a  and 5.0

1
=

+
=

p

p

a
b

b , respectively, in terms of the plant parameters 
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by employing backward Euler approximation to the continuous-time plant state 

equation. 

  

The controller parameters 0c  and 0d  are determined by minimizing the closed 

loop output (tracking) error in Equation 4.39. Where, 00 bd=α , a=1α  

and 00 bc=β . 
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The following gradient algorithm is used for minimizing Equation 4.39 in terms 

of the controller parameters 0c  and 0d . 
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Where, the error is defined as )()1()()(:)( 010 krkykykyke m βαα −−−−= and its 

partial derivatives with respect to controller parameters 0c  and 0d  are calculated 

using chain rule as in Equation 4.41. 
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The resulting time waveforms are depicted in Figure 4.6. 
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Figure 4.6 Reference input, reference model output, plant output and error 

time-waveforms obtained by the proposed adaptive control method 
  

4.5.2 Finding PID Parameters    

 

In this subsection, the developed adaptive control method is applied to find (time-

invariant) and also (time-varying) adaptive PID controllers. Firstly, consider a PID 

controller in discrete-time as in Equation 4.42. 

 

)2()1(]2[)(][)1()( −+−−−++++−= keKkeKKkeKKKkuku ddpdip  (4.42) 

 

Where, the error is )()()( kykrke −= , pK , iK  and dK  stands for the proportional 

gain, the integral gain and  the derivative gain, respectively. Its ARMA model can be 

written as in Equation 4.43 which is a special case of Equation 4.3. 
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Where, dip KKKdc ++=−= 00 , dp KKdc 211 −−=−=  and dKdc =−= 22 . 

So, for a SISO plant having a general ARMA representation in Equation 4.1, the 

closed loop ARMA representation is obtained as follows.  

 

)]2()([)]1()2()([

)]1()()1([)]1()()1([

])()1()([])()1()([

)1()()()1()1()()(

2
221

2
22

2
101

2
101

2
100

2
100

2
1100

−−−−−+−−−−−−−+

−−−−−−−+−−−−+−+

−−−−−+−+−++

−−−−−+−+−+=

∑∑

∑∑

∑∑

∑

=
−−

=
−

=
−

=
−

==

=
−

MkybnkybdMkrbMkrbnkrbc

MkybnkybkybdMkrbnkrbkrbc

nkybkybkybdnkrbkrbkrbc

Nkyankyaakyaakyaky

M

M

n
nMM

M

n
n

M

M

n
nM

M

n
n

M

n
n

M

n
n

N

N

n
nn

(4.44) 

 

In this example, plant ARMA parameters 0a , 1a  and 0b  are calculated by using 

input-output data measured from real plant. And then, the controller parameters 0c , 

1c , 2c  and 0d , 1d , 2d  are determined by minimizing the closed loop output 

(tracking) error in Equations 4.45 in which 0000 1 bda +−−=α , 01101 1 bdaa +−+−=α , 

0212 bda +=α , 000 bc−=β , 011 bc−=β  and 022 bc−=β . 
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The following gradient algorithm is used for minimizing Equation 4.46 in terms 

of the controller parameters ic  and id . 
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Where, the error is defined as )2()1()()2()1()()(:)( 210210 −−−−−−−−−−= srsrsrsysysykyke d βββααα  

and its partial derivatives with respect to controller parameters 0c , 1c , 2c  and 0d , 1d , 

2d  are calculated using chain rule as in Equation 4.47. 
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The real DC motor is controlled by proposed controller in S-R-R real-time 

operation mode. Desired output is chosen at 2500 rpm. The resulting time waveform 

is depicted in Figure 4.7. 
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Figure 4.7 The real DC motor output time-waveform obtained by proposed adaptive control 

method 

 

It can be seen from Figure 4.7 that one may prefer the proposed adaptive 

controller method since the step responses of the real DC motor has very small 

overshot percentage and it is close to the reference signal.  

 

In addition to the above result, the proposed controller parameters can also be 

used for finding conventional PID controller parameters because, in Equation 4.43, 

PID controller’ ARMA model is related to the Equation 4.42 in terms of controller 
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parameters such as dip KKKc ++=0 , dp KKc 21 −−=  and dKc −=2 . These 

controller parameters 0c , 1c , and 2c  are observed as 0.00002441, 0.0006994 and -

0.0003742, respectively, from CDTRP platform during steady state behavior of 

closed loop system. Then, conventional PID controller parameters are determined 

as 0.000049p =K , 0.0003496i =K  and 0.0003742d −=K . According to these 

parameters, the real DC motor is controlled by conventional PID controller in S-R-R 

real-time operation mode. Its desired output is chosen at 2500 rpm. The resulting 

time waveform is given in Figure 4.8. 
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Figure 4.8 The real DC motor output time-waveform obtained by PID controller designed 

by proposed method 

 

On the other hand, the real DC motor controlled by PID controller parameters 

designed by ZN method is depicted in terms of its performances for tracking value at 

2500 rpm in Figure 4.9 (Note that, in Subsection 3.6.2, the parameters of the PID 

controller designed by ZN method are determined as .5454p =K , 3.2479i =K  and 

0.3d =K ).  
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Figure 4.9 Time-waveforms of the real DC motor controlled by proposed parameter 

technique and conventional ZN technique for PID controller. 

 

Both proposed and ZN methods for finding conventional PID controller 

parameters are compared with conventional PID controller each other in terms of 

their performances for tracking value at 2500 rpm in Figure 4.9. These observed 

tracking values are so close to each other. It can be said that the real plant might 

behave in same way for the proposed and ZN based PID controllers. So, the 

proposed adaptive controller parameters might be used for calculating PID controller 

parameters as another technique.  

 

4.5.3 RBFN Based Proposed Adaptive Controller for Nonlinear Plant 

 

In this subsection, the proposed adaptive control method is implemented with 

RBFN based NARMA-I model. The RBFN consists of three different layers: i) input 

layer, ii) hidden layer where neurons are constructed as radial basis functions and iii) 

output layer where outputs of the hidden neurons are summed in terms of their linear 

weights. RBFN structure with one output neuron is depicted in Figure 4.10. 
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Where RRy n →:)(o , nℜ∈x  stands for input vector, J is the number of hidden 

neurons, jλ stands for linear weights, RR n
j →:)(oϕ  stands for the radial basis 

functions, herein the Gaussian functions 
2

2

2

)( j

jx

j e σ

θ

ϕ

−
−

=x , jθ  stands for the centers 

of the Gaussians, and 2
jσ stands for the variances of the Gaussians.  

 

Now, as a nonlinear plant example, consider one link robot defined in Table 3.4 as 

BP3. And then, consider the nonlinear version of the proposed adaptive control 

method by the following control law with two parameters in Equation 4.26 where 

controller parameters are chosen 0c , 1c , 0d  and 1d . 
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According to Subsection 4.2, in the first stage one can minimize the following 

identification error Equation 4.50 in terms of the plant NARMA-I parameters ja  and 

jb  for a given set of plant input-output measurements. Its identification scheme is 

depicted in Figure 4.11. 
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Figure 4.11 RBFN based identification scheme for NARMA-I. 

 

The centers of the RBF are computed by K-means algorithm of MATLAB 

function as 0.0058 and -0.0004. The simulated batch and online identification modes 

of the one link robot are given in Figure 4.12 (a) and (b) respectively. Mean Square 

Error (MSE) values are observed as 4.8845*10-9 and 2.5445*10-16 for batch mode 

and online methods, respectively. 
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(a) (b) 

Figure 4.12 The observed responses, i.e., plot of the batch (a) and online (b) modes for 

identification  

 

In the second stage, closed loop output (tracking) error in Equation 4.51 can be 

minimized by terms of the controller NARMA parameters 0c , 1c , 0d  and 1d  for a 

given set of (reference input)-(desired output) sample pairs [ ] [ ]{ }L
sNsyNsr 1,,,( = . 
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The overall RBFN based proposed adaptive controller system has the block 

diagram in Figure 4.13 where identified plant NARMA model and controller 

NARMA parameters are depicted in detail.  
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Figure 4.13 RBFN based proposed adaptive Controller for Nonlinear Plant 

 

RBFN based proposed adaptive controller system is simulated by S-S-S and S-E-

R real time operating modes in CDTRP platform. The simulated time waveforms of 

the controller NARMA parameters are given in Figure 4.14(a)-(b).  
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(a) (b) 

Figure 4.14 Observed variations of the controller NARMA parameters 0c , 1c  and 0d , 1d  in (a) and 

(b) respectively. 

 

In this case, the desired output angular position of the system is chosen as 

t01sin2*5.0r(t) π= . The simulated time waveforms of the nonlinear plant states 

controlled by RBFN based proposed adaptive controller are given in Figure 4.15 
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where 1x  and 2x  angular position of the one link robot and 1x  of them is chosen as 

the actual output.  
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Figure 4.15 Observed waveforms of the one link robot states controlled by proposed 

NARMA controller 

 

The observed actual and desired output waveforms of the one link robot 

controlled by RBFN based proposed adaptive controller are depicted in terms of its 

performances for tracking angular position values in Figure 4.16. Their MSE is 

obtained as 0.1340. So, proposed adaptive NARMA controller might be used for 

controlling nonlinear plants as another adaptive control technique. 
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Figure 4.16 Observed waveforms of the one link robot states controlled by proposed 

NARMA controller 
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CHAPTER FIVE 

MODEL BASED DYNAMICAL STATE FEEDBACK CHAOTIFICATION 

 

This chapter introduces chaotic reference model based dynamical state feedback 

chaotification method which can be applied to any input-state linearizable 

(nonlinear) system including linear controllable ones as special cases. In the 

developed method, any chaotic system of arbitrary dimension can be used as the 

reference model with no need to transform it into a special form, so providing the 

advantage of exploiting the vast amount of information on chaotic systems and their 

implementations available in the literature. To demonstrate the potential effective 

applications of the method, a permanent magnet DC motor is chaotified by the 

proposed dynamical state feedback as matching the closed loop dynamics to the well 

known Chua’s chaotic circuit. Then, an impeller mounted on the chaotified DC 

motor is used for mixing a corn syrup added acid-base mixture. It is observed in a 

non-intrusive way that mixing actuated by the chaotified DC motor is more efficient 

than constant and also periodical motor speed cases for the consideration of 

neutralization time and power consumption together. 

 

5.1 Dynamical State Feedback Chaotification 

 

It will be shown firstly that any linear, time invariant, controllable and observable 

single-input system can be chaotified by dynamical state feedback. This result will 

then be extended into the nonlinear, time-invariant, input-state linearizable and 

observable single-input systems. 

 

5.1.1 Linear Systems Case 

 

Consider an nth order linear, time-invariant and controllable single-input system 

defined by the state equations ubxAx ˆˆˆ +=& . It is known that such a system is 

controllable if and only if the controllability matrix ]ˆˆˆˆˆ[ bAbAb 1n−K  has rank n 
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(Rugh, 1996). It is also known that the state equations of a controllable system can be 

transformed into the following controllable canonical form ubAxx +=&  by a linear 

change Tx:x =ˆ of variables.  
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Where u  stands for the scalar input, the state matrices and input vectors 

corresponding to the old T
nxxx ]ˆ,...,ˆ,ˆ[:ˆ 21=x  and new T

nxxx ],...,,[: 21=x  state vectors 

are related to each other by the transformation matrix T  as TATA 1 ˆ−=  and  

bTb 1 ˆ−= . 

 

Now, consider a reference chaotic system, for instance in Equation 5.2 and 

Equation 5.3. Although there are many alternatives to choose (Lorenz, Rössler, Chen 

and so on), Chua’s circuit defined by Equation 5.2 and Equation 5.3 (Chua et al., 

1993) is taken as the reference chaotic system in this paper in order to exploit the 

huge amount of existing knowledge on efficient hardware realizations and 

qualitative/quantitative analyses for this special chaotic system. 
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Where )(xF is a piecewise linear function whose segment slopes are 68.00 −=m  

and 27.11 −=m . 0ˆ >α  and 0ˆ >β  are scalar parameters whose values should be 

chosen appropriately to ensure the chaotic behavior of Chua’s circuit. Redefining the 
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states of Chua’s circuit as xxn = , yxn =+1 , zxn =+2  and choosing a dynamical state 

feedback control as ( ) [ ])(ˆˆ 11111 nnnnnn xFxxaxaxau −+−−++= +−− ααL , the resulting 

nonlinear closed loop dynamics of the originally linear system in Equation 5.1 is 

obtained as in Equation 5.4 such that its last three equations match exactly to the 

Chua’s circuit equations with the newly defined state variables (See Equation 5.5). 
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Figure 5.1 Block diagram of the proposed chaotification method based on Chua system for linear, 

time-invariant systems defined in the controllable canonical form 
 

The above described chaotification which is also depicted in Figure 5.1 has linear, 

nonlinear and dynamical state feedback, so it is called as (nonlinear) dynamical state 

feedback chaotification.  
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The resulting chaotic system in Equation 5.1 is, indeed, equivalent to the 

reference chaotic system cascaded by (n-1) integrators as depicted in Figure 5.2. 

Although the nonlinear state feedback is always necessary for chaotification of linear 

systems, it may not be needed for a nonlinear system already having the nonlinearity 

same with the one required to produce the reference chaotic system. 

 

∫ ∫
nx

L
1−nx 2x 1x

[ ]

12

211

1

ˆ

)(ˆˆ

++

+++

+

−=

+−=
−+−=

nn

nnnn

nnnn

xx

xxxx
xfxxx

β

αα

&

&

&

 
Figure 5.2 Reference chaotic systems cascaded by (n-1) integrators as 

the equivalent of the chaotified system 
  

5.2 Comparison of Dynamical and Static Feedback Chaotification Methods  

 

The proposed dynamical state feedback chaotification method is applicable under 

the conditions same with the ones for the method in (Morgül, 2003) and it needs the 

system states to be measured or to be determined indirectly, e.g. by an observer as in 

the method of (Morgül, 2003). The main difference between the dynamical state 

feedback chaotification and the static feedback chaotification in (Morgül, 2003) is 

follows. The reference based static feedback chaotification of (Morgül, 2003) 

requires transforming the reference chaotic system into the Brunovsky form given in 

Equation 5.6 before matching the system to the reference chaotic system while the 

dynamical state feedback chaotification keeps the original form of the reference 

chaotic system in matching, so providing the superiority of exploiting the efficient 

hardware realizations and also extensive analysis results for the reference chaotic 

systems already available in the literature. 
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If the original system to be chaotified is not already in the controllable canonical 

form (Equation 5.1), the dynamical state feedback chaotifying control input 

described in takes the form )])ˆ(([ˆ)ˆ(ˆˆ][ 1
1 nnn Fyaau xTxTxT 11 −−− −+−= ααL  in terms of 

the original state variables x̂ , meaning that the already available realizations of a 

reference chaotic system can be used at most by a linear change of variables for the 

developed dynamical state feedback chaotification method in contrast to the static 

state feedback chaotification method requiring, in general, a nonlinear transformation 

of the reference chaotic system if it is not in the form of Equation 5.6. One can see 

this fact by considering the well known Rössler chaotic system in Equation 5.7 

(Rössler, 1979) and by transforming it into the Brunovsky form in Equation 5.9 via 

the nonlinear change Equation 5.8 of variables (Morgül & Solak, 1996). 
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The transformed Rössler system in Equation 5.9 has a less efficient structure in 

terms of the hardware implementation  as compared to the original form in Equation 

5.7 since it requires five nonlinearities to be realized although the original system in 

Equation 5.7 only one. The huge amount of literature on the theoretical and 

experimental analyses of the original Rössler system in Equation 5.7 constitutes 
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another important reason to prefer to use the original Rössler system in Equation 5.7 

as the reference chaotic system. The above discussion explains the situation about the 

implementation of the nonlinearities. The following gives the account of 

implementation of dynamical part of the resulting chaotified system. 

  

On the other hand, the dynamical state feedback chaotification augments the 

degree of the original system by two as adding two more state equations 

corresponding to the unmatched part of the reference chaotic system when the 

reference chaotic system is of three dimensional. This is not the case for the static 

feedback chaotification retaining the degree of the original system the same. This 

means that the dynamical state feedback chaotification requires implementing the 

unmatched part of the reference chaotic system which consists of two integration 

units and some linear/nonlinear units. It can be concluded that the dynamical state 

chaotification constitutes a good alternative to the static state chaotification when the 

reference chaotic system does not have any efficiently implementable Brunovsky 

form in Equation 5.9. 

 

5.3 Nonlinear Systems Case  

 

Consider an nth order nonlinear, time-invariant and input-state linearizable single-

input system defined by the bilinear state equations u)xg()xf(x ˆˆˆ +=&  where )(of  and 

)(og  are smooth vector fields. It is known that such a system is input-state 

linearizable if and only if i) The set of vector fields }{ gadgadg 1n
ff

−
K  is 

linearly independent and ii) The set of vector fields  }{ gadgadg 2n
ff

−
K  is 

involutive (Slotine & Li, 1991). Herein, gadf  is the Lie bracket 

[ ] gffggf, )()( ∇−∇=  with ∇  denoting the gradient operator with respect to x  and 

being involutive for a set of vector fields means that the Lie bracket of any pair of 

vector fields in the set is in the range of the same set of vector fields, i.e. any such 

Lie bracket can be written as a linear combination of the vector fields in this set 

(Slotine & Li, 1991). It is also known that the state equations of such an input-state 
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linearizable system can be transformed into the Brunovsky canonical form 

vbAxx +=&  in Equation 5.10 by introducing a nonlinear state feedback as 

vu )x()x( ˆˆ βα +=  with ( ))x()x(1 ˆˆ αβ −= − uv  defining the new input and by a 

nonlinear change Φ(x):x =ˆ  of variables where nn RR:)Φ( →o  is a 1C  

diffeomorphism such that the continuously differentiable inverse transform 

)x(Φx 1 ˆ−=  is also defined (Slotine & Li, 1991). 
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Now, if Chua’s circuit defined in Equation 5.2 and Equation 5.3 is considered as a 

reference chaotic system and the first equation of Equation 5.2 is chosen to be 

matched, then the dynamical state feedback chaotifying control v  in terms of the 

original system variables x̂  would be )]))ˆ((([ˆ))ˆ((ˆ 1
nn Fyv xx 1−− Φ−+Φ−= αα , so 

the original system input )]]))ˆ((([ˆ))ˆ((ˆ)[ˆ(ˆ 1
nn Fyu xxx)x( 1−− Φ−+Φ−+= ααβα . 

 

5.4 Dynamical State Feedback Chaotification of DC Motor  

 

The developed dynamical state feedback chaotification method is employed in 

this section to chaotify a permanent magnet DC motor in order to be used as the 

actuator for a liquid mixing system. The proposed chaotifying control was 

implemented in the Controller-Design-Test-Redesign-Platform (CDTRP) which was 

developed in (Şahin et al., 2010). This section presents results obtained in two 

different operating modes of CDTRP. The first one is the real-time simulated plant 

(herein the DC motor.) and real-time simulated controller (herein the dynamical state 

feedback chaotifying controller.) mode of the CDTRP, more precisely the mode 

where both of the plant and the controller are implemented in the real-time simulator 

realized in a Personal Computer (PC) having a Centrino processor and a 1GB 



 

 

128

memory. (Herein, the computer constitutes a minimum configuration necessary for 

running MS Windows XP and MATLAB 7.04 software on which a graphical user 

interface managing and monitoring the CDTRP is implemented.) The second one is 

the real DC motor and real-time simulated controller mode of the CDTRP where a 

real DC motor together with a derive card is controlled by the dynamical state 

feedback implemented in the real-time simulator.   

The configuration of real (DC motor) plant and simulated (chaotifying) controller 

mode of CDTRP is given in Figure 5.3. The chaotifying control signal u  is produced 

in the simulator (PC) and it is then converted into Pulse Width Modulation (PWM) 

signal in order to apply to the DC motor as the adjustable armature voltage for 

controlling DC motor speed i.e. the revolutions per minute (rpm). The DC motor 

driver card is realized with a PIC18F452 microcontroller driver unit which has a 

serial interface to communicate with the PC. 
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Figure 5.3 Block diagram for real DC motor plant and 

simulated chaotifying controller mode of CDTRP 
 

For the used permanent magnet unidirectional DC motor, a first order state 

equation ubxax mm +−=&  was taken as the model where x  denotes the DC motor 

speed (rpm) measured by an encoder. The state x was scaled via signal conditioning 

for the unidirectional DC motor. The model parameters were identified from the 

responses due to the step input within the experimental setup described in Section 3 

as: 2=ma  and 8448=mb  for unloaded case and as 1=ma  and 250=mb  for the 

loaded case, i.e. when mixing corn syrup added acid-base mixture.  
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To chaotify the DC motor by dynamical state feedback chaotification method, 

Chua’s circuit was chosen as the reference chaotic system and its first equation was 

matched to the DC motor equation as follows. 
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The chaotifying input admits the following form. 

 

[ ]))((ˆ)ˆ(1 xFyxa
b

u m
m

−+−−= αα               (5.12) 

 

Where, 9ˆ =α , 87.14ˆ =β , 7/50 −=m and 7/81 −=m  were chosen to yield the 

chaotic behavior of Chua’s circuit (Chua et al., 1993). Figure 5.4 depicts the 

introduced dynamical state feedback chaotification of DC motor. 
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Figure 5.4 Block diagram representation of the dynamical state feedback chaotification of DC 

motor based on Chua’s circuit 
 

The closed loop dynamics of the Chua’s circuit based chaotified DC motor 

defined by Equation 5.11 and Equation 5.12 was firstly simulated in the simulated 

plant and simulated controller mode of CDTRP and then realized thus 

monitored/measured in the real plant and simulated controller mode of CDTRP. 

Figure 5.5 and 5.6 show the obtained chaotic trajectory plotted in the zyx −−  space 
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and the bifurcation diagram of the first state variable x  for the α̂  parameter, 

respectively, in the simulated DC motor plant and simulated chaotifying controller 

mode. 
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Figure 5.5 Phase portrait of Chua’s circuit based chaotified DC motor 

 

 
Figure 5.6 Bifurcation diagram obtained for α̂  

 

In the real (DC motor) plant and simulated (chaotifying) controller mode of 

operation of CDTRP, the real DC motor speed (rpm) measured by the encoder is 

transferred via data lines, i.e. the serial port, to the PC and monitored by the 

graphical user interface. The rpm measurement data for the real DC motor chaotified 

by the dynamical state feedback method for 9ˆ =α , 87.14ˆ =β , 7/50 −=m  and 

7/81 −=m  Chua’s circuit parameters and the first order DC motor model with the 

parameters 1=ma  and 250=mb  is plotted in Figure 5.7. In the experiments realized 

on real DC motor, the DC motor was operated in three different modes: i) the 
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constant speed, ii) periodically changed speed and iii) chaotically changed speed. As 

observed from the experiments, the dynamical state feedback chaotification provides 

a broad DC motor operating frequency band while the highest operating frequency 

attained for open loop periodical excitation becomes less than 1 Hertz.  This fact is 

seen from rpm frequency spectra in Figure 5.8.  
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Figure 5.7  Real DC motor speed time waveform measured 

when dynamical state feedback chaotification was applied 
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Figure 5.8 (a) Motor speed frequency spectra for chaotified DC motor (b) Motor speed frequency 

spectra for periodically excited DC motor 

 

5.5 Experimental Results on Liquid Mixing by Chaotified DC Motor  

 

The section presents experimental results on liquid mixing by the DC motor 

chaotified based on the developed chaotic reference system based dynamical state 

feedback. Figure 5.9 shows the experimental set-up of the chaotic mixing platform 
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which is established in Department of Control and Automation at Ege University Ege 

Vocational School. The details on the application, analysis and also implementation 

of the proposed chaotification of the considered permanent magnet DC motor are 

already given in Section 5.3. The chaotic mixing platform which consists of the 

chaotified DC motor, an impeller mounted on the shaft of the DC motor, the DC 

motor driver card, the PC for managing and monitoring the mixing platform, 

chemical substances and an ammeter for measuring the power consumption is indeed 

implemented on the general purpose controller-design-test-redesign-platform 

CDTRP (Şahin et al., 2010). The data obtained by the ammeter Brymen BM815 used 

for measuring the current of the DC motor is transferred via a serial interface 

connected to the PC which is different from the one used for transferring the data 

from the encoder to the PC. The impeller mounted to the DC motor is used for 

mixing the liquid, i.e. the chemical substances, in the cup. 

 

 
Figure 5.9 Experimental set-up for liquid mixing by chaotified DC motor 

 

The chemical substances used in the experiments are Cargill GF 30 corn syrup 

(See the photograph in Figure 5.10(a)), 1N HCl acid, 1N NaOH base and Timol blue 

indicator. The chemical substances for the liquid mixing experiment were prepared 

in the following steps. 240ml light corn syrup was obtained in the cup in Figure 5.10 

(a) by mixing 204ml corn syrup and 36 ml pure water, and then it was divided into 

two different cups shown in Figure 5.10 (b). 2ml 1N HCl acid and 0.4ml Timol blue 

indicator were added into the cup at the left in Figure 5.10 (b) which had 160ml 

portion of the divided light corn syrup and the resulting mixture was mixed well by 
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shaking manually until the color of the mixture turned to the magenta color. The 

80ml portion of the light corn syrup in the cup at the right in Figure 5.10 (b) was 

mixed by 4ml 1N NaOH base and 0.8ml Timol blue indicator until the resulting 

mixture’s color turned to the cyan color. The basic solution obtained in the cup at the 

right in Figure 5.10 (b) was then added to the cup containing acidic solution. As seen 

in Figure 5.10 (c), the resulting mixture is not homogeneous due to the prevention of 

diffusion by the light corn syrup at the beginning of the mixing process.  

 

(a) 
 

(b) (c) 

Figure 5.10 Preparing acid-base chemical substances for the chaotic liquid mixing experiment 
 

Three different mixing modes, i.e. constant motor speed, (sinusoidal) periodic 

changing motor speed and chaotic changing motor speed, were implemented in the 

experiments. The modes were controlled via the graphical user interface of CDTRP. 

The constant motor speed was set to 120 rpm. The periodic changing speed was 

changed from 0 to 240 rpm as a pure (1Hz) sinusoid which was observed actually to 

be the maximum attainable frequency for the DC motor speed to track the sinusoidal 

PWM control signal. The chaotic motor speed was controlled to be changed in the 

interval of 0-240 rpm by signal conditioning. This means that DC motor was 

operated in a uni-directional way for all of the three mixing modes. 

  

In order to evaluate the mixing performances of these different mixing modes, the 

evolutions of the mixing processes were recorded by a camcorder. The snapshots 

taken at each 5 seconds are given in Table 5.1. As shown in Table 5.1, neutralization 

as the sign of attained homogeneity of the corn syrup added acid-base mixture occurs 
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at 25 seconds, 30 seconds and 480 seconds for the chaotic, periodic and constant 

motor speeds, respectively. 
 

Table 5.1 Snapshots along the evolutions of chaotic, sinusoidal periodic and constant mixing 

Chaotic 

   

Periodic 

 

  

Constant 

 

 

Time (s) 5 10 15 20 25 30 … 480 

 

To get a valid comparison, the power consumptions until the neutralization time 

were also recorded via measuring the DC motor current value using the ammeter. As 

reported in Table 5.2, the average current values and power consumptions are of 

comparable. 

 
Table 5.2 Comparison of chaotic, periodic and constant mixing in terms of neutralization time 

and energy consumptions until neutralization 

Mixing Type Time (s) Average Current (mA) Average Power (W) Energy (Wh) 

Chaotic 25 119.73 1.795 0.012 

Periodic 30 123.06 1.845 0.015 

Constant 480 100.00 1.500 0.200 

 

The least energy consumption which is actually the performance measure that 

would be taken into account for comparison is obtained for chaotic mixing since the 

time spent until the neutralization is the smallest for chaotic mixing while the power 

consumptions for all mixing modes are close to each other. 
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The chaotic mixing obtained by the DC motor chaotified based on the developed 

dynamical state feedback chaotification method provides slightly more efficient 

chaotic mixing as compare to the chaotic mixing method proposed in (Ye & Chau, 

2007) which exploits the time-delay feedback type chaotification of (Wang et al., 

2000). In (Ye & Chau, 2007), 300ml acid-base mixture is reported to be 

homogenously mixed by a similar mixing system actuated with an impeller mounted 

on a DC motor within 30 seconds for an average 4.2 W power consumption, 

outperforming the constant and also 0.5 Hz sinusoidal periodic speed mixing. In 

another chaotic mixing system (Zhang & Chen, 2005), rather than impeller, a plate 

supporting the tank containing sugar/sucrose in the same volume of water is rotated 

by a DC motor controlled with a chaotic PWM signal. It is reported in (Zhang & 

Chen, 2005) that the homogenous mixing is attained by this open loop chaotic 

mixing system within 24 minutes for an average 4.661675 W power consumption, 

again outperforming constant and also up to 1 Hz sinusoidal periodic speed mixing 

both almost doubling the required mixing time under the same power consumption. 

The liquid to be mixed is different from the acid-base mixture and the volume of the 

liquid is not reported in (Zhang & Chen, 2005). However, it can be argued just by 

considering the ratio, i.e. approximately 2, between the energy consumptions for the 

constant speed and chaotic speed cases of (Zhang & Chen, 2005) and by the ratio 

(16.66 = 200/12) following from Table 5.2 that the chaotic mixing system presented 

in this paper provides much more efficient mixing in terms of the consumed energy. 

The relative efficiency of the developed chaotic mixing system might be connected 

to the operating frequencies larger than 1 Hz (See Figure 5.8 (a).) that can be attained 

only for the DC motor chaotified by the dynamical state feedback. 

 

5.6 Analog Circuit Application for DC Motor Chaotified by Lorenz Chaotic 

System 

 

Considering wide spread of chaotification use in engineering applications and its 

generic feature, i.e. the reliance of its working principles on one of the four 

fundamental forces of the nature, i.e. electromagnetic interaction, the DC motor is 

chosen in this application as the case for the real system to be chaotified by the 
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introduced dynamical state feedback to possess chaotic dynamics, such as the one 

produced by the celebrated Lorenz system.  

 

Now, consider the Lorenz system defined in Equation 5.13 (Cuomo & 

Oppenheim, 1993) as the reference chaotic system.  
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Redefining the above Lorenz states x , y and z  as  
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and choosing the control input u  as 

 

( ) 11111 +−− +−−++= nnnnn xxaxaxau σσL           (5.15) 

 

the linear system given in Equation 5.13 is augmented to the following nonlinear 

system of (n+2) nd order. 
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With the above choice of the control input u , the last state equation of the system 

in Equation 5.13 becomes identical to the first Lorenz equation in Equation 5.14 

under the change of variables in Equation 5.14. The state feedback defined by 

Equation 5.13 is a nonlinear dynamical state feedback since the control input u  

brings an extra state variable 1+nx  which is nonlinearly and also dynamically 

dependent on the nth state variable nx as can be observed from Equation 5.14 and 

Equation 5.15. The control input u  in Equation 5.16 brings, in an indirect way, 

another extra state variable 2+nx , yielding the last three equations of the augmented 

system match to the Lorenz state equations in Equation 5.14 but with the new 

variables in Equation 5.15. So, the resulting nonlinear system in Equation 5.16 has 

chaotic dynamics exactly the same with the Lorenz system such that the dynamics of 

the last three state variables exactly matches to the states of the Lorenz system and 

the first (n-1) state variables are simply the integral, at different level, of the chaotic 

state nx . It means that the new high dimensional system Equation 5.16 has a third 

order chaotic dynamics only. 

   

The proposed chaotification scheme is depicted in Figure 5.11. Where, a part of 

the Lorenz system constitutes a dynamical controller together with the linear state 

feedbacks. 
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Figure 5.11 Block diagram of the proposed chaotification method based on Lorenz system for 

linear, time-invariant systems defined in the controllable canonical form  
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5.6.1 Implementation of Chaotified DC Motor System by Lorenz Chaotic System 

 

To demonstrate the applicability and real life engineering application potentials of 

the introduced simple dynamical state feedback method, a permanent magnet DC 

motor is considered as the system to be chaotified due to the its wide spread 

engineering applications and due to its prominent status as having the features of the 

reliance of its working principles on one of the four fundamental forces of the nature, 

i.e. electromagnetic interaction. 

  

In the experiments, an rf-310ta series DC motor which is easy to use and can be 

found easily with very low cost is used, so any one who is interested in the 

applications of the proposed chaotification method on a real DC motor may attempt 

to reproduce the experiments and observe how a chaotified DC motor runs. Just for 

simplicity, a first order simplified model is chosen for the permanent magnet DC 

motor: ubxax mm +−=& . Where x  stands for the angular velocity of the motor, i.e. 

the rpm and u stands for the armature input voltage. The first order system 

parameters of the used rf-310ta series DC motor were identified as 2=ma  and 

5600=mb  by measuring its response due to the step input. 

  

By the application of the proposed chaotification method to the DC motor for the 

considered simplified model and for the Lorenz chaotic system reference, the 

augmented system becomes a third order nonlinear system which is identical to the 

Lorenz system since the original system, i.e. the DC motor has the first dynamical 

model. The resulting system is given in Equation 5.17 where the original symbols of 

the Lorenz state variables, so that the first one is taken equal to the DC motor state, 

are preserved. 
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Herein, the control input is chosen as 
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b
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The obtained chaotified DC motor system is depicted in Figure 2. 
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Figure 5.12 Diagram of the chaotified DC motor by Lorenz System 

 

The whole DC motor chaotification system depicted in Figure 5.12 was 

implemented as a fully analog system in a modular fashion. The plant is the rf-310ta 

series DC motor which indeed implements the first state equation in Equation 5.17. 

The second and third state equations of the Lorenz system Equation 5.17 which 

constitute the nonlinear dynamical controller part were realized with the circuit 

configuration in Figure 5.13. Where two AD633 analog multipliers realize nonlinear 

terms, two LF353 opamps together with eleven resistors R1=R2=R5=100kΩ, 

R3=R4=1kΩ, R6=R8=10kΩ, R7=1MΩ, RV1=RV3=100kΩ, RV2=470kΩ and two 

capacitors C1=C2=10nF realize linear weighted summations and integrations. The 

motor speed, which is the state variable to be feedback, is measured by a tacho-

generator which is again an rf-310ta series DC motor-generator connected to the 

shaft of the DC motor. The tacho-generator output voltage, considered here as 

proportional to the motor speed, constitutes the feedback signal which is again 

analog. The other part of the hardware realization comprised of two LF353 opamps 

realize the summers and amplifications in Figure 5.13 and provides the control input 

deriving the DC motor. The experimental set-up of the proposed chaotification 

method is given in Figure 5.14.    
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Figure 5.13 Fully analog realization of the chaotified DC motor system based on the first order DC 

motor model and Lorenz chaotic system reference 

 

 

 
Figure 5.14 Experimental set-up for chaotification of DC motor 
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5.6.2 Simulations of the Proposed Chaotification System and its Bifurcation 

Diagrams Observed by Analog Circuit 

 

The simulations of the chaotified DC Motor by Lorenz system are depicted in 

Figure 5.15 (a) and (b) where phase portrait for the x and z states of the simulated 

Lorenz chaotic system and time-waveforms of that are simulated, respectively. To 

achieve for the simulation program of the chaotified DC Motor by Lorenz system, an 

example program is given as a MATLAB m.file  

 

am=2; bm=5600; sigma=10; r=56.6; b=5.02; 

xm=[0.01, 0.01, 0.01]; tempxm=xm; delta_t=0.01; 

for k=1:1000 

xm(2)=tempxm(2)+(r*tempxm(1)-tempxm(2)-20*tempxm(1)*tempxm(3))*delta_t; 

xm(3)=tempxm(3)+(5*tempxm(1)*tempxm(2)-b*tempxm(3))*delta_t; 

u=(1/bm)*(-(sigma-am)*tempxm(1)+sigma*(tempxm(2))); 

xm(1)=tempxm(1)+(-am*tempxm(1)+ bm*u)*delta_t; 

end; 

figure; plot(x,z); xlabel('x'); ylabel('x');  

figure; plot(x,'-'); hold on; plot(z,'-.'); xlabel('samples'); ylabel('x and z');  
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(a) 
 

(b) 
Figure 5.15 (a) Phase portrait for the x and z states of the simulated Lorenz chaotic system (b) Time-

waveforms of the x and z states of the Lorenz chaotic system which is simulated. 
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On the other hand, simulations program of bifurcation diagram for parameters r 

and b might be written as a MATLAB m.file. For example, bifurcation diagram for 

parameters r is given as a simulation program to the following  

 

am=2; bm=5600; sigma=10; r=0.2; b=5.02; x=zeros(250,1); 

xm=[0.01, 0.01, 0.01]; tempxm=xm; delta_t=0.01;  hold on;  

while r<100 

   for k=1:250, 

  u=(1/bm)*(-(sigma-am)*tempxm(1) + sigma*(tempxm(2))); 

  xm(1)=tempxm(1)+(-am*tempxm(1)+ bm*u)*delta_t; 

  xm(2)=tempxm(2)+(r*tempxm(1)-tempxm(2) 20*tempxm(1)*tempxm(3))*delta_t 

  xm(3)=tempxm(3)+(5*tempxm(1)*tempxm(2) -b*tempxm(3))*delta_t; 

  tempxm=xm; x(k)=tempxm(1); y(k)=tempxm(2);    z(k)=tempxm(3);      

  plot(r,x(200:250),'b.'); 

  end; r=r+1; 

   end; xlabel('r'); ylabel('x'); 

 

The simulated bifurcation diagrams of the chaotified DC Motor by Lorenz system 

are depicted in Figure 5.16 (a) and (b) where parameters r and b, respectively, of the 

simulated Lorenz chaotic system are simulated. 

 

(a) 
 

(b) 

Figure 5.16 The simulations of bifurcation diagrams of the Lorenz chaotic system (a) for r (b) for b. 
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On the other hand, the bifurcation diagrams of the chaotified DC Motor by Lorenz 

system might be given as snapshots of X-Y modes of the oscilloscope. For example, 

the snapshots of the X-Y mode of the oscilloscope for b parameter of the Lorenz 

chaotic system (implemented by RV2 potentiometer) are given in Figure 5.17 (a), 

(b), and (c). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5.17 A snapshot on the X-Y mode of the oscilloscope where the signals in the x and z states of 

Lorenz circuits are fed, respectively.  While RV1 20kOhm and RV3 50kOhm are constant, RV2 value 

is changed (a) 1kOhm, (b) 50kOhm and (c) 350kOhm. 

 

Moreover, the snapshots of the X-Y mode of the oscilloscope for RV1 

potentiometer of the implemented Lorenz chaotic system are given in Figure 5.18 

(a), (b), and (c). 
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(a) 

 
(b) 

 
(c) 

Figure 5.18 A snapshot on the X-Y mode of the oscilloscope where the signals in the x and z states of 

Lorenz circuits are fed, respectively.  While RV2 and RV3 are 50kOhm, RV1 value is changed (a) 

10kOhm, (b) 30kOhm and (c) 50-100kOhm. 
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CHAPTER SIX 

CONCLUSION 

 

A new real-time simulation-emulation design, test and redesign platform for 

controller design, a new input-output data based nonlinear dynamical adaptive 

controller design method, and a new chaotification method based on dynamical state 

feedback are developed in this thesis. The conclusions and future directions related to 

these three contributions are outlined in the sequel. 

   

Controller-Design-Test-Redesign-Platform (CDTRP): The developed CDTRP 

enables to be embedded, via its hardware peripheral unit, real disturbances and any 

part or accessories of a real plant such as actuators and sensors which can be 

implemented in the laboratory conditions while the other parts are implemented in 

the simulator or emulator of the platform, so enabling users to approximate to the 

real plants and their real environments as much as they desire. The platform still 

provides the possibility of modifying and tuning the controller candidates based on 

their performances in a flexible way without causing any damage on the real plant or 

any other risky situation. 

  

CDTRP can be operated in 24 different real-time operating modes where the 

controller, plant and peripheral unit are implemented either in the simulator or in the 

emulator or realized as an external analog or digital hardware depending on the 

application and on the memory-time and also other implementation requirements. 

The operating modes, a subset of which are introduced in this thesis as contributing 

to the real time simulation literature and another subset corresponds to the well-

known simulation modes in the literature, are described in a novel taxonomy and also 

categorized based on their suitability to the design, test and redesign stages of the 

proposed controller design process. 

 

As observed by the investigation conducted in this thesis, the abilities of the 

CDTRP platform in implementing the controllers and plants are limited by the 
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hardware and software realizations used for its simulator and emulator units, i.e. the 

MATLAB environment used for the PC simulator and the emulator implemented by 

using PIC microcontroller and also their communication abilities with each other and 

also with external hardware units. However, the operating frequency range, which 

was determined by employing the coupled oscillators in the experimental 

investigation conducted for examining the validity of the implementations of control 

systems dynamics in the CDTRP, can be enlarged by using a different simulation 

environment and an emulator with a more advanced hardware such as a digital signal 

processor rather than a microcontroller. Such software and hardware improvements 

on the CDTRP platform enlarge also the classes of plants and controllers which are 

reliably implementable in the developed platform. The implemented 24 real time 

simulation modes can be extended by using additional hardware such as an analog 

interface for the simulator (in PC) and/or by employing a different implementation 

unit for each component of the peripheral unit. 

 

It can be further concluded that the proposed design, test and redesign procedure 

can be used in any simulation platform providing a hierarchy of operating modes 

from the flexible ones to the ones close to the reality and open to be developed in 

more precise manner in some focused control applications. 

 

Learning algorithms for adaptive nonlinear dynamical controller design: The 

developed adaptive control algorithm, which employs ARMA and NARMA input-

output models both for plant and the closed-loop system consisting of plant and 

controller, is suitable to run online based on measurement data. In the linear case, it 

can be viewed as an algorithm solving Diophantine equation in real-time using data 

measured from the plant not a model of the plant. The proposed learning algorithm 

for adaptive control has the possibility of implementing it as an Artificial Neural 

Network (ANN) choosing appropriate basis functions in NARMA models. As 

opposed to the inverse system based ANN controllers, it attempts to find a closed 

loop system to possess a desired behavior rather than attempting to find an inverse of 

the plant yielding a unity closed loop system. 
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   The developed adaptive control scheme defines a kind of Model Reference 

Adaptive Control (MRAC) when the desired output of the plant is provided by a 

stable reference model and the controller parameters are updated directly based on 

the measured plant outputs in real-time without taking into account previous 

measurements. On the other hand, it defines a self-tuning adaptive control when the 

measured plant input-outputs within a chosen time window are first used for 

identifying a plant model and then for updating the controller parameters not at each 

time but at the sampled times with sampling period not less than the window length 

used for identification. 

    

Stability analyses of the closed loop systems obtained for different 

implementations of the introduced adaptive control method can be realized as future 

works. The adaptive control learning algorithm can be improved by introducing 

some robustifying mechanism into the controller learning algorithm and/or plant 

parameter identification subroutines. The developed adaptive control scheme is open 

to be applied on handling nonlinearities and model/parameter uncertainties in 

specific control problems. 

 

Dynamical state feedbak chaotification of input state linearizable systems: The 

developed chaotification method, which is based on matching a part of the system to 

a part of a chosen reference chaotic system, employs a dynamical state feedback. As 

compared to the known chaotification methods, the method is more advantageous 

due to its generality allowing to be applied into the whole class of input-state 

linearizable systems. It has also the possibility of exploiting the hardware 

implementations (and also theoretical analysis results.) already available in the 

literature without any modification or only with a linear change of variables for the 

realization of the developed chaotifying dynamical state feedback controller. 

  

The potential of the proposed chaotification in real world applications is 

demonstrated via its application on chaotic liquid mixing system actuated by 

chaotified permanent magnet DC motor. The developed chaotic liquid mixing system 

is observed to outperform the other available chaotic liquid mixing systems as well 
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as the constant and periodical speed liquid mixing in terms of the time spent under 

the same or smaller power consumptions. 

  

Possible extensions of the chaotification research realized in the thesis are two 

fold, i.e. of theoretical and of practical. In the theoretical direction, i) one can 

develop other dynamical state feedback chaotification methods which are not based 

on a reference chaotic system but on some available theoretical results for ensuring 

the chaotic behavior of the closed loop dynamics, ii) one can enhance the proposed 

method by adding novel features in order to meet some specifications on desired 

closed loop chaotic dynamics, and iii) one can enlarge the class of systems for which 

dynamical state feedback chaotification method is applied. In the practical direction, 

the application areas of the developed chaotification method can be enlarged and, in 

a focused application, accurate model/parameters can be obtained by employing 

suitable identification methods for a real system under consideration.  
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