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A NEW APPROACH TO IP LEVEL CONGESTION CONTROL

ABSTRACT

Due to the fast growth of the demand for the usatefnet during the last decade,
congestion control mechanisms to keep the throughigh and the average queuing
delays low get of vital importance. In this thesie®e usage of the congestion control
strategies in the growing world of networking ivestigated. The purpose of this
thesis is to present a new approach, which is a¢alle “Orange” in IP level
congestion control as an active queue managemectiansm and to compare its
performance of our proposed algorithm with thath® other mechanisms. Within
the framework of this thesis, the best operatingntpof Orange algorithm is
evaluated by using the empirical formulas we derives investigated that when the
best operating point parameters are applied, Orages the best performance

among other active queue management algorithms.

In the context of this thesis, a general proceflareonstructing threshold control
policies that are implementable is described; amehputer simulation is used to
show that these policies perform well, especiallycongestion conditions. The
results obtained from the computer simulation dse ased to justify the congestion

reducing routing strategy approach.

The key observation shows that a good routingesgsathat prevents servers from
idling and wasting resource capacity is required tfie networks when there is

substantial work in the system.

Keywords: Queuing theory, congestion avoidance, congestiariraip routing,

threshold, computer simulation, active queue mamage.



IP SEVIYESINDE TIKANIKLIK DENET IMINE YENI BiR YAKLA SIM

Oz

Son yillarda internet kullanimina olan talebin hiArtsinin  etkisiyle, &
verimliligini yuksek ve ortalama kuyruk gecikmelerini sdi4 tutan tikaniklik
denetim yontemleri 6nem kazarytm. Bu tez cakmasinda surekli buytyen
bilgisayar &lari dinyasindaki tikaniklhik denetim ydntemlerinikullanimini
incelenmgtir. Bu tezin amaci ip seviyesinde tikaniklik deme&e “Orange” adini
verdigimiz aktif kuyruk yonetimi olan yeni bir yakjan dnermek ve dnergimiz bu
yontemin baarimini dger yontemler ile kawlastirmaktir. Bu tezin kapsaminda,
gelistirdigimiz ampirik formuller kullanilarak Orange algorisinin en iyi ¢agma
parametreleri dlgcimlendirilrgiir. Bu ¢alsma parametreleri uygulariginda, Orange
algoritmasinin dier aktif kuyruk yonetimi algoritmalari arasinda gm sonuclari

verdigi gozlemlenmtir.

Bu tezin igerginde, uygulanabilir gk degerli denetim yontemlerinin kurulmasi
icin genel bir yontem tasarlangnve programlagnmiz bilgisayar benzetimi bu tar
yontemlerin  Ozellikle gr trafik sarlarinda iyi caltigini gostermek igin
kullaniimistir. Bilgisayar benzetiminden elde edilen sonucklgmamizda incelenen

tikaniklhik azaltan iletim yontemini goulamakta da kullaniimaktadir.

Sistemde buyuk O6lgides iolduzunda, sunucularin gokalmasini ve kaynak
kapasitesinin bg@ harcanmasini engelleyen iyi bir iletim yontemjnaglar icin

gerekli oldigu ortaya cikmytir.

Anahtar Kelimeler: Kuyruk teoremi, tikaniklik 6nleme, tikaniklik demet,

yonlendirme, gk deger, bilgisayar benzetimi, aktif kuyruk yonetimi.
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CHAPTER ONE
INTRODUCTION

1.1 General

The Internet (or simply the Net) is a global infation system of interconnected
computer networks. It is a network of networks ihiet users at any one computer
can get information according to their access p&sion from any other computer
that is linked by copper wires, fiber-optic cablesreless connections, and other
technologies. It is not only the underlying comnuations technology, but also
higher-level protocols and end-user applicatiohs, dssociated data structures and
the means by which the information may be processehifested, or otherwise
used. Physically, the Internet uses a portion efttital resources of the currently
existing public telecommunication networks. Intérméso uses the standardized
Internet Protocol Suite (TCP/IP) to serve billiarfsusers worldwide. It is a network
of networks that consists of millions of privatedgoublic, academic, business, and

government networks.

Today, the Internet is a public, cooperative, aglftsustaining facility accessible
to hundreds of millions of people worldwide and pois popular services such as
most notably the inter-linked hypertext documerithe World Wide Web (WWW),
the infrastructure to support electronic mail, nalchat, file transfer and file sharing,
gaming, e-commerce, social networking, publishingideo on demand,

teleconferencing, telecommunications, voice oveapplications.

The origins of the Internet reach back to the 1980en the United States funded
research projects of its military agencies. Thegingl aim was to build robust, fault-
tolerant and distributed computer networks. It waseseen by the Advanced
Research Projects Agency (ARPA) of the U.S. govemmn 1969 and was first
known as the ARPANET. The main advantage of ARPANekesign can be
explained like that the network could keep funatigneven if some parts of it were
destroyed because of any attack or other disa#itewas designed by giving



possibility to the messages that they could beeduatr re-routed in more than one
direction.

1.2 The Evolving Internet

The Internet revolutionizes our society, our ecoypoand our technological
systems. No one knows how far, or in what diregtibe Internet will evolve. In
addition, no one should underestimate its impoganc

Since the beginning of networking technology, tlheenber of the host computer
systems has increased from four to an estimatedr6iliOn hosts today (Figure 1.1)
(wwwe.isc.org). During the last decade, internet toares to grow vigorously,
approximately doubling in each year. This exporargrow rate is expected to be
continued for the next decades. Future networkiemgahds will require the internet
to grow faster. In the future, it is expected thmtny of new electronic devices will

be internet connected; this will require the in&grto continue its rapid scaling well
into the future.
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Figure 1.1 Internet domain host count (www.isc.org)



In parallel to the internet growth rate, the need $peed, connectivity, and
reliability have become of vital importance. Netwoperformance is vital to
businesses operations as well as bringing a prottudhe consumers through

electronic commerce.

As the number of the internet users and the relaesand for high-speed
networks continue to increase and to be distributaa-uniformly, today’s internet
backbone has started to operate at its capacityweler, the sufficient infrastructure
for high-speed networks is not expected to grovoatingly, due to high investment
costs. Because of this trade off, network probldrage emerged as a significant
problem in all forms of our life, commerce, affegfithe way in which many of us

work and communicate.

Unfortunately, although its design has focusedaliustness, the Internet has the
largest performance and availability bottleneckatodor end-to-end applications.
Congestion causes network connections experieigteldss rates during busy hours.
Effective congestion avoidance and control polidiesome essential in order to

handle the increasing demand.

The exact causes of Internet performance problemslifficult to be determined
because if its scale, heterogeneity, and dynantier@aHowever, the design of the
Internet protocols had been made in the early 198@$it is clear that several of the

assumptions have lost their validity today.

The TCP/IP Internet protocol architecture was desigin the early 1980s, at a
time when there were many fewer hosts connectetdand typical links carried

only 56 Kbps. Many of the assumptions underlying thternet's design have
changed since then. For example, the designersitefnket congestion control
intended it to work well with connections that lasany round trips, long enough
for end-to-end feedback to work. Most connecti@day, however, carry only a
small number of packets. Transferring a typicalKlyte Web page requires a
minimum of six to seven round trips as the servebes the network to determine
the maximum rate at which it can send. If therexisess capacity in the network,

the overhead of these probes will prevent the seinan fully utilizing the



network. If the network is congested, these shoutsty connections will increase
the probability of dropped packets. The designérsternet transport protocols
assumed that packet loss rates would be less #ayet current packet loss rates

have been measured as averaging 5% to 6%.

Assumptions about Internet routing have changedvel. The Internet was
originally designed to provide universal reach#épilbetween networks; all
network links were available to carry traffic fonya host. Today’s Internet
restricts the exchange of routing information adowg to business agreements
between service providers. These agreements rgsusituations where A can
reach B, and B can reach C, but A cannot reach utthér, because current
Internet routing ignores performance informationp thosts may be forced to
communicate over excessively long or overloadekislidding a slow link can
actually hurt performance, because packets cawdted over it in preference to
faster links.

Finally, the Internet was built by a small commyndf researchers. In that
environment, it was reasonable to assume that eats lwould cooperate in the
management of network resources. As the Internetelalved from a research
project into a popular consumer technology, thsuagtion has lost some of its
validity. For example, there are several commerbkitdrnet “accelerators” that
provide better performance for a single user at ékpense of other users.
Expecting billions of Internet devices to coopenatgrevent network congestion

in the future is arguably too optimistic (Savagel.,1999, s. 51).

1.3 The Area of Research

In the recent years, the unpredictable growth &edcbrresponding evolution of

the Internet has moreover pointed out the congegtioblem, one of the problems

that historically have affected the network perfanoe. The network congestion

phenomenon is induced when the amount of datategein the network is larger

than the amount of the data that can be delivereldstination.



In many situations in computer communications anetworks, there is
competition among a collection of competing usergtie available resources. These
competitions cause congested network traffic, wischindesirable. The competitors
are usually frames or packets, of varying sizesichvharrive at unpredictable
moments and compete for access to a transmissianneh The resources being
shared include the bandwidth of the links, the &@uffnemory on the routers
(switches) where packets are queued waiting todresmitted over these links, and
the processor speeds of these routers. When erpagifets are contending for the
same link, the queue overflows and packets habe wropped. It is at this stage that
the network is said to be congested.

In a congested network, the gateways along themwould see occasional traffic
that go beyond the capacity limit. There are omg possibilities for the gateways
along the route; buffer the packets or drop thetan&ard gateways usually try to
place the incoming packets in their buffers, whiatrk like a basic FIFO (‘First In,
First Out’) queue and only drop packets if the quesi full. Reserving enough
buffers for long queues in gateways increases liamae of accommodating short
traffic bursts. In spite of high cost of increasitige buffer size in gateways,
significant queuing delay problem could not bd stibided by increasing the buffer.
Eventually, packet loss will occur regardless ofvhong the maximum queue is.

The goal of congestion control mechanisms is sintplyuse the network as
efficiently as possible by accomplishing the highpessible throughput, a low
packet loss ratio and small delay. Congestion rhasavoided because it results in
high queue length causing packet delay and loss.

The control of queuing networks has important pcattapplications in the
modeling of manufacturing, telecommunications, awputer systems. In this
thesis, we will consider dynamic (state-dependeonfrol strategies, which can offer
significant improvements in network performancerostatic policies, which do not
take into account failures in the network or chanigetraffic patterns. For example,
by re-routing traffic and re-allocating resourcelynamic routing schemes are
capable of responding to the randomly varying deteain a network, managing
resources more efficiently and reducing congestion.particular, we will be



concerned with threshold routing strategies, whach, dynamic routing schemes,
which depend on the current state of various quaueslation to fixed threshold

values.

1.4 Objectives and Scope

The basic goal of congestion control is to maxintieethroughput of the link and
minimize the average delay of packets in the nekwior addition, it should consider
fair allocation of the resources among all the sisktore specifically, a congestion

control scheme must satisfy:

* Low overhead. In particular, congestion control tdtlonot increase
traffic during congestion. This is one of the reasovhy explicit

feedback messages are considered undesirable.

* Responsiveness. The congestion control schemegisree to match

the demand dynamically to the available capacity.

* Must continue to work even when the rate of trassion errors, out of
sequence packets, deadlocks, and lost packetsassseconsiderable

under congestion.

In order to control and avoid congestion, we disctie problem in terms of
congestion control. We propose a new approach,hbkianplemented in IP level to
drop (mark), the packets when the congestion wadly occur. We intend to use an
active queue management algorithm in IP level, tvlwe call Orange. Orange will
replace RED (Random Early Detection) which will mged at the gateways as the
algorithm to decide which packets are to be mart@®dndicate a congestion

condition.

However, the design of an IP level algorithm is swaightforward, because of

the heuristic involved with control rules; moreovtite tuning of the parameters of



an algorithm, as scaling factors, membership fonstiand control rules is a very
complex task. Currently there are not many simpé&thwods available for the design

of the similar knowledge base.

1.5 Overview of the Thesis

In chapter one, we introduce the subject of thekwoamely the congestion and
its control. We describe the internet, internegistfevolution in the last decades, and

the result of this evolution, which evolves in ceation.

In chapter two, we define the congestion collapskich is the undesirable
inevitable result of any congested network. Weoihiice the basic concepts of
congestion control including the fairness, the floantrol and its difference from
congestion control, the classification of congestoontrol mechanisms. Moreover,
we describe the general idea behind the congestamtrol algorithm of the
transmission control protocol (TCP) which is thestnoommonly used end-to-end,
transport layer protocol for today’s Internet andiultmedia applications that

supports flow and congestion control.

In chapter three, as the application of queuingmherovides the theoretical
framework for the design and study of computer oet®, we revise the basics of
queuing theory, which is the mathematical base wf groposed algorithm. We
mentioned the general terms including arrival pssceservice process, queuing
discipline and notation of queuing theory as welltlae probability theory and the

Markov chains, which are used to solve the quepmoglems.

In chapter four, we review the literature aboutd¢bagestion control mechanisms,
which have been already studied by several authdes.review the scheduling
algorithms, active queue management algorithmsidney the most widely known
type which is RED (Random Early Detection), its idaives, and performance

comparison among them.



In chapter five, we revise the mathematical badkgdobehind our proposed
algorithm. Generic M/M/2 queue analysis with hegemoeous servers with a
threshold is the basis of our proposed algorithnarkdv chains are used for the
mathematical analysis. We also describe the detdilour proposed algorithm,

namely Orange.

In chapter six, we describe the basics of the widskd, public domain discrete
event simulator targeted at network protocol reseawhich we call “NS (Network
Simulator)”. We explain the proper method of anadgzthe simulation results with
“Awk” which is the one of the most interesting tgxiocessing languages used for
NS trace analysis. In addition, we update NS cardntplement our proposed
algorithm, which we call “Orange”. Moreover, we givnformation about the
simulation topology and related experimental wotk dimulate our proposed
algorithm. We discuss the results we achieve aetiteof the work, advantages of
our proposed algorithm, and comparison of our algor with similar works.

In chapter seven, we conclude with a summary arehtiiication of key
contributions and main findings of this thesis aultiress the possible avenues of

further research based on this work.



CHAPTER TWO
BASICS OF CONGESTION CONTROL

2.1 Overview

A network is considered congested when too maniegiadry to access the same
transmission line, router and other resourceshilidase, demanded load exceeds the
capacity of network and packets start to be droppedbditionally, congestion
collapse is a condition, which a network can reashgn little or no useful

communication is happening due to congestion.

Congestion should be immediately controlled othsewithere may be many
chances of occurring congestion collapse. Duringgestion collapse, only a fraction
of the existing bandwidth is utilized by trafficefal for the receiver. Traffic demand
is high but little useful throughput, which is @l goodput, is available, and there
are high levels of packet delay and loss (causedobyers discarding packets
because their output queues are too full). Actioesd to be taken by both the
transmission protocols and the network routers ilideio to avoid a congestion
collapse and furthermore to ensure network stgpilitroughput efficiency and fair

resource allocation to network users.

2.2 Congestion Collapse

The current congestion control mechanisms for thtermet date back to the
1980’s. Those mechanisms were designed to stopesting collapse for the traffic
of 1980’s where there was no end-to-end congestorirol mechanism in TCP/IP.

The Internet first experienced a problem calledgestion collapse in the 1980s.

John Nagle identified congestion collapse as aiplesproblem as far back as
1984 (Nagle, 1984). It was first observed on thiydaternet in October 1986, when
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the NSFnet phase-I backbone dropped three orderaghitude from its capacity of
32 kbps to 40 bps, and continued to occur until modes started implementing Van
Jacobson's congestion control between 1987 and.1G88gestion collapse is
described as a stable condition of degraded pediocethat stems from unnecessary
packet retransmissions (Nagle, 1984). Nowadayss, ihowever, more common to
refer to “congestion collapse” when a conditionwsovhere increasing sender rates
reduces the total throughput of a network. Theterie of such a condition was

already acknowledged in Gerla & Kleinrock (198Qtthses the word “collapse”.

We consider a network where sources send at dimaited only by the source
capabilities. Such a network may suffer of congestiollapse, which we explain

now on an example.

Source 1 Destination 1

Figure 2.1 A sample network topology to illustréte inefficiency for unresponsive sources.

Consider first the network illustrated in Figurel 2which shows two service
providers with two customers each. They are intemeated with a 110 kbps link and
do not know each other’'s network configuration. isel0 sends data to Destination
0, while Source 1 sends data to Destination 1 easgely. The sources are limited to
send only by their access rates (their first lifpreover, there are no congestion
control feedbacks in the network. There are fivddi with capacities shown in the
Figure 2.1. Source 0 sends at 100 kbps and Ddstindtreceives at 100 kbps, while
Source 1 sends at 1000 kbps and Destination lvescat only 10kbps. Source 0 can
send only at 10 kbps because it is competing withr& 1 on the bottleneck link,
which sends at a high rate on that link. Howevegstihation 1 is limited to receive
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at 10 kbps. As the Source 1 is unaware of the globawork situation, it keeps
sending at 1000 kbps (10 times more than the Sduorethe same bottleneck link).
This situation results in the bottleneck link cesriLO times more packets of Source 1
than that of Source 0. Most of the packets fromr&»d will be dropped due to the
lack of capacity of the receiver’'s link. Source 1ll wake unnecessarily more
bandwidth than Source 0 in bottleneck link resgltin the total throughput of the

link will be 20 kbps, which is undesirable.

If Source 1 would be aware of the global situatiemg if it would cooperate, then
it would send at 10 kbps only on the bottleneck.lim this case, Source 1 would
allow Source 0 to send at 100 kbps. The total dnput of the network would then

become 110 kbps, which is the ideal case and ddsira

The first example has shown some inefficiency. dmplex network scenarios,
this may lead to a form of instability known as gestion collapse. This means that
the limit of the achieved throughput approachesz¢oo when the offered load

increases.

In the original scenario, throughput is limitedthy receiver’s link rates, which is
20 kbps. If the sources would cooperate, the tHrpugwould go up to 110 kbps (its
maximum rate, which is constrained to this, limjtthe bottleneck link). If Source 1
knew that it would never attain more throughpuintii® kbps and would therefore
refrain from increasing the rate beyond this pasdurce 0 could send at its limit of
100 kbps.

Generally we can say that, as the rate approadmescapacity limit, the
throughput curve becomes smoother (this is caledknee), and beyond a certain

point, it suddenly drops (this is called cliff) atitbn decreases further even to zero.

The explanation for this strange phenomenon is estimn. Since both sources
keep increasing their rates no matter what the atigs beyond their access links
are, there will be congestion in the network. Tlo&leneck link’'s queues will grow
having more packets from Source 1. Roughly speakimgevery packet from Source

0, there are 10 packets from Source 1. This meaatsthe packets from Source 1
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unnecessarily occupy bandwidth of the bottleneak that could be used by the data
flow. The more the Source 1 sends, the greatezdhgestion problem.

Congestion control deals with such problems. In Ramshnan & Jain (1988), the
term “congestion control” is distinguished from tieem “congestion avoidance” via
its operational range: schemes that allow the néttmoperate at the knee are called
congestion avoidance schemes, whereas congestidmlicqust tries to keep the
network to the left of the cliff. In practice, & hard to differentiate mechanisms like
this as they all share the common goal of maxingizmetwork throughput while

keeping queues short.

The previous discussion has illustrated the “Edfay Criterion”. In a packet
network, sources should limit their sending ratddiyng into consideration the state
of the network. Ignoring this may put the networkoi congestion collapse. One
objective of congestion control is to avoid suchfiiciencies. Congestion collapse
occurs when some resources are consumed by titadtiovill be later discarded.

2.3 Fairness

Fairness is described as allocating the same statbavailable resources among
the competing users in a network. We consider gtevark topology in Figure 2.2.
We want to maximize the network throughput in tieisology. Sources send at a rate
“Xij, 1=0,1 .., 1", and all links have a capacityual to “c’. We assume that we
implement some form of congestion control and tiere are negligible losses.
Thus, the flow on “link i” is “BXo + nx;". For a given value of “¢i and “Xy",
maximizing the throughput requires thatXir= ¢ - nxo” for “i = 1,..., I". The total
throughput, measured at the network output, is tlus (I - 1) nyxo”; it is maximum

for “xo=0".
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Figure 2.2 A sample network topology to illustréte fairness.

This example shows that maximizing network throughgs a primary objective
may lead to gross unfairness; in the worst casmeseources may get a zero
throughput, which is probably considered unfairtbgse sources. In summary, the
main objective of congestion control is to proviah high throughput (efficiency)

and some form of fairness.

2.4 Flow Control

Congestion control could be considered to be irwodts where neither the
sender nor the receiver is involved if the interrat nodes can take part as
controllers and measuring points at the same tiewever, most network
technologies are designed to operate in a wideerarigenvironment conditions.
Consider a network where a sender and a receigeemgrconnected via a single
link. There are no intermediate nodes in this togy] and thus, no possibility for
congestion. Although the congestion phenomenormtisarproblem in this topology,
the receiver should slow down the sender if it & fast enough to handle the
incoming packets. In this case, the function obinfing the sender to reduce its rate

is normally called flow control.

“The goal of flow control is to protect the recaifieom overload, whereas the
goal of congestion control is to protect the nekdRusminet al.,2007).Whatever
the reason, the underlying mechanism behind coiogesontrol and flow control is



14

very similar. Feedback messages are used to tuneate of a flow. Since it is
important to protect both receiver and the netwiookn overload at the same time,
the sender should send at a rate, which is thenmimi of the results of the flow
control and congestion control calculations. Beeanfghis similarity, the terms flow
control and congestion control are mostly used synmusly. Sometimes flow

control is considered as a special case of theestiog control.

2.5 Additive Increase Multiplicative Decrease

Additive Increase Multiplicative Decrease (AIMD) #B-Ming & Jain, 1989)
algorithm is a feedback control algorithm of TCB&ngestion avoidance schema for
sharing the available resource among competingudd&D algorithm tries to keep
the congestion window growing linearly as long laré¢ is no congestion indication
(as a congestion indicator, a loss event is geyatakcribed to be either a timeout or
the event of receiving three duplicate ACKs) in tiedwork. Flows from each source
probe for its share of the available resources ljiamdwidth) by linearly increasing
their transmission rate (window size) until losgwurs (the additive increase stage).
When congestion occurs, the sources cut their riiesson rates (congestion
window) in half in a multiplicative fashion (the thplicative decrease stage). The
result is a saw-tooth behavior that representsptiobe for bandwidth. The other
forms of AIMD in congestion control are additivecirase additive decrease
(AIAD), multiplicative increase additive decreas®IAD) and multiplicative
increase multiplicative decrease (MIMD). With thes®difications, the AIMD
algorithm has been the dominant algorithm in cotigesontrol since the beginning

of the congestion control phenomena.
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2.6 Overview of TCP’s Congestion Control

The transmission control protocol (TCP) (Postel31)9is the most commonly
used transport layer protocol for today’s Interaetd multimedia applications. A
large amount of Internet traffic is carried by TCPhe Transmission Control
Protocol is a reliable, connection-oriented, fullptex, byte-stream, transport layer
protocol. In other words, TCP is an end-to-end gwol that supports flow and

congestion control.

The congestion control within the TCP plays a caitirole in adjusting data
sending rate to avoid congestion from happeningad&e to infer network
conditions between sender and receiver use ackdgwlents for data sent, or lack
of acknowledgments. Together with timers, TCP send@d receivers can control
the congestion control behavior of a data flow.

TCP implements a window based flow control mechaniBoughly speaking, a
window based protocol means that current window digfines a strict upper bound
on the amount of unacknowledged data that can bamsit between a given sender
receiver pair. TCP sources waits for an ACK fromwereer as a signal to insert a new
packet into network without adding to the levekohgestion. TCP is said to be self-
clocking. In this approach, sources which are raspe (adaptive, or compliant) are
considered to reduce their transmission rate. &@npliant flows can obtain larger

bandwidth against the responsive flows.

TCP uses timeouts and duplicate acknowledgementsragestion notifications.
Each packet is associated with a timer. If it exgjtimeout occurs, and the packet is
retransmitted. The value of the timer, denoted BPRshould ideally be of the order
of an RTT. RTT is measured by the TCP connectiba. packet has been lost, the
receiver keeps sending acknowledgements but ddesauify the sequence number
field in the ACK packets. When the sender obsepssral ACKs acknowledging

the same packet, it concludes that a packet haslbsie
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The TCP uses a network congestion avoidance digorthat includes various
aspects of an additive-increase-multiplicative-dase (AIMD) scheme, with other
schemes such as slow-start in order to achieveestiog avoidance. Two such
variations are those offered by TCP Tahoe and RBetore going further about
TCP Tahoe and Reno, it is better to remember & &igiory of evaluation of TCP’s
Congestion Control Schema.

In 1974, Cerf & Kahn conducted research on pacletvork interconnection
protocols and co-designed the DoD TCP/IP protoasites Then, three-way
handshake mechanism was described by Tomlinson5)1%7 1981, TCP & IP
protocol was first explained in RFC 793 & 791 ahavas supported by BSD Unix
4.2 in 1983. In 1984, Nagle's algorithm (Nagle, 4P8vas used to reduce the
overhead of small packets to predict congestiodapsé. In 1986, congestion
collapse was first observed. In 1987, Karn’'s alfponi was used to better estimate
round-trip time. In 1988, Van Jacobson’s algorithmere described slow start,
congestion avoidance, fast retransmit (all implef@eénin 4.3BSD Tahoe)
SIGCOMM 88. The TCP Tahoe and Reno algorithms wetespectively named
after the 4.3BSD Unix operating system in which hedicst appeared. In 1990,
4.3BSD Reno included fast recovery, delayed ACHKigprovements were made in
4.3BSD-Reno and subsequently released to the pablitNetworking Release 2”
and later 4.4BSD-Lite. In 1993, TCP Vegas (not iempénted) was described by
Brakmo et al, (1993) as a real congestion avoidance schemd9®4, Explicit
Congestion Notification (ECN) was described by Elojl994). After that some
modifications were followed on TCP’s congestion tcoh algorithm including
T/TCP Transaction TCP (Braden, 1996), NewReno ah@GKSTCP Selective Ack
(Mahdavi et al, 1996), FACK TCP Forward Ack extension to SACK (hia &
Mahdavi, 1996). In 2001, Ramakrishnah al, (2001) added explicit congestion
notification bit to the IP headers. In 2004, NewnBReamodification added to the
TCP’s fast Recovery Algorithm by Floyat al, (2004). In 2010, Kuzmanovet al,
(2010) added explicit congestion notification (EGhpability to TCP’s SYN/ACK
packets. Floycet al, (2010) added acknowledgement congestion cortrd@IGP in
2010.
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2.6.1 TCP Tahoe and Reno

In order to avoid congestion collapse, TCP usesowis congestion control
strategy and for each connection, TCP keeps a stingevindow, limiting the total

number of unacknowledged packets that may be msitrand-to-end.

The congestion window can be thought of as beimgpunterpart to advertised
window. Whereas advertised window is used to pretrensender from overrunning
the resources of the receiver, the purpose of ctiogewindow is to prevent the
sender from sending more data than the networkheamdle in the current load

conditions.

TCP uses slow start mechanism to increase the stogevindow after a timeout
and after a connection is initialized. In this &gy, the rate of increase is very rapid
but the initial rate is slow. Basically, slow starbrks by increasing the congestion
window by one maximum segment size MSS each time deery packet
acknowledged so that the congestion window effettidoubles for every round trip
time (RTT). It starts with a window of two timesetimaximum segment size (MSS).
Once a loss event has occurred where the inital sitart threshold “ssthresh” is
large or the threshold “sstresh” has been reactmedalgorithm enters congestion
avoidance state. The threshold is updated at the@feaach slow start, and will often
affect subsequent slow starts triggered by timeouts

At this point, the connection goes to congestiooidance phase where the value
of congestion window is increased linearly (lesgragsively) instead of exponential

growth. This linear increase will continue untpacket loss is detected.

Congestion avoidance: As long as non-duplicate ACKe received, the
congestion window is additively increased by oneSv&very round trip time. When
a packet is lost, the likelihood of duplicate ACKsing received is very high (it's
possible though unlikely that the stream just uneat extreme packet reordering,
which would also prompt duplicate ACKs). The belbawf Tahoe and Reno differ

in how they detect and react to packet loss:
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» Tahoe: Loss is detected when a timeout expiresrbedn ACK is
received. Tahoe will then reduce congestion windowne MSS, and

reset to slow-start state.

 Reno: If three duplicate ACKs are received, Renduces the
congestion window by half, performs a “fast retraity and changes
to a state called “Fast Recovery”. If an ACK timmas, slow start is

used as it is with Tahoe.

2.6.2 Fast Retransmit

Duplicate ACKs that were mentioned to be one wageadécting lost packets can
also be caused by reordered packets. When recemviagluplicate ACK the sender
cannot yet know whether the packet has been Igsisbgotten out of order but after
receiving several duplicate ACKs it is reasonablessume that a packet loss has
occurred. The purpose of fast retransmit mecharssmspeed up the retransmission
process by allowing the sender to retransmit a gtaeks soon as it has enough
evidence that a packet has been lost. This meatsirttead of waiting for the
retransmit timer to expire, the sender can retrénanpacket immediately after

receiving three duplicate ACKs.

2.6.3 Fast Recovery

In Tahoe TCP the connection always goes to slowt sier a packet loss.
However, if the window size is large and packeséssare rare, it would be better for
the connection to continue from the congestion @amte phase, since it will take a
while to increase the window size from one to €sthr The purpose of the fast
recovery algorithm in Reno TCP is to achieve tlekdvior. In a connection with fast
retransmit, the source can use the flow of dumi@aCKs to clock the transmission
of packets. When a possibly lost packet is retrattsd) the values of ssthresh and
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cwnd will be set to “ssthresh = cwnd/2” and “cwndssthresh” meaning that the
connection will continue from the congestion avoick phase and increases its

window size linearly.

In congestion avoidance phase, TCP retransmitsntissing packet that was
signaled by three duplicate ACKs and waits for aknawledgment of the entire
transmit window to return to the congestion avoaan If there is no
acknowledgment, Reno TCP enters the slow-star sfféer an experienced timeout.
Both of the two algorithms reduce congestion windowne maximum segment size

(MSS) on a timeout event.

2.6.4 TCP Vegas

Until Larry Peterson and Lawrence Brakmo, Univgrgf Arizona researchers,
introduced TCP Vegas in mid 1990s, where timeowgsevset and round-trip were
measured for every packet in the transmit buffdr, T&EPs setting timeouts and
measuring round-trip delays were based upon omyakt transmitted packet in the
transmit buffer. In addition, additive increases ased in the congestion window by
TCP Vegas.

2.6.5 TCP New Reno

The difference between the TCP Reno and the TCP Riemo is the improved
retransmission during the fast recovery phase.Hgufast recovery, a new unsent
packet from the end of the congestion window ig s@nevery duplicate ACK that is
returned to TCP Reno, to keep the transmit windallv The sender assumes that the
ACK points to a new hole for every ACK that makestg@l progress in the sequence

space and the next packet beyond the acknowledgresce number is sent.
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New Reno has the capability of filling large holes multiple holes in the
sequence space - much like TCP SACK. It gets #ypsiility from the timeout timer
which is reset whenever there is progress in thestnit buffer. During the hole
filling process in New Reno, high throughput is mained because it can send new
packets at the end of the congestion window duiasg recovery; even there exist
multiple holes, of multiple packets each. TCP rdsothe highest outstanding
unacknowledged packet sequence number when itsefater recovery. It returns to

the congestion avoidance state when this sequeamobar is acknowledged.

When there are no packet losses but instead tleeseardered by more than three
packet sequence numbers, a problem occurs with Remo. When this kind of
conditions occurs, it enters fast recovery mistikeisfter the delivery of reordered
packet, ACK sequence-number progress occurs. Terideof fast recovery, every
bit of sequence-number progress produces a dupli@atl retransmission that is
immediately acknowledged which is needless.

The aim of TCP Congestion control scheme is toabs® the delays and increase
the throughput. It introduces the concept of fasmmand tries to avoid congestion
collapse. Because more than 95% of today’'s floves BCP flows, this kind of
congestion control scheme makes the internet mabdesand robust.

2.7 Classification of Congestion Control

Congestion control is a mechanism to inform thedserabout the changing
condition of the network. There are two basic mdghavailable for congestion

control; rate based and window based.

In rate-based control, sources know an explici @t which they can send (a
specific data rate). The rate is assigned to thecsoat the negotiation phase of a
connection (ATM or RSVP cases), and the receivex mnuter informs the sender of

a new rate if the network’s state changes at t&tages (ABR class of ATM).
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In window-based control, the sender maintains aiapaindow (a predetermined
number of packets or bytes that it is allowed tasbet before any feedback arrives
from the network or receiver). In other words, cestgon window is a limit on the
number of packets that the sender is able to sEmel.sender increases the window
size as long as it gets positive feedbacks (ackesbydments) from the receiver. The
sender decreases the rate at which it sends inafagepacket failure. Since the
sender’s behavior is controlled by the presencabsence of incoming feedback

from the network, window-based control is said ¢osklf-clocking.

There are three possibilities available for a paakea network. Packets can be
delayed, dropped, or changed. Packets can be detiayeto the distance, queuing in
the nodes, or retransmissions at the link layetk@a can be dropped because buffer
memories in the nodes could be full, packets cowdtl be admitted (quality of
service applications), or the routers could be umalfioning. Packets can be
changed, because the link noises could make paekethanged. All of these reasons

indicate congestion in the network.

There are two different approaches available indevm-based control; hop-by-
hop and end to end. In hop-by-hop approach, soureed feedback from the next
hop in order to send any amount of packets. The heg obtains some feedback
from the following hop and so on. The feedback fn@yositive (credits) or negative
(backpressure). In the simplest form, the protegstop and go. Hop by hop control

is used with full duplex Ethernet using 802.3x femntalled “Pause” frames.

In end-to-end approach, sources continuously oldedback from all nodes it
uses. The feedback is piggybacked in packets fetowards the source, or it may
simply be the detection of a missing packet. Sairespond to negative feedback by
reducing their rate and to positive feedback byreéasing it. All reactions to
feedback are left to the sources in end-to-endrabwhereas the intermediate nodes

take action for the feedback in hop-by-hop control.

Rate-based control is easy to implement, and moopep for streaming media
applications because it does not stop if no feddbacives. These types of

applications should keep sending their packetsrdbgss of the feedback from the
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network. If window-based control is used, re-omdgriand delays of the packets

make the streaming application meaningless or tranthderstand.

From a network perspective, window-based flow aans more proper because
the sender will automatically stop sending wherrdhis an incipient congestion
indication in the network. The disadvantage of wewebased control is that it may

lead to traffic bursts.

Sender sends the packets in a regular spacinge Ihétwork is congested, then
these packets must be queued at the bottleneclegAsusoon as the congestion is
resolved, the bottleneck queue starts to sendaitesponding queued packets with a
reduced spacing (depending on the capacity oféh&ining part of the link). This
effect (pacing effect) also occurs when the ackedg&éments (and not the data

packets) experience congestion.

In addition to the effect of congestion, if the diw is too small, the link will be
underutilized. In order to utilize the link, thensler must be able to increase its rate
as long as the link’s capacity. Increasing the wimdy one packet in response to an
ACK is not enough. Increasing the rate means tee lthe window grow by more
than one packet per ACK, and decreasing it meahscieg the window size. The
ideal window size (which has the sender saturaditik) in bytes is the product of
the bottleneck capacity and the RTT. Thus, in @oldito the necessity of precise
RTT estimation for the sake of self-clocking (is@lherence to the conservation of
packets principle), the RTT can also be valuabted&iermining the ideal maximum

window.

2.8 RTT Estimation

The Round Trip Time (RTT) is defined as the timénsen sending a packet into
the network and receiving back the correspondindgA@ that packet. The RTT is
an important parameter of various algorithms ingestion control. In end-to-end

congestion control schemas, sources retransmit plaekets, which have been lost
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on the network because of an incipient congestondliable transmission. Sources
use acknowledgement mechanism for their packetshwiave a special consecutive
number. If any of them is missing for a long tirttee sources assume that the packet
has been dropped. This mechanism is called AutenRépeat Request (ARQ),
requires a timer value that is initialized with artain timeout value when each

packet is sent.

Finding the right timeout value is an important jegb in the context of
congestion control. Larger values of this timer canse longer times for a packet to
be retransmitted. This situation will negativelyeat the delays and the throughput
in the network, because sources reduce their tatescessarily. Smaller values of
this timer can cause a packet to be retransmittedeessarily. Therefore, network
capacity will be wasted. If we omit the transieelay changes in the network, the

ideal value for a timeout is said to be generatig &TT or a function of an RTT.

Predetermined value of timeouts may result in perémce issues because of the
state changes within the network (delay in queyegh changes and so on).

Timeouts values must be adaptive over the histbR/Td samples.

As a common rule of thumb, RTT prediction shouldcbaservative: generally, it
can be said that overestimating the RTT causesbess than underestimating it. An
RTT estimator should be robust against short dipslewensuring appropriate

reaction to significant peaks.



CHAPTER THREE
BASICS OF QUEUEING SYSTEMS

3.1 General

Queuing is an aspect of our modern life that we magounter at every step in
our daily activities. The queuing arises wheneveshared facility needs to be
accessed for service by a large number of jobstomess or data packets. Our
interest of queuing systems arises for its relationits use in the study of
communication systems and computer networks. Theuscomputers, routers and
switches in such a network may be modeled as iddali queues with respect to
their buffer memory coupled with service elemeiitse whole system may itself be
modeled as a queuing network providing the requsedvice to the messages,
packets or cells that need to be carried. Appbeabf queuing theory provides the
theoretical framework for the design and study wéhsnetworks. Throughout our
thesis, we are going to use the theoretical backgtoand notation of queuing

systems to analyze our proposed algorithm.

The objective of queuing theory is to understanchsgueuing phenomenon in
order to predict the performance, control, and somes optimize the system where
the queuing occurs. Due to the range of applidgtaind potential gain of controlling

these systems, proper understanding of queuingpeanpowerful tool.

Discouraged Service
Customers Mechanism
Customeré | Q ———*» Departures
Arrivals
Queue

Figure 3.1 General queuing system.
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In general, a queuing system involves customers &fter the system, wait in
line (a queue), are served, and leave the systesh@sn in Figure 3.1. The key
features of queuing systems can be classified ascteristics of arrivals, service

discipline, and characteristics of service.

3.2 The Arrival Process and the Queue

The queue is characterized by the maximum perntéseilbmber of customers that
it can contain. This number is either potentiatifinite or finite. It is dependent on
the physical limitations of the memory “availablgase” of the system. The ease
with which we can analytically modeling a queuingtem of unlimited length is
much greater than that with which we can modehatéid queue situation. We will
further use infinite capacity of modeling a quen®ur thesis.

The arrival process is characterized by the armatd (). The arrival time is
simply the amount of time between two adjacent &sm‘Arrival rate” is the

reciprocal of arrival time (1).
The arrival process has three main characteristics:

» The size of the population. Most queues arise feopopulation that is
very large compared to the overall queue size.

* The pattern of the arrival process. Most frames fbe queue in a random
nature with each one being independent of the siieth in their chance

of joining the queue and in the time in which thaip.

* The behavior of the arrivals. Most people once thaye joined the queue

remain in it known as “settling”.

Some, however, refuse to join because they fegltdo long known as “balking”.
Others once in, leave before they reach the serag¢éhey become inpatient known
as “reneging”. We will further use infinite poputat, exponentially distributed

inter-arrival times and settling behavior of modgla queue in our thesis.
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3.3 The Service Process and the Server

Systems are usually described in terms of the numbehannels they have and
the number of phases they have. The channels ameutihber of areas providing the

service known as “server”.

The service process is characterized by the setwie (). The service time is
simply the amount of time required to transmit anfe. Since the bit-rate of the
channel is constant, this is strictly proportiot@altthe length of the frame. “Service
rate” is the reciprocal of service time |{L/In some types of services, the time taken
to see each patient is constant, but in many time tiaken to see the patient is
variable and in most systems, these are randontcamtte described by the negative
exponential distribution. In simple terms, thistetathat the probability of a very
long service time is low, with most people beingrs@around the average service

time.

3.4 Queuing Discipline

Queuing discipline refers to the rule by which oasérs in the queue receive their

service.

* First in first out (FIFO). This is the approach hiandling data packet

requests from queues or stacks so that the olegsest is serviced.

» Shortest service time (SST). This is where theepatwith the shortest
procedure is seen first. It is seen in the selactd some types of

procedures for operating lists.

» Last come first served (LCFS). The obvious exantpdee is people
getting out of a lift, those who entered last g#tfost.
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* Earliest due date (EDD). This may occur when thiestadate for
treatment has been fixed. For instance, when patiapproach as the

maximum period they are allowed to wait.

» Shortest weighted service time (SWST). This islsinio SST, but can be
weighted according to agreed criteria of how imgottit is to see that
particular patient. To be successful the weightsukhnot be arbitrary,

but should be tied to defined criteria.

3.5 Probability Distribution of Arrival or Service Times

The statistical pattern by which the customersvarat the queuing system occurs
either according to some predetermined schedulat agandom. If the pattern is
scheduled, then analytical model is unnecessaielfpattern is random, then it is
necessary to determine the specific type of proipakdistribution of the time

between consecutive arrivals to the queue or demsrfrom the servers.

3.5.1 Poisson Distribution

Arrivals to the queuing system or departures fr@amvers occur randomly, but a
certain average rate. An equivalent assumptiohasthe probability distribution of
the time between consecutives arrivals is expoakmind that the number of arrivals
during a certain time interval is independent o thumber of arrivals that have
occurred in previous time intervals (i.e. “memoegd”) (see Figure 3.2). The

mathematical relationship of the Poisson distriouis;

(At)ne_)‘t

P (t) = o
' Egn 3.1

where;
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P (t) = probability that there will be exactly n custaséto the system during a

specified time increment, t.

A = mean arrival time.

Poisson Distribution
0.20
0.16
& 012
™
vl
®
£ 0.081
g
2
0.04
0.00 -
0 5 10 15 20
Courts

Figure 3.2 Poisson distribution.

Although the Poisson distribution represents thvarpattern for many queuing
systems, it does not portray the situation forsalitings. It is crucial, therefore, to
verify the specific type of arrival pattern for tegstem under investigation prior to

the selection of the analytical model.

3.5.2 Exponential Distribution

The probability of completing a service to a custorin any subsequent time
interval is independent of how much service time ladready elapsed for that
customer. The exponential probability distributi(eee Figure 3.3) has a memory-
less property and is given by the following formula

P(t>T)=e_ﬂt Eqn 3.2

where;
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P(t>T) = the probability that the service time “t’, exdsea specific time “T”

for a mean service rate of™

a™ -
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a
|
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Figure 3.3 Exponential distribution.

3.5.3 Gamma (Erlang) Distribution

The gamma distribution has two parameters and taus represent an entire
family of distributions. The ability to vary thegarameters easily gives the Erlang
distribution great flexibility in modeling servituations that are characterized by a
number of subtasks. The Erlang distribution is aftipular value when the type of
service to be provided a customer consists of ‘Itasks, each of which has an
identical exponential distribution. In reality, hewer, a task needs only to behave in
total as though it were the sum of “k” identicadligtributed tasks; it does not have to
be capable of actual subdivision. The mean setince of each of the “k” subtasks
would then be “1/k”. The mean of the total service time is then {K/lor “1/u".
This value represents the expected completion binene entire task. The Erlang

probability distribution of the total service tirfi is

tk—lekut( kll) k

f(t) =
© (k-1)! Eqn 3.3
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Notice that, for the case when “k = 17, the Erladigtribution becomes the

exponential distribution. Also, if “k =0”, the service time will become a constant.

See Figure 3.4.

prohahility

Figure 3.4 Gamma (Erlang) distribution.

3.6 Notation for Queuing Systems

As we describe, a queue is described as follows:

Arrival process of requests;
» List of requests waiting service;
» Service policy adopted for the different requestthe list;

« Number of servers that characterize the maximum hbaumof

simultaneously served requests;
» Statistics of the service duration of each request.

To describe all the above aspects, the followintatan has been introduced by
Kendall. It has the form “A/B/c/K/m/Z” where “A” deribes the type of the arrival
process (e.g., “A = M” for a Poisson process; “AGY¥" for a renewal arrival
process). “B” represents the statistics of serdigetion of a request (e.g., “B = M”
for an exponentially distributed service duratithh;= G” for a generally distributed

service process). “c” indicates the number of ssr(ee., “c” can be a suitable
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integer value or even infinity). "K” denotes themioer of rooms for service requests
in the queuing system, including the currently edrvequest: “K” can be a given
finite value or infinity (in this case it is omitten the notation). “m” specifies how
many sources can produce requests of service: ‘an’be a given finite value or

infinity (in such case it is omitted). Finally, “4jives the queue discipline.

Usually the shorter notation “A/B/c” is used andstassumed that there is no
limit to the queue size, the customer source igitef and the queue disciple is
FIFO.

For A and B the following symbols are traditionaliged:
* GI; general independent inter-arrival time,
* G; general service time distribution,
* Hk; k-stage hyper-exponential inter-arrival or seevime distribution,
* Ek; Erlang-k inter-arrival or service time distrtmn,

* M; Exponential (Markovian — memory-less) inter-aati or service time
distribution,

* D; deterministic (constant) inter-arrival or seesitme distribution.

3.7 Queues and Probability Theory

Probability theory is the basic mathematical tool analyze algorithms and
systems in computer science. In probability theargtochastic process or random
process is the collections of interdependent randanables. It is the counterpart to

a deterministic process (or deterministic system).

Queues are special cases of stochastic processearéhrepresented by a state
X(t) denoting the number of queued “entities”. Tdpgeue is characterized by an

arrival process of service requests, a waiting distrequests to be processed, a
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discipline according to which requests are seleatetthe queue to be served and a
service process. A stochastic process is identibgda different distribution of
random variable “X” at different time instants “t’A stochastic process is

characterized by:

 The state space, that is the set of all the passralues that can be
assumed by “X(t)”. Such space can be continuoudisarete (in such a

case the stochastic process is named chain).

« Time variable: variable “t” can belong to a contis set or to a discrete

one.

» Correlation characteristics among “X(t)” random ightes at different

instant “t” values.

In order to account for these correlation aspeetsgdescribe “X(t)” in terms of its
joint probability distribution function at differémnstants “t = {{, t, ..., t}” and for

different values “x = {x X, ..., %} for any “n”:
PDFR(X,t) = Prob{X(t) < x;, X(t2) < X2,...,X(t) < Xn} Eqn 3.4

This process “X(t)” is strict-sense stationary @r fany “n” value and “t” the
following equality hold (i.e., distribution PDFxgX, is invariant to temporal

translations):

PDF(x,t+1) = PDF(X,1) Eqgn 3.5

Typically, we use the wide-sense stationary reqgirihat the expected value
“E[X(1)]” is independent on “t” and the correlatidEe[X(t)X(t+ 1)]” is independent

on “t”. A process is independent when for any “n” aridwe have:

PDFx(x,t) = Prob{ X(t) < x } Prob{ X(t2) <Xz }... Prob{ X(t)) <x,} Eqn 3.6
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The same relationship holds in terms of probabtignsity functions (we take
partial derivatives on the left side and we take tbtal derivatives of the single
distributions on the right side). In the case ofimasependent process, the random

variables at the different instants are completelgorrelated.

A special type of stochastic process is a Markoairghwhere “X(t)” can only
assume discrete values and is characterized bfathéhat its state at instant,#”,
“X(t,+i)”, depends only on the state at the previousamis“t,, X(t,)". The chain
evolves in time by making transitions between stat€he stochastic process
evolution is only characterized by its state vati¢he present instant, but not on the
time already spent in this state. This memory-td&sgacteristic is guaranteed only by
state sojourn times exponentially distributed ia tase of a continuous-time chain
(whereas the geometric distribution must be comsedidor a discrete-time chain).

The formal definition of a continuous-time Markadvain “X(t)” is:

Prob{X(tn+1)=%n+1|X (tn) =Xn, X (tn-1)=Xn-. . ., X (t1) =X1}=Prob{X (t n+ 1) =Xn+1| X (tn) =Xn
Eqgn 3.7

In case that the time instants where the chain pefiorm transitions are
discrete, we have a discrete-time chain. A Markuwairc is characterized by means of
the mean rates that correspond to the differemisitians from a state to another.

Some important sub-classes of Markov chains afellasvs:

» Birth-death chainswhere from state “X = i”, it is only possible gm to

states “X =i-1" or “X = i+I".

 Renewal processeshese are “point” processes (i.e., arrival proeess
only-birth processes) like the arrival of pointstbe time axis. The inter-
time from adjacent points (i.e., arrivals) are ioeledent identically
distributed. A special case of renewal processethaf Poisson arrival
process, where inter-arrival times are exponentidistributed with a

constant rate.
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» Semi-Markov chainghese are chains where the sojourn time in a Btse
a general distribution. By observing these chainsha state transition
time, we obtain an imbedded Markov chain, which lbarconsidered (and
solved) as a discrete-time Markov chain. Semi-Marioains will be used
to solve “M/G/I” (and “G/M/I" queues).

Lo L3

Figure 3.5 Continuous-time Markov chain with dewloteean transition rates.

Figure 3.6 Discrete-time Markov chain with denotednsitional
probabilities.

Markov chains are characterized by state diagramas tlescribe the states
(denoted by circles) and the allowed transitioren(ded by arrows) among them. In
the case of a continuous-time chain, transitiony w@ur at any instants and are
characterized by mean rates of exponential didgtdba (see Figure 3.5). Whereas,
for discrete-time chains, transitions occur at gitiene instants and are characterized

by transition probabilities that characterize themmetric distributions of the state
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sojourn times (See Figure 3.6). In this case, Sstammy have transitions into
themselves. The sum of all the transitional prolitegs leaving a state must be equal

to one (normalization condition).

3.8 Birth-death Markov Chains

Queuing systems are generally characterized byinmanis-time Markov chains
that describe the behavior of a “population” wittates representing the natural
numbers {0, 1, 2 . . .}. For a generic state “kihlytransitions to states “k-1" and

“k+1" are allowed. Let us denote:
* ), the mean birth rate from state “i" to state “i+1”"
*  Um, the mean death rate from state “m” to state “m-1~

* P, the probability of state “n”.

Ao M Az S
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Figure 3.7 Birth-Death Markov chain.

A general example of Markov chain is shown in Fgg@7. In this figure, we
assume an infinite number of states. The time keha¥ this chain is described by
the Kolmogorov - Chapman equations. A sufficiemfu{@brium) condition to a have

a steady-state behavior is the following ergodicipdition:

q an index k so that for each k ko, we havé\ < k.
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Figure 3.8 Cuts for the balance equations at dayititin.

This condition expresses the fact that there iai@ $eyond which the birth rate is
lower than the death rate. Assuming that the dayuiin condition is fulfilled, we
study the chain in Figure 3.7 at equilibrium by oajmg the balance of the “fluxes”
across any given closed curve encircling statethéndiagram. Many equilibrium
conditions can be stated; namely circles arourtdta sr cuts that intercept transition
arrows between two states. The simplest approadb imake cuts between any
couple of states in the diagram as shown in Fi§uBeand to write the corresponding

balance equations described below:

Cut 1 balance: APy=p Py = P, = t—°P0
1

Cut2 balance: APy =P, = P, = 2p =22
Hz2 M2 M1

Py Egn 3.8

Cutibalance: X;_4P, ;=P = P = Mu—‘ilPi_1 = P, Hilzlx’;—: Vi >1

All the state probabilities are expressed as fonetiof both the transitional rates
and the probability of state “0”, namely.Prherefore, we impose a normalization

condition in order to obtaingP
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14+ Z;x;l l—[i )‘n—l

=1,

Eqgn 3.9

Birth death Markov Chains comprises the mathemlativadel to construct the
state probabilities of our algorithm. Therefore, wse the birth death Markov

Chains background in our work.



CHAPTER FOUR
LITERATURE REVIEW

4.1 Congestion Avoidance Mechanisms

TCP congestion control mechanism is effective adheenetwork is congested. It
does not try to avoid congestion without congestiotifications (triple duplicates
and timeouts). TCP probes the network by increaisgwindow size (packet send
rate) until the point at which congestion happemnsi then decreases the window size
after any congestion notification. TCP needs te Ipackets to be aware of the
available bandwidth of the connection. Anotherrakliéive to congestion control is
congestion avoidance. It aims to avoid congestignpbedicting the incipient
congestion to notify the responsive sources whergestion is about to happen.
Responsive sources reduce its packet-sending oaieas they will be aware of the

incipient congestion before they lose any packet.

However, congestion avoidance mechanism has gsdilhes disadvantages. It
considers the responsive flows, which reduce tteeabwhich they send when it gets
a signal from the network about the congestiorawards unresponsive flows like
UDP flows, which have a constant sending rate dudonnection. In this scheme,
the delays in the network will increase becaus&gtsowill be dropped only after the
gueues have already built up. Another disadvantagd¢hat, it needs global
synchronization. All the flows will reduce theirrgbng rate simultaneously, which
will decrease the throughput. Finally, although tmokthe flows are TCP flows,
there are still some flows are not TCP compliahibde flows may not respond to the
congestion and will eventually take over all thek§’ bandwidth and exhaust the

network.

With all these disadvantages, researchers begircotwsider the needs of
controlling congestion at the gateways (IP LevE#yo types of different approaches
arise to control congestion; scheduling algorithrasd queue management
algorithms.

38
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4.2 Scheduling Algorithms

A scheduling algorithm (Figure 4.1) keeps sepagateues for each flow. A flow
cannot degrade the quality of other flows. The athge of the scheduling
algorithms is to give a fair share of the bandwidilall competing users. However, it
does not scale well to a large number of flowsteljuires heavy and expensive

computations and more memory resources.

Figure 4.1 Scheduling algorithm.

In the future, new applications such as teleconi@ng, voice over IP (VolP),
IPTv will get more usage in networking world. Thesgplications will require the
ability of the network to guarantee the demandeatdtadth. They would expect the
network to ensure that each flow of traffic recsivis fair share of the bandwidth
and is able to provide an upper bound on the erehitbdelay. This demand requires
a Quality of Service (QoS) mechanism to manage téidhiresources among
competing users. Quality of Service mechanism asgaffic-scheduling algorithm
at the output links of switches and routers onrtegvork. The main function of the
packet scheduler at the output link is to deterntieenext packet for transmission
among the packets, which wait for transmission fidifferent flows. A scheduling

algorithm must satisfy the following propertiesirfeess, efficiency, and low latency.

Fairness is described as allocating the same statbavailable resources among
the competing users in a network. This ensures ghfibw takes it fair share of the
available bandwidth even if an unresponsive floestto transmit their packets at a

rate faster than its fair share.
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Latency is generally defined as how much timekiesafor a packet of data to get
from one designated point to another. In some c¢éasesncy is measured by sending
a packet that is returned to the sender and thedrtip time is considered the
latency. For the applications that need a guardntat, latency is measured as the

length of time it takes a new flow to begin receg/service at the guaranteed rate.

Efficiency is the measurement of performance ofkpacwitched networks.
Efficiency is mostly affected by the processor siseend hardware resources in a
gateway. A packet scheduler should make its schregldecision in a time as small
as possible to achieve a higher efficiency. Hericés desirable that the time to
enqueue a received packet or to dequeue a packigamsmission is as independent

as possible of the number of flows sharing the wiLiipk.

Scheduling algorithms are generally classified imto categories: sorted priority
schedulers and frame-based schedulers. Sortedtyrsmhedulers keep a global
variable called as the virtual time or the systemteptial function. This variable is
used by a sorted priority scheduler to compute ttheestamp for each packet
indicating the relative priority of the packet fosmnsmission over the output link.
Packet scheduler makes a list of pickets’ timestimpan increasing order. Each
packet is transferred to their output link accogdia their timestamps. Most known
sorted priority schedulers are Weighted Fair QuguwFQ), Self Clocked fair
Queuing (SCFQ), Start Time Fair Queuing (SFQ), Fer@ased Fair Queuing (FFQ),
and Worst Case Fair Weighted Fair Queuing (WF2Q).

The sorted priority schedulers vary as how they caoulate the global virtual
time function. There are two different performarwéeria behind sorted priority

schedulers;
* The complexity of computing the system virtual time

A per packet work complexity of O(1) is most deBlea For WFQ, the worst case
complexity is O(n) where n is the number of flowsasng the same output link.
However, in a number of schedulers such as SCFQ, & FFQ proposed in recent

years, the complexity of the computing the virttige is O(1).
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* The complexity of maintaining a sorted list of petsk based on their
timestamps, and the complexity of computing the imaxn or the

minimum in this list prior to each packet transnaas

For n flows the work complexity of the schedulerop to each packet
transmission is O(log n).

In frame-based schedulers such as Deficit RoundrR@RR) and Elastic Round
Robin (ERR), the scheduler visits all the non-engpigues in a round robin order.
During each service opportunity of a flow, the mttef such a scheduler is to provide
to the flow an amount of service proportional ®fdair share of the bandwidth. The
frame-based schedulers do not maintain a glob&lalitime function and do not
require any sorting among the packets availablerforsmission. This reduces the
implementation complexity of frame based scheduliggiplines to O(1), making
them attractive for implementation in routers, aespecially so, in hardware

switches.

Elastic Round Robin (ERR) is a recently proposeaimf based scheduling
discipline for best effort traffic, that achievesry good efficiency with a low per
packet work complexity of O(1) with respect to thember of flows. In addition, it
has better fairness properties than other schedoleequivalent work complexity
such as DRR. ERR can also be easily adapted foedsthg guarantee rate
connections, and that it belongs to the class ¢éney Rate (LR) Servers, with a
latency bound significantly lower than those of esttscheduling disciplines of
comparable work complexity. These properties of ERRBkes it an attractive

scheduling discipline for both best effort and gueieed rate services.
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4.3 Active Queue Management Algorithms

Active queue management algorithms use a singl® EHst In First Out) queue
for all flows flowing through the router. It useseartain algorithm manage the length
of the packet queue by dropping packets when nagess appropriate. This kind of

approach requires no state information and scaddls w

TCP congestion control algorithm detects congestiuly after a packet has been
dropped along the path. Increasing the queue iEs dot solve the congestion
problem. The responsive sources detect packeta®sscongestion indicator. If the
packets will not be dropped because of high queass sit the gateways, sources will
keep increasing the sending rate causing longerydeh the network, which is not
desirable. It is important to find out the idealximaum queue length. This parameter
should be tuned properly in order to minimize therage delay in the network. In
order to maximize the utilization of the link, wersider a single flow and a single
link. Links are best characterized by their bandksdelay product for end-to-end
systems where bandwidth (capacity of the link)iis per second and delay (average
RTT of flows) of the link in seconds. Generally, w&n say that the queue limit of a
router should be set to the bandwidth-delay pradtiis general rule is outdated,
because it leads to quite a large buffer spacheagateways. As an update to this
general rule, dividing the bandwidth-delay prodogtthe square root of the number

of flows in the network gives better results.

Queues should be generally kept short. Therefdras iimportant to have

mechanisms that keep throughput high but averagaaysizes low.

Active Queue Management (AQM) is an IP level (gagvwbased) congestion
control scheme where gateways notify the sourcesagbient congestion. The aim
of AQM systems is to keep the average queue sizbe gateways low. Keeping the

queue sizes low has some advantages including,

* Provide queue space to absorb bursts of packeaksyri
* Avoid lock-out and bias effects, from a few flowsndinating queue

space,
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* Provide lower delays for interactive applications.

All AQM schemes detect impending queue buildup aatify the sources before
the queues at the gateways overflows. AQM algosthliffer in the mechanism used
to detect congestion and in the type of controlhométused to achieve a stable
operating point for the queue size. Trying to ké&®ep queue size stable at a desired
level causes a tradeoff between link utilizatiord ajueuing delay. A short queue
reduces latency at the router but setting the taygeue size too small may reduce
link utilization by limiting the router’s abilitya buffer short bursts of arriving

packets.

The way in which the congestion notification isideted to the sources is the
other important property of AQM schemes, which @Bethe performance. Two
different alternatives are available used to ndtiky sources.

Early Congestion Notification (ECN) adds an explisignaling mechanism by
allocating bits in the IP and TCP headers of theket flowing through the router.
In turn, the destination will transmit such infortioa to the source piggybacking it
into the acknowledgement message. Another way ehlgpg, gateways signal

congestion to the sources by “marking” a packeti(gga bit in the header).

The current Transmission Control Protocol, whichthe dominant transport
protocol in today’s internet, is not able to man#ge ECN bit. Generally speaking,
gateways drop the packets randomly with a proligivilhen the queue sizes grow up

in order to notify the sources about the incipismgestion.

4.4 Explicit Congestion Notification

Explicit Congestion Notification (ECN), which is axtension to the Internet
Protocol, is defined in Ramakrishnan et al., (20Gifpatures end-to-end notification
of network congestion without dropping packets.sTfaature is optional and it is
only used when both of the endpoints signal thaly ttvant to use it. Dropping

packets to signal congestion is the traditional wayCP/IP networks. After ECN is
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negotiated, a router, which is ECN-aware, may deit &n the IP header instead of
dropping a packet in order to signal the beginrohgongestion. The receiver side
echoes back the congestion indication to the sesiderand it reacts as a packet drop

were detected.

For networks with mechanisms for the detectionnafgient congestion, the use
of ECN mechanisms for the notification of congestio the end nodes prevents
unnecessary packet drops. For bulk-data connectibasuser is concerned only
with the arrival time of the last packet of datag @elays of individual packets are
of no concern. For some interactive traffic, howewich as telnet traffic, the
user is sensitive to the delay of individual pask&bor such low-bandwidth delay-
sensitive TCP traffic, unnecessary packet drops auket retransmissions can
result in noticeable and unnecessary delays fouiee. For some connections,
these delays can be exacerbated by a coarse-gigntil@P timer that delays the

source’s retransmission of the packet.

A second benefit of ECN mechanisms is that with E€drces can be informed
of congestion quickly and unambiguously, without gource having to wait for
either a retransmit timer or three duplicate ACKadrtfer a dropped packet. For
bulk-data TCP connections, the delay for the retrassion of an individual

packet is not generally an issue. For bulk-data T@GRnections in wide-area
environments, the congestion window is generallifigantly large that the

dropped packet is detected fairly promptly by trestFRetransmit procedure.
Nevertheless, for those cases where a dropped fpiacket detected by the Fast
Retransmit procedure, the use of ECN mechanismsirognove a bulk-data

connection’s response to congestion. If the sousceéelayed in detecting a
dropped packet, perhaps due to a small congestioinot window and a coarse-
grained TCP timer, the source can lie idle. Thimylewhen combined with the

global synchronization, can result in substanir idle time (Floyd, 1994).

As the use of wireless networks grows, packet lesdgbe physical layer can be
seen frequently. Packet losses are not always stingenotification. This false
alarm causes the sender reduce its rate unnedgssaECN, sender reduces its rate

only if gets binary feedback about congestion fittva receiver. Otherwise, it keeps
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increasing the rate. Especially in wireless netwpilkCN will maximize the link

utilization.

4.5 DEChit

DECDbit congestion avoidance scheme is the earkssimple of congestion
detection at gateways which is described by (Raislakan & Jain, 1990). In
DECDbit scheme, each router monitors the queue a@mk explicitly notifies the
sources when congestion is about to occur. Thifficaiton is implemented by
setting a bit (DEChit) in the header of the padket flows through the router. The
router sets this bit if the average queue lengtiréster than or equal to one at the
time the packet arrives at the router. When thiglieix notification arrives to the
sender in the header of the packet acknowledgertfenssources adjust its sending
rate in order to avoid congestion. The sender tisesvindow based flow control
mechanism. The sender updates their windows of atleets once every two round
trip times. If at least half of the packets in tlast window have the congestion
indication bit set, then the window size is deceeglasxponentially, otherwise it is
increased linearly. In other words, the senderabsms the congestion window by
0.875 times if 50 percent or more of the last wingovorth of packets have the
DECDbit sent, otherwise the sender increments thgestion window by one packet.
The queue length at the router as a function o tan be shown in Figure 4.2. The
average queue length is calculated by the ratith@farea under the curve and the
averaging interval. The use of DECbit mechanismgHe notification of congestion
to the end nodes prevents unnecessary packet drbissincreases the performance
and the utilization of the network. The main disashages of DECbit are averaging
gueue size for short periods of time and no diffeeebetween congestion detection

and indication.
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Figure 4.2 Queue length over time in DEChbit.

4.6 Drop Tail & Drop Front on Full Algorithms

The drop tail algorithm is the simplest and mosploged algorithm, which is
implemented by means of a First In First Out queaaagement. It simply drops the
arriving packet if the buffer is full. Besides tdilop, an alternative queue disciplines
drop front on full. Under the “drop front on fulllgorithm, the router drops the

packet at the front of the queue when the quetidliand a new packet arrives.

The biggest advantage of the drop tail algorithithéeseasiness and the simplicity
of the implementation, suitability to heterogenedpd its decentralized nature.
However, it suffers several disadvantages suchthashigher delays suffered by
packets when they go through longer queues. Botlthe$se solve the lockout
problem, but neither solves the full-queues prolsleie algorithms do not perform

well when the buffer is either long or short. Ifetibuffer is long, a packet may
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experience long delay. If the buffer is short, st difficult for the algorithm to
accommodate bursty traffic. These algorithms mayseaglobal synchronization,
which leads to the loss of throughput. If the quiutull or almost full, an arriving
burst will cause multiple packets to be droppedisTéan result in a global
synchronization of flows throttling back, followdyy a sustained period of lowered
link utilization, reducing overall throughput. Bothese two issues may lead the

network to collapse.

Generally, drop tail algorithm is used as a baseiim comparing the performance

of all the newly proposed IP level congestion colngtgorithms.

4.7 Random Drop Algorithm

The basic idea behind random drop algorithm is Empor each arriving packet,
if the buffer is full, the algorithm will randomlghoose a packet from the queue to
drop. This seems an improvement of the drop tagibrdthm. However, it does not

solve any of the disadvantages of the drop tadraigm.

4.8 Early Random Drop Algorithm

Both the drop tail and random drop algorithms reacthe congestion situation
after it has already happened. Moreover, they faith some serious problems. Early
random drop algorithm drops packets before the ermitqueues have been
completely full. The early random drop algorithmtige first one falls into this
category. The early random drop algorithm drop$ gecket arriving at the gateway
with a fixed drop probability, if the queue lengéxceeds a certain drop level
(threshold). This algorithm makes improvements dlierdrop tail and random drop

algorithms but still with similar problems.
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4.9 Random Early Detection Algorithm (RED)

To eliminate the Drop Tail disadvantages and tacguate the source answers to
incipient congestion situations, Floyd and Jacobpoypose a mechanism called
Random Early Detection (RED) (Floyd & Jacobson, 9RED is a popular
example of active queue management (AQM) mechani®redenet al., 1998)
(Fenget al., 1999). RED is an active policy of queue managemehtch is now
widely deployed and makes a decision to drop a gtacdndomly when the queue
average length ranges between a minimum and a maxirthreshold. The
probability of packet dropping/marking is obtainedm the average queue length

accordingly to a linear law.

The basic idea of RED algorithm is to keep the agerqueue size low (and hence
end-to-end delay) while allowing occasional buigtgackets in the queue. In the
RED algorithm, the packet dropping probability mogortional to that connection’s
share of the throughput through the router. REOopers better than the drop tail
algorithm because it has higher throughput and dodedays. It avoids global
synchronization and has the ability to accommodsdtert bursts. It is easy to
implement. It controls the average queue size éwehe absence of non-adaptive
sources. Because of its various advantages, in, @B has been recommended as
the standard of congestion avoidance mechanismateawgys. Pseudo code of RED

algorithm can be found below.

For any arrival of packets,
Calculate the average queue size (avg)
If minTh < avg< maxTh
Calculate packet dropping probability (Pa)
Drop the arrived packet with probability Pa
Else if maxTh< avg

Drop the arriving packet
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Figure 4.3 RED Algorithm.

The RED algorithm (see Figure 4.3) calculates therage queue size by
assigning different weights (the exponential weigctor, a user-configurable value)
to old value and current measure. This means tbetimh of a low pass filter to
reduce the high frequency variation of the instaetais queue. For high values of n,
the previous average becomes more important. A& lEcfor smooths out occasional
bursts and keeps the queue length low. The avepagee size is unlikely to change
very quickly. The RED algorithm will be slow to dtalropping packets, but it may
continue dropping packets for a time after the @lafueue size has fallen below the
minimum threshold. The slow moving average will @omodate temporary bursts
in traffic. If the value of n gets too high, REDIMnot react to congestion. Packets
will not be dropped by the RED algorithm. This wibuahean higher queuing delays.

On the other hand, if the maximum threshold istsed low value, the average
gueue size is easily affected from the current queee. The resulting average may
fluctuate with changes in the traffic levels. Instltase, the RED process responds
quickly to long queues. Once the queue falls betber minimum threshold, the
process will stop dropping packets. If the valua giets too low, RED will overreact
to temporary traffic bursts and drop traffic unresagily. This would mean a bad

usage of the link because of severe buffer osiatlat From these considerations
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follows that it is very difficult to find out theight trade-off, and it is hard to tune
RED to achieve both high link utilization and loelay and packet losses.

Although RED is a big success in internet congestiontrol, it still suffers from
some problems. Dropping packets from flows in prapo to their bandwidth does
not always lead to fair bandwidth sharing. For epkmif two TCP connections
unevenly share one link, dropping one packet peradlgt from the low speed flow
will almost certainly prevent it from claiming ifair share, even if the faster flow
experiences more packet drops. RED is designedtk with adaptive flows. Non-
adaptive flows can take over the link’'s bandwiddhnon-adaptive connection can
force RED to drop packets at a high rate from @firections. RED heavily penalizes

TCP flows and awards non-TCP flows.

In the last years, the active queue managemertigolhave been object of a large
interest in networking and several proposals (Fehal., 1999; Ottet al., 1999;
Clark & Fang, 1998) have been presented to findeneffiective control policies than
RED. REM and PI (Hollott al., 2001) are proposed to solve the problems, which
RED faces. Their solution is very similar to eathen. REM aims to achieve a high
utilization of link capacity, scalability, negligioloss and delay. As an improvement
to RED, REM algorithm differentiates between thengmestion measure of each
router and the dropping probability. REM algoritimaintains a so-called variable
price, which eliminates the dependence of the drapprobability from the current
value of the queue size. The REM algorithm usesctireent queue size and the
difference from a desired value to calculate thepding probability accordingly to
an exponential law. A source calculates the pritehe whole path using the
knowledge of the total number of packets dropped tbe path. The main
disadvantages of REM algorithm is that it givesimmentive to cooperative sources

and a properly calculated and fixed value of pviagable must be known globally.

However, Lin &Morris (1997) define fragile TCP flenas those emanating from
sources with either large round-trip delays or $rsehd window sizes and robust
TCP flows as having either short round-trip delaydarge send windows. This

description emphasizes a flow ability to reactrtdications of both increased and
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decreased congestion at the bottleneck routerr Tésearch indicates that RED is
not fair when the router traffic includes both reband fragile flows.

Floyd's original ECN paper (Floyd, 1994) shows @kdgantages of ECN over Red
using both LAN and WAN scenarios with a small numbkflows. Christiansen
et al., (2000) use a LAN use a LAN test bed to eeul large number of web
clients accessing a web server through a RED rolteey show that RED is
difficult to tune for throughput and delay, and yheonclude that minTh is the
most significant RED parameter for performance rigniAlthough they do
consider flows with a large variation in round-tripne (RTT), they do not

consider fairness in their analysis.

Bagal et al., (1999) compare the behavior of REONEand a TCP rate-based
control mechanism using traffic scenarios thatudel 10 heterogeneous flows.
They conclude that RED and ECN provide unfair tresatt when faced with

either variances due to the RTTs of the heterogen#ows or variances in flow

drop probabilities (Kinicki & Zheng, 2001).

Kinicki & Zheng (2001) investigate the behavior goefformance of RED with
ECN congestion control mechanisms with many hetaregus TCP Reno flows
using the network simulation tool, NS2. By compgrthe simulated performance of
RED and ECN routers, they find that ECN does pre\ndtter goodput and fairness
than RED for heterogeneous flows. However, wherdgraeand is held constant, the
number of flows generating the demand has a nepaiffect on performance.
Meanwhile the simulations with many flows demonstithat the bottleneck router's
marking probability must be aggressively increased provide good ECN
performance. This investigation builds on theseeméaesults to experiment with

adaptive variations of ECN.

Kinicki & Zheng (2001) conduct simulation experiniemon four Adaptive ECN
(AECN) mechanisms. The results show these apprsacae be used within an
AQM framework to improve goodput and fairness f@NErouters. We are going to
survey in detail most widely used congestion cdraigorithms on IP level in the

next sections.
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4.10 Weighted Random Early Detection (WRED)

In addition to the basic functionalities of RED, Mfged Random Early Detection
(WRED) is used as the Cisco implementation of RED dtandard Cisco 10S
platforms (Cisco 10S Quality of Service Solutionsniiguration Guide, Release
12.2). It provides the IP Precedence feature taigeoquality of service, which gives
the ability to provide different priority to diffent applications, users, or data flows,
or to guarantee a certain level of performance tdata flow. In WRED, drop
decisions are made depending on IP precedences dfotl of interest. It drops the
packets of the flows with lower priority when theieges start to be congested.
Different classes of services can be configured wiifference drop probabilities.
WRED can be configured to ignore IP precedence whaking drop decisions. This
working mode is similar to classical RED algorithm.

WRED chooses packets from other flows to drop rathan the flows with IP
precedence. Ordinary traffic flows with lower prdeace have a higher drop rate,

and therefore is more likely to be throttled back.

Global synchronization for responsive flows happeumsng period of congestion
because packets start to be dropped all at onceh EBaurce reduces their
transmission rate at the same time when packet dosars. After that, sources
increase their transmission rate when the congesticleared. WRED avoids the

global synchronization as the congestion avoidameehanism on the routers.

WRED is a congestion avoidance technique by rangatrmdpping the packets
prior to congestion. Responsive flows respond tckealoses by decreasing their
transmission rate until the congestion is clearedR&D performs. In addition to
RED functions, WRED drops packets selectively basedP precedence. Packets
with a higher IP precedence are less likely to tmppled than packets with a lower

precedence.

WRED reduces the chances of tail drop by selegtigebpping packets when the
output interface begins to show signs of congesti®yndropping some packets
early rather than waiting until the queue is fWRED avoids dropping large
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numbers of packets at once and minimizes the ckaofcglobal synchronization.
Thus, WRED allows the transmission line to be uséyg at all times. In addition,

WRED statistically drops more packets from largerssghan small. Therefore,
traffic sources that generate the most traffic ragge likely to be slowed down

than traffic sources that generate little traffic.

WRED is only useful when the bulk of the traffic TCP/IP traffic. With TCP,
dropped packets indicate congestion, so the pasketce will reduce its
transmission rate. With other protocols, packetrses may not respond or may
resend dropped packets at the same rate. Thugidgopackets does not decrease
congestion. WRED treats non-IP traffic as precedehcthe lowest precedence.
Therefore, non-IP traffic, in general, is more liké be dropped than IP traffic.
Figure 4.4 illustrates how WRED works.

F— Outgoing packets

Incoming packets Discard test queue
T O 0w cus o @@@
-

FIFO scheduling

(]

Discard test based on: .
e  Bufferqueuedepth Oueueing
o IP Precedence buffer
e RSVP session resources

Figure 4.4 WRED algorithm.

WRED makes early detection of congestion possiblg arovides for multiple
classes of traffic. It also protects against globghchronization. For these
reasons, WRED is useful on any output interfacera/lyeu expect congestion to
occur. However, WRED is usually used in the congters of a network, rather
than at the edge of the network. Edge routers mdBigorecedence to packets as
they enter the network. WRED uses this precedenagetermine how to treat
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different types of traffic (Cisco I0S Quality of IS&e Solutions Configuration
Guide, Release 12.2).

4.11 Distributed Weighted Random Early Detection (WRED)

Distributed WRED is an implementation of WRED. DWRBEprovides VIP
processing as well as all functionalities of WRHD.DWRED algorithm, when a
new packet is queued at the router, the averageeqisecalculated. If the average
queue size is less than the minimum threshold patennthen the arriving packet is
enqueued. If the average queue size is betweemihinum threshold and the
maximum threshold parameter, the packet is drompptda packet drop probability.
If the average queue size is greater than the mamirthreshold, the packet is

dropped.

The basic improvement in DWRED is to keep sepatatsholds parameters on
the queue size and weights for different IP presede This property provides
different qualities of service for different traffi Standard traffic may be dropped

more frequently than premium traffic during peri@dsongestion.

4.12 Flow-Based Weighted Random Early Detection (6W-Based WRED)

Flow-based WRED is an extension of WRED that presitairness to all flows.
Flow-based WRED classifies incoming traffic intoovls according to the
destination, source addresses and ports, and késpsinformation about the flows,
which have packets at the output queues. Flow-b##ie&D prevents each flow to
occupy more than its permitted share of the ressunsing the state information and
the classification of the flows. Flow-based WREDhalzes more the flows, which
take over the resources available in the routerortiter to provide fairness to all
flows, flow-based WRED keeps a count of the nundfethe active flows, which

have packets at the output queues. Using the nuofkative flows and the output
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queue size, flow-based WRED calculates the numbéufiers available per flow.
Flow-based WRED permits each active flow to hadet@rmined number of packets
at the output queue by scaling the number of bsiffevailable per flow by a
configured factor. This scaling factor is commoralicflows. Each flow is limited to
have a maximum number of packets by the scaled aupnflbuffers. The probability
of a packet drop from a certain flow that excedesriumber of packets allowed by

its per-flow limit increases.

4.13 Flow Random Early Drop Algorithm (FRED)

Flow Random Early Drop (FRED) is a modified versioh RED algorithm.
FRED algorithm aims to provide more resources faptive flows and to reduce the
resource utilization of non-adaptive flows. Theaaithm keeps state information of
all flows currently present in the gateway. FRERp® a parameter called strike for
each flow. Strike is defined as the number of tithes the flow has failed to respond
to congestion notification. FRED penalizes flowghahigh strike values. For each
flow, FRED keeps its queue length (gleni), the maxn queue length (maxq) and
the minimum queue length (ming). It keeps the ayergueue size (avgcq) and
calculates this parameter every time a new packetblen enqueued or serviced. At
each packet arrival, FRED determines the flow & gacket. If the queue length of
this flow exceeds the maximum queue length (masug)His queue, or this queue has
a strike value bigger than 1 and its queue lengjthot less than the average queue
length of all the queues (avgcq), this coming paeki be dropped. Both these two
situations indicate this queue has tried more thrare to break the maxq threshold or
is trying to break the threshold, which makesnidt¢o be a misbehaving flow, so this
coming packet will be dropped. Other than these swwations, FRED will act just
like RED when the total queue length is less thantim(accept) or bigger than
maxth (drop). When the total queue length fallsMeein minth and maxth, it will
check if the queue length of this current flowasger than the average queue length
of all the queues (avgcq) or the minimum queuetlernd this queue (ming). If so,

FRED will perform random drop. If not, it will acokethe coming packet. This



56

situation is based on the idea that flows with fiewackets queued in the buffer
should be rewarded. When the algorithm sees a $laweue length has not reached
the average of all the flows or the minimum alloleaueue length, FRED will
reward this flow by accepting its packet. Figurg ghows a comparison between the
RED and FRED algorithm.

FRED algorithm provides fairness to all flows as biggest advantage over RED.
FRED awards the flows with less packets queuechénluffer than the average.
FRED penalizes the flows with more packets. HoweMeRED keeps state
information and some parameters for each distiye tof flows. FRED requires
more memory to store the state information and gssaor capabilities to make
computations about dropping decisions. FRED doéscade well. It also suffers the

problem of setting the proper parameter values.

Qave 4r
RED FRED
Drop Drop
maxy,
Random R2: Drop if Qi>Qave/N
Dro R1: Accept if Qi<Qave/N else
P random drop
ming,
R2: Drop if Qi=Qave/N
Accept Else accept
0 >

Figure 4.5 Comparison between the RED and FREDxighgo.

4.14 Stabilized RED Algorithm (SRED)

The stabilized RED algorithm (SRED) (Gt al., 1999) is a buffer management
algorithm in order to make a stable buffer usagthaut affecting the number of

flows in the router’s buffer. SRED presents to ioy®w performance and fairness of
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the algorithms derived from RED idea. Unlike theBER SRED do not keep or

analyze the state information of individual flows.

The main idea behind SRED is to estimate the nuroberctive connections or
flows in the buffer to adapt dropping probabilitgcardingly. This estimation is
based on a zombie list (Figure 4.6) where flow$wkigh bandwidth are likely to be
in the list. SRED creates an empty list and inzed the hit parameter to zero. At
each packet arrival if the zombie list is not fule packet’s flow identifier (source
address, destination address, etc.) is added tosthé\t each packet arrival if the
zombie list is full, the arriving packet is compaireith a zombie in the list. If the
arriving packet’s flow matches the zombie, we deck“hit”. In that case, the Count
of the zombie is increased by one, and the timgsiameset to the arrival time of the
packet in the buffer. If the two are not of the sdiow, we declare a “no hit”. In that
case, with probability the flow identifier of thegket is overwritten over the zombie

chosen for comparison. The SRED algorithm can badon Figure 4.7.

A hit indicates that the flow has a higher prohbiapibf occupying the buffer and
thus it might be unresponsive, a hit with a higlwtovalue increases the probability,
and a hit with a high count and a high total ocenice increases the probability even

further.

The performance of the SRED algorithm is indepenhdéthe number of active
connections. It does not need to have a speciahpeter for average queue length. It
does not need to have state information. This reslazemory needs in the router.

Zombie List

Flow ID

Zombie
Count

Figure 4.6 Zombie list.
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Figure 4.7 SRED algorithm.

However, SRED requires more computation espedatlgome high-speed links.
Its control mechanism to reduce the resource ushtge non-adaptive flows is still
not satisfactory enough. Its estimation of the namdf active flows is not accurate
when files have random sizes, rather than infisie. The proper settings of the

parameters are still difficult.

4.15 Choose & Keep for Responsive Flows, Choose &8lIKor Unresponsive
Flows (CHOKe)

Choose & Keep for Responsive Flows, Choose & Kill &nresponsive Flows
(CHOKe) (Panet al., 2000) is another modified version of RED. In aidahtto
keeping the advantages of RED algorithm, the CH@lgerithm aims to identify
and penalize unresponsive flows with an easy imefgation. It tries to reduce the
the resource consumption of the flows, which corsudhe most resources. In the
CHOKe algorithm, whenever a new packet arriveshat outer, it updates the
average queue size and compares the new value @lvdrage queue size with the
minimum threshold value. If the average queue $izdess than the minimum

threshold value, then the algorithm enqueues thenming packet. If the average
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gueue size is greater than the minimum threshbih it draws a packet randomly
from the FIFO buffer and compares with the arrivpagket. If both packets belong
to the same flow, then both packets are droppsd,the incoming packet is admitted
into the buffer with a probability that depends the level of congestion. This
probability is computed exactly the same as in REBe CHOKe algorithm is
shown in Figure 4.8.

CHOKe is a simple, easy to implement RED variand atateless algorithm,
which does not require any special data structiireeeps the advantages of RED
algorithm including the ability to avoid global sshronization, keeping the average
buffer sizes low (low delays) and lack of bias agaibusty traffic. It improves the

performance than RED by penalizing the unresporfiives.
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random from queue

End
v Both packets
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Figure 4.8 CHOKe algorithm.
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However, this algorithm is not likely to perform Wehen the number of flows is
large compared to the buffer space. The CHOKe #igorstill awards unresponsive
flows like UDP. As the number of the flows in theuter, the computations of the

CHOKe get more expensive.

4.16 Comparison and Classifications of Major IP Leel Algorithms

In this section, a comparison between RED and dsauts including FRED,
SRED, CHOKe is presented. In RED, there is no jmv freatment. RED does not
keep or reserve buffers for flow information. Hen&ED is said to be the most
unfair algorithm among its variants. RED is desadte work with adaptive flows. It
rewards the non-adaptive flows like UDP. FRED alhon is a complete per-flow
treatment algorithm and fair for both adaptive aod-adaptive flows. It keeps flow
information for each flow. It has better protectitor adaptive flows and isolates
non-adaptive greedy traffic. Both the SRED and CHGHgorithms have per flow
treatment for high-bandwidth flows (which tend te mon-adaptive flows or
misbehaving flows). However, the SRED algorithmnidfees those non-adaptive
flows and does not take any effective actions toapee those flows. Only the
CHOKe algorithm not only identifies, but also pepa$ the non-adaptive flows.

SRED does not compute the average queue size desagomputational overhead.

RED and SRED are unfair whereas FRED and CHOK¢éaaner. However, RED
and CHOKe, FRED is too expensive, because it ketgie information for all the
flows. The comparison between RED algorithm andvésants is summarized in

Table 4.1.

Table 4.1 Comparision between RED and its variants

Ease of Buffer Size Per-flow | Computational
Algorithm | Fairness| Configuration| Requirement| Information Overhead
RED Bad Bad Bad No Bad
SRED Good Good Good Yes Bad
FRED Bad Good Good No Good
CHOKe Bad Good Good No Good
DECBiIt Good Good Good No Good
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4.17 Summary on Active Queue Management Mechanisms

Additive Increase, Multiplicative Decrease prineipis the basis of TCP’s
congestion control mechanism. IP level congestiontrol algorithms use this
property of responsive flows to congestion notifimas like TCP. Although the
dominant protocol in internet is TCP, the numbenaoih-adaptive flows like UDP in
the internet increases. The congestion controlrdgos should be able to identify
and penalize the misbehaving flows to achieve @gntmnal fairness for adaptive

flows.

Active queue management mechanisms use a droplplibbdepends on average
amount of traffic, not on the specific short-temaffic statistics. The main advantage
of active queue management mechanisms is to rettecdelay without sacrificing
link utilization by absorbing bursts due to bursturces or converging flows. With
active queue management, it is easy to decide hamymackets are accepted in a
buffer for scheduling those accepted packets diffily, depending on the nature of
the applications. The main drawback of active quewamagement mechanisms is
that it is not so easy to detect misbehaving fltves are not TCP friendly.

However, internet routers should implement activeewp management
mechanisms, which are in IP level to reduce avedadgy, to manage average queue
length, to reduce packet dropping, and to avoidba@losynchronization in the
internet. It is necessary to find effective mecbkars to deal with flows that are
unresponsive to congestion notification or are easpve but more aggressive than
TCP.

As we have investigated in this chapter, currertivacqueue management

mechanisms have their own advantages as well ghtwe their own drawbacks.



CHAPTER FIVE
DESCRIPTION OF OUR APPROACH

5.1 Orange, Our Proposed Algorithm

Multiple server queuing systems have wide applidgbio the analysis of
computer and communication systems. Although ipsifiles the analysis of multiple
server system, the homogeneity constraint is fretiypeviolated in operational
systems. The heterogeneity (different service yatdsthe servers occurs in a
communication network supporting that the commurecachannels (servers) can
be affected by different transmission rates, preaespeeds, available memories,
etc. In this work, we address a special case ofiphellserver queuing systems where
only two heterogeneous servers are involved. Utltese circumstances, a queuing
discipline designed for a system with two heter@gers servers and a queue using a

threshold type policy, referred to as Orange isn@eff and analyzed.

The main motivation for using a threshold-basedraggh is that many systems
incur significant server setup, usage, and remogsats. More specifically, under
light loads, it is not desirable to operate unnsaely many servers, due to
incurred setup, and usage costs; on the other liarsdalso not desirable for a
system to exhibit very long delays, which can reslule to lack servers under
heavy loads. One approach improving the cost padace ratio of a system is to
react to changes in workload through the use @stiolds. For instance, one can
maintain the expected job response time in a systeam acceptable level, and at
the same time maintain an acceptable cost for tpgrahat system, by
dynamically adding or removing servers, depending tbe system load.
(Golubchik & Lui, 2002).

In this work, we consider to simulate a two hetersgpus servers and one queue
with a threshold-based queuing system in orderctoeae both higher throughput
and lower gqueuing delays. We also consider findirapse relationship between the
parameters of our algorithm using the mathematcallysis. The contributions of

62
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this work are as follows. To the best of our knalgle, none of the works described
earlier consider to use a virtual drop server wpdhe incoming packets when the
actual queue size (or average) exceeds a thredbeéd. The only adjustable
parameter based on the changing conditions of éh&ank is the service time of the
virtual drop server. Since for many applicatiothss service time is not usable, we
consider it an important and distinguishing chaeastic of our work. We first aim to
give an exact solution for computing the steadtestaobabilities of our model using
Kolmogorov-Chapman equations. However, we feel thatexact solution is quite
complicated and hard to be derived and not tha¢sszry in practical applications.
Moreover, thus, the main contribution of this waskan efficient solution of a

threshold based queuing system with two heterogenservers and one queue.

By using the threshold type policy and the use igua drop server, we have
proposed a new approach to drop or mark packets wies congestion will likely
occur. We have intended to use an IP level corgestontrol proposal, which we
call Orange. Orange will replace RED as an activeug management algorithm to
decide which packets are to be marked to indicatengestion condition. The idea
behind Orange is similar to RED which also usesrl{)edropping” concept to
regulate the flows before congestion occurs. Hea]y” refers the fact that actually
as long as there is space in the queue bufferacepihe incoming packet; we still
chose to drop them to warn TCP friendly sourcesp@asive or adaptive) against

that possible congestion situation.

In a threshold queuing discipline, customers (in case, packets) are preferably
routed to the faster server. Customers are allolwedqueue up while the slower
server remains idle until the queue size reachmstain “threshold” value, at which
a point a customer is removed from the queue antl teethe slower server for
service. The threshold value becomes critical cbrgarameter affecting system'’s
overall performance, and facilitating optimal systecontrol. The primary
performance parameter is the mean number of cussonme the system, and
accordingly the average waiting time per packet.tif@pation of the two
heterogeneous servers problem is considered overfiaite time horizon with an
average cost criterion. Although linear holding aedvice costs are considered, it is
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generally assumed that there is no additional ioastrred to turn on or to turn off a

server.

Orange is based on the idea of dropping packetgjoraly whenever some
conditions are met, that is equivalent of usingki@rnate server to the default link of
that outgoing interface. Orange waits for a randomount of time after a dropping
occurs before another one may be considered. $hieitime equivalent of a service

time sample of the “drop server”.

Orange proposal’s main idea relies on a single guevo server M/M/2 model
analyses. In this, first server is the link trarssion element, and the second one is
the unpreferred alternative link. The second onaised only when queue size
exceeds a threshold. The optimum threshold valusudoh a system is analyzed by
M. Kemal Sis Ph.D. thesisSis, 1994) and studied also in Gékhan Catalkaya’s Msc.
Thesis (Catalkaya, 2003). We expect to utilize theoretical analysis in Orange’s
analytical evaluation giving the best operationnpdor responsive sources. Orange
takes the mentioned optimum threshold policy tadkegvhen the incoming packets

will be “dropped through the virtual drop server”.

Orange allows the incoming packet go to the queudrdnsmission if the queue
size is below the threshold (Orange Limit). It dsdpe incoming packet and sets the
timer if the timer is idle and the queue size idbatween the Orange limit and the
queue limit (maximum queue size). While the timentues to be busy, Orange
does not drop any incoming packet. Orange drops@dming packets if the queue

is full. One can refer to the Figure 5.1 for pseadde of Orange algorithm.

If (queue limit) then
Drop(packet)
Else
If (Orange limit) then If (timer is idle) then
Drop(packet)
Begintimer()
Else
Enque(packet)
End if
Else
Enque(packet)
End if
End if

Figure 5.1 Pseudo code of Orange algorithm.
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The queuing model behind the Orange algorithm isipdased on the M/M/2
queues. We intend to make a detailed analysiseo¥déinious types of M/M/2 queues.
The M/M/2 case shown in Figure 5.2 is the simptest-trivial case of a local model
for a node in a network. In this type of networds;, the traffic at the concerned node,
there is only one final destination, but there &ve different links by which the
traffic can be carried toward the destination notleere may be several incoming
links to the node; however, since all the trafBcdiestined to the same destination
node it can all be stored in one queue. Arrivalshis queue are modeled as a
Poisson arrival process (mean ratg Time spent on a link is modeled as
exponentially distributed so links can be thoughtas servers with exponentially
distributed service times (mean rate ). Therefibre birth rate is always equal xp

whereas the death rate depends on the state.

M2

Figure 5.2 M/M/2 queue model.

5.2 Generic M/M/2 Queue Analysis

For the simplicity of the analysis for a generic M2 case, we choose
“U1=p=H”. We also study the detailed analysis of thisecavith heterogeneous
servers where “p> |". The intensity of the arrival process is = A/u”. The system
is described by a Markov chain of the number ofsagss, as shown in Figure 5.2.
Under the stability assumption, the Markov chain ba solved by means of the cut
equilibrium conditions. The Markov chain modelinigtiois queue is shown in Figure
5.3.
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n 21 2n 2u 2u
Figure 5.3: Continuous time Markov chain modelNoM/2 queue.
Cut 1 balance: AP, =uP; = P; = pB,

Cut 2 balance: AP, =2uP, = P, = £ p,
Cut 3 balance: AP, =2uP; = P; = £ p,

p n
Cut n balance: P, = 2 (E) Py,n>0

We can finally write the normalization conditionander to obtain §

Po= T = Y = e Eqn 5.1
R 142(5520(8) " -1) 2+ an

Note that “B > 0” (i.e., the system is stable, because somstiimean be idle at
regime) entail p < 2 Erlangs”. The mean number of messages inyiers can be
obtained by means of the first derivative of the FPGf the state probability
distribution, P (z). This PGF is obtained as a safndifferent contributions of the
type “z\P."; hence, for the first derivative the value of tieem “zPy" is not relevant.
This is the reason why we use a P (z) related immchamed P*(z), obtained as:

() = Yo 2Py (BY g2 1 _ 4 2p 1
P(2) = Zn=02+pZ 2(2) _22+p1—z§_42+p2—zp Eqn 5.2

Note that P*(z) is not a PGF (P*(z=1) is not equmal), however, it can be used
as a PGF in evaluating the first derivative andrttean number of messages in the

gueuing system, N:
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_a@)  _y2p_ P _ 4p
N= dz z=1 4‘2+p (2-2zp)?,_4 T 4—p2 Egn 5.3

The mean message delay to cross the queuing syft@m the arrival to the

transmission completion) can be obtained by meéttsed.ittle theorem as:

_N_ 4/
T=-= paps Egn 5.4

~

5.3 M/M/2 Queue Analysis with Heterogeneous Servers

We consider a variant of the M/M/2 queue where gbevice rates of the two
servers are not identical. This would be the céseexample, in a heterogeneous
multiprocessor system. The queuing structure iswshan Figure 5.4. Assume
without loss of generality thajif > p,”. Jobs wait in line in the order of their arrival.
When both servers are idle, the faster server liedided for service before the
slower one. The state diagram of the system is\givé&igure 5.4.

A A

Figure 5.4: The State diagram for the M/M/2 heteragpus queue.

Balance equations, in the steady state, can beewiity equating the rate of flow
into a state to the rate of flow out of that state:

AP 000y = K, Poy + 1, Q01
(A )Py = H,Q0) + APoo0) Eqn 5.5
(A+1,)Q001) = K, Q(0y
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(}\+“1+p‘2)Q(0) = (“1+HZ)Q(1) + }\Q(001)+ }\P(O)
(}\+u1+p‘2)Q(Tl) = (“1+UZ)Q(n+1) + }\Q(n-l) n>1

The traffic intensity for this system is

o
HytH,

p Egn 5.6

The previous form equation is similar to the batmguation of a birth-death

process.

A
P(n) = Ul—‘HlZP(n_l) n>1 Eqn 5.7

By repeated use of this equation, we have
Poy = pP(n_l)an_l P n>1 Eqgn 5.8

From the above equations, we can obtain by solviregr equations by Gaussian

elimination using elementary row operations:

-4, 0 A+uD]T Qo AP (000
W, () 0 Qo | = 0
0 M, M, Po) AP (000)

The augmented matrix form;

“H, 0 A+ u1) Ap(ooo)

'l-’-l (}\+u2) 0 0
0 H, M, Ap(ooo)
['Uz 0 (A+u,) AP (000) ]
" u
0 (A+y,) — u_l A+p) - u_l AP (000)

2 2 J
U VA H AP (000)



--uz 0 0‘"‘“1) }\P(OOO)
! u
0 A+u) - = (i) - AP (000)
“2 I'lz
b, Ot ,
0 —_ +1) AP
| Oy T Ty )
By (AHpy) _
< Oy “1> o = ((M )+1> AP 000)
(l-’-l (27\"’“1"'“2)) P(O) = (7\"’“2"’“1) }\P(OOO)

A
i)
A ( +u1+u2

(000) “_1 (1+u )

A (g +,)

Py = P(Ooo)u (2 +HL,)

+u
1+p A Ap
(0) = Tizpp, £ (000)
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Eqgn 5.9

Egn 5.10

Egqn 5.11

Eqgn 5.12

By substitution, we can have the probability equabf the other initial states

A0
Qo = Thap o, 1 (000)
Lp
Qeoo1) = Tizp i, | (000)

Now, observing that

[ano Q(n)] +Qoo1) + Po) tPoooy = 1

We have
1+p ?\
Xnzop™ )Q(o) + Pooo) [1+2p W Tezp —+ 1] =1
Or
1 p MAHY,) 1+p A _
1-p1+2p WH, Ptooy + Prooo) [1+2p W,  1+2p 4, + 1] =1

From which we get

Eqgn 5.13

Eqgn 5.14

Egn 5.15

Eqgn 5.16

Eqn 5.17
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A+,

P(OOO) = |1+ plpz(l—p)(1+2p)

Egn 5.18

The average number of jobs in the system may nowobeputed by observing
that the number of customers in the system in didtes;, ) is K + § + s.
Therefore, the number of average jobs is given by,

E[N] = (Zk=0 kP + Qoo,1) + Zk=o(k + Qo)) Eqn 5.19
E[N] = Py + Qo,01) T Zrz0(k + 1)Q) Eqn 5.20
E[N] =Py + Qo,01) + Xk>1 Q) + Xk=1kQui) Eqgn 5.21
E[N] =1—"Po0) + Qu) Zi=1 kp** Eqgn 5.22
_1_ Qo

E[N] -_ 1 P(O,O,O) + —(1_p)2 Eqn 523
1

E[N] = yreawsT Egn 5.24

Where;

My, (142p) 1
=|——+— Egn 5.25
AQA+H,) + 1-p q

5.4 M/M/2 Queue Analysis with a Threshold K=1

We consider a variant of the M/M/2 queue where gbevice rates of the two
servers are different wherg,;*> p,”. There is a threshold on using the slower server
which is “K=1". This means that the slower servelt ne busy if and only if there is

more than one customer in the queue. The queuingtste is shown in Figure 5.5.

M1+ U2

Figure 5.5 Continuous time Markov chain for M/M/@ege with threshold K
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AP (000) = K, Poy + M, Q001
(A+H)Poy = 1,Q0y + AP0y + K, Py
(A+1,)Q001) = K, Qo0 Eqgn 5.26
A+ )Py = 1,Qy + APg)
(A1, + H,)Q0) = A Qeoon) + H,Qq)

Now, we have five unknowns and five equations, e write these equations in

matrix form.
My M, 0 0 0 Po) APo00)
(A+u) 0 -H, Hy 0 [ Qoo [xP(OOO) ]
0 (A1) H, 0 01l Qo [=] o
2 0 0 A+u) M, { P ‘ 0
0 A A+p, +1,) 0 Ml Qy 0

For K = 0, we have 3 initial states, for K = 1, taeve 5 initial states, so for K, we
will have 3 + (2*K) states.

AR +H,)Qe) = (K +H,)Q) +2AQ(0)+ APy Eqn 5.27
(}\+u1+p‘2)Q(Tl) = (“1+UZ)Q(n+1) + }\Q(n-l) n>1

The sum of all probabilities equals unity,
[Zn20Qu] +Poy + Quoon+ Qo +Pawy +Qu=1 Eqn 5.28

One can find a symbolic solution for initial states Gaussian elimination using
elementary row operations. So all states probaslitan be written in terms of

Poooy Then we can find the average number of customéhne system in terms of

A, W, 1, By Little’s Theorem, we can find the average giqlar packet.
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5.5 M/M/2 Queue Analysis with a Threshold K

Within the framework of this work, we consider ariMA2 queuing model where
a threshold on the queue size controls to use btonose the slower server. In the
simplest non-trivial case, we may consider a swiigmode with two out-going links
and one type of traffic load stored in a singlebouind buffer. This may seem too
basic for any router application; however, applaa that are more meaningful may

also be decomposed into such several basic nodes.

The mathematical formulation of the performancetedon is a model for
measuring the actual physical performance of thever&. The dynamic local
strategy that we consider will be based on a perdoice criterion to model the
congestion reducing capability of the network a tiode level. Furthermore, this
performance criterion, we claim, is a good appraachminimizing a delay (source-
to-destination) objective in the overall networkn land Kumar (Lin and Kumar,
1984) showed that the optimal policy, for an M/Midde model and for a cost
function defined as the mean sojourn time of custsmin the system, is of
“threshold type”. Continuous time Markov chain ®M/M/2 Queue with threshold

K is given in Figure 5.6.

Figure 5.6 Continuous time Markov chain for M/M/@egje with threshold K.

We assume here thai;> p,” and “pi+u, > 17
We can write the state probability equations below;

Initial states;
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P00y A= Fo) Ky + Quoony K,
Qo) A+H,) = QuoyH,
Poy(A+1,) = PoooyA+Qoy M, + Pyl Eqgn 5.29
Qo)A+, +H,) = QoA + QyH,

Intermediate states;

Py A+p)=Pod + QyH, + Pyl
QA+, 1) = QuA+QH,
Py A+u)=PA + Ql, + Pyl Eqn 5.30
QA+, 1) = QyA+Q3)H,
P A+ )=P)A + Q) l, + Pk,
Q@) A+, +1,) = QA+QpH,

Py A+u)=P A + PrusnH + QuyH, (0 <n<K) Egn 5.31

Q(n)OH'Ul‘le) = Q(n.l)A+Q(n+1) p'l (O <n< K)

P (7\+|.11)=P(K_1)7\ + Q(K)uz (n =K) EGB2
Quo A+, +H,) = Q.yA+Qur1y (M; + H,) + Py (0 =K)

Q(n)OH'Ul‘le) = Q(n_l)A+Q(n+1) (Ul + |~12) (K <n <OO) Eqn 5.33

The balance equation of a birth-death process is

Py A+ +1,) = PnyAPasn M, +H,) n>1 Eqgn 5.34

By repeated use of this balance equation, we have

A

P(n)zmp(n-l) Eqn 5.35
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A 2 n—-1
P(n):—(ulwz) P(n-l) = (—(Hlﬂlz)) P(l) n>1 Eqn 5.36
For the states K < n=
[Z Q(n)] +A=1 Eqgn 5.37
n=K+1

Dr—k+1P"] Qe +A=1 Eqgn 5.38
n=_2 Eqn 5.39

= (M, +H,) an o.
;Q(K+1) + A=1 Eqn 5.40

(1-p)

For the solution of the initial states, namely Aemdr (0 =< n < K); we have a

square matrix with dimension of (3+2*K) like in thalowing representation.

Quon] )
0 A+ “H, Hy 8 Py | _ (800>
_}\ 0 (}\_I_“ +u) O - 1 . . —_
0 —2 00 At ke —w || W 8
_ Pies 0
| Qk-1)

We have calculated for the results for some smalleBpecially 0, 1) values
relating the rational functions. These results doalso be calculated by using a
general-purpose symbolic-numerical-graphical matters software product namely
Maple or Mathematica. However, one can never selea pattern, in this form of

representation.

By using z-transform analysis, we can derive thecerxpressions. However, the
exact expressions for P, and Q, for even moderateyaies, become very
cumbersome. Because of this, the exact optimumevalu K involves a very
complicated implicit formula and it is not necegsto find the exact equation for

optimum value of K. Instead, we can use an empisodution for it. For this
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purpose, we write these equations in Z-domain &urtb be solved. These equations
can be represented by the following equationsenztdomain.

Original equations;

Py A+u)=P A + PrusnH + QuyH, (0 <n<K) Egn 5.41

Q(n)(}\-l_ul-l_p'z) = Q(n-l)}‘+Q(n+1) My (0 <n<K)
Equations in the Z-domain;

P(z)(A+U,)=Az7'P(2) + | (zP(2) — zP(0)) + 1,Q(z) (0 <n<K)Eqn 5.42
Q) A+, +,) = Az71Q(2)+1, (2Q(2) — 2Q(0)) (0 <n<K)

Original equations;

Q(n)OH'Ul‘le) = Q(n_l)A+Q(n+1) (Ul + |~12) (K <n <OO) Eqn 5.43

Equations in the Z-domain;

Q@) i, +,) = 271 Q@+, + 1) (20(2) —20(0) (K <n <o)
Eqn 5.44

These equations can be used to find the solutiamsing the inverse z-transform.
After finding the solution of the above equatiotise probability of each state as a
function of the initial state P(000) could be datered. This initial state could be a

function of @, “1,“2"()- Using these probability equations, the averagmber of

packets in the system and by Little’s formula therage delay per packet in terms of

U,,K could be determined. Exact expressions for B, @nfor even moderate K

values, become very cumbersome and are out of safles work. Instead, it is
enough to use an empirical solution in order ta fanrelationship between system
parameters. One of the main contributions of ourkws to minimize the average

delay per packet using the optimum value of thriesKo
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5.6 Two Server Queue One Server Idle Below a Thresh

M/M/2 queue with a threshold is studied $ys( 1994). In his work, First passage
time to an idle period (FPTIP) is studied. FPTIRueas derived as a function of p1,
M2, L. Here, we want to evaluate a formula for the ayerqueue size and waiting
time for the same system. The exact solution besomenbersome and is not
efficient and necessary for M/M/2 system with ae#irold. Moreover, the main
contribution of this work is to find a direct ralaship between the threshold value
and the service time pair that give the minimumtivgidelays per packet instead of
finding an exact solution. For this aim, we consitle use the equations, which

Morrison (1990) has studied in his paper.

In his work, Morrison finds an efficient solutiorf a threshold based queuing
system with two heterogeneous servers and one guaues work, for the sake of
simplicity, he considers a birth-death queuing eystvith two exponential servers
with mean rates “n”, and Poisson arrivals with mese is A < 2u”, first in first out
gueuing discipline, unlimited buffer size of thetthteneck queue. Both servers are in
use when the number of the customer in the syssemore than a threshold level
“c”. Only one server is in use when the numberhef customers in the system is less
than “c + 1”. Thus, the service rate of both sesvisrequal to each other; it is not
important which server becomes idle. This systetniges to the generic M/M/2 case
when “c” is one. So it is necessary to study theesavhere "c > 1” for a non-trivial

generalization.

The equilibrium probabilities of the number in thestem are known (Kleinrock,
1975) and the mean waiting and sojourn times maylt@ined from these by
Little’s formula. The system can be summarized asgle server system where the
mean service rate is “u” when there are less tltaf 1" customers in the system,

and “2u” when there are more than “c” customersratke system.

From Morrison’s study, we easily state that, theildoyium probability R that

there is no customer in the system is
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1-/w _2n (€
1 { e e () fora#u Eqn 5.45
° lc+2 forA =u

The equilibrium probability Rhat there are “i” customers in the system is

i .
p, = Py(A /) - forQ <i<c Eqn 5.46
PoA /WA /2w fori zc
The mean waiting and sojourn times are given by
—p (L 1_ _ 1
Wy =P (2) (Bl /M =11+ (- |5~ o+
A
m} ford # 1 Eqn 5.47
(W) = g—gc(c +1) forkA =pn Eqn 5.48
1= (2) ) - 11+ © [~
= — — — C —
ANV (R EA Qu-n W-n
P } A
i =1 ford #p
Eqgn 5.49
(T) =22 (c? +3c +4) ford =p Eqn 5.50

We can adapt the Morrison’s results into our cassubstituting “2u = g+ ",
‘M =M1, and “c = K + 1”7 in the above equations. Therefothe mean waiting and
sojourn times of M/M/2 with a threshold K case frmend as

(W) =P, (l)ml {(u —2)2 [ /A —1] + (K)[ : ] +

M1 ((ne+ Hz) Y (H1—7\)

A
m} for A # 1y Eqgn 5.51

(W) =2 (K +1)(K +2) ford =, Eqn 5.52
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— AN K+1 _ 1 __1
T)=Fo (ul) {(ul—x)z (s /0 U+ &+1) [((u1+ H2)=A) (ul—x)] *
+
((u(1u+1 usz—)x)z} ford # =an 553
T)=2(K+1D2+3EK+1)+4) forx =, Eqn 5.54
2A
Where

1-(A / py)K*1 (Mt ) (A\KFT
A A%
L= T Gt )0 (ul) ford #

5 Egn 5.55
° (K+3 for A =y

Those derived formulas are used to justify the &mn results, which is
available in next chapter. The equations are valid system where the Poisson
arrivals and exponentially distributed service sadee applied. However, most of the
flows in today's networking world consist of resgore flows like TCP, which
adjust their sending rate according to the congestidications from the network.
Therefore, memory-less arrival process cannot teakstic assumption. In systems,
which have the memory-less property, the time itistion until the next event is the
same regardless of how much time has passed s$iadasdt event, and the average
time until the next event is the same as the aeeiratgr-event time. This property is
also a direct consequence of the complete randaofethe Poisson process; what
happens in the current interval is independent ledtvhas happened in the previous

interval.

The main goal of active queue management algoritisntg warn TCP friendly
sources about the incoming congestion situatiothabthey will be able to reduce
their sending rate to prevent the network to getongestion collapse. The main
objection of our proposed algorithm is to providdter conditions (high throughput
and low per packet delays) for the networks whese anly the constant bit rate
sources but also the responsive sources are aeailHferefore, it is meaningful to
provide practically an empirical formula to detenmithe best operating point for
Orange having its system parameters (thresholdsamdce time) tuned for such

conditions.



CHAPTER SIX
MATERIALS AND METHODS

6.1 Constructing the Simulation Environment

The experimental investigation aims to verify tlesults of our proposed study
with the mathematical analysis. One important ¢bation of our work is to validate
the proposed model experimentally. Network simukattave been extensively used
to validate and evaluate the performance of netyookocols.

6.1.1 Introducing NS (Network Simulator)

The NS (Network Simulator) is a good example ofidely used, public domain
discrete event simulator targeted at network puadtoesearch. It was originally
implemented at LBL (Lawrence Berkeley Laboratory)dais currently being
extended as part of the DARPA-funded VINT (Virtualernet Test-bed) project at
USC ISI.

NS is an event driven, packet level network sinauladeveloped by University of
California Berkeley. Version 1 of NS was developadl1995 and version 2 was
released in 1996. Version 2 included a scriptimglege called Object oriented Tcl
(OTcl). (Further, we mean the NS-2 by using NS.)slan open source software
package available for both Windows (via Cygwin) dndux platforms. NS has

many and expanding uses including:

* To evaluate the performance of existing networkqurols.
* To evaluate new network protocols before use.
* To run large scale experiments not possible inegpériments.

* To simulate variety of IP networks.

79



80

NS is popularly used in the simulation of routingdamulticast protocols. It
implements network protocols such as TCP and UBifid source behavior such as
FTP, Telnet, Web, CBR and VBR, router queue managémmechanism such as
Drop Tail, RED and CBQ, routing algorithms suchlagkstra, and more. NS also
implements multicasting and some of the MAC layext@cols for LAN simulations.
The NS project is now a part of the VINT Projecttdevelops tools for simulation
results display, analysis and converters that abmetwork topologies generated by

well-known generators to NS formats.

NS implements the following features:

* Router queue management techniques DropTail, RBQ,C
* Multicasting
» Simulation of wireless networks
o Developed by Sun Microsystems + UC Berkeley (Daeslal
Project)
o Terrestrial (cellular, adhoc, GPRS, WLAN, BLUETOO)JH
satellite
o IEEE 802.11 can be simulated, Mobile-IP, and adbrotocols
such as DSR, TORA, DSDV and AODV.
» Traffic source behavior- WEB, CBR, VBR
» Transport agents- UDP/TCP
* Routing
» Packet flow
* Network topology
* Applications- Telnet, FTP, Ping

» Tracing packets on all links/specific links

The simulation engine of NS is implemented in Cafd uses the object-oriented
version of Tool Command Language developed at MDITd]) as its front end.
Accessing the NS library through this front enghassible with commands or scripts

that are written in the Tcl language.
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With an interpreter style of code execution, thepd&yram interprets each line of
user script in a Tcl program during execution tiemal produces the output in the
form of a formatted text file. Post processingaesformed in order to filter particular
data throughout the simulation time. Tools are megl) such as “gnuplot” as to
create graphs or Network Animator (nam) as to digpin animated visualization of

the NS simulations. (See Figure 6.1)

OTcl: Tcl interpreter with OO
extention

E NS Simulator Library E E \

e Even Scheduler Objects

e Network Component Analysis
O?I'cl Sc'npt Objects Simulation \
Sg;xulatlon e Network Setup Helping Results
ogram
& Modules (Plumbing
Modules)
NAM

Network
Animator

Figure 6.1 Simplified user's view of NS.

Besides the interpreted style of code executiongN8s us a chance to write all

commands in a script file for further execution. @ificl script will do the following.

» Initiates an event scheduler.
» Sets up the network topology using the network abje
» Tells traffic sources when to start/stop transmgttpackets through the

event scheduler.

Another major component of NS besides network dbjecthe event scheduler.
An event in NS is a packet ID that is unique fqragket with scheduled time and the
pointer to an object that handles the event. Tlemiescheduler in NS performs the

following tasks:
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* Organizes the simulation timer.
« Fires events in the event queue.

* Invokes network components in the simulation.

Depending on the user’s purpose for an OTcl simanatcript, simulation results

are stored as trace files, which can be loadedralysis by an external application:

* A NAM trace file (filename.nam) for use with the tM@rk Animator
Tool

* A Trace file (filename.tr) for use with XGraph oraEeGraph.

NS is written in C++ with OTcl interpreter as aritend. For efficiency reason,
NS separates the data path implementation fronraqoaith implementations. NS is
a Tcl interpreter to run Tcl Scripts. By using @®¥cl, the network simulator is

completely object oriented.

e Scripting Language Tcl - Tool Command Language ripumced
“tickle”)

* System Programming Language (C/C++)

In terms of lines of source code, NS was writtethviOOk lines of C++ code, 70k

lines of Tcl code and 20k of documentation.

TclICL is the language used to provide a linkagevbeth C++ and OTcl. Toolkit
Command Language (Tcl/OTcl) scripts are writtenset up/configure network
topologies. TcICL provides linkage for class hieray, object instantiation, variable

binding and command dispatching. OTcl is used &vraglic or triggered events.

Event scheduler and basic network component obgeetsvritten and compiled
with C++. These compiled objects are made availabtae OTcl interpreter through
an OTcl linkage that creates a matching OTcl oljgceach of the C++ objects and
makes the control functions and the configurableabées specified by the C++
object act as member functions and member variadfigbe corresponding OTcl
object. It is also possible to add member functiand variables to a C++ linked

OTcl object. Architectural view of NS can be found-igure 6.2.
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Event Scheduler ns-2

telel

Network

Component
otcl

tclS.0

Figure 6.2 Architectural view of NS.

NS is designed to run from on most UNIX based dpegasystems. It is possible
to run NS on Windows machines using Cygwin (A linemulator for windows).
Standard development packages like “make”, “gcd dreir dependencies must be
available to compile the sources.

In NS, the network is constructed using nodes, wiaiee connected using links.
Events are scheduled to pass between nodes thtbedimks. Nodes and links can
have various properties associated with them. Ageah be associated with nodes
and they are responsible for generating differeatkpts (e.g. TCP agent or UDP
agent). The traffic source is an application, whishassociated with a particular
agent (e.g. ping application). NS is very struatur€his is illustrated in the Figure
6.3.

Links are required to complete the topology. In Wfe, output queue of a node is
implemented as part of the link, so when creatinkslthe user also has to define the
gueue type. NS supports numerous queue types inglueddFO, RED (Random
Early Detection), Drop Tail, FQ (Fair Queuing), SBSidchastic).
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Application

Agent

Link

Figure 6.3 Two nodes, a link, an agent and an egipdin.

Figure 6.4 shows the construction of a simplex nkNS. If a duplex link is
created, two simplex links will be created, onedach direction. In the link, packet
is first enqueued at the queue. After this, it ithex dropped (passed to the Null
Agent and freed there), or dequeued (passed tDé¢lay object which simulates the
link delay). Finally, the TTL (time to live) value calculated and updated.

) (D

Simplex Link :
( ) Oueue Delay S| TTL

i

v

A 4

Agent/Null

Figure 6.4 Link in NS.
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Traffic generation in NS is based on the object$waf classes, the class Agent
and the class application. Every node in the ndtviat needs to send or receive
traffic has to have an agent attached to it. Orofogn agent runs an application. The
application determines the kind of traffic thatsismulated. There are two types of
agents in NS: UDP and TCP agents

The Agent/LossMonitor can monitor number of packesssferred, as well as
packets lost. A procedure can be scheduled totipplLossMonitor every T seconds

and obtain throughput information.

Four traffic applications are available in NS. Thggy on top of a UDP agent to

simulate network traffic.

CBR (Constant Bit Rate): A CBR traffic object gesmies traffic according to a

deterministic rate. Packets are of a constant size.

Exponential: Traffic is determined by an expondntiigtribution. Packets are a
constant size. This produces an on/off distributidackets are sent at a fixed rate

during on periods. No packets are sent during efiools.

Pareto: The distribution for traffic generation teken from a pareto on/off
distribution. This is generally used to generatgregate traffic that exhibits long-

range dependency.

Traffic Trace: Traffic is generated according ttrace file. The binary file must
contain 2 * 32 fields in network (big-endian) byieder. The first field contains the
time in milliseconds until next packet is generatétle second field contains the
length in bytes of the next packet. The methodnéilee of the Tracefile class

associates a trace file with the Tracefile object.

In order to be able to calculate the results fromgimulations, the data has to be
collected. NS supports two primary monitoring caliés: traces and monitors. The
traces enable recording of packets whenever ant sueh as packet drop or arrival
occurs in a queue or a link. The monitors provideeans for collecting quantities,

such as number of packet drops or number of arrpeckets in the queue. The
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monitor can be used to collect these quantitiesaiopackets or just for a specified

flow (a flow monitor).

First, the output file is opened and a handle tigched to it. Then the events are
recorded to the file specified by the handle. Fypalt the end of the simulation, the
trace buffer has to be flushed and the file hasetolosed. This is usually done with a
separate finish procedure. If links are create@rafhese commands, additional
objects for tracing (EngT, DeqT, DrpT and RecvT) e inserted into them. These

new objects will then write to a trace file whenetleey receive a packet.

This trace file contains enqueue operations (‘dggueue operations (*-'), receive
events (‘r’) and drop event (‘d’). The fields inetltrace file are: type of the event,
simulation time when the event occurred, source daslination nodes, packet type
(protocol, action or traffic source), packet sitags, flow id, source and destination

addresses, sequence number and packet id.

Tracing all events from a simulation to a specffie and then calculating the
desired quantities from this file for instance tsing Perl or Awk and Matlab is an
easy and suitable way when the topology is relbtiggmple and the number of
sources is limited. However, with complex topolegand many sources this way of
collecting data can become too slow. The trace fi¥dl also consume a significant

amount of disk space.

There are several advantages to using NS. Figstoviides flexibility by allowing
simulation of protocols at different layers of thetwork protocol stack. Because it
has been widely used by the networking researchmugnity, it has accumulated
considerable “common knowledge” in the form of cidntted modules
implementing different network protocols. Providirgg comparable simulation
framework is indeed one of VINT's goals. For exanmt the routing layer, it
supports both unicast and multicast. At the trartsgdayer, NS includes
implementations of different versions of TCP. NS @so be used in emulation
mode; this allows the simulator to interface tave hetwork by accepting/injecting

traffic from/into a real network. NS’s emulationciity is especially useful since it
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serves as an intermediate step between pure sioruland full-blown live

experimentation.

Trace driven simulations have been widely used yistesns validation and
performance evaluation in different areas of compuscience and electrical
engineering. They have been particularly importamomputer networking research.
Seminal work in protocol design and performancduation has made extensive use
of trace driven simulations. More recently, perfarmmoe evaluation and tuning of
World Wide Web protocols and applications have atsoployed trace driven

simulation techniques.

As a result, public domain packet traces have lpegde available to the Internet
research community. The National Laboratory for Wgmp Network Research
(NLANR) maintains a collection of packet traces ni@ining only packet header
information) that are publicly accessible. The in& Traffic Archive is another
well-known source of publicly available Internetckat traces.

We implement the proposed algorithm within NS andedour simulations using
several packet traces that are representativeaffiction the Internet. Packet traces
serve as input to the proposed traffic models awidision detection and response
control systems. Simulations subject the proposedets and control systems to
various traffic patterns and boundary conditionsuation results provide feedback
into the modeling tasks and become keys to undetistg and tuning the proposed

model.

6.1.2 Post Simulation Analysis

With an interpreter style of code execution, thepi&ram interprets each line of
user script in a Tcl program during execution tiemel produces the output in the
form of a formatted text file. Post processingesformed in order to filter particular
data throughout the simulation time. Because &, tome text processing tools like

Awk, Perl are required to produce the statistiésrmation from NS’s trace files.
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We prefer to use Awk, which is one of the most reséing text processing
languages used for NS trace analysis. Awk textgesing programming language is
a useful and simple tool for manipulating text taltying information from text files,
creating reports from the results, and performirsgh@matical operations on files of

numeric data. Awk text-processing language is udefisuch tasks as:

« Tallying information from text files and creatingports from the
results.

e Adding additional functions to text editors likei"v

e Translating files from one format to another.

e Creating small databases.

» Performing mathematical operations on files of nuoéata.

Awk is not really well suited for extremely largggmplicated tasks. It is also an
“interpreted” language that is, an Awk program canrun on its own, it must be
executed by the Awk utility itself. That means titas relatively slow, though it is
efficient as interpretive languages go, and that ghogram can only be used on

systems that have Awk.

To analyze trace files generated by the TCL sinutascripts, we develop some
Awk scripts to calculate average throughput, averdglay and average jitter for a
given flow of the topology and to produce instaetams throughput information,
which can then be used to plot graphs (e.g. usimgp{®t) (see the Appendices D, E
and F) .

6.1.3 Integrating ORANGE to NS

One important contribution of our work is to validathe proposed model
experimentally because of the heuristic involvede ¥oose NS as our simulation
platform and install latest version of all in onackage of NS (ns-allinone-2.30) to
Linux Ubuntu Version 10.4 (32 bit). Our goal is itaplement the proposed study

within NS and evaluate their performance analySisnulation results provided
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feedback into the modeling tasks and become keymderstanding and tuning the

proposed model.

Some simulation experiments have been performedofwr proposed Orange
algorithm in order to keep throughput high but ager packet delay (thus, average
gueue sizes) low compared to DropTail and RED &lgos. We have developed,
C++ codes for Orange algorithm in the NS core, dodes for creating the sample
topology, and the Awk scripts to post process tagput trace files, which can be
found in the Appendices. In order to integrate & peotocol into NS, we need to
write a new class derived from the original RED eodhich is a part of the NS
gueue library. However, the main difference betwB&D and Orange take place
when a new packet comes to the queue. We havedts a new function, which

is a decision mechanism when to drop the incomauket.

A new C++ orange class has been derived from N®fault class “queue”.
Following lines show its definition.

class Orange : public Queue {
publi c:
Orange();
~Orange() {
delete qg_;}
pr ot ect ed:
void reset();
int command(int argc, const char*const* argv);
voi d enque(Packet *);
Packet * deque();
Packet Queue *q_; /*Underlying FIFO queue*/
int drop_front_;
i nt sunmarystats;
void print_summarystats();
int qgib_;
i nt mean_pktsize_;
int orange limt;
int queue limt;
doubl e orange_ti mer;
doubl e ExpOrangeTi mer;
doubl e | ast Drop;
i nt byOrange;
int byDroptail;
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Constructor of this class initializes a new quend waariables, which are defined
on protected zone by default values in “ns-2.3Mib¢hs-default.tcl”. Method
timeout() sets a new timer with timestamp which aguo orange_timer. Method
t status() returns the status of the timer, possibturn values are TIMER_IDLE,
TIMER_PENDING and TIMER_HANDLING. Method command rpas tcl
command which is passed from the oTcl object. Mashaieque() and enque(), deque

and enque the queue by the methods of the classu&)u

There are a few requirements in order to integ@tange into NS. After we
develop orange.cc and orange.h files (see Appendic®, C), we must copy them
into the folder “ns/queue”, “edit ns/tcl.lib/ns-aeit.tcl”, and add following lines.

Queue/ Orange set drop_front_ fal se
Queue/ Orange set summarystats_ fal se
Queue/ Orange set queue_in_bytes false
Queue/ Orange set nean_pktsize_ 500
Queue/ Orange set queue_linit_ 30
Queue/ Orange set orange_linmt_ 20
Queue/ Orange set orange_tiner_ 50

Edit makefile, add “queue/orange.0” somewhere whkesqueues are. That is
enough, the only thing we must do is to recomgile NS by using “make clean”,

“make depend”, and “make” commands.

After these modifications, we develop some Awk #sriin order to analyze the
experiments output. Some information resulted fribiese scripts are, simulation
start time, simulation end time, number of sentkpts; number received packets,
number of dropped packets, average throughputageedelay, etc. In addition to
this, we develop an extra Awk script that counts tlmops according to the drop
reason for which whether the drop is caused byipalybmits of the queue buffer or
the drop is caused earlier by the algorithm its®élfe have ability to get this
information by modifying the implementations of bdked and Orange algorithm in
NS core. Finally, we develop a script (see Apperlixwhich helps us to draw size
of the bottleneck queue over time, and calculdtesaverage queue size from the
output file of the NS simulations. All scripts wewtlop help us to observe clearly
the results of the experiments.
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6.2 Topology Alpha with Poisson Sources

After making necessary modifications in NS, we decto verify and test the
simulation environment and our proposed algorithith whe theoretically computed
values. For this aim, we decide to construct angl the topology in Figure 6.5,
namely Topology Alpha. We have written the Tcl edHat generates the topology,
and the necessary Poisson Sources where its peEizkstat the input of the ongoing
link is to be set to a finite value before the diation starts. Source code of the script
can be found in the Appendix G. In this set of datian, especially to compare the
simulation results with the mathematical calculatiwe need to use Poisson sources,
which are not available in the NS’s default instadin. In order to use the Poisson
sources, we patched the default NS installatiomd¢tude the Poisson Sources with
the source codes by Kostas Pentikousis (2004).

Poisson 1-250

Poisson 251-500

1 Mbps, 0 ms

Poisson 751-1000 Null 751-1000
Figure 6.5 Topology Alpha.

However, Poisson sources in patched NS generaketsaaf constant size that we
have to set in the beginning of the simulationoider to overcome this lack of NS,
we make a large number of Poisson sources invaltbe simulation by setting the

packet size of each traffic source is different a@etermined by random number
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generator that generates exponentially distribpsezket sizes with an average value.
Aggregating Poisson sources in this way generatedfec source with exponentially
distributed sending rates, and packet sizes witiean value, which is assumed to be
in the mathematical analysis.

Note that, we have four different nodes in simolatiopology. Because, in NS,
the total number of agents we can connect to a #0286, so we have to connect the
1000 sources and destinations to 4 different nadese each node has 250 different

sources.

6.2.1 Simulation of a M/M/1/K Queue

We start our work from a well-known simple modelarfinite capacity system,
namely, the “M/M/1/K” queue. “M/M/1/K” queue is thmost popular finite capacity
system where the customers arrive according toiss&o process at rata™and
receive exponentially distributed service with aamaervice ratep” from a single
server. The difference from the “M/M/1” queue systis that at most “K” customers
are allowed to be queued into the system. In dasegtieue is full of packets, the
incoming packet is simply discarded. In communaatsystems, discarded packets
are called “lost” packets and the system is cdlleds” system. There is a special
case when “K = 1” where the capacity of the queuenly one packet. It means that
only one packet is allowed to be queued if the exers idle. The “block calls
rejected” is used and the system is referred ta gsieue with truncation like in

telephone systems. (See Figure 6.6)

- (O

Lost

Figure 6.6 M/M/1/K queue system.
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The packet loss rate of an “M/M/1/K” queue is givay the following equation
(Guptaet al.,2009).

VK
p:M Eqn 6.1

1_pK+1
where

p= Egqn 6.2

The average queue length is given by the follovaggation (Guptat al.,2009).

(K+1)pK+1

p
q=1, " Eqgn 6.3

In order to test our modifications in NS, we wolile to simulate “M/M/1/K”
queue and compare the results with the above fasnilhis queue requires that the
service time, and the size of the packets to berexqtially distributed. Aggregating
Poisson sources in this way generates a queuetol6sM/1/K” queue.

In this set of simulation, we want to aggregatdfitdo generate a total arrival
rate A = 1200 packets/s”, and average packet size equEdQ@ bytes. Suppose that
we aggregate 1000 Poisson sources. The packetlanate of each source is then 1.2
pps. The packet size of each source is set by sanph exponential random
variable of average 100 bytes. Each link capac#ywben the source and the
bottleneck node should be high enough to preven¢cessary packet drops. To be at
the safe side, 100 Mbps link capacity with zeré ielays is good enough to prevent
unnecessary packet drops. Please note that simcesdbrces generate packets
regardless of the capacity of the link in frontloém, link capacities do not have any
effect on the simulation as long as they are higbhugh. Poisson sources with
different packet sizes compete for a bottleneck Vuith zero delay and the capacity
of 1Mbps. Thus, the average service rate of thedamn be computed for 100 bytes
packets as 1250 pps. The buffer size “K” is 100kpts: Average queue size is then

computed using the above formula for the simulapiarameters as 22.33 packets.
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We make a simulation of ten seconds using the TgyoAlpha with the above
parameters and obtain some results after usingt@xisprocessing tools. We use the
DropTail queue at the bottleneck queue in the satmrd, and find the average queue
size from the simulation is 22.65 packets, whichresponds to the computed value.

This result shows that our simulation environmertanstructed and tested properly.

Table 6.1 Simulation results of M/M/1/K queue

Arrival Average| Average | Average

Queue Sent to Arrival to | Delay | Throughput Queue
Type Packets Router | Destination ms Kbps Size

Drop Tail 13.139] 12.341 12204 52.91 951.55 22.65

Simulation results can be found in Table 6.1. Ibl&&6.1, “Sent Packets” gives
the number of the packets that have already irgetteéhe network from the traffic
source to their destinations. “Arrival to RouteiVgs the number of the packets that
have already received by the bottleneck queue. difference between “Sent
Packets” and “Arrival to Router” comes from thetfdtat when the time simulation
stops, there have been still some packets in trdAsrival to Destination” gives the
number of the packets that have already delivedtidir final destination. In other
words, it gives the number of the packets that Hasen successfully transmitted.
The difference between “Arrival to Router” and “Aal to Destination” comes from
the fact that some of the packets could be dromdedg their way to their final
destination due to the early drop of the queuimggrthm applied or the force drop
of the queuing algorithm when its internal buffatgfull. “Average Delay” gives
the average delay per packet in milliseconds. “Ager Throughput” gives the
average value of the throughput of the bottlen@dk dluring simulation. Note that,
this value includes the number of the retransmigtackets (if any). It means that, it
is not “Goodput” which is defined as the numberpaickets that are exchanged
between the applications that use the network exaojuthe retransmitted packets.
“Average Queue Size” gives the average queue sipadkets.
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6.2.2 Effect of Orange on Simulation’s Performance

In order to test our algorithms performance, we enaksimulation of Topology
Alpha for another ten seconds and obtain some teesfter using post text
processing tools. After integrating a new queuetyppo NS, namely Orange, we use
this object when creating links in Tcl layer of tlNS similar to the following

statement:
“$ns duplex-link $node0 $nodel 1Mb 20ms Orange”.

As an example, this command creates a duplex letlwden two nodes, which
have 1 Mbps bandwidth, 20 ms delay, and Orangeeajtyge. The physical buffer
size of the bottleneck queue is fixed at 120 packetsed on published rules of
thumb for accommodating the network bandwidth dgi@gduct. Queue size is

calculated in packets not in bytes.

In order to test our algorithm’s performance, weenagimulated the Topology
Alpha for different queue types (DropTail, Orangsd RED). When Orange is
applied to the above topology, the queue modelbmaconsidered as an “M/M/2”
queue with a threshold. It means that the fasteesewhich is the primary server at
the output link of the queue, remains the same edweithe virtual drop server
appears when the number of the packets at the rbaffédhe queue exceeds a
threshold level. In this set of experiments, we thgemathematical model behind the
“M/M/2” queue with a threshold, which we have abigatudied in Section 5.6.

Remember that, the maximum threshold value of tE® Rilgorithm is three
times of its minimum threshold parameter unles<ifipally specified. The other
parameters for RED are kept the same as NS’s defatameters. Different values
of the minimum threshold of both RED and Orange lmampplied upon our request.
Orange timer (the service time of the unpreferriéer@ate link) of the bottleneck
queue is given in milliseconds and this value realy proportional of the capacity
of the link at the output of the queue of virtuabpl server. In Orange, while the
packet, which takes service from virtual drop serv& being dropped, the virtual

drop server will not consider to drop another packer example, 8 ms service time
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corresponds to 1 Mbps bandwidth. It means thathef link is fully utilized, 125
packets will take service per second. In other wptke service time of the virtual

drop server is 8 ms/packet.

In this set of simulation, we want to aggregatdfitdo generate a total arrival
rate A = 1200 pps”, and average packet size equal td¥@s by aggregating 1000
Poisson sources. The packet size of each sourset isy sampling an exponential
random variable of average 100 bytes. Each linlacip between the source and the
bottleneck node is 100 Mbps with zero link del&sttleneck link capacity is Mbps
and zero delays. Thus, the average service rdfgedifnk can be computed for 100
bytes packets as 1250 pps. Minimum threshold valu®range is 14 packets
(making ¢ = 15 packets) and service time of theusirdrop server is 5 ms, which
corresponds to a service rate of 200 packets pmmde It is assumed that there

would be a virtual link at the output buffer of therver with a capacity of 200 Kbps.

Using the above parameters, we can calculate thdtsefrom the Morrison’s

equations. Remember that Morrison finds the medtingaime “W” as;

W) = Py (1) (s T /A0 = 1]+ (= D) [ =vh

u/  Lg-2)2 (u+ 12)-A)  (u—A)

A
(et uz)—x)z} ford # Eqn 6.4

This waiting time can be compared with the averg@geue size in our simulations
with a calculation by using the Little’s formula.v&rage queue size (q) is then
computed by “W = g A”. Using the equation 6.4, waiting time is computesl
0.006989, and correspondingly using the Little’srfala, the average queue size is

computed as 8.38 packets.

Simulation results can be found in Table 6.2. Agergueue size is obtained by
simulation as 9.04 packets, which corresponds ¢éoctbhmputed value of average
queue size 8.38 packets. The difference betweenrsithalation results and the
computed values are very close. We are able te #tat our derived formulas give
the correct results and correspond to the simulagsults.
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Table 6.2 Simulation results of M/M/2 queue wittheeshold

Orange| Sent | Arrival Average| Average

Queue Timer | Packets| to Arrival to | Delay | Queue
Type | MinTh| (ms) Router | Destination ms Size

Orange 14 5 13178 12680 11728  8.49]  9.04

6.3 Topology Bravo with Responsive Sources

To compare our simulation results with theoreteadlysis, so far, we have used
Poisson sources with an exponential distributedlisgntimes with a mean value,
instead of responsive sources. It is obvious thapractical cases, the use of the
responsive flows is much higher than the flows watmstant sizes. Therefore, we
decide to use the responsive sources like TCP, hnvinmicrease their sending rate
(window size) as long as they get acknowledgemfeoits the receiver. It means that
responsive flows adjust their sending rates acogrdo the available bandwidth
along their path to the final destination. To mé#kis type of experiment, we decide
to use the following topology, namely Topology Boafsee Figure 6.7) with TCP

sources, which are responsive to the network cmmdithanges (see Appendix H).

10 Mbps, O ms
Ftp Source TCP Sink

Figure 6.7 Topology Bravo.

In the Topology Bravo, for the sake of simplicityjwstead of 1000 Poisson
sources, we use an ftp source with packet siz€@® bytes. The capacity of the link
is 10 Mbps with zero delay. FTP packet sourceriked to their final destination
along a bottleneck link with capacity of 1Mbps witaro delay. We make the link
delays zero to prevent their effect to our simolatiesults. The packet size is fixed
at 1000 bytes, and Orange timer is fixed at 10Maximum buffer size of the queue
is fixed at 120 packets as always. Slow Start THulekis fixed at 500 in NS settings.
RED’s maximum threshold value is the three timeghef its minimum threshold

value in this set of experiments.
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First, we made a simulation of ten seconds usipgsBtirce, which starts to send
the packets at the time zero. At the end of teorsds simulation time, we find the
simulation results, which can be found in Table. 8N8te that, we include “Total
Drop” and “Maximum Queue Size” to the simulatiorsults. “Maximum Queue
Size” gives the maximum size of the queue durimguktion. “Total Drop” gives
the number of packets, which have already beenpay the bottleneck queue
during simulation. As it is seen from the simulatiesults, Orange performs better

in average queue size and average packet delay.

Table 6.3 Simulation results of Topology Bravo wifggnsource and continuous traffic

Arrival Average| T.Put| Maximum| Average Total

Min to| Arrivalto| Total| Delay in Queue  Queue Download

Q. Type| Th Router| Destination Drop ms| kbps Size Size in sec.
DropTail|l ~| 12202 12019| 183| 768.28 961 120/ 113.93 -
RED| 15| 11959 11810] 149| 157.38 944 120 17.51 -
orange 10| 12192 12019 173| 7554 961 16 7.97 -
Orangd 19| 12097 11915/ 182| 105.71 959 20| 1157 -

Although, the performance criteria, average padetdy and average queue size
even the throughput are enough to compare our pespalgorithm’s performance
with that of the other algorithms, we decide to makore realistic analysis to
prevent effect of TCP’s unnecessary packet retregssom. To achieve this aim, we
add another performance criterion, namely total mload time to our simulation
results. Even the packets is being retransmitiedylation stops when the transfer of
the complete file of predetermined size finishesh@dugh, this download time also
includes packet retransmissions, we can concludedheuing algorithm performs
better if the download time is smaller.

To realize this, we made another set of simulatigth an Ftp source, which
produces only 10,000 packets to transfer to thieial fdestination. We use the
“produce” command in NS to produce the ftp trafffqpredetermined size like in the
following code.

$ns at 0 "$ftp0 produce 10000"
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Total size of the file that needs to be transferrethes to 10 MB. Simulation
finishes when the download of the file finisheseTesults of the simulation can be
found in Table 6.4. It is obviously observed ttred total download times decreases
when Orange algorithm is applied. Previous perforreaparameters; throughput,

average delay, and average queue size are stdr lvdten Orange algorithm is used.

Table 6.4 Simulation results of Topology Bravo wifignsource and download of a file

Arrival Average| T.Put| Maximum| Average Total

Min to| Arrivalto| Total| Delay in Queue  Queue Download

Q. Type| Th Router| Destination Drop ms| kbps Size Size in sec.
DropTail| | 10245 10123 122| 736.64 o961 120| 87.44| 8422
RED| 15| 10214 10052 162 8971 930 59 9.36|  86.42
orangd 10| 10154 10016/ 138| 74.55 961 14 7.85|  83.34
Orangg 1°| 10098 10018 80| 105.56 959 20| 1155 8354

6.4 Topology Charlie and More on Testing the Downlad Performance

After we show that, Orange performs better thanpDedl and RED algorithms in
throughput and average queuing delays, we decideextend our simulation
experiments using the download time criteria faopology with two different TCP
sources, namely Topology Charlie that can be faarfeigure 6.8 (see Appendix I).
In the following topology, there are two ftp sowsdbat produce 10,000 packets that
need to be transferred to their destinations dwersame bottleneck link. When both
of the sources complete to transfer their packkéssimulation finishes. The time of
which a source completes transmission is the daadhtine for that source. The sum
of the download times of these two sources is ddhe total download time, which
are our performance criteria as well as the averpgmiing delays in this set of
experiments. As the total number of the packetsdtatransferred is 20,000 and the
packet size is 1000 bytes, we can say that tataldi the file to be downloaded is 20
MB. Orange timer is fixed at 6.5 ms, and RED’s maxin threshold value is the

three times of the its minimum threshold valuehis set of experiments. Maximum
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buffer size of the queue is 120 packets. The siiamlaesults can be found in Table

6.5.

1 Mbps, 10 ms

TCP Sink 0
TCP Sink 1
Ftp1
Figure 6.8 Topology Charlie.
Table 6.5 Simulation results of Topology Charlie
Arrival Maximum| Averagel Flow1 Flow 2 Total
to| Arrival to Total| Average Queue Queue Download| Download| Download
Q. Type| minTh| Router| Destination Drop| Delay ms Size Size in sec. in sec. in sec.
DropTail | 20029 20011 28|  719.40 120 81.96| 157.32] 168.56 32583
RED| 10| 20329 20057 272|  131.74 98 12.23]  152.44 168.07 32051
orangd 10| 20407 20025 382 79.04 12 590 14868 168.94 31762
Orange  1°| 20301 20031 270/  119.15 16 10.63] 148.67] 16936 31803
orangd 20| 20193 20011 182  144.07 21 13.56| 14596/ 16942  3153g

As the average throughput does not correspondeqdiodput, which we have

described earlier, and include the unnecessaryepaekransmissions, we prefer to

use total download parameter to be sure about ¢se tbansfer time of a file at a

predetermined size. One can easily see that whang®ralgorithm is used, the

average queue size, and average delay in ms @oiigls) significantly decreases

compared to DropTail, and RED. Moreover, when Oeaalgorithm is used the total

download times are shorter compared to that of Dadpand RED. This means that

Orange algorithm prevents unnecessary packetsisetiasions and performs better

than other active queue management algorithms.
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6.5 Topology Delta for Orange’s Performance Tests

To continue to test more the Orange’s performane similar algorithms we
decide to use the Topology Delta (see Figure &@gre there are three different
traffic sources competing for one common destimatiwough one common link. We
have developed a Tcl script that creates the ndads, and traffic sources (see

Appendix J).

1 Mbps, 20 ms
TCP Sink 0
TCP Sink 1

Null 0

Figure 6.9 Topology Delta.

The physical buffer size of the bottleneck queutixisd at 120 packets based on
published rules of thumb for accommodating the petwandwidth delay product.
Queue size is calculated in packets. TCP packes saze 1000 bytes. CBR packet
sizes are 1000 bytes. Simulation time is 5 secaddsimum threshold value of the
RED algorithm is three times of its minimum threlshparameter unless specifically
specified. The other parameters for RED are thesNh8fault parameters. The orange
timer (the service time of the unpreferred altegnatk) of the bottleneck queue is

6.5 ms. Simulation results can be found in the & &bb.
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Total

Arrival Average | Average| Average| Drop
Queue| Sent to Arrival to | Throughput Delay | Queue by Early| Force
MinTh | Type | Packets| Router | Destination  Kbps ms Size Router | Drop | Drop

Drop

Tail 971 971 601 973.64| 730.82 93.90 284 0| 284
10 | Red 026 1026 596 975.91] 363.30 38.66 429| 429 0
10 | Orange 935 935 583 980.70, 115.24 8.90 351 351 0
15 | Red 014 1014 603 976.69 485.91 56.94 376| 342 34
15 | Orange 954 954 587 980.04 153.27 13.42 366 366 0
20 | Red 029 1029 602 976.33 595.96 72.44 371] 300 71
20 | Orange| 956 956 592 979.82] 194.97 18.47 363 363 0

Note that we include “Total Drop by Router”, “Eaf3rop”, and “Force Drop”
parameters to the simulation results. “Early Drgp/es the number of the packets
that have already been dropped by an active quamagement algorithm when the
(average) queue length exceeds a threshold leveicé Drop” gives the number of
packets that have been already dropped by the Fji€de because there is no
physically space left in the queue buffer. “Totabp by Router” gives the sum of
“Force Drop” and “Early Drop” parameters. We haeers from the results of our
experiments that when Orange algorithm is usedaeteeve higher throughput and

lower queuing delays compared to drop tail gatearay RED algorithms.

6.6 Topology Echo and Main Experimental Work

Up to now, we have used topologies, which couldést suited to experimental
aims. However, in most of the practical cases, mbgshe traffic is formed by the
responsive sources of large amounts. Those aréathe of surfing a web site, or
download a file from the internet. It is more coioated to control those flows. In
order to test our algorithm’s performance in a togg, which we can see in most of
the practical cases, we decide to use a sampldogpponamely Topology Echo,
consisting of heterogeneous TCP flows whose linkydeare varying. This topology
has also been studied by Kinicki and Zheng (Kinighd Zheng, 2001). They have
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used this topology to test their own algorithm’sfpemance with that of RED
algorithm. They claim that the chosen RED pararmseiertheir work give the best
result when RED algorithm is applied. To test olgoathm with other IP level
congestion control methods, we have chosen the sapmogy, which has many
heterogeneous TCP Reno flows, and this topologpess suited for our performance
comparisons of our proposed algorithm.

Aggregate Bandwidth: 90 Mbps

v

Ftp 1-20 10 Mbps, 5 ms

Sink 1-90

Ftp 21-40
RTTs: (200 ms, 100 ms, 50 ms)

Ftp 41-60

Figure 6.10 Topology Echo.

In the Topology Echo, which is given in Figure 6.5l flows are divided into
three flow groups (fragile, average, and robusseldeon the instantaneous round trip
time of each flow. The mentioned Orange router taaéms a single flow queue for
each flow group, which is a FIFO queue that starpsinter to a packet in the router
queue for each packet. The aim of this topologysstimg of three flow groups is to
establish a real network situation, which has nféows with too many RTT's.

In this work, we run a series of simulation expennts using the NS simulator to
compare the performance of Orange with RED andadtgants with heterogeneous
TCP Reno sources. The simulated network topologggists of one router, one sink
and a number of simulated FTP sources. Each FTRedeeds 1000-byte packets
into a single congested link attached to the roufee TCP ACK packets are 40



104

bytes long and each source has a window size qdagkets. The capacity of the
bottleneck link is 10 Mbps with a 5 ms delay to #iek. When the demand is kept
constant, the number of the flows that generatesiléimand has a negative effect on
performance. We choose one-way link delays for fthgile, average and robust
sources of 95 ms, 45 ms and 20 ms respectivelys,Tha fragile, average and robust
flows have round trip times of 200 ms, 100 ms a@dts when there is no queuing
delay at the router. The router queue size wasdfiae 120 packets based on
published rules of thumb for accommodating the petwandwidth delay product.
All simulations for this study run for 100 simuldtseconds and include an equal
number of fragile, average and robust TCP flowdlf dathe flows in each flow
group start at time zero the second half staitred 2 seconds. For example, for a 60-
flow simulation, 10 fragile, 10 average and 10 ibilows start at time 0, and the
remaining 30 flows start at 2 seconds. The firss@€onds of simulated time are not
considered to reduce the startup and transienttefféhe sum of the capacities of all
the incoming flows is held constant at 90 Mbps &tir simulations in this study
regardless of the number of flows. Thus when thalmer of flows are increased the
individual link capacities are proportionally deased. Unless specifically specified
the values for RED parameters of minth and maxghsat in such a way that maxth

is three times of the minth.

We have developed a Tcl script to construct theolagy Echo in the simulation
(see Appendix K). The number of flow groups, thenber of the flows in a group

and the aggregate bandwidth demanded are the p@ranethis script.

In this set of experiments, our aim is to keepaggregate throughput high but the
average packet delay and the average queue simesWe have four sets of
simulation; each has a different minimum threshatlue (10, 15, 20, 25). In RED
gueue type, when the average queue size exceedwitii@um threshold value,
queue starts to drop the incoming packets accorditiy a dropping probability
value based on the calculation of the maximum drapprobability and the value of
the average queue size. In Orange queue type, thieecurrent queue size exceeds
the minimum threshold value, queue starts to dngpimcoming packets according
the busy — idle status of the alternate drop sei®&D has a maximum threshold
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value parameter to drop all the incoming packet®rwkhe average queue size
exceeds it. Maximum threshold of the RED is thieees$ of its minimum threshold
parameter and unless it is specifically specifi&phecifically specified RED’s

maximum threshold values in the simulation aredatiid in tables.

On the other hand, Orange has no maximum thregtetgimeter, but it has the
parameter, which is the service time of the alterrserver. It is the busy period
between the time that the Orange drops a packdtthartime that the Orange queue
will consider another packet to drop (busy time doopping a packet). This time
value (Orange Timer) is not constant, it is expaoiady distributed about a mean
average value, which is parameter of Orange qugpe We have simulated our
sample topology with the values of the service tiofiethe alternate server from
values of 1 second to 10000 seconds in order taheseffect of the service time to
the Orange’s overall performance. As the Orangefsice time goes to infinity, its
operating behavior approaches the drop tail. Witigaservice time, Orange drops a
packet and after this time, it never drops any peckecause its alternate drop server
is busy during the simulation time. That is whypltail queue type is not included in
our simulation. The results of the experiments given in Tables 6.7, Table 6.8,
Table 6.9, and Table 6.10. Average throughput graplen threshold is 10 and
average delay graph when threshold is 10 are asm gn Figure 6.11, and Figure
6.12.



Table 6.7 Simulation results of Topology Echo wheneshold is 10
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Arrival Average| Average| Average

Orange to Arrival to | Throughput Delay| Queug Total Drop Early| Force

Timer| Router| Destination Kbps ms Size| by Router Drop| Drop

RED-30| 105809 96107 9610.84 79.18] 23.82 9745 9745 0

1| 105795 94927 9493.04 62.30 7.00 10872 10872 0

2| 106217 95164 9516.54  65.09 7.99 11053 11053 0

3| 105929 95227 9522.86  68.87 9.35 10697 10697 0

4| 107522 95915 9591.63 70.94] 11.19 11605 11605 0

5| 106453 95971 9597.220 69.56] 14.59 10474 10474 0

6| 106022 96067 9606.77 74.24) 17.06 9950 9950 0

6.5| 106092 96122 9612.53 77.86] 18.71 9977 9977 0

7| 105890 96145 9614.52 84.02] 23.24 9740 9740 0

8| 105538 96153 9615.43 119.80] 63.99 9369 9369 0

9| 104507 96154 9615.44 97.18] 39.18 8333 8333 0

10| 103540 96154 9615.53 105.42] 54.74 7401 7401 0

50| 101777 96154 9615.53 146.67] 110.95 5606 1551| 4055

100| 102084 96154 9615.520 146.87] 112.44 5908 782| 5126

1000| 102427, 96154 9615.54 145.45 111.70 6278 80| 6198

10000 102450 96154 9615.53 146.49 113.29 6301 8| 6293
Table 6.8 Simulation results of Topology Echo whieneshold is 15
Arrival Average| Average Average

Orange to| Arrivalto| Throughpul Delay| Queug Total Drop Early| Force

Timer| Router| Destination Kbps ms Size| by Router Drop| Drop

RED-45| 105047 96153 9615.48 88.27] 33.83 8908 8908 0

RED-30| 105602 96059 9606.00 80.66] 25.26 9530 9530 0

1| 106308 95465 9546.53 65.65 11.23 10849 10849 0

2| 106043 95523 9552.46 70.38] 11.97 10514 10514 0

3| 105891 95612 9661.40 73.50, 13.56 10287 10287 0

4| 107332 96037 9603.82 74.87| 16.43 11299 11299 0

5| 106098 96100 9610.26 73.04] 18.98 10014 10014 0

6| 105689 96133 9613.37, 77.51] 21.00 9564 9564 0

6.5| 105709 96133 9613.41 81.04| 22.37 9592 9592 0

7| 105770 96154 9615.63 88.56] 28.26 9602 9602 0

8| 105517 96154 9615.53 119.08 93.88 9364 9364 0

9| 104463 96154 9615.64 97.96] 40.56 8327 8327 0

10| 103575 96153 9615.44 105.41) 54.89 7402 7402 0

50| 101743 96154 9615.43 146.65 110.70 5577 1559| 4018

100/ 101980 96154 9615.53 145.73] 111.26 5846 782| 5064

1000{ 102207 96154 9615.63 146.94] 113.26 6052 78| 5974

10000] 102529 96154 9615.43 146.01] 112.75 6345 8| 6337
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Table 6.9 Simulation results of Topology Echo wheneshold is 20

Arrival Average| Average| Average
Orange to| Arrivalto| Throughput Delay| Queueg Total Drop Early| Force
Timer| Router| Destination Kbps ms Size| by Router Drop| Drop
RED-60| 104402 96154 9615.53 96.67| 43.32 8275 8275 0
RED-30| 105302 95915 9591.64 8241 26.99 9401 9401 0
1| 105999 95608 9560.86 69.41] 15.02 10392| 10392 0
2| 105929 95616 9561.77] 74.39] 16.12 10318/ 10318 0
3| 105827 95857 9585.87] 78.04] 17.99 9965 9965 0
3.5| 106326 96086 9608.79] 75.12| 19.77 10240, 10240 0
4| 106818 96110 9611.11] 78.83] 20.83 10693] 10693 0
4.5| 105367 96078 9607.86 81.51] 21.81 9289 9289 0
5| 105779 96111 9611.19 77.17| 23.95 9663 9663 0
5.5| 105220 96128 9612.820 82.74] 23.57 10240 10240 0
6| 105601 96152 9615.28 81.98] 26.22 9439 9439 0
6.5| 105278 96147 9614.90 85.78] 27.43 9156 9156 0
7| 105529 96153 9615.35 89.93] 30.75 9383 9383 0
8| 105570 96154 9615.53] 118.80, 62.90 9373 9373 0
9| 104455 96154 9615.54 99.91] 42.76 8302 8302 0
10| 103542 96154 9615.53 105.76] 54.73 7402 7402 0
50| 101735 96154 9615.73 146.35 110.72 5587 1548| 4039
100/ 102009 96154 9615.53 146.56] 112.02 5860 784| 5076
1000| 102252 96154 9615.53 145.96] 112.78 6073 80| 5993
10000 102406 96154 9615.63 146.43] 113.28 6263 8| 6255
Average Throughput Graph
9640
9620 0000000000000 00000000000 iU TC00000000000000000000000000
v 9600
3 9580 // 5
€ 9560 / range
£ 9540 —/
£ 9520 S deeees RED
W 9500 |
_g 9480
~ 9460
9440
9420
AT I T 2 TR IR \900\9000
Orange's Timer (ms)

Figure 6.11 Average throughput graph when thresisold.
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Table 6.10 Simulation results of Topology Echo wtigeshold is 25

Arrival Average| Average Average
Orange to| Arrivalto| Throughput Delay| Queueg Total Drop| Early| Force
Timer| Router| Destination Kbps ms Size| by Routenq Drop| Drop
RED-75| 103970 96154 9615.54 103.78 52.56 7819 7819 0
RED-30| 104466 94820 9482.20 83.27| 28.80 9658 9658 0
1| 105803 95829 9583.09 72.12| 19.23 9970 9970 0
2| 105878 95925 9592.58 77.26] 20.23 9955 9955 0
3| 105613 95989 9599.21f 81.59| 22.24 9620 9620 0
3.5| 106092 96154 9615.48 78.84| 24.36 9938 9938 0
4| 106433 96128 9612.87, 82.87] 25.60 10319] 10319 0
45| 105154 96101 9610.27 84.07] 25.62 9053 9053 0
5| 105438 96152 9615.27 81.30] 28.38 9289 9289 0
5.5| 104946 96141 9614.22 86.47| 27.58 8805 8805 0
6| 105104 96154 9615.44 85.95 31.01 8947 8947 0
6.5 105055 96154 9615.54 89.07| 31.65 8919 8919 0
7| 105172 96154 9615.44 93.13| 34.45 9015 9015 0
8| 105536 96154 9615.63 121.48 66.15 9358 9358 0
9| 104329 96154 9615.54 99.75| 42.92 8176 8176 0
10| 103548 96154 9615.53 105.02] 54.56 7398 7398 0
50| 101750 96154 9615.53 146.35 110.79 5596 1543] 4053
100| 102001 96153 9615.45 146.81] 112.51 5848 783| 5065
1000| 102365 96154 9615.63] 145.82] 112.54 6212 79| 6133
10000, 102211 96154 9615.49 146.22| 113.00 6072 8| 6064
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Figure 6.12 Average delay graph when thresholdis 1
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6.7 Analysis of the Simulation Results

The performance parameters that we have compardd &t Orange are the
average throughput (Kbps), average delay (ms) ageegueue size. It is obvious that
in most of the regions, Orange has better perfocemaompared to RED and Drop
Tail especially when the service time of the alééenserver is around from 4 ms to 7
ms. Orange provides better performance for sméheer values as the minimum

threshold value increases.

In Table 6.7 when the threshold is 10, RED’s thtqug is measured as 9610
Kbps, average delay, and average queue are meassgredd.18, and 23.82,
respectively. In this set of experiments, Orangeisimum threshold value is fixed
at 10 packets. It means that Orange starts to tirepncoming packets when the
gueue size exceeds 10 packets. Orange’s servieeigiadjusted from low values to
the high values. When it gets higher, Orange amhemto work like a DropTail
queue. Orange drops the packet, and it never dletdecause the service time for
that packet is too high to consider another patkelrop or not. While keeping the
threshold at a fixed level which is 10 for this sétsimulations, total throughput
increases, as the service time increases wheregilagavdelay, and average queue
size decrease. Orange gives better results thanigteld Orange’s timer is adjusted
around 6.5-7. This is the point where Orange prewidigher throughput values and
lower delay values than that of RED. It is obvidhat average delay is directly
proportional to average queue size. It increaséiseaaverage queue size increases.

In Table 6.8 when the threshold is 15, RED’s thiqug is measured as 9615
Kbps, average delay, and average queue are meassgre8B.26, and 33.83,
respectively when RED’s minimum threshold valuegd amaximum threshold value
are fixed at 15, 45 respectively. RED’s throughpwerage delay, and average queue
are measured as 9606, 80.65, 25.26, respectivetyy WRED’s minimum threshold
value, and maximum threshold value are fixed at3Ibrespectively. In this set of
experiments, Orange’s minimum threshold valuexsdiat 15 packets. As we know,
RED starts to consider dropping packets when tlexage queue size exceeds its

minimum threshold value. Therefore, as we expéa,average delay and average
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queue size are a little bit more than the previessilts. Orange gives better results -
higher throughput and lower delay- than RED whemar@e’s timer is adjusted

around 5-6 ms.

In Table 6.9 when the threshold is 20, RED’s thiqug is measured as 9615
Kbps, average delay, and average queue are meassre®6.67, and 43.31,
respectively when RED’s minimum threshold valuegd amaximum threshold value
are fixed at 20, 60 respectively. RED’s throughpurerage delay, and average queue
are measured as 9591, 82.40, 26.98, respectivetyy WRED’s minimum threshold
value, and maximum threshold value are fixed at &D,respectively. Orange’s
minimum threshold value is fixed at 20 packets.ngeagives better results -higher
throughput and lower delay- than RED when Orangaisr is adjusted around 4-5

ms.

In Table 6.10 when the threshold is 25, RED’s thiqaut is measured as 9615
Kbps, average delay, and average queue are meassrelD3.77, and 52.56,
respectively when RED’s minimum threshold valued amaximum threshold value
are fixed at 25, 75 respectively. RED’s throughpurgrage delay, and average queue
are measured as 9482, 83.27, 28.80, respectivetyy WRED’s minimum threshold
value, and maximum threshold value are fixed at &b,respectively. Orange’s
minimum threshold value is fixed at 25 packets.ngeagives better results -higher

throughput and lower delay- than RED when Orantgeisr is adjusted around 4 ms.

When we try to track the change the change in Qrarigner optimum value as
compared to the change in the set threshold valeesan fit an inverse proportional
relation to the square root of threshold (K). Faostance, if we compare the
simulation results where the threshold value is wvlith the results where the
threshold value is 25, service time of the altesrsgrver should be multiplied by
J10/25 = V0.4 = 0.632 . Thus, to get the optimum value of the alterrsatever’s
average service time, if we multiply best serviogetvalue where the threshold is 10
with this coefficient, we can easily see that thsuit fits very well with the result
where the threshold is 25. (6.5 ms * 0.632 = 4.K).nfhis last value is the best

service time value of the alternate server wheedhheshold is 25.
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Consequently, empirically fitting relationship da& formulated as

Service Time « \/i? Egqn 6.5

where “K” is Orange’s threshold value for the bestformance of our simulation.

Hence, we can state that, from the analysis ofsthmilation, empirical results

. . . . . 20 .
suggests with our used simulation parameters S¢evice Time = = n

milliseconds. A comparison between the simulati@sults and this empirical

formulais given in Table 6.11.We can easily sex the results fit well.

Table 6.11 A comparison between simulation resnts empirical formula

Orange's Timer in ms
Threshold Best Result from Calculation from
Applied Simulation Empirical Formula
10 50 &
15 ®0 B
20 ) @
25 @ao @0

6.8 Empirical Validation of Orange’s System Paramedrs

We have made our experiments for different threskhalues and different service
times for slower server in order to find the bgs¢rating point of our algorithm in a
congested network environment, which includes respe flows. Our aim is to find
a relation between the values of the threshold thedservice time of the slower
server at the operating point from the experimant$ the mathematical analys$ss
(1994) studied the optimum threshold value of arMR/ queue where Poisson
arrivals, and exponentially distributed servicedsrare of interest (when the service
rates of both servers are predetermined). He prtvat the first order approximate
value of optimum threshold, is the largest non-tiggainteger which satisfies (if
there is no such non-negative integer, it is zero)

R<th=A 4 Eqn 6.6
H,
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This approximate value for the optimum value of tineshold gives satisfactory
result under the assumption thai™is considerably greater thap;” and “u; >> A"
Here, the results are approached as there is mooos flow of traffic arriving to the

queue with the average rate of" “units/time and similarlyy; units/time is the
continuous average out-flow through link i. Therefothe results are valid in the
systems where memory-less sources like Poissortemare applied. Ifyfy” is not

considerably larger thanuy”, it is clear that threshold is nearly zero. WHen” is
considerably larger thanu?”, if “ ;s >> A", for optimum threshold we can use the
approximate value in Equation 6.6. The only renrayréase is the case whegg >
w2, but “(u1-A) = 0”. There, actually a non-zero threshold valueuogavhich is not
anticipated in our approximation. Although this r@éfanentioned analysis can be
made to find the expected delay value to relaatit the threshold value, this would
be restricted to the case where Poisson arrivalseaponentially distributed service

times are involved.

In order to test our algorithm’s performance ineawork where the responsive
flows are dominant, we use the responsive soufggsd@urces) in our simulation.
Responsive sources probe the available bandwidtheametwork, and they adjust
their sending rate as long as there is no paclest larrival rate will be almost the
same as the service rate of the server. We caly sagithat, in our experimentyi{-

L) = 0”. We need to find an equation for this caseemmis ofuy, po, A, and K under

these circumstances where responsive flows ardviedo

Padhye and his friends (Padhyt al., 1998) develop a simple analytic
characterization of the steady state throughput bllk transfer TCP flow (i.e., a
flow with a large amount of data to send, such BB fansfers) as a function of loss
rate and round trip time. Their model captures ardy the behavior of TCP's fast
retransmit mechanism but also the effect of TARIedut mechanism on throughput.

In their work, N represents the number of packets transmittedennterval [O,t]
and “B (N¢/t)” represents the throughput on that intervalug,hB represents the
throughput of the connection, rather than its gabdghey define the long-term
steady-state TCP throughput B to
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B=lim_, B, = lim,_,,~* Eqn 6.7

They have assumed that if a packet is lost in adpall remaining packets
transmitted until the end of the round are alst. [bserefore they definp to be the
probability that a packet is lost, given that eithias the first packet in its round or
the preceding packet in its round is not lost. They interested in establishing a
relationship Bf) between the throughput of the TCP connection #rel loss
probability ).

In their work, when timeout occurrences are ignpBig) is derived to be;

1 3
where“b” is the number of packets acknowledged by a rece’kCK. In many
TCP implementationsh = 2”. When timeouts are taken into account, thegive

the Bp) as;

B(p) = Eqgn 6.9

1
2bp i 3bp 2
RTT T+T0mm 1,3 e (1+32p )

By this formula, we can easily observe that TCRfathe flows with short RTT.
It means that when downloading a file from a closerver, the download
performances will be better. We can observe thatehationship between loss rgte
and throughput is not linear but an inverse squaog relation! It means whep is
increased 4 times, throughput drops to half.

As we have already shown from the simulation resintsection 6.7, while the
service time of the drop server increases, thenapti value of the threshold
decreases in order to achieve the best operatimg. pothe service time of the drop
server were too low, the threshold would be higbugih to prevent unnecessary
packet drops. If the threshold were too low, wednleigh values of the service time
of the drop server to make the drop server idleraftopping a packet. To use the

drop server for enough times, it must work fastdrerefore, we can easily say that
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the optimum value of the threshold is inverselypgamional to the service time of the
drop server. We have found empirically a relati@s;!

(0'd

Service Time = Eqgn 6.10

Bl

1
Ho

On the other hand, according to the Padhye anttiersds (Padhyet al., 1998),
we can state that TCP’s throughput is inverselygprtional with the square root of
dropping probability (P). We can also intuitiveliaion that the dropping probability

is inversely proportional with the threshold (K):

p oc% Eqn 6.11

If we think alternate server as a real server, dapss from it contributes to the
total throughput. Therefore, the service rate of thiternate server, and the

throughput can be assumed that they are direabiygstional.
Wz < B(p) Eqn 6.12

If we use the last two formulas in Padhye’s sintpl®ughput equation, then we

1 , 3 1 ,31{
B(p) X RrT 2bp  RTTA 2b Eqn 6.13

In general TCP implementations, b value is fixedkaand we can assumed that

get

the RTT is constant during simulation so withoutedfying proportionality

constants, we can end up with

W, o VK Eqn 6.14

or, alternate server’s service time is inverselgpprtional with square root of
threshold (K):

Orange’'sTimer = - « Egn 6.15

sl

1
Ho
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We can just conclude that, empirically the bestugabf the service time is
inversely proportional with the square root of theeshold value applied as we have

already stated in Equation 6.5.

Furthermore, if we can estimate as “a rule of thymbe best value ofi,
departing from the capacity of the main (bottlendok, it can be estimated in the
order of “1/10” to “1/5” of the capacity of the nmalink. And by using our empirical
formula, we can try to find an optimal threshold) alue. This finishes selecting
Orange parameters that gives the best operatingf. pbinis parameter estimation
procedure is much simpler, effective, and more nmegml than the tuning the
complex RED parameters.

The other way around, if we take the threshold ealti Orange departing from
the minimum threshold value proposed for RED immaters, we can easily
calculate the best optimum value of Orange’s tifoerthe best performance of

active queue management.

Explanation of this relates the drop server to beHke a TCP friendly source.
The implication of this can be very meaningful. Mening TCP friendliness in
general means reacting to congestion in the sameasal CP, considering only
Triple Duplicate (TD) packet loss occurrences tlegult in TD, this would mean to
be conformant with the throughput Equation 6.8. Wa¥e demonstrated that our
empirical result is in accordance with Equation, Gt&refore suggesting the TCP

friendliness for the best operating conditions.

However, keeping in mind that alternate server'spou is, in return as
retransmission, a load for the original sender (Tg©Rrce), they will be part of the
offered load, hence throughput is in relation watternate server’s link capacity or

service time.



CHAPTER SEVEN
CONCLUSIONS

7.1 Drawbacks of Current Active Queue Management Ajorithms

The network calculation on detecting incipient cestgpn is called active queue
management (AQM) as we describe earlier. Many ectijpeue management
schemes studied in recent literatures are baseelady congestion notification to
sources. These schemes are classified into AQMsetibased on queue value. This
category is also called as queue-based AQM algorithhich uses the average (or
instantaneous) queue length to calculate the patkeping probability. RED is the
most widely used active queue management algori¥ingh is the recommendation
approach by Internet Engineering Task Force (IETF).

However, although RED is certainly an improvemewerotraditional drop-tail
queues, it has several drawbacks in practical ssagabosov & Korukoglu (2009)

summarizes the drawbacks of RED algorithm as fdlow

RED performance is highly sensitive to its paramsetdtings. In RED, at least 4
parameters, namely, maximum threshold (@aminimum threshold (mig),
maximum packet dropping probability (mgxand weighting factor (yy have to
be properly set. RED performance is sensitive t® tilumber of competing
sources/flows. RED performance is sensitive topgheket size. With RED, wild
queue oscillation is observed when the traffic loglianges (Abbosov &
Korukoglu, 2009).

In addition, one of RED’s main weaknesses is usafgéndirect congestion
indicator namely the average queue length. The ehmslor of packet dropping or
marking occurs when the queue gets large but exhguspidly or small but filling
up rapidly. This phenomenon is called as lag doneiffiect. While the existence of a
persistent queue indicates congestion, its lengtbsgvery little information to the

severity of congestion. A single source which iaware the congestion situation and

116
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transmitting at a rate greater than the bottleredkcapacity can cause a queue to
build up easily as a large number of sources can do

Other weakness of RED is the parameter configurgtimblem. Since the RED
algorithm relies on queue lengths, it has an inftepgoblem in determining the
severity of congestion. As a result, RED requirewide range of parameters to
operate correctly under different congestion saesaiVhile RED can achieve an
ideal operating point, it can only do so when it lasufficient amount of buffer
space and is correctly parameterized. The averageegsize varies with the level of
congestion and with the parameter settings andhtaighput is sensitive to the
traffic load and to RED parameters. Therefore, ngniRED parameters is

unavoidable, especially under realistic environment

7.2 Advantages of Orange

The most effective detection of congestion occtithe node level. The router at
the nodes can reliably distinguish between propagatelay and persistent queuing
delay. The router has a cohesive view of the queliehavior over time; the
perspective of individual connections is limited the packet arrival patterns for
those connections. In addition, a router at theesow shared by many active
connections with a wide range of round trip timiederances of delay, throughput
requirements, etc.; decisions about the duratiod amagnitude of transient
congestion to be allowed at the node are best madiee router at the node itself in

IP level.

Orange as an IP level active queue managementtalgowhich can be applied
at the current Internet routers can be useful introlling the average queue size
even in a network where the transport protocol oaitwe trusted to be cooperative.
Orange can control the improving congestion andiges the upper bound on the
buffers. Orange gives best performance for a nétwadrere the transport protocol
responds to congestion indications from the netw@kange is designed for a

network where a single marked or dropped packstfiicient to signal the presence
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of congestion to the transport-layer protocol. phabability that the Orange chooses
a particular connection to notify during congestisrroughly proportional to that

connection’s share of the bandwidth at the gateway.

Orange is an effective mechanism for congestiondavaee at the routers, in
cooperation with network transport protocols. Ifa@ge drops packets when the
gueue size exceeds the threshold, rather thansisefting a bit in packet headers,
then Orange controls the average queue size intefflis action provides an upper
bound on the average delay at the router. For @tahg rate at which the algorithm
marks packets for dropping, depends on service tohehe alternate server
(unpreferred link). This approach avoids the glabalchronization that results from
many connections decreasing their windows at timesame. Because, Orange’s
timer is set randomly and two successive packetg aramay not be dropped.
Orange gateway is a simple router algorithm thailccdoe implemented in current
networks or in high-speed networks of the futurear@e allows practical design
decisions to be made about the average queue siz¢ha maximum queue size

allowed at the router.

Another advantage of Orange is that it has lessstalple parameters than RED.
Orange requires minimum amount of processor and aneronsumption. Tuning
and optimizing the parameters used for genericlogpes has easier in Orange rather
than RED.

In addition, it avoids the global synchronizatiavhich results from both TCP
connections reducing their windows at the same tivhere each connection goes
through Slow-Start, reducing the window to oneyasponse to a dropped packet,

and thus results a lower throughput and higher igpgedelays.
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7.3 Concluding Remarks

The main contribution of this work is to present I&nlevel congestion control
mechanism to control the performance of a trafétwork at the node level. In this
work, a new active queue management algorithm a¢alleange is designed and
evaluated. The main idea behind Orange comes frben dnalysis of two
heterogeneous servers and one queue with a thdelshséd queuing system in order
to achieve both higher throughput and lower quediggys. In addition, we consider
to find out an empirical relationship between tiistem parameters of our algorithm
using the mathematical analysis. Simulation resarésused to tune up the empirical
formulation. By achieving this aim, we consideruse a virtual drop server to drop
the incoming packets when the actual queue sizeegbsca threshold level. The only
adjustable parameter based on the changing consliibthe network is the service
time of the virtual drop server. Since for manplagations, this service time is not

usable, we consider it an important and distingagskeharacteristic of our work.

By using the threshold type policy and the use iauial drop server, we have
proposed a new approach to drop or mark packets wie congestion will likely
occur. The primary performance parameter is thennmeember of customers in the
system, and accordingly the average waiting time mpa&cket as well as the

throughput of the network.

This study confirms that generally Orange perfobrater than RED due to the
fact from simulations that it results in higherdbghput values and lower queuing
delays (thus the lower mean waiting times per packar the networks with
heterogeneous flows. Orange simulations indicatat t®range requires less

parameter settings than RED.

We can propose that Orange will replace RED ascéineaqueue management
algorithm to decide which packets are to be mart®dndicate a congestion
condition for the current Internet routers. Wel stilose to drop them to warn TCP

friendly sources (responsive or adaptive) agahmst possible congestion situation.
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7.4 Recommendations for future research

Policy for using an alternate route (link) for thackets, which are destined to a
certain network, may be implemented as a threshb&tking on the size of this
flows dedicated queue’s size. In addition, RED #sdlerivatives use threshold on
average queue size in order to decide whetherdp oir accept an arriving packet to
the node. Our analysis would be extended to find pelicies, which could be more

efficient in that extent.

There are many areas for further research on Orgaigsvays. The foremost open
question involves determining the optimum averageug size for maximizing
throughput and minimizing delay for various netwedafigurations. The answer of
this this question is heavily dependent of the abi@rization (modeling) of the
network traffic and behavior of traffic offeringrsers.

One area for further research concerns traffic ohyos with a mix of Drop Tail
and Orange gateways, as would result from pargplayment of Orange gateways
in the current internet. Another area for furthesearch concerns the behavior of the
Orange gateway machinery with transport protoctterthan TCP, including open

or closed-loop rate-based protocols.

The list of packets marked by the Orange coulddssl by the gateway to identify
connections that are receiving a large fractiothefbandwidth through the gateway.
The gateway could use this information to give stmhnections lower priority at the
gateway. We can leave this as an area for furdssarch.



121

REFERENCES

Bagal, P., Kalyanaraman, S., & Packer, B. (1999m@arative study of RED, ECN
and TCP rate control.echnical ReportUSA: Rensselaer Polytechnic Institute.

Christiansen, M., Jeffay, K., Ott, D., & Smith, F.2000). Tuning RED for web
Traffic. Proceedings of the conference on Applications, feldyies,
Architectures, and Protocols for Computer CommutnbcaSweden] 39-150.

Cisco I0S Quality of Service Solutions Configurati@uide, Release 12.2

Clark, D. D., & Fang, W. (1998). Explicit Allocatioof Best Effort Packet Delivery
ServicelEEE/ACM Transactions on Networking-TO8N4), 362-373.

Catalkaya, G. (2003Bimulation of a Local Congestion Reducing Routitrgt&gy
for Multidestination Network.izmir; Dokuz Eylil University, Engineering

Faculty, Msc. Thesis.

Dah-Ming, C., & Jain R. (1989). Analysis of the lease and Decrease Algorithms
for Congestion Avoidance in Computer Networksomputer Networks and ISDN
Systems, 171), 1-14.

Fall, K., & Floyd, S. (1996). Simulation-based caripons of Tahoe, Reno, and
SACK TCP.ACM SIGCOMM Computer Communication Revi2é/(3), 5-21.

Feng, W., Kandlur, D., Saha, D., & Shin, K. (1999). Self-Configuring RED
GatewayProceedings IEEE INFOCOM '99, 3320-1328.

Floyd, S., & Jacobson, V. (1993). Random Early Dbte gateways for Congestion
AvoidancelEEE/ACM Transactions on Networking - TON4), 397-413.

Floyd, S. (1994). TCP and Explicit Congestion Noé&fion. ACM SIGCOMM
Computer Communication Revie24 (5), 8-23.

Floyd, S., Arcia, A., Ros, D., & lyengar, J. (Fedryy 2010). Adding
Acknowledgement Congestion Control to TGH:-C 5690 retrived March 2010
from http://tools.ietf.org/html/rfc5690.



122

Floyd, S., Henderson, T., & Gurtov, A. (April, 200#he New Reno Modification to
TCP's Fast Recovery Algorithm. RFC 3782, Proposeadard. Retrived June
2008, from http://www.ietf.org/rfc/rfc3782.txt.

Gerla, M., & Kleinrock, L. (1980). Flow control: aomparative surveylEEE
Transactions on Communicatiqr8 (4), 553-574.

Golubchik L., & Lui, J.C.S. (2002). Bounding of Remance Measures for a
Threshold-based Queueuing System with HysteridfiE Transactions on
Computersb1 (4), 353-372.

Gupta N., & Mishra, G.D. (2009). Performance Anaysf an M/M/1/K Queue with
Non-preemptive Priorityinternational J. of Math. Sci. & Engg. Appls. (IJES)
ISSN 0973-94248 (2),191-197.

Hollot, C. V., Misra, V., Towsley, D.F., & Gong, W(2001). On Designing
Improved Controllers for AQM Routers Supporting TERws. Proceedings
IEEE INFOCOM 2001, 31735-1744.

Internet Systems Consortiun(n.d.). Retrieved December 20, 2009, from

http://www.isc.org

Kinicki, R., & Zheng, Z. (2001). A Performance Syudf Explicit Congestion
Notification (ECN) with Heterogeneous TCP Flowsetworking-ICN 2001, 198-
106.

Kleinrock, L. (Ed.). (1975)Queueuing Systemgol I. Wiley.

Kuzmanovic, A., Mondal, A., Floyd, S., & Ramakrigtm K. K. (June, 2009).
Adding Explicit Congestion Notification (ECN) Cagdéap to TCP's SYN/ACK.
RFC 5562, Experimental. Retrived August 2009, from
http://tools.ietf.org/html/rfc5562.

Lin, D., & Morris, R. (1997). Dynamics of randomriadetection.Proceedings of
the ACM SIGCOMM '97127-137.



123

Lin, W., & Kumar P.R. (1984). Optimal Control ofQ@ueueing System with Two
Heterogeneous Serven&EE Transactions on Automatic Control, 28), 471-
488.

Mathis, M., & Mahdavi, J. (1996). Forward Acknowtgdent (FACK): Refining
TCP Congestion ContrdRroceedings of SIGCOMM’'96281-191.

Mathis, M., & Mahdavi, J., & Floyd S., & Romanow,. A1996). TCP Selective
Acknowledgment Option®RFC 2018, Proposed Standard, April 1996.

Morrison, J. (1990). Two Server Queue with One 8efdle below a Threshold.
Queueing Systems: Theory and Application8-4), 325-336.

Nagle, J. (1984). Congestion control in IP/TCP nmééworks. ACM SIGCOMM

Computer Communication Review, (43, 11-17.

Ott, T. J., Lakshman, T. V., & Wong, L. H. (19989RED: Stabilized RED.
Proceedings IEEE INFOCOM'99, 3346-1355.

Padhye, J., Firoiu, V., Towsley, D., & Kurose J9%8). Modeling TCP Thrughput:
A Simple Model and its Empirical Validatio@omputer Communication Review,
a publication of ACM SIGCOMMS (4), 303-314.

Pan, R., Prabhakar, B., & Psounis, K. (2000). CH@KStateless Active Queue
Management Scheme for Approximating Fair Bandwidtbcation. Proceedings
IEEE INFOCOM 2000, 2942-951.

Pentikousis, K. (2004)Application/Traffic/Poisson - Poisson traffic geatar for
ns-2, ns-2 module. Retrived June 2010, from

http://ipv6.willab.fi/lkostas/src/Application-TraffiPoisson/

Postel, J. (1981)Transmission control protocol-darpa internet prograprotocol
specification, RFC793ebruary 2009, http://www.ietf.org/rfc/rfc793.txt

Ramakrishnan, K. K., & Jain R. (1988). A binarydback scheme for congestion

avoidance in computer networks with a connectianlasetwork layer.



124

Applications, Technologies, Architectures, and Bcots for Computer

CommunicatiorSBymposium303-313.

Ramakrishnan, K.K., & Jain, R. (1990). A Binary Bback Scheme for Congestion
Avoidance in Computer Networké&CM Transactions on Computer Syste®is
(2), 158-181.

Ramakrishnan, K., Floyd, S., & Black, D. (Septemb2001). The Addition of
Explicit Congestion Notification (ECN) to IP. RFQ6&B, Proposed Standard
Retrived May 2008 from http://www.rfc-editor.orgzfffc3168.txt.

Rusmin, P.H., Machbub, C., & Harsoyo, A. (200/)hite: Controlling The Internet
Congestion With Integral Controlle€Control, Automation, Robotics and Vision,
1,1-6.

Savage, S., Anderson, T., Aggarwal, A., Beckér, Cardwell, N., Collins,
A., Hoffman, E., Snell, J., Vahdat, A., Voelker G., & Zahorjan,
J. (1999). Detour: informed Internet routing anansport.IEEE Micro, 19 (1),
50-59.

Sterbenz, J. P. G., Krishnan, R., Hain, R.R., Jatka.W., Levin, D., Ramanathan,
R., & Zao, J. (2002). Survivable mobile wirelesswaks: issues, challenges, and
research directiongroceedings of the 1st ACM workshop on Wirelesarggc
31-40.

Sis, M. K. (1994).A Dynamic Local Congestion Reducing Strategy Basea Mini-
Max Criterion USA; Polytechnic Institute of New York Universitiyh.D. Thesis.



APPENDICES

A. Full Source Code of Orange Algorithm: orange.cc & cange.h

Source code of Orange Algorithm.

#ifndef orange_h
#define orange_h

#include <string.h>
#include "queue.h"
#include "config.h"

class Orange : public Queue {
public:
Orange();
~Orange() {
delete q_;
}

protected:
void reset();
int command(int argc, const char*const* argv);
void enque(Packet*);
Packet* deque();
PacketQueue *q_; /*Underlying FIFO queue*/
int drop_front_;
int summarystats;
void print_summarystats();
int qib_;
int mean_pktsize_;
int orange_limit;
int queue_limit;
double orange_timer;
double ExpOrangeTimer;
double lastDrop;
int byOrange;
int byDroptail;
h

#endif
/* */

#ifndef lint
static const char rcsid[] =
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"@(#) $Header: /nfs/jade/vint/CVSROOT/ns-2/quewsige.cc,v 1.15 2003/01/16 19:02:54 sfloyd Exp $

(LBL)";
#endif

#include "orange.h"
#include "flags.h"
#include "basetrace.h"
#include "hdr_gs.h"
#include "random.h"

static class OrangeClass : public TclClass {
public:
OrangecClass() : TclClass("Queue/Orange") {}
TclObject* create(int, const char*const*) {



return (new Orange);

}

} class_orange;

Orange::Orange(){
g_ = new PacketQueue;
pa_=q_;

bind_bool("drop_front_", &drop_front_);
bind_bool("summarystats_", &summarystats);
bind_bool("queue_in_bytes ", &qib_);
bind("mean_pktsize_", &mean_pktsize );
bind("orange_limit_", &orange_limit);
bind("queue_limit_", &queue_limit);
bind("orange_timer_", &orange_timer);

llprintf("Timer: %f\n", orange_timer);
}

void Orange::reset(){
Queue::reset();

}
int Orange::command(int argc, const char*const¥afg
if (argc == 2) {
if (strcmp(argv[1], "printstats") == 0) {
print_summarystats();
return (TCL_OK);
}
}
if (argc == 3) {
if (Istrcmp(argv[1], "packetqueue-attach™)) {
delete q_;
if (I(g_ = (PacketQueue*) TclObject::lookup(afgh)) {
return (TCL_ERROR);
else {
pa_=0a_;
return (TCL_OK);
}
}
}
return Queue::command(argc, argv);
}

void Orange::enque(Packet* p) {

if (summarystats) {
Queue::updateStats(qgib_?q_->byteLength():q_-ttey
}

int glimBytes = queue_limit * mean_pktsize_;
int glimBytes2 = orange_limit * mean_pktsize_;

if (lgib_ && (q_->length() + 1) >= queue_limit) |
(qib_ && (q_->length() + hdr_cmn::access(p)->ti) >= glimBytes)){

//if the queue would overflow if we added thichet...
if (drop_front_) { /*remove from head of queue?*/

q_->enque(p);
Packet *pp = g_->deque();
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drop(pp);
byDroptail++;

}

else {
drop(p);
[lprintf("DROP!");
byDroptail++;

}

else {
if ("qib_ && (q_->length() + 1) >= orange_limit])
(gib_ && (q_->length() + hdr_cmn::accgssésize()) >= qlimBytes2)){

double now = Scheduler::instance().clock();
double differ = now - lastDrop;
[lprintf("\nnow-%5.3f ",now");
[lprintf("\tlastdroptime-%5.3f ", lastDrop);
[lprintf("\tdifference-%5.3f ", differ);
[lprintf("\torangetimer-%?5.3f ", orange_timerQ);

//double ExpOrangeTimer = orange_timer;
[llprintf("ExpOrangeTimer: %f\n", ExpOrangeTimer)

if ((differ >= ExpOrangeTimer/1000) || lastDrep 0) {
lastDrop = now;
ExpOrangeTimer = Random::exponential (orangeeriim
if (drop_front_ ) {
q_->enque(p);
Packet *pp = gq_->deque();

drop(pp);
byOrange++;
}
else {
drop(p);
byOrange++;

}
/lprint("DROP");

else {
q_->enque(p);
}
}
else {
q_->enque(p);
}

}

if (byOrange && byDroptail) {
/lprintf("\nNumber of dropped packets by dropté&tid", byDroptail);
llprintf("\nby %d threshold and %5.3fms timer: %odrange_limit, orange_timer, byOrange);
[lprintf("\n \n");

}

Packet* Orange::deque(){

if (summarystats && &Scheduler::instance() '= NULL
Queue::updateStats(qgib_?q_->byteLength():q_-ttey
}

return q_->deque();

}

void Orange::print_summarystats(){
double now = Scheduler::instance().clock();
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printf("True average queue: %5.3f", true_ave_);
printf("\nNumber of dropped packets by %d thredhé&bd", orange_limit, byOrange);
printf("\nNumber of dropped packets by droptaid'%dyDroptail);
if (aib_) {
printf(" (in bytes)");

printf("\ntime: %5.3f\n", total_time_);

B. Source Code of the Function: Drop_Early Orange

The aim of the function is to decide if the incogpacket to the queue will be

dropped or not according to the busy — idle sthte@orange timer.

int ORANGEQueue::drop_early_orange(Packet* pkt)
{

double now = Scheduler::instance().clock();
double differ = now - lastDrop;
if ((differ >= (orange_timer_/1000)) || lastDrop 6F{

lastDrop = now;
expOrangeTimer = Random::exponential (orange_tijner_

byOrange++;

return (1); /DROP

return (0); // no DROP/mark Alternate server isyou

}

C. Source Code of the Function: enqueue

The aim of the function is to enqueue the inconpagket according to the

algorithm applied.

void ORANGEQueue::enque(Packet* pkt)

{
hdr_cmn* ch = hdr_cmn::access(pkt);
++edv_.count;
edv_.count_bytes += ch->size();

register double gavg = edv_.v_ave;

int droptype = DTYPE_NONE;

int glen = gib_ ? g_->byteLength() : g_->length();
int glim = qgib__ ? (glim_ * edp_.mean_pktsize) ingl ;



if (qlen >= edp_.th_min && drop_early_orange(pK))
droptype = DTYPE_UNFORCED;

}else {
/* No packets are being dropped. */
edv_.v_prob =0.0;
edv_.old = 0;

}

if (gqlen >=glim) {
I/ see if we've exceeded the queue size
droptype = DTYPE_FORCED,;

}
if (droptype == DTYPE_UNFORCED) {

if (pkt_to_drop != pkt) {
q_->enque(pkt);
g_->remove(pkt_to_drop);
pkt = pkt_to_drop;

if (de_drop_ '= NULL) {

if (EDTrace '= NULL)
((Trace *)EDTrace)->recvOnly(pkt);

reportDrop(pkt);
de_drop_->recv(pkt);

else {
reportDrop(pkt);
drop(pkt);

}else {
/* forced drop, or not a drop: first enqueue ikt
g_->enque(pkt);

/* drop a packet if we were told to */
if (droptype == DTYPE_FORCED) {
[* drop random victim or last one */
pkt = pickPacketToDrop();
q_->remove(pkt);
reportDrop(pkt);
drop(pkt);
if (Ins1_compat ) {
I/ bug-fix from Philip Liu, <phill@ece.ubc.ca>
edv_.count = 0;
edv_.count_bytes = 0;

}
double now = Scheduler::instance().clock();

if (droptype == DTYPE_FORCED)
printf("%210f ByTailDrop\n“, now);

if (droptype == DTYPE_UNFORCED)
printf("%10f ByOrange\n", now);

return;
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D. Queue Size Script: queueSize.awk

This awk script produces a trace file of queue sizer time from the output

trace of NS.

BEGIN {
queueSize =0
prevTime =0
prevQSize =0

}

{

# Trace line format: normal
if ($2 1="-t") {
event = $1
time = $2
if (event == "+" || event == "-") node_id = $3
if (event =="r" || event == "d") node_id = $4
flow_id = $8
pkt_id = $12
pkt_size = $6
flow_t = $5
level = "AGT"

# Trace line format: new

if ($2 =="-t") {
event = $1
time = $3
node_id = $5
flow_id = $39
pkt_id = $41
pkt_size = $37
flow_t = $45
level = $19

}

WillPrint =0

# Update total received packets' size and starkepsarrival time
if (level == "AGT" && node_id == src && event ==+"){
queueSize++
WillPrint = 1
}

if (level == "AGT" && node_id == src && event ==-"){

queueSize--

WillPrint =1

}

if (level == "AGT" && node_id == dst && event ==d"){
gueueSize--

WillPrint = 1

}

if (WillPrint == 1)
printf("%10g %10g\n", time, queueSize)

}
END {
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}
E. Simulation Statistics Script: avgStats.awk

This awk script produces statistical informationoai simulation from the

output trace of NS.

BEGIN {
recvdSize =0
startTime = 1e6
stopTime =0

# Trace line format: normal
if ($2 1="-t") {
event = $1
time = $2
if (event == "+" || event == "-") node_id = $3
if (event =="r" || event == "d") node_id = $4
flow_id = $8
pkt_id = $12
pkt_size = $6
flow_t = $5
level = "AGT"

# Trace line format: new

if ($2 =="-t") {
event = $1
time = $3
node_id = $5
flow_id = $39
pkt_id = $41
pkt_size = $37
flow_t = $45
level = $19

}

# Store packets send time
if (level == "AGT" && flow_id == flow && node_id = src &&
sendTime[pkt_id] == 0 && (event == "+" || ewer "s") && pkt_size >= pkt) {
if (time < startTime) {
startTime = time

}
sendTime[pkt_id] = time
this_flow = flow_t

}

# Update total received packets' size and starkepsarrival time
if (level == "AGT" && flow_id == flow && node_id = dst &&
event =="r" && pkt_size >= pkt) {
if (time > stopTime) {
stopTime =time

}

# Rip off the header

hdr_size = pkt_size % pkt
pkt_size -= hdr_size

# Store received packet's size
recvdSize += pkt_size

# Store packet's reception time
recvTime[pkt_id] = time



}
END {
# Compute average delay
delay = avg_delay = recvdNum =0
for (i in recvTime) {
if (sendTime[i] == 0) {
printf("\nError in delay.awk: receiving a packkat wasn't sent %g\n",i)
delay += recvTime[i] - sendTime[i]
recvdNum ++
}
if (recvdNum != 0) {
avg_delay = delay / recvdNum
}else {
avg_delay =0
}
# Compute average jitters
jitterl = jitter2 = jitter3 = jitter4 = jitter5 ©
prev_time = delay = prev_delay = processed = dievia= O
prev_delay = -1
for (i=0; processed<recvdNum; i++) {
if(recvTime[i] != 0) {
if(prev_time = 0) {
delay = recvTime[i] - prev_time
e2eDelay = recvTime[i] - sendTimel[i]
if(delay < 0) delay = 0
if(prev_delay '=-1) {
jitterl += abs(e2eDelay - prev_e2eDelay)
jitter2 += abs(delay-prev_delay)
jitter3 += (abs(e2eDelay-prev_e2eDelay) eji) / 16
jitter4 += (abs(delay-prev_delay) - jitter4)@
}
# deviation += (e2eDelay-avg_delay)*(e2eDelag-alelay)
prev_delay = delay
prev_e2eDelay = e2eDelay
}
prev_time = recvTimel[i]
processed++
}
}
if (recvdNum !=0) {
jitterd = jitter1*1000/recvdNum
jitter2 = jitter2*1000/recvdNum
# if (recvdNum > 1) {
# jitter5 = sqrt(deviation/(recvdNum-1))
# }
# Output

if (recvdNum == 0) {

Printf( T A AN\

"# Warning: no packets were received usation may be too short #\n"\

T T R N\N )

}

printf("\n")

printf(" %15s: %g\n", "flowID", flow)
printf(" %15s: %s\n", "flowType", this_flow)
printf(" %15s: %d\n", "srcNode", src)
printf(" %15s: %d\n", "destNode", dst)
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printf(" %15s: %d\n", "startTime", startTime)

printf(" %15s: %d\n", "stopTime", stopTime)

printf(" %15s: %g\n", "receivedPkts", recvdNum)

printf(" %15s: %g\n", "avgTput[kbps]", (recvdSigstopTime-startTime))*(8/1000))
printf(" %15s: %g\n", "avgDelay[ms]", avg_delay0)

printf(" %15s: %g\n", "avgJitterl[ms]", jitterl)

printf(" %15s: %g\n", "avgJitter2[ms]", jitter2)

printf(" %15s: %g\n", "avgdJitter3[ms]", jitter3€DO0)

printf(" %15s: %g\n", "avgJitter4[ms]", jitter4€D0)

printf(" %15s: %g\n", "avgJitter5[ms]", jitterd®00)

H*

%9s %4s %4s %6s %5s %13s %14s %13s %15s %15s%dHEs%15s\n\n", \
"flow","flowType","src","dst","start","stp","receivedPkts", \
"avgTput[kbps]","avgDelay[ms]","avgJitt¢nis]","avgJitter2[ms]", \
"avgJitter3[ms]","avgJitter4[ms]","avg&itb[ms]")

printf(" %69 %9s %4d %4d %6d %5d %13g %14s 98538s %15s %15s %15s\n\n”, \
flow,this_flow,src,dst,startTime, stopTimecvdNum, \
(recvdSize/(stopTime-startTime))*(8/10@@y_delay*1000, \
jitterl,jitter2,jitter3*1000, jitter4*100{ter5*1000)

Y HHFHHFHFHHHR

function abs(value) {
if (value < 0) value = 0-value
return value

F. Instant Throughput Script: instantThroughput.awk

This awk script produces a trace file of throughpuer time from the output

trace of NS.

BEGIN {
recv =0
currTime = prevTime =0
printf("# %10s %10s %5s %5s %15s %18s\n\n", \
"flow","flowType","src","dst","time","throghput")

# Trace line format: normal
if ($2 1="-t"){
event = $1
time = $2
if (event == "+" || event == "-") node_id = $3
if (event =="r" || event == "d") node_id = $4
flow_id = $8
pkt_id = $12
pkt_size = $6
flow_t = $5
level = "AGT"
}
# Trace line format: new
if ($2 =="-t") {
event = $1
time = $3
node_id = $5
flow_id = $39
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pkt_id = $41
pkt_size = $37
flow_t = $45
level = $19

}

# Init prevTime to the first packet recv time
if(prevTime == 0)
prevTime = time

# Calculate total received packets' size
if (level == "AGT" && flow_id == flow && node_id = dst &&
event =="r" && pkt_size >= pkt) {

# Rip off the header

hdr_size = pkt_size % pkt

pkt_size -= hdr_size

# Store received packet's size

recv += pkt_size

# This 'if' is introduce to obtain clearer

# plots from the output of this script

if((time - prevTime) >= tic*10) {
printf(" %210g %10s %5d %5d %159 %18g\n", \

flow,flow_t,src,dst,(prevTime+1.0),0)
printf(" %210g %10s %5d %5d %159 %18g\n", \
flow,flow_t,src,dst,(time-1.0),0)

}

currTime += (time - prevTime)

if (currTime >=tic) {
printf(" %210g %10s %5d %5d %159 %18g\n", \

flow,flow_t,src,dst,time,(recv/currTimépy1000))

recv =0
currTime =0
}
prevTime = time
}
}
END {
printf("\n\n")
}

G. Script for Topology Alpha

The aim of this script is to construct the M/M/1d¢ieue Topology Alpha. In
order to connect 1000 poisson sources to a nhodeised different nodes as at most
250 sources can be connected to a node.

#Create a simulator object
set ns [new Simulator]

#0Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#0Open the trace file



set nftr [open out.tr w]
$ns trace-all $nftr

#Define a 'finish' procedure
proc finish {} {
global ns nf nftr file_O file_1
close $nf
close $nftr
close $file_0
close $file_1

set parse {

if ($6 == "cwnd_") {
print $1, $7;
}

1

exec awk $parse cwnd0.tr > xcwndO.tr
exec awk $parse cwndl.tr > xcwnd1l.tr

#exec /ns/xgraph xcwndO.tr &
#exec nam out.nam &
exit 0

}

set pkt 0
set run 1000

# seed the default RNG
global defaultRNG
$defaultRNG seed 9999

# create the RNGs and set them to the correct sanstr

set arrivalRNG [new RNG]
set sizeRNG [new RNG]

for {set k 1 } {$k <= $run} {incr k} {
$arrivalRNG next-substream
$sizeRNG next-substream

}

set pktsize [new RandomVariable/Exponential]
$pktsize set avg_ 100
$pktsize use-rng $sizeRNG

set S [$ns node]
set D [$ns node]

$ns duplex-link $S $D 1Mb 10ms RED
$ns queue-limit $S $D 10000

for {set i 1} {$i <= 4} {incr i} {
set s($i) [$ns node]
set d($i) [$ns node]

$ns duplex-link $s($i) $S 100Mb Oms DropTail
$ns duplex-link $D $d($i) 200Mb Oms DropTail

for {set j 1} {$j <= 250} {incr j} {
set udp($i,$j) [new Agent/UDP]
$ns attach-agent $s($i) $udp($i,$j)

set null($i,$j) [new Agent/Null]
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$ns attach-agent $d($i) $null($i,$;)
$ns connect $udp($i,$j) $null($i,$))

set poisson($i,$j) [new Application/Traffic/Rebn]
$poisson($i,$j) attach-agent $udp($i,$))

$poisson($i,$j) set interval_ [expr 1.0/1.2]

set pkt [expr round([$pktsize value])]
#puts "$i, $j:  pkt"

$poisson($i,$j) set packetSize_ $pkt
#$poisson($i,$j) set packetSize_ 1000

$ns at 0 "$poisson($i,$j) start"
}
}

#Call the finish procedure
$ns at 10.0 "finish"

#Run the simulation
$ns run

H. Script for Topology Bravo

The aim of this script is to construct Topology Bra

#Create a simulator object
set ns [new Simulator]

#Open the trace file
set nftr [open out.tr w]
$ns trace-all $nftr

#Define a 'finish' procedure
proc finish {} {
global ns nf nftr file_0 file_1
close $nf
close $nftr
close $file_0
close $file_1

}

#Create four nodes
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]

#Create links between the nodes
$ns duplex-link $n2 $n0 10Mb Oms DropTail
$ns duplex-link $n0 $n1 1Mb O0ms ORANGE

#3ns queue-limit $n3 $n4 5
$ns queue-limit $n0 $n1 120

#Setup a TCP connection nd attach it to node nO
set tcp0 [new Agent/TCP/Reno]

$tcpO set packetSize_ 1000

$tcpO set class_ 1
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$ns attach-agent $n2 $tcpO
$tcpO set window_ 500

#Setup a FTP over TCP connection
set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcpO

$ftp0 set type_ FTP

#Create a Null agent (a traffic sink) and attadb itode n4
set null0 [new Agent/TCPSink]

$ns attach-agent $n1 $nullo

$ns connect $tcp0 $nullo

$ns at 0 "$ftp0 produce 10000"

#Call the finish procedure
$ns at 100.0 “finish"

#Run the simulation
$ns run

I.  Script for Topology Charlie
The aim of this script is to construct Topology Giea

#Create a simulator object
set ns [new Simulator]

#Define different colors for data flows
$ns color 1 Blue

$ns color 2 Red

$ns color 3 Green

#0Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Open the trace file
set nftr [open out.tr w]
$ns trace-all $nftr

# Tracing cwnd of TCP Agents
set file_0 [open cwndO.tr w]
set file_1 [open cwndl.tr w]

#Define a 'finish' procedure
proc finish {} {
global ns nf nftr file_O file_1
close $nf
close $nftr
close $file_0
close $file_1

set parse {

if ($6 == "cwnd_") {
print $1, $7;

}
1

exec awk $parse cwnd0.tr > xcwndO.tr
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exec awk $parse cwndl.tr > xcwnd1l.tr

exec /ns/xgraph xcwndO.tr &
#exec nam out.nam &
exit 0

}

#Create four nodes
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 10Mb 10ms DropTail
$ns duplex-link $n1 $n2 10Mb 10ms DropTail
$ns duplex-link $n2 $n3 1Mb 10ms RED

$ns duplex-link-op $n0 $n2 orient right-down
$ns duplex-link-op $nl $n2 orient right-up
$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for the link between node 2 raode 3
$ns duplex-link-op $n2 $n3 queuePos 0.5

#3ns queue-limit $n3 $n4 5
$ns queue-limit $n2 $n3 120

#NodeO

#Setup a TCP connection nd attach it to node nO
set tcp0 [new Agent/TCP/Reno]

$tcpO set packetSize_ 1000

$tcpO set class_ 1

$ns attach-agent $n0 $tcpO

#$tcpO set window_ 500

#Setup a FTP over TCP connection
set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcpO

$ftp0 set type_ FTP

#Nodel

#Setup a TCP connection nd attach it to node nl1
set tcpl [new Agent/TCP/Reno]

$tcpl set packetSize_ 1000

$tcpl set class_ 2

$ns attach-agent $n1 $tcpl

#$tcpl set window_ 500

#Setup a FTP over TCP connection
set ftp1l [new Application/FTP]

$ftp1 attach-agent $tcpl

$ftpl set type_ FTP

#Create a Null agent (a traffic sink) and attadb itode n4
set null0 [new Agent/TCPSink]
$ns attach-agent $n3 $null0

set nulll [new Agent/TCPSink]
$ns attach-agent $n3 $nulll

#Connect the traffic sources with the traffic sink
$ns connect $tcp0 $nullo
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$ns connect $tcpl $nulll

$tcpO set fid_ 1
$tcpl set fid_ 2

#Trace cwnd_

$tcpO trace cwnd_
$tcpl trace cwnd_
$tcpO trace rtt_

$tcpl trace rtt_

$tcpO trace ssthresh_
$tcpl trace ssthresh_

$tcpO attach $file 0
$tcpl attach $file_1

#Schedule events for the CBR agents
#%$ns at 0 "$ftp0O start”
#%ns at 20 "$ftpl start”

#$ns at 200 "$ftp0 stop”
#$ns at 200 "$ftp1 stop”

$ns at 0 "$ftp0 produce 10000"
$ns at 20 "$ftp1 produce 10000"

#$ftp0 produce 100

#Call the finish procedure
$ns at 200.0 “finish"

#Run the simulation
$ns run

J. Script for Topology Delta
The aim of this script is to construct Topology ael

#Create a simulator object
set ns [new Simulator]

#Define different colors for data flows
$ns color 1 Blue

$ns color 2 Red

$ns color 3 Green

#0Open the nam trace file
set nf [open out.tr w]
$ns trace-all $nf

#Define a 'finish' procedure
proc finish {} {
global ns nf file_O file_1
close $nf
close $file_0
close $file_1

set parse {

if ($6 =="cwnd_") {
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print $1, $7;
}
1

exec awk $parse cwnd0.tr > xcwndO.tr
exec awk $parse cwndl.tr > xcwndl.tr

exec xgraph -bb -tk -m xcwndO0.tr xcwnd1.tr &
exit 0

}

#Create four nodes
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n3 10Mb 10ms DropTail
$ns duplex-link $n1 $n3 10Mb 10ms DropTail
$ns duplex-link $n2 $n3 10Mb 10ms DropTail
$ns duplex-link $n3 $n4 1Mb 20ms DropTail

#3ns queue-limit $n3 $n4 5

#set monitor [$ns monitor-queue $n3 $n4 stdout 0.1]
#[$ns link $n3 $n4] queue-sample-timeout;
#[$ns link $S $D] start-tracing

#$ns trace-queue $n3 $n4 [open Q3.tr w]
$ns duplex-link-op $n0 $n3 orient right-down
$ns duplex-link-op $n1 $n3 orient right

$ns duplex-link-op $n2 $n3 orient right-up
$ns duplex-link-op $n3 $n4 orient right

#Monitor the queue for the link between node 2 aode 3
$ns duplex-link-op $n3 $n4 queuePos 0.5

# Tracing a queue

#$ns queue-limit $n3 $n4 5000

#set Queue/Orange orange_limit 200
#set Queue/Orange queue_limit 300

#Node 0

#Create a UDP agent and attach it to node n0

set udpO [new Agent/UDP]

$udpO set class_ 1

$ns attach-agent $n0 $udp0

# Create a CBR traffic source and attach it to udp0
set cbrO [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

$cbr0 attach-agent $udp0

#Nodel

#Setup a TCP connection nd attach it to node nl1
set tcp0 [new Agent/TCP/Reno]

$tcpO set packetSize_ 1000

$tcpO set class_ 2

$ns attach-agent $n1 $tcp0

#Setup a FTP over TCP connection
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set ftp0 [new Application/FTP]
$ftp0 attach-agent $tcpO
$ftp0 set type_ FTP

#Node2

#Setup a TCP connection nd attach it to node n2
set tcpl [new Agent/TCP/Reno]

$tcpl set packetSize_ 1000

$tcpl set class_ 3

$ns attach-agent $n2 $tcpl

#Setup a FTP over TCP connection

set ftp1l [new Application/FTP]

$ftpl attach-agent $tcpl

$ftpl set type_ FTP

#Create a Null agent (a traffic sink) and attadb itode n4

set null0 [new Agent/Null]
$ns attach-agent $n4 $nullo

set sink0 [new Agent/TCPSink]
$ns attach-agent $n4 $sink0

set sink1 [new Agent/TCPSink]
$ns attach-agent $n4 $sinkl

#Connect the traffic sources with the traffic sink
$ns connect $udp0 $null0

$ns connect $tcp0 $sink0

$ns connect $tcpl $sinkl

$tcpO set fid_ 2

$tepl set fid_ 3

# Tracing cwnd of TCP Agents
set file_0 [open cwndO.tr w]
set file_1 [open cwndl.tr w]
$tcpO trace cwnd_

$tcpl trace cwnd_

$tcpO trace rtt_

$tcpl trace rtt_

$tcpO trace ssthresh_
$tcpl trace ssthresh_
$tcpO attach $file_0

$tcpl attach $file_1

#Schedule events for the CBR agents
$ns at 0.10 "$cbr0 start"
$ns at 0.20 "$ftp0 start”
$ns at 0.20 "$ftpl start"

$ns at 4.70 "$ftpl stop”
$ns at 4.70 "$ftp0 stop"”
$ns at 4.70 "$cbr0 stop”

#Call the finish procedure
$ns at 5.0 "finish"

#Run the simulation
$ns run
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K. Script for Topology Echo

The aim of this script is to construct Topology BchNumber of flow groups,

number of flows in a group, and aggregate bandwadtparameters to this script.

#Create a simulator object
set ns [new Simulator]

setnn 3
setfn 20
set AggBW 90

#0Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Open the trace file
set nftr [open out.tr w]
$ns trace-all $nftr

#Define a 'finish' procedure
proc finish {} {
global ns nf nftr file_0

close $file_0
close $nf
close $nftr

set parse {

if ($6 =="cwnd_") {
print $1, $7;
}

B

exec awk $parse cwndO.tr > xcwndO.tr

#exec xgraph -bb -tk -m xcwndO.tr xewnd1.tr &
#exec nam out.nam &
exit 0

}

#Create the nodes

set n3 [$ns node]

set n4 [$ns node]

$ns duplex-link $n3 $n4 10Mb 5ms ORANGE

$ns duplex-link-op $n3 $n4 orient right

#set redqueue [$link $n3 $n4]

#Queue/ORANGE set thresh_ 3

#Queue/ORANGE set maxthresh_ 30

$ns queue-limit $n3 $n4 120

#Monitor the queue for the link between node 3 mode 4

$ns duplex-link-op $n3 $n4 queuePos 0.5
#set monitor [$ns monitor-queue $n3 $n4 stdout 0.1]



for {set i 0} {$i < $nn} {incr i} {
for {set j O} {$j < $fn} {incr j} {

set n($i,$j) [$ns node]
$ns duplex-link $n($i,$j) $n3 [expr $AggBW/($Hfin)Mb [expr (pow(2,2-$i)*50-10)/2]ms DropTail

#Setup a TCP connection nd attach it to node n1
set tcp($i,$)) [new Agent/TCP/Reno]

$tcp($i,$)) set packetSize_ 1000

$ns attach-agent $n($i,$j) Stcp($i,$))

#Setup a FTP over TCP connection

set ftp($i,$j) [new Application/FTP]

$ftp($i,$j) attach-agent $tcp($i,$))

$ftp($i,$j) set type_ FTP

set sink($i,$j) [new Agent/TCPSink]
$ns attach-agent $n4 $sink($i,$;)

#Connect the traffic sources with the traffitks
$ns connect $tcp($i,$j) $sink($i,$j)

if {$i == 0} {
$ns color [expr $fn * $i + $j] Blue
$tcp(S$i,$)) set class_ 0
$tep($i,$)) set fid_ [expr $fn * $i + $j]
}
if {$i == 1} {
$ns color [expr $fn * $i + $j] Red
$tep($i,$j) set class_ 1
$tep($i,$)) set fid_ [expr $fn * $i + $j]

}

if {$i == 2} {
$ns color [expr $fn * $i + $j] Green
$tcp($i,$)) set class_ 2
$tep($i,$)) set fid_ [expr $fn * $i + $j]

#Schedule events for the CBR agents
if {$j < [expr $fn/2]} {
$ns at 0.00 "$ftp($i,$j) start"
}
if {$j >= [expr $fn/2]} {
$ns at 2.00 "$ftp($i,$j) start"
}

$ns at 100.00 "$ftp($i,$j) stop”

#Call the finish procedure
$ns at 100.0 "finish"

#Run the simulation
$ns run
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