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MODEL SELECTION METHODS FOR MULTIVARIATE 

LINEAR PARTIAL LEAST SQUARES REGRESSION 

 

ABSTRACT 

 

Having large numbers of predictor variables or having more predictor variables 

than the number of observations is a serious problem in regression analysis. When a 

data set contains many predictor variables, multicollinearity can become an issue. 

Multicollinearity arises when predictor variables measure the same concept or when 

there is a linear relationship among them. These problems can cause high degrees of 

correlation and violate the assumption of Ordinary Least Square Analysis. As a 

result, it causes poor estimates of parameter estimation in regression analysis. A 

possible solution to this problem is a statistical method called ‘Partial Least Squares 

Regression’. PLSR allows for the study of regression in many situations that 

Multiple Linear Regression does not. 

 

In this thesis, PLSR has been studied in the analysis of obtaining the number of 

new predictor variables called ‘latent variables’. After obtaining the latent variables, 

this thesis is concerned with analyzing how many of these latent variables are the 

most relevant for describing the variability of predictor and response variables. Some 

model selection methods, such as two of the Multivariate Akaike Information 

Criterion which are studied by Bozdogan and Bedrick respectively, use PRESS 

values obtained from k-fold cross validation and Wold’s R criterion to obtain the 

optimum number of latent variables. The simulation study presented in this thesis has 

been performed to compare the performance of these criteria. The simulation results 

of MAIC, PRESS and Wold’s R were obtained from different number of 

observations and different numbers of predictor variables. These results show that for 

small-sized design matrices, all criteria achieved the true number of latent variables. 

However, the results for the other-sized design matrices varied greatly and they 

consistently showed different numbers of latent variables. The whole analysis, 

including all simulations and calculations, were done using MATLAB statistical 

program. 
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ÇOK DEĞĐŞKENLĐ DOĞRUSAL KISMĐ EN KÜÇÜK KARELER 

REGRESYONU ĐÇĐN MODEL SEÇME YÖNTEMLERĐ 

 
ÖZ 

 

Çok sayıda açıklayıcı değişkene veya gözlem sayısından daha fazla sayıda 

açıklayıcı değişkene sahip olmak regresyon analizinde ciddi bir problemdir. Veri seti 

birçok açıklayıcı değişken içerdiğinde çoklu doğrusal bağlantıdan söz edilebilir. 

Çoklu doğrusal bağlantı açıklayıcı değişkenlerin aynı kavramı ölçmelerinde veya 

açıklayıcı değişkenler arasında doğrusal bir bağıntı olması durumunda ortaya 

çıkmaktadır. Her iki durum da Sıradan En Küçük Kareler analizinin 

varsayımlarından sapmaya neden olmakta ve regresyon analizinde zayıf parametre 

tahminlerine yol açmaktadır. Đstatistiksel bir yöntem olan Kısmi En Küçük Kareler 

Regresyonu, çoklu doğrusal bağlantı probleminin çözüm yollarından birisi olup, 

Çoklu Doğrusal Regresyon analizinin çalışmadığı bir çok durumda çalışma imkanı 

sağlamaktadır.  

 

Bu tezde, gizli değişken denilen yeni açıklayıcı değişkenlerin sayısının 

saptanmasında Kısmi En Küçük Kareler Regresyon analizi çalışılmıştır. Gizli 

değişkenlerin saptanmasından sonra, bu değişkenlerden kaç tanesinin hem açıklayıcı 

hem de bağımlı değişkendeki değişimi açıklamada en ilgili olduğunun saptanması ise 

bu tezin amacını oluşturmaktadır. Gizli değişkenlerin optimum sayısının 

saptanmasında model seçme yöntemlerinden olan Bozdoğan ve Bedrick tarafından 

çalışılan iki çoklu Akaike Bilgi Kriteri, k blok çapraz geçerlilik ve PRESS değerleri 

ve Wold’s R kriteri kullanılmıştır. Bu kriterlerin performansının karşılaştırılmasında 

bir simulasyon çalışması yapılmıştır. Simülasyon sonuçları her bir kriter için farklı 

sayıda gözlem genişliği ve farklı sayıda açıklayıcı değişken için verilmiştir. 

Sonuçlar, dizayn matrislerinden en küçüğü için kriterlerin gizli değişken sayısı için 

doğru sayıyı bulduğunu fakat diğer dizayn matrisleri için farklı sonuçlar verdiğini 

göstermektedir. 

 

Simulasyon ve analizler MATLAB istatistik paket programında yapılmıştır. 
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CHAPTER ONE 

INTRODUCTION 

 

Regression analysis is commonly used as a statistical tool for analyzing the 

relationship among variables. Such analyses are used widely in social, behavioral and 

physical sciences.  In statistics, regression analysis includes any techniques 

employed for modeling and analyzing several variables.  Regression analysis is 

concerned with the study of the dependent variable and one or more predictor 

variables to construct a model that represents the relationship between these 

variables, the statistical analysis can be used for prediction, hypothesis testing and 

modeling of causal relationships. These uses of analysis depend intensively on some 

assumptions that must be satisfied. A failure to provide any one of these  

assumptions can cause a misuse of regression. This can result in a fit model that 

becomes a critique model. 

 

An assumption which is the subject of this thesis and is generally considered to be 

a problem in regression analyses, is the dependence of the predictor variables which 

have linear relationship with each other. This is called multicollinearity. 

Multicollinearity can have severe effects on the estimation of parameters and 

variables selection techniques.  

 

Various methods exist to detect multicollinearity. The most commonly used ones 

are Ridge Regression (RR), Principal Component Regression (PCR) and Partial 

Least Squares Regression (PLSR). These methods are powerful multivariate 

statistical tools that are widely used in quantitative analysis to overcome problems of 

collinearity and interactions. PLSR is a multivariate data analysis method which 

works with several response variables and several predictor variables. It was first 

studied by Herman Wold at the beginning of the 1970’s in Econometrics. Soon after 

his son Svante Wold extended this method to Chemometrics. It intends to find the 

latent variables, which are the linear combinations of predictor variables, have no 

linear relationships among them, and model the response variables best. PLSR can be 
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used with many data sets that have multicollinearity and many predictor variables 

which are more than the number of observations. It makes a dimensional reduction 

by using singular value decomposition or eigenvalue decomposition. Following the 

dimensional reduction some methods are used to obtain the latent variables which are 

the most relevant variables describing the response variables. These methods are 

called model selection criteria. Few of these criteria are Predicted Residual Sum of 

Squares (PRESS), NORMPRESS, Wold’s R and Akaike Information Criterion.  

 

The purpose of this thesis is to examine PLSR and find the latent variables by 

using model selection criteria and to support this study with a simulation application.  

 

The simulation study was formed in the following steps. First, data were 

generated according to PLS assumptions. Then MATLAB code for k fold cross-

validation was written and PRESS values were obtained. Afterwards, Wold’s R 

criterion was calculated in terms of PRESS. Additionally two different forms of 

Multivariate Akaike Criteria from Bedrick and Bozdogan were also calculated. 

Finally comparison of these model selection criteria were made according to their 

performance in order to obtain the optimum number of latent variables.   

 

This thesis contains six chapters. In Chapter One, a short description of the study 

is given. Chapter Two introduces multiple regression analysis, multicollinearity 

problem, Principal Component Analysis, Principal Component Regression and 

Partial Least Squares Regression. In Chapter Three, PLSR is explained in detail. 

Chapter Four provides data splitting and model selection criteria as well as a 

comparison of these methods that is supported by a simulation study. Chapter Five 

includes the results of this simulation study. In Chapter Six, the conclusions are 

presented. 
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CHAPTER TWO 

REGRESSION METHODS 
 

2.1 Multiple Linear Regression 

 
A regression model can serve several purposes. In process analysis and chemical 

engineering applications, the purpose is almost exclusively prediction. In other 

applications, the focus is on understanding the relationship between the predictors 

and response variable. Hence, many problems in applied sciences can be cast in the 

framework of a regression problem (Henk, et al, 2007).  

 

Multiple Linear Regression (MLR) analysis is one of the most widely used of all 

statistical methods. It represents the relationship between a response variable and a 

set of predictor variables. The regression model for N observations and M predictor 

variables can be described as follows:  

 

Multiple Linear Regression model equation is as follows: 

 

                  N,,1i,εxβxβxβy iimmi22i11i KK =+++++= 0β                        (2.1) 

 

:x mi value of the thm predictor variable for the thi  observation 

0β : regression constant 

mβ : coefficient of the thm parameter 

M : total number of predictor variables 

iy : response in the thi  observation 

iε : error terms 

 

The MLR model in terms of the observations can be written as matrices notation 

by: εXβy += . 
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where y is an 1N×  vector of observed response values, X is the MN ×  matrix of the 

predictor variables, β  is the 1M × , and ε  is the  1N×  vector of random error terms.  

 

The aim of regression analysis is to find the estimates of unknown parameters. 

The regression equation is used to predict Y from predictors. The method of 

Ordinary Least Squares (OLS) is used to find the best line that, on average, is the 

closest to all of the points. OLS finds the best estimate of β ’s with the least squares 

criterion which minimizes the sum of squared distances of all of the points from the 

actual observation to the regression surface.  

 

In the linear regression model β̂Xŷ = , ŷ  is the vector of predicted response 

variable, e is the vector of residuals, and β̂  is the estimate of the regression 

coefficient. To compute β̂ , the sum of the squared residuals are minimized with 

ordinary least squares, as shown in the following equation where β̂xye iii
′−= , 

N,1,i K= . 

 

                                                            ∑
=

β

N

1i

2
iˆ

min ε                                                     (2.2) 

 

The OLS estimator β̂  is an unbiased estimator, which is ( ) ββE =ˆ and has 

minimum variance, which is ( ) ( ) 1XXˆβ̂ −
′= 2σCov . 

 

The MLR is based on some assumptions. These are: no linear relationship exists 

among predictor variables; error terms are distributed as normal distribution with 
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mean zero and constant variance iε ~ ( )2,0N σ , and error terms are independent of 

each of the predictor variables and each other. 

 

MLR works ideally when the predictor variables are few in number and when 

they are not collinear. However, omitting one of the assumptions of MLR can 

damage an analysis and render its estimations insignificant. As with other 

assumptions, avoding multicollinearity is important, because the least squares 

estimators are very poor in the analysis in the presence of multicollinearity. The next 

subsection is concerned with multicollinearity and solving this problem. 

 

2.1.1 Multicollinearity 

 
Bowerman and O’Connell (1990) describe multicollinearity as a problem in 

regression analysis when the predictor variables in a regression model are 

intercorrelated on each other. The problem that multicollinearity poses is that it 

makes it difficult to separate the effects of two variables on an outcome variable. If 

two variables are significantly related to each other, it becomes impossible to 

determine which of the variables accounts for variance in the response variable.  

 
For example, it is assumed that the MLR model is given as 

ii22i110i xxy ε+β+β+β=  and 12 3XX =  so, the correlation between two predictor 

variables is 1 and the MLR model is written as below: 

 

.x)3(

xxy

ii1210

ii22i110i

ε+β+β+β=

ε+β+β+β=
 

 

From the regression model, thus, only 21 3ββ +  can be estimated. It is not possible to 

get separate estimates of 1β  and 2β . From this example, some results can be 

obtained. These are: when one or more predictor variables are present, a possible 

problem may occur; two or more variables can explain the dependent variable well, 
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but they may be closely correlated. Therefore, the results suggest that it is difficult to 

distinguish the individual effects of both variables. 

 

The sources of multicollinearity can be explained in many ways. 

 

Firstly, a variable that is computed from other variables in the equation can be 

included. For example, a regression model of a family’s income which is formed by 

both the husband’s income and the wife’s income, includes all the three measures. 

Also including the same or almost the same variable twice can cause 

multicollinearity, for example height in feet and height in inches. Constraints on the 

population being sampled can also cause multicollinearity; for example people with 

higher incomes will have more wealth and more predictor variables than the number 

of observations. 

 

Multicollinearity can be a big problem when the aim is to try to understand how 

the variation of the predictor variable affects response variable. 

 

Multicollinearity can be explained as the following aspect of regression model: 

the greater the multicollinearity, the greater the standard errors: When there is high 

multicollinearity, confidence intervals for coefficients tend to be very wide. The 

confidence intervals may even include zero, which means you cannot be confident 

whether an increase in the predictor variables value is associated with an increase or 

a decrease in the response variable.  t statistics tend to be very small, therefore the 

estimation of regression coefficients in these cases is statistically insignificant. Even 

extreme multicollinearity does not violate any of the assumptions of OLS regression, 

OLS estimates are still unbiased and OLS estimators are the best linear unbiased 

estimators. Although the t-ratio of one or more coefficients is statistically 

insignificant, 2R  the overall measure of goodness of fit can be very high. The OLS 

estimators can be sensitive to small changes in the data. Collinear variables 

contribute redundant information and can cause other variables to appear to be less 

important than they are. Overestimating the effect of one parameter will tend to 
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underestimate the effect of the other. Hence coefficient estimates tend to be very 

weak from one sample to the other. 

 

Some classical signs of multicollinearity are; 

 

• having a significant F, but no significant t-ratios and high 2R . 

• widely changing coefficients when an additional variable is included. 

• high pairwise correlations among predictors. 

• the tolerances or Variance Inflation Factor is probably superior for examining 

the bivariate correlations. 

 

Sometimes eigenvalues, condition index and then condition number will be referred 

to when examining multicollinearity. 

 

2.1.2 Detecting Methods for Multicollinearity 

 

Multicollinearity on a data set can be determined with some methods. The most 

commonly used methods are given below. 

 

2.1.2.1 Condition Index 

 

The condition number (CN) is the condition index (CI) with the largest eigenvalue 

and it equals the square root of the largest eigenvalue ( maxλ ) divided by the smallest 

eigenvalue ( minλ ). 

 

                                                   
min

max

λ

λ
CN = ,                                                          (2.3) 

 

and the CI is defined as: 
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CNCI
min

max =
λ

λ
= . 

 

When there is no collinearity the eigenvalues, condition index, the condition 

number will all be equal to one. An informal rule of thumb is that if the condition 

number is 15, multicollinearity is a concern. If it is greater than 30, multicollinearity 

is a very serious concern. 

 

2.1.2.2 Variance Inflation Factor and Tolerance  

 

VIF and tolerance are the classical tests for diagnosing collinearity problems. 

They can be explained by the help of variance of the sampling distribution for OLS 

coefficients. The variance of the sampling distribution for OLS coefficients can be 

expressed as: 

 

                             ( )
( ) 2

i

2
e

2
i

i
S1n

σ

R1

1
βVar

−−
= ,  N,,2,1i K=                               (2.4) 

 

2
iR  is the explained variance that is obtained when regressing iX  on the other X  

variables in the model; 2
iS  is the variance of iX ; MSEσ2

e = of the model. ( )iβVar  is 

increased if 2
eσ  is large, 2

iS  is small or 2
iR  is large. 

 

The first term of the expression above is called the Variance Inflation Factor (VIF).  

 

2
iR1

1
VIF

−
= . 

 

If  iX  is highly correlated with the other X  variables, then 2
iR  will be large, 

making the denominator of the VIF small and hence the VIF becomes very large. 

This inflates the variance of iβ  and makes it difficult to obtain a significant t-ratio. 
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The value 10 is used as a threshold which considers multicollinearity to be a 

problem. 

 

Another measure to detect multicollinearity is tolerance. Tolerance which is 

defined as:  

 

( ) 







=−=

i

2
ii VIF

1
R1TOL  

 

1TOLi =  if iX  is not correlated with other predictors, whereas 0TOL i =  if it is 

perfectly related to the predictors. 

 

2.1.3 Solutions to Remove Multicollinearity 

 

Several techniques have been proposed to deal with the problem of 

multicollinearity. The following methods have been suggested as possible solutions 

to the multicollinearity problem. 

 

� Get more data: Increase the observation number by adding observations (new 

individuals) and extending the time period of observation. This will usually 

decrease standard errors. 

� Drop variables: If two variables are highly correlated, leave one of them. 

� Rethink of the model. 

� Combine variables; for example if education and income are highly collinear, 

you can combine them as a “socioeconomic status”. 

� Use Principal Components Regression, Ridge Regression, Partial Least 

Squares Regression or other methods. 
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2.2 Principal Component Analysis 

 

Principal Component Analysis (PCA) is the first step of the Principal Component 

Regression. The general objectives of Principal Component Regression are data 

reduction and interpretation. It is concerned with explaining the variance-covariance 

structure of a set of variables through a few linear combinations of these variables. 

 

The goal of PCA is to create a new set of variables called principal components or 

principal variates. The principal components are linear combinations of the variables 

of the vector Y* that are uncorrelated and the variance of the thj  component is 

maximum. ]Y,,Y,[YY *
m

*
2

*
1

*
m1 K=×  is an observation vector with mean µ  and 

covariance matrix ΣΣΣΣ  of full rank m. 

 

In this analysis, m predictor variables, which are mutually collinear and have N 

observation, are transformed to q ( )mq ≤  new variables called principal component 

which are linear, orthogonal, and mutually independent. 

 

The total variation is described by all of the m variables when m property is 

measured for N observation.  However, the major part of the total variability can be 

explained by q component. Then q new component can present m variable. Thus m 

variables with N measure number will be reduced to q new variables without losing 

any information. 

 

PCA can be defined as follows: 

 

The first principal component (((( ))))*Y1  is determined as a linear combination of 

mX,,X,X K21 . The first component is the component which has the maximum 

addition to the total variability: 

 

                                   m211
*
1 XXXXaY m11211 aaa +++=

′
= K                           (2.5) 
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The second principal component describes the remaining maximum variation after 

the first principal component. These components are uncorrelated. 

 

mmm2m1mm
*
m

mm212
*
2

XaXaXaXaY

XaXaXaXaY

++++++++++++====
′′′′

====

++++++++++++====
′′′′

====

K

M

K

21

22221

 

 

                  ( ) ii
*
i aΣaY ′

=Var ,  m,,2,1i K= ;    ( ) qi
*
q

*
i aΣaY,Y ′

=Cov                 (2.6) 

 

The first principal component variable provides the conditions which are 111 =
′ aa  

and 




 ′Xa1Varmax . The second principal component provides the conditions that 

122 =
′ aa  and 





 ′Xa2Varmax  after the first principal component: 

( ) 0CovCov ==




 ′′ *

2
*
121 Y,YXaX,a  

The thi  PC satisfies 




 ′Xa iVarmax , 1aa ii =

′ , and for iq < , ( ) 0Cov =*
q

*
i Y,Y . 

Thus m21 λλλ ≥≥≥ K  denote the ordered eigenvalues of ΣΣΣΣ  and m21 a,,a,a K  

denote corresponding normalized eigenvectors of ΣΣΣΣ . 

 

The variance of the thj component *
jY  is jλ . 

                                    ( ) m21
2
mm

2
22

2
11tr λ++λ+λ=σ++σ+σ=Σ KK                 (2.7) 

 

The total variation accounted for by all of the principal component variables is 

equal to the amount of variation measured by the original variables. Therefore to 

measure the importance of the thj  principal component, the ratio of 
( )Σtr

λ j  should be 

referred to. To achieve eigenvalues: 

 

                                                         0=− λIΣ                                                       (2.8) 
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Σ : symmetric, nonnegative, diagonal matrix. 

 

m eigenvectors can be achieved from this relation by using m eigenvalues. 1a  is the 

first eigenvector of ( ) 0=− 11 aIλΣ .  

 

If XaY* ′
= 11 , XaY* ′

= 22  are the principal components obtained from the 

covariance matrix ΣΣΣΣ  then for k<m, 

 

                        
( )

( ) ( ) kk

iik

kki

iki
X,Y

σ

λa

σλ

aλ

VarVar

Cov
ρ

ki
===

k
*
i

k
*
i

XY

X,Y
                     (2.9) 

m1i
*
i XXXaY im1i aa ++=

′
= K                m,,2,1i K=  

( ) iVar λ=
′

= ii
*
i aΣaY                             m,,2,1i K=  

( ) 0Cov * == qiqi aΣaX,Y             qi ≠ . 

 

Principal components can also be obtained from standardized variables. 

Standardized variables, which are given below, are used when the variances are 

drastically different from each other or the measurement scale of the variables is 

different. 
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Here V is the matrix of the set of all eigenvalue of covariance matrix. R is the 

correlation matrix.  

 

The principal components of Z may be obtained from the eigenvectors of the 

correlation matrix R of X. All the other results apply to the R. 

 

                                           ( )µ−




′=

′
=

−

X
1

2
1

VaZaY ii
*
i                                  (2.11) 

( ) ( )∑ ∑
= =

==
m

1i

m

1i

pVarVar i
*
i ZY  

 

Elements with an eigenvector are comparable to one another but elements in 

different eigenvectors are not comparable. To make comparisons between 

eigenvectors some researchers scale the eigenvectors by multiplying the elements in 

each vector by the square root of its corresponding eigenvalue. That is  

 

jjλ ac j =  

 

The new vectors are called component loadings vector. The thi  element in jc gives 

the covariance between the thi  original variable and the thj principal component. For 

more details about PCA, see Johnson, 1998. 

 

2.2.1 Determining the Number of Principal Components 

 

There is always the question of how many components to retain. Some methods 

exist for determining an appropriate number of components. These are: 
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Method 1 

The simplest way is to look at the number of eigenvalues bigger than 1 (for 

standardized data), or the small value of q that provides the condition∑
=

≥
q

1j

j

3

2

m

λ
. 

Method 2 

Scree plot of the eigenvalues. To plot ( ) ( ) ( )m21 λ̂m,,,λ̂2,,λ̂1, K .  

 

 

  Figure 2.1. A scree plot 

 

An elbow occurs in the plot. That is, the eigenvalues after 3λ̂  are relatively small 

and nearly at the same size with the following eigenvalues. In this case it appears that 

two (or three) sample principal components effectively summarize the total variation. 

 

2.2.2 Cautions about PCA 

 

• If the original variables are nearly uncorrelated, nothing can be gained by 

carrying out a PCA. In this case, the actual dimensionality of the data is equal to 

the number of response variables measured. 

• Any change in the measurement scale reflects the principal components. 

1 2 3 4 5 

m 

1.0 

2.0 2.0 

3.0 

mλ̂  
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• PCA cannot generally be used to eliminate variables, because all of the original 

variables are needed to score or evaluate the principal component variables for 

each of the individuals in a data set. 

Summary of steps in PCA: 

 

1. The data matrix which has p variable on n measurement is standardized. 

2. The correlation matrix of standardized data matrix is found. 

3. The eigenvalues and eigenvectors of correlation matrix is calculated. 

4. The account ratio of total variation of principal component is found by the help 

of eigenvalues. 

5. Principal component value is found by multiplying the transpose of each 

eigenvectors with the transpose of standardized data matrix. 

 

2.3 Principal Component Regression 

 

PCA selects a new set of predictor variables which are called components. These 

components are selected with the decreasing of variance within the predictor 

variables. These components are perpendicular to each other, which mean that there 

is no multicollinearity among them. Principal Component Regression (PCR) is used 

after PCA by applying MLR to the components.  

 

PCR only deals with the variance-covariance matrix of predictor variables ( )XX' . 

It doesn’t concern the relationship among the response variables. It defines all the 

latent variables using all of the original predictors.  

 

2.4 Partial Least Squares Regression 

 

There is another method, which can be used in detecting multicollinearity and 

which is the subject of this thesis, called Partial Least Squares Regression (PLSR). It 

also deals with the variation of the response variables. PLSR analysis is based on the 
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variance-covariance matrix of the all variables, that is ( )Y'X . In particular, the 

method of Partial Least Squares Regression balances the two objectives, seeking 

latent variables that explain both response and predictor variables. The following 

chapter gives a brief summary about PLSR. 

 

 

 

 

 



 

 

17 
 

 

CHAPTER THREE 

PARTIAL LEAST SQUARES REGRESSION 

 

3.1 Literature Review of Partial Least Squares Regression 

 

The pioneering work of PLS was done by Herman Wold at the beginning of the 

1970’s. After his Ph.D. on the subject of time series, he went on studying regression 

in econometric models. This led him to the fixed-point method. It is a method of 

designing path models with directly observed variables and has an algorithm which 

is iterative. This experience on iterative models has played an important role on later 

developments. 

 

Around 1964 Herman Wold invented the NIPALS. The NIPALS method contains 

a number of properties that eased the path to useful PLS modelling. The NIPALS 

method is used to compute principal components by an iterative sequence of simple 

ordinary least squares regressions. Together, the combination of econometric 

modelling and NIPALS created the first form of PLS in the early 1970s.  

 

PLS found its way into Chemistry in the late 1970’s. Svante Wold, son of Herman 

Wold, had helped his father in the previous work on the NIPALS algorithm and used 

it on his own work. The first chemical paper to make reference to PLS was by 

Gerlach, Kowalski and H. Wold in 1979. Since then a growing number of chemists 

have used PLS to build calibration methods that seem to have superior prediction to 

other methods.  

 

Many articles have been written concerning the developments of PLS. The book 

by Naes and Martens used statistical concepts that began to provide a theoretical 

basis for PLS (1989). Paul Geladi offered a review of historical development of PLS 

(1988). PLS regression was studied and developed from the point of view of 

statisticians by Agnar Höskuldsson (1988). The mathematical foundations of PLS 

have been discussed by Lorber, Wangen and Kowalski (1987). A tutorial for PLS 
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was provided by Geladi and Kowalski (1986).  The most recent research was done by 

Inge Helland (1990), Paul Garthwaite (1994) and Svante Wold (2001).  

 

PLS is comprised of some algorithms. These are; NIPALS algorithm, UNIPALS 

algorithm, KERNEL algorithm, SAMPLS algorithm and SIMPLS algorithm. Most 

commonly used algorithms are NIPALS, SIMPLS and KERNEL algorithms. 

NIPALS was the first algorithm to be studied. Then, the other algorithms were 

investigated based on NIPALS algorithm. SIMPLS algorithm was studied by Sijmen 

de Jong (1993). KERNEL algorithm was studied by Fredrik Lindgren, Paul Geladi 

and Svante Wold (1993). Also Cajo Ter Braak (1994) and Stefan Rännar (1994) have 

studies about KERNEL algorithm.  

 

After PLS analysis, in regression part, some model selection criteria played an 

important role to select the best model. Baibing Li, Julian Morris and Elaine B. 

Martin (2002) are the major names about this subject. 

 

3.2 Partial Least Squares Regression 

 

PLSR is a multivariate statistical technique that allows a relationship among 

multiple response variables and multiple predictor variables. It is a wide class of 

methods which consists of regression (MLR), dimension reduction techniques (PLS), 

and modelling tools.  

 

Dimension reduction is made in the PLS partition. PLS was designed to deal with 

multiple regression when data have missing values and multicollinearity. It is a very 

popular method when there is a big problem with a high number of correlated 

variables and a limited number of observations.  

 

The goal of PLS is to predict Y from X while describing the common structure 

between the two variables. That is, PLS will give the minimum number of variables 

required to maximize the covariance between the predictor and predicted variables 

(Höskuldsson, 1988). 
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There are two types of PLS. PLS1 is when there is univariate response variable, 

PLS2 is when there are at least two response variables. PLS can be interpreted as an 

extension of regression problems. The predictor and response variables are each 

considered as a block of variables. Then PLS extracts the score vectors (latent vector 

or components) which serve as a new predictor representation and regresses the 

response variables on these new predictors. Components which are linear 

combinations of original predictors are mutually independent (orthogonal).  

 

As an extension of the MLR model, PLSR shares the assumptions of Multiple 

regression. However, unlike MLR, it can analyze data with strongly collinear, 

numerous predictor variables, as well as the model several response variables.  

 

PLSR is a latent variable based method for the linear modeling of the relationship 

between a set of response variables Y ( )KN ×  and a set of predictor variables X 

( )MN ×  (Lindgren, F., et al., 1993). 

 

Certain mathematical treatments and the working with large data sets have created 

some problems. Modelling large data sets limits the size of the computer memory. 

With the development of computer technology, this problem is constantly 

decreasing. Algorithms and programs have been optimized to meet the demands of 

today (Lindgren and Rannar, 1998). 

 

An algorithm is a well defined procedure to solve a problem. An algorithm 

generally takes some input, carries out a number of effective steps in a finite amount 

of time, and produces some output (Algorithm, n.d.). 

 

The choice of algorithm depends strongly on the shape of data matrices to be 

studied. In some studies, the number of observations is much larger than the number 

of variables. This leads to algorithm to work with variance-covariance, since number 

of variables are independent of the number of observations. For an opposite situation 

where the number of variables exceed the number of observations, choosing an 
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algorithm that works with a matrix that is independent of the number of variables 

will be the best choice (Lindgren and Rannar, 1998). 

 

In multivariate studies there are three types of large data matrices: 

 

- matrices with many  observations and few variables; N large, K and M small, 

- matrices with many variables and few observations; N small, K and/or M large, 

- matrices with many variables and many observations; N, K and/or M large. 

 

Several algorithms can be used in PLS regression. These algorithms use the 

situations that are given above. Most commonly used are NIPALS, SIMPLS, PLS-

Kernel and Kernel algorithms. These are explained in next subsections.   

 

3.2.1 NIPALS Algorithm 

 
The NIPALS algorithm, also known as the classical algorithm, was developed by 

H. Wold by 1960’s. It was first used for PCA and later for PLS. It is the most 

commonly used method for calculating the principal components of a data set. It 

gives more numerically accurate results when compared with Singular Value 

Decomposition (SVD) of the covariance matrix, but is slower to calculate. In 

following sections NIPALS algortihm for PCA and NIPALS algorithm for PLS will 

be explained, respectively. 

 

3.2.1.1 NIPALS Algorithm for PCA 

 

Consider the NIPALS for finding the principal components of XX′ . The aim is to 

find the first q principal component of XX′  starting with the largest eigenvalue 1λ  

and down. q must be less than or equal to m . 

 

The algorithm starts with 1j =  and XX j =  and carries on with the following 

iterative steps. 
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1. Choose jt  as any column of jX . 

2. Let 
jj

jj
j

tX

tX
p

′

′
= . 

3. Let jjj pXt = . 

4. If  jt  equals to the one used in step 2 then continue, otherwise return step 2. 

5. Let residuals jjjj ptXX ′−=+1 . 

6. Let 1jj +=  and repeat steps 1 to 6 by using residuals 1+jX  instead of jX  

until mj = . 

 

Matrices T and P  with columns jt  and jp  now satisfy PTX ′= . 

 

Properties of algorithm are: 

 

   STEP 2: 

Let jtX′=jλ . Then step 2 is written as jj ptX jλ=′  

 

   STEP 3: 

jjj pXt =  then jj pXpX jλ=′  (Eigen decomposition of XX′ ). Using the equation 

in Step 3; 

( ) ( )

j

j

λ

λ

=

′=

′′=

′
=′

jj

jj

jjjj

pp

XpXp

XpXptt

 

 

   STEP 5: 

1j =  gives, 112112 ptXXptXX ′+=⇒′−=  

 

Then X can be written as a linear combination; 
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1

12211

+

+

+′=

+′++′+′=

qqq

ppp

XPT

XptptptX K
.                         (3.1) 

 

qT  and qP  contain the first p columns of T  and P . The aim is to choose q to 

make 1+qX  is small. The relative size of the eigenvalues is expressed as a percentage 

of the sum of all eigenvalues. So, the percentage of variation explained by the first j 

component is  

 

100
1

1
×

λ++λ

λ++λ

q

j

K

K
 

 

3.2.1.2 NIPALS Algorithm for PLS 

 
The basic algorithm for PLS regression was developed by Wold in 1960’s. The 

starting point of the algorithm is two data matrices X  and Y .  X  is MN × , Y  is 

KN ×  where N also represents the number of rows, M also represents the number of 

columns, and K is the number of response variables. Before the algorithm starts, the 

data matrices must be mean centered or scaled. The algorithm is as follows: 
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1. Start: Set ( )1×Nu  to the first column of Y . 

2. ( )
( ) ( )

( ) ( )( )11

1

1

××

××

×
′

′
=

NN

NNM
M uu

uX
w  

3. Scale ( )1×mw  to be of length one. 

4. ( ) ( ) ( )11 ××× = MMNN wXt  

5. ( )
( ) ( )

( ) ( )( )11

1

1

××

××

×
′

′
=

NN

NNK
K tt

tY
c  

6. Scale c to be of length one. 

7. ( )
( ) ( )

( ) ( )( )11

1

1

××

××

×
′

=
KK

KKN
N cc

cY
u  

8. If t  in step 4 convergences to the one in the preceding iteration then go to 

step 9 else go to step  2. 

9. X-loadings: ( )
( ) ( )

( ) ( )( )11

1

1

××

××

×
′

′
=

NN

NNM
M tt

tX
p  

10. Y-loadings:  ( )
( ) ( )

( ) ( )( )11

1

1

××

××

×
′

′
=

NN

NNK
K uu

uY
q  

11. Regression (u upon t): ( )
( ) ( )

( ) ( )( )1NN1

1NN1

tt

tu
b

××

××

×
′

′
=11  

12. Residual matrices: ptXX ′−→   and cbtYY ′−→ . 

 

Properties of algorithm are: 

 

   STEP 2: 

In PLS, the direction in the space of X  which yields the biggest covariance  

between X  and Y  is being searched. This direction is given by a unit vector w 

(weight vector). This weight vector formed by standardizing the covariance matrix 

for X  and Y . Weights are based on the covariance between jX  and ju .   
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   STEP 3:  

       ( )
( ) ( )

( ) ( )( )11

1

1

××

××

×
′

′
=

NN

NNM
M uu

uX
w                                                (3.2) 

w is scaled; that is  
ww

w

′
 such that, 

( ) ( )( ) ( ) ( )( )
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   STEP 4: 

The 1N ×  latent vector 1t  is formed as a linear combination of the columns of X 

with weights vector 1w . The latent vectors jt  are also called scores, similar to the 

terminology for PCA. 

 

 

   STEP 5:  

( )1K×c  are the weights of Y. 

 

 

   STEP 8: 

Convergence is tested on the change in t. ε<
−

new

newold

t

tt
, 86 10,10 −−≅ε . 
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    STEP 9:  

The vector ( )1M×p  is the vector of regression coefficients obtained from multiple 

linear regression of jX  on jt . This vector is called .loadings  

Model is, ptX ′= . 

 

   STEP 10: 

This step is to find the loadings for Y . 

 

   STEP 11:  

b  is a scaling factor. 

 

   STEP 12:  

ptXX ′−→  

                                 X̂  (estimated from the algorithm) 

                         Beginning matrix (at the beginning of the algorithm) 

                New matrix (Residual) 

 

This equation can be similarly written for Y . 

 

 

NIPALS algorithm is based on the classical algorithm which was developed by 

Wold in 1960’s. The use of NIPALS in large data structures, causes some technical 

problems. The calculation of score and loading vectors can be time-consuming and 

requires big memory. In the case of large matrices fast and powerful software is 

needed. 
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3.2.2 SIMPLS Algorithm 

 
This algorithm was developed by Sijmen de Jong in 1993. This name was given 

since it’s being a straightforward implementation of a statistically inspired 

modification of the PLS method (De Jong, 1993). It is much faster than the NIPALS 

algorithm, especially when the number of predictor variables increases, but gives 

slightly different results in the case of multivariate response variables. For univariate 

response variable, SIMPLS is equivalent to PLS1.  

 

In both algorithms, the predictor and response variables are first mean centered. In 

the first stage of PLS2 the data matrix X  is deflated in each step and the latent 

vectors t  are the linear combinations of the deflated matrix not the original matrix. 

For that reason the interpretation of the score matrix T  is not straightforward. 

SIMPLS calculates the PLS latent variables directly as linear combinations of the 

original variables because of deflating the covariance matrix Y'XS = . 

 

3.2.3 Kernel Algorithm 

 
The first kernel algorithm was developed by Lindgren in 1993.  It was an 

alternative to the classical algorithm for handling datasets where N>>M. This 

algorithm uses XYYX ′′  ( )MM ×  matrix since it is independent of the number of 

observations. This property provides working with small matrix. This algorithm 

innovates to update YX′  variance-covariance matrix by multiplication of an 

updating matrix ( )pwI ′−  of size ( )MM ×  without interfering to the original X and 

Y matrices. 

 

The second kernel algorithm was presented by Rännar et al in (1994). It is similar 

to the first kernel algorithm but is suitable for datasets that is M>>N (many variables 

and fewer observations). This algorithm depends on YYXX ′′  kernel matrix. 

 

The kernel algorithms were recently modified by De Jong (1993), resulting in 

faster and simplified kernel algorithms. Further modifications were proposed by 
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Dayal et al. (1997). They utilize the fact that only one of the matrices X or Y needs 

to be deflated. Since the response variables are often few, deflating Y instead of X 

saves time.  

 

3.2.3.1 PLS-Kernel with Many Variables and Few Objects 

 
This is a fast PLS regression algorithm dealing with large data matrices with 

many variables and fewer observations. It is based on YYXX ′′  kernel matrix which 

is a square, non-symmetric matrix of size ( )NN × . This matrix is dependent on the 

number of observations. When the data matrices Y  X,  are large, working with these 

data matrices algorithm needs lots of calculation (Rännar, S., et al 1994). That is to 

say, the algorithm requires a multitude of multiplications of large vectors by large 

matrices. This requires large storage areas in computer memory.  Lindgren (1995) 

shows that for special cases there are alternative algorithms based on small kernel 

matrices. These small kernel matrices requires less space than the original data, and 

calculations are faster than the original data matrices.  

 

In this algorithm, it is possible to calculate: 

• All score vectors 

• All loading vectors 

• And hence, conduct a complete PLS regression including such as 2R .    

 

All of the vectors can be calculated by the eigen decomposition of corresponding 

matrices as given by Höskuldsson (1988);  

 

                                                  

( )
( )
( )
( )uXXYYu

tYYXXt

cYXXYc

wXYYXw

′′=

′′=

′′=

′′=

4

3

2

1

α

α

α

α

                                               (3.3) 

 

where ( )41 ,, αα K  are the eigenvalues and w, c, t and u are the corresponding 

eigenvectors with unit length. 
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Steps of the algorithm are as follows: 

 

Before the algorithm starts, data matrices are scaled and mean centered.  

 

   STEP 1: 

Algorithm starts with creating  XX ′  and YY ′  association matrices and then by 

the multiplication of these association matrices YYXX ′′  kernel matrix is obtained. 

 

   STEP 2: 

The eigenvector of the kernel matrix is calculated. This is the first X latent vector 

1t . Then this latent vector is used for calculating 1u . Then these score vectors are 

scaled as follows; 

                                       ( )n
e
w

n
e
w

n
e
w

n
e
w

n
e
w

n
e
w

n
e
w

n
e
w

tttttttt norm=newt  

But to get similar vectors as in the classical algorithm, these score vectors are 

rescaled as follows: 

 

( )

( )wwuu

wwtt

uEEuww

tFFt

u
u

tempscaled

ascaled

temp1a1atemp

a1a1aa

a
temp

′=

′=

′′=′

′′
=

−−

−−

                (3.4) 

 

Here, tempu  is a temporary vector.    A,1,2,a K=  number of components. 
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   STEP 3: 

This step is about updating the association matrices. In kernel algorithm,  XX ′  

and YY ′  association matrices are reduced. E is the residual matrix and at the 

beginning of the algorithm it is equal to original X data matrix i.e. XE0 = . For the 

first component, 1E  residual matrix will be defined on 0E . 

 

           

( )

( )

aa

aaa

aaaaaa

aaaaa

aaa

aaaa

GG

GEE

EGEttIE

EttEE

XtEtpEtp

ptEE

′=

′′=′

=′−=

′−=

′=′=′→′=′

′−=

−

−−

−−

−

−

1

11

11

10111

1

                                    (3.5) 

 

Here aaa ttIG ′−= .  

In this case,   1111 GXXGEE ′=′            

And for the component a residual is equal to; a1a1aaaa GEEGEE −−
′=′ . 

The same calculations can be made for Y. In this case,   1111 GXXGEE ′=′            

And for the component a residual is equal to; a1a1aaaa GEEGEE −−
′=′ . 

The same calculations can be made for Y.        

 

         YF0 =  

         
( )

aaa

aaa

aaa

aaaa

GFF

FGF

YtcFtc

ctFF

1

1

111

1

−

−

−

−

′=′

=

′=′→′=′

′−=

                                                   (3.6)

          

And for the component a residual is equal to; a1a1aaaa GFFGFF −−
′=′ . 

 

Thus the association matrices are updated by left and right multiplication by the 

updating matrix aG . 
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• Some properties of vectors 

 

� 0=′ jiut    for  ij >  

              

 

 

         

 

   STEP 4: 

 

In this step, weight W and loading matrices P, C are calculated. 

 

    ( )( )

( )( ) 1

1

TTYTC

TTXTP

UXW

−

−

′′=

′′=

′=

                                                              (3.7)

                

All the columns in W are normalized to have length 1.  

 

 

                                                            

                                                                       

  

 

 

Here,  ( )XttIXGE 1111
′−==  and 0=′

12tu . 

 

Finally the PLS regression coefficients PLSB  are obtained. 
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The orthogonality property for 1t  and 2u becomes; 

 

( )
( ) 201111

20111

21121

cFtttIt

cFttIt

cFtut

′′−′=

′−′=

′=′

   

 

                    0 

Since 1=′
11tt  

        
( )
0=

−′= 2011 cFtIt
        

 

This makes UT′  a lower triangular. 

 

� 0tt ji =′     for   j>i 

           

          i-1ii wEt =  

jj-1j wEt =  

 

Then for i=1, j=2 
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3.2.3.2 PLS-Kernel with Many Observations and Few Variables 

 

This algorithm was developed by Lindgren et al. (1995) to handle datasets where 

N>>M. The novelty of this algorithm that it updates the variance/covariance matrices 

directly without interfering with the original X and Y matrices. By multiplication of 

an updating matrix ( )pwI ′−  of size ( )MM × , explained variance is removed from 

the variance/covariance matrices: ( ) ( )pwIXYYXpwI ′−′′′′−  (Lindgren et al, 1998). 

 

3.2.4 SAMPLS Algorithm 

 

SAMPLS (SAMple-distance Partial Least Squares) was presented by Bush et al. 

in 1993, and has been focused on the special case of many predictor variables and 

few observations M>>N. However, the algorithm handles only one y response 

variable, which is a limiting factor compared to other algorithms (Lindgren et al, 

1998). It works with the association matrix XX ′  and the response vector y in order 

to calculate the latent vector without iteration.  

 

3.2.5 UNIPALS Algorithm 

 

UNIPALS (UNIversal Partial Least Squares) was presented by Glen in 1989.  It is 

based on the matrix YXXY ′′  with size ( )KK × . The largest eigenvector of this 

matrix corresponds to the first weight vector for the Y block and by the help of this 

vector all other PLS vectors can be calculated without iteration. 
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CHAPTER FOUR 

MODEL SELECTION METHODS 

 

Model selection and validation are critical subjects in predicting the performance 

of the regression models. In model selection, a statistical model is chosen from a set 

of potential models. Selecting the best model depends on the correct selection of 

variables, so the model prediction error is minimized and the model is prevented 

from redundant variables. There are several variable selection techniques. Some of 

them are explained in the next subsections. 

 

Suppose that there is a data set with N observations and M predictor variables 

such as X and a response variable y. The problem of variable selection arises when 

one wants to model the relationship between y and a subset of predictor variables, 

but there is uncertainty about which subset to use (Baumann, 2003). The variable 

selection problem is often defined as selecting K<M variables that allow the 

construction of the best predictor.  

 

There can be many reasons for selecting only a subset of the variables. It is 

cheaper to measure less variables and knowing which components are relevant can 

give insight into the nature of the prediction problem. So, the predictor to be built is 

usually simpler and potentially faster when less components are used, Also, 

prediction accuracy is improved through exclusion of irrelevant components. 

 

This situation is difficult when N is small and M is big and the predictor variables 

are thought to contain many redundant or irrelevant variables. For M potential 

predictor variables, there are 12 −M  possible regression equations. For large M, it is 

not practical to consider all possible subsets. Therefore, a search algorithm that 

evaluates only a small portion of all possible subsets is needed. 

 

Variable selection algorithms need two theme: a mathematical modelling 

procedure and an objective function guiding for the search. Some of the 

mathematical modelling techniques combined with variable selection are MLR, PCR, 
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PLSR and neural networks. In PCR and PLSR, predictor variables are reduced to 

fewer latent variables by the help of algorithms. But determining the correct number 

of latent variables is still one of the most difficult part.  

 

The objective function is used for assessing the temporarily selected variable 

subsets during the search for the best model.  The objective function should provide 

an estimate of the prediction error.  

 

As more and more latent variables are calculated, they are ordered by the degree 

of importance for the model. The previous latent variables in the model are the most 

possible ones related to both variables. Latent variables that come later generally 

have less information that is useful for predicting response variable. If the model 

contains these latent variables, the predictions can be worse than if they were omitted 

together.  

 

Various methods for choosing significant latent variables are used in the literature. 

Some of them are from simple to complex, scree plot and likelihood ratio tests. In 

this paper cross-validation which is a practical approach to guide the search or the 

selection process will be given.  

 

In component selection, the aim is usually to find a small subset of the latent 

variables that enables the construction of accurate predictors. Consequently, the 

accuracies of the predictor to be built need to be estimated in order to know whether 

a good subset has been found.  

 

4.1 Cross-Validation 

 

One of the most important issues in any regression modelling is a concept of its 

predictive ability (prediction) power. This concept is essential as one needs to 

estimate the optimal number of latent variables in order to avoid the risk of obtaining 

models with over-fitting or under-fitting. This risk is reduced by using validation 
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procedures to determine the number of Latent variables that minimizes the prediction 

error. One of this validation procedures is known as cross-validation (CV) (Barros 

and Rutledge, 2004).  

 

The glossary meaning of CV is “the division of data into two approximately equal 

sized subsets, one of which is used to estimate the parameters in some model of 

interest, and the other is used to assess whether the model with these parameter 

values fits adequately.” 

 

CV is a very popular technique for model selection and model validation. It is 

used for investigating the predictive validity of a linear regression equation. It is 

conceptually very simple to understand, but the most calculationally intensive 

method of optimizing a model. Besides, it is the most common approach to 

estimating the true accuracy of a given model and it is based on splitting the 

available sample between a training set and a validation set (Last, 2006).  

 

As mentioned above, there are two sets of CV. Training set is a portion of a data 

set to fit (train) a model for prediction or classification of values but unknown in 

other (future) data. The training set is used in conjunction with validation and/or test 

sets that are used to evaluate different models. Second is the validation set. It is a 

portion of a data set used in data mining to assess the performance of prediction or 

classification models that are fit on a separate portion of the same data set (training 

set). Typically both the training and validation sets are randomly selected, and the 

validation set is used as a more objective measure of the performance of various 

models that are fit to the training data (and whose performance with the training set 

is therefore not likely to be a good guide to their performance with data that they 

were not fit to).  

 

There are some types of cross validation. These are; 

 

Holdout validation: Observations are chosen randomly from the initial sample to 

form the validation data, and the remaining observations are retained as the training 
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data. Normally, less than a third of the initial sample is used for validation data 

(wikipedia.org). 

 

K-fold cross-validation: In k fold cross-validation, the original sample is 

partitioned into k subsamples that are approximately in the same size. From these k 

subsamples, a single subsample is retained as the validation data for testing the 

model, and the remaining k–1 samples are used as training data. The cross-validation 

process is then repeated k times, with each of the k subsamples being used exactly 

once as the validation data. The k results from the folds can then be averaged to 

produce a single estimation (wikipedia.org). 

 

Leave-one-out cross-validation: This involves using a single observation from the 

original sample as the validation data and the remaining observations as the training 

data. This is repeated such that each observation in the sample is used once as at the 

validation data. This is the same as k-fold cross-validation where k is equal to the 

number of observations in the original sample. This method can be time-consuming 

for large data sets because it recalculates the models as many times as there are 

observations (wikipedia.org).  

 

For all types of cross validation, PRESS is being calculated. It is calculated by 

building a model with a number of factors, then predicting training data set with this 

model. The sum of the squared difference between the predicted and observed values 

gives the PRESS value for that model. PRESS criterion is a measure of how well the 

use of the fitted values for a subset model can predict the observed responses of a 

dependent variable.   

 

The PRESS value for the ith observation is as follows: 

 

                                        ( )∑
=

−=
n

1i

2

)i(ii ŷyPRESS                                            (4.1) 
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where the notation )i(iŷ  is used for the fitted value. By the first subscript i, it is 

shown that it is a predicted value for the ith case and by the second subscript (i), it is 

shown that ith case is omitted when the regression function was fitted. The smaller 

PRESS value shows that it is the best model to predict. In some situations PRESS 

should reach a minimum and start to rise again.  

 

The advantageous feature of cross-validation is its ability to estimate the 

performance of the model. Since the predicted samples are not the same as the 

samples used to build the model, the calculated PRESS value is a very good 

indication of the error in the accuracy of the model when used to predict unknown 

samples in the future.  

 

The disadvantage of cross-validation is that it is time consuming. It requires the 

recalculating of the models for every sample left out and this takes time. 

 

Selecting the components based on PRESS: 

 

To avoid building a model that is either overfit or underfit, the number of 

components where the PRESS value reaches a minimum would be the obvious 

choice for the best model. While the minimum of the PRESS may be the best choice 

for predicting the particular set of samples, most likely it is not the optimum choice 

for predicting all unknown samples in the future. That is, the optimum number of 

factors was determined rather than the selection of the model, which yields a 

minimum in PRESS; the model selected is the one with the fewest number of factors 

such that PRESS for that model is not significantly greater than the minimum PRESS 

(Niazi and Azizi, 2008). A solution to this problem has been suggested in which the 

PRESS values for all previous factors are compared to the PRESS value at the 

minimum.  

 

The ratio between these values known as the F-ratio can be calculated and 

assigned a statistical significance based on the number of observations; 
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min

a
ratio

PRESS

PRESS
F

a
=                                                      (4.2) 

 

Hypothesis for this test statistic can be given as follows: 

 

                                        
mina1

mina0

PRESSPRESS:H

PRESSPRESS:H

>

=
                                          (4.3) 

 

This F ratio is an indicator of the relative significance of each model with the 

number of components at the minimum of the PRESS. An F test can be used to 

determine the significance of PRESS values greater than the minimum (Niazi, Azizi, 

2008). The number of components where the F ratio falls below a predefined 

significance level determines the optimum number of factors for a model used for 

predicting unknowns. In some references the probability of that level falling at or 

below 0.75 is suggested as determining the point at which adding a new component 

to the model. 

 

In addition to the statistic above, Osten (1988) proposed an F test based criterion, 

where the F value is given by: 

 

                       
( ) ( ) ( )

( )K1aNK

1aPRESS

K

1aPRESSaPRESS
F

+−

++−
=                            (4.4) 

 

This criterion is compared with an F value, 95.0,K)1m(NK,KF +−  (Li, Morris and Martin, 

2002). Also a model selection criterion called Wold’s R can be calculated from the 

PRESS values. It can be explained as follows: 

  

          
( )

( )aPRESS

1aPRESS
R

+
= ,                (4.5) 
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where PRESS(m) denotes the PRESS after including the first a latent variables. 

Wold’s R criterion terminates when R is greater than unity or a given threshold and 

hence A=a (Li et al, 2002).  

   

PRESS is also used to calculate goodness of prediction value called 2Q . This 

statistic is based on the proportional error reduction of the PRESS of squares 

residuals. It can be written as: 

 

                              ( ) ( ) 







−−−= ∑∑

==

N

1i

2

)i(i

N

1i

2

)i(i
2 yyŷy1Q                                (4.6) 

In this formula ( )∑
=

−
N

1i

2

)i(i yy  is the sum of squares difference between observed 

and yi and the mean ( )iy  when the ith observation is omitted (Quan, 1988). 

 

Briefly, 2Q  is (1.0-PRESS/SS) where SS is the residual sum of squares of the 

previous dimension (Wold et al., 1993). This means that 2Q  renders a measure of the 

final’s model predictive capability. It answers the question of how good predictions 

on the basis of known X data can be (M. Henningsson et al, 2001).  

 

In the presence of outliers the 2Q  statistic can be negative, because it is sensitive 

to the choice of regressors and the inclusion of influential observations (Quan, 1988). 

 

4.2 Akaike Information Criterion 

 

This was developed by Hirotsugu Akaike under the name of “an information 

criterion (AIC)” in 1971 and was proposed in Akaike (1974). It is a measure of the 

goodness of fit of an estimated statistical model. It is a way of selecting a model from 

a set of models. Given a data set, several competing models may be ranked according 

to their AIC, with the one having the lowest AIC being the best.  
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For problems associated with a single variable and more than one response 

variables, there are two types of information criterion. With a single response 

variable (K=1) criterion is: 

 

                                            ( ) ( ) a2ˆlogNaAIC 2 +σ=                                              (4.7) 

 

where a is the number of model parameters, N is the number of observations, and 2σ̂  

is the maximum likelihood estimate of the variance of the response variable. 

( )2ˆlogN σ  represents model accuracy, a2  relates to model parsimony.  

N

RSS
ˆ 2 =σ . RSS is the residual sum of squares.  

 

                                    ( ) ( ) a2RSSlogNaAIC +=                                                   (4.8) 

 

For more than one response variable (K>1), multivariate version of AIC was 

given by Bedrick and Tsai (1994), 

 

                   ( ) ( ) ( )[ ]21KKKad2KˆlogNaMAIC ++++Σ=                                 (4.9) 

 

where ( )[ ]1KaNNd ++−=  and Σ̂  is the maximum likelihood estimate of 

Σ (variance-covariance matrix of the response variable). 

 

The multivariate version of AIC was given by Bozdogan (2000) under the 

multivariate normal assumption for the multivariate regression model which are 

given as follows, 

 

               .
2

)1a(a
aK2NMˆNlog)NMlog(2MAIC 




 +
+++Σ+π=                       (4.10)                        
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CHAPTER FIVE 

DESIGN OF SIMULATION STUDY AND RESULTS 

 

Partial Least Squares Regression Analysis is partitioned into PLS and MLR. In 

PLS partition, dimension reduction is being done. After this reduction, latent 

variables, which are the new predictor variables, are used in regression partition. 

These latent variables are fewer than predictor variables. But, as all the latent 

variables can be used in regression, also fewer of them can be more sufficient in 

regression analysis. This sufficiency is achieved by describing the variance with both 

predictor variables and response variables.  

 

To obtain the most relevant or sufficient latent variables, some model selection 

criteria were developed. Some of these criteria depend on describing the percentage 

of the variance or minimum error. In model selection criteria, k fold cross validation 

is used, followed by two different multivariate Akaike Information Criterion from 

Bozdogan, Bedrick and Wold’s R criteria. The optimum latent variable number 

which is obtained from PRESS criterion was used.  

 

In this thesis the model selection criteria was used for PLS model selection and 

their performances were evaluated by a Monte Carlo simulation study. The analysis 

including all simulations and calculations and all the data sets were generated 

randomly on MATLAB environment.  

 

5.1 Design of Simulation Study 

 

The framework for the simulation model was based on Li and Morris (2002) for 

the problem of multiple response variables. In this study the true number of latent 

variables is shown with A*.  

 

The dimensions of predictor variables is extended as 6N × , 8N × , 10N ×  and 

12N × . The dimension of response variables matrix, Y, is chosen as 4N × . 
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Explanatory data matrix, X, was generated from equation (5.1): 

 

                                                      EξrX
*A

1i
ii +′=∑

=

                                            (5.1) 

 

The components of X matrix are given in Table 5.1 and Table 5.2. 

 

Table 5.1 The R and E matrices for X matrix.  

 
Dimension of 
data matrix 

 
R 

 
E 

6N ×  
8N ×  

10N ×  
12N ×  

R=[r1, r2, r3, r4], i=1,2,3,4 

 were generated as; 

mutually independent normal 

variables with mean zero and 

  var(r1)=10 

var(r2)=5 

var(r3)=2 

   var(r4)=0.5 

E=[e1, e2, e3, e4, e5, e6] , j=1,…,6  

were generated as;  

mutually independent random 

variables with mean zero and 

var(ej)=0.01. 
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Table 5.2 The generated orthogonal vectors for iξ′ .  

6N ×  8N ×  
 
 



























0000.4082

0000.4082

0.8660-000.4082

0.28870.8165-00.4082

0.28870.40820.7071-0.4082

0.28870.40820.70710.4082

 

 
 

 

 

































0.4642-0.40820.3030-0.1612

0.1612-0.40820.4642-0.3030

0.408200.4082-0.4082

0.30300.4082-0.1612-0.4642

0.3030-0.4082-0.16120.4642

0.4082-00.40820.4082

0.16120.40820.46420.3030

0.46420.40820.30300.1612

 

 

10N ×  21N ×  
 

   







































0.3879-0.32230.2305-0.1201

0.3223-0.42210.3879-0.2305

0.12010.23050.4221-0.3223

0.42210.1201-0.3223-0.3879

0.23050.3879-0.1201-0.4221

0.2305-0.3879-0.12010.4221

0.4221-0.1201-0.32230.3879

0.1201-0.23050.42210.3223

0.32230.42210.38790.2305

0.38790.32230.23050.1201

 

 
 
 

 
  













































0.3228-0.26010.1823-0.0939

0.3667-0.38940.3228-0.1823

0.0939-0.32280.3894-0.2601

0.26010.09390.3667-0.3228

0.38940.1823-0.2601-0.3667

0.18230.3667-0.0939-0.3894

0.1823-0.3667-0.09390.3894

0.3894-0.1823-0.26010.3667

0.2601-0.09390.36670.3228

0.09390.32280.38940.2601

0.36670.38940.32280.1823

0.32280.26010.18230.0939

 

  

iξ′  are orthogonal and unit vectors. Response variables matrix is generated from 

equation (5.2). 

 

                                      **
Đ

*
Đ AAiAi FηrφηzY +′=+′= ∑∑
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** A
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A
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                                    (5.2) 

                                                       ∑
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Table 5.3 The generated values for φ  

 
Dimension of 
data matrix 

 
φ  

6N ×  
8N ×  

10N ×  
12N ×  

[ ]4321 φ,φ,φ,φφ =  was generated  

multivariate normal distribution with 

mean zero and following variance-

covariance matrix;    



















0.00010

0.00006

0.00006

0.00006

0.00006

0.00010

0.00006

0.00006

0.00006

0.00006

0.00010

0.00006

0.00006

0.00006

0.00006

0.00010

 

  

Table 5.4 The generated orthogonal vectors for iη . 

6N ×  8N ×  
 
 



















0.8660-

0

 0

0.500

0.2887

0.8165-

 0

  0.500 

0.2887

0.4082

 0.7071-

0.500

0.2887

 0.4082

0.7071

0.500 

 

 

 



















0.500

0

 0.500-

0.500

0

0.5774-

 0

 0.5774

0.500-

0

0.500

0.500

0.500

0.5774

0.500

0.2887 

 

10N ×  12N ×  
 



















0.3717-

0.6015

0.6015-

0.3717

0.6015

 0.3717-

0.3717-

0.6015

 0.6015-

0.3717-

0.3717

0.6015

0.3717

 0.6015

0.6015

0.3717

 

 
 

 
 

 



















0.6935- 

0.5879

0.3928-

0.1379

0.5879

0.1379 

0.6935-

0.3928

0.3928-

0.6935-

0.1379-

0.5879

0.1379 

0.3928

0.5879

0.6935 
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Table 5.5 The generated data for Y.  

Dimension of 
data matrix 

 

 
F 

6N ×  
8N ×  

10N ×  
12N ×  

F=[f1, f2, f3, f4], i=1,2,3,4  

were generated as; 

mutually independent normal 

variables with mean zero and 

var(f1)=0.25 

 var(f2)=0.125 

var(f3)=0.05 

  var(f4)=0.0125 

 

Table 5.1-Table 5.5 show how data matrices are generated. After generating of all 

data sets, the Variance Inflation Factor is calculated for 6N×  design matrix in 

Minitab to see there is multicollinearity or not. The VIF values are  shown in Table 

5.6. 

 

Table 5.6 VIF values for 6N× . 

Predictors VIF 

X1 635,6 

X2 439,9 

X3 990,8 

X4 765,8 

X5 626,9 

X6 839,0 

 

Then the frequencies of the selected number of latent variables are calculated. 
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Table 5.7 Relative cumulative variances of  X and  Y for 6N× . 

True 

Model 

Blocks Number of Latent Variables 

  1 2 3 4 5 6 

X-block 0,54196 

 

0,88199 0,95207 0,99984 1,00000 1,00000  

A*=4 

Y-block 0,93226 0,96577 0,97492 0,97530 0,97530 0,97519 

 

 
As seen from Table 5.7 the true number of latent variables is 4.  
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5.2 Results of Simulation Study  

 

MATLAB code is written for k-fold cross validation in Modified Kernel 

Algorithm. k=5 is chosen and the simulation is repeated 10000 times for all design 

matrix. N is chosen as 100, 250 and 500. The comparison of results are shown in 

Figure 5.1-Figure5.6.  

 

(NOTE: in this study  6*4 is a design matrix represents 6×N  and means that the 

number of predictor variables is 6 and these variables are reduced to number 4 for 

the number of latent variables. This is the same for 8*4, 10*4 and 12*4). 

 

 

      Figure 5.1 All model selection criteria for N=100. 

 

These figures show the maximum iteration number for each design for N=100. As 

is shown, each criteria finds the true number of latent variables in 10000 iteration for 

6N × . But for other-sized design matrices, they find the number of latent variables 

with a higher number, and they cannot find the true number of latent variables. 
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      Figure 5.2 Model selection criterias for each design matrix for N=100. 

 

These figures display the number of latent variable for each model selection 

criterion in each design matrix for N=100. All model selection criteria find the true 

number of latent variables in 6N ×  design matrix. But when the number of predictor 

variables increases, they find the number of latent variable close to the number of 

predictor variables.  

 

 

 
      Figure 5.3 MAIC(BOZDOGAN) criterion for each design matrix for each N. 
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In these figures MAIC(BOZDOGAN) criterion is displayed for each design 

matrix for each N. In 6N ×  design matrix, it finds the true number of latent variables 

but for other design matrix, it finds the number of latent variables close to the 

number of predictor variables. 

 

 

      Figure 5.4 MA_OPT(PRESS) criterion for each design matrix for each N. 

 

In these figures MA_OPT(PRESS) criterion is displayed for each design matrix 

for each N. As is shown, it cannot find the true number of latent variables but it finds 

the number of latent variables close to the true number of predictor variables.  
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      Figure 5.5 MAIC (BEDRICK) criterion for each design matrix for each N. 

 

MAIC(BEDRICK) criterion is displayed for each of the design matrices and for 

each the number of observations. As is shown, it finds the true latent variable number 

in 6N × design matrix. When the design matrix and the number of observations get 

larger, it finds the number of latent variables close to number of predictor variables.  

 

 

 
       Figure 5.6 WOLD’S R criterion for each design matrix for each N. 
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WOLD’S R criterion is displayed for each of the design matrices and for each 

object number. As is shown, these figures are given with a true number of latent 

variables and the number of latent variable which is the most iterated.  
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CHAPTER SIX 

CONCLUSION 

 

In this thesis a Monte Carlo simulation study was done based on the paper of Li 

and Morris (2002). The paper’s simulation study was extended for high dimensional 

data. For more information, see Li and Morris (2002).   

 

The data was generated in MATLAB statistical program with the number 6, 8,10 

and 12 predictor variables. The number of response variable was taken as 4. The 

observation numbers were taken as 100, 250 and 500, respectively. These data 

matrices were generated in terms of PLSR assumptions and according to true number 

of latent variables which is equal to 4. The code for k-fold cross-validation was 

written and put into Modified Kernel algorithm. k was taken as 5. Model selection 

criteria were applied to data to compare the performance of criteria in order to find 

the true number of latent variables. The details were given in Chapter 5. 

 

Main contribution of this thesis is comparing the performance of criteria in order 

to find the true number of latent variables for high dimensional data which resembles 

the study of Li and Morris. Li and Morris indicated that all criteria are effective for 

the small-sized design matrices. Especially WOLD’S R criterion gave the best results 

in finding the true latent variable number. Working with high dimensional data 

matrices, the reaction of these criteria, especially the reaction of Wold’s R was 

wondered by the researcher. Then the simulation study was done according to the 

interest of criteria’s performance, especially WOLD’S R. 

 

In the simulation study, firstly, the same results were obtained for the same sized 

data matrices of Li and Morris. Afterwards, data matrices were extended for larger 

number of predictor variables and observations. 10000 iterations were done for each 

design matrices. The results were given in Chapter 5 and Appendix 4.   

 

The simulation results show that all criteria achieved the true number of latent 

variables for small-sized design matrices. However, the results for the other-sized 
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design matrices varied greatly and they consistently showed different numbers of 

latent variables. Generally it can be said that, when N increases, PLS creates a model 

with a high number of latent variables, which is statistically significant. The 

simulation studies also show that WOLD’S R criterion is effective for a 6*4 design 

matrix. That is, WOLD’S R gave the same result as in Li and Morris when the data 

was generated according to their paper. Also, when the data was generated with 

nonorthogonal vectors, 8*4, 10*4 and 12*4, as the same as Li and Morris, WOLD’S 

R gave the best results. Nevertheless, when the data was generated according to the 

assumptions of PLSR, it seems that WOLD’S R criterion did not give desirable 

results in high dimensional data. MAIC(BOZDOGAN) and MAIC(BEDRICK) 

found almost the same results as the number of latent variables but for high 

dimensional data they could not find the true number of latent variables. 

MA_OPT(PRESS) gave the same or nearly the same results with WOLD’S R 

criterion.  

 

In the simulation study, it is shown that, for high dimensional data matrices, 

although all design matrices were generated as 4 was the true number of latent 

variables, all of the model selection criteria found the number of latent variables 

close to the number of predictor variable. 
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APPENDICES 

 

Appendix 1. Notations    

  

Matrices are denoted with bold upper letters, vectors are denoted with bold lower 

letters. 

 

a →  index of components (a=1,2,…,A) 

A → number of components in PLS model 

i → index of observations (i=1,2,…,N) 

N → number of observations 

M  → number of  predictor variables (m=1,2,…,M) 

K  → number of  response variables (k=1,2,…,K) 

X → matrix of predictor variables with dimension ( )MN ×  

Y → matrix of response variables with dimension ( )KN ×   

bm → regression coefficient for the mth predictor variable. 

B → matrix of regression coefficients of all Y’s ( )KM ×   

ca → PLSR Y weights of component a ( )1K ×   

C → Y weight matrix ( )AK ×   

E → matrix of X residuals ( )MN ×   

fa → residuals of a th component on y variable ( )1N ×   

F → matrix of Y residuals ( )KN ×   

pa → X loading vector of component a ( )1M ×   

P → Loading matrix ( )AM ×  

ta → X scores of component a ( )1N ×   

T → latent variable (score) matrix ( )AN ×   

wa → X weight of component a ( )1M ×   

W → X weight matrix ( )AM ×   
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Appendix 2. Abbreviations 

 

CV → Cross-validation 

EVD → Eigenvalue Decomposition 

OLS → Ordinary Least Squares 

MLR 

MSE 

→ 

→ 

Multiple Linear Regression 

Mean Square Error 

NIPALS → Non-Linear Iterative Partial Least Squares 

PCA → Principal Component Analysis 

PCR → Principal Component Regression 

PLS → Partial Least squares 

PLSR 

PRESS 

→ 

→ 

Partial Least Squares Regression 

Predicted Residual Sum of Squares 

SIMPLS → Straightforward Partial Least Squares 

SVD → Singular Value Decomposition 

VIF → Variance Inflation Factor 
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Appendix 3. MATLAB Code for 6N ×  

 
clc; 

clear; 

maic=[]; 

maic1=[]; 

maic2=[]; 

MAKAIKE=[]; 

MBEDRICK=[]; 

MNEW=[]; 

PRESS=[]; 

NORMPRESS2=[]; 

saydir=zeros(6,1); 

N=100;  

Woldlar=zeros(counter,5);  

 

for counter=1:10000      

  

  X=[]; 

  Y=[]; 

  

    E=mvnrnd([0 0 0 0 0 0],[0.01 0 0 0 0 0;0 0.01 0 0 0 0;0 0 0.01 0 0 0;0 0 0 0.01 0 

0;0 0 0 0 0.01 0;0 0 0 0 0 0.01],N); 

     

    R=mvnrnd([0 0 0 0],[10 0 0 0;0 5 0 0;0 0 2 0;0 0 0 0.5],N); 

     

   zeta =[ 0.4082    0.4082    0.4082    0.4082    0.4082   0.4082; 

            0.7071   -0.7071         0         0         0        0; 

            0.4082    0.4082   -0.8165         0         0        0; 

            0.2887    0.2887    0.2887   -0.8660         0       0]; 

     

    X=(R*zeta)+E; 
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    fi=mvnrnd([0 0 0 0],[0.25 0 0 0;0 0.125 0 0;0 0 0.05 0;0 0 0 0.0125],N); 

 

     eta =[  0.5000    0.5000    0.5000    0.500; 

            0.7071   -0.7071         0         0; 

            0.4082    0.4082   -0.8165         0; 

            0.2887    0.2887    0.2887   -0.8660]; 

  

     pisi=mvnrnd([0 0 0 0],[0.00010 0.00006 0.00006 0.00006; 

               0.00006 0.00010 0.00006 0.00006;  

               0.00006 0.00006 0.00010 0.00006; 

               0.00006 0.00006 0.00006 0.00010],N); 

     

   F=(fi*eta)+pisi; 

    Y=(R*eta)+F; 

    SYY=Y'*Y; 

    SXX=X'*X; 

  

%k-FOLD CROSS-VALIDATION PROCEDURE k=5  

 

cr=5; 

PRESS=[]; 

latent=4; 

for cr=1:5 

     

    if cr=1 

                       

            Xd = X(bol+1:N,:); 

            Yd = Y(bol+1:N,:); 

            Y_cr=Yd;  

            X_cr=Xd;  

            SXX_cr=X_cr'*X_cr;  
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            SXY_cr=X_cr'*Y_cr;  

                         

         for a=1:latent;   

            P_cr=[]; 

            R_cr=[];  

            BETA_cr=[]; 

            C_cr=[];                      

             

 for i=1:a, 

                [c_cr s_cr w_cr]=svds(SXY_cr'*SXX_cr,1); 

                r_cr=w_cr;    

                tt_cr=r_cr'*SXX_cr*r_cr; 

               p_cr=(r_cr'*SXX_cr)'/tt_cr; 

               c_cr=(r_cr'*SXY_cr)'/tt_cr; 

               SXY_cr=SXY_cr-p_cr*c_cr'*tt_cr; 

               C_cr=[C_cr c_cr];  

               R_cr=[R_cr r_cr];  

              P_cr=[P_cr p_cr];  

             end  

             

            BETA_cr=R_cr*C_cr'; 

         end  

     

   for i=1:size(X,2) 

                    XXa(1:bol,i)=X(1:bol,i); 

                    Yacap(1:bol,i)=XXa(1:bol,i)*BETA_cr(i,m); 

                    Hata(1:bol,i)=Y(1:bol,m)-Yacap(1:bol,i); 

           end 

         

HHata(1:bol,:,m)=Hata(1:bol,:); 

        end 

    elseif cr>1 && cr<5 
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            Xd = [X(1:((cr-1)*bol),:) ; X((cr*bol)+1:n,:)]; 

            Yd = [Y(1:((cr-1)*bol),:) ; Y((cr*bol)+1:n,:)]; 

            SXX_cr=X_cr'*X_cr; 

            SXY_cr=X_cr'*Y_cr; 

             

       for a=1:latent; 

            

           P_cr=[]; 

           R_cr=[];  

           BETA_cr=[]; 

           C_cr=[];             

            

            for i=1:a, 

 

                [c_cr s_cr w_cr]=svds(SXY_cr'*SXX_cr,1); 

                r_cr=w_cr; 

            

                if i>1, 

                    for j=1:(i-1), 

                        r_cr=r_cr-(P_cr(:,j)'*w_cr)*R_cr(:,j); 

                    end 

                end 

                 

            tt_cr=r_cr'*SXX_cr*r_cr; 

            p_cr=(r_cr'*SXX_cr)'/tt_cr; 

            c_cr=(r_cr'*SXY_cr)'/tt_cr; 

            SXY_cr=SXY_cr-p_cr*c_cr'*tt_cr; 

            C_cr=[C_cr c_cr];  

            R_cr=[R_cr r_cr];  

            P_cr=[P_cr p_cr];  

            end  
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            BETA_cr=R_cr*C_cr'; 

       end  

        

         for m=1:size(Y,2) 

              

                 HHata((cr-1)*bol+1:cr*bol,:,m)=Hata((cr-1)*bol+1:cr*bol,:);          

         end 

           

    elseif cr=5 

                      

            Xd = X(1:(cr-1)*bol,:); 

            Yd = Y(1:(cr-1)*bol,:); 

SXX_cr=X_cr'*X_cr;  

            SXY_cr=X_cr'*Y_cr; 

               

for a=1:latent; 

           P_cr=[]; 

           R_cr=[];  

           BETA_cr=[]; 

           C_cr=[];  

            

            for i=1:a, 

                        

                [c_cr s_cr w_cr]=svds(SXY_cr'*SXX_cr,1); 

                r_cr=w_cr; 

             

                if i>1, 

                    for j=1:(i-1), 

                        r_cr=r_cr-(P_cr(:,j)'*w_cr)*R_cr(:,j); 

                    end 

                end 

            tt_cr=r_cr'*SXX_cr*r_cr; 
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            p_cr=(r_cr'*SXX_cr)'/tt_cr; 

            c_cr=(r_cr'*SXY_cr)'/tt_cr; 

            SXY_cr=SXY_cr-p_cr*c_cr'*tt_cr; 

            C_cr=[C_cr c_cr];  

            R_cr=[R_cr r_cr];  

            P_cr=[P_cr p_cr];  

            end  

            

         BETA_cr=R_cr*C_cr'; 

       end  

     

         for m=1:size(Y,2)  

  

                 HHata((cr-1)*bol+1:n,:,m)=Hata((cr-1)*bol+1:n,:); 

         end 

    end  

end  

 

% COMPARISON FOR VARIABLE SELECTION METHODS 

  

% 1- NORMPRESS  

       for p=1:size(Y,2)  

            

PRESS=[PRESS real(diag((HHata(:,:,p))'*(HHata(:,:,p))))];  

       end 

 

NORMPRESS=[]; 

        

for p=1:size(PRESS,1), 

  

         NORMPRESS=[NORMPRESS norm(PRESS(p,:))]; 

         NORMPRESS1=NORMPRESS'; 
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end  

  

    minp=find(NORMPRESS1==min(NORMPRESS1(:,1))); 

    NORMPRESS2(sayac,1) =minp; 

  

 % 2- WOLD'S R    

     

   ree=1; 

   oran=0; 

    

   for b=1:(size(NORMPRESS1,1)-1);      

       oran=NORMPRESS1(b+1)/NORMPRESS1(b); 

       Wold(sayac,b)=oran; 

     

       if (oran>=1)  

             

        Woldlar(counter,b)=Woldlar(counter,b); 

       end    

    b=b+1; 

   end 

     

SumWold=sum(Woldlar(:,:)); 

  A_opt=find(NORMPRESS1==min(NORMPRESS1));  

  MA_opt(sayac,1) =A_opt; 

  MA_opt(sayac,1)=MA_opt(sayac,1); 

  saydir(A_opt)=saydir(A_opt)+1;  

  SayNormpress2=find(4==NORMPRESS2(:,:)); 

      

% 3- MAIC  

  

XX=[]; 

for i=1:size(X,2); 
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    XX(:,i)=X(:,i); 

    q=size(XX,2); 

    p=size(Y,2); 

    d=n/(n-(q+p+1)); 

    I=eye(n); 

    sigma=Y'*(I-(XX*inv(XX'*XX)*XX'))*Y*(1/n); 

  

makaike(counter,i)=n*p*log10(2*pi)+n*log10(det(sigma))+n*p+2*(p*q+0.5*p*(p+

1));  % Akaike from Bozdogan 

    mbedrick(counter,i)=n*log10(det(sigma+p))+2*d*(p*q+0.5*p*(p+1));  %Bedrick 

criterion  

end 

  

    mini=find(makaike==min(makaike(sayac,:))); 

    MAKAIKE(sayac,1) =mini; 

    MAKAIKE(sayac,1)=MAKAIKE(sayac,1)*1/sayac;  

     

    mini1=find(mbedrick==min(mbedrick(sayac,:))); 

    MBEDRICK(sayac,1) =mini1; 

    MBEDRICK(sayac,1)=MBEDRICK(sayac,1)*1/sayac; 

           

end  
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Appendix 4. Results of Simulation Study 

 

The figures following Chapter 5 are as follows.   

 

 

      Figure A4.1 All model selection criteria for N=250. 

 

 

These figures show the maximum iteration number for each design for N=250. All 

criteria find 4 as the true number of latent variables in 10000 iteration in 6N ×  

except MA_OPT(PRESS). But when the predictor variable number increases, they 

find latent variable with a higher number and they cannot find the true number of 

latent variables. 
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      Figure A4.2 All model selection criteria for N=500. 

 

These figures show the maximum iteration number for each design for N=500. All 

criteria find 4 as the true number of latent variables in 10000 iteration in 6N ×  

except MA_OPT(PRESS). But when the predictor variable number increases, they 

find latent variable with a higher number and they cannot find the true number of 

latent variables. 

 

 
      Figure A4.3 All model selection criteria for 6*4. 

 

In these figures each model selection criterion is displayed for each object number 

for 6N × . As it can be seen, each criterion find true number of latent variables for 

each number of observation. Only MA_OPT(PRESS) gives a different result for 

number of latent variables. 
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      Figure A4.4 All model selection criteria for 8*4 

 

In these figures each model selection criterion is displayed for each object number 

for 8N × . Each criterion finds true number of latent variables close to the number 

predictor variables. 

 

 

      Figure A4.5 All model selection criteria for 10*4 

 

In these figures each model selection criterion is displayed for each object number 

for 10N × . MAIC(BOZDOGAN) and MAIC(BEDRICK) criteria find number of 

latent variables close to the number of predictor variables,  MA_OPT(PRESS) and 

WOLD’S R criteria find number of latent variables in a small number.  

 

 

      Figure A4.6 All model selection criteria for 12*4 
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In these figures each model selection criterion is displayed for each object number 

for 10N × . MAIC(BOZDOGAN) and MAIC(BEDRICK) criteria find number of 

latent variables close to the number of predictor variables, MA_OPT(PRESS) and 

WOLD’S R criteria find the number of latent variables in a small number. 
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      Figure A4.7 Trends for each criterion. 

 

These figures illustrates the trends with the latent variable number for all criteria. 

These trends are shown for each design matrices and for each number of 

observations with iteration number. In the first figure for 6N × , true number of 

latent variables is found in each number of observation with all criteria.  In the other-

sized design matrices, the transition for nearly most iterated number of latent 
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variables is given and shown in different colors according to the model selection 

criteria. 
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      Figure A4.8 Trends for each design matrix. 

 

In these figures the transition for the most iterated number of latent variables is 

shown for each design matrices according to the number of observations, 
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respectively for all criteria. Numbers of latent variables are given in different colors 

according to the design matrices. 
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Appendix 5. Results of Simulation Study 

 

Table A5.1 Simulation results for N=100. 

MAIC(BOZDOGAN):MBoz 

MAIC(BEDRICK):MB 

MA_OPT(PRESS) 

WOLD’S R 

m=6 m=8 m=10 m=12 

 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 

                               a=4                        9915 333 9997 5025(1) 0 282 0 597(1) 0 1407 0 5167(1) 0 1387 0 5026(1) 

                               a=5 85 2949 3 4810(2) 0 16 0 6866(2) 0 1762 0 5000(2) 0 1426 0 5040(2) 

                  a=6             0 2908 0 5119(3) 0 9346 0 4366(3) 0 1807 0 4967(3) 0 1565 0 5061(3) 

                  a=7        2024 0 4712 1899(4) 0 1407 0 5000(4) 0 1444 0 4990(4) 

                               a=8       7976 0 5288 23(5) 7 1146 0 5000(4) 0 1003 0 4931(5) 

                  a=9                                       6401 484 313 5015(5) 0 846 1308 4988(6) 

a=10 3592 208 8767 5036(6) 1002 447 7383 5070(7) 

                  a=11       7540 139 1304 5016(8) 

                  a=12        

5158(4) 

5046(5) 

9896(6) 

9967(7) 

4895(8) 

4792(9) 
1458 42 5 5059(9) 

5042(10) 

4808(11) 
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Table A5.2 Simulation results for N=250. 

MAIC(BOZDOGAN):MBoz 

MAIC(BEDRICK):MB 

MA_OPT(PRESS) 

WOLD’S R 

m=6 m=8 m=10 m=12 

 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 

                               a=4                9788 297 9998 50261) 0 32 0 29(1) 0 1483 0 4986(1) 0 1440 0 5110(1) 

                               a=5 199 2976 2 4813(2) 0 0 0 7861(2) 0 1796 0 5079(2) 0 1516 0 4985(2) 

                  a=6             13 3105 0 4806(3) 0 9918 0 3972(3) 0 1710 0 4967(3) 0 1578 0 4966(3) 

                  a=7        0 0 9 840(4) 0 1401 0 4920(4) 0 1361 0 4989(4) 

                               a=8       10000 0 9991 0(5) 0 1144 0 5064(5) 0 1017 0 5002(5) 

                  a=9               669 454 1614 4958(6) 0 787 0 4972(6) 

a=10 
9331 139 8386 5057(7) 3721 469 754 5037(7) 

                  a=11       
6279 

 

119 

 

8211 5039(8) 

                  a=12        

5312(4) 

4938(5) 

9998(6) 

10000(7) 

4986(8) 

4912(9) 

0 

 

20 

 

1035 

5004(9) 

5000(10) 

4840(11) 
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Table A5.3 Simulation results for N=500. 

MAIC(BOZDOGAN):MBoz 

MAIC(BEDRICK):MB 

MA_OPT(PRESS) 

WOLD’S R 

m=6 m=8 m=10 m=12 

 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 
MBoz 

MA-opt 

PRESS 
MB 

Wold’s 

R 

                               a=4                        9218 198 9998 4915(1) 0 0 0 2(1) 0 1410 0 5021(1) 0 1447 0 5082(1) 

                               a=5 715 3060 2 4964(2) 0 0 0 8707(2) 0 1781 0 4988(2) 0 1440 0 4994(2) 

                  a=6             67 3107 0 4935(3) 0 10000 0 3436(3) 0 1764 0 5026(3) 0 1532 0 4995(3) 

                  a=7        0 0 0 255(4) 0 1461 0 4994(4) 0 1430 0 5011(4) 

                               a=8       10000 0 10000 0(5) 0 1140 0 4962(5) 0 1064 0 5041(5) 

                  a=9                                       9 494 9 4983(6) 0 851 0 4990(6) 

a=10 9991 121  9991 5044(7) 0 460 0 5034(7) 

                  a=11       231 120 4440 4935(8) 

                  a=12        

5250(4) 

5022(5) 

10000(6) 

10000(7) 

5001(8) 

 4992(9) 

9769 27 5560 

5014(9) 

4948(10) 

4883(11) 

 

 

 

 

 


