

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

RULE-BASED NATURAL LANGUAGE PROCESSING

METHODS FOR TURKISH

by

Özlem AKTAŞ

September, 2010

İZMİR

RULE-BASED NATURAL LANGUAGE PROCESSING

METHODS FOR TURKISH

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Computer Engineering

by

Özlem AKTAŞ

September, 2010

İZMİR

ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “RULE-BASED NATURAL LANGUAGE

PROCESSING METHODS FOR TURKISH” completed by ÖZLEM AKTAŞ

under supervision of PROF. DR. YALÇIN ÇEBİ and we certify that in our opinion

it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of

Philosophy.

……………………………………
Prof. Dr. Yalçın ÇEBİ

Supervisor

…………………………………… …………………………………..
 Prof. Dr. Alp KUT Prof. Dr. Gürer GÜLSEVİN
____________________________ ___________________________

 Thesis Committee Member Thesis Committee Member

…………………………………… …………………………………..
 Asst.Prof.Dr. Banu DİRİ Asst.Prof.Dr. Adil ALPKOÇAK
____________________________ __________________________

 Examining Committee Member Examining Committee Member

Prof. Dr. Mustafa SABUNCU

Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGEMENTS

I would like to thank to my advisor Professor Dr. Yalçın ÇEBİ, thesis tracking

committee members Professor Dr. R.Alp KUT and Professor Dr. Gürer GÜLSEVİN,

and also my friends and colleagues, Instructor Dr. Kökten Ulaş BİRANT, Research

Assistant Emel ALKIM, Research Assistant Çağdaş Can BİRANT, and linguists,

Instructor Dr. Özden FİDAN and Research Assistant Dr. Özgün KOŞANER, in

Dokuz Eylül University Natural Language Processing Research Group for

contribution to this study and sharing their ideas during the development and writing

phases of the thesis.

I would also like to thank to Specialist Belgin AKSU and Turkish Linguistic

Association (Türk Dil Kurumu, TDK) for their contribution and support to this study.

The infrastructure of this work is supported by Dokuz Eylul University Scientific

Research Projects (Bilimsel Araştırma Projeleri, BAP) Coordination Unit, numbered

as 2007-KB-FEN-043.

 I have special thanks to my parents and my husband Cenk AKTAŞ for their

support, patience and making me encouraged during the development and writing

phase of the thesis.

Özlem AKTAŞ

iv

RULE-BASED NATURAL LANGUAGE PROCESSING METHODS FOR

TURKISH

ABSTRACT

In order to determine morphological properties of a language, a corpus which

represents that language should be created. Many large scale corpora generated and

have been used for Natural Language Processing (NLP) applications on many

languages, such as English, German, Czech, etc, but any large scale Turkish corpora

have not be generated yet.

In this study, natural language processing methods for Turkish were developed by

using rule-based approach, and also an infrastructure, Rule-Based Automatical

Corpus Generation (RB-CorGen), to use the new developed methods was

implemented. For testing RB-CorGen on Turkish, the roots, stems and suffixes were

obtained from Turkish Linguistic Association (Türk Dil Kurumu, TDK) and Dokuz

Eylul University, College of Literature Linguistic Department, the defined tags and

grammatical rules were stored in XML formatted file, and documents, include nearly

95 million wordforms, were collected from five Turkish newspapers in electronic

environment. The average success rates of Rule-Based Sentence Boundary Detection

(RB-SBD) and Rule-Based POS Tagging (RB-POST) methods were determined as

99.66% and 92% respectively. It was seen that the success rate of RB-CorGen

increases with the increasing number of rules.

Keywords: Turkish, Corpus, Rule-based, Sentence Boundary Detection,

Morphological Analyzer, Part of Speech Tagger.

v

TÜRKÇE İÇİN KURAL-TABANLI DOĞAL DİL İŞLEME YÖNTEMLERİ

ÖZ

Dillerin biçimbilimsel özelliklerinin belirlenmesi için, dilin özelliklerini temsil

edebilecek bir derlem gereklidir. İngilizce, Almanca, Çekçe gibi birçok dil için

büyük ölçekli derlemler geliştirilmekte ve Doğal Dil İşleme (DDİ) alanlarında

kullanılmaktadır, ancak, büyük ölçekli bir Türkçe derlem henüz geliştirilmemiştir.

Bu çalışmada kural-tabanlı bir yaklaşım kullanılarak Türkçe için Doğal Dil İşleme

yöntemleri geliştirilmiş ve yöntemleri gerçekleştirmek için Kural-Tabanlı Otomatik

Derlem Oluşturma (en.: Rule-Based Automatically Corpus Generation (RB-

CorGen)) adında bir altyapı oluşturulmuştur. RB-CorGen uygulamasını Türkçe

üzerinde test etmek amacıyla, elektronik ortamda bulunan gazetelerden yaklaşık 95

milyon kelimelik köşe yazıları derlenmiş, Türkçe kökler, gövdeler ve ekler, Türk Dil

Kurumu (TDK) ve Dokuz Eylül Üniversitesi Edebiyat Fakültesi Dilbilim

Bölümü’nden temin edilmiş, etiketler ve dilbilgisi kuralları da dilbilimi uzmanları

tarafından oluşturularak XML yapısında kaydedilmiştir. Kural-Tabanlı Cümle Sonu

Belirleme (RB-SBDT) ve Kural-Tabanlı Kelime Türü Belirleme (RB-POST)

yöntemlerinin başarı oranları sırasıyla %99,66 ve %92 olarak belirlenmiştir.

Oluşturulan kural sayısı arttıkça başarı oranlarının da arttığı gözlenmiştir.

Anahtar sözcükler: Türkçe, Derlem, Kural-Tabanlı, Cümle Sonu Belirleme,

Biçimbilimsel Çözümleyici, Kelime Türü Etiketleyici.

vi

CONTENTS

Page

THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

ÖZ ... v

CHAPTER ONE - INTRODUCTION ...1

1.1 Overview ...1

1.2 Aim of Thesis ..4

1.3 Thesis Organization ...5

CHAPTER TWO - WORKS ON CORPORA DEVELOPMENT FOR SPOKEN

LANGUAGES ...6

2.1 Corpus ...6

2.2 Sample Corpora ...6

2.2.1 English Corpora ..6

2.2.1.1 Brown Corpus..6

2.2.1.2 British National Corpus (BNC) ..8

2.2.1.3 The Bank of English .. 13

2.2.1.4 English Gigaword .. 14

2.2.1.5 American National Corpus ... 14

2.2.2 Turkish Corpora .. 15

2.2.2.1 Koltuksuz Corpus .. 15

2.2.2.2 Yıldız Technical University (YTU) Corpus 15

2.2.2.3 Dalkilic Corpus .. 15

2.2.2.4 METU Turkish Corpus .. 16

2.2.2.5 TurCo Turkish Corpus ... 17

vii

2.2.3 Corpora of Other Languages ... 19

2.2.3.1 The Czech National Corpus (CNC) .. 19

2.2.3.2 Croatian National Corpus... 19

2.2.3.3 PAROLE ... 20

2.2.3.4 French Corpus ... 21

2.2.3.5 COSMAS (Corpus Search Management Analysis System) 22

CHAPTER THREE - COMMONLY USED METHODS FOR NATURAL

LANGUAGE PROCESSING APPLICATIONS ... 23

3.1 Sentence Boundary Detection .. 23

3.2 Stemmers .. 27

3.3 Part of Speech (POS) Tagging ... 35

3.4 Other Works .. 39

CHAPTER FOUR - INFRASTRUCTURE AND DATABASE MODEL FOR

RB-CorGen ... 41

4.1 Used Technologies .. 41

4.2 Used Tags.. 42

4.3 Rule Lists .. 46

4.4 Database Model ... 48

4.4.1 The Table “Kokler” ... 49

4.4.2 The Table “KoklerSanal” .. 50

4.4.3 The Table “Govde” ... 51

4.4.4 The Table “Kelimeler” .. 52

4.4.5 The Table “Grup”.. 54

4.4.6 The Table “Ek” ... 54

4.4.7 The Table “Ekler” ... 56

viii

CHAPTER FIVE - ALGORITHMS AND SOFTWARE STRUCTURE OF RB-

CorGen .. 57

5.1 Getting and Storing Data ... 59

5.2 Rule-Based Sentence Detection ... 60

5.3 Rule-Based Morphological Analysis .. 66

5.4 Rule-Based Part of Speech (POS) Tagging .. 70

5.4.1 Rule Parser Module ... 72

5.4.2 Stem Reader Module ... 73

5.4.3 Tagger Module .. 73

5.5 Software Structure .. 77

CHAPTER SIX - CASE STUDY .. 85

6.1 Dataset Generation .. 85

6.2 Rule-Based Sentence Boundary Detection (RB-SBD) 87

6.3 Rule-Based Morphological Analyser (RB-MA) ... 90

6.4 Rule-Based POS Tagging (RB-POST) ... 95

6.5 Performance Overview .. 97

6.5.1 Rule-Based Sentence Boundary Detection (RB-SBD) Module 97

6.5.2 Rule-Based Morphological Analyser (RB-MA) Module 102

6.5.3 Rule-Based POS Tagging (RB-POST) Module.................................... 104

CHAPTER SEVEN - USAGE AND USER INTERFACES OF RBCorGen 106

7.1 Document Downloader .. 106

7.2 Automatic Corpus Generation ... 113

7.2.1 Generating Sentence Corpus... 115

7.2.2 Corpus Generation ... 119

7.2.3 Rule Lists ... 121

7.2.4 Other Operations .. 121

ix

CHAPTER EIGHT- CONCLUSION... 123

8.1 Conclusion ... 123

8.2 Future Works .. 125

REFERENCES ... 127

APPENDICES ... 138

A Turkish Grammatical Rules ... 138

B Rules .. 144

B.1 Sentence Boundary Detection Rules ... 144

B.2 Stem / Root Parsing Rules .. 145

B.3 POS Tagging Rules... 146

C Lists .. 151

C.1 Abbreviation List .. 151

C.2 Root and Stem Lists ... 152

C.2.1 Sample Roots ... 152

C.2.2 Sample Stems .. 153

C.2.3Sample Modified Roots / Stems According to Morphophonemic

Processes ... 155

C.3 Tags .. 156

C.4 Sample Outputs .. 161

C.4.1 Sentence Boundary Detection .. 161

C.4.2 Word Detection .. 170

C.4.3 POS Tagging Module ... 191

C.4.4 Sample Output 2 .. 194

C.4.5 Sample Output 3 .. 197

D Metadata of Documents .. 201

1

CHAPTER ONE

INTRODUCTION

1.1 Overview

Proportional to the tendency of continuous improvement of the computer

technology during the last few decades, the computer applications and the way of the

communication between people and computers are changing fast. The usage of

computers has been increased exponentially in many areas in the daily life of people,

such as “Communication”, “Data Transferring”, “Natural Language Processing

(NLP)”, etc.

“Natural Language Processing (NLP)”, which is one of the application areas of

computer technologies, can be defined as the construction of a computing system that

processes and understands human natural language. The word “understand” means

that the observable behavior of the system must make people assume that it is doing

internally the same, or very similar, things that people do when they understand

language (Güngördü, 1993). Basically, NLP aims to let computers to understand

human’s natural language and even to let them to generate it.

In fact, the studies in NLP are almost old as the development of first computers.

Many studies and methods on NLP application areas have been developed, and this

field becomes more popular.

Generally, computers are used to process natural language to study in:

 Speech synthesis: The process of converting written text into machine-

generated synthetic speech (Sagisaka et al., 1992; Black et al., 1994;

Greenwood, 1997; Huang et al, 2001; Sak et al., 2006). A computer system

used for converting written text to speech is called a speech synthesizer.

 Speech recognition: The process of converting a continuous signal to words

(speech-to-text systems) (Zue et al., 2005).

2

 Automatic summarization: the creation of a shortened version of a text by a

computer program (Mani, 2001).

 Natural language generation: The process of generating appropriate responses

to any unpredictable inputs by making decisions about the words, word

types, word order in the natural language by the system (Hennecke et al.,

1997).

 Machine translation (MT): Machine translation (MT) was the first computer-

based application related to natural language, which translates one NL into

another (Booth, et. al., 1957; Coxhead, 2002).

 Optical character recognition (OCR): The translation of scanned images of

handwritten, typewritten or printed text into a form that the computer can

manipulate (for example, into ASCII codes) (What is optical character

recognition?, (n.d.)).

Natural Language Processing consists of four main analysis levels where each

level is strongly related to others: Morphology, Syntax, Semantics and Pragmatics.

Morphology is directly related to word based analysis, which aims to define the

structure of words, such as investigation of word types (verb, noun, adjective, etc.),

analyzing parts of the words (root, suffix or prefix). The results of morphological

analysis are used for further processing in higher level analysis.

Syntactic analysis is generally based on sentences which are more complex

components of natural languages than words, and used to determine the structure of

sentences and occurrences of words. Syntactic analysis also uses statistics, which can

be done in two ways; on letters and words. Letter analysis includes researches such

as consonant and vowel letter placements, letter frequencies, relationship between

letters such as letter positions according to each other, etc. Word analysis includes

researches such as investigation of number of letters in a word, the order of the

letters in a word, word frequencies, word orders in a sentence, etc.

3

Semantic analysis finds out the real structures of sentences and words by using

meaning of structures obtained by syntactic analysis and meanings of the words used

in the sentence.

Pragmatic analysis lies at the top level of analysis and is a much more complex

study than the Morphology, Syntactic and Semantic Analysis. It aims to determine

the meaning of discourse involving the contextual information.

In order to carry out NLP studies on any natural language, a representative corpus

of that language is needed. There are many definitions about corpus; some of them

are listed below:

 “Corpus is a collection of linguistic data, either written texts or a

transcription of recorded speech, which can be used as a starting-point of

linguistic description or as a means of verifying hypotheses about a

language.” (Crystal, 1991).

 “A collection of naturally occurring language text, chosen to characterize a

state or variety of a language.” (Sinclair, 1991).

A corpus must be large and representative of the language. A representative

corpus has samples of every topic in the language, such as technical words,

medicine, spoken language, etc.; large corpus has the large number of data taken

from any topic of the language. Both corpora can be used in NLP applications. And

also, corpora can be divided into two categories: “Balanced”, and “Unbalanced”. A

“Balanced Corpus” is representative. It should include sample of texts from every

topic in the language. This corpus should also include these texts in equal weights

depending on the quantity of the usage in the language. Large corpus represents

“Unbalanced Corpus”, which has large amount of data in one topic or different areas

in the language. An unbalanced corpus may be turned into balanced by taking large

amount of data from all topics in the language that makes the corpus a

“representative” of the language. In fact, it is very difficult to take equal, small pieces

4

of samples from different areas of a natural language into a corpus. Since unbalanced

corpus consists of many words from any areas in a language, instead of creating a

balanced corpus, an unbalanced corpus may be generated and used for better

performance. Whether they are balanced or not, small sized corpora are good enough

to carry out letter analysis on it. However, when word analysis is required, a large

scale corpus is necessary. Especially to handle some extraordinary words, which are

used rarely in the language, an unbalanced corpus is more powerful than the

balanced corpus.

1.2 Aim of Thesis

Nowadays, large scale corpus is needed for every language to be able to make

analysis on the language and get reliable results about the properties of it. While

generating a large scale corpus, it is very important to determine sentences, also

stem, root and suffixes of the words in a correct way. Although, large scale corpora

have been generated and used for different languages, such as English, German,

Czech, etc., large scale corpora for Turkish could not have been developed, yet.

The main goal of this study is to develop an infrastructure with rule-based

approach to generate large scale Turkish corpus. This infrastructure can be adapted to

any Turkish dialects by the given rules of the Turkish Dialect to be analyzed. During

the studies carried out for this thesis, appropriate methods to find the sentences and

wordforms in the text; root and suffixes of the words have been developed.

Considering the grammar and rule-based structure of Turkish, the rule-based

method has been chosen. Since Turkish is an ‘agglutinative language’ like Finnish,

Hungarian, Quechua and Swahili, new words are formed by adding suffixes to the

end of roots by using a specific grammatical rule, and there are grammatical rules for

suffixes, which of them may follow which other and in what order they will be

(Appendix A). The meaning, also type of words are changed or extended by this

concatenation. This suffix concatenation can result in relatively long words, which

are frequently equivalent to a whole sentence in English.

5

1.3 Thesis Organization

This thesis is divided into 8 chapters and 6 appendices. The motivation of the

thesis and the general description of corpus is given in Chapter 1. Corpora generated

for English, Turkish and other languages are told briefly in Chapter 2. Also, Natural

Language Processing studies used for both corpora development and linguistic

studies, such as sentence boundary detection, stemming, part-of-speech analysis,

author detection, etc. are given in Chapter 3.

The infrastructure of Rule-Based Corpus Generation (RBCorGen) software

includes database model, structure of used tags, rules and lexicon, is explained

briefly in Chapter 4. The algorithms developed for all steps of the RBCorGen are

given in details with explanation of implemented classes and methods in Chapter 5.

The results and performance overview of RBCorGen are given in Chapter 6 with

the properties of generated data set. The usage of RBCorGen is given briefly in

Chapter 7, and finally, the conclusion, in which brief summary and results of this

thesis are given in Chapter 8.

6

1 CHAPTER TWO

2 WORKS ON CORPORA DEVELOPMENT FOR SPOKEN LANGUAGES

2.1 Corpus

A corpus can be defined as a special database that includes analysed and tagged

texts, and allows specialized processes in Natural Language Processing area such as

retrieving the words and suffixes quickly.

By using the corpus, different analyses can be done, such as character recognition

operations, cryptanalytical procedures, spell corrections (Church & Gale, 1991), etc.

Also, some processes depending on n-gram analysis, such as different word usage

statistics, frequencies of letters (Shannon, 1951) and words (Jurafsky & Martin,

2000; Çebi & Dalkılıç, 2004) etc., can be done by using corpus in NLP applications.

N-gram analysis is one of the common statistical methods carried out on a corpus.

Besides the letter and word frequencies, language model probabilities can be

estimated and used in speech recognition systems (Nadas, 1984) by n-gram analysis.

It can be used in correcting words by detecting misspelled words and it is useful for

OCR (Optical Character Recognition) (Kukich, 1992). And it is commonly used in

data compression and encryption. And also, missing words can be estimated for a

given text by calculating word n-grams.

2.2 Sample Corpora

There are lots of corpora created for different languages. Some of them are

representative, and some are large.

2.2.1 English Corpora

2.2.1.1 Brown Corpus

The Brown Corpus is the first computer-readable general corpus of texts prepared

for linguistic research on modern English (Brown Corpus, (n.d.)), which was

developed in 1960s, and announced in 1963-1964 at Brown University. In 1964, it

7

included 1 million words with 61,805 different words and in a later edition in 1992;

the new Brown corpus included 583 million words with 293,181 different words

(Jurafsky & Martin, 2000). The samples in corpus have a wide range of varieties of

scripts. Sentences in poems were not included on it because of having special

linguistic problems different from scripts. Also drama was excluded, but fiction was

included. Making available a carefully chosen and prepared body of material of

considerable size in standardized format was aimed while generating Brown Corpus.

Samples were chosen for their representative quality. The selection process was done

in two phases: an initial subjective classification and decision as to how many

samples of each category would be used. The data in the Brown University Library

and the Providence Athenaeum were used in most categories. Also, some data were

taken from the daily press, for example, the list of American newspapers of which

the New York Public Library keeps microfilms (with the addition of the Providence

Journal), and some periodical materials in the categories Skills and Hobbies and

Popular Lore from the contents of magazine stores in New York City (Table 2.1,

Figure 2.1) (Lindebjerg, 1997).

Table 2.1 Text categories in the Brown Corpus (Leech, et al., 2009)

 Genre group Category Content of category No. of
sampl

es
I. Informative
prose (374)

Press (88) A Reportage 44

 B Editorial 27
 C Review 17
 General Prose

(206)
D Religion 17

 E Skills, trades and hobbies 36
 F Popular lore 48
 G Belles lettres, biographies,

essays
75

 H Miscellaneous 30
 Learned (80) J Science 80
II. Imaginative
prose (126)

Fiction (126) K General fiction 29

 L Mystery and detective Fiction 24
 M Science fiction 6
 N Adventure and Western 29
 P Romance and love story 29
 R Humor 9
TOTAL 500

8

Figure 2.1 Genres represented in the Brown
Corpus (CORD The Brown Corpus, (n.d.) a)

Sample tags used in Brown Corpus are given in Table 2.2.

Table 2.2 Sample list of tags in Brown Corpus (CORD The Brown Corpus, (n.d.) b)

Tag Description Examples
. Sentence closer . ; ? !
(Left parenthesis
) Right parenthesis
* Not
, Comma
ABL Pre-qualifier Quite, rather
ABN Pre-quantifier Half, all
AP Post-determiner Many, several, next, a, the, no
CC Coordinating conjunction And, or
CD Cardinal numeral One, two
DT Singular determiner This, that
DTS Plural determiner These, those
RP Adverb/particle About, off, up

2.2.1.2 British National Corpus (BNC)

The British National Corpus is a very large (over 100 million words) corpus of

modern English, both spoken and written. However, non-British English and foreign

language words do occur in the corpus (Burnard, 2000). This is a project of Oxford

University Press, also including some other members: Longman Group UK Ltd.,

Chambers, Lancaster University's Unit for Computer Research in the English

Language (UCREL), Oxford University Computing Services (OUCS), and the

British Library. It was built in four years, and completed in 1994. It was released in

February 1995. There are over 6,000,000 sentence units in the whole corpus, which

9

occupies 1.5 gigabytes of disk space 90% of BNC is a written part including extracts

from newspapers, journals, academic books, school and university essays, and 10%

spoken part includes a large amount of unscripted informal conversation. The text

type structure of BNC is given in Table 2.3 (The British National Corpus: facts and

figures, (n.d.).

Table 2.3 The text type structure of BNC

BNC Text Type (%)

Written corpus

 90
Books 60
Periodicals (regional and national newspapers, specialist periodicals
and journals for all ages and interests)

25

Other published materials (brochures, advertising leaflets, etc.) 5-10
Unpublished materials (personal letters and diaries, school and
university essays, etc.)

5-10

Written to be spoken (political speeches, play texts, broadcast scripts,
etc.)

< 5

Spoken corpus

 10
Transcriptions of natural spontaneous conversations 50
Transcriptions of recordings made at four specific types of meeting
or event: Educational, Business, Institutional, and Leisure.

50

Corpus-oriented Text Encoding Initiative (TEI)-conformant mark-up format

known as CDIF (Corpus Document Interchange Format) was used for tagging BNC,

but within this format many different formats (e.g. segmentation into words and

sentences) were added to make the corpus more readable (Leech et al., 1994).

TEI (Text Encoding Initiative) is an international and interdisciplinary standard,

announced in 1987, which helps publishers, scholars, libraries to represent all kinds

of linguistic texts for research, by using an encoding scheme. TEI Consortium was

set up to maintain and develop this standard in 2000. Until 2002, SGML (Standard

Generalized Mark-up Language) was used in TEI standard, which allows us to define

elements, specific features of elements, and hierarchical/structural relations between

elements, and specifies them in a “Document Type Definition” (DTD) , which

makes software to be able to help annotators to make annotation consistently.

Each element in SGML must have a unique name and must be explicitly tagged,

such as <element> and </element> pairs that are called as start and end tags.

Elements can have attributes with associated values used in tagging, such as id,

10

name, etc. (Sperberg-McQueen & Burnard, 1994). In 2002, XML (Extensible

Markup Language) has been used as TEI standard to make the annotations more

efficient and readable. XML is more descriptive, that means it can define structure of

texts rather than defining what can be done with the text, and independent from

Application Development Environment and any platforms (Encoding the British

National Corpus, (n.d.)).

The basic document structure of BNC is given in the Figure 2.2.

Figure 2.2 Basic document structure of BNC

“wtext” and “stext” contains “written” and “spoken” parts of corpus, and parsed

by using XML structure (Figure 2.3). There are 6,026,284 tagged sentences and

98,363,784 tagged words in the BNC.

Figure 2.3 XML structure used in BNC

11

Written texts are organized hierarchically into various kinds of division such as;

where divisions can be chapter, section, story, subsection, column, front, part, recipe,

leaflet, etc. All spoken texts are divided into “conversations”.

In XML structure of BNC, paragraphs of written part are tagged as in Table 2.4.

Table 2.4 Paragraph tags used in BNC for written part

Tag Meaning
<p> Paragraph

<head> headings or captions
<list> lists
<quote> quotes
<lg> verse lines

<hi> typographic highlighting

<corr> corrected passages

<gap> deliberate omissions

<pb/> page breaks

Spoken texts are also organized hierarchically, by using the tags given in Table

2.5.

Table 2.5 XML tags used in BNC for spoken part

Tag Meaning
<u who=”XXX”> A stretch of speech initiated by speaker identified as XXX
<align with=”XXX”/> a synchronization point
<shift> changes in voice quality (e.g. whispering, laughing, etc.)
<vocal> non-verbal but vocalised sounds (e.g. coughs, humming noises etc.)
<event> non-verbal and non-vocal events (e.g. passing lorries, animal noises,

and other matters considered worthy of note.)
<pause> significant pauses (silence)
<unclear> unclear passages (passages that are inaudible or incomprehensible)

Also, detailed information on speakers is given in the text header of spoken part.

<div level=”1”>
 <div level=”2”>... </div>
 <div level=”2”>...</div>
</div>

12

An unannotated example of a raw BNC text is given in Figure 2.4.

Figure 2.4 An unannotated example of a raw BNC text

<bncDoc id=BDFX8 n=093802>
<header type=text creator='natcorp' status=new update=1994-07-13>
 <fileDesc>
 <titStmt>
 <title>
 General Practitioners Surgery -- an electronic transcription
 </title>
 <respStmt>
 <resp> Data capture and transcription </resp>
 <name> Longman ELT </name>
 </respStmt>
 </titStmt>
 <ednStmt n=1> Automatically-generated header </ednStmt>
 <extent kb=7 words=128> </extent>
 <pubStmt>
 <respStmt>
 <resp> Archive site </resp>
 <name> Oxford University Computing Services </name>
 </respStmt>
 <address>
 13 Banbury Road, Oxford OX2 6NN U.K.
 ...
 Internet mail: natcorp@ox.ac.uk
 </address>
 <idno type=bnc n=093802> 093802 </idno>
 <avail region=world status=unknown>
 Exact conditions of use not currently known to
 the archiving agency.
 ...
 Distribution of any part of the corpus must
 include a copy of the corpus header.
 </avail>
 <date value=1994-07-13> 1994-07-13 </date>
 </pubStmt>
 <srcDesc>
 <recStmt>
 <rec type=DAT>
 </rec>
 </recStmt>
 </srcDesc>
 </fileDesc>
 <profDesc>
 <creation date='?'> Origination/creation date not known </creation>
 <partics>
 <person age=X educ=0 flang=EN-GBR id=PS22T n=W0001 sex=m soc=AB>
 ...
 </person>
 <person id=FX8PS000 n=W0000> ... </person>
 <person id=FX8PS001 n=W0002> ... </person>
 </partics>
...
...
</bncDoc>

13

2.2.1.3 The Bank of English

The Bank of English is a collected from samples in modern English language,

which is held on computer for using in linguistics (Järvinen, 1994).

The Bank of English was started to be collected in 1980 by COBUILD, which

was based within the School of English at Birmingham University, and launched in

1991 by COBUILD and The University of Birmingham. The aim was making the

scale of the corpus to 200 million words and 103 million words were collected and

tagged until 1993. It had 450 million words in January 2002, 525 million words as of

2005and it continues to grow. It has spoken and written part as in BNC. The written

part contains books, newspapers, magazines, letters, etc. and the spoken part includes

speech from BBC World Service radio broadcasts, and the American National Public

Radio, meetings, conversations, etc. The data are either collected from electronic

environment or from scanning some books. Whole corpus is divided into 11

subcorpora or text-type categories. Abbreviations used for subcorpora are given in

Table 2.6 (The Bank of English User Guide, (n.d.)).

Table 2.6 Abbreviation list of subcorpora in the Bank of English Corpus

Abbreviation Full Title
oznews Australian news
ukephem UK ephemera
ukmags UK magazines
Ukspok UK spoken
usephem US ephemera
bbc BBC World Service
npr National Public Radio
ukbooks UK books
usbooks US books
times Times newspaper
today Today newspaper

14

2.2.1.4 English Gigaword

It is an English corpus having 1,756,504,000 words and 4,111,240 documents. It

is a product of Linguistic Data Consortium. It includes data from Agence France

Press English Service, Associated Press Worldstream English Service, The New

York times Newwire Service and Xinhua News Agency English Service (Parker et

al., 2009).

Sample text from English Gigaword corpus is given in Figure 2.5.

Figure 2.5 Sample tagged text from English Gigaword

2.2.1.5 American National Corpus

The American National Corpus (ANC) is aimed to contain a core corpus of at

least 100 million words, including both written and spoken (transcripts) data. The

genres in the ANC are expanded from BNC to include new types of language data

that have become available in recent years, such as web blogs and web pages, chats,

email, and music lyrics. In Spring 2010, the ANC produced its second release of over

22 million words of American English, where it was 11 million in the first release in

2003 (Ide & Suderman, 2003).

<DOC id="LTW_ENG_20081201.0001" type="story" >
<HEADLINE>
Road Map in Iraq: When Mr. Obama Takes Office, a Sovereign Iraqi
Government and a U.S. Withdrawal Timetable Will Be in Place
</HEADLINE>
<TEXT>
<P>
The following editorial appeared in Sunday's Washington Post:
</P>
<P>
Barack Obama recently reiterated his campaign promise to order up a plan
for the withdrawal of U.S. forces from Iraq. But the Iraqi parliament
has beaten him to it. Its ratification Thursday …………. toward that goal.
</P>
</TEXT>
</DOC>

15

2.2.2 Turkish Corpora

Some Turkish corpora are listed below:

 Koltuksuz Corpus
 Yıldız Technical University (YTU) Corpus
 Dalkilic Corpus
 METU Turkish Corpus
 TurCo Turkish Corpus

There are also other corpora for Turkish (Güngör, 1995).

2.2.2.1 Koltuksuz Corpus

Koltuksuz Corpus can be called as the first corpus generated for Turkish

language, used for letter statistics and to find out some of the characteristics of

Turkish Language. It has 6,095,457 characters and formed of 24 novels and stories of

22 different authors (Koltuksuz, 1995).

2.2.2.2 Yıldız Technical University (YTU) Corpus

YTU Corpus has 4,263,847 characters from 14 different documents: 3 Novels, 1

PhD Thesis, 1 Transcription, 9 Articles and created for compression based

morphology study by Diri (2000).

2.2.2.3 Dalkilic Corpus

There are two different corpora prepared by Dalkilic (2001) and Dalkilic and
Dalkilic (2001). They are;

 Dalkilic Corpus: It has 1,473,738 characters from the newspaper “Hurriyet”

web archive (01/01/1998 – 06/01/1998 mainpage and 01/01/1998 –
06/30/1998 authors) and generated for letter statistics and defining the
characteristics of Turkish language (Dalkılıç, 2001).

16

 Dalkilic Corpus: It is the combination of some the previous Turkish corpora
(Koltuksuz, YTÜ and Dalkilic corpora) with a size of 11,749,977 characters
(Dalkılıç & Dalkılıç, 2001).

2.2.2.4 METU Turkish Corpus

It is a collection of over one million words of post-1990 written Turkish samples

(METU Turkish Corpus Project, (n.d.); Say, Zeyrek, et al., 2002; Say, Özge, et al.,

2002).

 The document types in METU Corpus are listed in Table 2.7.

Table 2.7 Document types in METU Corpus

Genre Percentage of entire corpus (%)
Novel 24
Story 21
Article 16
Essay 14
Research 12
Travel Writing 4
Conversation 2
Others (Biography, Auto-biography,
Reference, Diary, etc.)

7

For tagging process of paragraphs, quotas, lists, and other elements’ citation

information XCES, one of the application of TEI, is used. Some tags used in corpus

are given in the following table.

Table 2.8 Tags in METU Corpus

Tag Name Meaning
<text> Tags texts
<body> Tags the unit of texts
<opener> Tags the data in the introduction part of texts, such as Date, Keywords, etc.
<head> Indicates the header of the structures like text, poem, etc.
<p> Paragraph
<q> Quotas
<poem> Poems
<table> Table
<list> List
<abbr> Abbreviation
<date> Date
<hi> Highlighted words and phrases like bold, underlined, etc.

17

Sample tagged text in METU corpus is given in the following figure.
- <Set sentences="1">
- <S No="1">

<W IX="1" LEM="" MORPH="" IG="[(1,"soğuk+Adj")(2,"Adv+Ly")]"
REL="[2,1,(MODIFIER)]">Soğukça </W>
<W IX="2" LEM="" MORPH="" IG="[(1,"yanıtla+Verb+Pos+Past+A1sg")]"
REL="[3,1,(SENTENCE)]"> yanıtladım </W>
<W IX="3" LEM="" MORPH="" IG="[(1,".+Punc")]" REL="[,()]">. </W>

</S>
</Set>

Figure 2.6 Sample tagged text in METU Corpus

2.2.2.5 TurCo Turkish Corpus

TurCo is known as first corpus created for word statistics, which has a capacity of

362.449MB, and 50,111,828 words (Dalkilic & Cebi, 2002).

TurCo consists of text data taken from 11 different websites, and novels and

stories in Turkish that belong to more than 100 authors, which parts were collected

from websites (98.11%) and novels and stories (1.89%).

In order to make TurCo larger, to include more words, it is generated as

unbalanced corpus. The document types in the corpus have different sizes as given in

Table 2.9.

Table 2.9 NOW (Number of Words), files’ size and distribution % in TurCo

Site # Web Sites NOW Corpora Files’
Sizes1 (MB)

Percentage of
entire corpus (%)

1 www.tbmm.gov.tr 23,396,817 170.747 46.69
2 www.stargazete.com.tr 9,746,093 69.103 19.45
3 www.hurriyet.com.tr 9,415,716 69.140 18.79
4 Turkish novels and stories 4,668,306 33.571 1.89
5 www.die.gov.tr 948,116 6.387 9.32
6 www.arabul.com 753,571 4.994 1.50
7 www.pcmagazine.com.tr 527,757 3.722 1.05
8 www.bilimteknoloji.com.tr 203,620 1.450 0.41
9 www.abgs.gov.tr 160,562 1.249 0.32

10 www.lazland.com 135,519 0.954 0.27
11 www.yeniasir.com.tr 96,857 0.707 0.19
12 www.pankitap.com 58,894 0.425 0.12

 TOTAL 50,111,828 362.449 100.00

1 Includes only Turkish alphabet and space character

18

In TurCo, Number of Words (NOW), number of different words (NODW) and

Different Word Usage Ratio (DWUR) are calculated and given in Table 2.10.

NODW in all sites are 1,235,056, but some words are repeated in different sites.

These words are picked up from TurCo and calculated again. The result of this,

NODW in TurCo is 686,804. According to this result, DWUR in TurCo is 1.37%.

Table 2.10 NOW, NODW and DWUR in TurCo

Site # NOW NOW Ratio (%) NODW NODW Ratio (%) DWUR (%)
1 23.396.817 46,69 342.544 27,74 1,46
2 9.746.093 19,45 255.024 20,65 2,62
3 9.415.716 18,79 99.432 8,05 1,06
4 4.668.306 9,32 309.030 25,02 6,62
5 948.116 1,89 20.760 1,68 2,19
6 753.571 1,50 42.208 3,42 5,60
7 527.757 1,05 46.743 3,78 8,86
8 203.620 0,41 29.228 2,37 14,35
9 160.562 0,32 13.103 1,06 8,16
10 135.519 0,27 37.057 3,00 27,34
11 96.857 0,19 25.294 2,05 26,11
12 58.894 0,12 14.633 1,18 24,85

Total 50.111.828 100,00 1.235.056 100,00 2,74
TurCo 50.111.828 686.804 1,37

19

2.2.3 Corpora of Other Languages

2.2.3.1 The Czech National Corpus (CNC)

The Czech National Corpus (CNC) is a non-commercial, academic project,

which contains written Czech (Kucera, 2002).

The idea of CNC was first mentioned in 1990, and the work is started in 1994

when Faculty of Arts at Charles University, Prague, founded the Czech National

Corpus Institute. It was signed by 8 signatories, representatives of the some

institutions such as, Faculty of Mathematics and Physics, Charles University,

Masaryk University, Palack University, Institute of Czech Language, Academy of

Sciences, etc.

It has synchronous and diachronic parts. Some parts of the synchronous are:

Database and dictionaries (Electronic databases and dictionaries), SYN2000

(Balanced representative of contemporary written Czech and contains about 100

million words), ORAL (Spoken Czech) (Czech National Corpus, (n.d.)).

2.2.3.2 Croatian National Corpus

It has 30 million words and 101.3 million tokens as of March 03th, 2010 and is

still growing. It includes contemporary Croatian covering different media, genres,

styles, fields and topics (Croatian National Corpus: Home Page, (n.d.)). The

document types used in the corpus is given in Table 2.11.

20

Table 2.11 Document types in Croatian National Corpus

 Genre Percentage of entire corpus (%)
Informative Texts 74
Newspapers (37%)
 Daily 22
 Weekly 9
 Bi-weekly 6
Magazines, journals (16%)
 weekly 9
 monthly 4
 bi-, tri-monthly 3
Books, brochures,
correspondence... (21%)

 publicistics 4
 popular texts 3.5
 correspondence,

ephemera
0.5

 arts and sciences 13
Imaginative texts (fiction):
prose

 23

 novels 13
 stories 5
 essays 4
 diaries,

(auto)biographies...
1

Mixed texts 3

2.2.3.3 PAROLE

PAROLE has collection of modern Dutch texts, which are younger than 1980.

The data included in PAROLE is given in Table 2.12 (PAROLE CORPUS-

Information, (n.d.)), which has over 20,000,000 words.

Table 2.12 Document types in Dutch PAROLE.

Distribution according to publication medium Number of words Percentage of entire
corpus (%)

Books 3,247,136 15.98 %

Newspapers

articles 12,970,841

 63.85 %

quotations 217,500 1.07 %
Periodicals Local papers quotations 52,235 0.26 %

Periodicals articles 1,201,721 5.92 %
quotations 176,962 0.87%

Miscellaneous Pamphlets quotations 163,022 0.80 %

8 o'clock news 1,280,986 6.31 %
Jeugdjournaal (News for young
people)

1,005,079 4.95 %

Total 20,315,482 100 %

21

Some of tags used in the corpus are given in Table 2.13.

Table 2.13 Tags for POS Tagging

Abbreviation Meaning
ADJ Adjective
ADP Adposition
ADV Adverb
ART Article
CON Conjunction
DET Determiner
INT Interjection
NOU Noun
NUM Numeral
PRN Pronoun
RES Residual
UNIQUE Unique Membership Class
VRB Verb

PAROLE was improved to be multilingual, which contains the languages Belgian

French, Catalan, Danish, Dutch, English, French, Finnish, German, Greek, Irish,

Italian, Norwegian, Portuguese and Swedish. It has 20,000 entries per language.

2.2.3.4 French Corpus

The French Corpus that includes the tagging of the anaphors was created by the

CRISTAL-GRESEC (Stendhal-Grenoble 3 University, France) team and XRCE

(Xerox Research Centre Europe, France) in the framework of the call launched by

the DGLF-LF (national institution for the French language and the languages spoken

in France). This corpus has over 1 million annotated words from scientific and

human science articles, books (some stored in CD-ROM), newspapers (especially Le

Monde newspaper), periodicals (HERMES and CNRS-Infos), etc. (Modern French

Corpus, (n.d.)). The data in the corpus are:

 Two books, edited by the CNRS, which have 77.591 and 124.990 words.

 204 articles, extracted from CNRS Info, a magazine which contains short

popular scientific articles from the CNRS laboratories (201.280 words).

22

 14 articles dealing with Hermès Human Sciences (111.886 words).

 136 articles, extracted from "Le Monde", dealing with economics (roughly

180 760words).

 13 booklets of the Official Journal of the European Communities (roughly

337.000 words).

The annotation scheme was defined in XML format and the annotation process

was done manually by two qualified linguists.

2.2.3.5 COSMAS (Corpus Search Management Analysis System)

It is a German corpus having more than 3,750,000,000 running words, into which

new words are added each day, and world’s largest collection of German texts. It was

created in 1964 and still growing. The texts are younger than 1950, and covers all

time to the present. Only 1.1 billion words are available to public because of

copyright restrictions. It is a product of “Institut für Deutsche Sprache, Mannheim”

(COSMAS, German Corpus, (n.d.)). Deutsches Referenzkorpus (DeReKo) is the

official name of the full corpus archive since 2004.

23

3 CHAPTER THREE

4 COMMONLY USED METHODS FOR NATURAL LANGUAGE

PROCESSING APPLICATIONS

In order to generate a corpus, some main processes must be done, such as;

 Sentence boundary detection,

 Stemming and root finding,

 Part-of-Speech examination.

3.1 Sentence Boundary Detection

The first process of generating a corpus, which is a representative of the language,

is determination of sentences, which is very complicated and hard to solve, but an

important part of the corpus generation.

Different approaches have been tried to find out sentence boundaries in some

languages. The most known approaches are “Rule Based” and “Machine Learning”.

Manually collected rules, which are usually encoded in terms of regular expression

grammars, and supplementary lists of abbreviations, common words, proper names,

and appropriate feature sets of syntactic information, are used in rule-based approach

such as in the study of Aberdeen et al. (1995), in which sentence-splitting module

that contains nearly 100 regular-expression rules. Developing a good rule base

system is an ambiguous task itself and hard to design. So, different approaches are

developed to solve the sentence boundary disambiguation by using “Machine

Learning”, such as Maximum Entropy approach of Reynar & Ratnaparki (1997), the

Decision Tree Classifier approach of Riley (1989), and Neural Network approach of

Palmer & Hearst (2000). Also, there are hybrid systems such as the Mikheev’s work

(1997), which integrates part-of-speech tagging task based on Hidden Markov model

of the language and the Maximum Entropy into sentence boundary detection.

24

For English, a module named Sentence in Lingua library, which is used for

splitting text into sentences, was developed in Perl and distributed freely in 2001

(Yona, 2001). This module contains the function get_sentences that splits text

into its sentences by using regular expression and a list of abbreviations.

get_sentences($text)
add_acronyms(@acronyms)
get_acronyms()
set_acronyms(@my_acronyms)
get_EOS()
set_EOS($new_EOS_string)
set_locale($new_locale)

Figure 3.1 Functions in Sentence module

The Bondec system (Wang & Huang, 2003) is a sentence boundary detection

system for English, which has three independent applications (Rule-based, HMM,

and Maximum Entropy). Three files were created, train.dat, test.dat, and

heldout.dat, from Palmer’s raw data files, the Wall Street Journal (WSJ) Corpus

(Palmer & Hearst, 1997). The train.dat file is used for training purpose in HMM

and ME. There are 21,026 sentences in this training set, 95.25% (20,028) of them are

delimited by a period; 3.47% (727) of them ends with a quotation mark and 0.69%

(146) of them ends with a question mark. The heldout.dat file has 9721

sentences, which was used for cross-validation and performance tuning; while the

test set, which has 9758 sentences, was only available for final performance

measurements. Maximum Entropy Model is the main method of this system, which

achieved an error rate less than 2% on part of the WSJ Corpus. The performances of

these three applications are given in Table 3.1.

Table 3.1 Performance comparison of three methods

Method Precision Recall F1 Error Rate

RuleBased 99.56% 76.95% 86.81% 16.25%

HMM 91.43% 94.46% 92.92% 10.00%

MaxEnt 99.16% 97.62% 98.38% 1.99%

25

An ontology based approach on sentence boundary detection for Turkish was

developed by Temizsoy and Çiçekli in 1998. In the same year, a new method, in

which simple Turkish sentences were generated, was developed by Çiçekli and

Korkmaz (1998). They used a functional linguistic theory called Systemic-Functional

Grammar (SFG) to represent the linguistic resources, and FUF (Functional

Unification Formalism) text generation system as a software tool to carry out them.

Other well-known study on sentence boundary detection for Turkish is developed

by Dinçer and Karaoğlan (2004), in which a rule-based approach was used. This

study was tested on a collection of Turkish news texts having 168,375 tokens,

including punctuations, and 12,026 sentences, which are morphologically analyzed

and disambiguated by Hakkani-Tür et. al. (2002) and success rate was measured as

96.02%. The rules were generated as all combinations around a dot with a triple. For

example, [w * W] denotes the situation where a letter sequence w which starts with

a lower-case character, is followed by a dot (represented by asterisk “*”) which is

then followed by a letter sequence W which starts with an uppercase character. The

symbols and their meanings are listed in Table 3.2.

Table 3.2 Notation

Symbol Meaning
w All letter sequences starting with a lowercase character.
W All letter sequences start with an uppercase character
All number sequences. (Real, integer cardinal or ordinal, date, time, telephones,

etc.)
T Apostrophe (‘)
TT Quote character (“)
K Dash (-)
V Comma (,)
(Open parentheses
) Close parentheses
: Colon
; Semi colon
P All punctuation including not listed ones such as %, &, $, etc.
EOS End of Sentence
~EOS Not End of Sentence
∞ All kind of tokens (w, W, #, T, TT, K, V, “(“, “)”, P)

The well-known highest success rate for Turkish sentence boundary method was

denoted by Kiss & Strunk (2006) for multilingual sentence boundary detection

26

including Turkish, which was measured as 98.74% mean value of eleven languages’

test results, English, Brazilian Portuguese, Dutch, Estonian, French, German, Italian,

Norwegian, Spanish, Swedish, and Turkish (Table 3.3). For Turkish, it has the

success rate of 98.69%. It was implemented by using the log-likelihood ratio

algorithm by Dunning (1993) and tested on the part of METU Turkish Corpus (Say

et.al, 2002), which only included Turkish newspaper, Milliyet.

Table 3.3 Statistical properties of the test corpora

Error rates in this study are given in Table 3.4.

Table 3.4 Error rates

27

3.2 Stemmers

The process of reducing derived/inflected words to their stem or root is called

“Stemming”. There are many algorithms generated for stemming in many languages,

such as Porter Stemming Algorithm for English (Porter, 1980), Stemming Engine for

Polish (Weiss, 2005), Swedish, German, Spanish, Greek Stemming Algorithms, etc.

Some of the algorithms that determine root or stem of words in Turkish such as

Identified Maximum Match (IMM) Algorithm (Köksal, 1975), AF Algorithm (Solak

& Can, 1994), Longest-Match (L-M) Algorithm (Alpkoçak et al., 1995), Root

Finding Method without Dictionary (Cebiroğlu & Adalı, 2002), FindStem Algorithm

(Sever & Bitirim, 2003), Extended Finite State Approach (Oflazer, 2003), etc. are

investigated and summarized.

Identified Maximum Match (IMM) Algorithm is developed by Köksal in 1975. It

is left-to-right parsing algorithm, which tries to find the maximum length substring

that is matched with in a root lexicon. If a match is found, the remaining part of the

word is considered as the suffixes, this part is searched in a suffix morpheme forms

dictionary and morphemes are identified one by one until there is no element.

In 1993, Solak and Oflazer developed an algorithm which used a dictionary that

has 23,000 words based on the Turkish Writing Guide as the source (Solak and

Oflazer, 1993). The words are listed in a sorted order in an ordered sequential array

to be able to make fast search. Each entry of the dictionary contains a root in Turkish

and a series of flags showing certain properties of that word. If the bit corresponding

to a certain flag is set for an entry, it means that the word has the property

represented by that flag. 64 different flags are reserved for each entry, but only 41

flags have been used. Some of the flags are given in the Table 3.5.

28

Table 3.5 Example of flags

 Flag Property of the word for which this flag is set Examples
CL_NONE Belongs to none of the two main root classes RAĞMEN, VE
CL_ISIM Is a nominal root BEYAZ, OKUL
CL_FIIL Is a verbal root SEV, GEZ
IS_OA Is a proper noun AYŞE, TÜRK
IS_OC Is a proper noun which has a homonym that is not a proper noun MISIR, SEVGİ
IS_SAYI Is a numeral BİR, KIRK
IS_KI Is a nominal root which can directly take the relative suffix –Kİ BERİ, ÖBÜR
IS_SD Is a nominal root ending with a consonant which is softened

when a suffix beginning with a vowel is attached.
AMAÇ,PARMA
K, PSİKOLOG

IS_SDD Is a nominal root ending with a consonant which has homonym
whose final consonant is softened when a suffix beginning with
a vowel is attached.

ADET, KALP

The root of the word is searched in the dictionary using a maximal match

algorithm. In this algorithm, first the whole word is searched in the dictionary, if it is

found then it is assumed that the word has no suffixes and it does not need to be

parsed. If not, then right-to-left parsing is done. A letter from the right is removed

and the left letters are searched as a word if it exists in the dictionary. This step is

repeated until the root is found. If no root is found after the letter at the beginning or

the word is removed, the word’s structure is accepted as incorrect. In order to obtain

reliable results from this parser, all of the rules and their exceptions must be

implemented. But they could not obtain all rules and exceptions in Turkish language.

AF algorithm works with a lexicon that includes actively used stems for Turkish

in which each record is explained with 64 tags (Solak & Can, 1994). The examined

word is looked up in the lexicon iteratively by pruning a letter from right at each

step. If the character array matches with any of the root words in the lexicon, then the

morphological analysis for that word is finished. The process is repeated until a

single letter is left from the word. The AF algorithm is summarized as:

1. Remove suffixes that are added with punctuation marks from

the word.

2. Search the word in dictionary.

3. If a matched root found, add the word into root words list.

4. If the word remained as a single letter, the root words list

is empty then go to step 6, if root words list has at least one

element then go to step 7.

29

5. Remove the last letter from the word and go to step 2.

6. Add the examined word into unfounded record and exit.

7. Get the root word from the root words list.

8. Apply morphological analysis to the root word.

9. If the result of morphological analysis is positive then add

the root word to the stems list.

10. If there is any element(s) in root words list then go to

step 7.

11. Choose the all stems in the stems list as a word stem.

Although, this algorithm finds all possible stems of the word, it is far away to find

“correct” stem.

Longest-Match (L-M) Algorithm is based on the word search logic over a lexicon

that covers Turkish word stems and their possible variances (Kut et al., 1995). Here

is the algorithm:

1. Remove suffixes that are added with punctuation marks from

the word.

2. Search the word in the dictionary.

3. If a root is matched, go to step 5.

4. If the word remained as a single letter, go to step 6.

Otherwise, remove the last letter from the word and go to

step 2.

5. Choose the found root as a stem and go to step 7.

6. Add the examined word into unfounded records.

7. Exit.

This algorithm finds the first stem matched with character array that is gained by

removing the last letter iteratively. This algorithm is far away to find “correct” root

or stem, because first matched substring of word may not be the correct stem.

In 2002, a new method is developed in which roots can be found without

dictionary by Cebiroğlu and Adalı. It is claimed and proved that by analyzing a

word, its root and suffixes can be formulated. The suffixes, which can be attached to

a root, are divided into groups and finite state machines are formed by formulating

30

the order of suffixes for each of these groups. A main machine is formed by

combining these machines specific to the groups. In the morphological analysis, the

root is obtained by extracting the suffixes from the end to the beginning of word. The

abbreviations that are used in suffixes are:

U: ı,i,u,ü

A: a,e

D: d,t

 C: c,ç

 I: ı,i

(): the letters not obligatory

where “-cU” can be -cı, -ci, -cu, -cü.

In this method, it was assumed that the morphological rules can be determined

with finite state machines. Rules may be interpreted from right to left and from last

to beginning to reach to the root of the word. Different modules are developed for all

sets dependent to each other. Table 3.6 shows the affix-verbs in Turkish that is

determined as a set of the affix-verbs.

Table 3.6 The affix-verbs in Turkish

1 –(y)Um 6 –m 11 –cAsInA

2 –sUn 7 –n 12 –(y)DU

3 –(y)Uz 8 –k 13 –(y)sA

4 –sUnUz 9 –nUz 14 –(y)mUş

5 –lAr 10 –DUr 15 –(y)ken

The finite state machine of the implementation of the data in Table 3.6 is given in

Figure 3.2.

31

A

B

1,2
,3,4

C5

F

12,13,14,15

D

6,7,8,9

E

10

14
G

1,2,3,4,5

10,12,13,14

14

14
12,13

H

11

1,2,3,4,5

14

Figure 3.2 Finite state machine of Table 3.6.

For example, the word “çalışkan-mış-sınız” is examined by this finite state

machine as;

 - sUnUz affix moves from A to B state,

 - (y)mUş affix moves from B to F state

 If the last affix –n is tried to move anywhere from F state, it is not possible to

move, so the process is stopped.

Since F state is final; the root is accepted as “çalışkan” in the example given

above. But the correct root is “çalış-”, so this algorithm gave wrong result.

For all sets like the affixes that are used for nouns and verbs new finite state

machines are implemented. They are all combined in one finite state machine at the

end and the roots are found. The main finite state machine is given in Figure 3.3.

32

Figure 3.3 The main finite state machine

In 2003, a method by extended finite state approach is developed by Oflazer. In

this approach, a Turkish word is represented as a sequence of Inflectional Groups

(IGs), separated by ^DBs denoting derivation boundaries, in the following general

form:

root + Infl1^DB+Infl2^DB+…… ^DB+Infln

where Infli denotes relevant inflectional features including the part-of-speech for

the root, or any of the derived forms. For example, the derived determiner

“sağlamlaştırdığımızdaki” (en: (the thing existing) at the time we caused (something)

to become strong) would be represented as:

sağlam+Adj ^DB+Verb+Become ^DB+Verb+Caus+Pos

^DB+Adj +PastPart+P1sg^DB

+Noun+Zero+A3sg+Pnon+Loc^DB+Det

This word has 6 IGs:

1. sağlam+Adj

2. +Verb+Become

3. +Verb+Caus+Pos

4. +Adj+PastPart+Plsg

5. +Noun+Zero+A3sg +Pnon+Loc

6. +Det

33

A sentence then would be represented as a sequence of the IGs. When a word is

considered as a sequence of IGs, syntactic relation links only emanate from the last

IG of a (dependent) word, and land on one of the IG's of the (head) word on the right

(with minor exceptions) (Figure 3.4).

Figure 3.4 Links and inflectional groups

A dependency tree for a sentence laid on top of the words segmented along IG

boundaries is given in Figure 3.5.

Last line shows the final POS for each word.

Figure 3.5 Dependency links in an example Turkish sentence

The approach relies on augmenting the input with channels that reside above the

IG sequence and laying links representing dependency relations in these channels.

The parser, which was implemented for this approach, has a number of iteration. A

new empty channel is on top of the input in each iteration, and any possible links are

established by using these channels, until no new links can be added. The symbol “0”

indicates that the channel segment is not used while “1” indicates that the channel is

used by a link that starts at some IG on the left and ends at some IG on the right, that

is, the link is just crossing over the IG. If a link starts from an IG (ends on an IG),

then a start (stop) symbol denoting the syntactic relation is used on the right (left)

34

side of the IG. The syntactic relations (along with symbols used) that are encoded in

the parser are the following:

4 S (Subject), 0 (Object), M (Modifier, adv/adj), P (Possessor), C (Classifier),

D (Determiner), T (Dative Adjunct), L (Locative Adjunct), A: (Ablative Adjunct),

 I (Instrumental Adjunct).

In 2003, Sever & Bitirim developed a new method called FindStem. This method

contains a pre-processing step that converts all letters of the word into their cases and

singles out the letters after the punctuation mark in the word. It has three

components;”Find the Root”, “Morphological Analysis” and “Choose the Stem”.

In “Find the Root” component, all possible roots of the examined word are found

by starting with the first character of the examined word and searching the lexicon

for this item. Then the next character is appended to the item and searched in the

lexicon again. This operation continues until the item becomes equal to the examined

word or until the system understands that there are no more relevant roots for the

examined word in the lexicon. Then, found roots and production rules are used to

derive the examining word. In lexicon, the class of all words and possible syntactic

changes during combining a root with suffix is coded for the Morphological Analysis

component.

A morphological analyzer is used in “Morphological Analysis” component. All

possible stems can be found by using this component.

In the last component, “Choose the Stem”, the stem is chosen by a selection

between derivations in the derivations list.

This algorithm finds all possible stems of the word by eliminating the stems that

are not in the derivation list. The algorithm is:

35

1. Remove suffixes that are added with punctuation marks from

the word.

2. Find all possible roots of the word in a lexicon and add

them into root words list.

3. If root words list is empty, add the word into unfounded

records and exit.

4. Get the root word from root words list.

5. Apply morphological analysis to the root word.

6. After morphological analysis, add the formed derivations

into derivations list.

7. If there is any element(s) in root words list then go to

step 4.

8. Choose the stem by a selection between derivations in the

derivations list.

3.3 Part of Speech (POS) Tagging

In a sentence, words are grouped into classes according to their similar syntactic

behavior by linguist. Those word classes are called Parts-of-Speech (POS) of which

well-known three are: noun, verb and adjective (Manning & Schutze, 1999).

Part-of-speech tagging is defined as “a process in which a part-of-speech label is

assigned to each of words in sequence” (Jurafsky & Martin, 2000, p. 314). The POS

tagging process is simply given in Figure 3.6.

Figure 3.6 Part-of-Speech tagging

iyi
(good)

arkadaşı
(his friend)

bugün
(today)

eve
(to home)

geldi
(came)

İsim (Noun)

Fiil (Verb)

Sıfat (Adjective)

Edat (Particle)

Zarf(Adverb)

Words Tags

36

POS tagging has many practical uses in full text searching, information retrieval,

speech synthesis and pronunciation and high level text analysis.

There are many aspects about classifying POS tagging processes, such as Guilder

announced in 1995, in which a distinction among POS taggers were made according

to taggers’ automation degree in training and tagging process (Guilder, 1995). Two

approaches in this classification are:

1. Supervised Tagging

2. Unsupervised Tagging

In supervised methods, users check out the results and accept one result as true

and generally require pre-tagged corpora to be used in the tagging process. In

unsupervised methods, the results are checked out automatically by computers and

the appropriate solution is chosen as true, unsupervised taggers do not require pre-

tagged corpora.

Another classification in POS tagging has been done according to characteristics

of POS taggers. There are three basic approaches in this classification:

1. Rule-based Tagging

2. Stochastic Tagging

3. Combination (hybrid) Tagging

Rule-based approaches generally use a lexicon and a list of hand-written

grammatical rules of natural language. This method basically applies the rules to a

word group including words with several possible word classes (e.g. both adjective

and noun) for word class disambiguation (e.g. Greene & Rubin, 1971; Brill, 1992;

Oflazer & Kuruoz, 1994; Voutilainen, 1995a).

37

Stochastic tagging approach aims to resolve the ambiguities of word classes by

computing probabilities and frequencies. Some stochastic tagging models include

Hidden Markov Models (HMM) to tag words of documents (e.g. DeRose, 1988;

Church, 1988; Cutting et al., 1992; Charniak, 1993).

Combination (Hybrid) tagging approach combines the advantages of both

approaches to improve the overall performance of the tagging system (e.g. Cutting et

al., 1992; Tapanainen & Voultilainen, 1994; Brill, 1995; Garside, 1987, 1997;

Altinyurt et. al, 2006).

Research on part-of-speech tagging may have begun with the development of the

Brown Corpus in 1960s, because first POS tagging studies were based on it. By

creating a large corpus of English, the researchers aimed to make some analysis on

the language in electronical environment. The Brown Corpus includes complete

sentences gathered from various resources including about 1,000,000 English words.

One of the first studies in POS tagging was a deterministic rule-based tagger which

focused on tagging the words in the Brown Corpus (Greene & Rubin, 1971). The

tagger (TAGGIT) achieved an accuracy of 77%.

There are various POS tagging approaches that rely on stochastic methods, such

as DeRose (1988), Church (1988), Charniak (1993), etc. Modern stochastic taggers

are mostly based on Hidden Markov Model (HMM) to choose the appropriate tag for

a word. The Xerox POS tagger is also based on a HMM with a result of 96%

accuracy (Cutting et al., 1992).

Brill’s simple rule-based part-of-speech tagger achieved an accuracy of 96% in

1992 (Brill, 1992). The accuracy of this tagger was improved to 97.5% with some

changes in 1994 by the author himself (Brill, 1994). Another well known research on

rule-based POS tagging is the ENGTWOL tagger (Voutilainen, 1995b) that uses the

Constraint Grammar approach of Karlsson et al. (1995).

38

The well-known hybrid tagging system is Brill’s transformation-based tagger

(Brill, 1995). This tagger determines ambiguous word classes using rules like other

rule-based taggers. Also, it includes a machine learning mechanism like stochastic

taggers, which provides rules to be constructed from the text.

CLAWS is also a hybrid tagger which is based on a HMM with a rule-based

component to handle idioms (Garside, 1987, 1997). This tagger reports the accuracy

of 97%. Another hybrid tagger developed by Tapanainen & Voultilainen (1994),

which uses ENGCG: Constraint Grammar Parser of English (Karlsson et al., 1995)

and the Xerox Tagger (Cutting et al., 1992) to tag the same document and combine

the results independently.

Studies on Turkish POS tagging are quite limited. A rule-based tagging tool for

Turkish that is implemented on the PC-KIMMO environment (Antworth, 1990) was

published by Oflazer & Kuruoz in 1994.

In 2006, a composite approach for part of speech tagging in Turkish, which

combines rule-based and statistical approaches with use of some characteristics of

the language in terms of heuristics, such as frequencies and n-gram (unigram,

bigram, and trigram) probabilities, was announced by Altinyurt et. al. In this work, it

was shown that using hybrid approach increases the accuracy between 12% and 17%

as to using only morphological analyzer.

Besides, TurPOS, a new rule-based part-of-speech tagger system that was

developed for Turkish by Hallaç in 2007. TurPOS uses a text corpora produced by a

morphological analyzer as the input document and a rule file that contains the list of

grammatical Turkish rules. This makes the system usable for tagging other

languages, by simply modifying the rule file according to the grammar of the

language.

39

3.4 Other Works

There are many works in natural language processing area, such as author

detection systems, translation systems between languages, spell checkers and

correctors, etc.

In 2003, an automatic author detection system was developed by Diri & Amasyalı

for Turkish. In this system, 18 authors were used for training by figuring out 22 style

markers for each author. The success rate was detected as 84% in average, which

was the highest rate until 2008. In 2008, a new study was released, which is called

“Determination of Author Characteristics”, developed by Gündü (Gündü, 2008). In

this work, three different training sets and two test sets were generated from two

Turkish newspapers with different specifications. In this system, 10 authors were

used for training by figuring out 17 different style markers. While examining the

text, all authors were scored by looking at the similarity between their texts and the

unknown text. The success rate was detected as 86% and it was increased to 92% by

adding a different parameter, called as Average Number of Wordforms in a Sentence

(ANWS) parameter. Also, this work showed that using author scoring process with

similarity coefficients and n-grams increases accuracy as 10%.

In 2004, researchers from Boğaziçi and Sabancı Universities built an open-source

software platform called “A natural language processing infrastructure for Turkish”,

which served as a common infrastructure that can be used in the development of new

applications involving the processing of Turkish (Say et. al.,2004). This platform has

some variant features such as a lexicon, a morphological analyzer/generator, and a

Definite Clause Grammar (DCG) parser/generator that translates Turkish sentences

to predicate logic formulas, and a knowledge base framework. One of the developed

applications by this study is a natural language interface for generating SQL queries

and JAVA code.

For detecting misspelled words in Turkish texts, a study was released by using

syllable n-gram frequencies in 2007 (Asliyan et. al.). In this work, three databases of

syllable monogram, bigram and trigram frequencies are constructed using the

40

syllables that are derived from five different Turkish corpora. Then, the system takes

words in Turkish text as an input and gives the result for each word as “Misspelled

Word” or “Correctly Spelled Word” by computing the probability distribution of

words. If the probability distribution of a word is zero, it is decided that this word is

misspelled. This system reached 97% success rate to detect misspelled words.

Also, many works on translation systems between Turkic languages were done,

such as “A Prototype Machine Translation System between Turkmen and Turkish”

(Tantuğ et. al., 2006), “Machine Translation between Turkic Languages” (Tantuğ et.

al., 2007), “Türk Dilleri Arası Çeviri Altyapısı (eng: An Infrastructure for

Translation between Turkic Languages)” (Alkım et. al., 2009).

41

5 CHAPTER FOUR

6 INFRASTRUCTURE AND DATABASE MODEL FOR RB-CorGen

4.1 Used Technologies

The project was developed as Windows application in Microsoft .NET Visual

Studio 2005 (.NET Framework 2.0) environment by using the C# programming

language, and MS SQL Server was used to store data such as lexicon, tags, etc.

Additionally, Crystal Reports application is used in Getting and Storing Data step of

the project. Some reports are designed by using this application, which are used for

evaluation for downloaded documents.

The rule list should be stored in a format that can be parsed efficiently by the

system. And also, the list should be in a form that users can read, understand and

modify easily. Consequently, the performance of the system can be improved by

adding new rules into or removing incorrect rules from the rule list. This also makes

the system more flexible and scalable. Considering this issues, rule files based on the

XML (Extensible Markup Language) standards was designed in this project (Ray,

2003). The advantages for using an XML based rule file can be listed as the

following:

- Increased human readability provides easy modification,

- A simple text editor is sufficient for rule list modifications instead of

programs/tools,

- Parsing rules from text based file is faster than parsing from complex tables in

a database,

- Removing/changing only one rule is possible since rules are independent from

each other,

- Rule list has no limit on number of rules it contains.

42

4.2 Used Tags

The tags for suffixes in Turkish Language have been created by linguists

according to the structure of language. Full list of the tags, which are used in Stem /

Root Parsing, are given in Appendix C3 and some samples are given in Table 4.1.

Table 4.1 Sample tags used in Stem / Root Parsing step

Suffix Tag Meaning Expression

-(y)Im DuEKGr2T1

2. Grup 1. Tekil
Kişi Eki

2.Group 1. Person
Inflectional Suffix

Du

Dilbilgisi
Ulamı
(Grammatical
Category)

E

Eylem
(Verb)

K

Kişi
(Person)

Gr2

2.Grup
(2.
Group)

T1

1.Tekil

(1st
Singular)

Ø

Il/(I)n

(I)ş

(A, I)r
/(A, I)t
/ (A,I)rt
/ Dır

DuEC

(DuECEt

DuECEdil

DuECDonus
DuECIstes

DuECEttir)

Çatı Ekleri Grubu
(Voice Morphemes
Group)

(Etken (Active)

Edilgen (Passive)

Dönüşlü
(Reflexive)
İşteş (Reciprocal)

Ettirgen
(Causative))

Du

Dilbilgisi
Ulamı
(Grammatical
Category)

E

Eylem
(Verb)

C

Çatı Eki
(Voice
Morpheme)

-CA
-lIk
…

TBAA
(TBAA-ca
TBAA-lik...)

Addan Ad Yapan
Yapım Eki Grubu
(Nominal
Derivational
Morphemes
Group)

TB

Türetim
Biçimbirim
(Derivational
Morphemes)

A

Ad
(Noun)

A

Ad
(Noun)

-A/E
-(A)k

TBAE
(TBAE-a
TBAE-k...)

Addan Eylem
Yapan Yapım Eki
(Verbal
Derivational
Morphemes
Group)

TB

Türetim
Biçimbirim
(Derivational
Morphemes)

A

Ad
(Noun)

E

Eylem
(Verb)

Abbreviations are used, which were chosen according to the semantic or structural

meaning that the suffix adds to the word, for tags. As an example; “DuEKGr2T1”

abbreviation indicates one of the group 2 people suffixes, which shows the first

person singular suffix that can be added only after the suffixes of continuous,

43

present, future and necessity tenses grammatically. The structure of the abbreviation

is given as:

Du - E - K - Gr2 - T1

Dilbilgisi Ulamı – Eylem – Kişi – 2.Grup – 1.Tekil

(Gramatical Suffix – Verb – Person – 2. Group – 1.Singular)

All tags for the suffixes of the 2. Group People are given in Table 4.2.

Table 4.2 Tags for the suffixes of the group 2 people

Suffix Tag Expression
{-(y)Im} DuEKGr2T1 First Person Singular
{-sIn} DuEKGr2T2 Second Person Singular
{-Ø} DuEKGr2T3 Third Person Singular
{-(y)Iz} DuEKGr2C1 First Person Plural
{-sIn-Iz} DuEKGr2C2 Second Person Plural
{-lAr} DuEKGr2C3 Third Person Plural

Sample parsed documents are given in Figure 4.1 and Figure 4.2, which are

outputs of Parsing Stems/Roots and Suffixes and POS Tagging steps, and meanings

of used tags are given in Table 4.3.

44

Figure 4.1 Sample parsed document of Parsing Stems/Roots and Suffixes step

including only one sentence

- <File OriginalName="test.txt">
 - <P I="0">

 - <S Index="0">
 Güzel koyun otlamaya çıktı .

- <Word Index="0" Value="Güzel">
- <R I="0" V="Güz" T="isim">
- <Suffixes>

- <Sx I="0">
 <TBAE-l>el</TBAE-l>
 </Sx>

- <Sx I="1">
 <TBEA-l>el</TBEA-l>
 </Sx>

- <Sx I="2">
 <TBAA-l>el</TBAA-l>
 </Sx>
 </Suffixes>
 </R>

+ <R I="1" V="Güzel" T="isim">
+ <R I="1" V="Güzel" T="sıfat">
+ <R I="1" V="Güzel" T="zarf">

 </Word>
- <Word Index="1" Value="koyun">

+ <R I="0" V="koy" T="isim">
+ <R I="0" V="koy" T="fiil">
+ <R I="1" V="koyu" T="sıfat">
+ <R I="2" V="koyun" T="isim">

 </Word>
- <Word Index="2" Value="otlamaya">

+ <R I="0" V="ot" T="isim">
+ <R I="0" V="ot" T="sıfat">
+ <R I="1" V="otla" T="fiil">
+ <R I="2" V="otlama" T="isim">

 </Word>
- <Word Index="3" Value="çıktı">

+ <R I="0" V="çık" T="fiil">
+ <R I="1" V="çıktı" T="isim">

 </Word>
+ <Word Index="1" Value=".">

 </S>
 </P>
 </File>

45

Figure 4.2 Sample parsed document of POS Tagging step including only one sentence

Table 4.3 Meanings of tags in XML file

Tag Item (XML Value) Meaning
File File Section
 OriginalName File name
P Paragraph Section
 I Index (Paragraph Number)
S Sentence Section
 Index Index (Sentence Number)
Word Word Section
 Index Index (Word Number)
 Value Word Value
 T Name Root Type
 T Stem/Root Type
 R Stem/Root
 I Index (Root Number)
 V Stem/Root Value
Suffixes Suffixes Section
 Sx Suffix Value
 I Index (Suffix Number)

- <File OriginalName="test.txt">
 - <P I="0">
 - <S Index="0">

- <Word Index="0" Value="Güzel">
 <T Name="zarf" />

+ <R I="3" V="Güzel"> </R>
 </Word>

- <Word Index="1" Value="koyun">
 <T Name="isim" />

+ <R I="0" V="koy">
 + <R I="3" V="koyun">
 </Word>

- <Word Index="2" Value="otlamaya">
 <T Name="isim" />

+ <R I="0" V="ot">
 + <R I="3" V="otlama">
 </Word>

- <Word Index="3" Value="çıktı">
 <T Name="fiil" />

+ <R I="0" V="çık">
 </Word>
 <Word Index="1" Value="." />
 </S>
 </P>
 </File>

46

4.3 Rule Lists

In this study, the rules were collected by the linguists and stored in XML

(Extensible Markup Language) formatted lists, which are used in sentence boundary

detection, morphological analysis and POS tagging processes.

25 rules for Sentence Boundary Detection process were generated by the linguists

to be used in this process. Full list of the rules, which are used in Sentence Boundary

Detection step, are given in Appendix B1and some samples are also given in Figure

4.3.

Figure 4.3 Sample rules in rule list for Sentence Boundary
Detection process

In this rule file, XML format is created in triple group (e.g. “L.L”). The meanings

of characters used in this process are given in Chapter 4.

For concordance of suffixes, 16 rules were generated by the linguists and stored in

a text file to be used in Morphological Analysis process to determine the stem / root

and suffixes. The tags of suffixes are used to indicate successive rules. Full list of the

rules, which are used in Morphological Analysis step, are given in Appendix B2 and

some samples are also given in Figure 4.4.

Figure 4.4 Sample rules in rule list for Parsing Stems/Roots and Suffixes process

TB,E,A,S
E,DuEC,DuEKipYet,DuEOlz,YS,DuEZ\DuEG\DuEKip\,YS,K,DuEK,
E,DuEC,DuEKipYet,DuEOlz,YS,Ytu,YS,K,DuEK,
A,YS,DuASay,YS,DuAUy,YS,DuADur,
E,DuEC,DuEOlz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,

<rules>
 <rule EOS="False">L.L</rule>
 <rule EOS="True">L.U</rule>
 <rule EOS="True">L.#</rule>
 ...
 <rule EOS="False">#.-</rule>
 <rule EOS="False">#.#</rule>
 <rule EOS="False">#.U</rule>
</rules>

47

As an example; the rule “E,DuEC,DuEKipYet,DuEOlz,YS,Ytu,YS,K,DuEK,”

indicates that; a verb can get a suffix from DuEC (Eylem Çatı Ekleri (Voice

Morphemes)) group, and after that it can get suffixes from DuEKipYet (Yeterlilik

Eki (abilitative suffix)), DuEOlz (Eylem Olumsuzluk Eki (Negation Suffix)), YS

(Yardımcı Ses (Buffer Sound)), K (Koşaç – Ek fiil (Verb Compunds)), DuEK-

(Eylem Kişi Çekim Ekleri (Personal Suffixes)) suffix groups respectively. The

meanings of tags used in this process are given in Chapter 4.

For Rule-Based POS Tagging process, 85 rules are generated to determine

concordance of suffixes by the linguists and stored in an XML file. Full list of the

rules, which are used in Rule-Based POS Tagging step, are given in Appendix B3

and some samples are also given in Figure 4.5.

Figure 4.5 Sample rules in rule list for POS Tagging process

A rule in the rule list is basically an element with three attributes and undefined

number of item elements within. The RuleId attribute of a rule is a unique rule

number, used to determine a rule in the file. RuleType is a string attribute which

defines the type of the rule. Basic rule type for POS Tagging Module is word order

rules, which is called as “sözdizim” in Turkish. The third attribute, RuleState, defines

<?xml version="1.0" encoding="utf-8"?>
<Document>

 <Rule RuleId="8" RuleType="sözdizim" RuleState="true">
 <Item ItemType="sıfat" />
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="9" RuleType="sözdizim" RuleState="true">
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="10" RuleType="sözdizim" RuleState="false">
 <Item ItemType="sıfat" />
 <Item ItemType="v" />
 <Item ItemType="isim" />
 </Rule>

</Document>

48

whether syntax of word types’ sequences that the rule contains is applicable or not.

When value of the RuleState attribute is “false” in a rule, then there is no possibility

for words of a sentence to be ordered as in given sequence, in Turkish. Each rule

element has sub-elements (items), which correspond to words or punctuation items in

sentences. Item element has only one attribute called ItemType, which defines the

word type of an item. If the item is a punctuation mark, the ItemType attribute

includes its type as punctuation given in Table 4.5, which shows the types used in

POS Tagging Module, including the punctuation marks that can take place in

sentences.

Table 4.5 The word types used in the POS Tagging System and corresponding descriptions in English

Parts of Speech Description
sıfat adjective
isim noun
zamir pronoun
fiil verb
zarf adverb
edat preposition
sayı number
nokta dot
virgül comma
ikinokta colon
noktalıvirgül semicolon

4.4 Database Model

In order to find stem/root possibilities, a wordform is analyzed by starting with

first character from left and comparing with the words taken from TDK and stored in

the database. Also the suffixes with used tags were stored in database. The lexicon

and suffixes were stored in 7 different tables:

 Kökler

 KöklerSanal

 Gövde

 Kelimeler

 Grup

 Ek

 Ekler

49

Database diagram of the project is given in Figure 4.6.

Figure 4.6 Database diagram of the Automatic Corpus Generation project

4.4.1 The Table “Kokler”

The lexicon of Turkish, which was obtained from TDK, was stored in this table.

Some of the roots in this table are given in Table 4.6 and in Appendix C.2.1.

50

Table 4.6 Sample rootsin the table “Kokler”

Kok_ID Kok Isim Fiil Mense Orjinal
16869 ab True False Far. True
16870 aba True False Ar. True
16871 abadî True False Far. True
16872 abajur True False Fr. True
16873 abaküs True False Fr. True
16874 aban False True True
16875 abandone True False Fr. True
16876 abanî True False Far. True
16877 abanoz True False Far. True
33457 abı True False Ar. False

In this table, there are 6 fields:

 Kok_ID: Unique index number of root.

 Kok: The root value.

 Isim: A Boolean data, which indicates whether the root is a Noun or not.

 Fiil: Boolean data, which indicates whether the root is a Verb or not.

 Mense: Data, which indicates the origin of root.

 Orjinal: Boolean data, which indicates whether the root is original or not,

which means whether the root is changed according to the vowel changing

rules or not.

4.4.2 The Table “KoklerSanal”

The derived roots in the lexicon by using vowel changing rules were stored in this

table. Some of the roots are given Table 4.7.

Table 4.7 Sample data in the “Kokler” table

San_Id KayKelime_ID HedKelime_ID Turetme
157 16870 33457 aba->abı Darlama_Önceki_Düz
158 16875 33458 abandone->abandonü Darlama_Önceki_Yuvarlak
159 16878 33459 abart->abard Yumuşama
160 16880 33460 abat->abad Yumuşama
161 16888 33461 abide->abidi Darlama_Önceki_Düz
162 16890 33462 abiye->abiyi Darlama_Önceki_Düz
163 16891 33463 abla->ablı Darlama_Önceki_Düz
164 16892 33464 ablak->ablağ Yumuşama
165 16894 33465 ablatya->ablatyı Darlama_Önceki_Düz
166 16896 33466 abluka->abluku Darlama_Önceki_Yuvarlak
167 16897 33467 abone->abonü Darlama_Önceki_Yuvarlak
168 16899 33468 aborda->abordu Darlama_Önceki_Yuvarlak

51

In this table, there are 4 fields:

 San_ID: Unique index number of root.

 KayKelime_ID: Index of root, from which the new root is derived. It is used

as foreign key of the field “Kok_ID” in “Kokler” table.

 HedKelime_ID: Index of new root, which is derived. It is used as foreign key

of the field “Kok_ID” in “Kokler” table.

 Turetme: The data about which kind of derivation rule is applied to this root.

If a root is derived, the data in “Original” field of “Kokler” table is recorded

as “false”. The original value of any root can be found by controlling the unique

index number, “Kok_ID”, in “HedKelime_ID” field of the “KoklerSanal”

table. For example, the root abı, which has unique index as 33457 in table

“Kokler” (Table 6), is derived from the root aba, which has unique index as 16870,

by using vowel changing rule “aba->abı Darlama_Önceki_Düz” and stored in the

table “KoklerSanal” with unique index 157.

4.4.3 The Table “Govde”

The stems in the lexicon in Turkish were stored in this table. Some of the stems

are given in Table 4.8 and in Appendix C.2.2.

Table 4.8 Sample data from the “Govde” table in the database

Gov_
ID

Gov Ozel
isim

isim Fiil Sifat Zamir Unlem Edat Zarf Baglac YFiil Birl
esik

Orji
nal

1 a False False False False False True False False False False False False

2 ab False True False False False False False False False False False False

3 aba True True False True False False False False False False False False

4 aba
güreşi

False True False False False False False False False False True False

5 abac False True False False False False False False False False False False

6 abacılık False True False False False False False False False False False False

7 abadi False True False False False False False False False False False False

8 abajur False True False False False False False False False False False False

9 abajurcu False True False False False False False False False False False False

10 abajurcu
luk

False True False False False False False False False False False False

52

In this table, there are 14 fields:

 Gov_ID: Unique index of stem.

 Gov: The value of stems.

 Ozelisim: Boolean data, which indicates whether the stem is a special name

or not.

 Isim: Boolean data, which indicates whether the stem is a name or not.

 Fiil: Boolean data, which indicates whether the stem is a verb or not.

 Sifat: Boolean data, which indicates whether the stem is an adjective or not.

 Zamir: Boolean data, which indicates whether the stem is a pronoun or not.

 Unlem: Boolean data, which indicates whether the stem is an exclamation or

not.

 Edat: Boolean data, which indicates whether the stem is a preposition or not.

 Zarf: Boolean data, which indicates whether the stem is an adverb or not.

 Baglac: Boolean data, which indicates whether the stem is a conjunction or

not.

 YFiil: Boolean data, which indicates whether the stem is an auxiliary verb or

not.

 Birlesik: Boolean data, which indicates whether the stem is a compound

name or not.

 Orjinal: Boolean data, which indicates whether the root is original or not that

means whether the root is changed according to the vowel changing rules.

4.4.4 The Table “Kelimeler”

All words in the lexicon, stems and roots, in Turkish were stored in this table.

Some of the words are given in Table 4.9.

53

Table 4.9 Sample data from the table “Kelimeler”

ID Kelime Ozel Isim Fiil Sıfat Zamir Unlem Edat Zarf Baglac

1 a False False False False False True False False False

2 ab False True False False False False False False False

3 aba True True False True False False False False False

4 aba güreşi False True False False False False False False False

5 abacı False True False False False False False False False

6 abacılık False True False False False False False False False

7 abadi False True False False False False False False False

8 abajur False True False False False False False False False

9 abajurcu False True False False False False False False False

10 abajurculuk False True False False False False False False False

11 abajurlu False False False True False False False False False

12 abajursuz False False False True False False False False False

13 abaküs False True False False False False False False False

14 abal False False False True False False False False False

15 aban False False True False False False False False False

There are 21 fields in this table, first 14 of which are same as in the table

“Govde”. The different fields from “Govde” table are:

 Link: Boolean data, which indicates whether the word is derived from

another word by using vowel changing rules or not.

 Isim_Kok: Boolean data that indicates whether the type of the root, from

which this stem is derived, is a name or not.

 Fiil_Kok: Boolean data that indicates whether the type of the root, from

which this stem is derived, is a verb or not.

 Gov_Id: The unique index number that indicates the index of the stem,

from which this word is derived.

 Kok_Id: Unique index number that indicates the index of the root, from

which this stem is derived.

 Mense: Data, which indicates the origin of the word.

 Turetme: Data, which shows the vowel changing rule such as fokurdama-

> fokurdamı Darlaşma_Önceki_Düz, forvet->forved Yumuşama etc.

54

4.4.5 The Table “Grup”

The meanings of tags, which are used to define the rules in the process of parsing

stem/root, are stored in this table. This table has 12 fields, which are named as the

“word types” in a language, are used to indicate the word type that the suffix group

can be added to.

The group names in table “Grup” are given in Table 4.10.

Table 4.10 Sample Data from table “Grup”

Grup
ID GrupAd GrupTag OzelIsim Isim Fiil Sıfat Zamir Unlem Edat Zarf Baglac

1 Sayı DuASay FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2 Uyum DuAUy FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3 Durum DuADur FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

4 Cinsiyet DuACins FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

5 Zaman DuEZ FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

6 Görünüş DuEG FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

7 Kiplik DuEKip FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

8 Çatı DuEC FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

9 Olumsuzlu
k

DuEOlz FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

10 Kişi 1.
Grup

DuEKGr1 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

11 Kişi 2.
Grup

DuEKGr2 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

12 Kişi 3.
Grup

DuEKGr3 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

13 Kişi 4.
Grup

DuEKGr4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

14 Koşaç K FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

15 Adlaştırma
Yantümcesi

YtuAdl FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

4.4.6 The Table “Ek”

The tags that are used in the process of parsing stem/root are stored in a table

called “Ek”. The groups and general notations of the suffixes are stored in this table,

some of which are given in Table 4.11.

55

Table 4.11 Sample data from the table “Ek”

Ek
ID

GrupID
Link

Genel Tag Ad Kaynasm
a

GenelYedek

60 14 {-DI} KDi Geçmiş Zaman
Koşacı

y {-(y)DI}

61 14 {-mI} KMis Tantsallık Koşacı y {-(y)mI}
62 14 {-sA} KSa Koşul Koşacı y {-(y)sA
63 15 {-DIk} YtuAdlDik Adlaştırma

Belirticisi
NULL {-DIk}

64 15 {-AcAk} YtuAdlAca
k

Adlaştırma
Belirticisi

y {-(y)AcAk}

65 15 {-mA} YtuAdlMa Adlaştırma
Belirticisi

NULL {-mA}

66 15 {-mAk} YtuAdlMak Adlaştırma
Belirticisi

NULL {-mAk}

67 16 {-DIk} YtuOrDik Sıfat Yantümcesi
Belirticisi (Ortaç)

NULL {-DIk}

68 16 {-An} YtuOrAn Sıfat Yantümcesi
Belirticisi (Ortaç)

y {-(y)An}

69 16 {-AcAk} YtuOrAcak Sıfat Yantümcesi
Belirticisi (Ortaç)

y {-(y)AcAk}

70 16 {-I} YtuOrIs Sıfat Yantümcesi
Belirticisi (Ortaç)

y {-(y)I}

There are 7 fields in this table:

 Ek_ID: Unique index of suffix.

 GrupIDLink: The unique index number that indicates the index of the group,

to which this suffix belongs.

 Genel: The general notation of the suffix.

 Tag: The tag for suffix that is used in the XML output of Stem/Root Parsing

process.

 Ad: Expression of tag.

 Kaynasma: The buffer letter if it is needed while the tag is added to any word.

 GenelYedek: The general notation for suffix with possible buffer letter that is

used in the XML output of Stem/Root Parsing process.

56

4.4.7 The Table “Ekler”

All suffixes, with their modified versions according to morphophonemic

processes vowel and consonant harmonies, are stored this table. Some of the suffixes

are given in Table 4.12.

Table 4.12 Sample data from the table “Ekler”

EkKulID EkIDLink EkKul
816 177 üt

817 177 d
818 177 id

819 177 ud

820 177 üd

821 177 t
822 177 d

823 178 tay

824 178 tey

825 179 tay
826 179 tey

827 180 t

828 180 ti

829 180 tu

830 180 tü

831 181 av

832 181 ev
833 181 v

There are 3 fields in this table:

 EkKulID: Unique index of suffix.

 EkIDLink: The index number that indicates the index of the suffix in “Ek”

table, from which this suffix derived by using vowel changing rules.

 EkKul: The suffix as it can be used in the language.

57

7 CHAPTER FIVE

8 ALGORITHMS AND SOFTWARE STRUCTURE OF RB-CorGen

Turkish is an ‘agglutinative language’ like Finnish, Hungarian, Quechua and

Swahili, where it is classified where new words are formed by adding suffixes to the

end of roots (Appendix A). In Turkish, there are grammatical rules for suffixes that

which of them may follow which other and in what order they will be. By this

concatenation the meaning of words are changed or extended. This suffix

concatenation can result in relatively long words, which are frequently equivalent to

a whole sentence in English (e.g. Osmanlılaştıramadıklarımızdansınız (eng: You

were of those whom we might consider not converting into an Ottoman.)). Besides

the rules for suffixes, Turkish has many grammatical rules, such as word types

ordering, structure of compounds, etc. The corpus development processes are defined

as follows:

1. Getting and Storing Data

2. Sentence Boundary Detection

3. Morphological Analysis

a. Finding stem and inflectional suffixes

b. Finding root and derivational suffixes

4. Part-of-Speech Tagging

The main block diagram of corpus generation processes is given in Figure 5.1.

58

Figure 5.1 Block diagram of processes in generating corpus

Get other word

Find all sentences

Examine Type of Word (POS Tagging)

Get a sentence

Split sentence into words

Split word into stem & inflextional suffixes

Split stem into root & derivational suffixes

Write in corpus

End of
Sentence

No Yes

Document

59

5.1 Getting and Storing Data

At first, the electronic data should be taken from web or any scanned documents

and stored in a database to be able to use efficiently in the project as data set. For this

purpose, the project “Döküman İndirici (en: Document Downloader)” that was

developed by Kızılay (2009) is used.

In this project, the electronic data is taken from web by URL links of the

newspapers and stored in database to be able to use efficiently in the project. For

classifying texts of corpus, a database model, which supports 6 different document

types such as newspaper, report, magazine, book, parliamentary report and official

gazette, was designed. Metadata of documents such as URL of document, header of

document, size of document etc is stored in this database model. For collecting

electronic data, a module that downloads articles from 5 different newspapers

“Milliyet”, “Hürriyet”, “Radikal”, “Vatan”, ”Akşam” was implemented.

Downloaded articles are stored in a storage media and also metadata of these

documents are stored in database.

Besides, some different reports about the downloaded data can be generated by

using this application.

The main interface of the Document Downloader application is given in Figure

5.2.

60

Figure 5.2 Main interface of the Document Downloader application

5.2 Rule-Based Sentence Boundary Detection

Turkish sentences generally end with known punctuations such as “.”, “…”, “!”,

“?”. A punctuation mark which is commonly used as an end of sentence

determination symbol may also be used in an abbreviation, as a decimal point in a

number, in an e-mail addresses etc. This situation is called “ambiguity”. The

sentence boundary determination process becomes harder with the increasing amount

of ambiguities.

In Turkish there are some ambiguities in finding sentence boundaries like in any

other languages. For example;

 Uluslar, bu ekonomik buhran sonucunda 2. Dünya Savaşı’nı yaşamıştır.

Nations lived the 2.World War as a reason of this economic crisis.

 Bu sezon kaybedilen maç sayısı 2. Dünya Kupası’na katılma şansı

azalıyor.

The lost game number in this season is 2. The World Cup attendance

chance decreases.

61

In the first sentence, the “.” character is used for enumerate, but in the second

sentence it indicates end of sentence. And after “.”, both of them have the same word

that begins with uppercase. So, this causes an ambiguity for the process of finding

end of sentence. In this study, in order to solve such kinds of ambiguities, different

solutions were developed.

In order to find end of sentences, a rule list is created and stored in XML

(Extensible Markup Language) format (Ray, 2003). Full list of the rules are given in

Appendix B1 and some samples are given in Figure 5.3.

Figure 5.3 Sample rules in rule list for sentence boundary
detection

XML format is created in triple group (e.g. “L.L”). The first character indicates

the first character of the word before punctuation mark, second character is the

punctuation mark itself, and the third character indicates the first character of the

word after punctuation mark (Figure 5.4).

Figure 5.4 The characters used in the rules

The meanings of characters, which are used in sentence boundary rules, are given

in Table 5.1.

<rules>
 <rule EOS="False">L.L</rule>
 <rule EOS="True">L.U</rule>
 <rule EOS="True">L.#</rule>
 ...
 <rule EOS="False">#.-</rule>
 <rule EOS="False">#.#</rule>
 <rule EOS="False">#.U</rule>
</rules>

62

Table 5.1 Meanings of the characters in the sentence boundary rule list

Character Meaning Character Meaning
. EOS punctuations (. … ! ?) ((
L Lowercase))
U Uppercase / /
Number ‘ ‘
? Any character “ “
- -
, ,

First process to find sentences is paragraph determination. If a text stream has

“enter (‘\n’)” character, this character is assumed as the end of paragraph and all text

from the beginning to this character are taken as a “paragraph”. After a paragraph is

determined, characters are taken one by one and checked if it is one of the

punctuation marks used for sentence boundary rule list (“.”, “…”, “!”, “?”). In an

ordinary situation, only the end of sentence punctuation marks might be good enough

to determine the sentence boundaries. However, besides the complicated structure of

the Turkish, there may be many ambiguities caused by the punctuation marks such as

using them for abbreviations, e-mail and web addresses, etc.

In order to solve ambiguities caused from abbreviations, an additional rule list, in

which abbreviations are given, is used. The abbreviation list was taken from Turkish

Linguistic Association (TDK) and accepted as is. The list was also defined in XML

format. Full list of the abbreviations are given in Appendix C1 and some samples are

given in Figure 5.5.
<abbrevations>
<abbr> A </abbr>
<abbr> AA </abbr>
<abbr> AAFSE </abbr>
<abbr> AAM </abbr>
<abbr> AB </abbr>
<abbr> ABD </abbr>
<abbr> ABS </abbr>
<abbr> ADSL </abbr>
<abbr> AET </abbr>
<abbr> …… </abbr>
<abbr> HAVAŞ </abbr>
<abbr> HDD </abbr>
<abbr> hek </abbr>
<abbr> …… </abbr>
<abbr> zf </abbr>
<abbr> zm </abbr>
<abbr> ZMO </abbr>
<abbr> zool </abbr>
<abbr> …… </abbr>
</abbrevations>

Figure 5.5 Sample abbrevations in the abbreviation list

63

Also, the roman numbers were added into the abbreviation list (Figure 5.6).

<abbrevations>
<abbr> …… </abbr>
<abbr> I </abbr>
<abbr> V </abbr>
<abbr> IX </abbr>
<abbr> X </abbr>
<abbr> XV </abbr>
<abbr> …… </abbr>
<abbr> XXX </abbr>
<abbr> …… </abbr>
</abbrevations>

Figure 5.6 Sample roman numbers in the abbrevation list

Abbreviations and rule lists were written in two files by using XML standard and

separated from the program source codes to allow users making changes in these

files easily and independently from the program source. Therefore, the adaptation of

any Turkish dialects will be easy.

The “ ” (space) character is searched after the “.” (dot) character in order to define

e-mail and web addresses, such as www.deu.edu.tr. If the character after “.” (dot)

character is not a “ ” (space) character and in lowercase, it is assumed as e-mail or

web address.

In conversation texts, conversations are indicated by special character, “-”

(hypen), after the character “:” (colon), which is also used for bulleting. These

characters cause ambiguity, because of being used for bulleting. The sentences come

after the “:” character assumed as if it belongs to one sentence; all lines were read

and combined together as one sentence. The flow diagram of the algorithm is given

in Figure 5.7.

64

Figure 5.7 Flow diagram of the Bulleting Algorithm

Since these blocks of sentences cause ambiguity, and they cannot be separated

from conversation texts, they were asked to the user to determine the type of them in

the program. Then, the user defines the type of the sentence block as “conversation

sentences”, tagged as DLG (Dialog), or “bulleting text”, tagged as BL (Bulleted

List). This made the program more reliable.

The main flow diagram of the sentence boundary detection algorithm is given in

Figure 5.8.

65

Figure 5.8 Flow diagram of sentence boundary detection algorithm

66

5.3 Morphological Analysis

A Turkish word is analyzed according to its root and the suffixes, which are added

after the root. For word analysis, at first the sentences and then words should be

determined. The output of the Rule-Based Sentence Boundary Detection (RB-SBD)

module is used as input in the Rule-Based Morphological Analysis (RB-MA) (or

Word Detector (RB-WD)) Algorithm. The main steps of the algorithm are as follows:

1. Take words from the text that will be analyzed.

2. Find all meaningful stem possibilities by using “Enhanced

Search Method - From Left to Right (ESM)” (Çebi vd. 2006),

define Stem Possibilities Space.

3. Find the inflectional suffix possibilities according to each

root possibility, define Inflectional Suffix Possibilities

Space.

4. Find all meaningful root possibilities of all stems by using

ESM, define Root Possibilities Space.

5. Find the derivational suffix possibilities according to each

root possibility of a stem, define Derivational Suffix

Possibilities Space.

6. Eliminate wrong combinations in Stem / Root and Suffix

Possibilities Spaces.

7. Save all the combinations in a text file to make analyzing a

word easier in the future.

8. If the words, which will be analyzed, are finished go to step

9, else go to step 1.

9. Save all the combinations and present the result to the user

in an XML file.

The root and stem lists are taken from Turkish Linguistic Association (Türk Dil

Kurumu, TDK). These lists are stored in database with their modified versions

according to the morphophonemic processes that cause root deformations, which

rules are given in Appendix A.4. Sample modified roots and stems are given in

Appendix C.2.3.

Flow diagram of Stem / Root Parsing Algorithm is given in Figure 5.9.

67

Figure 5.9 Flow diagram of Rule-Based Morphological Analysis

Algorithm

68

In this algorithm, two steps, Parsing Stems and Inflectional Suffixes and Parsing

Roots and Derivational Suffixes, are applied consecutively. In the first step, the

examined wordform is searched in the stems lexicon iteratively by pruning a letter

from left to right at each step. If splited character array matches with any of the stems

in the lexicon, the rest of the wordform is also checked by pruning a letter from left

to right iteratively if it is a suffix or not in inflectional suffixes list, which is collected

by linguists in Dokuz Eylul University, College of Social Science and Literature

Linguistic Department. If both the stem and suffixes parts of the wordform are found

in the lists, they are tagged and stored as possible stem and suffixes of the examined

wordform. The search process is repeated until a single letter is left from the

wordform.

For example, three different stems and suffix combination possibilities were

found in finding stem process of the wordform “koyun” (Table 5.2).

Table 5.2 Example application of Enhanced Search Method- From Left to Right

 Possible
Stem

Possible Buffer
Letter Possible Suffixes Result

Step 1 K o y u n False
K o y u n False

Step 2 Ko y u n False

Ko y u n False

Step 3 Koy u n True

Koy u n False

Step 4 Koyu n True

Koyu n False

Step 5 Koyun True

In the first step, k is taken as stem, o is taken as possible buffer letter, yun and

oyun is searched as character by character in the suffixes list. Since there are no

accepted rules for these combinations, they are eliminated and search process

continues with next step. This process continues until there is no character assumed

69

as suffix, as seen in Step5. Then, the solution space for the wordform is created. For

example, possible stems of wordforms in the sentence “Güzel koyun otlamaya çıktı.”

are given in Figure 5.10, and some possible suffixes of the wordform “koyun” are

given in Figure 5.11.

Figure 5.10 Possible stems of wordforms in the sentence “Güzel koyun

otlamaya çıktı.”

Figure 5.11 Some possible suffixes of the wordform “koyun”

- <Word Index="1" Value="koyun">
- <R I="0" V="koy" T="isim">

- <Suffixes>
- <Sx I="0"> <DuAUyKT2>un</DuAUyKT2> </Sx>
- <Sx I="1"> <DuADurTam>un</DuADurTam> </Sx>

 </Suffixes>
 </R>
- <R I="0" V="koy" T="fiil">

- <Suffixes>
- <Sx I="0"> <DuECEdil>un</DuECEdil> </Sx>
- <Sx I="1"> <DuECDonus>un</DuECDonus> </Sx>
- <Sx I="2"> <DuEKGr4C2>un</DuEKGr4C2> </Sx>

 </Suffixes>
 </R>
- <R I="1" V="koyu" T="sıfat"> … </R>
- <R I="2" V="koyun" T="isim"> ... </R>

 </Word>

- <S Index="1">
 Güzel koyun otlamaya çıktı .
- <Word Index="0" Value="Güzel">

+ <R I="0" V="Güzel" T="isim">
+ <R I="0" V="Güzel" T="sıfat">
+ <R I="0" V="Güzel" T="zarf">

 </Word>
- <Word Index="1" Value="koyun">

+ <R I="0" V="koy" T="isim">
+ <R I="0" V="koy" T="fiil">
+ <R I="1" V="koyu" T="sıfat">
+ <R I="2" V="koyun" T="isim">

 </Word>
- <Word Index="2" Value="otlamaya">

+ <R I="0" V="otla" T="fiil">
+ <R I="1" V="otlama" T="isim">

 </Word>
- <Word Index="3" Value="çıktı">

+ <R I="0" V="çık" T="fiil">
+ <R I="1" V="çıktı" T="isim">

 </Word>
+ <Word Index="2" Value=".">
</S>

70

In the Parsing Roots and Derivational Suffixes step, the possible stems are parsed

by using same algorithm as parsing stems and possible combinations of derivational

suffixes are found. Finally, all possible roots/stems and suffixes are stored in an

XML structured file. For example, possible roots of the stem “güzel” are found as

“güz” and “güzel”; possible roots of the stem “koyun” are found as “koy”, “koyu” and

“koyun”; possible roots of the stem “otlamaya” are found as “ot”, “otla” and

“otlama”; possible roots of the stem “çıktı” are found as “çık” and “çıktı” as in

different types (Figure 5.12).

Figure 5.12 Sample results of Parsing Roots and Derivational Suffixes step

Detailed information about tags and usage of the rule list are given in Chapter 4.

5.4 Rule-Based Part of Speech (POS) Tagging

In this study, the Rule-Based POS Tagging (RB-POST) Method is used to tag the

word classes in Turkish texts, which is improved version of TurPOS that was

developed as unsupervised method by Hallaç in 2007. The Rule-Based POS Tagging

- <S Index="1">
 Güzel koyun otlamaya çıktı .
- <Word Index="0" Value="Güzel">

+ <R I="0" V="Güz" T="isim">
+ <R I="1" V="Güzel" T="isim">
+ <R I="1" V="Güzel" T="sıfat">
+ <R I="1" V="Güzel" T="zarf">

 </Word>
- <Word Index="1" Value="koyun">

+ <R I="0" V="koy" T="isim">
+ <R I="0" V="koy" T="fiil">
+ <R I="1" V="koyu" T="sıfat">
+ <R I="2" V="koyun" T="isim">

 </Word>
- <Word Index="2" Value="otlamaya">

+ <R I="0" V="ot" T="isim">
+ <R I="0" V="ot" T="sıfat">
+ <R I="1" V="otla" T="fiil">
+ <R I="2" V="otlama" T="isim">

 </Word>
- <Word Index="3" Value="çıktı">

+ <R I="0" V="çık" T="fiil">
+ <R I="1" V="çıktı" T="isim">

 </Word>
+ <Word Index="2" Value=".">
</S>

71

Method tries to solve the ambiguities caused in word type determination and also

stem/root finding processes.

Developing a rule-based tagger for a natural language mainly requires three

inputs:

 A complete lexicon which includes the list of whole words of the

language,

 A list of grammatical rules for that language,

 Text to be tagged.

In this project, a complete lexicon was taken from TDK to be used in this project,

a list of grammatical rules was collected by linguists in Dokuz Eylul University,

College of Social Science and Literature Linguistic Department and input document

was taken as output of the morphological analysis process. The output file of

morphological analysis process includes the words of the document that will be

tagged, with its possible stems, suffixes and word types. All input and output file

formats in POS tagging are based on XML structure.

Rule-Based POS Tagging method consists of three modules: Main Tagger Module

and two auxiliary modules called as Rule Parser and Stem Reader. Basic flow

diagram of Rule-Based POS Tagging is given in Figure 5.13.

Figure 5.13 General Flow Diagram of Rule-Based POS Tagging
Algorithm.

72

5.4.1 Rule Parser Module

Rule Parser Module works only once at program start up and reads the list of

rules into the system. In order to analyze and tag the text, most of the POS taggers

use some basic rules, which are defined to describe the absolute and relative

positions of word types in sentences in a natural language. These predefined rules are

called “grammatical” or “syntactical” rules, or sometimes “context frame” rules.

The rule file used in Rule-Based POS Tagging Module includes individual rules

defining the order of word types that are eligible or not eligible to be used in a

sentence. It also includes rules which show the positions of punctuation marks as to

word types in a sentence. XML structure is used to store the rules, samples of which

are given in Table 5.3.

Table 5.3 Sample rules and corresponding rule descriptions from the rule file

RULE SAMPLE RULE DESCRIPTION

<Rule RuleId=“2” RuleType=“sözdizim” RuleState=“true”>

 <Item ItemType=“sıfat” />

 <Item ItemType=“sıfat” />

 <Item ItemType=“isim” />

</Rule>

An adjective group must be

followed by a noun which is

described or determined by these

adjectives.

<Rule RuleId=“3” RuleType=“sözdizim” RuleState=“false”>

 <Item ItemType=“sıfat” />

 <Item ItemType=“virgül” />

 <Item ItemType=“isim” />

</Rule>

There cannot be a comma

between an adjective and a noun

which is determined by this

adjective.

The currently used rules for POS Tagging Module are given in the Appendix B3.

The Rule Parser Module works in the following way: The whole rule file is read

once on startup of the system. Then, the parser parses rules individually and loads

them into the memory for use at the rest of the program runtime. Since the rule list is

not considered to be changed during tagging, the rule file processing is done once at

startup to decrease system overhead.

73

5.4.2 Stem Reader Module

Stem Reader Module loads the morphologically analyzed documents into the

system. The input file of this module is the output file of morphological analysis

module, which includes possible stems with type of them and possible combinations

of suffixes. Then, it stores parsed data into its entities to use in the POS tagging

process.

Unlike most POS taggers, Rule-Based POS Tagger doesn’t include a built-in

lexicon. Instead, the types of words in a document are read from the text, which

contains the morphologically analyzed document, and stored into the memory.

Parsing the possible types of words from the document itself has an advantage

against a built-in lexicon structure. This eliminates the extra overhead for searching

the lexicon for each word and parsing word classes of found words.

Similar to the Rule Parser, Stem Reader Module also parses the output file of

morphological analysis module once and stores into the memory, just before starting

the tagging process to be used in the Tagger Module.

5.4.3 Tagger Module

The main part of the POS Tagging is the Tagger Module, which processes rule list

on morphologically analyzed XML document and produces the output. The tagged

text output is also designed in XML format.

The Tagger Module decides the word type of a word using an accumulator model.

The basic logic behind this model is to accumulate the value of a possible word class

for a word for each use. The final decision is given according to the word type with

the highest accumulator value.

The tagger processes each rule in the rule list on each sentence in the document,

whether the word types are sequenced true or not. For each matched type in a rule, an

74

accumulator is incremented by one for the word class defined in this rule. The

accumulation process is explained step by step by giving an example sentence:

Boş teneke çok ses çıkartır. (en: Empty tin noises the most.)

Assume that there is a rule such as “adjective + noun”. The tagger processes

the sentence in groups of two words because the rule contains 2 items. The word

groups and the order of control processing are:

1. boş teneke

2. teneke çok

3. çok ses

4. ses çıkartır

5. çıkartır.

Then, the tagger investigates the possible word types of words for each of the

word groups. In step 1, the types of words in the word group “boş teneke” matches

with the grammatical sequence “adjective + noun”. So the adjective word type

accumulator value for “boş” and the noun word type accumulator value for

“teneke” are incremented by one. The other word groups are also processed with

this rule. Steps of processing word groups are given in Table 5.4.

75

Table 5.4 Control processes of word groups in sample sentence for first rule

Controlled Rule: Adjective + Noun -> True

Step # Word Group Word Types Accumulators

1 boş teneke boş: Adjective Acc_Adjective_boş +=1

 teneke: Noun Acc_Noun_teneke +=1

2 teneke çok teneke: Noun Acc_Adjective_teneke
 çok: Adjective and

Adverb
Acc_Noun_çok

3 çok ses çok: Adjective and
Adverb

Acc_Adjective_çok+=1

 ses: Noun Acc_Noun_ses +=1
4 ses çıkartır ses: Noun Acc_Adjective_ses
 çıkartır: Verb Acc_Noun_çıkar
5 çıkartır çıkartır: Verb Acc_Adjective_çıkar

This operation continues to process all rules on all sentences of the text corpora.

After the process is finished, then the word types with the highest accumulator values

are picked as the result tags for each word. In this example, the values of all

accumulators for all words are compared, then the types of “boş” and “çok” are

accepted as “adjective”, the types of “teneke” and “ses” are accepted as “noun”,

the type of “çıkar” is accepted as “verb” since Acc_Adjective_boş,

Acc_Adjective_çok, Acc_Noun_teneke, Acc_Noun_ses and Acc_Verb_çıkar

have the highest values among the accumulators of these words.

The flow diagram of this algorithm is given in Figure 5.14.

76

Read A Rule

End of Rule
List

Yes

No

Parse Document into word
groups of same number of

words within the rule

End of Word
Groups List

1. word type
=

1. word type
in rule

Read A Word Group

Acc_Type1_Word1+=1

Yes

n. word type
=

n. word type
in rule

Acc_Typen_Wordn+=1

Yes

No

No

Yes

No

Compare all accumulators for
all words, choose the type that

has highest value

Main Tagger

Figure 5.14 Flow diagram of Main Tagger in Rule Based POS Tagging Algorithm

77

5.5 Software Structure

The main structure of the Rule-Based Corpus Generation (RBCorGen) consists of

four modules (Figure 5.15);

 CorpusGeneration as Main Module,

 SentenceBoundary Library for Sentence Boundary Detection,

 WordDetector Library for Root/Suffix Separation,

 POSTagging Library for Word Class Definition.

Figure 5.15 Developed modules in the software

The class diagram of RB-CorGen, was implemented in C# programming

language, is given in Figure 5.16.

78

Figure 5.16 The main classes and modules of RBCorGen

CorpusGenerationWinApp is the main module of the RBCorGen, in which main

form is generated (Figure 5.17).

79

Figure 5.17 Main form of RB-CorGen

CorpusGenerationWinApp module includes 5 submodules;

 SentenceBoundaryLibrary

 SSentenceBoundaryLibrary

 STSentenceBoundaryLibrary

 POSTaggingLibrary

 WordDetectorLibrary

Rule-Based Sentence Boundary Detection for Turkish (RB-SBD) was

implemented in SentenceBoundaryLibrary module to generate sentence corpus and

parse the sentences into wordforms to be used in Rule-Based Morphological

Analysis for Turkish (RB-MA) module as input. This module has 7 classes, in which

12 methods were implemented (Figure 5.18).

80

Figure 5.18 Methods in SentenceBoundaryLibrary

Explanations of classes and main methods in SentenceBoundaryLibrary module

are given in Table 5.5.

Table 5.5 Explanation of Methods in SentenceBoundaryLibrary

Class Name Explanation Method Name Explanation
AbbreviationList AbbreviationList Parses and loads the

abbreviation list by using
XMLFile.

XMLFile XMLFile Parses and loads an XML
file using DOM.

Rule Represents a rule that is
already defined in an
XML file, and managed
by a RulesManager.

Rule Stores a rule
IsMatched Controls the Rule if it is

matched with the sent data.

RulesManager Applies predefined rules
in XML File. If any rule
could be applied returns
rule result otherwise
return true to indicate
End Of Sentence.

IsEndOfSentence Controls all rules in XML
file and defines whether the
data end of sentence or not.

FileParser Loads the input text
document and parses it
by using
SentenceParser.

FileParser Create the member variables
and defines the hashed
letters.

Parse Loads the input text
document, reads lines one
by one and controls whether
they are sentences or not.

WriteXML Writes the results in XML
format.

81

Table 5.5 Explanation of Methods in SentenceBoundaryLibrary (Cont’d)

SentenceParser Splits a candidate line,
which has been splited
with linebreak and sent
by FileParser.

SplitSentences Splits the sent text into
sentences by using
RulesManager and returns
list of sentences containing
a list of words in order.

AskUser Used for ambiguities in
the decisions of the text
whether it is bulleted list
or conversation.

AskUser Generates a form to ask the
user whether the text is
bulleted list or conversation
text.

Rule-Based Morphological Analysis for Turkish (RB-MA) was implemented in

WordDetectorLibrary module to parse wordforms into stems, roots and suffixes.

This module takes the output of RBSBDT as input and has 7 classes, in which 25

methods were implemented (Figure 5.19).

Figure 5.19 Methods in WordDetectorLibrary

Explanations of classes and main methods in WordDetectorLibrary module are

given in Table 5.6.

82

Table 5.6 Explanation of Methods in WordDetectorLibrary

Class Name Explanation Method Name Explanation
DBConnect DBConnect Used to make connection to

database
DBProcesses Used for all process

those use the
database.

RootController Checks the root database
whether it includes the
searched root or not.

SuffixSeperator If the searched characters
are found in root database,
the rest of the wordform is
checked whether it is
generated by suffixes or not.

CheckSuffix Checks the suffixes
database whether it includes
the searched suffix part or
not.

CheckWordTypes Returns all possible types of
the searched word.

suffixTypeControl Checks whether the suffixes
are suitable to the word type
or not.

suffixWithoutTags Returns all possible suffixes
combinations without tags.

Ekler getEkXMLtag Returns tags of the searched
suffix.

EkKontrol controlEkDizisi Controls the order of the
suffixes whether true or not.

WordDetector StartToDetect Used to read the words from
the input file and make root-
suffix separation.

ObserveWord Makes root-suffix
separation, called by
StartToDetect method.

getFoundWords Reads the file
“foundBefore.txt” and
returns the read data.

WriteToFile WriteToFile Writes the results in XML
format.

AskWordType Used for
ambiguities in the
decisions of the
word type whether
it is special name or
not.

AskWordType Generates a form to ask the
user whether the word type
whether it is special name or
not.

Rule-Based Part of Speech Tagging for Turkish (RBPOST) was implemented in

POSTagging module. This module has 15 classes, in which 35 methods were

implemented (Figure 5.20).

83

Figure 5.20 Methods in POSTaggingLibrary

Explanations of classes and main methods in POSTagging module are given in

Table 5.7.

Table 5.7 Explanation of Methods in POSTaggingLibrary

Class Name Explanation Method Name Explanation
PartOfSpeech Includes POS item and

stores unique values of
POS items.

PartOfSpeech

Rule Add Adds a new RuleItem into the
Rule.

Remove Removes a RuleItem from the
Rule.

ToXMLString Creates an xml string from
the current Rule entity.

RuleItem Gets the word type from the
rule.

Rules Collection class for
Rules, the parsed rule
list including unique
rules.

RuleType Stores the type of rules,
such as word order
(sözdizim).

RuleType

RuleXmlParser Reads the rules file
node by node, parses
the rules and stores
into a Rules object.

ParseRules

84

Table 5.7 Explanation of Methods in TurPOSLibrary (Cont’d)

MainTagger Determines word types
in sentences of
documents.

Tag Accumulates possible types
for each word of document.

Analyze Analyzes the document,
defines types of each word
and writes the output into an
XML file.

Accumulate Increases accumulator if rule
state is true, and decreases it
if rule state is false.

Document Stores the data that will
be analyzed.

Sentence Returns the Sentence at the
given location.

Add Adds a Sentence into the
document.

Remove Removes the Sentence at the
given location.

StemXmlReader Reads the stems file
and stores its contents
into a Document
object.

ReadDocument Reads document and returns
document instance that
contains the stems file.

Sentence Add Adds a Word into the
Sentence.

Remove Removes the Word at the
given location.

Word AnalyzeAccumu
lator

Analyzes the accumulator and
returns name of the probable
word type.

IncrementAccu
mulator

Increments accumulator for
the WordType.

AddWordType Adds a new word type into
possible word types of the
searched Word.

85

9 CHAPTER SIX

10 CASE STUDY

In order to test the Rule-Based Corpus Generation (RBCorGen), four main

modules were carried out:

1. Dataset Generation,

2. Rule-Based Sentence Boundary Detection (RB-SBD),

3. Rule-Based Morphological Analyser (RB-MA),

4. Rule-Based Part-of-Speech Tagging (RB-ROST).

6.1 Dataset Generation

In order to generate dataset used in this case study, an application was developed

for collecting documents such as newspaper, report, magazine, book, parliamentary

report and official gazette from electronic environment. By using this module,

articles from 5 different Turkish newspapers “Milliyet”, “Hürriyet”, “Radikal”,

“Vatan”, ”Akşam” were downloaded and stored on disk, also metadata of these

documents, such as URL of document, header of document, size of document, etc.,

were stored in a database (Appedix D). A total of 195.256 articles which contain

93.228.892 words were downloaded and generated collection size was 1.05 GB. The

list of the documents downloaded for the dataset is given in Table 6.1 and details of

the documents are given in Table 6.2.

Table 6.1 Documents in Dataset according to the newspaper names

Newspaper Name Number of Articles Number of Words
Milliyet 43.465 19.536.744
Hürriyet 65.599 31.585.895
Radikal 35.159 17.605.413
Vatan 41.250 18.505.364
Akşam 9.783 5.995.476
TOTAL 195.256 93.228.892

86

 Table 6.2 Details of documents in Dataset

Year Newspaper Name Number of Articles Article Size
(bytes)

Number of Words

2009 Milliyet 7.987 28.042.637 3.692.542
2009 Akşam 3.129 13.412.243 1.872.178
2009 Hürriyet 5.709 19.572.040 2.604.667
2009 Radikal 4.354 18.318.948 2.382.129
2009 Vatan 3.752 13.036.081 1.735.620
2008 Hürriyet 9.556 35.162.196 4.699.045
2008 Radikal 5.305 21.780.759 2.806.544
2008 Vatan 6.718 23.018.968 3.090.063
2008 Akşam 2.421 10.743.743 1.512.270
2008 Milliyet 8.714 31.141.424 4.082.979
2007 Milliyet 4.685 16.630.367 2.089.244
2007 Akşam 2.075 9.279.697 1.304.930
2007 Hürriyet 9.043 33.933.670 4.513.839
2007 Radikal 4.401 17.406.528 2.228.127
2007 Vatan 6.639 22.820.262 3.055.629
2006 Akşam 1.621 7.033.136 995.826
2006 Radikal 4.255 16.613.193 2.124.421
2006 Vatan 6.026 20.416.090 2.705.875
2006 Hürriyet 7.682 30.025.234 3.994.601
2006 Milliyet 4.977 17.334.200 2.174.640
2005 Milliyet 4.486 16.077.155 2.018.390
2005 Radikal 3.925 15.032.947 1.925.788
2005 Akşam 534 2.184.361 308.496
2005 Hürriyet 6.652 24.352.596 3.240.341
2005 Vatan 5.677 19.762.531 2.611.727
2004 Milliyet 4.556 15.780.034 2.006.730
2004 Radikal 3.742 14.206.582 1.818.379
2004 Hürriyet 5.901 21.680.718 2.882.916
2004 Vatan 6.029 19.823.904 2.626.374
2003 Hürriyet 4.973 17.719.157 2.347.657
2003 Milliyet 3.471 11.788.371 1.498.700
2003 Radikal 3.655 13.629.813 1.733.173
2003 Vatan 5.801 18.141.953 2.418.832
2002 Hürriyet 3.926 13.952.947 1.847.157
2002 Vatan 608 1.960.937 261.244
2002 Milliyet 3.851 13.191.525 1.691.409
2002 Radikal 3.407 12.747.119 1.617.097
2001 Hürriyet 2.739 9.742.045 1.317.156
2001 Milliyet 1.456 4.768.595 611.997
2001 Radikal 2.115 7.703.079 969.755
2000 Hürriyet 2.707 9.889.002 1.329.063
1999 Hürriyet 3.025 9.804.854 1.304.374
1998 Hürriyet 2.618 7.879.868 1.043.888
1997 Hürriyet 1.068 3.571.005 461.191
TOTAL 195.256 711.112.514 93.557.003

87

6.2 Rule-Based Sentence Boundary Detection (RB-SBD)

By applying RB-SBD method onto the sample data, the results may be written

into two different formats as;

1- Parsed sentences are written into a text (.txt) file,

2- Parsed and tagged sentences are written into an XML file,

Besides, after sentence determination process, all wprdforms are also tagged and

written into an XML file.

A part of the sample document to be parsed is given in the following figure, and

full document is given in Appendix C.4.1.1.

Figure 6.1 Sample parsed document

Parsed sentences of document part in Figure 6.1 are given as text form in Figure

6.2, and full sentence list is given in Appendix C.4.1.2.

Hayat bazen festival gibi... Etrafa bir bakıyorsunuz ki...
Oooo! Tam bir festival havası. Her kafadan bir ses çıkıyor.
Dünyanın bir ucunda da aynı, burnunuzun dibinde de... Festival
denince aklınıza karnaval havası, havai fişekler, günlerce
süren şarkılar, türküler, tiyatrolar geliyor değil mi? Hayat da
böyle işte. Tek fark, katılmak istesek de istemesek de festival
alayının içindeyiz biz de! Tarihte de festivaller işte böyle
hayat bağlantısıyla doğmuş zaten. Doğumu, yeniden canlanmayı
simgeleyen bahar aylarında ve ölümü simgeleyen kış aylarında
başlarmış Eski Yunan'da... Ondan önce ise ilk insan döneminde
av dönüşü yapılan ritüeller de tiyatronun doğuşuyla birlikte
ilk görüldüğü dönemler. Zamanla değişe değişe günümüze kadar
yol almış bu festivaller. Rio Karnavalı'ndan sarımsak, karpuz,
kavun festivaline kadar da şekil değiştirerek, farklılık
göstererek hem de... Tarihin ve mitolojinin bize söylediklerine
dönecek olursak... Eski Yunan'da ölümsüz tanrıların pek faydalı
yaratıklar olduğuna inanılmazdı. Zeus; korkunç şimşeğini
düşüncesizce kullanan, genç kızların peşine düşen bir tanrıydı.
Ares; savaştan, kan dökülmesinden hoşlanırdı. Hera; kıskanç
olmaya görsün, adalet diye bir şey tanımazdı. Athena da
çarpışmaları severdi; Aphrodite tuzak kurmakta, ağını atmakta
pek ustaydı doğrusu. Bu açıdan ele alınınca ötekilerden ayrılan
iki tanrı vardı; insanoğlunun en iyi arkadaşıydı onlar:
Kronos'la Rhea'nın kızları, Bereket, Başak Tanrıçası Demeter'le
Şarap Tanrısı Dionysos.

88

Figure 6.2 Parsed sentences in the file of Figure 6.1

Parsed sentences of document part in Figure 6.1 are given as tagged in XML

format in Figure 6.3, and full sentence list is given in Appendix C.4.1.2.

1_____ Hayat bazen festival gibi....
2_____ Etrafa bir bakıyorsunuz ki....
3_____ Oooo!
4_____ Tam bir festival havası.
5_____ Her kafadan bir ses çıkıyor.
6_____ Dünyanın bir ucunda da aynı, burnunuzun dibinde de....
7_____ Festival denince aklınıza karnaval havası, havai
fişekler, günlerce süren şarkılar, türküler, tiyatrolar
geliyor değil mi?
8_____ Hayat da böyle işte.
9_____ Tek fark, katılmak istesek de istemesek de festival
alayının içindeyiz biz de!
10_____ Tarihte de festivaller işte böyle hayat bağlantısıyla
doğmuş zaten.
11_____ Doğumu, yeniden canlanmayı simgeleyen bahar aylarında
ve ölümü simgeleyen kış aylarında başlarmış Eski Yunan'da....
12_____ Ondan önce ise ilk insan döneminde av dönüşü yapılan
ritüeller de tiyatronun doğuşuyla birlikte ilk görüldüğü
dönemler.
13_____ Zamanla değişe değişe günümüze kadar yol almış bu
festivaller.
14_____ Rio Karnavalı'ndan sarımsak, karpuz, kavun
festivaline kadar da şekil değiştirerek, farklılık göstererek
hem de....
15_____ Tarihin ve mitolojinin bize söylediklerine dönecek
olursak....
16_____ Eski Yunan'da ölümsüz tanrıların pek faydalı
yaratıklar olduğuna inanılmazdı.
17_____ Zeus; korkunç şimşeğini düşüncesizce kullanan, genç
kızların peşine düşen bir tanrıydı.
18_____ Ares; savaştan, kan dökülmesinden hoşlanırdı.
19_____ Hera; kıskanç olmaya görsün, adalet diye bir şey
tanımazdı.
20_____ Athena da çarpışmaları severdi; Aphrodite tuzak
kurmakta, ağını atmakta pek ustaydı doğrusu.

89

Figure 6.3 Parsed and tagged sentences in the file of Figure 6.1

The tagged wordforms of the document part given in Figure 6.1 are given in

Figure 6.4, and full sentence list is given in Appendix C.4.1.3.

- <F N="MD_Banu Şen_2008.08.28_31068.txt">
- <P I="0">
 <S I="0">Hayat bazen festival gibi ...</S>
 <S I="1">Etrafa bir bakıyorsunuz ki ...</S>
 <S I="2">Oooo !</S>
 <S I="3">Tam bir festival havası .</S>
 <S I="4">Her kafadan bir ses çıkıyor .</S>
 <S I="5">Dünyanın bir ucunda da aynı , burnunuzun dibinde de
...</S>
 <S I="6">Festival denince aklınıza karnaval havası , havai
fişekler , günlerce süren şarkılar , türküler , tiyatrolar
geliyor değil mi ?</S>
 <S I="7">Hayat da böyle işte .</S>
 <S I="8">Tek fark , katılmak istesek de istemesek de
festival alayının içindeyiz biz de !</S>
 <S I="9">Tarihte de festivaller işte böyle hayat
bağlantısıyla doğmuş zaten .</S>
 <S I="10">Doğumu , yeniden canlanmayı simgeleyen bahar
aylarında ve ölümü simgeleyen kış aylarında başlarmış Eski
Yunan'da ...</S>
 <S I="11">Ondan önce ise ilk insan döneminde av dönüşü
yapılan ritüeller de tiyatronun doğuşuyla birlikte ilk
görüldüğü dönemler .</S>
 <S I="12">Zamanla değişe değişe günümüze kadar yol almış bu
festivaller .</S>
 <S I="13">Rio Karnavalı'ndan sarımsak , karpuz , kavun
festivaline kadar da şekil değiştirerek , farklılık göstererek
hem de ...</S>
 <S I="14">Tarihin ve mitolojinin bize söylediklerine dönecek
olursak ...</S>
 <S I="15">Eski Yunan'da ölümsüz tanrıların pek faydalı
yaratıklar olduğuna inanılmazdı .</S>
 <S I="16">Zeus ; korkunç şimşeğini düşüncesizce kullanan ,
genç kızların peşine düşen bir tanrıydı .</S>
 <S I="17">Ares ; savaştan , kan dökülmesinden hoşlanırdı .
</S>
 <S I="18">Hera ; kıskanç olmaya görsün , adalet diye bir şey
tanımazdı .</S>
 <S I="19">Athena da çarpışmaları severdi ; Aphrodite tuzak
kurmakta , ağını atmakta pek ustaydı doğrusu .</S>

90

Figure 6.4 Parsed sentences with wordforms

6.3 Rule-Based Morphological Analyser (RB-MA)

The Word Detector Module, which is used for stem/root separating, was

implemented in four different procedures to make the application flexible for users:

1- Finding all possible roots/stems and all suffixes of wordforms (The suffixes

are tagged as XML structure) (FAPRS),

2- Finding all possible stems and inflectional suffixes of wordforms (The

suffixes are tagged as XML structure) (FAPSIS),

3- Finding all possible roots/stems and suffixes of wordforms (The suffixes

are not tagged) (FAPRS-not tagged),

4- Eliminating possible roots/stems by using suffixes types (FAPRS -

 - <P I="0">
- <S Index="0">
 Hayat bazen festival gibi ...
 <Word Index="0">Hayat</Word>
 <Word Index="1">bazen</Word>
 <Word Index="2">festival</Word>
 <Word Index="3">gibi</Word>
 <Word Index="1">...</Word>
 <Word Index="5" />
 </S>

- <S Index="1">
 Etrafa bir bakıyorsunuz ki ...
 <Word Index="0">Etrafa</Word>
 <Word Index="1">bir</Word>
 <Word Index="2">bakıyorsunuz</Word>
 <Word Index="3">ki</Word>
 <Word Index="2">...</Word>
 <Word Index="5" />
 </S>

- <S Index="2">
 Oooo !
 <Word Index="0">Oooo</Word>
 <Word Index="3">!</Word>
 </S>

- <S Index="3">
 Tam bir festival havası .
 <Word Index="0">Tam</Word>
 <Word Index="1">bir</Word>
 <Word Index="2">festival</Word>
 <Word Index="3">havası</Word>
 <Word Index="4">.</Word>
 </S>

91

eliminated).

As an example, these modules were carried out for the following sentences;

Doğru söyleyeni dokuz köyden kovarlar. (1)

(They fire the person, who tells the truth.)

 Güzel koyun otlamaya çıktı. (2)

(The beautiful sheep has gone for grazing.)

In the word analysis, at first, the input document was parsed into its sentences

with wordforms by using the sentence boundary detection – with wordforms module

(Figure 6.5).

Figure 6.5 The wordforms of sample sentences

The parsed document was taken as input of RB-WD. All possible roots, stems,

derivational suffixes and inflectional suffixes of the wordforms were given as an

output of the “Finding all possible roots/stems and all suffixes (FAPRS)” procedure,

and all suffixes are tagged in an XML formatted file with the possible roots/stems.

- <File OriginalName="test.txt">
- <P I="0">
- <S Index="0">

 Doğru söyleyeni dokuz köyden kovarlar .
 <Word Index="0">Doğru</Word>
 <Word Index="1">söyleyeni</Word>
 <Word Index="2">dokuz</Word>
 <Word Index="3">köyden</Word>
 <Word Index="4">kovarlar</Word>
 <Word Index="5">.</Word>
 </S>

- <S Index="1">
 Güzel koyun otlamaya çıktı .

 <Word Index="0">Güzel</Word>
 <Word Index="1">koyun</Word>
 <Word Index="2">otlamaya</Word>
 <Word Index="3">çıktı</Word>
 <Word Index="4">.</Word>
 </S>
</P>

</File>

92

Outputs of the sample sentences (1) and (2) for this procedure is given in Figure 6.6,

and detailed output document was given in Appendix C.4.2.1.

Figure 6.6 Output file of“Finding all possible roots/stems and all suffixes (FAPRS)” procedure

The number of wordforms (NOW) in sentence 1 and sentence 2 were 5 and 4,

total number of possible roots and stems (NOR) were 14 and 17, and number of

suffixes (NOS) were 57 and 75 respectively. Detailed analysis of each wordform is

given in Table 6.3.

In the “Finding all possible stems and inflectional suffixes (FAPSIS)” procedure,

all possible stems and inflectional suffixes of the wordforms were given as an output,

and all results are tagged in an XML formatted file. Outputs of sample sentences (1)

and (2) for this choice is given in Figure 6.7, and detailed result document for

sentence 2 was given in Appendix C.4.2.2.

93

Figure 6.7 Output file of “Finding all possible stems and inflectional suffixes (FAPSIS)”

procedure

As given in Table 6.3, total number of possible roots and stems (NOR) value was

decreased to 9 and 11, number of suffixes (NOS) value was decreased to 20 in

Sentence 2 by using the FAPSIS module.

“Finding all possible roots/stems and suffixes of wordforms (The suffixes are not

tagged) (FAPRS-not tagged)” procedure works like FAPRS, and all possible roots,

stems and suffixes of the wordforms were given as an output in an XML formatted

file. The possible combinations of suffixes were not tagged separately, but given in a

combined form. Sample part of outputs for the wordforms “doğru, söyleyeni,

otlamaya” in the sentences (1) and (2) are given in Figure 6.8, and detailed output of

this procedure is given in Appendix C.4.2.3.

94

Figure 6.8 Sample output file of “Finding all possible roots/stems and suffixes of wordforms

(The suffixes are not tagged) (FAPRS-not tagged)”

All possible stems, roots and suffixes of the wordforms were found and the

suffixes types, which were not suitable for combining with the stem/root, were

eliminated, and tagged as an output in an XML formatted file by using “Eliminating

possible roots/stems by using suffixes types (FAPRS - eliminated)” procedure for

disambiguation in root/stem possibilities. Sample results of the sentences (1) and (2)

for this choice is given in Figure 6.9, and detailed output of these sentences is given

in Appendix C.4.2.4.

Figure 6.9 Sample output file of “Eliminating possible roots/stems by using suffixes types

(FAPRS - eliminated)” module

95

As given in Table 6.3, total number of possible roots and stems (NOR) value was

decreased to 8 and 11, number of suffixes (NOS) value was decreased to 7 and 12 in

Sentence 1 and 2 respectively according to the FAPRS module by using the this

module.

6.4 Rule-Based POS Tagging (RB-POST)

RB-POS takes the output of RB-WD as input and eliminates the root/stem

possibilities, which do not match the word ordering rules, and gives an XML file as

output. Sample tagged document of the input file (Figure 6.9), is given in Figure

6.10, and detailed output is given in Appendix C.4.3.

Figure 6.10 Output file of “POS tagging” module

The total number of possible roots and stems (NOR) was decreased to 7 and 6,

and number of suffixes (NOS) was decreased to 7 and 11 in sentences (1) and (2)

respectively according to the FAPRS - eliminated module by using the POS tagging

module (Table 6.3).

96

Table 6.3 Number of Possible Stems / Roots (NOR) and Number of Suffixes (NOS) values in the analysis
 Number of Suffixes
Wordform Possible Root / Stem Possible Type of Root / Stem FAPRS FAPSIS FAPRS - Eliminated POS Tagging
Doğru Do isim 5 Eliminated Eliminated Eliminated

Doğ fiil 10 2 Eliminated Eliminated
doğru sıfat 0 0 0 0

söyleyeni söyle fiil 10 Eliminated 2 2
dokuz do isim 3 Eliminated Eliminated Eliminated

dok isim 6 5 Eliminated Eliminated
doku isim 1 Eliminated Eliminated Eliminated
doku fiil 1 Eliminated Eliminated Eliminated
dokuz isim 0 0 0 0
dokuz sıfat 0 0 0 Eliminated

köyden köy isim 2 1 2 2
kovarlar kov isim 7 2 1 1

kov fiil 7 2 1 1
kova isim 5 2 1 1

Güzel güz isim 3 Eliminated 3 3
güzel isim 0 0 0 0
güzel sıfat 0 0 0 Eliminated
güzel zarf 0 0 0 Eliminated

koyun koy isim 7 5 2 2
koy fiil 7 5 2 2
koyu sıfat 7 5 Eliminated Eliminated
koyun isim 0 0 0 0

otlamaya o sıfat 5 Eliminated Eliminated Eliminated
o zamir 5 Eliminated Eliminated Eliminated
o ünlem 5 Eliminated Eliminated Eliminated
ot isim 8 Eliminated Eliminated Eliminated
ot sıfat 8 Eliminated Eliminated Eliminated
otla fiil 9 1 1 Eliminated
otlama isim 5 1 1 1

çıktı çık fiil 6 3 3 3
çıktı isim 0 0 0 Eliminated

TOTAL 132 34 19 18

96

97

The total number of possible roots and stems (NOR) in FAPRS module and

number of suffixes (NOS) were 31 and 132 respectively, as given in Table 6.3. After

the parsing processes, NOR and NOS value were decreased to 14 and 18. The results

were quite successive. Some sample sentences analyzed in RB-CorGen is given in

Appendix C.4.4 and C.4.5.

6.5 Performance Overview

The software was tested on a computer, which had an Intel Core 2 6600 2.40 GHz

processor and 4 GB RAM. The software used on this computer was Windows Server

2003 with SP2, .NET 2005 and SQL Server 2005.

Data sets or test sets used in the success rate determination of any related methods

carried out by different researchers (Dinçer & Karaoğlan, 2004; Kiss & Strunk,

2006) could not be obtained to be able to check the success rates of new developed

methods against with related works. Therefore, new data set and test set were

collected by using Document Downloader program to carry out the tests on the new

developed methods, RB-SBD, RB-WD and RB-POST, and determine success rates.

6.5.1. Rule-Based Sentence Boundary Detection (RB-SBD)Module

The algorithm complexity of the Rule-Based Sentence Boundary Detection (RB-

SBD) Module is O(n2) in worst case, because for all characters in a sentence all rules

are compared whether they are compatible or not.

The accuracy of the module was calculated by comparing the number of the

sentences found by RB-SBD module, with the number of sentences in the original

texts, which were counted by linguists. The formulas for error rate and accuracy of

the test are:

e = , A = 1 − , (1)

98

where e: error rate, F: Number of sentences predicted False, A: Accuracy,

N: Total Number of Sentences.

A test set was generated from the data set to test RB-SBD Method. There were 10

different columnists and 20 columns of each from the first newspaper (Milliyet) and

10 different columnists and 20 columns of each from the second newspaper (Yeni

Asır) in the Test Set (TS). The texts were used as is, there were not any corrections

on them. The number of columns and sentences in the test sets are given in Table 6.4.

Table 6.4 Numbers of columns and sentences in the test set

Newspaper 1 (Milliyet) Newspaper II (Yeni Asır)
Name of
Columnist

Number of
Columns

Number of
Sentences

Name of
Columnist

Number of
Columns

Number of
Sentences

C1 20 798 C1 20 582
C2 20 1.746 C2 20 1.458
C3 20 406 C3 20 546
C4 20 834 C4 20 1.126
C5 20 862 C5 20 1.316
C6 20 697 C6 20 797
C7 20 546 C7 20 972
C8 20 1.252 C8 20 795
C9 20 661 C9 20 634
C10 20 532 C10 20 852
Total 200 8.334 Total 200 9.078
Total Number of Sentences = 17.412

The results were given in Table 6.5.

Table 6.5 Accuracy of Sentence Boundary Detection Module

Columns # of Sentences # of Sentences
Predicted
True

of Sentences
Predicted
False

e (%) AR
(%)

Accuracy –
Except
Misspellings (%)

NP1 8.334 8.306 28 0.34 99.66 99.80

NP2 9.078 9.042 36 0.4 99.60 99.76

TOTAL 17.412 17.348 64 0.37 99.63 99.78

99

The method was tested on 17.412 sentences (Table 6.5); 17.348 sentences were

resolved correctly, 64 sentences were resolved inaccurately, and the average success

rate was calculated as 99.63 with the original texts, and 99.78 after the misspellings

were ignored.

Also, 10-Fold Cross Validation technique was used for testing this module in

details. At first, the True Positive (TP), False Positive (FP), True Negative (TN) and

False Negative (FN) values were determined and counted by the linguists in each

dataset of 10 datasets including 20.351 sentences totally, which were generated from

randomly chosen texts in DataSet downloaded and generated by the Document

Downloader program, to use in the calculations of SENS (Sensitivity), SPEC

(Specificity), PREC(Precision), ACC (Accuracy), and AUC (Area Under the Curve)

values (Formulas 2, 3, 4,5,6).

SENS (Sensitivity) = TP / (TP + FN) (2)

SPEC (Specificity or True Negative Rate) = TN / N = TN / (FP + TN) = 1 – (FP/ (FP+TN)) (3)

PREC (Precision) = TP / (TP+FP) (4)

ACC (Accuracy) = (TP + TN) / (TP + FP + TN + FN) (5)

AUC (Area under the Curve) =
∗())

+ 푆푃퐸퐶 ∗ 푆퐸푁푆 +
∗((푇푃

(푇푃 + 퐹푁)))
 (6)

Table 6.6 The SENS, SPEC, ACC and AUC values

Dataset TP FP FN TN TOTAL SENS SPEC PREC ACC AUC
1 2.070 3 4 1 2.078 0,9981 0,7500 0,9986 99,66% 0,8740
2 2.250 4 2 1 2.257 0,9991 0,8000 0,9982 99,73% 0,8996
3 1.973 14 0 3 1.990 1 0,8235 0,9930 99,30% 0,9118
4 1.989 12 0 1 2.002 1 0,9231 0,9940 99,40% 0,9615
5 2.001 8 0 2 2.011 1 0,8000 0,9960 99,60% 0,9000
6 1.985 6 0 1 1.992 1 0,8571 0,9970 99,70% 0,9286
7 2.014 5 0 0 2.019 1 1,0000 0,9975 99,75% 1,0000
8 1.994 5 0 1 2.000 1 0,8333 0,9975 99,75% 0,9167
9 1.990 2 0 0 1.992 1 1,0000 0,9990 99,90% 1,0000

10 2.007 2 1 0 2.010 0,9995 1,0000 0,9990 99,85% 0,9998
Average 2.035,1 0,9997 0,8787 0,997 99.66% 94.84%

100

As given in Table 6.6., the results of the test was encouraging with the average

values of ACC and AUC values, which were determined as 99.66% and 94.84%, and

are the highest values for sentence boundary detection process in Turkish.

Some paragraphs from texts and correctly resolved sentences by the program are

given in Table 6.7.

Table 6.7 Sample paragraphs and correctly resolved sentences

Original Text Parsed Sentences

Biliyor musunuz, geçenlerde 'Çırağan
Palace Hotel Kempinski'nin Tuğra
Restaurant'ı 'Dünyanın en iyi 10 mutfağı'
arasına girdi.

Do you know that Çırağan Palace Hotel
Kempinski’s Tuğra Restaurant had a
degree in the ‘The Best 10 Kitchens of the
World’ recently.

<P I="0">
<S Index="0">Biliyor musunuz, geçenlerde

'Çırağan Palace Hotel Kempinski'nin
Tuğra Restaurant'ı 'Dünyanın en iyi
10 mutfağı' arasına girdi.

</S>

Düşünün 7 milyar insanın yaşadığı koca
dünya, binlerce otel, lokanta ve...ilk on
arasında bizim Tuğra Restaurant... Üstelik
dünyanın en saygın uzmanlarından oluşan
jüri tarafından seçildi.

<P I="2">
<S Index="0">Düşünün 7 milyar insanın
yaşadığı koca dünya, binlerce otel,
lokanta ve...ilk on arasında bizim Tuğra
Restaurant.... </S>
<S Index="1">Üstelik dünyanın en saygın
uzmanlarından oluşan jüri tarafından
seçildi. </S>

O yemekler, o müzik ve Boğaz... Kendinizi
kesinlikle zaman tüneline sokar, en
azından 150 yıl öncesine gidersiniz.
Kendinizi 'sultan' sanabilirsiniz.

Think that a huge world, in which 7
billions people live, thousands of hotels,
restaurants, and...our Tuğra Restaurant
had a degree in first 10... Besides, it had
been chosen by the jury, which was
comprised from the most respected
specialists.

<P I="4">
<S Index="0">O yemekler, o müzik ve
Boğaz.... </S>
<S Index="1"> Kendinizi kesinlikle zaman
tüneline sokar, en azından 150 yıl
öncesine gidersiniz. </S>
<S Index="2"> Kendinizi 'sultan'
sanabilirsiniz. </S>

Bu da, Kont von M...'yi, bahçesini, en
güzel çeşitlemeler içinde birbiriyle
kesişerek şirin vadiler oluşturan tepelerden
birinde kurmaya yöneltmiş.

This situation directed Kont von M… to set
up his garden on one of the hills that create
sweet valleys by intersecting each others
with the best variations.

<Sentence Index="0"> Bu da, Kont von
M...'yi bahçesini, en güzel çeşitlemeler
içinde birbiriyle kesişerek şirin vadiler
oluşturan tepelerden birinde kurmaya
yöneltmiş.</Sentence>

Normally, “…” punctuation is used at the end of
sentence, but it was used in the sentence in place
of the name of a person in this sentence, this can
generate an ambiguity.

101

Inaccuracies in the results were generally caused by misspellings in the texts

(Table 6.8). But sometimes, they are caused by the rules. For example, in the first

sentence in Table 6.8, the “…” mark is used inaccurately. According to the sentence

boundary rules, a capital letter must be placed after this mark and new sentence must

begin. But in this sentence this character was used to shorten the cited text.

Table 6.8 Sample paragraphs and inaccurately resolved sentences

Original Sentence Parsed Sentences

Devamı şöyle: Millî Eğitim Bakanı’nın imzasıyla
tüm okullara gönderilen genelgede... deniliyordu.

It continues such that: It is said … in the notice
that was signed by the Head of the Department of
Education and sent to all schools.

<Sentence Index="1">Devamı şöyle:
Millî Eğitim Bakanının imzasıyla tüm
okullara gönderilen
genelgede.</Sentence>
<Sentence Index="2"> deniliyordu.
</Sentence>

Ama, düz yolda gitmeyi bilmeden, bir elinizde
telefon, ağzınızda sigara... bu bir.

But, there is a telephone in one of your hands; a
cigarette in your mouth without knowing to go on
the straight road… this is first.

<Sentence Index="4">Ama, düz yolda
gitmeyi bilmeden, bir elinizde
telefon, ağzınızda sigara.</Sentence>
<Sentence Index="5"> bu bir.
</Sentence>

Telekom Genel Müdürü Mehmet Ekinalan her
fırsatta Telekom'un 'muhteşem!' faaliyetlerini öve
öve bitiremiyor.

Mehmet Ekinalan, who is the Manager of the
Telecommunication Department, praises the
‘magnificent!’ activities of the department all the
time.

<Sentence Index="0">Telekom Genel
Müdürü Mehmet Ekinalan her fırsatta
Telekom'un 'muhteşem!</Sentence>
<Sentence Index="1">' faaliyetlerini
öve öve bitiremiyor. </Sentence>

Tetikçileri var, devlet içinde devlet olmuşlar,
devlet adına çalışıyorlar, devlet adamlarıyla ahbap
çavuşlar.. şu, bu!

They have triggermen, create a state in the state,
work for the government, good friends with
government… this, that!

<Sentence Index="0">Tetikçileri var,
devlet içinde devlet olmuşlar, devlet
adına çalışıyorlar, devlet
adamlarıyla ahbap
çavuşlar.</Sentence>
<Sentence Index="1"> şu,
bu!</Sentence>

- Bugün saat kaçta gideceksin?
- 2. Sen?
- 5.

- At what time will you go today?
- 2. You?
- 5.

<Paragraph Index="0">
<Sentence Index="0"> Bugün saat kaçta
gideceksin? </Sentence> </Paragraph>
<Paragraph Index="1">
<Sentence Index="0">2. Sen?
</Sentence>
</Paragraph>
<Paragraph Index="2">
<Sentence Index="0"> 5. </Sentence>
</Paragraph>

There are two sentences: “2.” and “Sen?
(You?)”, in the second line. The algorithm
assumed the “.” (dot) mark used after the
number “2” as enumeration not for bulleting,
by using the rule defined in the list, and
took all line as one sentence.

102

The total process time of this analysis was 179 milliseconds (0.179 seconds),

details of which are given in Table 6.9.

Table 6.9 Process time of sentence boundary detection module

Newspaper 1 (Milliyet) Newspaper II (Yeni Asır)

Name of
Columnist

Number of
Sentences

Process Time
(milliseconds)

Name of
Columnist

Number of
Sentences

Process Time
(milliseconds)

C1 798 11 C1 582 6
C2 1.746 26 C2 1.458 10
C3 406 0 C3 546 4
C4 834 13 C4 1.126 8
C5 862 14 C5 1.316 9
C6 697 8 C6 797 7
C7 546 5 C7 972 8
C8 1.252 18 C8 795 7
C9 661 8 C9 634 6
C10 532 4 C10 852 7
Total 8.334 107 9.078 72

6.5.2. Rule-Based Morphological Analyser (RB-MA)Module

The algorithm complexity of the Rule-Based Morphological Analyser (RB-MA)

Module is O(n!) in worst case. In this module, finding all possible roots, stems and

suffixes process took very long time at the fist stages of this study. In order to

increase overall system performance, some improvements and modifications were

realized.

Because of the difficulty of the manually counting all possible roots, stems and

suffixes’ combinations by linguists, instead of using all test set used in performance

analysis of RB-SBD Method, only small part of it was used in the RB-MA Method.

In this module, while controlling whether the part of wordform is valid

root/stem/suffix or not, algorithm tried to connect database and controlled it in the

related table. Each connection took 18 ms in average. Algorithm connected over

80.000 times to analyze the sentence;

103

Dümenin terbiye edemediğini kayalar terbiye eder. (3)

(The rocks chasten it, which the rudder cannot chasten.)

Therefore, analysis of this sentence takes 1440 seconds, which means 24 minutes.

Considering that a column in a newspaper has approximately 300 sentences, analysis

of each column takes 120 hours, which means 5 days. These values cannot be

acceptable for the usability of the system.

In order to solve this problem, lists of root, stem and suffixes were kept in the

memory when the program started. It connects database only one time at the

beginning and all root, stem and suffix information is saved into three lists. Then,

character combinations are checked by using these lists. The process time decreased

from 24 minutes to 24 seconds for the sample sentence (3) by using this approach,

which causes a system speed increase by 60 times.

Although this new process time was better than the previous one, one column

could be analyzed in 2 hours by using this value of time. This performance was also

not acceptable and made the system unusable. Therefore, new improvement was

done. The suffix combination control process of the algorithm was changed. In order

to control each suffix whether it is suitable for using with previous found suffixes,

control process was done after the determination of each suffix combination, so the

efficiency of the algorithm was increased by 25% and the sentence (3) was analyzed

in 6 seconds.

This value was achieved by using the given rule file, which includes 15 rules. By

increasing number of rules, the suffix possibilities and the time of checking processes

are expected to be decreased.

A refinement was made by saving the found roots, stems and suffixes of the

analyzed word to a file, in order to avoid re-analysis of the same word. This process

was increased the system performance.

104

After the refinements and improvements, a text, which contains 308 sentences and

nearly 3000 words, was analyzed in 3 seconds by RB-WD module.

6.5.3. Rule-Based POS Tagging (RB-POST) Module

The algorithm complexity of the Rule-Based Sentence POS Tagging (RB-POST)

Module is O(n2) in worst case.

Since RB-POST is a once-in-runtime process, the only overhead of this module to

the system would be as much as the measured time.

The Rule Parser tests were established using 3 different rule files including 10,

100 and 200 rules respectively. The average parsing times for those rule files are

displayed in Table 6.10.

Table 6.10 POS Tagging rule parser performance test results

Number of Rules Average Parsing Time (millisec.)

10 0.3271

100 1.1916

200 2.0696

The results show that the time required for loading rules is not directly

proportional to the number of rules, and loading 200 rules takes 2.0696 milliseconds,

which is an acceptable time.

The Stem Reader Module is also a kind of special parser module like the Rule

Parser. Stem Reader parses the complete input documents once before the tagging

process starts. To calculate the overhead of this module to the overall system

performance, tests that are based on measurement of parsing documents with

different sizes were established.

105

According to the limited amount of analyzed text, tests were carried out on 3

different documents with 6, 89, and 226 sentences each. The average parsing time for

a document with 226 sentences was about 18 milliseconds (Table 6.11).

Table 6.11 POS Tagging stem reader performance test results

Total Number of
Sentences

Total Number of
Words

Total Number of
Morph Items

Average Parsing Time
(millisec.)

6 30 51 0,6342
89 418 737 6,7597

226 1072 1888 18,1594

140 Turkish sentences were randomly taken from the data set to calculate the

overall tagging results. Each sentence has at least one word with more than one

possible word classes. The accuracy achieved by using this algorithm on this text

corpus is given in Table 6.12.

Table 6.12 POS tagging results based on total words

Number of Total
Words

Number of Correctly
Tagged Words

Number of Incorrectly
Tagged Words

Accuracy

780 718 62 92 %

The success rate of RB-POST were determined as 92%. Since this test was

carried out by using a limited rule list, the accuracy of the program can be

incremented using a larger scale rule list, supported by linguists.

106

11 CHAPTER SEVEN

12 USAGE AND USER INTERFACES OF RBCorGen

“Rule-Based Automatic Corpus Generation (RB-CorGen)” application consists of

two big sub-applications:

1. Document Downloader

2. Automatic Rule-Based Corpus Generation

In the “Document Downloader (Döküman İndirici)”, the electronic data is taken

from web by URL links of the newspapers and stored in database to be able to use

efficiently in RB-CorGen.

In “Automatic Corpus Generation (Otomatik Derlem Oluşturma) (RB-CorGen)”

application, there is a user-friendly interface to generate sentence corpus, make

morphological analysis of the words in the sentences and apply part-of-speech

tagging process on the analysis.

7.1 Document Downloader

User interface of “Document Downloader (Döküman İndirici)” project was

implemented in Turkish (Figure 7.1.).

Figure 7.1 Main screen of the Document Downloader application

107

Application has two main parts; user menu that is at the top of the window and tab

blocks of the resources that are on the centre of it. On the menu bar section, user can

change database connection settings, get reports, and open help. For changing

database connection settings, user clicks “Settings (Ayarlar)” menu button (Figure

7.2).

Figure 7.2 Database connection settings window

In this settings window user can change data source, username, password, and

catalog values. On help menu, user can open “How I do (Nasıl Yaparım)” user

manual and “About (Hakkında)” information of the application (Figure 7.3).

Figure 7.3 Help menu of application

108

General usage of the application is quite simple. User selects the tab section which

columns of the newspaper the user wants to download, and then the user clicks on

the “Find Links (Bağlantıları Bul)” button and all buttons become disabled until

operation is completed (Figure 7.4). Finding links operation has a long run time, so

user should be patient on this operation.

Figure 7.4 Disabled user interface

When the link finding operation ends, the links are listed on a grid table. Also the

article number is given on the status bar of the application (Figure 7.5).

Figure 7.5 Result of link finding operations

109

Second step of the download process is downloading articles that the links are

listed. User clicks on the button “Download Articles (Makaleleri İndir)” and the

download operation is started by the user (Figure 7.6).

Figure 7.6 Screen statues while downloading article

At the end of the downloading articles operation the number of articles

downloaded is written on the status bar (Figure 7.7).

Figure 7.7 Screen statues when download operation completed

110

Reporting operations of the application is done by clicking on one of the “Reports

(Raporlar)” on the reports menu, sample report is given in Figure 7.8.

Figure 7.8 Sample report

Reports can be exported as several file types: Crystal Reports (rpt), Adobe

Acrobat (pdf), Microsoft Excel (xls), Microsoft Excel Data Only (xls), Microsoft

Word (doc), and Rich Text Format (rtf). Exporting report can be done by clicking on

the button with disk icon. And the save dialog is opened (Figure 7.9).

111

Figure 7.9 Save dialog box

Since the URL links of the articles in the newspapers are different, different

downlading interface was designed for the newspapers Milliyet, Hürriyet, Vatan,

Akşam and Radikal.

Milliyet newspaper’s downloading tab is given in Figure 7.10.

Figure 7.10 Milliyet newspaper’s downloading tab

112

Hürriyet newspaper’s downloading tab is given in Figure 7.11.

Figure 7.11 Hürriyet newspaper’s downloading tab

Vatan newspaper’s downloading tab is given in Figure 7.12.

Figure 7.12 Vatan newspaper’s downloading tab

 Akşam newspaper’s downloading tab is given in Figure 7.13.

113

Figure 7.13 Akşam newspaper’s downloading tab

Radikal newspaper’s downloading tab is given in Figure 7.14.

Figure 7.14 Radikal newspaper’s downloading tab

7.2 Automatic Corpus Generation

User interface of “Rule-Based Automatic Corpus Generation (Otomatik Kural-

Tabanlı Derlem Oluşturma) (RBCorGen)” application is implemented in Turkish

(Figure 7.15).

114

Figure 7.15 Initial Screen of RBCorGen

This interface has a main menu on the top, file loading and screening part and four

tabs, which contains all processes in RBCorGen.

Firstly, a document, which will be analyzed, is loaded into the application by

using load button.

115

Figure 7.16 Loading a document into RBCorGen

 Then, any process is chosen by using the main menu or tabs.

7.2.1 Generating Sentence Corpus

 “Cümle Derlemi Oluşturma” tab in the main screen is used for generating

sentence corpus in three ways as tagged in XML format, not tagged and stored in text

file or tagged in XML format with splitted wordforms.

For example, the text, which was written by Abbas Güçlü named as

“abbasguclu.txt”, from the newspaper “Milliyet” (Figure 7.17), is loaded into the

application.

116

Figure 7.17 Text will be analyzed

If the “Etiketlenmiş (.xml)” is chosen, the text is splitted into sentences, stored in

XML formatted file and shown in the application (Figure 7.18).

Figure 7.18 XML tagged output of text in Figure 7.17

117

The output file is named as “S_AnalyzedFileName.xml” (Figure 7.19).

Figure 7.19 XML tagged output of text in Figure 7.17, named as

“S_abbasguclu.xml”

If the “Etiketlenmemiş (.txt)” is chosen, the text is splitted into sentences and

written in a text file (Figure 7.20).

Figure 7.20 Not tagged output of text in Figure 7.17

118

If the “Kelimeler (.xml)” is chosen, the text is splitted into sentences, sentences

splitted into wordforms and stored in XML formatted file (Figure 7.21).

Figure 7.21 XML tagged output of text with wordforms in Figure

7.17

The words, which start with capital letters, are firstly asked to the user if they are

proper noun or not (Figure 7.22).

Figure 7.22 Screenshot of the module asking to user the type of the word

119

Since bulleted sentences cause ambiguity, and they can not be separated from

conversation texts since conversations are indicated by special character, “-” (hypen),

after the character “:”, which is also used for bulleting. The sentences come after the

“:” character assumed as belong to one sentence; all lines are read and combined

together as one sentence, and asked to the user to determine the type of them (Figure

7.23).

Figure 7.23 Sample of undetermined blocks asked to the user

User defines the type of the sentence block as “conversation sentences”, tagged as

DLG (Dialog), or “bulleting text”, tagged as BL (Bulleted List).

7.2.2 Corpus Generation

“Derlem Oluşturma” tab in the main screen is used for finding stem / root and

suffixes of the wordforms (Figure 7.24).

There are two main parts: “Kök ve Ekler (Roots and Suffixes)” and “Gövde ve

Çekim Ekleri (Stems and Inflexional Suffixes)”. The roots / stems and suffixes are

found in four ways according to the needs;

 Ekler Etiketlenmiş: All possible of the roots / stems and suffixes, which

are tagged and stored in XML formatted file, named as

“AnalyzedFileName_MA_ST.xml”, in which MA_ST stands for

Morphological Analysis_Suffixes are Tagged.

120

 Ekler Etiketlenmemiş: All possible of the roots / stems and suffixes,

suffixes are not tagged in details, and results are stored in XML formatted

file, named as “AnalyzedFileName_MA_SNT.xml” , in which MA_SNT

stands for Morphological Analysis_Suffixes are not Tagged.

 Ek Türlerine Göre Olasılıkları Azaltılmış: All possible of the roots / stems

and suffixes, possible suffixes combinations are eliminated according to

the type of them, are are stored in XML formatted file, named as

“AnalyzedFileName_MA_SE.xml”, in which MA_SE stands for

Morphological Analysis_Suffixes are Eliminated.

 Kelime Türlerine Göre Olasılıkları Azaltılmış: All possible of the roots /

stems and suffixes are stored in XML formatted file. Possible roots /

suffixes are eliminated according to the word order rules by using the

Rule-Based POS tagging module, named as

“AnalyzedFileName_POS.xml”, in which POS stands for POS Tagging.

Figure 7.24 “Derlem Oluşturma” tab in the application

121

7.2.3 Rule Lists

“Kural Listeleme” tab in the main screen is used for listing the rules, used in the

application, edit and change them (Figure 7.25).

Figure 7.25 “Kural Listeleme” tab in the application

 “Cümle Sonu Belirleme” button is used to show the rules in the “Rules.xml” file,

which is used for the sentence boundary detection process, whereas the

“Biçimbilimsel Analiz” button is used to show the rules used in morphological

analysis and the “Kelime Türü Belirleme” button is used to show the rules in POS

Tagging processes. All rules can be edited by using the “Değiştir” button.

7.2.4 Other Operations

“Diğer” tab in the main screen is used for running some applications that are used

to help the main application, such as getting and storing data (“Döküman İndirici”

button), entering words in lexicon (“Kelime Girişi” button) or changing the character

122

of the words in lexicon according to vowel changing rule in Turkish (“Ses Değişimi”

button) (Figure 7.26).

Figure 7.26 “Diğer” tab in the application.

“Döküman İndirici (Document Downloader)” is used to run the Document

Downloader application, which details are told before.

123

13 CHAPTER EIGHT

14 CONCLUSION

15

8.1 Conclusion

In order to make analysis on a spoken language, a large scale corpus that includes

varied sample of text documents is needed. Effective corpora have been generated

and used for NLP applications on many languages, such as English, German, Czech,

etc, but any large scale Turkish corpora that involve all properties of the language

cannot be generated until now.

The main goal of this study is to develop an infrastructure with rule-based

approach to generate large scale Turkish corpus, and to develop appropriate methods

that find the sentences, root and suffixes of the Turkish words in an efficient way,

while generating large scale corpus. Because of grammatical rule-based structure of

Turkish, rule-based method was chosen to develop the infrastructure.

To generate a large scale corpus, at first documents must be collected. Variation

of authors and types of documents; such as newspaper, book, magazine; increase the

studies on it. Text documents which plays a critical role to generate corpus, must be

collocated in a systematic way. Therefore, an application called Document

Downloader, which was generated for collecting electronic data to develop large

scale corpus, was used to generate a dataset. 195.256 articles, which include

93.228.892 wordforms, from 5 different Turkish newspapers “Milliyet”, “Hürriyet”,

“Radikal”, “Vatan”, ”Akşam” were downloaded , stored in a storage media and also

metadata of these documents, such as URL of document, header of document, size of

document, etc., were stored in database.

In order to test the Rule-Based Automatic Corpus Generation (RB-CorGen), at

first, the roots, stems and suffixes were collected. The root and stem lists were

collected by co-operation with Turkish Linguistic Association (Türk Dil Kurumu,

TDK). These lists were modified according to morphophonemic processes vowel and

124

consonant harmonies in Turkish and stored. The suffix list was collected by linguists

in Dokuz Eylul University, College of Social Science and Literature Linguistic

Department. After that, the tags that would be used in the corpus were created by

them. The grammatical rules for sentence boundary detection, suffixes and word

ordering were also collected by linguists. All lists were stored in XML format to

make the system more flexible and scalable.

Although the punctuation marks, such as ., …, !, and ?, are used to terminate

sentences, they may also be used in anywhere else in a sentence, such as using “.

(dot)” mark for an abbreviation, as a decimal point in a number, in an e-mail

addresses etc, and cause ambiguities, which make harder the process of the

determining sentence boundaries. In Turkish, there are some ambiguities in finding

sentence boundaries like in any other languages. Ambiguities in sentence boundary

detection process, which are caused by abbreviations, enumerations, web and e-mail

addresses, were solved in Rule-Based Sentence Boundary Detection (RB-SBD)

method by using abbreviation and rule lists.

RB-SBD method was tested on two different test sets generated from randomly

selected columns of two Turkish newspapers Milliyet and Yeni Asır, which included

typing faults and ambiguities, and the results were successive. The success rates were

determined as 99.60% (99.76% without typing faults) and 99.66% (99.80% without

typing faults) in these test sets. The average success rate of the algorithm was

99.78% when typing faults were discarded. Also, 10-fold cross validation check was

applied to this method by choosing test sets 10 times randomly from the collected

data by the Document Downloader program. As a result, average values of ACC and

AUC were calculated as 99.66% and 94.84%, which are the highest values for

sentence boundary detection process in Turkish.

The available roots and stems were used in the morphological analysis part of the

project. In this process, the output of the sentence boundary detection process was

taken as input and all wordforms were analysed. The possible root/stem and suffix

combinations were determined and in an XML formatted file as an output.

125

After finding all possible roots and stems with their word types, the Rule-Based

Part-of-Speech Tagging (RB-POST) method was applied for word-category

disambigution. Instead of a built-in lexicon, the output of the morphological analysis

process and contains possible roots / stems and suffix combinations for each word in

analyzed document is used as an input in RB-POST, so there is not any time

consuming for looking up a word in a lexicon or database. Besides, the method is

disk-imperceptible and also independent from lexicon and database.

This Rule-Based POS tagger was tested on 140 randomly chosen Turkish

sentences which were taken from articles of “Milliyet” newspaper in test set. Each

sentence has at least one word with more than one possible word type. The success

rate was determined as 92%.

The success rates of the new developed methods, RB-SBD, RB-WD and RB-

POST, could not be checked against with any of the works carried out by different

researchers, since data sets or test sets used in the success rate determination of these

works could not be obtained from the developers of the methods. Therefore, the new

developed methods were carried out on the randomly chosen data collected by the

Document Downloader program.

Since the language structure is commonly the same with other agglutinative

languages, such as Turkic languages including Turkmen, Azerbaijani (Azeri),

Kazakh, Kyrgyz and Uzbek, the portable infrastructure, RB-CorGen, may be easily

adapted and used for them to apply the methods and generate a corpus by only giving

the rules, abbreviation lists, root and suffixes lists.

8.2 Future Works

All processes in rule-based corpus generation need well-defined and organized

rules to use and give successive results. It was seen that the accuracy of the RB-

CorGen increased with the increasing number of rules. In the future, new rules may

126

be added ino the system, the number of rules, and also the accuracy of the system

may be increased continuously.

Besides, the process time of the RB-CorGen may be decreased by making

refinements and improvements on the developed methods for corpus generation.

All of the ambiguities in corpus generation processes cannot be solved in RB-

CorGen. New techniques may also be developed in phrase structure grammar and

word sense disambiguation to solve some ambiguities, and integrated into RB-

CorGen easily. Consequently, the number of possible root/stem and suffixes

combinations, and also the size of the output on disk may be decreased.

127

REFERENCES

Aberdeen, J., Burger, J., Day, D., Hirschman, L., Robinson, P. & Vilain M. (1995).

Mitre: Description of the alembic system used for muc-6. Proceedings of the

Sixth Message Under-standing Conference (MUC-6), Columbia, Maryland.

Alkım, E., Aktaş, Ö., & Çebi, Y. (2009). Türk Dilleri Arası Çeviri Altyapısı.

Uluslararası Dünya Dili Türkçe Sempozyumu. Lefkoşa, K.K.T.C.

Alpkoçak, A., Kut, A., & Özkarahan, E. (1995). Bilgi bulma sistemleri için

otomatik türkçe dizinleme yöntemi. Bilişim Bildirileri, Dokuz Eylül

University, İzmir, Turkey.

Altinyurt, L., Orhan, Z., & Güngör, T. (2006). A composite approach for part of

speech tagging in Turkish. Proceedings of Third International Bulgarian-

Turkish Conference on Computer Science. 19-24. Istanbul.

Antworth, E. L. (1990). PC-KIMMO: A two-level processor for morphological

analysis. Occasional Publications in Academic Computing, Summer Institute of

Linguistics. 16. Dallas, Texas.

Asliyan, R., Günel, K., & Yakhno, T. (2007). Detecting misspelled words in

Turkish text using syllable n-gram frequencies. Pattern Recognition and

Machine Intelligence PReMI, A. Ghosh, R.K. De, and S.K. Pal (Ed.), LNCS

4815, 553–559. Springer-Verlag Berlin Heidelberg.

Birant, Çağdaş Can (2008). Root-Suffix seperation of Turkish words. Dokuz Eylül

Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü, Yüksek

Lisans Tezi. İzmir, Turkey.

Black, A.W. & Taylor, P. (1994). CHATR: A generic speech synthesis system,

Proceedings of International Conference on Computational Linguistics

(COLING '94), 2, 983-986. Kyoto, Japan.

128

Brill E. (1992). A simple rule-based part of speech tagger. Proceedings of the Third

Conference on Applied Natural Language Processing, 152-155. Trento, Italy.

Brill E. (1994). Some advances in transformation based part of speech tagging.

Proceedings of the Twelfth International Conference on Artificial

Intelligence (AAAI-94). Seattle, WA.

Brill, E. (1995). Transformation-based error-driven learning and natural language

processing: A case study in part-of-speech tagging. Computational Linguistics,

21(4), 543-566. Cambridge, MA, USA: MIT Press.

Brown Corpus, (n.d.). Retrieved March 3, 2010, from

http://www.helsinki.fi/varieng/CoRD/corpora/BROWN/index.html

Burnard, L. (2000). Reference guide for the British National Corpus (World

Edition). Retrieved March 3, 2010, from,

www.natcorp.ox.ac.uk/archive/worldURG/urg.pdf.

Cebiroğlu, G., &Adalı, E. (2002). Sözlüksüz köke ulaşma yöntemi. Proceedings of

19th TBD Bilişim Kurultayi, 155-160, Istanbul.

Charniak, E. (1993). Statistical language learning. Computational Linguistics,

21(1), 103-111. Cambridge, MA, USA: MIT Press.

Church, K. W. (1988). A stochastic parts program and noun phrase parser for

unrestricted text. Proceedings of Second Conference on Applied Natural

Language Processing, 136-143. ACL.

Church, K., & Gale, W. (1991). Probability scoring for spelling correction.

Statistics and Computing, 1 (2), 93-103.

CORD The Brown Corpus. (n.d.) a. Retrieved March 3, 2010, from

http://www.helsinki.fi/varieng/CoRD/corpora/ BROWN/basic.html

CORD The Brown Corpus. (n.d.) b. Retrieved March 3, 2010, from

http://www.helsinki.fi/varieng/CoRD/corpora/BROWN/tags.html.

129

COSMAS, German Corpus. (n.d.). Retrieved March 3, 2010, from

http://www.intute.ac.uk/cgi-bin/fullrecord.pl?handle=humbul3534.

Croatian National Corpus: Home Page. (n.d.). Retrieved March 3, 2010, from

http://www.hnk.ffzg.hr/cnc.htm.

Crystal,D. (1991). A dictionary of linguistics and phonetics (3rd Edition). Oxford:

Blackwell Publishing.

Cutting, D. Kupiec, J., Pedersen, J. O., & Sibun, P. (1992). A practical part-of-

speech tagger. Proceedings of Third Conference on Applied. Natural Language

Processing, 133-140. Trento, Italy.

Czech National Corpus, (n.d.). Retrieved March 3, 2010, from

http://ucnk.ff.cuni.cz/english/index.php.

Çebi, Y. & Dalkılıç, G. (2004). Turkish word n-gram analyzing algorithms for a

large scale Turkish corpus - TurCo, IEEE International Conference on

Information Technology ITCC 2004, 2, 236-240.

Çebi, Y., Aktaş, Ö. & Birant, Ç. C. (2006). Türkçe Derlem Olusturmada

Otomasyon ve Karşılaşılan Zorluklar. VI. Türk Dünyasi Ekonomi, Dil ve

Bilisim Is Birligi Forumu, TDK-TBD. Biskek, Kirgizistan.

Çiçekli, İ. & Korkmaz, T. (1998). Generation of Simple Turkish Sentences with

Systemic-Functional Grammar, Proceedings of the 3rd International Conference

on New Methods in Language Processing (NeMLaP-3), Sydney, Australia,

January 1998, 165-174.

Dalkılıç, G. (2001). Some statistical properties of contemporary printed Turkish

and a text compression application. MSc Thesis. International Computing

Institute, Ege University. Izmir, Turkey.

130

Dalkılıç, M.E., & Dalkılıç, G. (2001). Some measurable language characteristics of

printed Turkish. Proceedings of the XVI. International Symposium on Computer

and Information Sciences, 217-224. Antalya, Turkey.

Dalkilic, G. & Cebi, Y. (2002). A 300 MB Turkish corpus and word analysis.

LNCS 2002, 2457/2002, 205-212. Springer Berlin / Heidelberg.

DeRose, S. J. (1988). Grammatical category disambiguation by statistical

optimization. Computational Linguistics, 14 (1), 31-39. Cambridge, MA, USA:

MIT Press.

Dinçer, B. T., Karaoğlan, B. (2004). Sentence boundary detection in Turkish.

Proceedings of Advances in Information Systems - ADVIS 2004, LNCS 3261,

255–262, Springer-Verlag Berlin Heidelberg.

Diri, B. (2000). A text compression system based on the morphology of Turkish

Language. Proceedings of the XV International Symposium on Computer and

Information Sciences, 12-23. Istanbul, Turkey.

Diri, B., & Amasyalı, M. F. (2003). Automatic author detection for Turkish text.

13th International Conference on Artificial Neural Network and 10th

International Conference on Neural Information Processing.

Dunning, T. (1993). Accurate methods for the statistics of surprise and

coincidence. Computational Linguistics, 19 (1): 61–74, Cambridge, MA, USA:

MIT Press.

Encoding the British National Corpus. (n.d.). Retrieved March 3, 2010, from,

http://xml.coverpages.org/bnc-encoding2.html.

Garside R., Leech G. & Sampson G. (Ed.) (1987). The computational analysis of

English: A corpus-based approach. U.S.A.: Longman Group .

131

Garside, R., Leech, G. & McEnery, A. (1997). Corpus annotation: Linguistic

information from computer text corpora. New York: Addison Wesley

Longman Inc.

Greene B. B., & Rubin G. M. (1971). Automatic Grammatical Tagging of English.

Providence, Rhode Island: Brown University Press, Department of Linguistics.

Greenwood, A.R. (1997). Articulatory speech synthesis using diphone units.

Proceedings of IEEE International Conference on Acoustics, Speech and Signal

Processing, 1635-1638. Munich.

Guilder, L. V. (1995). Automated part of speech tagging: A brief overview.

Retrieved January 25, 2010, from

http://ccl.pku.edu.cn/doubtfire/NLP/Lexical_Analysis/Word_Segmentation_Tag

ging/POS_Tagging_Overview/POS Tagging Overview.htm.

Gündü, H. (2008). Determination of author characteristics. B.Sc. Thesis. Dokuz

Eylul University, Department of Computer Engineering, İzmir, Turkey.

Güngör, T. (1995). Computer processing of Turkish: Morphological and lexical

investigation. PhD Thesis. Computer Engineering Department, Boğaziçi

University. Istanbul, Turkey.

Güngördü Z. (1993). A lexical-functional grammar for Turkish. MSc Thesis.

Computer Engineering Department, Bilkent University, Ankara, Turkey.

Hakkani-Tür, D.Z., Oflazer, K., & Tür, G. (2002). Statistical morphological

disambiguation for agglutinative languages. Computers and the Humanities, 36,

381–410. Netherlands: SpringerLink.

Hallaç, Ü. (2007). Determination of Turkish word types. M.Sc. Thesis. Dokuz

Eylül University, Graduate School of Natural and Applied Science, Department

of Computer Engineering. İzmir, Turkey.

132

Hennecke, M., Moore, R. & Swan, H. (1997). Natural language generation.

Retrieved April 4, 2010, from http://www.dfki.de/fluids/

Natural_Language_Generation.html.

Huang, X., Acero, A. & Hon, H.W. (2001). Spoken language processing. New

Jersey: Prentice Hall.

Ide, N. & Suderman, K. (2003). The American national corpus. Retrieved March 3,

2010, from http://www.cs.vassar.edu/~ide/papers/anc-lrec04.pdf.

Järvinen, T. (1994). Annotating 200 million words: the Bank of English project.

Proceedings of the 15th conference on Computational linguistics, 1, 565 - 568.

Kyoto, Japan.

Jurafsky, D., & Martin, J. H. (2000). Speech and language processing: An

introduction to natural language processing, speech recognition, and

computational linguistics. New Jersey: Prentice-Hall.

Karlsson, F., Voutilainen, A., Heikkilä, J., & Anttila, A. (Ed.). (1995). Constraint

grammar: A language-independent system for parsing unrestricted text. Berlin:

Mouton de Gruyter.

Kiss T., & Strunk, J. (2006). Unsupervised multilingual sentence Boundary

detection. Computational Linguistics, 32 (4), 485-525, Cambridge, MA, USA:

MIT Press.

Kızılay, F. (2009). An Infrastructure model for collecting electronic data to

develop large scale corpus. M.Sc. Thesis. Dokuz Eylül University, Graduate

School of Natural and Applied Science, Department of Computer Engineering.

İzmir, Turkey.

Koltuksuz, A. H. (1995). Cryptanalitic measures of Turkish for symmetrical

cryptosystems. PhD Thesis, Ege University Department of Computer

Engineering, Izmir, Turkey.

133

Köksal, A. (1975). Automatic morphological analysis of Turkish. Ph.D. Thesis,

Hacettepe University, Ankara, Turkey.

Kucera, K. (2002). Czech National Corpus: Principles, design, and results. Literary

and Linguistic Computing, 17 (2), 245-257. Oxford: Oxford University Press.

Kukich, K. (1992). Technique for automatically correcting words in text. ACM

Computing Surveys (CSUR), 24 (4), 377-439. NY USA: ACM Press.

Leech, G., Garside, R., & Bryant, M. (1994). CLAWS4: The tagging of the British

National Corpus. Proceedings of the 15th International Conference on

Computational Linguistics (COLING 94), 622-628. Kyoto, Japan.

Leech, G., Hundt, M., Mair, C. & Smith, N. (2009). The composition of the Brown

Corpus. In Change in Contemporary English, A Grammatical Study (273-275).

Cambridge: Cambridge University Press.

Lindebjerg, A. (September, 1997). Brown Corpus manual. Retrieved March 3,

2010, from icame.uib.no/brown/bcm.html.

Mani, I. (2001). Automatic summarization. Amsterdam, The Netherlands: John

Benjamins Publishing Company.

Manning, C. D. & Schutze, H. (1999). Foundations of statistical natural language

processing. Cambridge: MIT Press.

METU Turkish Corpus Project. (n.d.). Retrieved March 3, 2010, from

http://ii.metu.edu.tr/tr/research_group/metu-turkish-corpus-project.

Mikheev, A. (2000). Tagging sentence boundaries. Proceedings of the 1st North

American Chapter of the Association for computational linguistics conference,

264 – 271, New Mexico State.

Modern French Corpus. (n.d.). Retrieved March 3, 2010, from

http://catalog.elra.info/product_info.php?products_id=634.

134

Nadas, A. (1984). Estimation of probabilities in the language model of the IBM

speech recognition system. Proceedings of IEEE Transactions on Acoustics,

Speech, and Signal Processing, 32 (4), 859-861.

Oflazer, K. & Kuruoz, I. (1994). Tagging and morphological disambiguation of

Turkish text. Proceedings on Fourth Conference of Applied Natural Language

Processing, 144-149. Stuttgart, Germany.

Oflazer K. (2003). Extended finite state approach. Computational Linguistics, 29

(4), 515-544. Cambridge: MIT Press.

Palmer, D. D., & Hearst, M. A. (1997). Adaptive multilingual sentence boundary

disambiguation. Computational Linguistics, 23 (2), 241-267. Cambridge: MIT

Press.

Parker, R., Graff, D., Kong, J., Chen, K., & Maeda, K. (2009). English Gigaword

fourth edition. Retrieved March 3, 2010, from

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2009T13.

PAROLE CORPUS-Information. (n.d.). Retrieved March 3, 2010, from

http://parole.inl.nl/html-eng/main_info.html.

Porter, M. F. (1980). An algorithm for suffix stripping. Program: electronic library

and information systems, 14 (3), 130−137. Bingley, England: Emerald Group

Pub. Ltd.

Ray, Erik T. (2003). Learning XML (Second Edition). United States of America:

O’Reilly Media, Inc.

Reynar, J. C., & Ratnaparkhi, A. (1997). A maximum entropy approach to

identifying sentence boundaries. Proceedings of the Fifth ACL Conference on

Applied Natural Language Processing (ANLP'97), Washington, D.C.

135

Riley, M.D. (1989). Some applications of tree-based modeling to speech and

language indexing. Proceedings of the DARPA Speech and Natural Language

Workshop, 339-352, Morristown, NJ, USA.

Sagisaka, Y., Iwahashi, N. & Mimura, K. (1992). ATR v-TALK Speech Synthesis

System, Proceedings of the International Conference on Spoken Language

Processing (ICSLP), (1), 483-486. Canada.

Sak, H., Güngör, T. & Safkan, Y. (2006) A corpus-based concatenative speech

synthesis system for Turkish. Turkish Journal of Electrical Engineering and

Computer Sciences, 14 (2), 209-223. TUBITAK, Ankara, Turkey.

Say, B., Özge, U., & Oflazer, K. (2002). Bilgisayar ortamında bir derlem

geliştirme çalışması. Akademik Bilisim Konferansi (AB’02). Selcuk

Üniversitesi, Konya, Turkey.

Say, B., Zeyrek, D., Oflazer, K. & Ozge, U. (2002). Development of a corpus and a

treebank for present-day written Turkish. Proceedings of the Eleventh

International Conference of Turkish Linguistics (ICTL), 183-192. Eastern

MediterraneanUniversity, Northern Cyprus.

Say, C., Demir, Ş., Çetinoğlu, Ö., & Öğün, F. (2004). A natural language

processing infrastructure for Turkish. Proceedings of the 20th international

conference on Computational Linguistics, 1385. Retrieved January, 2009, from

ACM Digital Library Database.

Sever, H., & Bitirim, Y. (2003). FindStem: Analysis and evaluation of a Turkish

stemming algorithm. In M. A. Nascimento, E. S. De Moura, A. L. Oliveira

(Ed.). Proceedings of the 10th String Processing and Information Retrieval,

LNCS, 2857, 238-251. Springer-Verlag, Heidelberg.

Shannon, C.E. (1951). Prediction and entropy of printed English. The Bell System

Technical Journal, 30 (1),50-64.

136

Sinclair, J. (1991). Corpus Concordance, Collocation (Describing English

Language). Oxford: Oxford University Press.

Solak, A., & Oflazer, K. (1993). Design and implementation of a spelling checker

for Turkish. Literary and Linguistic Computing, 8 (3), 113-130. Oxford: Oxford

University Press.

Solak A., & Can, F. (1994). Effects of stemming on Turkish text retrieval.

Technical report BUCEIS-94-20, Bilkent University, Ankara, Turkey.

Sperberg-McQueen, C. M. & Burnard, L. (Ed.). (1994). Guidelines for electronic

Text Encoding and Interchange. (TEI P3), Oxford, Text Encoding Initiative.

Tantuğ, A. C., Adalı, E., & Oflazer, K. (2006). A Prototype machine translation

system between Turkmen and Turkish. Fifteenth Turkish Symposium on

Artificial Intelligence and Neural Networks (TAINN 2006). Muğla, Turkey.

Tantuğ, A. C., Adalı, E., & Oflazer, K. (2007). Machine translation between Turkic

Languages. Proceedings of the ACL 2007 Association for Computational

Linguistics, 189–192, Prague.

Tapanainen, P. & Voutilainen, A. (1994). Tagging accurately - Don't guess if you

know. Fourth ACL Conference on Applied Natural Language Processing,

Stuttgart, Germany.

Temizsoy, M., & Çiçekli, İ. (1998). An ontology based approach to parsing Turkish

Sentences. Proceedings of Third Conference of the Association for Machine

Translation in the Americas AMTA’98., LNCS 1529, 124 – 135, Langhorne, PA,

USA: Springer Berlin / Heidelberg.

The Bank of English User Guide. (n.d.). Retrieved March 3, 2010, from

http://www.titania.bham.ac.uk/docs/svenguide.html

137

The British National Corpus: facts and figures. (n.d.). Retrieved March 3, 2010,

from http://www.oup.com/elt/catalogue/teachersites/oald7/more_on_dicts/bnc?

cc=global.

Voutilainen, A. (1995a). Morphological disambiguation. In Karlsson, F.,

Voutilainen, A., Heikkilä, J., and Anttila, A. (Ed.), Constraint Grammar: A

language-independent system for parsing unrestricted text, 165-284. Berlin:

Mouton de Gruyter.

Voutilainen, A. (1995b). A syntax-based part of speech analyser. Proceedings of

the Seventh Conference of the European Chapter of the Association for

Computational Linguistics. 157-164. Dublin.

Wang, H., & Huang, Y. (2003). Bondec – A Sentence Boundary Detector,

http://nlp.stan-ford.edu/courses/cs224n/2003/fp/huangy/final_project.doc.

Weiss, D. (2005). Stempelator: A hybrid stemmer for the Polish Language.

Institute of Computing Science, Poznań University of Technology, Poland,

Research Report RA-002/05.

What is optical character recognition?. (n.d.). Retrieved March 1, 2010, from

http://www.webopedia.com/TERM/O/optical_character_recognition.html.

Yona, S. (2001). Lingua::EN::Sentence package. http://cpansearch.perl.org/

src/SHLOMOY/Lingua-EN-Sentence-0.25/lib/Lingua/ EN/Sentence.pm.

Zue, V., Cole, R. & Ward W. (1995). Speech recognition. Retrieved March 1,

2010, from http://cslu.cse.ogi.edu/HLTsurvey/ch1node4.html.

138

APPENDICES

APPENDIX A Turkish Grammatical Rules

APPENDIX A.1 Properties of Turkish

Turkish is an agglutinative language like Finnish, Hungarian. It belongs to the

southwestern group of Turkic family. Turkic languages are in the Uralic-Altaic

language family. In agglutinative languages, words formed by combined root words

and morphemes. Word structures can grow by addition of morphemes. Morphemes

added to a stem can convert the word from nominal to a verbal structure or viceversa.

Turkish has a very productive morphology. There is a root and several suffixes are

combined to this root. It is possible to produce a very high number of words from the

same root with suffixes. The lexicon size may grow to unmanageable size.

A popular example of a Turkish word formation is:

OSMANLILAŞTIRAMAYABİLECEKLERİMİZDENMİŞSİNİZCESİNE

This can be broken down into morphemes:

OSMAN+LI+LAŞ+TIR+A+MA+(Y)ABİL+ECEK+LER+İMİZ+DEN+MİŞ+SİNİZ

+CESİNE

In this example, one word in Turkish corresponds to a full sentence in English.

This example can be translated into English as “as if you were of those whom we

might consider not converting into an Ottoman”.

There are 29 letters in Turkish language. The eight of them are vowels and

twenty-one of them are consonants. (See Appendix A.5)

The number of vowels is more than many languages. Vowels of Turkish can be

classified in three groups according to their properties:

139

 Front and back,

 Round and unrounded,

 High or low

The vowels can be partitioned as below in detail:

 Back vowels: {a, ı, o, u}

 Front vowels: {e, i, ö, ü}

 Front unrounded vowels: {e, i}

 Front rounded vowels: {ö, ü}

 Back unrounded vowels: {a, ı}

 Back rounded vowels: {o, u}

 High vowels: {ı, i, u, ü}

 Low unrounded vowels: {a, e}

Turkish word formation uses a number of phonetic harmony rules. When a suffix

is appended to a stem vowels and consonants change in certain ways.

APPENDIX A.2 Vowel Harmony

Vowel harmony is the best-known morphophonemic process in Turkish. It is most

interesting and distinctive feature. Vowel harmony is a left-to-right process. It

operates sequentially from syllable to syllable. Vowel harmony processes force

certain vowels in suffixes agree with the last vowel in the stems or roots they are

being affixed to. When vowels are affixed to a stem, they change according to the

vowel harmony rules. The first vowel in the suffix changes according to the last

vowel of the stem. Vowel harmony consists of two assimilations: Palatal and Labial

Assimilations.

140

1. Palatal assimilation

This is called “major vowel harmony” . This vowel harmony is common to almost

Turkic languages. This assimilation is about front/back feature of the language. Back

vowels are the set of {a, ı, o, u} and the front vowels are the set of {e, i, ö, ü}.

If the vowels of the following morphemes are back then the vowel of the first

morpheme in a word is back, e.g. askı + lar

“lar” is a plural suffix. “ler”, other form of plural suffix, is not used, because the

vowels of the stem are back vowels.

If the vowels of the following morphemes are front then the vowel of the first

morpheme in a word is front, e.g. ev + ler

Long vowels are “â, û, ô”. These vowels are in words of French origin in general.

Examples:

saât+ler (saatler)

gôl+ler (goller)

usûl+ler (usuller)

2. Labial assimilation

This is called “minor vowel harmony”. This assimilation is about

rounded/unrounded feature of the language. Examples:

çöl + ün

usul + ün (usûl + ün)

topal + ın

defter + im

saat + im (saât + im)

141

APPENDIX A.3 Consonant Harmony

Consonant harmony is another basic aspect of Turkish phonology. Consonants of

Turkish phonology can be classified into two main groups. These are voiceless and

voiced. Voiceless consonants are {“ç”, ”f”, ”h”, ”k”, ”p”, ”s”, ”ş”, ”t”}. Voiced

consonants are {“b”, ”c”, ”d”, ”g”, ”ğ”, ”j”, ”l”, ”m”, ”n”, ”r”, ”v”, ”y”, ”z”}.

Consonant harmony rules doesn’t formulate easily because of irregular character of

borrowed and native words. There are some consonant harmony rules in Turkish:

 If the end of the word is one the voiceless consonants (“p”, ”ç”, ”t”, ”k”) then

it changes to a corresponding voiced consonants (“b”, ”c”, ”d”, ”ğ”).

o “p” changes to “b” (kitab + ım).

o “d” changes to “t” (ta(d)t + tık), but not every “d” changes, such as

“önad”, “soyad”, etc.

o “k” changes to “ğ” (aya(k)ğ + ın).

o “ç” changes to “c” (ağa(ç)c + ın), but not every “ç” changes, such as

“göç”, “aç” ”iç”, etc.

 If a suffix starts with “d”, and if the last consonant of the stem is one of {“ç”,

”f”, ”h”, ”k”, ”p”, ”s”, ”ş”, ”t”}, “d” is replaced with “t” , e.g. yulaf+tan

(yulaf + dan)

 If the last consonant of the stem is one of {“ç”, ”f”, “h”, “k”, “p”, “s”, “ş”}

and if the suffix begins with the “c” then “c” is resolved as a “ç” , e.g. yaş+ça

(yaş +ca)

 If “k” is at the end of the stem and “k” preceded by an “n” then “k” becomes

“g” , e.g. çelen(k)g + e

There are some exceptions for this rule, e.g. “bank”.

142

 If the final character of the stem is “g” and a vowel is beginning of the suffix

then “g” becomes “ğ” in foreign origin words, e.g. analo(g)ğ + a

There are some exceptions for this rule, also, e.g.“lig”, “pedagog”, etc.

If the final character of the stem is “g” and a consonant is beginning of the

suffix then “g” does not become “ğ” , e.g. bumerang + tan

 If the final character of the stem is a vowel, and a vowel is beginning of the

suffix then “y” inserted to stem, e.g. akarsu +y +unuz

 When certain suffixes are affixed last consonant is duplicated in Arabic or

Persian origin words, e.g. zam + m + ı

 If Arabic origin words ending with a vowel then drops in exception to the

general rule, e.g. camii – camisi

There are many numbers of words that have this property, e.g. “mevki”, “cami”,

“terfi”, “zayi”, “ikna”, “merci”, etc.

APPENDIX A.4 Root Deformations

Turkish roots are not flexible in normally. There are some cases about various

deformations. There are some exception cases:

 Root is observed in personal pronouns

Examples: ben – bana

 sen – sana

 Wide vowel at the end of the stem is narrowed when the suffix “yor” comes

after the verbs ending with the “a,e” , e.g. kapiyor (kapa – i – yor)

143

 When a suffix is beginning with a vowel comes after some nouns, which has

a vowel {ı, i} in its last syllable, this vowel drops. This occurs generally

designating parts of the human body, e.g. ağzımız (ağız – ı – mız)

 When the possessive suffix “ıl, il” is affixed to some verbs, and the last vowel

of the verb is vowel “ı, i” then this vowel drops, e.g. ayrıl (ayır – ıl)

 If a plural suffix is affixed to a compound words then this suffix coming

before the possessive suffix at the end of the stem.

Example: gözyaşı + lar -> gözyaşları (not gözyaşılar)

APPENDIX A.5 Turkish Alphabet

Lowercase Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a b c ç d e f g ğ h ı i j k l m n o

19 20 21 22 23 24 25 26 27 28 29
ö p r s ş t u ü v y z

Consonants:{b, c, ç, d, f, g, ğ, h, j, k, l, m, n, p, r, s, ş, t, v, y, z}
Vowels:{a, e, ı, i, o, ö, u, ü}

Uppercase Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A B C Ç D E F G Ğ H I İ J K L M N O

19 20 21 22 23 24 25 26 27 28 29
Ö P R S Ş T U Ü V Y Z

Consonants:{B, C, Ç, D, F, G, Ğ, H, J, K, L, M, N, P, R, S, Ş, T, V, Y, Z}
Vowels:{A, E, I, İ, O, Ö, U, Ü}

144

APPENDIX B Rules

APPENDIX B.1 Sentence Boundary Detection Rules

<?xml version="1.0" encoding="utf-8" ?>
<rules>
 <rule EOS="False">U.L</rule>
 <rule EOS="False">U. L</rule>
 <rule EOS="False">L.L</rule>
 <rule EOS="False">L. L</rule>
 <rule EOS="True">L.U</rule>
 <rule EOS="True">L. U</rule>
 <rule EOS="True">L.#</rule>
 <rule EOS="True">?.'</rule>
 <rule EOS="False">?."</rule>
 <rule EOS="True">?.(</rule>
 <rule EOS="True">?.)</rule>
 <rule EOS="True">?.-</rule>
 <rule EOS="True">?./</rule>
 <rule EOS="False">?.,</rule>
 <rule EOS="False">#.L</rule>
 <rule EOS="False">#. L</rule>
 <rule EOS="False">#.'</rule>
 <rule EOS="False">#."</rule>
 <rule EOS="False">#.(</rule>
 <rule EOS="False">#.)</rule>
 <rule EOS="False">#.-</rule>
 <rule EOS="False">#.,</rule>
 <rule EOS="False">#.#</rule>
 <rule EOS="False">#.U</rule>
 <rule EOS="False">#. U</rule>
</rules>

145

APPENDIX B.2 Stem / Root Parsing Rules

TBAE,TBEE\,DuEC,DuEKip,DuEOlz,DuEZ\DuEG\DuEKip\,K,DuEK,
TBSE,TBEE\,DuEC,DuEKip,DuEOlz,DuEZ\DuEG\DuEKip\,K,DuEK,
TBEE\,DuEC,DuEKip,DuEOlz,DuEZ\DuEG\DuEKip\,K,DuEK,
TBAE,TBEE\,DuEC,DuEKip,DuEOlz,Ytu,K,DuEK,
TBSE,TBEE\,DuEC,DuEKip,DuEOlz,Ytu,K,DuEK,
TBEE\,DuEC,DuEKip,DuEOlz,Ytu,K,DuEK,
TBEA,TBAA\,YS,DuASay,YS,DuAUy,YS,DuADur,
TBSA,TBAA\,YS,DuASay,YS,DuAUy,YS,DuADur,
TBAA\,YS,DuASay,YS,DuAUy,YS,DuADur,
TBAE,TBEE\,DuEC,DuEOlz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,
TBSE,TBEE\,DuEC,DuEOlz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,
TBEE\,DuEC,DuEOlz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,

TB,E,A,S
E,DuEC,DuEKipYet,DuEOlz,YS,DuEZ\DuEG\DuEKip\,YS,K,DuEK,
E,DuEC,DuEKipYet,DuEOlz,YS,Ytu,YS,K,DuEK,
A,YS,DuASay,YS,DuAUy,YS,DuADur,
E,DuEC,DuEOlz,Ytu,YS,DuASay,YS,DuAUy,YS,DuADur,

146

APPENDIX B.3 POS Tagging Rules

<?xml version="1.0" encoding="utf-8"?>
<Document>
 <Rule RuleId="1" RuleType="sözdizim" RuleState="true">
 <Item ItemType="sıfat" />
 </Rule>
 <Rule RuleId="2" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="3" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zarf" />
 </Rule>
 <Rule RuleId="4" RuleType="sözdizim" RuleState="true">
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="5" RuleType="sözdizim" RuleState="true">
 <Item ItemType="v" />
 </Rule>
 <Rule RuleId="6" RuleType="sözdizim" RuleState="true">
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="7" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zamir" />
 </Rule>
 <Rule RuleId="8" RuleType="sözdizim" RuleState="true">
 <Item ItemType="sıfat" />
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="9" RuleType="sözdizim" RuleState="true">
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="10" RuleType="sözdizim" RuleState="false">
 <Item ItemType="sıfat" />
 <Item ItemType="v" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="11" RuleType="sözdizim" RuleState="true">
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="12" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="13" RuleType="sözdizim" RuleState="true">
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="14" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="15" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 </Rule>

147

APPENDIX B.3 (Cont’d.)

 <Rule RuleId="16" RuleType="sözdizim" RuleState="false">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="17" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="edat" />
 </Rule>
 <Rule RuleId="18" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="19" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="edat" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="20" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="21" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zarf" />
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="22" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zarf" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="23" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zamir" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="24" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zamir" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="25" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zarf" />
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="26" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zarf" />
 <Item ItemType="sıfat" />
 </Rule>
 <Rule RuleId="27" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zarf" />
 <Item ItemType="zarf" />
 </Rule>

148

APPENDIX B.3 (Cont’d.)

 <Rule RuleId="28" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zarf" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="29" RuleType="sözdizim" RuleState="false">
 <Item ItemType="sıfat" />
 <Item ItemType="v" />
 <Item ItemType="sıfat" />
 </Rule>
 <Rule RuleId="30" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zarf" />
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="31" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="32" RuleType="sözdizim" RuleState="true">
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="33" RuleType="sözdizim" RuleState="false">
 <Item ItemType="sıfat" />
 <Item ItemType="n2" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="34" RuleType="sözdizim" RuleState="false">
 <Item ItemType="sıfat" />
 <Item ItemType="nv" />
 <Item ItemType="isim" />
 </Rule>
 <Rule RuleId="35" RuleType="sözdizim" RuleState="false">
 <Item ItemType="sıfat" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="36" RuleType="sözdizim" RuleState="true">
 <Item ItemType="fiil" />
 <Item ItemType="isim" />
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="37" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="38" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="zarf" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 </Rule>

149

APPENDIX B.3 (Cont’d.)

 <Rule RuleId="39" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="zarf" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="40" RuleType="sözdizim" RuleState="true">
 <Item ItemType="edat" />
 </Rule>
 <Rule RuleId="41" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="edat" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="42" RuleType="sözdizim" RuleState="true">
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="edat" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="43" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="44" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="45" RuleType="sözdizim" RuleState="false">
 <Item ItemType="zarf" />
 <Item ItemType="v" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="46" RuleType="sözdizim" RuleState="false">
 <Item ItemType="edat" />
 <Item ItemType="v" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="47" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="48" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>

150

APPENDIX B.3 (Cont’d.)

 <Rule RuleId="49" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="50" RuleType="sözdizim" RuleState="true">
 <Item ItemType="sıfat" />
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="edat" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="51" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="isim" />
 <Item ItemType="edat" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="52" RuleType="sözdizim" RuleState="true">
 <Item ItemType="isim" />
 <Item ItemType="zarf" />
 <Item ItemType="isim" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="53" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zamir" />
 <Item ItemType="v" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 </Rule>
 <Rule RuleId="54" RuleType="sözdizim" RuleState="true">
 <Item ItemType="zamir" />
 <Item ItemType="v" />
 <Item ItemType="zarf" />
 <Item ItemType="fiil" />
 <Item ItemType="n" />
 </Rule>
 <Rule RuleId="55" RuleType="sözdizim" RuleState="true">
 <Item ItemType="fiil" />
 <Item ItemType="fiil" />
 </Rule>

151

APPENDIX C Lists

APPENDIX C.1 Abbreviation List

 <abbr>A</abbr>
 <abbr>AA</abbr>
 <abbr>AAFSE</abbr>
 <abbr>AAM</abbr>
 <abbr>AB</abbr>
 <abbr>ABD</abbr>
 <abbr>ABS</abbr>
 <abbr>ADSL</abbr>
 <abbr>AET</abbr>
 <abbr>AFP</abbr>
 <abbr>AGİK</abbr>
 <abbr>AGİT</abbr>
 <abbr>AI</abbr>
 <abbr>AID</abbr>
 <abbr>AIDS</abbr>
 <abbr>AİHM</abbr>
 <abbr>AİHS</abbr>
 <abbr>AK</abbr>
 <abbr>AKDTYK</abbr>
 <abbr>AKM</abbr>
 <abbr>AKPM</abbr>
 <abbr>Alb</abbr>
 <abbr>Alm</abbr>
 <abbr>AO</abbr>
 <abbr>AOÇ</abbr>
 <abbr>AÖF</abbr>
 <abbr>AP</abbr>
 <abbr>APS</abbr>
 <abbr>Apt</abbr>
 <abbr>ARGE</abbr>
 <abbr>Arş</abbr>
 <abbr>Arş.Gör</abbr>
 <abbr>Arş. Gör</abbr>
 <abbr>As</abbr>
 <abbr>ASELSAN</abbr>
 <abbr>As.İz</abbr>
 <abbr>As. İz</abbr>
 <abbr>ASKİ</abbr>
 <abbr>ASO</abbr>
 <abbr>AŞ</abbr>
 <abbr>A.Ş</abbr>
<abbr>ATM</abbr>
…
…

152

APPENDIX C.2 Root and Stem Lists

APPENDIX C.2.1 Sample Roots

ID Root Name Verb

1 ab TRUE FALSE

2 aba TRUE FALSE

3 abadî TRUE FALSE

4 abajur TRUE FALSE

5 abaküs TRUE FALSE

6 abandone TRUE FALSE

7 abanî TRUE FALSE

8 abanoz TRUE FALSE

9 abaşo TRUE FALSE

10 abat TRUE FALSE

11 Abaza TRUE FALSE

12 abazan TRUE FALSE

13 Abbasî TRUE FALSE

14 abd TRUE FALSE

15 abdal TRUE FALSE

16 aberasyon TRUE FALSE

17 abes TRUE FALSE

18 abide TRUE FALSE

19 abis TRUE FALSE

20 abiye TRUE FALSE

21 abla TRUE FALSE

22 ablak TRUE FALSE

23 ablâtif TRUE FALSE

24 ablatya TRUE FALSE

25 abli TRUE FALSE

26 abluka TRUE FALSE

27 abone TRUE FALSE

28 abonman TRUE FALSE

29 aborda TRUE FALSE

30 abra TRUE TRUE

31 abraş TRUE FALSE

32 abril TRUE FALSE

33 abstraksiyonizm TRUE FALSE

34 abstre TRUE FALSE

35 absürt TRUE FALSE

36 abu TRUE FALSE

37 abuli TRUE FALSE

38 abullabut TRUE FALSE

39 abus TRUE FALSE

APPENDIX C.2.2 Sample Stems

ID Gov Ozelisim isim Fiil Sifat Zamir Unlem Edat Zarf Baglac YFiil Birlesik Orjinal

1 a FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

2 ab FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3 aba TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

4 aba güreşi FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

5 abacı FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

6 abacılık FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

7 abadi FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

8 abajur FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

9 abajurcu FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

10 abajurculuk FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

11 abajurlu FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

12 abajursuz FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

13 abaküs FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

14 abalı FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

15 aban FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

16 abandır FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

17 abandırma FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

18 abandone FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

19 abani FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

20 abanma FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

21 abanoz FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

22 abanozgiller FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

23 abanozlaş FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

24 abanozlaşma FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

25 abart FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

153

APPENDIX C.2.2 (Cont’d.)

ID Gov Ozelisim isim Fiil Sifat Zamir Unlem Edat Zarf Baglac YFiil Birlesik Orjinal

26 abartı FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

27 abartıcı FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

28 abartıcılık FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

29 abartıl FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

30 abartılı FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

31 abartılma FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

32 abartısız FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

33 abartısızlık FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

34 abartış FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

35 abartma FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

36 abartmacı FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

37 abartmacılık FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

38 abartmalı FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

39 abartmasız FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

40 abasız FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

154

APPENDIX C.2.3 Sample Modified Roots / Stems According to Morphophonemic Processes

Kelime Ozelisim isim Fiil Sifat Zamir Unlem Edat Zarf Baglac YFiil Birlesik Orjinal Link İsim_kok Fiil_kok Turetme

acı\ kuvved FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE kuvvet-> kuvved

açacağ FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE açacak->açacağ

açık\ hesab FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE hesap-> hesab

açık\ kard FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE kart-> kard

açık\ sened FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE senet->\ sened

adağ FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE adak->adağ

adab FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE adap->adab

adaved FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE adavet->adaved

aded FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE adet->aded

afad FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE afat->afad

afed FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE afet->afed

afiyed FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE afiyet->afiyed

ağ\ yatağ FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE yatak-> yatağ

ağac FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE ağaç->ağac

ağbeneğ FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE ağbenek->ağbeneğ

ağılı\ böceğ FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE böcek->böceğ

ağır\ aksağ FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE aksak->aksağ

ağır\ arac FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE araç->arac

ağırayağ FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE ağırayak->ağırayağ

ahbab FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE ahbap->ahbab

ahenğ FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE ahenk->ahenğ

aheng FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE ahenk->aheng

ahfad FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE ahfat->ahfad

ak\ beneğ FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE ak benek->ak\
beneğ

akağac FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE akağaç->akağac

155

156

APPENDIX C.3 Tags

Suffix Tag Expression
Ad A Noun
Özel ad AOz Proper Noun
Genel ad AG Common Noun
Ad Öbeği AO Noun Phrase

Eylem E Verb
Geçişsiz Eylem EGs Intransitive Verb
Geçişli Eylem EGl Transitive Verb
Eylem Öbeği EO Verb Phrase

Sıfat S Adjective
Sıfat Öbeği SO Adjective Phrase
Niteleme sıfatı SNit Qualifying Adjective
Belirtme Sıfatı SBel Descriptive Adjectives
 - Gösterme SBelGos - Demonstrative
 - Sayı SBelSay - Numerical
 - Belgisiz SBelBlg - Indefinite
 - Soru SBelSor - Interrogative
Unvan sıfatı SUnv Honorific Adjective
Pekiştirme sıfatı SPek Intensifier Adjective
Küçültme SKuc Dimunitive Adjective

Belirteç B Adverb
Zaman Belirteci BZam Adverb of Time
Yer Belirteci BYer Adverb of Place
Durum Belirteci BDur Adverb of Manner
Nicelik Belirteci BNic Adverb of Quantity
Soru Belirteci BSor Interrogative Adverb
Belirteç Öbeği BO Adverb Phrase

Bağlaç Bag Conjunction
Ekleme BagEk Addition
Genişletme BagGen Expansion
Seçenek BagSec Option
Karşıtlık BagKar Contrast
Neden Sonuç BagNs Cause and Effect

İlgeç I Postposition
İlgeç Öbeği IO Postposition Phrase

Adıl Adil Pronoun
Kişi AdilK Personal
Gösterme AdilGos Demonstrative
Belgisiz AdilBlg Indefinite
Soru AdilSor Interrogative
İlgi AdilIlgi Relative
İyelik AdilIye Possesive

157

APPENDIX C.3 (Cont’d.)

Ad Çekim Biçimbirimleri (Ad Ulamları)
(Nominal Inflection Morphemes (Noun Grammatical Categories))

Suffix Tag Expression

Sayı DuASay
{-lAr} DuASayC Adlara eklenen çoğul eki (Plural Suffix)
{-Ø} DuASayØ Tekil adlar (Singular Suffix)

Uyum DuAUy Possesive Suffixes
{-(I)m} DuAUyKT1 1. Tekil kişi iyelik eki (1st person singular)
{-(I)n} / {-(I)nIz} DuAUyKT2 2. Tekil kişi iyelik eki (2nd person singular)
{-(s)I(n)} DuAUyKT3 3. Tekil kişi iyelik eki (3rd person singular)
{-(I)mIz} DuAUyKC1 1. Çoğul kişi iyelik eki (1st person plural)
{-(I)nIz} DuAUyKC2 2. Çoğul kişi iyelik eki (2nd person plural)
{-lArI(n)} DuAUyKC3 3. Çoğul kişi iyelik eki (3rd person plural)

Durum DuADur Case
{-Ø} DuADurYal Yalın Durum (Nominative Case)
{-(y)I} DuADurBel Belirtme durumu (Accusative Case)
{-(y)A} DuADurYon Yönelme durumu (Dative Case)
{-DA} DuADurBul Bulunma durumu (Locative Case)
{-Dan} DuADurCik Çıkma durumu (Ablative Case)
{-(n)In/-Im} DuADurTam Tamlayan durumu (Genitive Case)

Eylem Çekim Biçimbirimleri – (EYLEM ULAMLARI)
(Verbal Inflection Morphemes– (Verb Categories))

Zaman DuEZ
{-DI} DuEZGD Di’li Geçmiş Zaman (Past Tense with Dİ)
{-mIş} DuEZGM Miş’li Geçmiş Zaman (Past Tense with MİŞ)
{-(A, I)r)} DuEZGen Geniş Zaman (Aorist)
{-(i)yor} DuEZSim Şimdiki Zaman (Present Tense)
{-EcEK} DuEZGel Gelecek Zaman (Future Tense)

Görünüş DuEG
{-DI} DuEGBitD Bitmişlik Görünüşü Di’li (Perfect aspect - DI)
{-mIş} DuEGBitM Bitmişlik Görünüşü Miş’li (Perfect aspect - MIŞ)
{-(A, I)r)} DuEGBtmsR Bitmemişlik Görünüşü (Non-perfect)
{-(i)yor} DuEGSur Sürerlik Görünüşü (Progressive)
{-EcEK} DuEGBtmsE Bitmemişlik Görünüşü (Non-perfect)

Kiplik DuEKip
{-sA} DuEKipSa Dilek kipi (Subjunctive)
{-A} DuEKipA İstek Kipi (Optative)
{-mAlI} DuEKipMali Gereklilik Kipi (Necessitative)
{-Ø} DuEKipEmir Emir Kipi (Imperative)

Çatı DuEC Voice
Ø DuECEt Etken (Active)
{-Il}, {-(I)n} DuECEdil Edilgen (Passive)
{-(I)n}, {-Il} DuECDonus Dönüşlü (Reflexive)
{-(I)ş} DuECIstes İşteş (Reciprocal)
{(A, I) -r/-t/-rt}, {-DIr} DuECEttir Ettirgen (Causative)

158

APPENDIX C.3 (Cont’d.)

Eylem Çekim Biçimbirimleri – (EYLEM ULAMLARI) (Cont’d.)
(Verbal Inflection Morphemes– (Verb Categories))

Suffix Tag Expression

Olumsuzluk DuEOlz Negation
{-mA/-m} DuEOlz

Kişi 1. Grup (Person
Group 1)

DuEKGr1 DuEZGD ve DuEKipSa’dan sonra
(After DuEZGD and DuEKipSa)

{-m} DuEKGr1T1 1. Tekil kişi (1st person singular)
{-n} DuEKGr1T2 2. Tekil kişi (2nd person singular)
{-Ø} DuEKGr1T3 3. Tekil kişi (3rd person singular)
{-k} DuEKGr1C1 1. Çoğul kişi (1st person plural)
{-n-Iz} DuEKGr1C2 2. Çoğul kişi (2nd person plural)
{-lAr} DuEKGr1C3 3. Çoğul kişi (3rd person plural)

Kişi 2. Grup (Person
Group 2)

DuEKGr2 DuEZGen / DuEZSim / DuEZGel /
DuEKipMali’dan sonra (After DuEZGen /
DuEZSim / DuEZGel / DuEKipMali)

{-(y)Im} DuEKGr2T1 1. Tekil kişi (1st person singular)
{-sIn} DuEKGr2T2 2. Tekil kişi (2nd person singular)
{-Ø} DuEKGr2T3 3. Tekil kişi (3rd person singular)
{-(y)Iz} DuEKGr2C1 1. Çoğul kişi (1st person plural)
{-sIn-Iz} DuEKGr2C2 2. Çoğul kişi (2nd person plural)
{-lAr} DuEKGr2C3 3. Çoğul kişi (3rd person plural)

Kişi 3. Grup DuEKGr3 DuEKipA’dan sonra
{-(y)Im} DuEKGr3T1 1. Tekil kişi (1st person singular)
{-sIn} DuEKGr3T2 2. Tekil kişi (2nd person singular)
{-Ø} DuEKGr3T3 3. Tekil kişi (3rd person singular)
{-lIm} DuEKGr3C1 1. Çoğul kişi (1st person plural)
{-sIn-Iz} DuEKGr3C2 2. Çoğul kişi (2nd person plural)
{-lAr} DuEKGr3C3 3. Çoğul kişi (3rd person plural)

Kişi 4. Grup DuEKGr4 DuEKipEmir’den sonra
— DuEKGr3T1 1. Tekil kişi (1st person singular)
{-Ø} DuEKGr3T2 2. Tekil kişi (2nd person singular)
{-sIn} DuEKGr3T3 3. Tekil kişi (3rd person singular)
— DuEKGr3C1 1. Çoğul kişi (1st person plural)
{-In}, {-In-Iz} DuEKGr3C2 2. Çoğul kişi (2nd person plural)
{-sIn-lAr} DuEKGr3C3 3. Çoğul kişi (3rd person plural)
{-EcEK} DuEKGr3T1 Gelecek Zaman 1. Tekil kişi (1st person

singular in Future Tense)

159

APPENDIX C.3 (Cont’d.)

Türetim Biçimbirimleri (Yapım Ekleri)
(Derivational Morphemes (Derivation Suffixes))

Suffix Tag Expression

-leyin TBAB:leyin Addan Belirteç (Noun to Adverb) (sabah sabahleyin)
-A/E TBAE:a Addan Eylem (Noun to Verb) (boş boşa-)
-A/E TBEA:a Eylemden Ad (Verb to Noun) (yar- yara)
-AcAk TBEA:acak Eylemden Ad (Verb to Noun) (iç- içecek)
-AcAn TBAS:acan Addan Sıfat (Noun to Adjective) (baba babacan)
-AcAn TBES:acan Eylem Sıfat (Verb to Adjective) (sev- sevecen)
-AğAn TBES:agan Eylemden Sıfat (Verb to Adjective) (dur- durağan)
-AlA TBEE:ala Eylemden Eylem (Verb to Verb) (serp- serpele-)
-AlgA TBEA:alga Eylemden Ad (Verb to Noun) (çiz- çizelge)
-AmAk TBEA:amak Eylemden Ad (Verb to Noun) (bas- basamak)
-An TBEA:an Eylemden Ad (Verb to Noun) (çarp- çarpan)
-AnAk TBEA:anak Eylemden Ad (Verb to Noun) (yet- yetenek)
-CA TBAA:ca Addan Ad (Noun to Noun) (çekme çekmece)
-CA TBEA:ca Eylemden Ad (Verb to Noun) (düşün- düşünce)
-CA TBSS:ca Sıfattan Sıfat (Adjective to Adjective) (yavaş yavaşça)
-CAk TBAA:cak Addan Ad (Noun to Noun) (yavru yavrucak)
-CI TBAA:ci Addan Ad (Noun to Noun) (emek emekçi)
-CIk TBAA:cik Addan Ad (Noun to Noun) (ada adacık)
-CIl TBAA:cil Addan Ad (Noun to Noun) (balık balıkçıl)
-(A)Ç TBAA:ac Addan Ad (Noun to Noun) (ana anaç)
-(A)Ç TBEA:ac Eylemden Ad (Verb to Noun) (bağla bağlaç)
-DA TBBE:da Yansıma (Onomatopoeic) (şapır şapırda)
-DA TBAA:da Addan Ad (Noun to Noun) (göz gözde)
-DAm TBAA:dam Addan Ad (Noun to Noun) (yön yöntem)
-Dan TBAS:dan Addan Sıfat (Noun to Adjective) (iç içten)
-DAş TBAA:das Addan Sıfat (Noun to Adjective) (çağ çağdaş)
-DI TBEA:di Eylemden Ad (Verb to Noun) (uy- uydu)
-DIk TBEA:dik Eylemden Ad (Verb to Noun) (tanı- tanıdık)
-GA TBEA:ga Eylemden Ad (Verb to Noun) (diz- dizge)
-GAç TBEA:gac Eylemden Ad (Verb to Noun) (süz- süzgeç)
-GAç TBES:gac Eylemden Sıfat (Verb to Adjective) (utan- utangaç)
-GAn TBES:gan Eylemden Sıfat (Verb to Adjective) (atıl- atılgan)
-GI TBEA:gi Eylemden Ad (Verb to Noun) (sil- silgi)
-GIç TBEA:gic Eylemden Ad (Verb to Noun) (dal- dalgıç)
-GIç TBES:gic Eylemden Sıfat (Verb to Adjective) (bil- bilgiç)
-GIn TBES:gin Eylemden Sıfat (Verb to Adjective) (sar- sargın)
-I TBEA:i Eylemden Ad (Verb to Noun) (yap- yapı)
-I TBEE:i Eylemden Eylem (kaz- kaz-ı-)
-ICI TBEA:ici Eylemden Ad (Verb to Noun) (koş- koşucu)
-ICI TBES:ici Eylemden Sıfat (Verb to Adjective) (üz- üzücü)
-IlI TBES:ili Eylemden Sıfat (Verb to Adjective) (as- asılı)
-(y)Iş TBEA:is Eylemden Ad (Verb to Noun) (yağ- yağış)
-Iz TBAA:iz Addan Ad (Noun to Noun) (yavrucak yavrucağız)
-(I)K TBAE:k Addan Eylem (göz gözük-)
-(A)K TBAA:k Addan Ad (Noun to Noun) (sol solak)
-(A)K TBEA:k Eylemden Ad (Verb to Noun) (otla- otlak)
-Kır TBAA:kir Yansıma Addan Ad (Noun to Noun) (fış fışkır-)
-(A)l TBAE:l Addan Eylem (Noun to Verb) (koca kocal-)
-(A)l TBEA:l Eylemden Ad (Verb to Noun) (oku- okul)

160

APPENDIX C.3 (Cont’d.)

Türetim Biçimbirimleri (Yapım Ekleri)
Suffix Tag Expression

-(A)l TBAA:l Addan Ad (Noun to Noun) (kum kumul)
-lA TBAE:la Addan Eylem (Noun to Verb) (ak akla-)
-LI TBAS:li Addan Sıfat (Noun to Adjective) (ün ünlü)
-sIz TBAS:siz Addan Sıfat (Noun to Adjective) (ün ünsüz)
-lIK TBAA:lik Addan Ad (Noun to Noun) (taş taşlık)
-(A/I)M TBEA:am Eylemden Ad (Verb to Noun) (düzle- düzlem)
-mA TBEA:ma Eylemden Ad (Verb to Noun) (yaz- yazma)
-mAcA TBEA:maca Eylemden Ad (Verb to Noun) (düz- düzmece)
-mAç TBEA:mac Eylemden Ad (Verb to Noun) (de- demeç)
-mAk TBEA:ma Eylemden Ad (Verb to Noun) (ye- yemek)
-mAn TBEA:man Eylemden Ad (Verb to Noun) (az- azman)
-mAn TBAS:man Addan Ad (Noun to Noun) (uz uzman)
-mAz TBEA:maz Eylemden Ad (Verb to Noun) (aç- açmaz)
-mIk TBEA:mik Eylemden Ad (Verb to Noun) (kıy- kıymık)
-mIş TBEA:mis Eylemden Ad (Verb to Noun) (er- ermiş)
-msA TBAE:msa Addan Eylem (Noun to Verb) (ben benimse)
-msA TBSE:msa Sıfattan Eylem (Adjective to Verb) (az azımsa)
-msA TBEE:msa Eylemden Eylem (Verb to Verb) (gül- gülümse-)
-msI TBSS:msi Sıfattan Sıfat (Adjective to Adjective) (sarı sarımsı)
-msI TBAS:msi Addan Sıfat (Noun to Adjective) (hamur hamurumsu)
-mtrak TBSS:mtrak Sıfattan Sıfat (Adjective to Adjective) (acı acımtrak)
-(A/I)n TBEA:in Eylemden Ad (Verb to Noun) (tüt tütün)
-(A/I)n TBAA:in Addan Ad (Noun to Noun) (kök köken)
-(I)ncI TBAS:inci Addan Sıfat (Noun to Adjective) (bir birinci)
-(I)nç TBEA:nc Eylemden Ad (Verb to Noun) (bas- basınç)
-(I)ntI TBEA:nti Eylemden Ad (Verb to Noun) (yay- yayıntı)
-(A/I)r TBAE:r Addan Eylem (Noun to Verb) (deli delir-)
-(A/I)r TBEA:r Eylemden Ad (Verb to Noun) (dön- döner)
-rA TBAB:ra Addan belirteç (Noun to Adverb) (son sonra)
-rAk TBAS:rak Addan Sıfat (Noun to Adjective) (küçük küçürek)
-sA TBAE:sa Addan Eylem (Noun to Verb) (su susa)
-sAk TBEA:sak Eylemden Ad (Verb to Noun) (tut- tutsak)
-sAk TBAS:sak Addan Sıfat (Noun to Adjective) (ırak ıraksak)
-sAl TBEA:sal Eylemden Ad (Verb to Noun) (uy- uysal)
-sAl TBAS:sal Addan Sıfat (Noun to Adjective) (bölge bölgesel)
-sI TBEA:si Eylemden Ad (Verb to Noun) (tüt- ütsü)
-sI TBAS:si Addan Sıfat (Noun to Adjective) (diken dikensi)
-sI TBEE:si Eylemden Eylem (Verb to Verb) (yan- yansı-)
-(A/I)t TBEA:t Eylemden Ad (Verb to Noun) (um- umut)
-(A/I)t TBAS:t Addan Sıfat (Noun to Adjective) (yaş yaşıt)
-tAy TBEA:tay Eylemden Ad (Verb to Noun) (danış- danıştay)
-tAy TBAA:tay Addan Ad (Noun to Noun) (kurul kurultay)
-tI TBEA:ti Eylemden Ad (Verb to Noun) (doğrul- doğrultu)
-(A)v TBEA:av Eylemden Ad (Verb to Noun) (işle- işlev)
-(A)y TBEA:ay Eylemden Ad (Verb to Noun) (dene- deney)
-(A)y TBAA:ay Addan Ad (Noun to Noun) (yüz yüzey)
-(I)z TBAA:z Addan Ad (Noun to Noun) (iki ikiz)

161

APPENDIX C.4 Sample Outputs

APPENDIX C.4.1 Sentence Boundary Detection

APPENDIX C.4.1.1 Sample Document

Hayat bazen festival gibi... Etrafa bir bakıyorsunuz ki...
Oooo! Tam bir festival havası. Her kafadan bir ses çıkıyor.
Dünyanın bir ucunda da aynı, burnunuzun dibinde de... Festival
denince aklınıza karnaval havası, havai fişekler, günlerce
süren şarkılar, türküler, tiyatrolar geliyor değil mi? Hayat
da böyle işte. Tek fark, katılmak istesek de istemesek de
festival alayının içindeyiz biz de! Tarihte de festivaller
işte böyle hayat bağlantısıyla doğmuş zaten. Doğumu, yeniden
canlanmayı simgeleyen bahar aylarında ve ölümü simgeleyen kış
aylarında başlarmış Eski Yunan'da... Ondan önce ise ilk insan
döneminde av dönüşü yapılan ritüeller de tiyatronun doğuşuyla
birlikte ilk görüldüğü dönemler. Zamanla değişe değişe
günümüze kadar yol almış bu festivaller. Rio Karnavalı'ndan
sarımsak, karpuz, kavun festivaline kadar da şekil
değiştirerek, farklılık göstererek hem de... Tarihin ve
mitolojinin bize söylediklerine dönecek olursak... Eski
Yunan'da ölümsüz tanrıların pek faydalı yaratıklar olduğuna
inanılmazdı. Zeus; korkunç şimşeğini düşüncesizce kullanan,
genç kızların peşine düşen bir tanrıydı. Ares; savaştan, kan
dökülmesinden hoşlanırdı. Hera; kıskanç olmaya görsün, adalet
diye bir şey tanımazdı. Athena da çarpışmaları severdi;
Aphrodite tuzak kurmakta, ağını atmakta pek ustaydı doğrusu.
Bu açıdan ele alınınca ötekilerden ayrılan iki tanrı vardı;
insanoğlunun en iyi arkadaşıydı onlar: Kronos'la Rhea'nın
kızları, Bereket, Başak Tanrıçası Demeter'le Şarap Tanrısı
Dionysos. Demeter, Dionysos'tan daha yaşlıydı. Buğdaylar,
altın üzümler toplandıktan sonra ne olur? Görünürde başaklar,
asmalar kalmayınca ne olur? Tarlaların yeşilliğinin yerini
kara kırağı alınca ne olur? İnsanlar, kendi kendilerine bu
soruları sorarlardı işte. Günler, geceler, mevsimler geçer,
yıldızlar döner, bu olay hep tekrarlanırdı.Demeter'le Dionysos
hasat günlerinin mutlu tanrılarıydılar, ama ya kışın ne
yaparlardı? Kışın acı çekerdi onlar, toprak da üzüntülere
gömülürdü. Bunun neden böyle olduğunu araştıranlar, kaynağı
bazı öykülerde bulmuşlar. Sonuçta tanrının acılarını ve
sevinçlerini canlandıran dinsel bayramlar ortaya
çıkmış.Dionysos törenleri, insanlara yalnız mutluluk içinde
yaşamayı değil, iyi bir umutla ölmeyi de öğretirmiş. Hiçbir
bayram ve törenle karşılaştırılmayacak olan bu şölenler
asmalar yeşermeye yüz tutunca başlar ve beş gün sürermiş.
Barış ve kardeşlik havası eser, tutsaklar salıverilirmiş. Halk
açık havada, bir tiyatroda toplanır, oynanan oyunları
izlermiş. Burası Ege... Mitoloji kahramanları buradan da
geçmiş. Tıpkı Dionysos gibi. Kaynaklar, Lade Deniz Savaşı'nı
yöneten komutan Dionysos'un Phokaialı yani Foçalı olduğunu
söylüyor. Bu komutanın da ismini mitolojinin en büyük
kahramanlarından “Şarap Tanrısı” Dionysos'tan aldığını...

162

APPENDIX C.4.1.1 (Cont’d.)

Dolayısıyla Dionysos'un Foçalı olduğunu, festival
alaylarının ilk buralardan da geçtiğini tahmin edebiliriz
biz de! Sözü artık Foça Festivali'ne bağlayabilirim... Bugün
başlayacak Ağustos'ta sona erecek. Resim sergisinden şan
dinletisine, söyleşiden Foça kazıları gezisine, folklor
gösterilerinden panele, şiir dinletisine, spor
karşılaşmalarına ve Funda Arar, Ferhat Göçer, Edip Akbayram
konserine kadar onlarca etkinlik var. Bir başka festival ise
Ayvalık'ta... 22-30 Ağustos arasındaki kültür sanat
günlerinde her türlü sanatsal beğeniye uygun etkinlik
programda düşünülmüş. Ayşe Kulin'le ve İnci Aral'la
söyleşiden İdil Biret konserine kadar... Sergi, şiir
dinletisi hatta Yol Arkadaşım dizisi oyuncularıyla sohbet
imkanı bile. Emre Kınay Tiyatrosu'nun “Aşk Her Yerde”si,
BKM'nin “Çok Güzel Hareketler Bunlar”ı, Sunay Akın'ın tek
kişilik gösterisi ve Kedi Tiyatrosu'nun “Kibarlık Budalası”
da festivalde. Hatta Sezen Aksu, Bengü ve Onur Akın konseri
de... Etrafta festival havası var dememiş miydim!

163

APPENDIX C.4.1.2 Text Output

1_____ Hayat bazen festival gibi....
2_____ Etrafa bir bakıyorsunuz ki....
3_____ Oooo!
4_____ Tam bir festival havası.
5_____ Her kafadan bir ses çıkıyor.
6_____ Dünyanın bir ucunda da aynı, burnunuzun dibinde de....
7_____ Festival denince aklınıza karnaval havası, havai
fişekler, günlerce süren şarkılar, türküler, tiyatrolar
geliyor değil mi?
8_____ Hayat da böyle işte.
9_____ Tek fark, katılmak istesek de istemesek de festival
alayının içindeyiz biz de!
10_____ Tarihte de festivaller işte böyle hayat bağlantısıyla
doğmuş zaten.
11_____ Doğumu, yeniden canlanmayı simgeleyen bahar aylarında
ve ölümü simgeleyen kış aylarında başlarmış Eski Yunan'da....
12_____ Ondan önce ise ilk insan döneminde av dönüşü yapılan
ritüeller de tiyatronun doğuşuyla birlikte ilk görüldüğü
dönemler.
13_____ Zamanla değişe değişe günümüze kadar yol almış bu
festivaller.
14_____ Rio Karnavalı'ndan sarımsak, karpuz, kavun festivaline
kadar da şekil değiştirerek, farklılık göstererek hem de....
15_____ Tarihin ve mitolojinin bize söylediklerine dönecek
olursak....
16_____ Eski Yunan'da ölümsüz tanrıların pek faydalı
yaratıklar olduğuna inanılmazdı.
17_____ Zeus; korkunç şimşeğini düşüncesizce kullanan, genç
kızların peşine düşen bir tanrıydı.
18_____ Ares; savaştan, kan dökülmesinden hoşlanırdı.
19_____ Hera; kıskanç olmaya görsün, adalet diye bir şey
tanımazdı.
20_____ Athena da çarpışmaları severdi; Aphrodite tuzak
kurmakta, ağını atmakta pek ustaydı doğrusu.
21_____ Bu açıdan ele alınınca ötekilerden ayrılan iki tanrı
vardı; insanoğlunun en iyi arkadaşıydı onlar: Kronos'la
Rhea'nın kızları, Bereket, Başak Tanrıçası Demeter'le Şarap
Tanrısı Dionysos.
22_____ Demeter, Dionysos'tan daha yaşlıydı.
23_____ Buğdaylar, altın üzümler toplandıktan sonra ne olur?
24_____ Görünürde başaklar, asmalar kalmayınca ne olur?
25_____ Tarlaların yeşilliğinin yerini kara kırağı alınca ne
olur?
26_____ İnsanlar, kendi kendilerine bu soruları sorarlardı
işte.
27_____ Günler, geceler, mevsimler geçer, yıldızlar döner, bu
olay hep tekrarlanırdı.
28_____ Demeter'le Dionysos hasat günlerinin mutlu
tanrılarıydılar, ama ya kışın ne yaparlardı?
29_____ Kışın acı çekerdi onlar, toprak da üzüntülere
gömülürdü.
30_____ Bunun neden böyle olduğunu araştıranlar, kaynağı bazı
öykülerde bulmuşlar.

164

APPENDIX C.4.1.2 (Cont’d.)

31_____ Sonuçta tanrının acılarını ve sevinçlerini
canlandıran dinsel bayramlar ortaya çıkmış.
32_____ Dionysos törenleri, insanlara yalnız mutluluk içinde
yaşamayı değil, iyi bir umutla ölmeyi de öğretirmiş.
33_____ Hiçbir bayram ve törenle karşılaştırılmayacak olan bu
şölenler asmalar yeşermeye yüz tutunca başlar ve beş gün
sürermiş.
34_____ Barış ve kardeşlik havası eser, tutsaklar
salıverilirmiş.
35_____ Halk açık havada, bir tiyatroda toplanır, oynanan
oyunları izlermiş.
36_____ Burası Ege....
37_____ Mitoloji kahramanları buradan da geçmiş.
38_____ Tıpkı Dionysos gibi.
39_____ Kaynaklar, Lade Deniz Savaşı'nı yöneten komutan
Dionysos'un Phokaialı yani Foçalı olduğunu söylüyor.
40_____ Bu komutanın da ismini mitolojinin en büyük
kahramanlarından “Şarap Tanrısı” Dionysos'tan aldığını....
41_____ Dolayısıyla Dionysos'un Foçalı olduğunu, festival
alaylarının ilk buralardan da geçtiğini tahmin edebiliriz biz
de!
42_____ Sözü artık Foça Festivali'ne bağlayabilirim....
43_____ Bugün başlayacak Ağustos'ta sona erecek.
44_____ Resim sergisinden şan dinletisine, söyleşiden Foça
kazıları gezisine, folklor gösterilerinden panele, şiir
dinletisine, spor karşılaşmalarına ve Funda Arar, Ferhat
Göçer, Edip Akbayram konserine kadar onlarca etkinlik var.
45_____ Bir başka festival ise Ayvalık'ta....
46_____ 22-30 Ağustos arasındaki kültür sanat günlerinde her
türlü sanatsal beğeniye uygun etkinlik programda düşünülmüş.
47_____ Ayşe Kulin'le ve İnci Aral'la söyleşiden İdil Biret
konserine kadar....
48_____ Sergi, şiir dinletisi hatta Yol Arkadaşım dizisi
oyuncularıyla sohbet imkanı bile.
49_____ Emre Kınay Tiyatrosu'nun “Aşk Her Yerde”si, BKM'nin
“Çok Güzel Hareketler Bunlar”ı, Sunay Akın'ın tek kişilik
gösterisi ve Kedi Tiyatrosu'nun “Kibarlık Budalası” da
festivalde.
50_____ Hatta Sezen Aksu, Bengü ve Onur Akın konseri de....
51_____ Etrafta festival havası var dememiş miydim!

165

APPENDIX C.4.1.3 XML Output

- <F N="MD_Banu Şen_2008.08.28_31068.txt">
- <P I="0">
 <S I="0">Hayat bazen festival gibi ...</S>
 <S I="1">Etrafa bir bakıyorsunuz ki ...</S>
 <S I="2">Oooo !</S>
 <S I="3">Tam bir festival havası .</S>
 <S I="4">Her kafadan bir ses çıkıyor .</S>
 <S I="5">Dünyanın bir ucunda da aynı , burnunuzun dibinde de
...</S>
 <S I="6">Festival denince aklınıza karnaval havası , havai
fişekler , günlerce süren şarkılar , türküler , tiyatrolar
geliyor değil mi ?</S>
 <S I="7">Hayat da böyle işte .</S>
 <S I="8">Tek fark , katılmak istesek de istemesek de
festival alayının içindeyiz biz de !</S>
 <S I="9">Tarihte de festivaller işte böyle hayat
bağlantısıyla doğmuş zaten .</S>
 <S I="10">Doğumu , yeniden canlanmayı simgeleyen bahar
aylarında ve ölümü simgeleyen kış aylarında başlarmış Eski
Yunan'da ...</S>
 <S I="11">Ondan önce ise ilk insan döneminde av dönüşü
yapılan ritüeller de tiyatronun doğuşuyla birlikte ilk
görüldüğü dönemler .</S>
 <S I="12">Zamanla değişe değişe günümüze kadar yol almış bu
festivaller .</S>
 <S I="13">Rio Karnavalı'ndan sarımsak , karpuz , kavun
festivaline kadar da şekil değiştirerek , farklılık göstererek
hem de ...</S>
 <S I="14">Tarihin ve mitolojinin bize söylediklerine dönecek
olursak ...</S>
 <S I="15">Eski Yunan'da ölümsüz tanrıların pek faydalı
yaratıklar olduğuna inanılmazdı .</S>
 <S I="16">Zeus ; korkunç şimşeğini düşüncesizce kullanan ,
genç kızların peşine düşen bir tanrıydı .</S>
 <S I="17">Ares ; savaştan , kan dökülmesinden hoşlanırdı .
</S>
 <S I="18">Hera ; kıskanç olmaya görsün , adalet diye bir şey
tanımazdı .</S>
 <S I="19">Athena da çarpışmaları severdi ; Aphrodite tuzak
kurmakta , ağını atmakta pek ustaydı doğrusu .</S>
 <S I="20">Bu açıdan ele alınınca ötekilerden ayrılan iki
tanrı vardı ; insanoğlunun en iyi arkadaşıydı onlar: Kronos'la
Rhea'nın kızları , Bereket , Başak Tanrıçası Demeter'le Şarap
Tanrısı Dionysos .</S>
 <S I="21">Demeter , Dionysos'tan daha yaşlıydı .</S>
 <S I="22">Buğdaylar , altın üzümler toplandıktan sonra ne
olur ?</S>
 <S I="23">Görünürde başaklar , asmalar kalmayınca ne olur
?</S>
 <S I="24">Tarlaların yeşilliğinin yerini kara kırağı alınca
ne olur ?</S>
 <S I="25">İnsanlar , kendi kendilerine bu soruları
sorarlardı işte .</S>

166

APPENDIX C.4.1.3 (Cont’d.)

 <S I="26">Günler , geceler , mevsimler geçer , yıldızlar
döner , bu olay hep tekrarlanırdı .</S>
 <S I="27">Demeter'le Dionysos hasat günlerinin mutlu
tanrılarıydılar , ama ya kışın ne yaparlardı ?</S>
 <S I="28">Kışın acı çekerdi onlar , toprak da üzüntülere
gömülürdü .</S>
 <S I="29">Bunun neden böyle olduğunu araştıranlar , kaynağı
bazı öykülerde bulmuşlar .</S>
 <S I="30">Sonuçta tanrının acılarını ve sevinçlerini
canlandıran dinsel bayramlar ortaya çıkmış .</S>
 <S I="31">Dionysos törenleri , insanlara yalnız mutluluk
içinde yaşamayı değil , iyi bir umutla ölmeyi de öğretirmiş
.</S>
 <S I="32">Hiçbir bayram ve törenle karşılaştırılmayacak olan
bu şölenler asmalar yeşermeye yüz tutunca başlar ve beş gün
sürermiş .</S>
 <S I="33">Barış ve kardeşlik havası eser , tutsaklar
salıverilirmiş .</S>
 <S I="34">Halk açık havada , bir tiyatroda toplanır ,
oynanan oyunları izlermiş .</S>
 <S I="35">Burası Ege ...</S>
 <S I="36">Mitoloji kahramanları buradan da geçmiş .</S>
 <S I="37">Tıpkı Dionysos gibi .</S>
 <S I="38">Kaynaklar , Lade Deniz Savaşı'nı yöneten komutan
Dionysos'un Phokaialı yani Foçalı olduğunu söylüyor .</S>
 <S I="39">Bu komutanın da ismini mitolojinin en büyük
kahramanlarından Şarap Tanrısı Dionysos'tan aldığını ...</S>
 <S I="40">Dolayısıyla Dionysos'un Foçalı olduğunu , festival
alaylarının ilk buralardan da geçtiğini tahmin edebiliriz biz
de !</S>
 <S I="41">Sözü artık Foça Festivali'ne bağlayabilirim ...
</S>
 <S I="42">Bugün başlayacak Ağustos'ta sona erecek .</S>
 <S I="43">Resim sergisinden şan dinletisine , söyleşiden
Foça kazıları gezisine , folklor gösterilerinden panele , şiir
dinletisine , spor karşılaşmalarına ve Funda Arar , Ferhat
Göçer , Edip Akbayram konserine kadar onlarca etkinlik var .
</S>
 <S I="44">Bir başka festival ise Ayvalık'ta ... </S>
 <S I="45">22 30 Ağustos arasındaki kültür sanat günlerinde
her türlü sanatsal beğeniye uygun etkinlik programda
düşünülmüş . </S>
 <S I="46">Ayşe Kulin'le ve İnci Aral'la söyleşiden İdil
Biret konserine kadar ... </S>
 <S I="47">Sergi , şiir dinletisi hatta Yol Arkadaşım dizisi
oyuncularıyla sohbet imkanı bile .</S>
 <S I="48">Emre Kınay Tiyatrosu'nun Aşk Her Yerde si ,
BKM'nin Çok Güzel Hareketler Bunlar ı , Sunay Akın'ın tek
kişilik gösterisi ve Kedi Tiyatrosu'nun Kibarlık Budalası da
festivalde .</S>
 <S I="49">Hatta Sezen Aksu , Bengü ve Onur Akın konseri
de... </S>
 <S I="50">Etrafta festival havası var dememiş miydim !</S>
 </P>
 </F>

167

APPENDIX C.4.1.4 Parsed with Wordforms

- <File OriginalName="MD_Banu Şen_2008.08.28_31068.txt">
- <P I="0">
- <S Index="0">
 Hayat bazen festival gibi ...

 <Word Index="0">Hayat</Word>
 <Word Index="1">bazen</Word>
 <Word Index="2">festival</Word>
 <Word Index="3">gibi</Word>
 <Word Index="1">...</Word>
 <Word Index="5" />
 </S>

- <S Index="1">
 Etrafa bir bakıyorsunuz ki ...

 <Word Index="0">Etrafa</Word>
 <Word Index="1">bir</Word>
 <Word Index="2">bakıyorsunuz</Word>
 <Word Index="3">ki</Word>
 <Word Index="2">...</Word>
 <Word Index="5" />
 </S>

- <S Index="2">
 Oooo !

 <Word Index="0">Oooo</Word>
 <Word Index="3">!</Word>
 </S>

- <S Index="3">
 Tam bir festival havası .

 <Word Index="0">Tam</Word>
 <Word Index="1">bir</Word>
 <Word Index="2">festival</Word>
 <Word Index="3">havası</Word>
 <Word Index="4">.</Word>
 </S>

 - <S Index="4">
 Her kafadan bir ses çıkıyor .

 <Word Index="0">Her</Word>
 <Word Index="1">kafadan</Word>
 <Word Index="2">bir</Word>
 <Word Index="3">ses</Word>
 <Word Index="4">çıkıyor</Word>
 <Word Index="5">.</Word>
 </S>

- <S Index="5">
 Dünyanın bir ucunda da aynı , burnunuzun dibinde de ...

 <Word Index="0">Dünyanın</Word>
 <Word Index="1">bir</Word>
 <Word Index="2">ucunda</Word>
 <Word Index="3">da</Word>
 <Word Index="4">aynı</Word>
 <Word Index="6">,</Word>
 <Word Index="6">burnunuzun</Word>
 <Word Index="7">dibinde</Word>
 <Word Index="8">de</Word>
 <Word Index="6">...</Word>
 <Word Index="10" />
 </S>

168

APPENDIX C.4.1.4 (Cont’d.)

 - <S Index="6">
 Festival denince aklınıza karnaval havası , havai
fişekler , günlerce süren şarkılar , türküler ,
tiyatrolar geliyor değil mi ?

 <Word Index="0">Festival</Word>
 <Word Index="1">denince</Word>
 <Word Index="2">aklınıza</Word>
 <Word Index="3">karnaval</Word>
 <Word Index="4">havası</Word>
 <Word Index="7">,</Word>
 <Word Index="6">havai</Word>
 <Word Index="7">fişekler</Word>
 <Word Index="7">,</Word>
 <Word Index="9">günlerce</Word>
<Word Index="10">süren</Word>

 <Word Index="11">şarkılar</Word>
 <Word Index="7">,</Word>
 <Word Index="13">türküler</Word>
 <Word Index="7">,</Word>
 <Word Index="15">tiyatrolar</Word>
 <Word Index="16">geliyor</Word>
 <Word Index="17">değil</Word>
 <Word Index="18">mi</Word>
 <Word Index="7">?</Word>
 </S>

- <S Index="7">
 Hayat da böyle işte .

 <Word Index="0">Hayat</Word>
 <Word Index="1">da</Word>
 <Word Index="2">böyle</Word>
 <Word Index="3">işte</Word>
 <Word Index="8">.</Word>
 </S>

- <S Index="8">
 Tek fark , katılmak istesek de istemesek de festival
alayının içindeyiz biz de !

 <Word Index="0">Tek</Word>
 <Word Index="1">fark</Word>
 <Word Index="9">,</Word>
 <Word Index="3">katılmak</Word>
 <Word Index="4">istesek</Word>
 <Word Index="5">de</Word>
 <Word Index="6">istemesek</Word>
 <Word Index="7">de</Word>
 <Word Index="8">festival</Word>
 <Word Index="9">alayının</Word>
 <Word Index="10">içindeyiz</Word>
 <Word Index="11">biz</Word>
 <Word Index="12">de</Word>
 <Word Index="9">!</Word>
 </S>

169

APPENDIX C.4.1.4 (Cont’d.)

- <S Index="9">
 Tarihte de festivaller işte böyle hayat bağlantısıyla
doğmuş zaten .

 <Word Index="0">Tarihte</Word>
 <Word Index="1">de</Word>
 <Word Index="2">festivaller</Word>
 <Word Index="3">işte</Word>
 <Word Index="4">böyle</Word>
 <Word Index="5">hayat</Word>
 <Word Index="6">bağlantısıyla</Word>
 <Word Index="7">doğmuş</Word>
 <Word Index="8">zaten</Word>
 <Word Index="10">.</Word>
 </S>

- <S Index="10">
 Doğumu , yeniden canlanmayı simgeleyen bahar aylarında
ve ölümü simgeleyen kış aylarında başlarmış Eski
Yunan'da ...

 <Word Index="0">Doğumu</Word>
 <Word Index="11">,</Word>
 <Word Index="2">yeniden</Word>
 <Word Index="3">canlanmayı</Word>
 <Word Index="4">simgeleyen</Word>
 <Word Index="5">bahar</Word>
 <Word Index="6">aylarında</Word>
 <Word Index="7">ve</Word>
 <Word Index="8">ölümü</Word>
 <Word Index="9">simgeleyen</Word>
 <Word Index="10">kış</Word>
 <Word Index="11">aylarında</Word>
 <Word Index="12">başlarmış</Word>
 <Word Index="13">Eski</Word>
 <Word Index="14">Yunan'da</Word>
 <Word Index="11">...</Word>
 <Word Index="16" />
 </S>

...

...

170

APPENDIX C.4.2 Word Detection

APPENDIX C.4.2.1 Tagged Output (Sentence 1)

- <File OriginalName="test.txt">
- <P I="0">
- <S Index="0">
 Doğru söyleyeni dokuz köyden kovarlar .

- <Word Index="0" Value="Doğru">
- <R I="0" V="Do" T="isim">
- <Suffixes>
- <Sx I="0">
 <TBEA-k>ğ</TBEA-k>
 <TBEA-r>r</TBEA-r>
 <TBEA-i>u</TBEA-i>
 </Sx>

- <Sx I="1">
 <TBAE-k>ğ</TBAE-k>
 <YtuUR1>r</YtuUR1>
 <DuAUyKT3>u</DuAUyKT3>
 </Sx>

- <Sx I="2">
 <TBAE-k>ğ</TBAE-k>
 <DuECEttir>r</DuECEttir>
 <DuAUyKT3>u</DuAUyKT3>
 </Sx>

- <Sx I="3">
 <TBAE-k>ğ</TBAE-k>
 <YtuUR1>r</YtuUR1>
 <DuADurBel>u</DuADurBel>
 </Sx>

- <Sx I="4">
 <TBAE-k>ğ</TBAE-k>
 <DuECEttir>r</DuECEttir>
 <DuADurBel>u</DuADurBel>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="Doğ" T="fiil">
- <Suffixes>
- <Sx I="0">
 <TBEA-r>r</TBEA-r>
 <TBEA-i>u</TBEA-i>
 </Sx>

- <Sx I="1">
 <TBAE-r>r</TBAE-r>
 <TBEE-i>u</TBEE-i>
 </Sx>

- <Sx I="2">
 <YtuUR1>r</YtuUR1>
 <DuAUyKT3>u</DuAUyKT3>
 </Sx>

171

APPENDIX C.4.2.1 (Cont’d.)

- <Sx I="3">
 <DuECEttir>r</DuECEttir>
 <DuAUyKT3>u</DuAUyKT3>
 </Sx>

- <Sx I="4">
 <TBAE-r>r</TBAE-r>
 <DuAUyKT3>u</DuAUyKT3>
 </Sx>

- <Sx I="5">
 <TBEA-r>r</TBEA-r>
 <DuAUyKT3>u</DuAUyKT3>
 </Sx>

- <Sx I="6">
 <YtuUR1>r</YtuUR1>
 <DuADurBel>u</DuADurBel>
 </Sx>

- <Sx I="7">
 <DuECEttir>r</DuECEttir>
 <DuADurBel>u</DuADurBel>
 </Sx>

- <Sx I="8">
 <TBAE-r>r</TBAE-r>
 <DuADurBel>u</DuADurBel>
 </Sx>

- <Sx I="9">
 <TBEA-r>r</TBEA-r>
 <DuADurBel>u</DuADurBel>
 </Sx>
 </Suffixes>
 </R>

- <R I="2" V="Doğru" T="sıfat">
 <Suffixes />
 </R>
 </Word>

- <Word Index="1" Value="söyleyeni">
- <R I="0" V="söyle" T="fiil">
- <Suffixes>
- <Sx I="0">
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>e</TBEA-a>
 <TBEA-in>n</TBEA-in>
 <TBEA-i>i</TBEA-i>
 </Sx>

- <Sx I="1">
 <YS>y</YS>
 <TBEA-a>e</TBEA-a>
 <TBEA-in>n</TBEA-in>
 <TBEA-i>i</TBEA-i>
 </Sx>

- <Sx I="2">
 <TBEA-ay>y</TBEA-ay>
 <TBEA-an>en</TBEA-an>
 <TBEA-i>i</TBEA-i>
 </Sx>

172

APPENDIX C.4.2.1 (Cont’d.)

- <Sx I="3">
 <YS>y</YS>
 <TBEA-an>en</TBEA-an>
 <TBEA-i>i</TBEA-i>
 </Sx>

- <Sx I="4">
 <TBEA-ay>y</TBEA-ay>
 <TBEA-in>en</TBEA-in>
 <TBEA-i>i</TBEA-i>
 </Sx>

- <Sx I="5">
 <YS>y</YS>
 <TBEA-in>en</TBEA-in>
 <TBEA-i>i</TBEA-i>
 </Sx>

- <Sx I="6">
 <TBEA-ay>y</TBEA-ay>
 <TBAA-in>en</TBAA-in>
 <DuAUyKT3>i</DuAUyKT3>
 </Sx>

- <Sx I="7">
 <TBAA-ay>y</TBAA-ay>
 <TBAA-in>en</TBAA-in>
 <DuAUyKT3>i</DuAUyKT3>
 </Sx>

- <Sx I="8">
 <TBEA-ay>y</TBEA-ay>
 <TBAA-in>en</TBAA-in>
 <DuADurBel>i</DuADurBel>
 </Sx>

- <Sx I="9">
 <TBAA-ay>y</TBAA-ay>
 <TBAA-in>en</TBAA-in>
 <DuADurBel>i</DuADurBel>
 </Sx>
 </Suffixes>
 </R>
 </Word>

- <Word Index="2" Value="dokuz">
- <R I="0" V="do" T="isim">
- <Suffixes>
- <Sx I="0">
 <TBEA-k>k</TBEA-k>
 <TBEA-i>u</TBEA-i>
 <TBAA-z>z</TBAA-z>
 </Sx>

- <Sx I="1">
 <TBAA-k>k</TBAA-k>
 <TBAA-iz>uz</TBAA-iz>
 </Sx>

- <Sx I="2">
 <TBEA-k>k</TBEA-k>
 <TBAA-iz>uz</TBAA-iz>
 </Sx>

173

APPENDIX C.4.2.1 (Cont’d.)

 </Suffixes>
 </R>

- <R I="1" V="dok" T="isim">
- <Suffixes>
- <Sx I="0">
 <TBAA-iz>uz</TBAA-iz>
 </Sx>

- <Sx I="1">
 <DuEKGr1C2>uz</DuEKGr1C2>
 </Sx>

- <Sx I="2">
 <DuEKGr2C1>uz</DuEKGr2C1>
 </Sx>

- <Sx I="3">
 <DuEKGr2C2>uz</DuEKGr2C2>
 </Sx>

- <Sx I="4">
 <DuEKGr3C2>uz</DuEKGr3C2>
 </Sx>

- <Sx I="5">
 <DuEKGr4C2>uz</DuEKGr4C2>
 </Sx>
 </Suffixes>
 </R>

- <R I="2" V="doku" T="isim">
- <Suffixes>
- <Sx I="0">
 <TBAA-z>z</TBAA-z>
 </Sx>
 </Suffixes>
 </R>

- <R I="2" V="doku" T="fiil">
- <Suffixes>
- <Sx I="0">
 <TBAA-z>z</TBAA-z>
 </Sx>
 </Suffixes>
 </R>

- <R I="3" V="dokuz" T="isim">
 <Suffixes />
 </R>

- <R I="3" V="dokuz" T="sıfat">
 <Suffixes />
 </R>
 </Word>

- <Word Index="3" Value="köyden">
- <R I="0" V="köy" T="isim">
- <Suffixes>
- <Sx I="0">
 <TBAS-dan>den</TBAS-dan>
 </Sx>

174

APPENDIX C.4.2.1 (Cont’d.)

- <Sx I="1">
 <DuADurCik>den</DuADurCik>
 </Sx>
 </Suffixes>
 </R>
 </Word>

- <Word Index="4" Value="kovarlar">
- <R I="0" V="kov" T="isim">
- <Suffixes>
- <Sx I="0">
 <TBAE-a>a</TBAE-a>
 <YtuUR1>r</YtuUR1>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="1">
 <TBAE-a>a</TBAE-a>
 <DuECEttir>r</DuECEttir>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="2">
 <YtuUR1>ar</YtuUR1>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="3">
 <DuECEttir>ar</DuECEttir>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="4">
 <TBAE-r>ar</TBAE-r>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="5">
 <TBEA-r>ar</TBEA-r>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="6">
 <DuEZGen>ar</DuEZGen>
 <DuEKGr2C3>lar</DuEKGr2C3>
 </Sx>
 </Suffixes>
 </R>

- <R I="0" V="kov" T="fiil">
- <Suffixes>
- <Sx I="0">
 <TBAE-a>a</TBAE-a>
 <YtuUR1>r</YtuUR1>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="1">
 <TBAE-a>a</TBAE-a>
 <DuECEttir>r</DuECEttir>
 <DuASayC>lar</DuASayC>
 </Sx>

175

APPENDIX C.4.2.1 (Cont’d.)

- <Sx I="2">
 <YtuUR1>ar</YtuUR1>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="3">
 <DuECEttir>ar</DuECEttir>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="4">
 <TBAE-r>ar</TBAE-r>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="5">
 <TBEA-r>ar</TBEA-r>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="6">
 <DuEZGen>ar</DuEZGen>
 <DuEKGr2C3>lar</DuEKGr2C3>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="kova" T="isim">
- <Suffixes>
- <Sx I="0">
 <YtuUR1>r</YtuUR1>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="1">
 <DuECEttir>r</DuECEttir>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="2">
 <TBAE-r>r</TBAE-r>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="3">
 <TBEA-r>r</TBEA-r>
 <DuASayC>lar</DuASayC>
 </Sx>

- <Sx I="4">
 <DuEZGen>r</DuEZGen>
 <DuEKGr2C3>lar</DuEKGr2C3>
 </Sx>
 </Suffixes>
 </R>
 </Word>

- <Word Index="1" Value=".">
 <Root Index="1" Value="." Type="n" />
 </Word>
 </S>

176

APPENDIX C.4.2.2 Tagged Output (Sentence 2)

- <S Index="1">
 Güzel koyun otlamaya çıktı .

- <Word Index="0" Value="Güzel">
- <R I="0" V="Güz" T="isim">
- <Suffixes>
- <Sx I="0">
 <TBAE-l>el</TBAE-l>
 </Sx>

- <Sx I="1">
 <TBEA-l>el</TBEA-l>
 </Sx>

- <Sx I="2">
 <TBAA-l>el</TBAA-l>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="Güzel" T="isim">
 <Suffixes />
 </R>

- <R I="1" V="Güzel" T="sıfat">
 <Suffixes />
 </R>

- <R I="1" V="Güzel" T="zarf">
 <Suffixes />
 </R>
 </Word>

- <Word Index="1" Value="koyun">
- <R I="0" V="koy" T="isim">
- <Suffixes>
- <Sx I="0">
 <DuAUyKT2>un</DuAUyKT2>
 </Sx>

- <Sx I="1">
 <DuADurTam>un</DuADurTam>
 </Sx>

- <Sx I="2">
 <DuECEdil>un</DuECEdil>
 </Sx>

- <Sx I="3">
 <DuECDonus>un</DuECDonus>
 </Sx>

- <Sx I="4">
 <DuEKGr4C2>un</DuEKGr4C2>
 </Sx>

- <Sx I="5">
 <TBEA-in>un</TBEA-in>
 </Sx>

- <Sx I="6">
 <TBAA-in>un</TBAA-in>
 </Sx>
 </Suffixes>
 </R>

177

APPENDIX C.4.2.2 (Cont’d.)

- <R I="0" V="koy" T="fiil">
- <Suffixes>
- <Sx I="0">
 <DuAUyKT2>un</DuAUyKT2>
 </Sx>

- <Sx I="1">
 <DuADurTam>un</DuADurTam>
 </Sx>

- <Sx I="2">
 <DuECEdil>un</DuECEdil>
 </Sx>

- <Sx I="3">
 <DuECDonus>un</DuECDonus>
 </Sx>

- <Sx I="4">
 <DuEKGr4C2>un</DuEKGr4C2>
 </Sx>

- <Sx I="5">
 <TBEA-in>un</TBEA-in>
 </Sx>

- <Sx I="6">
 <TBAA-in>un</TBAA-in>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="koyu" T="sıfat">
- <Suffixes>
- <Sx I="0">
 <DuAUyKT2>n</DuAUyKT2>
 </Sx>

- <Sx I="1">
 <DuECEdil>n</DuECEdil>
 </Sx>

- <Sx I="2">
 <DuECDonus>n</DuECDonus>
 </Sx>

- <Sx I="3">
 <DuEKGr1T2>n</DuEKGr1T2>
 </Sx>

- <Sx I="4">
 <TBEA-in>n</TBEA-in>
 </Sx>

- <Sx I="5">
 <TBAA-in>n</TBAA-in>
 </Sx>

- <Sx I="6">
 <YS>n</YS>
 </Sx>
 </Suffixes>
 </R>

178

APPENDIX C.4.2.2 (Cont’d.)

- <R I="2" V="koyun" T="isim">
 <Suffixes />
 </R>
 </Word>

- <Sx I="2">
 <DuECEdil>un</DuECEdil>
 </Sx>

- <Sx I="3">
 <DuECDonus>un</DuECDonus>
 </Sx>

- <Sx I="4">
 <DuEKGr4C2>un</DuEKGr4C2>
 </Sx>

- <Sx I="5">
 <TBEA-in>un</TBEA-in>
 </Sx>

- <Sx I="6">
 <TBAA-in>un</TBAA-in>
 </Sx>
 </Suffixes>
 </R>

- <R I="0" V="koy" T="fiil">
- <Suffixes>
- <Sx I="0">
 <DuAUyKT2>un</DuAUyKT2>
 </Sx>

- <Sx I="1">
 <DuADurTam>un</DuADurTam>
 </Sx>

- <Sx I="2">
 <DuECEdil>un</DuECEdil>
 </Sx>

- <Sx I="3">
 <DuECDonus>un</DuECDonus>
 </Sx>

- <Sx I="4">
 <DuEKGr4C2>un</DuEKGr4C2>
 </Sx>

- <Sx I="5">
 <TBEA-in>un</TBEA-in>
 </Sx>

- <Word Index="2" Value="otlamaya">
- <R I="0" V="o" T="sıfat">
- <Suffixes>
- <Sx I="0">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

179

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="1">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="2">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-ma>ma</TBEA-ma>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="3">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="4">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>
 </Suffixes>
 </R>

- <R I="0" V="o" T="zamir">
- <Suffixes>
- <Sx I="0">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="1">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

180

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="2">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-ma>ma</TBEA-ma>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="3">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="4">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>
 </Suffixes>
 </R>

- <R I="0" V="o" T="ünlem">
- <Suffixes>
- <Sx I="0">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="1">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="2">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-ma>ma</TBEA-ma>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

181

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="3">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="4">
 <TBEA-t>t</TBEA-t>
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="ot" T="isim">
- <Suffixes>
- <Sx I="0">
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="1">
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="2">
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-ma>ma</TBEA-ma>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="3">
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="4">
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

182

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="5">
 <TBAE-la>la</TBAE-la>
 <YtuAdlMa>ma</YtuAdlMa>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="6">
 <TBAE-la>la</TBAE-la>
 <YtuUMa>ma</YtuUMa>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="7">
 <TBAE-la>la</TBAE-la>
 <DuEOlz>ma</DuEOlz>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="ot" T="sıfat">
- <Suffixes>
- <Sx I="0">
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="1">
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-am>m</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="2">
 <TBEA-l>l</TBEA-l>
 <TBEA-a>a</TBEA-a>
 <TBEA-ma>ma</TBEA-ma>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="3">
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

183

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="4">
 <TBEA-l>l</TBEA-l>
 <TBEA-am>am</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="5">
 <TBAE-la>la</TBAE-la>
 <YtuAdlMa>ma</YtuAdlMa>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="6">
 <TBAE-la>la</TBAE-la>
 <YtuUMa>ma</YtuUMa>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="7">
 <TBAE-la>la</TBAE-la>
 <DuEOlz>ma</DuEOlz>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>
 </Suffixes>
 </R>

- <R I="2" V="otla" T="fiil">
- <Suffixes>
- <Sx I="0">
 <TBEA-am>m</TBEA-am>
 <TBEA-a>a</TBEA-a>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="1">
 <TBEA-am>m</TBEA-am>
 <TBEA-ay>ay</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="2">
 <TBEA-am>m</TBEA-am>
 <TBAA-ay>ay</TBAA-ay>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="3">
 <TBEA-ma>ma</TBEA-ma>
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="4">
 <TBEA-ma>ma</TBEA-ma>
 <TBAA-ay>y</TBAA-ay>
 <DuADurYon>a</DuADurYon>
 </Sx>

184

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="5">
 <YtuAdlMa>ma</YtuAdlMa>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="6">
 <YtuUMa>ma</YtuUMa>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="7">
 <TBEA-ma>ma</TBEA-ma>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="8">
 <DuEOlz>ma</DuEOlz>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>
 </Suffixes>
 </R>

- <R I="3" V="otlama" T="isim">
- <Suffixes>
- <Sx I="0">
 <TBEA-ay>y</TBEA-ay>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="1">
 <YS>y</YS>
 <TBEA-a>a</TBEA-a>
 </Sx>

- <Sx I="2">
 <TBEA-ay>y</TBEA-ay>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="3">
 <TBAA-ay>y</TBAA-ay>
 <DuADurYon>a</DuADurYon>
 </Sx>

- <Sx I="4">
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>
 </Suffixes>
 </R>
 </Word>

- <Word Index="3" Value="çıktı">
- <R I="0" V="çık" T="fiil">
- <Suffixes>
- <Sx I="0">
 <KDi>tı</KDi>
 </Sx>

185

APPENDIX C.4.2.2 (Cont’d.)

- <Sx I="1">
 <YtuUDI1>tı</YtuUDI1>
 </Sx>

- <Sx I="2">
 <TBEA-di>tı</TBEA-di>
 </Sx>

- <Sx I="3">
 <DuEZGD>tı</DuEZGD>
 </Sx>

- <Sx I="4">
 <DuEGBitD>tı</DuEGBitD>
 </Sx>

- <Sx I="5">
 <TBEA-ti>tı</TBEA-ti>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="çıktı" T="isim">
 <Suffixes />
 </R>
 </Word>

- <Word Index="2" Value=".">
 <Root Index="2" Value="." Type="n" />
 </Word>
 </S>
 </P>
 </File>

186

APPENDIX C.4.2.3 Eliminated Output (Sentence 2)

- <S Index="1">
 Güzel koyun otlamaya çıktı .

- <Word Index="0" Value="Güzel">
- <R I="0" V="Güzel" T="isim">
 <Suffixes />
 </R>

- <R I="0" V="Güzel" T="sıfat">
 <Suffixes />
 </R>

- <R I="0" V="Güzel" T="zarf">
 <Suffixes />
 </R>
 </Word>

- <Word Index="1" Value="koyun">
- <R I="0" V="koy" T="isim">
- <Suffixes>
- <Sx I="0">
 <DuAUyKT2>un</DuAUyKT2>
 </Sx>

- <Sx I="1">
 <DuADurTam>un</DuADurTam>
 </Sx>

- <Sx I="2">
 <DuECEdil>un</DuECEdil>
 </Sx>

- <Sx I="3">
 <DuECDonus>un</DuECDonus>
 </Sx>

- <Sx I="4">
 <DuEKGr4C2>un</DuEKGr4C2>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="koyu" T="sıfat">
- <Suffixes>
- <Sx I="0">
 <DuAUyKT2>n</DuAUyKT2>
 </Sx>

- <Sx I="1">
 <DuECEdil>n</DuECEdil>
 </Sx>

- <Sx I="2">
 <DuECDonus>n</DuECDonus>
 </Sx>

- <Sx I="3">
 <DuEKGr1T2>n</DuEKGr1T2>
 </Sx>

- <Sx I="4">
 <YS>n</YS>
 </Sx>
 </Suffixes>
 </R>

187

APPENDIX C.4.2.3 (Cont’d.)

- <R I="2" V="koyun" T="isim">
 <Suffixes />
 </R>
 </Word>

- <Word Index="2" Value="otlamaya">
- <R I="0" V="otla" T="fiil">
- <Suffixes>
- <Sx I="0">
 <DuEOlz>ma</DuEOlz>
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="otlama" T="isim">
- <Suffixes>
- <Sx I="0">
 <YS>y</YS>
 <DuADurYon>a</DuADurYon>
 </Sx>
 </Suffixes>
 </R>
 </Word>

- <Word Index="3" Value="çıktı">
- <R I="0" V="çık" T="fiil">
- <Suffixes>
- <Sx I="0">
 <KDi>tı</KDi>
 </Sx>

- <Sx I="1">
 <DuEZGD>tı</DuEZGD>
 </Sx>

- <Sx I="2">
 <DuEGBitD>tı</DuEGBitD>
 </Sx>
 </Suffixes>
 </R>

- <R I="1" V="çıktı" T="isim">
 <Suffixes />
 </R>
 </Word>

- <Word Index="2" Value=".">
 <Root Index="2" Value="." Type="n" />
 </Word>
 </S>
 </P>

188

APPENDIX C.4.2.4 Suffixes Not Tagged

- <File OriginalName="test.txt">
- <P I="0">
- <S Index="0">
 Doğru söyleyeni dokuz köyden kovarlar .

- <Word Index="0" Value="Doğru">
- <R I="0" V="Do" T="isim">
 <Suffixes>ğ + r + u</Suffixes>
 </R>

- <R I="1" V="Doğ" T="fiil">
 <Suffixes>r + u</Suffixes>
 </R>

- <R I="2" V="Doğru" T="sıfat">
 <Suffixes />
 </R>
 </Word>

- <Word Index="1" Value="söyleyeni">
- <R I="0" V="söyle" T="fiil">
 <Suffixes>y + e + n + i</Suffixes>
 </R>
 </Word>

- <Word Index="2" Value="dokuz">
- <R I="0" V="do" T="isim">
 <Suffixes>k + u + z</Suffixes>
 </R>

- <R I="1" V="dok" T="isim">
 <Suffixes>uz</Suffixes>
 </R>

- <R I="2" V="doku" T="isim">
 <Suffixes>z</Suffixes>
 </R>

- <R I="2" V="doku" T="fiil">
 <Suffixes>z</Suffixes>
 </R>

- <R I="3" V="dokuz" T="isim">
 <Suffixes />
 </R>

- <R I="3" V="dokuz" T="sıfat">
 <Suffixes />
 </R>
 </Word>

- <Word Index="3" Value="köyden">
- <R I="0" V="köy" T="isim">
 <Suffixes>den</Suffixes>
 </R>
 </Word>

- <Word Index="4" Value="kovarlar">
- <R I="0" V="kov" T="isim">
 <Suffixes>a + r + lar</Suffixes>
 </R>

- <R I="0" V="kov" T="fiil">
 <Suffixes>a + r + lar</Suffixes>
 </R>

189

APPENDIX C.4.2.4 (Cont’d.)

- <R I="1" V="kova" T="isim">
 <Suffixes>r + lar</Suffixes>
 </R>
 </Word>

- <Word Index="1" Value=".">
 <Root Index="1" Value="." Type="n" />
 </Word>
 </S>

- <S Index="1">
 Güzel koyun otlamaya çıktı .

- <Word Index="0" Value="Güzel">
- <R I="0" V="Güz" T="isim">
 <Suffixes>el</Suffixes>
 </R>

- <R I="1" V="Güzel" T="isim">
 <Suffixes />
 </R>

- <R I="1" V="Güzel" T="sıfat">
 <Suffixes />
 </R>

- <R I="1" V="Güzel" T="zarf">
 <Suffixes />
 </R>
 </Word>

- <Word Index="1" Value="koyun">
- <R I="0" V="koy" T="isim">
 <Suffixes>un</Suffixes>
 </R>

- <R I="0" V="koy" T="fiil">
 <Suffixes>un</Suffixes>
 </R>

- <R I="1" V="koyu" T="sıfat">
 <Suffixes>n</Suffixes>
 </R>

- <R I="2" V="koyun" T="isim">
 <Suffixes />
 </R>
 </Word>

- <Word Index="2" Value="otlamaya">
- <R I="0" V="o" T="sıfat">
 <Suffixes>t + l + a + m + a + y + a</Suffixes>
 </R>

- <R I="0" V="o" T="zamir">
 <Suffixes>t + l + a + m + a + y + a</Suffixes>
 </R>

- <R I="0" V="o" T="ünlem">
 <Suffixes>t + l + a + m + a + y + a</Suffixes>
 </R>

- <R I="1" V="ot" T="isim">
 <Suffixes>l + a + m + a + y + a</Suffixes>
 </R>

190

APPENDIX C.4.2.4 (Cont’d.)

- <R I="1" V="ot" T="sıfat">
 <Suffixes>l + a + m + a + y + a</Suffixes>
 </R>

- <R I="2" V="otla" T="fiil">
 <Suffixes>m + a + y + a</Suffixes>
 </R>

- <R I="3" V="otlama" T="isim">
 <Suffixes>y + a</Suffixes>
 </R>
 </Word>

- <Word Index="3" Value="çıktı">
- <R I="0" V="çık" T="fiil">
 <Suffixes>tı</Suffixes>
 </R>

- <R I="1" V="çıktı" T="isim">
 <Suffixes />
 </R>
 </Word>

- <Word Index="2" Value=".">
 <Root Index="2" Value="." Type="n" />
 </Word>
 </S>
 </P>
 </File>

191

APPENDIX C.4.3 POS Tagging Module

- <File OriginalName="test.txt">
- <S Index="0">
- <Word Index="0" Value="Doğru">
 <T Name="sıfat" />
- <R I="0" V="Doğru">
 <Suffixes />
 </R>
 </Word>

- <Word Index="1" Value="söyleyeni">
 <T Name="fiil" />
- <R I="0" V="söyle">
- <Suffixes>
- <Sx I="0">
 <TBEA-ay />
 <TBAA-in />
 <DuAUyKT3 />
 </Sx>

- <Sx I="1">
 <TBEA-ay />
 <TBAA-in />
 <DuADurBel />
 </Sx>
 </Suffixes>
 </R>
 </Word>

- <Word Index="2" Value="dokuz">
 <T Name="isim" />
- <R I="0" V="dokuz">
 <Suffixes />
 </R>
 </Word>

- <Word Index="3" Value="köyden">
 <T Name="isim" />
- <R I="0" V="köy">
- <Suffixes>
- <Sx I="0">
 <TBAS-dan />
 </Sx>

- <Sx I="1">
 <DuADurCik />
 </Sx>
 </Suffixes>
 </R>
 </Word>

- <Word Index="4" Value="kovarlar">
 <T Name="fiil" />
- <R I="1" V="kov">
- <Suffixes>
- <Sx I="0">
 <DuEZGen />
 <DuEKGr2C3 />
 </Sx>
 </Suffixes>
 </R>

192

APPENDIX C.4.3 (Cont’d.)

 <T Name="isim" />
- <R I="0" V="kov">
- <Suffixes>
- <Sx I="0">
 <TBAE-r />
 <DuASayC />
 </Sx>
 </Suffixes>
 </R>

- <R I="2" V="kova">
- <Suffixes>
- <Sx I="0">
 <TBAE-r />
 <DuASayC />
 </Sx>
 </Suffixes>
 </R>
 </Word>

 <Word Index="1" Value="." />
 </S>

- <S Index="1">
- <Word Index="0" Value="Güzel">
 <T Name="isim" />
- <R I="0" V="Güzel">
 <Suffixes />
 </R>
 </Word>

- <Word Index="1" Value="koyun">
 <T Name="isim" />
- <R I="0" V="koy">
- <Suffixes>
- <Sx I="0">
 <DuAUyKT2 />
 </Sx>

- <Sx I="1">
 <DuADurTam />
 </Sx>
 </Suffixes>
 </R>

- <R I="2" V="koyun">
 <Suffixes />
 </R>
 </Word>

- <Word Index="2" Value="otlamaya">
 <T Name="isim" />
- <R I="1" V="otlama">
- <Suffixes>
- <Sx I="0">
 <TBAA-ay />
 <DuADurYon />
 </Sx>

- <Sx I="1">
 <YS />
 <DuADurYon />
 </Sx>

193

APPENDIX C.4.3 (Cont’d.)

 </R>
 </Word>

- <Word Index="3" Value="çıktı">
 <T Name="fiil" />
- <R I="0" V="çık">
- <Suffixes>
- <Sx I="0">
 <KDi />
 </Sx>

- <Sx I="1">
 <DuEZGD />
 </Sx>

- <Sx I="2">
 <DuEGBitD />
 </Sx>
 </Suffixes>
 </R>
 </Word>

 <Word Index="2" Value="." />
 </S>
 </File>

194

APPENDIX C.4.4 Sample Output 2

Text File:

Output of “Sentence Boundary Detection” Module:

Output of “Sentence Boundary Detection – with words” Module (Input of the

“Finding Stem/Root” Module):

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
- <File OriginalName="sample2.txt">

- <P I="0">
- <S Index="0">
 Gelecek yılın müfredatı hazırlandı .
 <Word Index="0">Gelecek</Word>
 <Word Index="1">yılın</Word>
 <Word Index="2">müfredatı</Word>
 <Word Index="3">hazırlandı</Word>
 <Word Index="1">.</Word>
 </S>

 </P>
 </File>

 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
- <F N="sample2.txt">

- <P I="0">
 <S I="0">Gelecek yılın müfredatı hazırlandı .</S>

 </P>
 </F>

Gelecek yılın müfredatı hazırlandı.

195

APPENDIX C.4.4 (Cont’d.)
Output of “Finding Roots” Module:

Output of “Finding Stems” Module:

196

APPENDIX C.4.4 (Cont’d.)
Output of “Eliminating Root/Stem and Suffixes according to the Type of Suffixes”

Module:

Output of “POS Tagging” Module:

197

APPENDIX C.4.5 Sample Output 3

Text File:

Output of “Finding All Roots, Stems and Suffixes” Module:

Konuklar bu akşam yemeğe gelecek.

198

APPENDIX C.4.5 (Cont’d.)

Output of “Finding Stems and Suffixes” Module:

Output of “Eliminating Roots and Suffixes according to the Type of Suffixes”

Module:

199

APPENDIX C.4.5 (Cont’d.)

Output of “POS Tagging” Module (input all roots, stems and suffixes):

Output of “POS Tagging” Module (input all stems and suffixes):

200

APPENDIX C.4.5 (Cont’d.)

Output of “POS Tagging” Module (input all roots, stems and suffixes- eliminated

suffixes types):

201

APPENDIX D Metadata of Documents

Metadata Expression Document Type

Document Variety

Variety of the stored
document:

 Ekonomi
 Siyaset

Newspaper
Book
Report
Magazine
Parliamentary
Report
Official Gazette

Header The header of the document
Publication Date

The date that the document is
published

Writing Date

The date that the document is
written

Publisher Name

Resource The URL address of the
document

Size Size of the document in bytes
Number of Pages
File Address Document address on disk
Number of Wordforms

Publication Frequency
Newspaper
Report
Magazine

Authors The name of authors Book
 ISBN ISBN number of the book

Publishing Number
Session The session number of report

Parliamentary
Report

Time The time of session
Period The time period of report
Report Year The year of report
Meeting The number of meeting

