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MULTI-STAGE CLASSIFICATION OF ABNORMAL PATTERNS IN EEG 

AND ECG USING MODEL-FREE METHODS 
 

ABSTRACT 

 

 

In this study, computer based pattern recognition and classification systems are 

proposed for EEG and ECG patterns which are one dimensional biomedical signals. 

In the first phase of the study, artificial neural network based automatic recognition 

system for epileptiform events in EEG is proposed. Recognition process is performed 

both using single MLP based classifier and using multi-stage classifier. Different 

methods are used to increase the classification accuracy of the single MLP based 

system.  In the second phase of the study, a novel multi-stage automatic arrhythmia 

recognition and classification system is proposed. The system performs beat-based 

classification and classifies 16 different beat types. The first stage of the system 

classifies five main groups then, in the second stage of the system each main group is 

classified into subgroups. In both classification stages the best feature set for each 

main group and subgroup is determined and used in classification process. With this 

approach, the curse of dimensionality effect is reduced. In addition, selecting and 

using the most discriminative features for each group increases the classification 

performance of the system. Furthermore, the third stage is added to the system for 

classifying beats that are labeled as unclassified beats in the first two classification 

stages. KNN classifier and raw data as input vector is used in this stage. The 

performances of the proposed systems are finally evaluated using real EEG and ECG 

data and results are discussed. 

 

Keywords:Biomedical signal processing, Electrocardiogram, Electroencephalogram, 

Pattern recognition. 
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MODELDEN BAĞIMSIZ YÖNTEMLER KULLANILARAK EEG VE EKG 

İÇİNDEKİ ANORMAL ÖRÜNTÜLERİN ÇOK KATLI 

SINIFLANDIRILMASI 

 

ÖZ 

 

 

Bu çalışmada bir boyutlu biyomedikal sinyaller olan EEG ve EKG sinyallerindeki 

belli örüntüleri otomatik olarak tanıma ve sınıflandırma için bilgisayar destekli 

örüntü tanıma ve sınıflandırma sistemleri önerilmiştir. Çalışmanın ilk aşamasında 

EEG işaretinde klinik uygulamaları destekleyen, yapay sinir ağı tabanlı otomatik 

epileptik örüntü tanıma sistemi önerilmektedir. Tanıma işlemi, hem bir yapay sinir ağ 

sınıflandırıcı kullanılarak, hem de çok aşamalı bir sınıflandırıcı sistem kullanılarak 

gerçekleştirilmiştir. Bu sistemde sınıflandırma başarımını arttırmak için farklı 

yöntemler denenmiş ve sonuçları sunulmuştur. Bunu takip eden çalışmada, yine 

klinik uygulamaları destekleyen, EKG işareti için çok aşamalı yeni bir otomatik 

aritmi tanıma sistemi önerilmiştir. Sistem vuru tabanlı olup 16 aritmi tipi 

sınıflandırabilmektedir. Bu sistemde aritmiler ilk aşamada 5 ana sınıfa gruplanırken 

ikinci aşamada her bir ana grup alt aritmi gruplarına ayrıştırılmaktadır. Sınıflama 

işlemi yapılırken, her iki aşamada da her grup ve alt grup için o grubu en iyi 

tanımlayan öznitelikler belirlenmiş ve sınıflamada bu öznitelikler kullanılmıştır. Bu 

yaklaşımla hem öznitelik vektörlerinin boyutları düşürülerek, başarım üzerindeki 

olumsuz etkileri azaltılmış, hem de her bir sınıf için o gruba ait öznitelikler 

kullanılarak sınıflama başarımı arttırılmıştır.  Ayrıca, ilk iki aşamada sınıflanamayan 

vurular 16 aritmi tipine ayırmak için, sisteme üçüncü bir aşama eklenmiştir. Bu 

aşamada, sınıflandırıcı olarak k-en yakın komşu ve giriş vektörü olarak da ham EKG 

verisi kullanılarak ilk iki aşamada sınıflanamayan vurular sınıflandırılmıştır. Sunulan 

sistemlerin başarımları gerçek EEG ve EKG verileri kullanılarak belirlenmiş ve 

sonuçları tartışılmıştır.  

 
 

Anahtar sözcükler: Biyomedikal sinyal işleme, Elektrokardiyogram, 

Elektroansefalogram, Örüntü tanıma. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

There has been a new period in medical diagnostic techniques, since the 

introduction of high technology equipments into health care. Since then, electronics 

and subsequently computers have become essential components of biomedical signal 

analysis, performing a variety of tasks such as data acquisition and preprocessing, 

feature extraction and interpretation. Applications of electronic instrumentation and 

computers have been widely used in biological and physiological systems and 

phenomena, such as the electrical activity of the cardiovascular system, the brain, the 

neuromuscular system, and the gastric system, etc. 
 

Biomedical signal processing focuses on the acquisition of vital signals extracted 

from biologic and physiologic systems (Haddad & Serdijn, 2009). These signals 

allow getting information about the state of living systems. Hence, monitoring and 

interpretation of these signals have significant diagnostic value for clinicians and 

researchers to obtain information related to human health and diseases. In literature, 

there are many valuable books about biomedical signal processing and its importance 

such as (Feng, 2007; Haddad & Serdijn, 2009; Rangaraj, 2002; Sawhney, 2007). 
 

In a signal processing system, obtaining a measurable electrical signal is very 

important. Therefore, sensors and instrumentation must be developed. Then the 

measured signals from physiological systems can be analyzed. Unfortunately, 

analyzing such signals is not an easy task for a physician or life-sciences specialist 

since noise and interferences often mask the clinically relevant information in the 

signals and it may not be easily comprehensible by the visual or auditory systems of 

a human observer. Furthermore, the variability of signal from one subject to another, 

and the inter-observer variability inherent in subjective analysis performed by 

physicians make consistent understanding or evaluation of any phenomenon difficult. 

In investigations of physiological systems, these factors created the need not only for 

improved instrumentation, but also for the development of methods for objective 
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analysis via signal processing algorithms implemented in electronic hardware or on 

computers. 
 

Until a few years ago, biomedical signal processing was mainly directed toward 

filtering, spectral analysis and modeling. The filtering is used for removal of noise 

and power-line interference. The spectral analysis is performed to understand the 

frequency characteristics of signals. Modeling is utilized for feature representation 

and parameterization. But new trends in biomedical signal processing have been 

toward quantitative or objective analysis of systems via signal analysis. The 

biomedical signal analysis has moved forward to the stage of practical application of 

signal processing and pattern analysis techniques in order to efficient and improved 

noninvasive diagnosis (Rangaraj, 2002). The field of engineering aims to apply 

engineering principles to analyze and solve problems in life sciences and medicine. 

Techniques developed by engineers are increasingly accepted by practicing 

clinicians, and the role of engineering in diagnoses and treatment is gaining much 

deserved respect.  
 

In the application of computers for biomedical signal analysis, the basic strength 

lies in the ability of signal processing and modeling techniques for quantitative or 

objective analysis. Observation by human sense is generally perceptual limitation for 

example, inter-personal variation, errors caused by fatigue, errors caused by the very 

low rate of incidence of a certain sign of abnormality, environmental distraction, etc. 

The interpretation of a signal by an expert varies according to the weight of the 

experience and expertise of the analyst. Such analysis is almost always personal. 

Computer based analysis has the potential to add objectivity to the interpretation of 

the expert. Therefore, it is possible to improve the diagnostic confidence and 

accuracy of even an expert with many years of experience. This approach could be 

named as computer aided diagnosis. 

 

Automatic recognition helps in the diagnosis and facilitates the expert’s work. It is 

especially useful during long-term monitoring such as electroencephalography 

(EEG) and electrocardiography (ECG) based monitoring systems. Examination of a 

record obtained over a period of days or weeks would be much time consuming if it 
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is done manually. Therefore, an automatic recognition system will intensely reduce 

the elapsing time. 

 

The rapid development in the field of medicine applies variety of imaging 

techniques of the human body. The group of biomedical signal measurements 

includes items as ECG, EEG, electromyography (EMG), magnetoencephalography 

(MEG), computer tomography (CT), magnetic resonance imaging (MRI), functional 

MRI etc. EEG reads scalp electrical activity generated by brain structures, and ECG 

is reads electrical activity of heart. EEG and ECG are completely noninvasive 

procedures that can be applied repeatedly to patients, normal adults and children with 

virtually no possible risk or limitation.  

 

Clinical recording of human brain electrical activity is the most important 

examination method for diagnosis of neurological disorders related to epilepsy. The 

EEG, which is used to display the electrical activity of the brain, has been a valuable 

clinical tool for this purpose. It has been accepted for a long time that epileptic spike 

activity, which is a type of transient waveform that appear in the inter-ictal period, 

i.e. in between seizures, have a high correlation with seizure occurrence. Therefore, 

the presence of spikes in the scalp EEG recordings is accepted as a confirmation for 

the diagnosis of epilepsy (Chatrian et al., 1974; Kiloh, McComas, Osselton, & 

Upton, 1981; Niedermeyer & Silva, 1993). For this reason, inter-ictal spike detection 

plays a crucial role in the diagnosis of epilepsy. Unfortunately, these spikes are very 

similar to and thus can easily be confused with non-spike waveforms produced by 

other brain disorders. 

 

Similarly, the accurate recognition of the beats from an electrocardiographic 

(ECG) record has been a very important subject in intensive care units (ICU) and 

critical care units (CCU). This is due to the fact that the accurate recognition and 

classification of the various types of arrhythmias is essential for the correct treatment 

of the patient. Various algorithms for the automatic detection of ECG beats have 

been developed by different investigators for this purpose. These researchers used 

different features and classification methods. Despite all these developments, there is 
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still room for improvement in this area. A major problem challenging today’s 

automatic ECG analysis algorithms is the considerable variations in the 

morphologies of ECG waveforms among different patients. Therefore, an ECG beat 

classifier performing well for a given training database could easily fail when 

confronted with a different patient’s ECG signal. Because of this reason, the 

performance of the arrhythmia classification systems degrades when the number of 

arrhythmias to be classified is increased. This seems to be a major hurdle that 

prevents highly reliable, fully automated ECG processing systems to be widely used 

clinically. 

 

In this thesis, considering the needs and trends in biomedical signal processing 

field, one dimensional biomedical signals, ECG and EEG, are studied to produce 

robust solutions for two major clinical problems, namely automatic spike detection 

and automatic heartbeat classification. 

  

1.2 Organization of Thesis 

 

This thesis consists of six chapters. Chapter 1 states the problems and outlines the 

motivation and the objectives of the thesis. 

 

Chapter 2 provides background information about the physiological biomedical 

signal and abnormalities of these signals are also given in detail. 

 

Chapter 3 provides background on pattern recognition methods. This chapter 

describes main processes of the pattern recognition system. Methods used in the 

proposed system are given in detail such as preprocessing, feature extraction, 

visualization of high dimensional features, feature dimension reduction methods and 

classification. 

 

In Chapter 4, neural network based classification system and a multi-stage 

classification system are investigated for automatic recognition of epileptiform 

pattern in EEG signal. Multilayer perceptron networks trained by different training 
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algorithms are constructed. The training algorithms are compared in terms of their 

classification performances, and also different transform techniques which are 

applied the data are compared. A multi-stage classification system is introduced for 

automatic recognition of epileptiform pattern in EEG signal. 

 

In Chapter 5, multi-stage system is introduced for automatic heartbeat recognition 

system in ECG records. Different feature extraction techniques are utilized. Feature 

selection algorithm is performed with sequential floating search and genetic 

algorithm to determine suboptimal solution. Also artificial neural networks are used 

for dimension reduction. Ensemble of classifiers system is constructed for both 

stages of the system. In the first stage, all heartbeats are classified into five main 

groups, and in the second stage, main groups are then separated into heartbeat 

classes.  

 

Finally, Chapter 6 gives conclusion and contributions of the thesis and 

recommendations for future work. 
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CHAPTER TWO 

PHYSIOLOGICAL BACKGROUND 

  

Living organisms consist of many systems. For instance, the human body includes the 

nervous system, the cardiovascular system, and the musculoskeletal system. Each 

system consists of several subsystems that carry on many physiological processes.  

 

The physiological processes include nervous or hormonal stimulation and control; 

inputs and outputs which could be similar to physical material, neurotransmitters, or 

information; and action that could be mechanical, electrical, or biochemical. Therefore, 

they are complex phenomena. Most physiological processes are accompanied by or 

appear themselves as signals that reflect their nature and activities. The signals could be 

different types, such as biochemical in the form of hormones and neurotransmitters, 

electrical in the form of potential or current, and physical in the form of pressure or 

temperature (Haddad & Serdijn, 2009). 

 

When the signal is simple and it appears at the outer surface of the body, the task is 

not so hard. For instant, a rise in the temperature of the body is caused by most 

infections. It may be sensed very easily using simple thermometer or via hand. A 

single temperature is a scalar, and it shows the thermal state of the body at a single 

instant of time t. If the temperature is recorded continuously in some form, signal is 

obtained as a function of time. The example of body temperature is a rather simple 

example of a biomedical signal. On the other hand, other diseases such as abnormalities 

of cardiovascular system, respiratory system cannot be understood by simple observation 

way (Haddad & Serdijn, 2009). 

 

Figure 2.1 shows a block diagram of medical care system that monitors and analyzes 

physiological signals from a patient.  In data collection stage the physiological signals of 

patient are measured by sensors and converted to produce electrical signals. The 

electrical signals are then analyzed by a processor or computer system in data analysis 

part. The results of analysis are reported. According to the results of signal analysis, the 
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processor may perform direct therapeutic intervention on a patient or only reports the 

results of the analysis. 

 

 
       Figure 2.1 Basic elements of a medical care system. 

 

Three basic types of data typically are used in the hospital.  These are alphanumeric, 

medical images, and physiological signals. The patient’s name and address, 

identification number, results of lab tests and physicians’ notes are called as 

alphanumeric data. Medical images include X-rays and scans from computer 

tomography, magnetic resonance imaging, and ultrasound. Physiological signals are the 

electrocardiogram (ECG), the electroencephalogram (EEG), and blood pressure tracings. 

 

Physiological signals like ECG, EEG, and EMG, represent an electrical activity. 

The electrical activity results from the chemical reaction in the cells. Chemical 

reactions inside and outside the cell provide mobile ions, and a small number of them 

move through the membrane. The permeability of ions varies for different ions. An 

imbalance of ions across the membrane of a cell causes voltage level, which changes 

with the movement of ions. 

 

Table 2.1 shows characteristics of some physiological signals such as frequency 

band and measurement techniques. 
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Table 2.1 Medical and physiological parameters (Webster, 1998) 

Parameter or Measuring 

Technique 

Principal Measurement 

Range of Parameter 

Signal Frequency 

Range, (Hz) 

Standard Sensor or 

Method 

Electrocardiography 0.5-4mV 0.01-250 Skin electrodes 

Electroencephalography 5-300µV 0-150 Scalp electrodes 

Electrocorticography and 

Brain depth 
10-5000 µV 0-150 

Brain surface or depth 

electrodes 

Electrogastrography 10-1000 µV 0-1 
Skin surface 

electrodes 

    

Electromyography 0.1-5mV 0-10000 Needle electrodes 

Electroneurography 0.01-3mV 0-10000 
Surface or needle 

electrodes 

 

 The electroneurogram (ENG) is an electrical signal observed as a stimulus and the 

associated nerve action potential propagate over the length of a nerve. It may be used 

to measure the velocity of propagation of a stimulus or action potential in a nerve. 

ENGs may be recorded using concentric needle electrodes or silver-silver-chloride 

electrodes at the surface of the body (Haddad & Serdijn, 2009). 

 

The electromyogram (EMG) signal indicates the level of activity of a muscle, and 

may be used to diagnose neuromuscular diseases such as neuropathy and myopathy. 

EMG signals are recorded using surface electrodes. Skeletal muscle fibers are 

considered to be twitch fibers because they produce a mechanical twitch response for 

a single stimulus and generate a propagated action potential (Haddad & Serdijn, 

2009).  

 

The electroencephalogram (EEG) signal represents the electrical activity of the 

brain. It is popularly known as brain waves. In clinical practice, several channels of 

the EEG are recorded simultaneously from various locations on the scalp for 

comparative analysis of activities in different regions of the brain (Haddad & Serdijn, 

2009). 
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The electrocardiogram (ECG) is one dimensional signal which indicates the 

electrical activity of the heart and can be recorded fairly easily with surface electrodes 

on the limbs or chest. The ECG is perhaps the most commonly known, recognized, 

and used biomedical signal (Haddad & Serdijn, 2009). 

 

The EEG and the ECG signals are the most commonly used biomedical signals 

which represent the electrical activity of brain and heart, respectively. In this thesis, 

these signals are investigated for diagnostic purposes. In the following subsections 

EEG and ECG signals are examined in detail. 

 

2.1 The electroencephalogram (EEG) 

 
EEG, which is also known as brain waves, represents the electrical activity of the 

brain and an important clinical tool in diagnosing, monitoring and managing of 

neurological disorders. It has also been used for investigating brain dynamics in 

neural engineering. It is comprised of electrical rhythms and transient discharges 

which are distinguished by location, frequency, amplitude, form, periodicity, and 

functional properties. 

 

Generated signals by physiological control processes, thought processes, and 

external stimuli in the corresponding parts of the brain may be recorded at the scalp 

using surface electrodes. The scalp EEG is an average of the diverse activities of 

many small zones of the cortical surface beneath the electrode. The 10-20 system of 

electrode localization for clinical EEG recording has been recommended by the 

International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology (Haddad & Serdijn, 2009). 

 

The name 10-20 means that the electrodes along the midline are located at 10%, 

20%, 20%, 20%, 20%, and 10% of the total nasion - inion distance; the other series 

of electrodes are also located at similar fractional distances of the corresponding 

reference distances. The scalp electrode localization is schematically illustrated in 

Figure 2.2. 
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 Figure 2.2 The 10-20 electrode placement system 

(Acır, 2004). 

 

19 locations are obtained on the scalp according the 10-20 system. Right-sided 

electrodes are even numbered and left-sided electrodes are odd numbered. Letters 

preceding the numbers refer to cortical regions. Frontal is ‘F’, prefrontal is ‘Fp’ (or 

frontopolar), parietal is ‘P’, temporal is ‘T’, central is ‘C’ and occipital is ‘O’. 

Electrodes along the midline have no numbers only the letter ‘z’. Figure 2.3 shows a 

sample of 19 channel EEG record. 
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Figure 2.3 A sample of 19 channel EEG record. 

 

EEG signals present several patterns of rhythmic or periodic activity. EEG 

rhythms are associated with various physiological and mental processes (Rangaraj, 

2002).  The commonly used terms for EEG frequency bands are: 

 

• Delta: 0.5-4 Hz; 

• Theta: 4 -8 Hz; 

• Alpha: 8-13 Hz;  

• Beta: 13-22 Hz; and 

• Gamma: 22-30 Hz. 
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The delta activities appear at deep stages of sleep. The theta activities appear at 

the beginning stages of sleep. The amplitude of theta and delta activity is less than 

100µV (peak-to-peak). They are strongest over the central region of brain and are 

indications of sleep. The alpha rhythm is the principal resting rhythm of the brain. 

The amplitude of alpha activity is usually less than 10µV (peak-to-peak). Auditory 

and mental arithmetic tasks with the closed eyes cause strong alpha waves and when 

the eyes are opened it is suppressed. High frequency beta activities appear as 

background activity in tense and anxious subjects. The amplitude of beta activity is 

less than 20µV (peak-to-peak). High states of wakefulness and desynchronized alpha 

patterns generate produce beta activities. The amplitude of gamma activity is less 

than 2µV (peak-to-peak) and it consists of low amplitude, high-frequency waves that 

result from attention or sensory stimulation. (Haddad & Serdijn, 2009; Acır, 2004). 

 

2.1.1 Abnormalities in EEG 

 

EEG signals may be used to study the nervous system, monitoring of sleep stages, 

biofeedback and control, and diagnosis of diseases such as epilepsy. Epilepsy is a 

very common neurological disorder. It is defined as sudden, excessive and abnormal 

discharges in brain which may be caused by a variety of pathological processes of 

genetic or acquired origin. This disorder is often identified by sharp recurrent and 

transient disturbances of mental function or movements of different body parts 

(Göksan, 1998). Clinical recording of human brain electrical activity is the most 

important examination method for diagnosis of neurological disorders related to 

epilepsy. It relates to a number of diseases associated to the abnormal function of the 

brain. Episodes of sudden disturbances of consciousness, mental functions, motor, 

sensory and autonomic activities are called seizures (Fisch, 1991). Sharp transient 

waveforms are characteristics of the epileptic seizures of focal origin in EEG. They 

are different from the background and exhibit a paroxysmal or abrupt, high voltage 

potential. The amplitude and morphologies of them vary from sharp transient to 

sharp transient. Such epileptiform sharp transients include both spikes with duration 

between 20 and 70 ms and sharp waves with duration between 70 and 200 ms 

(Chatrian et al., 1974). 
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2.2 The electrocardiogram (ECG) 
 
 

The heart has four chambers (as shown in Figure 2.4) and circulates blood through 

the body as a pump. The main pumps are the two lower chambers called the 

ventricles. The upper two chambers, the atria, act as temporary storage for the blood 

while the ventricles pump blood to the rest of the body. Pumping is a two-phase 

process consisting of diastole and systole. Diastole is the resting and filling phase. 

Systole is the contracting and pumping phase. The contractions of both the atria and 

ventricles are coordinated by electrical activations. These activations propagate 

through the structure of the heart and cause depolarization and repolarization of 

cardiac muscle cells. 
 

Figure 2.4 Anatomic diagram of the heart (frontal 

section) (Heart Structure, 2009). 
 

For a normal rhythm activation begins at the sino-atrial (SA) node, also called the 

pacemaker of the heart. The SA node is located at the right atrium. It controls the rate 

of heart and rhythm. The atrioventricular (AV) rings prevent conduction between the 

chambers with the exception of a pathway through the AV node and AV bundle. 

Conduction continues from the AV node to the ventricles via the rapidly conducting 

His-Purkinje system. Figure 2.5 illustrates the activation sequence of the electrical 

activity for sinus rhythm. 
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Figure 2.5 Activation sequence of sinus rhythm 

starting from the sino-atrial node (Activation 

sequence, 2009). 

 

The electrocardiogram is the prevalent means of non-invasively observing the 

electrical activity of the heart. The series of activations of the heart result in potential 

differences that are spatially distributed and vary in time. The ECG can be recorded 

on the surface of the body; it provides an inexpensive and non-invasive means to 

monitor the heart's electrical activity. 
 

The ECG signal repeats beat by beat, but the heartbeat rate of a recorded ECG 

changes with time. The mean and variance of the beat rate vary with time. Therefore, 

the ECG signal is considered to be quasi-periodic and non-stationary (Rangaraj, 

2002). 
 

In order to record ECG, standard twelve lead system is used. A standard twelve 

lead electrocardiograph uses ten electrodes. Six of these electrodes, which are named 

the precordial leads, are placed near the heart at anatomically defined positions on 

the left side of the chest wall as shown in Figure 2.6a. The remaining four electrodes 

are placed on the left arm (LA), left leg (LL), right arm (RA) and right leg (RL), 

respectively, as shown in Figure 2.6b. Of these, the right leg electrode is chosen to be 

the relative ground of the system. Three leads are defined between the electrodes on 

the arms and legs: lead I, between LA and RA, lead II, between LL and RA, and lead 

III, between LL and LA. The other three unipolar frontal leads, known as 'aVL', 
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'aVR', and 'aVF', which are usually called augmented unipolar leads, can be recorded 

from the same electrodes as the three leads LA, LL, and RA (Figure 2.7). The 

electrode on the right leg acts as a virtual ground for the system (Webster, 1998). 

Figure 2.8 shows an example of 12 lead ECG record. 

 

 
a) 

 
b) 

Figure 2.6 Positions of ten electrodes a) precordial leads on the chest wall, b) 
standard limb lead vectors (Webster, 1993). 

 

 a) 
 

b) 

 
c) d) 

 
Figure 2.7 (a), (b), (c) Connections of electrodes for the augmented limb 
leads, (d) Vector diagram showing the directions of limb lead vectors in 
the frontal plane (Webster, 1998). 
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Figure 2.8 An example of 12 lead ECG record, using the BIOPAC MP30 bio-signal recording 
device. 

 

The potentials arising from the depolarization, and subsequent repolarization, of a 

large group of heart muscle cells can be recorded by measuring the surface electric 

potential of the skin. Following is a brief description of how variations in the surface 

potential are related to the activity of the heart. The sum of these potentials results on 

the ECG is shown in Figure 2.9.  

 

The electric activation has begun at the SA node as a small electrical activity, 

called the P wave. The generated action potential is propagated rapidly through the 

both atria walls. After the depolarization has propagated over the atrial walls, it 

reaches the AV node. The propagation through the AV junction is very slow. It 

results in a delay in the progress of activation. This is a desirable pause which allows 

giving the atria time to contract and empty blood into the ventricles before the 

ventricles contract. When the electrical activation has reached the ventricles, the 

propagation continues along the Purkinje fibers to the inner walls of the ventricles. In 

the next phase, depolarization waves occur on both sides of the septum. The 

progressive depolarization of the ventricular muscle cells result in the QRS complex 

on the ECG. This coincides with ventricular muscle contraction, a period known as 

the systole. Approximately 0.2 seconds after the QRS complex comes the T wave, 

which represents the repolarization of the ventricular muscle cells. 
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Figure 2.9 Electrophysiology of the heart (Webster, 1993). 

 

In the case of a normal cardiac rhythm, the onset and offset of the QRS complex 

and the other waves can be readily identified and the shape of the QRS complex is 

evident. In fact, practicing cardiologists primarily exploit the shape to focus their 

attention on the ECG features to be studied in detail (Bottoni et al. 1990).  

 

Generally the noise present in ECG recordings is introduced by the electrodes, 

either by them serving as antenna for electromagnetic radiation or by recording 

corrupted signals. The most common sources of signal corruption in 

electrocardiography are power line interference, motion artifacts, skeletal muscle 

contractions, baseline drift, electrosurgical noise, and electrode contact noise.  

 

2.2.1 Cardiac Arrhythmias  
 

Some of the most distressing types of heart failure occur not as result of abnormal 

heart muscle but because of abnormal rhythm. Deviation in the heart's rhythm from 

the normal physiological behavior is called arrhythmia, which is usually associated 

with abnormal pump function, thus resulting in reduction of life quality, or even 

death. Arrhythmias can be classified based on their underlying mechanisms into 

three groups: arrhythmias of abnormal impulse initiation (including automaticity and 

triggered activity), abnormalities of impulse propagation (including slowed 
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conduction/block, reentry and unidirectional block, ordered and random reentry), or 

combined (simultaneous abnormalities of both impulse formation and propagation) 

(Alpert, 1980; Gertsch, 2003; Webster, 1993; Wagner, 2001; Crawford, 2004). 

 

There are many types of arrhythmias. Arrhythmias are identified by where they 

occur in the heart (atria or ventricles) and by what happen to the heart's rhythm when 

they occur.  They also are classified as ectopic beats and pattern type arrhythmias. 

 

Ectopic heartbeat is an irregularity of the heart rate and heart rhythm involving 

extra or skipped heartbeats. Extra heartbeats, called ectopic beats, are very common 

diseases. They may come either from the atria, the upper chambers of the heart, or 

the ventricle, the lower chambers. Ectopic beats are not in themselves dangerous and 

do not damage the heart. Types of ectopic beats and their properties are summarized 

below. 

 

Supraventricular ectopic beat: It is a heartbeat that is caused by an ectopic 

impulse that occurs somewhere above the level of the ventricles. 

 

Premature atrial contraction: The heart rate stays normal, but the rhythm 

becomes irregular due to the premature P wave. This arrhythmia type can cause 

palpitation, atrial flutter or atrial fibrillation.  

 

Atrial escape beat: They are ectopic atrial beats that emerge after long sinus 

pauses or sinus arrest. They may be single or multiple; escape beats from a single 

focus may produce a continuous rhythm (called ectopic atrial rhythm). Heart rate is 

typically slower, the P wave morphology is typically different, and PR interval is 

slightly shorter than in sinus rhythm. 

 

Ventricular premature beat (ventricular ectopic beat, premature ventricular 

contraction): It is an extra heartbeat resulting from abnormal electrical activation 

originating in the ventricles before a normal heartbeat would occur. 
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Premature ventricular contraction: Heart rate is variable. P wave is usually 

obscured by the QRS, PST or T wave of the premature ventricular contraction. The 

wideness of the QRS complex is more than 0.12 seconds and its morphology is 

unusual with the ST segment and the T wave opposite in polarity. QRS complex may 

be multi-focal and exhibit different morphologies. 

 

Ventricular escape beat: It is an ectopic beat that occurs after an extended pause 

in a rhythm, indicating either the failure of the SA node to initiate a beat or the 

failure of the conduction of this beat to the AV node.  

 

Premature junctional beat: it originates near the AV node junction. In general, 

they do not require treatment. 

 

Left bundle branch block: activation of the left ventricle is delayed, which results 

in the left ventricle contracting later than the right ventricle. The duration is caused 

expansion of QRS complex. 

 

Right bundle branch block: During a right bundle branch block, the right ventricle 

is not directly activated by impulses traveling through the right bundle branch. 

However, the left ventricle is still normally activated by the left bundle branch and 

these impulses travel through the left ventricle's myocardium to the right ventricle 

and activate the right ventricle. The duration is caused expansion of QRS complex. 

 

Junctional escape beat: It is a delayed heartbeat produced from an ectopic focus 

somewhere in the AV junction. When the rate of depolarization of the SA node falls 

below the rate of the AV node, it occurs. This dysrhythmia may also occur when the 

electrical impulses from the SA node could not reach the AV node because of SA or 

AV block.  

 

The other kinds of arrhythmias are pattern type arrhythmias. These types of 

arrhythmias are identified by the characteristic of consecutive beats, and grouped as 

supraventricular or ventricular.  
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Supraventricular arrhythmias occur in two upper chambers of heart (atrium). 

Types of supraventricular arrhythmias include atrial fibrillation (AF), atrial flutter, 

paroxysmal supraventricular tachycardia (PSVT). Ventricular arrhythmias occur in 

two lower chambers of heart (ventricles). Types of ventricular arrhythmias include 

ventricular fibrillation (AF), ventricular flutter, and ventricular tachycardia. The most 

dangerous types of arrhythmias are ventricular arrhythmias, since they may cause 

death. 
 

Atrail fibrillation: It is an electrical rhythm disturbance. Abnormal electrical 

impulses in the atria cause the muscle to contract erratically and pump blood 

inefficiently. Hence, the atrial chambers are not able to completely empty blood into 

the ventricles. Pooling of blood in the atria can cause red blood cells to stick together 

and form a clot. The most worrisome complication of atrial fibrillation is 

dislodgement of a clot and embolism of the clot material to one of the major organs 

of the body (e.g., the brain) (Crawford, 2004). 
 

Ventricular fibrillation: Ventricular fibrillation occurs when parts of the ventricles 

depolarize repeatedly in an erratic, uncoordinated manner. The ECG in ventricular 

fibrillation shows random, apparently unrelated waves. Ventricular fibrillation is 

almost invariably fatal because the uncoordinated contractions of ventricular 

myocardium result in ineffective pumping and little or no blood flow to the body. 

There is lack of a pulse and pulse pressure and patient lose consciousness rapidly. 

When the patient has no pulse and respiration, he/she is said to be in cardiac arrest. 
 

Ventricular flutter: This is especially dangerous when the heart rate exceeds 250 

beats per minute. The chambers of the heart contract so quickly that there is hardly 

any time for the blood to flow into and fill the chambers. In this situation, the heart 

transports only a little blood into the circulation. The person who is experiencing this 

is close to unconsciousness. 
 

Ventricular tachycardia: Ventricular tachycardia is a rapid heartbeat initiated 

within the ventricles, characterized by 3 or more consecutive premature ventricular 

beats. 
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CHAPTER THREE 

PATTERN RECOGNITION METHODS 

 

3.1 Introduction  

  

The main aim of pattern recognition is the classification of some patterns. Basic 

pattern recognition system consists of the following parts: preprocessing, feature 

extraction/selection, and classification as shown Figure 3.1. 

 

 
Figure 3.1 Basic process of  pattern recognition system. 

 

Data acquisition, noise removal, signal enhancement, and preparing data for feature 

extraction are the main operations of pre-processing. Feature extraction and selection 

are very important and crucial steps in pattern recognition. Feature extraction is the 

determination of a feature or a feature vector from a pattern. The feature vector is 

comprised of the set of all features which describe a pattern. The feature vector is 

reduced in size at the feature selection step. The classification step will be the final 

stage in automatic pattern recognition system. It makes a classification decision 

according to the input feature vector representing the sample data.  

 

3.2 Pre-processing 

 

In data acquisition step, data almost always be affected and corrupted by the 

environment. Other then the desired signal, interference, artifact, or simply noise are 

always present in the acquisition data. The sources of noise can be physiological, the 

used instrumentation, or the environment of the experiment. It is especially a big 
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problem for biomedical signals. All biomedical applications require an accurate 

analysis of the signal. Thus, noise in the signal must be removed in pre-processing 

stage.  

 

Preparing signal for feature extraction stage is also operation of preprocessing 

stage such as peak detection, determining region of interest etc... 

 

3.3 Feature Extraction 

 

Feature extraction is an important step in pattern recognition. It is the process of 

information extraction which represents the characteristics of the pattern. The set of 

extracted information or features is called feature vector.   

 

Various methods can be used for feature extraction to obtain information from the 

signal. Each feature can independently represent the original data, but none of them 

completely represents the all data for practical recognition applications. Furthermore, 

there seems to be no simple way to measure relevance of the features for a pattern 

classification task (Bhaskar, Hoyle, & Singh, 2006; Jain, Duin, & Mao, 2000; Duda, 

Hart, & Stock, 2001).  In this case, diverse set of features often need to be used in 

order to achieve robust performance. The rapidly growing technology has also 

facilitated the use of detailed and diverse methods for data analysis and classification. 

Hence, the set of features will be selected from a large pool of candidate features 

including morphological, temporal, spectral, time-frequency, and higher-order 

statistical ones. 

 

3.3.1 Raw Data 

 

A specific window is determined and amplitude values of data in the window are 

used as a feature vector. It is a simple feature extraction method. Furthermore, it is 

not required additional computational process. The window size is a parameter that 

may be investigated to achieve good performance. 

 



23 

 

 

3.3.2 Higher Order Statistics 

 

In signal processing, the first and second order statistics are widely used tools for 

signal representation. But they are not always sufficient for representing some 

signals. Higher order statistical methods are used, when the signals can’t be 

examined properly by second order statistical methods. while the first and second 

order statistics contain mean and variance, higher order statistics contain higher order 

moments (m3, m4, …) and non linear combinations of higher order moments which 

are known as cumulants (c1, c2, c3 …). Cumulants are blind to any kind of a Gaussian 

process.   Therefore, cumulant-based methods boost signal-to-noise ratio when 

signals are corrupted by Gaussian measurement noise (Mendel, 1991). 

 
For zero mean discrete time signal moments and cumulants are defined as:  
 

i) }n E{X(n).X((i)m +=2  

j) }i) .X(nn E{X(n).X((i,j)m ++=3  

k) }j) .X(ni) .X(nn E{X(n).X((i,j,k)m +++=4  

                  (3.1)  

                 (3.2)

           (3.3)

               

where E(.) is defined as the expectation operation, and X is the random process.  
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Higher-order statistics are applicable for non-Gaussian processes. Many 

applications in real world are truly non-Gaussian. 
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In addition to representing the signals in time domain, we can also compute the 

spectra of the random signal, which is called the power spectrum. Power spectrum is 

given as the discrete Fourier Transform (DFT) of the second order moment c2.  
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Similarly, the spectrum of the 3rd order cumulant, the bispectrum, is given as: 
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The bispectrum is a function of two frequencies and carries information about the 

phase. The power spectrum does not carry any information about the phase.  
 

3.3.3 Frequency Domain Measures 
 

Fourier transform (FT) is often called the frequency domain representation of the 

original signal. It describes which frequencies are present in the original signal so it 

is important tool for the digital signal processing. Implementation of algorithm of FT 

can be found in many popular digital signals processing book such as (Ingle & 

Proakis, 2000) 
 

Discrete Fourier Transform (DFT) of an N-point evenly-spaced sequence is  
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where, Xk is the DFT of xn. 
 

The energy spectral density describes how the energy of a signal is distributed 

with frequency and given as 
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where, F(ω) is DFT of fn. 
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3.3.4 Time-Frequency Domain Measures 

 

The original signal or function can be represented in terms of wavelet expansions. 

The wavelet expansions are coefficients in a linear combination of the wavelet 

functions and the corresponding wavelet coefficients can be used in practice as 

features to represent the signal.  Wavelet analysis has found wide area applications, 

since wavelet analysis can be applied to both stationary signals and non-stationary 

signals. 

 

Wavelets are functions that satisfy certain mathematical requirements. The wavelet 

analysis procedure consists of determining a wavelet prototype function, and 

calculating the correlation between the signal and the dilated and shifted wavelet 

prototype function.  The wavelet prototype function is called mother wavelet denoted 

as Ψ(t). A set of basic functions used in wavelet transform are the scaled and 

translated versions of the Ψ(t).  
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where, τ is a shift position, a is a positive scaling factor, a > 1 corresponds to a 

dilation, while 0 < a < 1 to a contraction of Ψ(t), and R denotes the set of real 

numbers.  

 

Equation 3.11 shows that wavelets are used with different scaling factor a. This 

preserves the same shape and changes the size. Such a dilation or contraction property 

is used to represent a non- stationary function through wavelet transform (Meyer, 

1993). 

 

The continuous wavelet transform (CWT) of a real valued function x(t) is given as 
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where, Ψ(t) is the mother wavelet and x(t) is the original signal, C(a, τ ) is called 

wavelet coefficients, which represent the correlation between the signal and the 

chosen wavelet at different scales. 

 

For a given shift τ, the CWT is the result of the local analysis of the signal x(t) at 

the given position τ  with wavelet function whose width depends on the scale factor 

a. The amplitude of the coefficients is reaches the maximum at a position τ where the 

scaled prototype best matches the original function.  

 

The mother wavelet Ψ(t), must be band-limited in the frequency domain, must be 

a zero mean function, and must be a function with finite energy. 

 

The discrete wavelet transform (DWT) has been presented in order to reduce the 

redundancy of the continuous wavelet transform. The algorithm to implement the 

DWT through multi-resolution analysis using filter banks is described by (Mallat, 

1989). The general procedure of this DWT algorithm is to decompose the discrete 

signal into an approximation signal Hi and a detail signal Gi. Where, i represents 

scale level in the multi-resolution analysis. While the approximation signal is the  

low-passed signal, the detailed signal is the high-passed signal. Both of these signals 

have been down sampled after each scale. 

 

Figure 3.2 shows the filter bank scheme of decomposing a signal. The 

implementation procedure of the multi-resolution decomposition of the signal by 

filter banks H and G is shown. The signal is decomposed into detail part by G and 

approximation by H, then down-sampled by 2, respectively. The decomposition and 

down-sampling for approximation are repeated again and again until a chosen scale is 

met or only one sample is left in the resulting approximation. 



27 

 

 

 
Figure 3.2 The filter bank scheme of decomposing a 

signal. 

 

DWT are commonly used in biomedical pattern recognition problems for feature 

extraction. The wavelet packet decomposition (WPD) method is an expansion of the 

classical DWT (Daubechies, 1992). The DWT only decomposes the low frequency 

components. Not only does the WPD utilizes the low frequency components but also 

the high frequency components (details) (Daubechies, 1990; Learned & Willsky, 

1995; Misiti et al., 2004; Unser & Aldroubi, 1996). Figure 3.3 shows the wavelet 

decomposition trees of DWT and WPD. In Figure 3.3a, the signals are split into high 

frequency components (Details: D) and low frequency components (Approximations: 

A). The approximation achieved from the first level is split into new detail and 

approximation components and then this process is repeated. Therefore, it may miss 

important information which is located in higher frequency components. The original 

signal S is split as shown in Figure 3.3b for the 3-level decomposition. The top level 

of the WPD is the time representation of the signal. But the bottom level has better 

frequency resolution (Learned & Willsky, 1995). Thus, using WPD, a better 

frequency resolution can be achieved for the decomposed signal.  
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a) 

 
b) 

Figure 3.3 Decomposition trees (a) discrete wavelet 
transform and (b) wavelet packet analysis. 

 

The advantage of the wavelet packet analysis is that it is possible to combine the 

different levels of decomposition in order to construct the original signal. 

 

3.3.5 Morphological Representation 

 

Morphological feature extraction method is one of the classical feature extraction 

methods. This approach is based on peak point in the signals. Morphological 

properties such as amplitude of peak, width of peak, slope of peak etc. are used as 

features.  

 

3.4 Feature Transformation 

 

Each data set is further transformed by using different transform methods such as 

normalization, nonlinear transformation, principal component analysis (PCA), and 

whitening transformation. These transformation methods are described in detail 

below. 
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• Normalization: The process of transforming the data from its original 

value into the range of -1 and 1 is called as normalization. There are 

several ways to normalize a data. The approach used in this study works 

by dividing the actual value by the absolute maximum value of each 

sample vector (Bishop, 1995; Duda, Hart, & Stock, 2001). 
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where, Yk is the normalized data vector and  Xk is the kth sample vector. 

 

• Nonlinear Transformation: Nonlinear transformation is another 

process of transforming data from its original value into a new range 

(Özdamar & Kalayci,  1998). In this study, hyperbolic sigmoid function is 

utilized as the nonlinear function 
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where Yk is the transformed data matrix and Xk is the normalized 

original data matrix. (Before the nonlinear transformation is applied, the 

original data is normalized first). 

 

• Principle Component Analysis (PCA): PCA is a linear 

transformation method (Bishop, 1995; Duda, Hart, & Stock, 2001; 

Wiskott, 2004). In this method, first the d-dimensional mean vector and 

dxd covariance matrix are computed for the full data set. Next, the 

eigenvectors and eigenvalues of the covariance matrix are found and 

stored according to decreasing eigenvalue. The representation of original 

data by PCA consists of projecting the data onto a new subspace whose 

dimensionality K could be equal to or less than the dimensionality of the 
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original data d. The PCA transforms X to Y by the following equation;  
 

Y = XV         (3.15) 

 

where Y is the transformed data matrix, X is original data matrix and V is 

portioned matrix consisting of  eigenvectors corresponding to the 

eigenvalues decreasing value of the covariance matrix. 

 

• Whitening Transformation: The whitening transformation is also a 

linear transformation (Duda, Hart, & Stock, 2001; Tang, Suganthan, Yao, 

& Qin, 2005). It performs a coordinate transformation that converts an 

arbitrary multivariate normal distribution into a spherical one. Therefore, 

the new distribution of data has a covariance matrix proportional to the 

identity matrix I. The whitening transformation transforms X to Y by the 

following equation;  

 

Y = VX             (3.16) 

 

where Y is the transformed data matrix, X is the original data matrix, 

and V is a transformation matrix calculated by  

 

V=D-1/2ET          (3.17) 

 

Here D is the diagonal matrix of eigenvalues and  E represents the 

portioned matrix consisting of the corresponding eigenvectors of the 

covariance matrix.  
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3.5 Visualization of Multidimensional Data using Self Organizing Maps 

 

Self-organizing maps (SOMs) are biologically inspired neural network 

architectures trained by unsupervised learning algorithms based on competitive 

learning rule (Kohonen, 1982; Kohonen, 2001). The SOM was invented by Kohonen 

(1982).  SOM usage is divided as two main categories in the literature. In the first 

one, the neurons in the SOM represent different clusters in the data space. The 

number of neurons in this network corresponds to the number of clusters that exist in 

the input data. So, neuron size is very small; it is generally less than twenty. The 

other usage of SOM is related to the low dimensional visualization of high 

dimensional data (Ultsch, 2003). Humans simply cannot visualize high dimensional 

data. Therefore, different techniques have been developed to help visualize this kind 

of high dimensional data. One of these methods is the Unified Distance Matrix (U-

matrix). U-matrices are invented for the visualization purposes of these high 

dimensional structural features. The U-Matrix is the canonical tool for the display of 

the distance (and topological) structures of the input data (Ultsch, 1992). In these 

models of SOM, very large numbers of neurons are used, generally over 1000.  
 

The SOM is an unsupervised type neural network architecture used to visualize 

and interpret high-dimensional data sets on the map. The map usually consists of a 

two-dimensional regular (rectangular or hexagonal) grid of nodes called neurons as 

shown Figure 3.4 and Figure 3.5. Each sample of high dimensional input data is 

associated with a unit which is the winner. Not only the winning neuron but also its 

neighbors on the lattice are allowed to learn and adapt their weights towards the 

input. This way, the representations will become ordered on the map.  After training, 

the responses of the SOM network are ordered on the map. This is the essence of the 

SOM algorithm and its main distinction from other networks.  
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Figure 3.4 Rectangular grid structures. 

 

 
Figure 3.5 Hexagonal grid structures. 

 

An N-dimensional input is presented to each neurons of a SOM network as shown 

in Figure 3.6. Then the winner unit (indicated by the index c), i.e. best match, is 

identified by the condition shown below for each sample, 

 

||)()(||min||)()(|| twtxtwtx iiici −=−         (3.18) 

 

where xi  is input vector with N dimension, wi is the ith weight, and c indicates the 

winning neuron. 
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Figure 3.6 Self-Organizing Map Structure. 

 

The update of the weights in the SOM network is limited by neighborhood 

function (Ωc(i)). The neighborhood function plays a main role in SOM algorithm 

regardless of the type of the learning algorithm. Three frequently used neighborhood 

functions are Gaussian, rectangular and cut Gaussian.  The weight of the winning 

unit and its neighbors are updated by the formula 

 

(i))Ωwη(xΔw cii −=    ∈i NBc        (3.19) 

 

where η is the learning rate in the interval 0 <η <1, Ωc(i) is the neighborhood 

function and NBc  indicates the neighbor neurons centered around node c, i.e. the 

winning neuron. 

 

3.5.1 U-Matrix  

 
After training the SOM network, the weight vectors that connect the high 

dimensional input vector space to 2-D output map grid are obtained. The distance 
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between the two mapped units on the projected plane is obtained through their 

respective weight vectors. The U-matrix method determines the distances between 

weight vectors of the adjacent map units.  A U-matrix is originally defined on planar 

map spaces and a U-matrix representation of the Self-Organizing Map visualizes the 

distances between the neurons. The distance between the neighbor neurons is 

calculated and presented with different colorings.  

 

There are various methods for U-matrix calculation from the trained weight 

vectors (Ultsch, 1992; Ultsch, 1993; Livarinen, Kohonen, Kangas, & Kaski, 1994; 

Oja  et al., 2002).  One of the methods used in the construction of the U-matrix uses 

the sum of the distances of the weight vectors to their neighboring weight vectors at 

each map coordinate (X;Y) (Ultsch, 1992). Another method is the median method. In 

this method, the distances between all adjacent neighbors are computed using the 

same distance metric. The median distance corresponds to the distance measure for 

that grid. Another commonly used approach uses a dummy grid in between every 

pair of map grids. In this method, the distance between two map grids are calculated 

and then assigned to the dummy grids as shown Figure 3.7. This is one simple way 

of calculation of the U-matrix with dummy grids (Oja et al. 2002).  The value to be 

assigned to the original map grids are taken as the median distance of all its 

neighbors. A different method of U-matrix computation for various types of lattice 

grids is discussed in the literature (Livarinen et al., 1994). 

 
 

 

Figure 3.7 A simple way of calculating the U-matrix with dummy grids. 

 

The computed U-matrix is visualized via a colored image or a gray-level image. 

The resultant gray-level image is a hexagonal grid map with different shades of gray-

scale for the grids. The gray-scale map carries input pattern identification labels. The 

formation of clusters in the data and location of outlier observations become visible 
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from such a gray-scale image. Typically, lighter shade patches indicate the location 

of data vectors which are similar and have less mutual distance; darker shade 

patches, on the other hand, indicate the location of data vectors having larger 

distance with observations in adjoining lighter shade areas. The outliers are identified 

as observations located in the darkest patches of the projected map.  

 

Figure 3.8 shows a U-matrix representation of a SOM network with gray-level 

image. The neurons of the network are marked as black dots. The representation 

shows that they correspond to separate clusters in the upper right corner of this 

representation. The clusters are separated by a dark gap.  

 

 
Figure 3.8 U-matrix representation of the SOM network with gray-level image. 

 

The distances between the neighboring units are represented as heights in a 3-

dimensional landscape. This is called as the hill-valley landscape visualization of the 

SOM. In this representation, there are valleys where the reference vectors in the 

lattice are close to each other and hills where there are larger mutual distances 

indicating dissimilarities in the input data. The height of the hills reveals the degree 

of dissimilarity among the data vectors. So the hills represent border of the clusters 

as shown in Figure 3.9. Outliers can be identified from this 'hill-valley' landscape 

visualization as they are typically located at higher locations on the hills. The degree 

of leverage of the outliers is associated with the height of the peaks of the 

corresponding hills. 
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Figure 3.9 Three dimensional landscape visualization of high dimensional 

data. 

 

3.6 Dimensionality Reduction 

 

Determination of the relevant features and reduction of the dimension of the feature 

space is very important in a pattern classification task to improve the classification 

accuracy and reduce the computational cost. For this purpose there are three 

approaches that could be applied. In the first case, feature selection methods are used 

to find best subset from a large group of features to maximize classification 

performance. The selected features keep original physiological meaning, which may be 

important for understanding the physiological properties of the pattern. The other 

approaches are feature extraction and dimension reduction (Bhaskar, Hoyle, & Singh, 

2006; Jain, Duin, & Mao, 2000). These methods create a reduced number of new 

features using combined features. These methods may not keep physiological meaning 

of the features. On the other hand, they may have better discriminative power (Jain, 

Duin, & Mao, 2000). PCA, SOM, and MLP are widely used effective methods in 

pattern recognition for feature dimensionality reduction and feature extraction 

(Bhaskar, Hoyle, & Singh, 2006; Jain, Duin, & Mao, 2000). 

 

Feature selection is identified as: given a set of d features selects a subset of m 
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features that leads to the smallest classification error. Feature selection methods consist 

of detecting the relevant features and discarding the irrelevant features. Therefore, it 

improves generalization performance of the machine learning algorithm, and reduces 

data size for limiting storage requirements. Feature selection methods grouped as filter 

methods (open-loop methods) and wrapper methods (closed-loop methods) (Maroño, 

Betanzos, & Sanromán, 2007; John, Kohavi, & Pfleger, 1994; Kohavi & John, 1997) 

as shown Figure 3.10. Filter methods are based mostly on selection of features using 

the statistical measures and they do not depend on a classifier. Wrapper methods are, 

on the other hand, based on feature selection using a classifier performance as  the 

selection criterion. Feature selection with wrapper method is used to find best subset 

from a large group of features that maximize classification performance of a specified 

classifier. 

 

 
a) 

 
b) 

Figure 3.10 Block diagram of feature selection a) with filter methods  and b) with 

wrapper methods. 

 

In order to find optimal solution exhaustive search is used. But exhaustive search 

requires a lot of time to test the performance of the possible subset combinations of 

features (Jain, Duin, & Mao, 2000). So using deterministic or stochastic approach 

suboptimal feature set may be found in wrapper method. Sequential floating search 

and genetic algorithm are the most used methods for feature selection for finding 

suboptimal feature set. 
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3.6.1 Feature Selection with Sequential Floating Search 

 

The sequential floating search methods (SFSM) are effective feature selection 

techniques (Pudil,  Novovicova,   & Kittler,  1994; Bhaskar, Hoyle, & Singh, 2006; 

Jain, Duin, & Mao, 2000; Duda, Hart, & Stock, 2001). The floating search method 

has two main categories: sequential forward search (SFS) and sequential backward 

search (SBS). The SFS algorithm starts with a null feature subset.  For each step, the 

best feature that satisfies some criterion function is included to the current feature 

subset and this is repeated n times or it is repeated for all features and best subset 

which has best criterion value is chosen. The SBS algorithm starts with all features 

and for each step, the worst feature (concerning the criterion function) is eliminated 

from the subset and this is repeated r times or all features. For all features, the best 

subset which has best criterion value is chosen. 

 

Extended case of SFSM uses both SFS and SBS as shown in Figure 3.11, which is 

called n-take r-away search algorithm or Plus-l-Minus-r method. This algorithm 

starts with a null feature set and in the case of forward search, for each step, the best 

feature that satisfies some criterion function is included to the current feature set and 

this is repeated n times. In the case of sequential backward search, the worst feature 

(concerning the criterion function) is eliminated from the set and this is repeated r 

times. SFS proceeds dynamically increasing the number of features and SBS 

proceeds decreasing the number of features until the desired feature size is reached or 

criterion function begin to decrease.  
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Figure 3.11 Block diagram of n-take r-away 

algorithm. 

 

3.6.2 Feature Selection with Genetic Algorithm  

 

Genetic Algorithms were discovered by John Holland (1975). It is a model for the 

evolution of a population in a special environment (Holland, 1975; Goldberg, 1989). 

Each member of the population is represented by a chromosome that consists of a 

series of genes. Each gene has two or more possible values and is transformed into a 

parameter of the problem space. A fitness function represents the environment. It 

evaluates each individual and determines a fitness value for each individual.  

 
The algorithm is started with chromosomes which represents a set of solutions 

called population. The solutions from one population are taken and used to generate 

a new population. Generating new population, selection, crossover and mutation 

process are applied, then fitness values are evaluated. These processes are repeated 

until some criteria, i.e., reaching the best solution or certain number of population, 

elapsed time etc. Corresponding block diagram is shown in Figure 3.12. 
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The new population will be better than the old one since at least one best solution 

is copied without changes to a new population. It is called elitist strategy. The 

genetic operators such as representation, selection, crossover, mutation are described 

to construct GAs for optimization problems. 
 

 
Figure 3.12 Block diagram of a typical genetic algorithm  

 

The representation of chromosomes may be categorized into the two methods 

binary coding and real coding. For instance, the string shown Figure 3.13 is stored as 

a binary bit-string (binary representation) or as an array of integers (real-coded 

representation). The string by the binary coding consists of 0s and 1s. The binary 

string is decoded to the parameter value in integer, real number, or any parameter 

used with fitness function in GA. The binary representation is generally used in GA.  

 

Binary Representation 

1  0 0  1  1  1  0  0 1
 

Real-coded representation 

2 5 0 7 8  8  7  9  1 
 

 
Figure 3.13 Representation of chromosomes 
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Each of candidate solutions is evaluated for optimization problems according to a 

fitness function. The fitness function is a criterion function which determines how 

well the candidate solution is. The GA searches a string (member of the population) 

with a better fitness value in the population. 

 

Selection is an operator to select two parent strings for generating new strings. A 

string with a high fitness value has a higher probability to be selected. In GA parents 

are selected by random. The fitness value of each string is used for calculating the 

selection probability. The roulette wheel selection scheme and the rank-based 

selection scheme are often employed.  

 

Crossover is an operator to generate offspring from parent strings. Various 

crossover operators have been proposed for GAs. One-point crossover for the binary 

coding is as an example of standard crossover operators. Two parents are selected 

randomly from the population. Then one crossover point is selected randomly and 

two new strings are generated by changing the substring along the crossover point. 

One point crossover operation is shown Figure 3.14.  

 

 
Figure 3.14 The standard one-point crossover for binary strings 

 

Mutation is an operator to change elements in a string generated by a crossover 

operator with low probability. When applying mutation operator to strings in GAs, 

randomly selected one bit in a string is changed. An example of this mutation is 

shown in Figure 3.15. The stars are located as mutation points where 1 in the first 

and second position is changed to 0. Mutation supplies genetic variety and enables 

the genetic algorithm to investigate a broader space.  
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* * ………Mutation………    *     * 
1 0 0 1 1 1 0 0 1  1 0 0 0 1 1 0 0 0 

 

Figure 3.15 Two bit mutation for a binary string 

 

Implementation of feature selection with GA is illustrated by the simple flow 

diagram shown in Figure 3.16.  Each individual of population is represented by 

binary string. Fitness function for evaluation is the classifier performance. 

 

 
Figure 3.16 Wrapper type feature 

subset selection with GA. 

 

3.6.3 Dimension Reduction using Neural Networks 

 

A simple three layer linear network can be used as a dimension reduction tool. 

Figure 3.17 shows the structure of three layer neural networks. Each pattern of data 

set is applied to both input and output layer. Network trained by gradient descent on 

a sum squared error criterion. Activation functions of network are linear for all 

layers. So, dimension of the input data is d. The transformation F1 is linear projection 

onto a K dimensional subspace. The transformation matrix is the weights of the first 
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layer of the network. The transformed data of y is the output of the linear hidden 

layer of networks.  

∑
=

=
d

j
jiji xwy

1
(3.20)

The inverse transformation matrix is the weights of the last layer of the network. 

As a result of transformation, d dimension of input data is reduced to K dimension 

(k<d).  When linear activation function is used in the network, it provides the 

principle components (Duda, Hart, & Stock, 2001). 

 

 
Figure 3.17 Three layer neural networks with linear hidden layer. 

 

The SOM is also used as a dimension reduction method. The SOM is an 

unsupervised type of neural network architecture used to visualize and interpret high-

dimensional data sets on the map (described in chapter 3.1.4). The map usually 

consists of a two-dimensional regular grid of neurons. Each sample vector of 

multidimensional input data is associated with a neuron on the map. An N-

dimensional input is presented to each neurons of a map. Then the index of neuron 

which represents the input pattern is used as feature (Bhaskar, Hoyle, & Singh, 2006; 

Jain, Duin, & Mao, 2000; Kutlu & Kuntalp, 2009).  
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3.7 Classification 

 

The final stage in pattern recognition is classification of a pattern. The recognition 

of a pattern generally consists of either supervised classification or unsupervised 

classification (Watanabe, 1985). In supervised classification, the classes are 

determined by the system designer and it is used as output of the system while 

training the system. On the other hand, in unsupervised classification, the class labels 

are not used. They are learned based on the similarity of patterns. 

 

Increases in computing power have made possible the use of elaborate and diverse 

methods for data analysis and classification. In more recently, demands on automatic 

pattern recognition systems have raised enormously due to the availability of large 

databases and high performance computers. In great number of recognition 

applications, it is clear that there is no optimal approach for classification (Duda, 

Hart, & Stock, 2001). Thus, multiple methods are needed to employed and 

combining several methods and classifiers is now commonly used practice in pattern 

recognition problems (Jain, Duin, & Mao, 2000). 

 

3.7.1 K-Nearest Neighbor (KNN) 

 

K-nearest neighbor (KNN) algorithm is one of the most classical and effective 

nonparametric method in pattern recognition (Cover & Hart, 1968; Duda, Hart, & 

Stock, 2001). The KNN algorithm is a method for classifying objects based on 

closest training samples in the feature space. Because of identification of neighbors, 

the objects are represented by position vector in multidimensional feature space. 

More accurately, by a K-nearest neighbor method, a new pattern, X, is assigned to 

that category to which the plurality of its K closest neighbors belong. A training set is 

m labeled patterns, and a nearest-neighbor method decides that some new pattern, X, 

belongs to the same category as do its closest neighbors in training set.  

 

The KNN algorithm is among the simplest of all machine learning algorithms, 

because it based on only the distance measure. Different distance measures can be 
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used in this algorithm. Simple Euclidean distance commonly used as the distance 

measure in nearest-neighbor methods. That is, the distance between two patterns, (x1, 

x2, x3, ... xn ) and (y1, y2, y3, ... yn ), is: 

 

∑
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K is usually chosen small positive integer. If K=1, then the object is simply 

assigned to the class of its nearest neighbor as shown in  the example given in Figure 

3.18. There are two classes which are illustrated as stars and circles in Figure 3.18. 

The test sample (triangle) is considered according to the distance and classified either 

to the first class of stars or to the second class of circles. If K = 1 it is classified to the 

first class due to the closest class members is star. If K = 3, it is classified to the 

second class because there are 2 circles and only 1 star inside the inner circle. 

 

 

 
Figure 3.18 Example of KNN classification. 

 

KNN is a supervised classifier. A set of object with class labels is required for the 

distance measurement of new object. This can be thought of as training set for the 

algorithm. As a matter of fact, it has no explicit training step. The algorithm is 
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independent from statistical distribution of training samples (Duda, Hart, & Stock, 

2001). 

 

Nearest-neighbor methods may require more memory. In order to achieve good 

generalization, a large number of training patterns must be stored. High memory cost 

is the major drawback of the method and its derivatives.  

 
3.7.2  Artificial Neural Networks 

 

ANNs, which are inspired by biologic neural networks, are composed of neuron-

like units connected together through input and output paths that have adjustable 

weights (Bishop, 1995; Haykin, 1999). Each unit (neuron) produces an output signal, 

which is a function of the sum of its inputs. This function is formulated as: 
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where, wi represents the weights, xi is the input, ƒ(.) is the activation function, and yi 

is the output of the ith unit. A variety of functions can be utilized as the activation 

function but most often a sigmoid (or hyperbolic tangent) function is used.  

 

Among different structures used in the ANNs, multi-layer perceptrons (MLPs) are 

the mostly used ones. An MLP consists of successive layers, each of which includes 

a different number of processing units. The units in the first layer receive inputs from 

the outside world and are fully connected to units in the hidden layer. The units in the 

hidden layer, in their turn, are fully connected to output layer units, The units in the 

output layer produce the output of the MLP (see Figure 3.19). 

 



47 

 

 

 
Figure 3.19 Architecture of the MLP network. 

 

Learning Algorithms: An ANN should first be trained in order to accomplish the 

desired task. This means that the values of the connection weights are to be adjusted 

so that the network would produce the correct output for each given input pattern. 

The proper weights are determined under the control of a training algorithm. There 

are a large number of training algorithms and their variants (Haykin, 1999). It should 

be noted that the ultimate aim of training a neural network is not to force it to learn 

the training set perfectly. Instead good generalization ability is desired, this means 

producing correct output values for inputs which are not seen during the training 

process. The early stopping method (Amari, 1995; Demuth & Beale, 1998; Hagiwara 

& Kuno, 2000) is the approach used during training to increase the generalization 

performance of the network to avoid overtraining. In this method, a validation set, 

which is different from the training set, is chosen. During the training process, the 

validation error is used as the stopping criterion. As shown in Figure 3.20, when the 

validation error reaches its minimum, the training is finished. In this study, most of 

the training algorithms, except the last one which is based on the regularization 

method, are applied using the early stopping criteria. 
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Figure 3.20 Training and validation errors versus iteration number. 

 

Gradient Descent (GD): A gradient descent based optimization algorithm such as 

back propagation is the most common method used to adjust the connection weights 

in MLP iteratively in order to minimize an error function (Bishop, 1995; Duda, Hart, 

& Stock, 2001; Hecht-Nielsen, 1989; Yu, Efe, & Kaynak, 2002). Generally the error 

function used is the Mean Square Error (MSE): 
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where t is the target, y is the output, and EMSE is the error function. 

 

The errors calculated at the output units are then propagated backward to units in 

other layers. In order to minimize the error occurred in backpropagation phase, the 

value of each weight is updated by 
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where η is the learning rate andδ  is the derivative of error function with respect 

to the weight, i.e. 
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Gradient Descent with Adaptive Learning Rate (GDALR): In plain gradient 

descent, as described above, the learning rate is held fixed during the training phase. 

However, changing the learning rate during the training process is a method that 

could increase the performance of the network (Yu & Liu, 2002). In this variant of 

gradient descent, when the new error exceeds the previous one, the learning rate is 

decreased and the new weight and bias values are discarded. If, on the other hand, 

the new error is less than the old one, the learning rate is increased by 
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where E(n) is the current error, E(n-1) is the previous error and er is the relative 

factor. During the training process, the learning rate is changed according to relative 

factor  

 

for er  < 0, ).e(n)(  )(-er nu11)(n +=+ ηη  

 for er  > 0, ).e(n) )(-er n(1-u1) (n ηη =+  
(3.27) 

 

where η(n+1) is the updated learning rate, η(n) is the previous learning rate and u 

is the relative control parameter (0<u<1). 

 

Levenberg-Marquart (LM) Algorithm : The LM method shows the fastest 

convergence during the training process based on gradient descent methods because 

it acts as a compromise between the stability of the first-order optimization methods 

(e.g., steepest-descent method) and the fast convergence properties of the second-

order optimization methods (e.g., Gauss-Newton method) (Hagan  & Menhaj,   1994; 

Chen, Han, Au, & Tham, 2003). When training with the LM method, the update of 

the weights are obtained as follows 
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where J is the Jacobian matrix, λ is the learning parameter, and e is the sum of 

error squares.  

 

Regularization Method: Another method that does not use early stopping but also 

increases the generalization performance of an ANN is the regularization method 

(Amari,  1995; Chan, Ngan, Rad, & Ho, 2002; Demuth & Beale,  1998; Hagiwara & 

Kuno, 2000). In this method, a penalty term is added to the error function as shown 

below 

 

 Ẽ = E + vΩ   (3.29) 
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where E is the mean square error function, v is the control parameter of the 

penalty term, and Ω is the penalty term. Using this method has the similar effect of 

applying early stopping during the training process. 

 

3.7.3 Modular Classifiers  

 

In many of pattern recognition applications, it is clear that there is no optimal 

approach for classification (Duda, Hart, & Stock, 2001). Therefore, there have recently 

been widespread interests in the usage of multiple models for pattern classification. 

The aim is to solve a complex problem by dividing it into simpler problems whose 

solutions can be combined to yield a final solution. A multiple classifier system 

combines an ensemble of diverse classifiers as shown Figure 3.21. The combination of 

diverse experts has better results than single classifiers (Bhaskar, Hoyle, & Singh, 

2006). Such classifier models which consist of more than one classifier are variously 

called mixture of expert models, ensemble classifiers, modular classifiers, committee 

machine or sometimes pooled classifiers as shown in Figure 3.21. Committee Machine 
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is a supervised learning method based on divide-and-conquer principle. It divides input 

space into subspaces and combines individual results of each expert. Experts share 

common input or each expert uses diverse input. Each expert is trained differently (if a 

number of neural networks are used). Individual outputs of experts are then combined 

to find the overall output.  

 

 

 
Figure 3.21 Simple structures of modular classifiers. 

 
 

3.7.4 Performance Measures  

 

Any diagnostic system decide either “1” or “0” which means "positive" or 

"negative". Each decision may be "true" or "false".  So there are two kinds of responses 

for each decision. According to two-class case, there are four possible situations as a 

decision (Gibbons et al., 1997). If the instance is positive and it is classified as 

positive, it is assigned as true positive (TP); if it is classified as negative, then it is 

assigned as false negative (FN). If the instance is negative and it is classified as 

negative, it is assigned as true negative (TN); if it is classified as positive, it is 

assigned as false positive (FP).  

 



52 

 

 

Given a recognition system, a two-by-two decision matrix can be constructed 

according to decision of the test set.  This matrix is also known as a contingency table 

or confusion matrix as shown in Table 3.1. 
 

Table 3.1 Two-by-two decision matrix 

  Output of the System 
  Normal Failure 

Ex
pe

rt
s Normal True Negative (TN) False Positive (FP) 

Failure False Negative (FN) True Positive (TP) 

 
 

The performance of a recognition system is measured by several parameters using 

the decision matrix (Eberhart & Dobbins, 1990). Sensitivity (SEN), selectivity (SEL), 

specificity (SPE), and overall accuracy (ACC) are the most used parameters. 
 

Sensitivity is described as the ratio of the number of positive decisions correctly 

classified by the recognition system to the total number of positive decisions made by 

the expert. It shows the ratio of correctly classified abnormal patterns to abnormal 

pattern. 
 

%x
FNTP

TPy Sensitivit 100
+

=     (3.31) 

 

Specificity is described as the ratio of the number of negative decisions correctly 

made by the recognition system to the total number of negative decisions made by the 

expert. It shows the ratio of correctly classified normal patterns to normal pattern. 
 

%x
FPTN

TNy Specificit 100
+

=        (3.32)  

 

Selectivity is described as the ratio of the number of positive decisions correctly 

made by the recognition system to the total number of positive decisions made by the 

recognition system. It shows the ratio of correctly classified abnormal patterns to 

pattern which are classified as abnormal. 
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Overall Accuracy is the ratio of the total number of positive decisions and negative 

decisions correctly made by the recognition system to the all decisions. 

 

%x
FPTNFNTP

TNTPuracy OverallAcc 100
+++

+
=    (3.34) 

 

When the system is a multi- class recognition system, the decision matrix can be 

also constructed according to decision of the test set. But calculation of the measures is 

a little different. For example, five different heartbeats (N, S, V, F, and Q) will be 

classified by the system. The decision matrix is constructed as shown in Table 3.2. 

 
Table 3.2 Multi-class decision matrix 

   Classifier Results 
    N S V F Q 

R
ef

er
en

ce
 la

be
l N TPN FNN FNN FNN FNN

S FPN TN TN TN TN 

V FPN TN TN TN TN 

F FPN TN TN TN TN 

Q FPN TN TN TN TN 
 

where 

TP - True Positives:Number of heartbeats of an arrhythmia type correctly classified 

by the system 

TN - True Negatives:Number of other arrhythmia heartbeats correctly classified by 

the system  

FP - False Positives:Number of heartbeats incorrectly classified by the system  

FN - False Negatives:Number of other heartbeats incorrectly classified by the system 
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SEN, SEL, SPE, and overall accuracy are given for each class as: 
 

Sensitivity %x
FNTP

TP

ii

i 100
+

=      (3.35) 

Specificity %x
FPTN

TN

ii

i 100
+

=      (3.36) 

Selectivity %x
FPTP

TP

ii

i 100
+

=      (3.37) 

Over all accuracy %100
BeatsAll

TP...TPTP i21 x
+++

=          (3.38) 

 

where the sub indices denote the heartbeat type.  

 

Another performance evaluation tool is Receiver Operating Characteristic (ROC) 

analysis. It is a plot of sensitivity versus specificity values as shown in Figure 3.22. It 

is widely used in the medical applications to evaluate the performance of diagnostic 

tests. ROC curves contain a wealth of information for understanding and improving 

performance of classifiers. Area under the ROC curve is a measure of discrimination, 

or the performance measure of a diagnostic test. Overall accuracy or overall 

misclassification rate is not a useful measure when the disparity between classes is 

high (Alberg et al., 2004). Reported accuracies in this study are also measured by the 

area under the ROC curve as shown in Figure 3.22. An area of 1 represents a perfect 

test; an area of 0.5 represents a worthless test. The traditional academic point system is 

used to evaluate the performance of a diagnostic test: if the area is between 0.90-1 it is 

excellent, between 0.80-.90 it is good, between 0.70-0.80 it is fair, 0.60-0.70 it is poor, 

and between 0.50-0.60 it is fail (Erkel  & Pattynama, 1998; Fawcett, 2006; Alberg et 

al., 2004). 
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Figure 3.22 Area under ROC curve 

 

There are many methods to determine area under ROC curve. Two methods are 

commonly used to compute the area of ROC curve: a non-parametric method based on 

constructing trapezoids under the curve to approximate the integral or the area under 

the curve and a parametric method, using a maximum likelihood estimator to fit a 

smooth curve to the data points. 
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CHAPTER FOUR 

AUTOMATIC RECOGNITION OF EPILEPTIFORM EVENTS IN EEG 

 

4.1 Introduction 

 

Epilepsy, which is a very common neurological disorder, is defined as sudden, 

excessive and abnormal discharges in brain that may be caused by a variety of 

pathological processes of genetic or acquired origin. This disorder is often identified 

by sharp recurrent and transient disturbances of mental function or movements of 

different body parts (Göksan, 1998).  

 

The evaluation of an EEG record for the detection of epileptic activity is usually 

performed by experienced electroencephalographers (EEGers) based on the visual 

scanning of the EEG record. However, this process is very time-consuming, error-

prone, and too subjective (Ktonas, 1987). For this reason, there is an ever-increasing 

need for the development of automated systems to detect these abnormal wave 

patterns and there have been different attempts mainly based on artificial neural 

network (ANN) structures to automate the epileptic spike detection process. For 

example, (Webber, Litt, Wilson, & Lesser, 1994) utilized ANNs and mimetic 

methods. Kalaycı & Özdamar (1995) also used ANN-based systems for classification 

purposes and reported very satisfactory results. James, Jones, Bones, & Carroll, 

(1999) employed multi-stage approaches. Tarassenko, Khan, & Holt (1998) also used 

ANN-based recognition systems. (Özdamar & Kalayci,  1998  ; Özdamar, Yaylali, 

Jayaker, & Lopez, 1991) also used ANN-based systems. Dingle, Jones, Carroll, & 

Fright, (1993) used a multistage system to detect epileptiform activity. Nuh, Jazidie, 

& Muslim, (2002) utilized a different type of neural network, i.e. a wavelet neural 

network. Adjouadi et al. (2004) developed an algorithm using the Walsh 

transformation. Acır & Güzeliş (2004) utilized a two stage classification system 

based on support vector machine (SVM).  Acır, Öztura, Kuntalp, Baklan, & Güzeliş, 

(2005) employed a two stage classification system based on the radial basis function 

network (RBFN). Exarchos, Tzallas, & Fotiadis, (2006) used a rule based 
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classification system. İnan & Kuntalp, (2007) used a two stage unsupervised 

classification system. 

 
In some of these systems, the extracted waves were used as windowed raw input 

to the classification system; whereas, in others, specific waveform features are fed 

into the system as the input. The use of the parameterized approach reduces data load 

on the system and processing time and increases the performance of the classifier. In 

the parameterized approach, however, the success of the spike detection algorithm 

relies heavily on the proper selection of the features. These features may include 

frequency domain parameters like total power, or time domain parameters like 

amplitude, duration, and slope. Using raw data, on the other hand, avoids any data 

loss that parameterization techniques will inevitably introduce but provides the 

system with a high-dimensional input data. This could reduce the performance of the 

classifiers due to the curse of dimensionality effect. Therefore, both approaches have 

their own advantages and disadvantages. In this study, both the parameterized and 

raw forms of data are used as input and their effects are compared. 

 
As the classification system, different multilayer perceptron (MLP) networks 

utilizing between 3 and 15 hidden neurons are constructed for the automatic 

detection of epileptic spikes in the EEG records for the diagnosis of epilepsy. For 

training the MLP networks, early stopping versions of backpropagation (Amari,  

1995; Bishop, 1995; Demuth & Beale,  1998; Duda, Hart, & Stock, 2001; Hagiwara 

& Kuno, 2000; Hecht-Nielsen, 1989; Yu, Efe, & Kaynak, 2002), backpropagation 

with adaptive learning rate (Yu & Liu, 2002), Levenberg-Marquardt (LM) 

algorithms (Chen  et al., 2003), and regularization methods (Amari,  1995; Hagiwara 

& Kuno, 2000) are used. The aim of using early stopping and regularization is to 

increase the generalization performance of the classifier.  

 
The inputs used for the training of the networks are constructed as follows. As the 

first step, the individual spike-like waves are extracted from all records. These waves 

include both epileptic spike waves and non-epileptic spike waves which are similar 

to epileptic spikes. From here on, both of them will be referred to as spike-like 
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waves. As the next step, either of the following two methods is applied. In the first 

method, specific morphologic features, which are extracted by numerical techniques 

from the wave patterns, are given as input to the detection system. In the other 

method, the raw waveform is directly presented as input to the system after a proper 

scaling and windowing process. The aim here is to compare the effects of using 

either raw data or extracted features. However, in addition to the original forms of 

both raw data and extracted features, the networks are also fed with their transformed 

versions which are obtained by using different transformation methods. The 

performances of all the constructed classifiers are then evaluated and compared 

based on sensitivity, selectivity, and specificity measures since these parameters have 

been accepted and used as the standard for EEG spike detection algorithms (Pang, 

Upton, Shine, & Kamath, 2003). 

 
In this chapter, the proposed automated recognition systems are described in 

detail. The general block diagrams of the constructed systems are shown in Figure 

4.1. At first, single MLP based classification system is constructed. Then, a multi-

stage classification system is constructed.  
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a) 

 
b) 

Figure 4.1 Block diagram of the constructed classification systems for spike detection in EEG a) Single 

MLP based classification system, b) multi-stage classification system. 

 

4.2 EEG Data 

 

4.2.1 Data acquisition and its properties 

 

The EEG data used in this study are obtained from the Neurology Department of 

Dokuz Eylül University Hospital, İzmir, Turkey. The EEG data are acquired with 

Ag/AgCl disk electrodes placed using the 10–20 international electrode placement 

system. The EEG signals are recorded from 19 channels at a sampling frequency of 

256 Hz and then band-pass filtered between 1 and 70 Hz. These EEG recordings are 

initially labeled for spikes by two experienced EEGers. Only the wave patterns 

which are labeled as epileptic spikes by both EEGers are accepted as spike waves. 
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4.3 Pre-processing  

 

The first step of the pre-processing stage is the mean removal by which the 

average of each individual EEG record is calculated and then subtracted from the 

signal itself. The second step is the determination of the locations of all peaks 

(positive and negative) in the record since the spike waves generally reveal 

themselves in the form of transient spikes with a pointed peak. The peaks obtained 

are then processed based on the approach described in (Acır et al., 2005): First of all, 

the amplitude differences between each peak are calculated. This gives the slope 

between these data points. If the slope is positive, the signal is increasing; otherwise, 

the signal is decreasing. Whenever the slope changes from positive to negative, this 

means that it is a positive peak. In the same manner, if there is a change in the slope 

from negative to positive then it is a negative peak. 

 

In order to eliminate the artifacts from the signal and ignore irrelevant small 

changes with high frequencies, the following simple algorithm is used. If the length 

of a segment between two adjacent peaks is shorter than the length of the previous 

and next segments and if the duration of this segment is shorter than 20 ms and its 

amplitude is smaller than 2μV, then the peak is accepted as an artifact and eliminated 

(Acır et al., 2005). This filtering process also eliminates mains electricity 

interference and sharp, short-duration waves similar to spike activity resulting from 

the movement of the patient.  

 

After the application of the processes mentioned above, a total of 119 spike-like 

waves are extracted from the available EEG data. Based on the views of the EEGers, 

39 of these waves are labeled as epileptic spikes and 80 as non-epileptic waves. In 

order to improve the generalization performance of the MLP based classifiers, 

“training with noise” method is used whereby new training samples are generated by 

adding zero mean Gaussian noise with a variance of 10% to the available 119 spike-

like waves (Amari,  1995; Bishop, 1995; Duda, Hart, & Stock, 2001; Minnix, 1991; 

Nicholson,  2002; Tsukuda, Kurokawa, & Mori, 1995, Kutlu, Kuntalp, & Kuntalp, 

2006). As a result of this process, a new set with 390 spike and 400 non-spike waves 
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is created. These samples are used for training purposes only as if they were normal 

training data sampled from the same source distributions. The real spike-like waves, 

i.e. 119 waves without Gaussian noise added, are used for testing the classifiers. 

 

4.4 Feature Extraction and Transformation 

 

4.4.1 Raw EEG 

 

For applying the extracted waves to the classifiers as raw input, a window with a 

length of 41 data points is used in which the peak of the wave is located at the 11th 

point. The reason for choosing this value is that it corresponds to approximately 150-

160 ms of the EEG signal and is an average value for the epileptic spike duration. 

Several samples of spike-like waves are given in Figure 4.2.  

 

 
Figure 4.2 Samples of spike-like waves. 

 

4.4.2. Morphological Features 

 

Six morphologic features are acquired from each spike-like wave. These features 

include first half wave amplitude (G1), second half wave amplitude (G2), first half 
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wave duration (T1), second half wave duration (T1), first half wave slope 

(S1=G1/T1), and second half wave slope (S2=G2/T2) (see Figure 4.3).  

 

 
Figure 4.3 Morphologic features obtained from candidate waves. 

 

4.4.3 Feature Transformation 

 

Each spike candidate (i.e. a spike-like wave), whether it is represented by 41 

consecutive points or by the six morphologic features, is further transformed by 

using four different transform methods: i) Normalization, ii) Nonlinear 

transformation, iii) Principal Component Analysis (PCA), and iv) Whitening 

transformation. These transformation methods are described in section 3.1.4.  

 

4.5  Classification 

 

4.5.1 Recognition with a MLP based classifier 

 

The classifiers implemented in this study are developed by using Matlab. 

Classification procedure is performed off-line on data stored on the hard disk. Seven 

different MLP networks are constructed utilizing between 3, 5, 7, 9, 11, 13, and 15 

hidden units, respectively (Kutlu, İşler, Kuntalp, & Kuntalp, 2006). Each network is 

trained with all four different training methods described in Section 3. For each 

method, 10 different data sets are used; these data sets consist of original and 

transformed versions of both raw data and extracted features. This corresponds to a 
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total of 280 (7 MLP structures х 4 training algorithms x 10 data sets) different MLP 

classifiers. All the network structures are trained five times starting from different 

initial conditions and tested separately. The outcome of each MLP classifier is based 

on the average of these 5 testing results.  

 

The performance of each classification system for the automatic detection of 

epileptic spikes is obtained using three standard statistical measures: sensitivity, 

specificity, and selectivity. 

 

However, instead of using these three measures separately, two different 

combinations of them are used: (1) the average of sensitivity and selectivity, and (2) 

the average of sensitivity and specificity. This way, it would be possible to directly 

compare the performances of our systems with other classifiers given in the literature 

using different performance measures (Kutlu, Kuntalp, &  Kuntalp, 2009b). 

 

Of all the 280 classifiers, the one that displays the best performance in terms of 

both average sensitivity/selectivity (ASenSel) (90.8%) and average 

sensitivity/specificity (ASenSpe)  (94.9%) measures is found to be the one which has 

15 hidden units and is trained with the Gradient Descent Algorithm with Early 

Stopping (with Adaptive Learning Rate)  method using whitened transformed data. 

All the classifiers trained with other training algorithms using whitened data also 

revealed very high performances. 

 

4.5.2 Recognition with a multi-stage classifier 

 

Multi-stage classification procedure is performed both to reduce the computation 

time of the entire classification procedure and to increase the overall detection 

performance. The first stage classification is to eliminate trivial non-spikes and also 

to determine definite spikes and to determine spike like non-spikes. The peaks are 

classified into three groups (two dimensional description is shown in Figure 4.4): 

epileptiform waves (Region I), non- epileptiform waves (Region II), and possible 

epileptiform waves and possible non- epileptiform waves (Region III). For this 
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purpose, two classifiers are used in the first stage: One classifier determines definite 

epileptiform waves; the other one determine definite non-epileptiform waves. The 

Region III is represent possible epileptiform waves and possible non- epileptiform 

waves which are also intersection of the first stage classifiers. Neural networks are 

used in all stages of the classifier which are trained with adaptive learning rate 

algorithm. In the first stage, classifiers used 1 hidden unit. Raw ECG signal is used in 

the first stage of classifier as input vector. In the second MLP classifier is utilized 15 

hidden units. Whitened parameters are used in the second stage. All classifiers are 

trained several times with different initial values. In the first stage, the best 

selectivity measure is used and in the second stage overall accuracy is used as 

performance criteria because of the aim of the classifier. 

 

 
Figure 4.4 Two dimensional description of classification of 
first stage: The peaks are classified into three subgroups in 
the first stage: (*) represents spikes, (o) represents non-
spikes, Region I represents definite spikes, Region II 
represents definite non-spikes, and Region III represents 
possible spikes and possible non-spikes. 

 

4.6 Result and Discussion 

 

Many MLP structures are constructed. Figure 4.5-4.8 and Figure 4.9-4.12 show in 

detail the effect of hidden layer size on the performance of the classifiers for raw data 

and extracted features, respectively. As can be seen from these figures, there is no 

direct correlation between the number of hidden units and the performance obtained. 
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Figure 4.5 The average accuracy values versus hidden neuron size using 
raw data of 41 samples with Gradient descent. 

 

 
Figure 4.6 The average accuracy values versus hidden neuron size using 
raw data of 41 samples with Gradient descent with adaptive learning rate. 

 

 
Figure 4.7 The average accuracy values versus hidden neuron size using 
raw data of 41 samples with LM. 
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Figure 4.8 The average accuracy values versus hidden neuron size 
using raw data of 41 samples with regularization algorithm. 

 

 

 
Figure 4.9 Using 6 features, the average accuracy of GD algorithm 
versus number of neuron at hidden layer. 
 

 
Figure 4.10 Using 6 features, the average accuracy of GD 
algorithm with adaptive learning rate, versus number of neuron at 
hidden layer. 
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Figure 4.11 Using 6 features, the average accuracy of LM 
algorithm versus number of neuron at hidden layer. 

 

 
Figure 4.12 Using 6 features, the average accuracy of 
regularization methods versus number of neuron at hidden layer. 

 
 

The best performance measures obtained for different structures constructed in 

this study are shown in Tables 4.1 and 4.2. Each value in these tables represents the 

best performance from among the ones obtained by using different hidden unit 

numbers. As can be seen from these results, the classifiers trained and tested with 

extracted features instead of raw data perform better. Additionally, the classifiers 

displaying the best performances in terms of both measures are the ones trained with 

whitened transformed input data.  

 

 



68 

 

 

 
   

 T
ab

le
 4

.1
 M

ea
su

re
s f

or
 ra

w
 d

at
a 

se
ts

   

 

 
 

Ta
bl

e 
4.

2 
M

ea
su

re
s f

or
 e

xt
ra

ct
ed

 fe
at

ur
es

  

 



 

69 

Of all the 280 classifiers, the one that displays the best performance in terms of 

both average sensitivity/selectivity (ASenSel) (90.8%) and average 

sensitivity/specificity (ASenSpe)  (94.9%) measures is found to be the one which has 

15 hidden units and is trained with the Gradient Descent Algorithm with Early 

Stopping (with Adaptive Learning Rate)  method using whitened transformed data.  

 

The second classification system is a multi-stage system. MLP classifiers are used 

in the constructed system. The best performance in terms of both average 

sensitivity/selectivity (ASenSel) and average sensitivity/specificity (ASenSpe) 

measures are 93.7% and 95.6%, respectively.  
 

In addition to the above mentioned performance criteria, the training times of the 

constructed systems are also observed. It is seen that training times vary according to 

the training algorithm used and the number of units in the hidden layer. The fastest 

algorithm in this respect is found to be the back-propagation algorithm with adaptive 

learning rate using early stopping criteria. 
 

Epilepsy is a very common neurological disorder leading to disturbing seizures. In 

the inter-ictal period, i.e. in between seizures, epileptic transients, in the form of 

spikes and sharp waves, are typically observed in the EEG recordings. For this 

reason, the inter-ictal spike detection plays a crucial role in the diagnosis of epilepsy. 

In the present study, spike waves are aimed to be detected from EEG records by 

different classifiers constructed using MLP structures utilizing different number of 

hidden neurons, different training algorithms, and different preprocessing of input 

data. 
  
ANN-based detection systems found in the literature generally use two 

approaches. In the first approach, the raw EEG data is directly used as the input to 

the ANN. In the second approach, some features are extracted from the EEG records 

and fed into the ANN as the input. Using the parameterized approach has the 

advantage of using fewer inputs. However, it requires the correct definition of input 

features that would be selected for the detection of spikes. As a result, in order to 

find the best set of features for optimum detection, this approach does not make full 
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use of the power of an ANN. Nevertheless some researchers have successfully made 

use of the extracted features for the detection of epileptic activity (Gabor & Seyal, 

1992; Webber et al., 1994). On the other hand, using raw EEG data has the 

advantage of avoiding the possible false classification that could arise from data loss 

in the parameterization of the EEG data (Ko & Chung, 2000; Özdamar & Kalayci, 

1998). However, the performance of the classifiers trained with this approach could 

also be reduced due to the curse of dimensionality effect since the dimension of input 

data is generally very high. In this study, both the parameterized and raw forms of 

data are used as the input and the results obtained are compared.  
 

For training the MLP networks, early stopping versions of backpropagation, 

backpropagation with adaptive learning rate, Levenberg-Marquardt (LM) algorithm, 

and regularization methods are used. The aim of using early stopping and 

regularization method is to obtain better generalization performance from the 

classifiers. In addition, in order to increase the generalization performance of the 

constructed systems, training with noise method is used. For this purpose, zero mean 

Gaussian noise with a variance of 10% is added to real data. While these new 

samples are used only for training the networks as if they were normal training data 

sampled from the same source distributions, the real data is reserved for the testing 

process. Furthermore, to be able to observe the effect of applying preprocessing on 

input data, different linear and nonlinear transformations are used on the available 

data set. The classifiers constructed are also trained and tested with these transformed 

data. The overall performances of the constructed classification systems are 

computed based on the average sensitivity/specificity and average 

sensitivity/selectivity measures. The average sensitivity/specificity is also represents 

the measures of ROC area. 
 

The first outcome obtained from this study is that all the classifiers perform better 

when trained and tested with extracted features instead of raw data. The second 

important result is that the classifiers displaying the best performances in terms of 

both measures are the ones trained with whitened transformed data. Being specific, 

the classifier that displays the best performance in terms of both average 

sensitivity/selectivity (90.8%) and average sensitivity/specificity (94.9%) measures is 
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found to be the one which has 15 hidden units and is trained with the Gradient 

Descent Algorithm with Early Stopping method using whitened transformed data. 

All the classifiers trained with the other training algorithms using whitened data also 

reveal very close performances. The second classification system is constructed as a 

multi-stage system using MLP network that has the best performance measure. The 

best performances in terms of both average sensitivity/selectivity (ASenSel) and 

average sensitivity/specificity (ASenSpe) measures become 93.7% and 95.6%, 

respectively.  

 

The comparison of the systems constructed in this study with similar detection 

systems given in the literature is not straightforward due to the varieties in the 

network types, architectures, data sources (e.g., channel numbers, displaying 

montages, degrees of artifact presence, recording type, status of subject), and 

performance measures used. Nevertheless, some objective conclusions can be drawn. 

For example, Webber et al. (1994) have tested their system on parameterized EEG 

records and reported 74% sensitivity and 74% selectivity values by using mimetic 

and ANN methods. Tarassenko, Khan, & Holt (1998) have studied both time and 

frequency domain parameters of the EEG signal and reported the results of 90.5% 

and 93.2% for specificity and sensitivity, respectively. Özdamar et al. (1991) have 

reported good results for sensitivity (90%); but selectivity was found to be relatively 

low at about 69% using raw EEG data. Dingle et al. (1993) have given a very good 

result for selectivity (100%) although the sensitivity was relatively low at 58%. 

James et al. (1999) have also reported the results of 82% and 55% for selectivity and 

sensitivity, respectively. Kalayci & Özdamar, (1995)  have reported the results of 

93.3% and 87.3% for specificity and sensitivity, respectively, using the wavelet 

transform. Acır et al. (2005) have reported that the best performance was obtained 

with the RB-SVM method providing an average sensitivity of 89.1% and average 

selectivity of 85.9%. Nuh, Jazidie, & Muslim, (2002) have studied wavelet neural 

network which combines wavelet analysis and ANN in a single algorithm and 

obtained 82% sensitivity and 90.4% selectivity values.  Adjouadi et al. (2004) have 

reported 79% and 85% for sensitivity and selectivity indices, respectively, using the 

Walsh transformation. Acır & Güzeliş (2004) have reported the results of 90.3% for 
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sensitivity and 88.1% for selectivity analysis using a two stage classification system 

based on only SVM.  Acır et al. (2005) have obtained the values of 91.1% and 89.2% 

for sensitivity and selectivity measures, respectively, using an RBFN system. 

Exarchos, Tzallas, & Fotiadis (2006) have used morphological and power spectrum 

features and have reported 86% sensitivity, 92% specificity and 83% selectivity 

values by using a rule based classification system. İnan & Kuntalp, (2007) have 

reported 93% sensitivity, 74% selectivity and 28% specificity values using a two 

stage unsupervised classification system. 
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CHAPTER FIVE 

AUTOMATIC RECOGNITION OF ARRHYTHMIAS IN ECG RECORD 

 

5.1 Introduction 

 

The goal of this study is to develop a robust system that will be capable of 

classifying a large number of arrhythmia types with higher accuracy than the other 

methods in the literature. The best set of features that could be used will be selected 

by a genetic algorithm from a large pool of candidate features including 

morphologic, spectral, time-frequency, and higher-order statistical ones. This project 

will differ radically from all the other systems in the literature, by taking into account 

all possible features simultaneously and by determining the best features for each 

arrhythmia type from among them.  

 

Electrocardiography is an important tool in diagnosing the condition of the heart. 

It provides valuable information about the functional aspects of the heart and 

cardiovascular system. Early detection of heart diseases/abnormalities can prolong 

life and enhance the quality of living through appropriate treatment. Therefore, 

numerous research and work analyzing the electrocardiogram (ECG) signals have 

been reported. 

  

In the literature, many researchers have addressed the problem of automatic 

detection and classification of cardiac rhythms. In most of the studies, MIT-BIH 

ECG database is used. Some techniques are based on the detection of a single 

arrhythmia type and its discrimination from normal sinus rhythm, or the 

discrimination between two different types of arrhythmia (Afonso & Tompkins, 

1995; Ham  & Han,  1996; Chen, Clarkson, & Fan, 1996; Thakor,   Zhu, & Pan,  

1990; Clayton, Murray, & Campbell, 1993; Clayton, Murray, & Campbell, 1994; 

Yang, Device, & Macfarlane, 1994). Other classes of proposed methods for 

arrhythmia detection and classification are based on the detection of different heart 

rhythms and their classification into two or three arrhythmia types and the normal 

sinus rhythm (Thakor, Natarajan, & Tomaselli, 1994; Khadra, Al-Fahoum, & Al-
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Nashash, 1997; Minami, Nakajima, & Toyoshima, 1999; Al-Fahoum & Howitt, 

1999; Zhang, Zhu, Thakor, & Wang, 1999; Wang, Zhu, Thakor,  & Xu, 2001; Owis, 

Abou-ZiedYoussef, & Kadah, 2002). Another field of interest is the ECG beat-by-

beat classification, where each beat is classified into several different rhythm types 

(Hu, Palreddy, & Tompkins, 1997; Lagerholm,  Peterson, & Braccini, 2000; Dokur 

& Olmez, 2001; Osowski & Linh, 2001; Hosseini, Reynolds, & Powers, 2001; 

Tsipourasa, Fotiadisa, & Sideris, 2005; Übeyli, 2007; Chazal  & Reilly, 2006; 

Besrour, Lachiri, & Ellouze, 2008; Melgani  & Yakoub, 2008; Arif, Akram, & Afsar, 

2009; Moazzen, Ahmadzadeh, Doost-Hoseini, & Omidi, 2009; Nasiri, Naghibzadeh, 

Yazdi, & Naghibzadeh, 2009; Yong, Wenxue,& Yonghong, 2009; Raghav & Mishra, 

2008; Chia-Hung Lin, Chao-Lin Kuo, Jian-Liung Chen, & Wei-Der Chang, 2009; 

Osowski,  Siroic & Siwek, 2009). These methods can classify more arrhythmic beat 

types.  

 

In all these studies, the researchers used a variety of features to represent the ECG 

signal and a number of classification methods. The features has been based on higher 

order statistics (Alliche & Mokrani, 2003; Besrour, Lachiri, & Ellouze, 2008; 

Khadra, Al-Fahoum, & Binajjaj, 2005; Osowski, Hoai, & Markiewicz, 2004; 

Osowski & Linh, 2001; Torun, İşler, Kuntalp, & Kuntalp, 2006), wavelet transform 

(Acır,  2005; Arif, Akram, & Afsar, 2009; Song et al., 2005), Fourier transform 

(Acır,  2005; Heidari, Shahidi, Aminian, & Sadati, 1998; Minami, Nakajima, & 

Toyoshima, 1999; Minami, Nakajima, & Toyoshima, 1997), principle component 

analysis (Nadal & Bossan, 1993; Nasiri et al., 2009), Helmite function coefficients ( 

Braccini et al. 1997; Osowski, Hoai, & Markiewicz, 2004), fractal properties (Chia-

Hung Lin et al., 2009; Raghav & Mishra, 2008), morphological features (RR-

interval, QRS complex, QRS duration in time, T wave duration in time, P wave flag, 

T-wave segment, etc. (Besrour, Lachiri, & Ellouze, 2008; Braccini et al. 1997; Hu, 

Palreddy, & Tompkins, 1997; Hosseini, Reynolds, & Powers, 2001; Minami, 

Nakajima, & Toyoshima, 1999; Melo, Caloba, & Nadal, 2000; Nasiri et al., 2009; 

Osowski & Linh, 2001; Nadal & Bossan, 1993).  
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Moreover, different systems are used as classifier in the researches. For instance,  

multi-layer  perceptron are used as a classifier by (Acır,  2005; Chia-Hung Lin et al., 

2009; Hosseini, Reynolds, & Powers, 2001; Minami, Nakajima, & Toyoshima, 1997; 

Minami, Nakajima, & Toyoshima, 1999; Nadal & Bossan, 1993;Osowski & Linh, 

2001; Torun, İşler, Kuntalp, & Kuntalp, 2006; Song et al., 2005; Yong, Wenxue,& 

Yonghong, 2009); support vector machine are performed by (Acır,  2005; Besrour, 

Lachiri, & Ellouze, 2008; Melgani  & Yakoub, 2008; Song et al., 2005; Nasiri et al., 

2009; Osowski,  Siroic & Siwek, 2009); mixture of experts approach (Hu, Palreddy, 

& Tompkins, 1997), fuzzy logic (Osowski & Linh, 2001; Song et al., 2005), RBF 

(Heidari, Shahidi, Aminian, & Sadati, 1998), K-nearest neighbor (Arif, Akram, & 

Afsar, 2009; Karimifard, Ahmadian, & Khoshnevisan, 2006; Isler & Kuntalp, 2007), 

and SOM (Braccini et al. 1997; Hosseini, Reynolds, & Powers, 2001) are also used 

as classifier. 
 

The structure of the heartbeat classification system is shown in Figure 5.1. The 

first step of the constructed system consists of preprocessing. In this step, removing 

base line wander effect and power line interface, QRS detection, and segmentation of 

the raw data are performed. In the feature extraction step, higher order statistics of 

wavelet packet decomposition (WPD) coefficients, frequency domain features, 

morphological features and higher order statistic features are extracted. Then two 

classification stages follow. They both have feature selection and classification steps. 

At the first stage, all heartbeats are classified into five main groups. In other word, all 

heartbeats in database are grouped into five classes according to “Association for the 

Advancement of Medical Instrumentation” (AAMI) standards (Chazal, O’Dwyer, & 

Reilly, 2004). In the feature selection step, optimum feature set is determined for 

each beat group using feature selection algorithm. Genetic algorithm and sequential 

floating search methods are used as feature selection algorithm.  For the second stage 

of classification, each main group are separated into subgroups of heartbeat types. 

For each subgroup, optimum feature set is determined for each beat type using 

feature selection algorithm. Combined KNN classifier and also combined MLP 

classifier are implemented and the classification performance of each is compared 
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with the other. For the second stage of classification, combined KNN classifiers are 

constructed to separate main groups into subgroups of heartbeat types. 

 

 
Figure 5.1 The general block diagram of the constructed system. 

 

All ECG recordings will be provided from the publicly available MIT/BIH 

database which has become a standard for the ECG researchers in recent years. 

MATLAB will be the primary development platform for all the algorithms to be 

developed. The performance of the systems developed will be calculated and 

compared both with each other and with other systems in the literature based on the 

sensitivity, selectivity, specificity, and ROC area measures. 
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5.2. ECG Data 

 

5.2.1. Data Acquisition and Its Properties 

 

The source of the ECG records is obtained from the MIT-BIH Arrhythmia 

Database (Goldberger et al., 2000). The database is a set of over 4000 long-term 

Holter recordings that are obtained by the Beth Israel Hospital Arrhythmia 

Laboratory. The database contains 48 recording. The subjects are 25 men aged 32 to 

89 years, and 22 women aged 23 to 89 years. But only 30 minutes long of the records 

is online available in pyhsionet freely. Each record contains two ECG lead signals 

denoted lead A and B. In 45 records of lead A are modified-lead II and the other 

three are lead V5. 40 records of Lead B are lead VI and the others are either lead II, 

V2, V4, or V5. The data are band-pass filtered at 0.1 - 100 Hz and sampled at 360 

Hz. The lead A (lead II) is used in this study because of more clear QRS complexes. 

 

Each record is annotated by two or more cardiologists independently. Amount of 

labeled beats of arrhythmias in the database is shown in the Table 5.1, and samples 

of each heartbeat type are shown in Figure 5.2. 
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Table 5.1 Mapping of MIT-BIH arrhythmia database heartbeat types to the AAMI heartbeat classes 

and amount of arrhythmias in the database 

AAMI 
heartbeat 

classes 
Labeled Classes Amount 

Non-Ectopic 
Beats (N) 

1 Normal Beat (NORMAL) 75054
2 Left Bundle Branch Block Beat (LBBB) 8075
3 Right Bundle Branch Block Beat (RBBB) 7259
4 Nodal (Junctional) Escape Beat (NESC) 229
5 Atrial Escape Beat (AESC) 16

Supraventricular 
Ectopic Beats (S) 

6 Aberrated Atrial Premature Beat (AAPB) 150
7 Premature or Ectopic Supraventricular Beat (PESB) 2
8 Atrial Premature Contraction (APC) 2545
9 Nodal (Junctional) Premature Beat (NPB) 83

Ventricular 
Ectopic Beats 

(V) 

10 Ventricular Flutter Wave (VF) 472
11 Ventricular Escape Beat (VESC) 106
12 Premature Ventricular Contraction (PVC) 7129

Fusion Beats (F) 13 Fusion of Ventricular And Normal Beat (FUSION) 803

Unknown Beats 
(Q) 

14 Paced Beat (PACE) 7028
15 Unclassifiable Beat (Others) 33
16 Fusion of Paced And Normal Beat (PFUS) 982
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Figure 5.2 Samples of each heartbeat types. 

 

5.3 Pre-Processing  

 

5.3.1  Filtering 

 

The baseline wandering and the power line interference are the most substantial 

noises and can strongly affect ECG signal analysis (Tompkins, 1993; Acharya, Suri, 

Spaan, & Krishnan, 2007). Baseline wander due to respiration contains low 

frequency components; power line interference contains high frequencies. All ECG 

signals are filtered with two median filters to remove the baseline wander. After the 

signal is processed with two median filters, which have 200ms and 600ms widths, 

respectively, the obtained signal is the baseline of the ECG signal. The result is 

subtracted from the original signal to remove the baseline wander effect of ECG 

signal. 

 

Then power-line frequency is removed from the median filtered ECG by a notch 

filter. Records in database have 60 Hz power line interference.  So with a proper 

notch filter power line frequency is removed. Result of filtering process is shown in 

Figure 5.3.  The filtered ECG signals are used in all subsequent processing steps. 
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b) 

Figure 5.3 Result of filtering process a) Original signal with power line 

interference and base line wonder b) Filtered signal. 

 

5.3.2 QRS Detection 

 

In fact, many systems have already been constructed and executed for biomedical 

applications such as holter tape analysis, real-time patient monitoring etc… All these 

applications require an accurate detection of the QRS complex of the ECG. QRS 

detection is difficult, because of the physiological variability of the QRS complexes, 

and also because of the various types of noise that can be present in the ECG signal. 

In addition to the QRS complex, the ECG waveform contains P and T waves, power 

line interference, EMG from muscles, motion artifact from the electrode and skin 
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interface, and possibly other interference from electro surgery equipment in the 

operating room. It is important to extract the QRS complex from the other noise 

sources such as the P and T waves.  

 

A QRS detection algorithm developed by Tompkins (Pan & Tompkins, 1985) is 

realized in this thesis. The energy of QRS complex is known to be concentrated 

approximately in the 5-15 Hz range (Hamilton & Tompkins, 1986; Pan & Tompkins, 

1985). This QRS detection algorithm is based on analyses of the R point. The slope 

of the R wave is a common feature used to locate the QRS complex in many QRS 

detectors. However, a derivative amplifies the undesirable higher frequency noise 

components. Also, many abnormal QRS complexes with large amplitudes and long 

durations may be missed in a purely derivative approach because of their relatively 

low R wave slopes. Therefore, R wave slope lonely is insufficient for correct QRS 

detection. Hence, the algorithm consists of low-pass and high-pass filter, 

differentiator, squarer and moving average filter as seen in Figure 5.4.  

 

 
Figure 5.4 Block diagram of R point detection 

Algorithm. 
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In order to attenuate noise, the signal is passed through a band pass filter 

composed of cascaded high-pass and low-pass integer filters. Low-pass filter cut off 

frequency is about 11 Hz and the delay is five sample (or 25ms for a sampling rate of 

200sps) and the gain is 36. The transfer function of second order low-pass filter is 
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The difference equation of this filter is 

 

)12()6(2)()2()(2)( TnTxTnTxnTxTnTyTnTynTy −+−−+−−−= (5.2)

 

 Instead of the high-pass filter Tompkins used low-pass filter, which has cut off 

frequency at 5 Hz, gain of 32, and subtracted from the original signal. The delay is 

about 80ms. Transfer function of high-pass filter is 
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The difference equation of this filter is 

 

32
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−−=
 

 (5.4)

 

The center of the pass-band frequency is at 10 Hz.  At this process P, T waves are 

suppressed and the frequency characteristic of a QRS complex is optimally passed. 

Base line drift and power line interference are also eliminated from the signal.  

 

The differentiation process is used to make clear the R point in the ECG signal. 

This process amplifies the higher frequency characteristic of QRS complex and 
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further attenuates the lower frequency of P and T waves. Five point derivatives has 

the transfer function 

 

)22(1.0)( 431 −−− −−+= zzzzH          (5.5) 

 

This derivative is implemented with the following difference equation  

 

8
)4(2)3()()(2)( TnTxTnTxTnTxnTxnTy −−−−−+

=  (5.6)

 

The following process is the squaring process which is a nonlinear 

transformation.  The equation is 

 

[ ]2)()( nTxnTy =           (5.7) 

 

This process increases the intensity of the output of the differentiation process. 

The last process is the time averaging process called moving window integral. The 

equation of moving window is 
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This integrator sums the area under the squared waveform over a 150-ms interval 

while moving in time domain step by step.  

 

Figure 5.5 shows the outputs of each processing steps. It starts from the original 

ECG and finishes with founded QRS point in the ECG signal. Figure 5.6 shows 

frequency response of the filters. 
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Figure 5.5 Output of QRS detection algorithm processing steps: Original 

ECG Signal, Output of the Notch Filter, Output of the High-pass Filter, 

Output of the Low-pass, Filter, Output of the Differentiator Filter, Output of 

the Squarer, and Output of the Moving Average Filter, respectively. 
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Figure 5.6 Frequency response of QRS detection algorithm processing steps: Original ECG 

Signal, Output of the Notch filter, Output of the High-pass filter, Output of the Low-pass 

filter, respectively. 

 

Peak detector is the last process of the QRS detection algorithm. The locations of 

R peaks are determined by the algorithm. The output of the moving window process 

includes a large amplitude peak and some small amplitude peaks. Therefore, peak 

detector can sense these small peaks as R peak and can generate a wrong QRS 

detection. This can be avoided by using local maxima peak detector. 

Two sets of thresholds are used to detect R points. Each set has two threshold 

levels. The set of thresholds that is applied to the waveform from the moving 

window integrator is 
 

SPKI = 0.125(PEAKI) + 0.875(SPKI) if PEAKI is the signal peak  (5.9) 
 

NPKI = 0.125(PEAKI) + 0.875(NPKI) if PEAKI is the noise peak  (5.10) 
 

THRESHOLDI1 = NPKI+0.25(SPKI-NPKI)     (5.11) 
 

THRESHOLDI2 = 0.5 THRESHOLDI1      (5.12) 
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where PEAKI is the overall peak, SPKI is the running estimate of the signal peak, 

NPKI is the running estimate of the noise peak, THRESHOLDI1 is the first threshold 

applied, and THRESHOLDI2 is the second threshold applied. Figure 5.7 shows the 

outputs of R point detection steps.  
 

 
Figure 5.7 Outputs of R point detection steps. 

 

5.3.3 Segmentation  

 

The segmentation process is applied to the filtered signal after the R point is 

detected. The window with a length of 341 data points (the R peak of the wave is 

located at the 171th point) is extracted from the ECG record for each beat type. This 

corresponds to approximately 944 ms of the ECG signal. The window with a length 

of 944 ms is shown in Figure 5.8 for a normal ECG signal. The windowed beats are 

prepared as train and test sets as shown in Table 5.2. 
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Figure 5.8 A window with a length of 341 data points for normal ECG signal. 
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Table 5.2. Mapping of MIT-BIH arrhythmia database heartbeat types to the AAMI heartbeat 

classes and amount of arrhythmias for training and testing 

AAMI heartbeat classes (labels) MIT-BIH heartbeat classes label Train 
Set Test Set 

Non-Ectopic Beats (N) 

1 350 250 

2 350 250 

3 350 250 

4 114 113 

5 8 8 

Supraventricular Ectopic Beats (S) 

6 74 74 

7 1 1 

8 350 250 

9 42 41 

Ventricular Ectopic Beats (V) 

10 236 236 

11 53 53 

12 350 250 

Fusion Beats (F) 13 350 250 

Unknown Beats (Q) 

14 350 250 

15 17 16 

16 350 250 

 Total : 3345 2542 

 

 

5.4  Feature Extraction  

 

Windowed data set from MIT-BIH arrhythmia database is further processed to 

extract other features.  

 

5.4.1 Raw ECG 

 

The raw ECG data which had different window sizes are used to investigate the 

effect of window size (Kutlu, Kuntalp, & Kuntalp, 2007). In order to take a long 

enough time segment for all probable cases, the feature sets are created with different 

window sizes. Each feature set are constituted by adding new part of 14ms (5 

consecutive points) to this interval as shown in Figure 5.9. Total length of the 

window size is at most 1400ms (700ms right side and 700ms left side of R point). 

Figure 5.9 shows seven probable cases which are only a small part of right side of the 

R point.  
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Figure 5.9 Amount of consecutive points and window size for each feature set. 

 

K-nearest neighborhood method is used as classifier in search process. The 

performance is measured based on three standard statistical measures: sensitivity, 

specificity, and selectivity According to results of network structures. 161 raw ECG 

points (130 previous points and 30 next points) is the best performance for KNN 

based system. 

 

5.4.2. Higher Order Statistics 

 

The second, third and fourth order cumulants are calculated for each beat taking 

lag 0 (Kutlu, Kuntalp, & Kuntalp, 2008b). The zero-lag cumulants have special 

names: c2(0) is the variance and is denoted by σ2; c3(0,0) and c4(0,0,0) are denoted by 

γ3x and γ4x known as the skewness and the kurtosis, respectively. 

 

5.4.3. Wavelet Packet Decomposition 

 

Different mother wavelets, such as Daubechies 2 (db2), Daubechies 4 (db4), and 

Daubechies  6 (db6) (as shown Figure 5.10), are examined as mother wavelet 
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function for estimating the wavelet packet coefficients in the study. Classification 

accuracy of extracted features from each mother wavelet is compared. ECG signals 

are decomposed up to level 4. Therefore the number of sub bands is 30 for the fourth 

level of wavelet packet decomposition. 
 

  
a)             b) 

 
c) 

Figure 5.10 Mother wavelet function; a) daubechies 2, b) daubechies 4, c) daubechies 6. 

 

The wavelet packet decomposition is a feature extraction tool. Not only does the 

WPD utilizes the low frequency components (approximations) but also the high 

frequency components (details). But the size of the feature vector might be too high 

to be applied as input to a classification system. The HOS methods are used to 

extract new and fewer number of features from the wavelet packet decomposition 

coefficients. Using the higher order statistical methods, the second, third and fourth 

order cumulants of each level of sub bands are calculated (Kutlu & Kuntalp, 2009b). 

There are thirty sub bands for the four levels. Three features are extracted for each 

sub band using HOS (2nd , 3rd , 4th order) and a total of 90 HOS features (Six features 

from first level, 12 features from second level, 24 features from third level, and 48 

features from fourth level) are obtained for all sub bands of WPD. By using HOS of 
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sub band signals, it becomes possible to define hidden features embedded in the QRS 

complex. 

 

 HOS features are extracted for each mother wavelet. The classification 

performances are measured using KNN classifier. The results are shown in Table 5.3, 

5.4, and 5.5. In the literature, many studies in the analysis of ECG preferred db4 

wavelet as mother wavelet, because of the similarity of the QRS complex (Bakardijin 

&Yamamoto, 1995;Pic hot et al., 1999; Übeyli, 2008). In this application the best 

result for performance measures of the normal beat (for label 1) is obtained with db4 

wavelet as well. But performance measures of other beats are not as good as the 

normal beat. The performance measures of db2 and db6 wavelet are almost the same 

as average value of performance measures. But overall accuracies are 72.8%, 73.3%, 

and 74.9% for db2, db4, db6, respectively. Although it is not clearly seen any 

difference, the best one is obtained with db6 wavelet. Consequently, these features 

are used in the constructed system. 

 
Table 5.3 Performance measure of features for db2 wavelet 

Label SEN SEL SPE 

Area 
Under 
Curve 

1 60.00 64.02 96.92 0.78
2 83.00 77.18 97.81 0.90
3 82.50 76.91 97.86 0.90
4 53.00 57.00 98.69 0.76
5 62.00 67.82 97.46 0.80
6 75.00 69.65 96.97 0.86
7 41.24 47.00 99.12 0.70
8 72.00 63.38 96.07 0.84
9 0.00 0.00 99.95 0.50

10 88.45 86.09 99.72 0.94
11 63.96 70.04 98.71 0.81
12 85.00 81.85 98.56 0.92
13 6.25 11.29 99.73 0.53
14 75.33 83.59 98.53 0.87
15 9.50 13.67 99.77 0.55
16 70.00 73.04 97.71 0.84

Average 57.95 58.91 98.35 0.78
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Table 5.4 Performance measure of features for db4 wavelet 

Label SEN SEL SPE 

Area 
Under 
Curve 

1 94.40 97.12 99.69 0.97
2 91.20 88.03 98.65 0.95
3 79.20 96.59 99.69 0.89
4 16.22 36.36 99.15 0.58
5 64.40 42.04 90.31 0.77
6 32.80 51.90 96.68 0.65
7 39.02 32.65 98.68 0.69
8 76.40 63.04 95.11 0.86
9 0.00 0.00 100.00 0.50

10 37.74 52.63 99.28 0.69
11 84.07 82.61 99.18 0.92
12 94.00 95.14 99.48 0.97
13 12.50 22.22 99.72 0.56
14 75.00 81.57 98.27 0.87
15 0.00 0.00 99.76 0.50
16 84.00 75.81 97.08 0.91

Average 55.06 57.36 98.17 0.77
 

Table 5.5 Performance measure of features for db6 wavelet 

Label SEN SEL SPE 

Area 
Under 
Curve 

1 86.40 94.32 99.43 0.93
2 90.80 88.67 98.73 0.95
3 84.00 97.67 99.78 0.92
4 32.32 45.86 98.99 0.66
5 63.60 46.39 92.23 0.78
6 38.80 64.12 97.82 0.68
7 37.15 37.84 99.04 0.68
8 79.60 53.29 92.28 0.86
9 0.00 0.00 100.00 0.50

10 38.85 76.00 99.76 0.69
11 88.50 87.21 99.34 0.94
12 94.80 96.73 99.65 0.97
13 0.00 0.00 98.81 0.49
14 74.61 83.64 98.35 0.86
15 0.00 0.00 99.76 0.50
16 87.20 73.72 96.34 0.92

Average 56.04 59.09 98.14 0.78
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5.4.4 Morphological Features 

 

This approach is based on R point in the ECG record. Therefore, informations of 

QRS detection are used in this step. The Q and S points are limited within the 150 ms 

period which is centered by the R point (Tompkins, 1993). The sampling frequency 

of the data set is 360 Hz. and 150ms equal to nearly 55 consecutive points. This is 

the region of interest (ROI). Hence the fiducial points are limited with nearly 28 

point left and 28 point right. By using these statistical data with the first derivative of 

ECG, the Q and S points are determined.  

 

The time-derivative of the signal f(t) are calculated and its zero-crossings are 

found. For a discrete signal f[n]=f(t)|t=nT  it can be obtained by searching the 

inflection points based on the following criteria: 

 

• If f[n]- f[n-1] ≤0≤ f[n+1]- f[n], then this is a negative peak; it is stored 

with index. 

 

• If [f[n]- f[n-1] ].[ f[n+1]- f[n]]>0, then this is not a peak; it is 

discarded. 

 

This procedure is indeed a numerical differentiation technique such that                  

the equation (f(n+1)-f(n))/T represents the first-order forward approximation to the 

derivative of  f(t) at t=nT.  

 

Using R, Q and S points, amplitudes of QR (G1), amplitudes of RS (G2), QR 

width  (T1 ), RS width (T2), and  slope of right and left side of R point are extracted 

as features as shown in Figure 5.11. 
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Figure 5.11 Morphological features of a sample normal signal. 

 

 

5.4.5. Discrete Fourier Transform 

 

Fourier transform is often called the frequency domain representation of the 

original signal. Frequency of ECG signals is in the range of 0-100Hz. But in clinical 

process band of 0-50Hz is analyzed. So in this study frequency band of 0-50Hz is 

considered. A sample energy spectrum of a normal ECG signal is shown in Figure 

5.12. Using 256 sample Fourier transform, 46 energy values of the coefficients which 

are less than 50 Hz are used as features. 
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Figure 5.12 A sample energy spectrum of normal signal. 

 

5.5 Visualization of Feature Sets Using Self Organizing Maps 

 

SOM is used for different approach such as visualization data, clustering, feature 

extracting (Kutlu,  Kuntalp, & Kuntalp, 2008a, Kutlu,  Kuntalp, & Kuntalp, 2008c, 

Kutlu & Kuntalp, 2009a, Kutlu, Kuntalp, &  Kuntalp 2009a, Kutlu, Kuntalp, &  

Kuntalp 2009c).  In this step,  the arrhythmias in the electrocardiograph (ECG) 

signals are analyzed by using Self Organizing Maps (SOM). The feature sets 

obtained with different methods are used for training the SOM networks diversely. 

The maps are examined using U-matrix representation method. That way, high 

dimensional data are examined in two dimensions. The clusters that appear in U-

matrix representation is examined for different feature sets. U-matrix representation 

of a SOM network is given using three visualization: colored image, gray level 

image with clusters, and three-dimensional the hill-valley landscape visualization. 

They are described in section 3.5. The cluster color code is shown in Table below. 

 

SOM structures are constructed with 3500 (70x50) neurons and hexagonal 

topology. Then U-matrix is calculated from trained SOM structures. The computed 

U-matrix is visualized through a colored image. 
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Table 5.6 Cluster color code in U-matrix representation 

 
 

Figures 5.13 - 5.17 show the U-matrix analysis of HOS features, Fourier 

Transform, Morphological Features, HOS features of only third level of WTP 

analysis, respectively. 
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a)                       b) 

 

 
c) 

Figure 5.13 U-matrix representation of a SOM network for raw ECG data, a) colored image 

visualization, b) gray level visualization with colored clusters, c) 3D hill-valley landscape 

visualization. 
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a)                                                                                       b) 

 
c) 

Figure 5.14 U-matrix representation of a SOM network for HOS features, a) colored image 

visualization, b) gray level visualization with colored clusters, c) 3D hill-valley landscape 

visualization. 
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a)                                                                          b) 

 
c) 
 

Figure 5.15 U-matrix representation of a SOM network for Fourier Transform coefficient, a) 

colored image visualization, b) gray level visualization with colored clusters, c) 3D hill-valley 

landscape visualization. 
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  a)                                                                              b) 

 
 

 
c) 

Figure 5.16 U-matrix representation of a SOM network for morphological Features, a) colored 

image visualization, b) gray level visualization with colored clusters, c) 3D hill-valley 

landscape visualization. 

 
 

 



101 

 

 

 
  a)                                                                              b) 

 
c) 

Figure 5.17 U-matrix representation of a SOM network for HOS features of only third level of 

WTP analysis, a) colored image visualization, b) gray level visualization with colored clusters, 

c) 3D hill-valley landscape visualization. 

 

In general looking at these results two patterns are identified in colored image 

visualizations. First, there are big homogeneous areas which are colored blue. Here it 

can be said that the datasets have a high degree of similarity in each dark area. For 

example, colored image visualization in Figure 5.16.a the big blue region (top left) 

represents cluster of an arrhythmia type (seen in Figure 5.16.b). On the other hand, 

lighter shade indicates location of data vectors having high distance. It also indicates 

the border of the clusters where the dark areas indicate the clusters. For example, 
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colored image visualization in Figure 5.16.a the big dark blue region bordered lighter 

color (bottom right)  represents cluster of an arrhythmia type (seen in Figure 5.16.b) 

and the lighter color indicates border of the cluster. 3-dimensional visualization of 

the SOM has valleys which indicate similarities in the input data and hills which 

indicate distance in the input data. That means hills indicate the border of the 

clusters. For example, 3-dimension visualizations of the same regions (bottom right 

and top left) in Figure 5.16.a are also given in Figure 5.16.c. 

 

According to results of different feature sets, no unique robust feature set is able 

to classify all heartbeat types. For example, no cluster is clearly separated in Figure 

5.14.  LBBB, RBBB and paced beat types are clearly separated in Figure 5.16. 

Therefore the ECG heartbeat classification becomes a typical problem of 

classification which requires the exploration of diverse set of features. 

 

5.6 Dimensionality Reduction 

 

After the feature extraction processes, total of 150 features were extracted which 

are 8 form HOS, 90 from HOSofWPT, 6 from morphology, and 46 from Fourier 

transform. Features are labeled as numbers for the selection algorithm. HOS features 

label are numbered as f1-f8. Label of morphological features are numbered as f9-f14. 

Label of HOS features of WPD are numbered as f15-f104. And Fourier coefficient 

labels are numbered as f105-f150. To decrease dimension of feature set, wrapper 

method is used.  

 

5.6.1 Feature Dimension Reduction using Selection Algorithm 

 

Automatic feature selection is an optimization technique that, given a set of m 

features, attempts to select a subset of size n that leads to the maximization of some 

criterion function. Feature selection algorithms are important in recognition and 

classification systems because if a feature space with a large dimension is used, the 

performance of the classifier will decrease with respect to execution time and to 

recognition rate. Two feature selection algorithms are used in this process: sequential 
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floating search methods (SFSM) and Genetic Algorithm (GA). 

 

In sequential search algorithm, the feature selection criterion is the overall 

accuracy of the KNN classifiers. Two step SFS (n=2) and one step SBS (r=1) are 

utilized. 

 

In the GA, population size is taken 300; one point Crossover  is utilized; elitizm 

strategy is used and the number of best individuals is two that are guaranteed to 

survive to the next generation; stochastic uniform selection is utilized; mutation is 

performed by randomly selecting a bit in a string and changing its value.   

 

Feature selection process block diagram is shown in Figure 5.18. In the selection 

algorithm K-nearest neighborhood algorithm is used as classifier. Overall accuracy of 

classifier and ROC area measures are used as performance criteria of selection 

algorithm. 
 

 
Figure 5.18 Block diagram of feature selection. 

 

The constructed system has two classification stages. In the first stage, it 

classifies all heartbeats into five main groups. Therefore, feature selection algorithm 

is performed for each of these five groups. In addition, genetic algorithm and 

sequential floating search methods are both used in feature selection stage. At first, 

overall accuracy of classifier is used as performance criteria of selection algorithm. 

The results of the selection process are shown in Table 5.7 for GA and in Table 5.8 

for SFSM. The feature sizes of the each main group (N, S, V, F, and Q) are 51, 64, 
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64, 61, and 69, respectively, with GA, and 61, 62, 67, 74, and 100, respectively, with 

SFSM.  

 
Table 5.7. Amount of selected features for main groups with GA using 

overall accuracy as performance measure 

Label Selected Features 
N 2 HOSF, 1 MF, 24 HOSofWPT, 24 FTF 
S 2 HOSF, 1 MF, 45 HOSofWPT, 16 FTF 
V 2 HOSF, 1 MF, 47 HOSofWPT, 14 FTF 
F 2 HOSF, 3 MF, 37 HOSofWPT, 19 FTF 
Q 4 HOSF, 3 MF, 40 HOSofWPT, 22 FTF 

 

Table 5.8. Amount of selected features for main groups with SFSM using 

overall accuracy as performance measure 

Label Selected Features 
N 1 HOSF, 37 HOSofWPT, 23 FTF 
S 2 HOSF, 31 HOSofWPT, 29 FTF 
V 1 HOSF, 2 MF, 28 HOSofWPT, 36 FTF 
F 3 HOSF, 1 MF, 36 HOSofWPT, 34 FTF 
Q 4 HOSF, 56 HOSofWPT, 40 FTF 

*HOSF: Higher Order Statistics Features,  
*MF: Morphological Features,  
*HOSofWPT:HOS Features of Wavelet Packet Transform,  
*FTF: Fourier Transform Features 

 

Performance measures of classifiers for five main groups are shown in Table 5.9 

for the cases of using all features, using selected features with SFSM and using 

selected features with GA. Overall accuracies are %83.01, %87.49 and %93.04 for 

all features, selected features with SFSM and selected features with GA, 

respectively. Results show that the best performance is obtained with features of GA 

selection. Therefore, first stage of the system is constructed using features obtained 

with GA these results.  
 

 



105 

 

 

Table 5.9 Performance measures of KNN based classifier using all features and selected features with 

SFSM and GA using overall accuracy as performance measure 

   All Features Selected Features with SFSM 
Selected Features 

with GA 

Label SEN SEL SPE ROC 
Area SEN SEL SPE ROC 

Area SEN SEL SPE ROC 
Area

N 87.72 93.40 96.77 92.24 94.37 99.40 99.70 97.04 95.18 99.04 99.52 97.35

S 86.89 62.48 91.22 89.05 83.06 94.41 99.17 91.12 87.70 94.13 99.08 93.39

V 85.16 75.62 92.61 88.88 86.64 96.29 99.10 92.87 88.87 96.57 99.15 94.01

F 27.20 70.83 98.78 62.99 48.80 99.19 99.96 74.38 92.00 95.44 99.52 95.76

Q 97.09 97.85 99.46 98.28 98.64 64.84 86.38 92.51 98.06 80.70 94.03 96.04

Average 76.81 80.04 95.77 86.29 82.30 90.82 96.86 89.58 92.36 93.18 98.26 95.31

 

In the second stage, the constructed system classifies each main group into 

heartbeats. The feature selection algorithm is also applied in the second stage to 

select optimal features for subgroups of each main group. For this purpose, the 

following features (see Table 5.10) are chosen as the best discriminative features. 

Since the main group F has no subgroup, the selected features for the subgroups of 

remaining four main groups are used at the second stage. Results of overall accuracy 

of subgroup classifiers are %100, %96.06, %99.62 and %98.8 for subgroups of N, 

subgroups of S, subgroups of V and subgroups of Q, respectively.  
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Table 5.10 Number of selected features for subgroups of each main group using 

overall accuracy as performance measure 

Main group Label Selected Features of Subgroups 

Main group N 

1 1 MF, 1 HOSofWPT, 2 FTF 
2 1 HOSofWPT, 2 FTF 

3 2 FTF 

4 2 MF, 1 HOSofWPT, 41 FTF 
5 1 MF, 2 HOSofWPT, 1 FTF 

Main group S 

6 1 HOSF, 1 MF, 1 HOSofWPT, 5 FTF 

7 1 MF, 1 HOSofWPT, 4 FTF 

8 1 HOSF, 1 MF, 2 HOSofWPT, 5 FTF 
9 1 HOSF,  20 FTF 

Main group V 

10 9 HOSofWPT, 8 FTF 

11 3 HOSofWPT, 2 FTF 

12 2 MF, 7 HOSofWPT, 34 FTF 

Main group F 13 2 HOSF, 3 MF, 37 HOSofWPT, 19 FTF 

Main group Q 

14 2 HOSF, 10 HOSofWPT, 38 FTF 

15 4 HOSofWPT, 39 FTF 

16 5 HOSofWPT, 14 FTF 
*HOSF: Higher Order Statistics Features,  
*MF: Morphological Features,  
*HOSofWPT:HOS Features of Wavelet Packet Transform,  
*FTF: Fourier Transform Features 

 

When ROC area measure of classifier is used as performance criteria of selection 

algorithm: In the first stage, the results of the selection process are shown in Table 

5.11 for GA and in Table 5.12 for SFSM. The feature sizes of the each main group 

(N, S, V, F, and Q) are 63, 68, 64, 68, and 76, respectively, with GA, and 70,  63, 71, 

70, and 95, respectively, with SFSM.  
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Table 5.11. Amount of selected features for main groups with GA using 

ROC area as performance measure 

Label Selected Features 
N 0 HOSF, 1 MF, 37 HOSofWPT, 25 FTF 
S 2 HOSF, 1 MF, 47 HOSofWPT, 18 FTF 
V 2 HOSF, 1 MF, 43 HOSofWPT, 18 FTF 
F 2 HOSF, 3 MF, 41 HOSofWPT, 22 FTF 
Q 5 HOSF, 4 MF, 49 HOSofWPT, 18 FTF 

 

Table 5.12. Amount of selected features for main groups with SFSM 

using ROC area as performance measure 

Label Selected Features 
N 1 HOSF, 1 MF, 44 HOSofWPT, 24 FTF 
S 0 HOSF, 0 MF, 40 HOSofWPT, 23 FTF 
V 1 HOSF, 2 MF, 30 HOSofWPT, 38 FTF 
F 1 HOSF, 2 MF, 31 HOSofWPT, 36 FTF 
Q 3 HOSF, 0 MF, 52 HOSofWPT, 40 FTF 

*HOSF: Higher Order Statistics Features,  
*MF: Morphological Features,  
*HOSofWPT:HOS Features of Wavelet Packet Transform,  
*FTF: Fourier Transform Features 

 

Performance measures of classifiers for five main groups are shown in Table 5.13 

for the cases of using selected features with SFSM and using selected features with 

GA. Overall accuracies are %88.00 and %92.62 for selected features with SFSM and 

selected features with GA, respectively.  
 

Table 5.13 Performance measures of KNN based classifier using selected 

features with SFSM and GA using ROC area as performance measure 

  Selected Features with SFSM Selected Features with GA

Label  SEN SEL SPE ROC 
Area SEN SEL SPE ROC 

Area 
N 84.73 99.33 99.70 0.92 95.29 98.46 99.22 0.97 

S 80.05 96.38 99.49 0.90 85.79 95.73 99.36 0.93 

V 88.13 97.14 99.30 0.94 88.13 97.14 99.30 0.94 

F 83.20 98.11 99.83 0.92 91.20 95.40 99.52 0.95 

Q 99.03 64.36 86.03 0.93 98.26 78.85 93.29 0.96 

Average 87.03 91.06 96.87 0.92 91.73 93.11 98.14 0.95 

 

Results show that there is no clear difference between using overall accuracy and 

using ROC area as performance criteria of selection algorithm. This may be 

limitation of feature pool. Results show that the best performance is obtained with 
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features of GA selection using overall accuracy as performance measure. Therefore, 

first stage of the system is constructed using the best features sets.  

 

In the second stage, the feature selection algorithm is also applied in the second 

stage to select optimal features for subgroups of each main group. The best 

discriminative features are shown in Table 5.14. Results of overall accuracy of 

subgroup classifiers are %100, %95.86, %99.42 and %99.01 for subgroups of N, 

subgroups of S, subgroups of V and subgroups of Q, respectively.  
 

Table 5.14 Number of selected features for subgroups of each main group using 

ROC area as performance measure 

Main group Label Selected Features of Subgroups 

Main group N 

1 1 MF, 1 HOSofWPT, 2 FTF 
2 1 HOSofWPT, 2 FTF 

3 2 FTF 

4 2 MF, 1 HOSofWPT, 41 FTF 
5 1 MF, 2 HOSofWPT, 1 FTF 

Main group S 

6 1 HOSF, 1 MF, 1 HOSofWPT, 7 FTF 

7 1 MF, 1 HOSofWPT, 4 FTF 

8 1 HOSF, 1 MF, 2 HOSofWPT, 6 FTF 
9 1 HOSF,  20 FTF 

Main group V 

10 10 HOSofWPT, 9 FTF 

11 3 HOSofWPT, 5 FTF 

12 2 MF, 7 HOSofWPT, 34 FTF 

Main group F 13 2 HOSF, 3 MF, 41 HOSofWPT, 22 FTF 

Main group Q 

14 2 HOSF, 10 HOSofWPT, 38 FTF 

15 4 HOSofWPT, 39 FTF 

16 5 HOSofWPT, 14 FTF 
*HOSF: Higher Order Statistics Features,  
*MF: Morphological Features,  
*HOSofWPT:HOS Features of Wavelet Packet Transform,  
*FTF: Fourier Transform Features 

 

Results of second stage using ROC area as performance criteria of selection 

algorithm are almost same as using overall accuracy as performance criteria of 

selection algorithm. The second stage of the system is constructed overall accuracy 

as performance criteria of selection algorithm.  
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5.6.2 Feature Dimension Reduction with Neural Network 

 

A simple three layer linear network can be used as feature dimension reduction 

tool. Figure 5.19 shows the structure of three layer neural network. All of the 

extracted features are used at both input and output layer. Network trained by 

gradient descent on a sum squared error criterion. Activation functions of network 

are linear for all layers. Dimension of input data is 150. The transformation is linear 

projection onto a different dimensional subspace which is represented by hidden 

neuron size of network. 

 

 
Figure 5.19 Three layer neural networks with linear hidden layer. 

 

In this work, many neural networks with different hidden neuron size are 

constructed to investigate lower dimensional features set. The hidden neuron size, 

which represents new and reduced feature vector size, changes between 30 and 150. 

Each neural network with new hidden neuron is performed several times with 

different initial values of the network. Network with the best value of mean squared 

error (MSE) is used for new feature set extraction. Extracted feature sets with 

different sizes are used to investigate the classification accuracy of five main groups. 

Multilayer perceptron (MLP) networks are used as classifier. MLP structure is 

constructed as shown Figure 5.20 and Figure 5.21. The first model (in Figure 5.20) 

used single MLP structures with five outputs. The second model (in Figure 5.21) 
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used five MLP structures. Each network separates only one main group from others. 

Then the outputs of the networks are combined to make a decision.  

 

 
Figure 5.20 Classification systems for five 

classes with single MLP structure. 

 

 

 

Figure 5.21 Classification system for five classes with five different MLP. 

 

 

At first, the single MLP network is constructed with different hidden neuron size 

using all features as input vector. Each network is trained several times with different 
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initial values. The best values of overall accuracy of classifiers are shown in Table 

5.15.   

 
Table 5.15 Results of overall accuracy of single 

MLP classifiers using all features 

Overall Accuracy (%) 

H
id

de
n 

N
eu

ro
n 

si
ze

 o
f M

L
P 

cl
as

si
fie

r 

5 72.90 
8 73.72 

11 78.48 
14 81.78 
17 82.49 
20 80.80 
23 80.61 
26 76.75 
29 81.00 
32 78.99 
35 77.93 
38 79.71 
41 77.42 
44 79.94 
47 79.31 
50 76.44 

 

The single MLP network is constructed with different hidden neuron size and with 

different input vectors to classify five main groups with better performances. Each 

network is trained several times with different initial values. The best values of 

overall accuracy of classifiers are shown in Table 5.16.   

 

The MLP network is constructed for each main group. Each network is built with 

19 different hidden neurons and trained for 13 new feature sets. Therefore, total of 

247 MLP structure are constructed for each main group. Each MLP structure is 

trained several times with different initial values of the network. The best values of 

overall accuracy of classifiers are shown in Table 5.17 for N, in Table 5.18 for S, in 

Table 5.19 for V, in Table 5.20 for F, and in Table 5.21 for Q.   
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The best performance of the single MLP structures is 82.49% of overall accuracy 

with 17 hidden neurons using all features.  
 

The best performance of the single MLP networks is 86.90% of overall accuracy 

with 90 new feature vector size and MLP structures with 8 hidden neurons.  
 

In the case of different MLPs for each main group, the best performance is 

95.83% obtained with  feature vector size of 80 and MLP structure with 8 hidden 

neurons for N; the best performance is 94.73% obtained with  feature vector size of  

40 and MLP structure with 14 hidden neurons for S; the  best performance is 94.37% 

obtained with feature vector size of  120 and MLP structure with 5 hidden neurons 

for V; the  best performance is 95.87% obtained with feature vector size of  150 and 

MLP structure with 35 hidden neurons for F ; the  best performance is 99.45% 

obtained feature vector size of 90 and MLP structure with 26 hidden neurons for Q. 

Networks with best performance are used to construct an ensemble system and the 

outputs of the networks are combined to make a decision.  
 

The MLP network is constructed for each main group. Each network is built with 

19 different hidden neurons and trained for 13 new feature sets. Therefore, total of 

247 MLP structure are constructed for each main group. Each MLP structure is 

trained several times with different initial values of the network. The best values of 

ROC area measure of classifiers are shown in Table 5.22 for N, in Table 5.23 for S, 

in Table 5.24 for V, in Table 5.25 for F, and in Table 5.26 for Q.   
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In the case of different MLPs for each main group, the best performance of ROC 

area is 0.9507 obtained with  feature vector size of 60 and MLP structure with 20 

hidden neurons for N; the best performance of ROC area is 0.8886 obtained with  

feature vector size of  140 and MLP structure with 32 hidden neurons for S; the  best 

performance of ROC area is 0.9317 obtained with feature vector size of  130 and 

MLP structure with 5 hidden neurons for V; the  best performance of ROC area is 

0.8755% obtained with feature vector size of  150 and MLP structure with 38 hidden 

neurons for F ; the  best performance of ROC area is 0.9878 obtained feature vector 

size of 90 and MLP structure with 26 hidden neurons for Q. Networks with best 

performance of ROC area are used to construct an ensemble system and the outputs 

of the networks are combined to make a decision.  
 

Overall accuracy of single MLP classifier with all features, overall accuracy of 

single MLP classifier with new feature vector, overall accuracy of MLP based 

combined classifier using overall accuracy as performance criteria for each network 

and overall accuracy of MLP based combined classifier using ROC Area as 

performance criteria for each network are 82.49%, 86.90%, 91.54%, and 91.07%, 

respectively. The other performance measures are shown Table 5.27. 
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Table 5.27 Performance measures of MLP based classifiers  

  
Single MLP Classifier  

using all features 
Single MLP Classifier  

using new features vector 

Label SEN SEL SPE ROC 
Area SEN SEL SPE ROC 

Area
N 82.43 95.73 98.09 90.26 90.59 98.26 99.16 94.87

S 83.33 59.11 90.30 86.82 93.17 73.81 94.44 93.80

V 91.47 74.02 91.36 91.41 90.54 76.97 92.71 91.62

F 31.60 76.70 98.95 65.28 35.20 72.73 98.56 66.88

Q 97.29 99.01 99.75 98.52 97.48 96.36 99.06 98.27

Average 77.22 80.92 95.69 86.46 81.39 83.63 96.79 89.09

 

  

MLP Based combined 
Classifiers using Overall 

Acc. as performance 
criteria 

MLP Based combined 
Classifiers using ROC Area 

as performance criteria

Label SEN SEL SPE ROC 
Area SEN SEL SPE ROC 

Area 
N 93.92 97.61 98.80 96.36 90.82 97.65 98.86 0.948 

S 85.52 89.17 98.25 91.89 90.98 80.24 96.23 0.936 

V 92.02 88.26 96.70 94.36 90.54 89.71 97.20 0.939 

F 78.40 69.26 96.20 87.30 79.60 75.67 97.21 0.884 

Q 97.67 99.21 99.80 98.74 97.67 98.82 99.70 0.987 

Average 89.51 88.70 97.95 93.73 89.92 88.42 97.84 0.939 

 

Results show that the ensemble classification system is performed better than 

single network classifier. MLP based feature extraction and reduction method and 

the performances of MLP classifiers are as good as KNN based classifiers with 

features selected with GA features. Measures of MLP based combined classifier 

using ROC Area as performance criteria are a bit better than the MLP based 

combined classifiers using overall accuracy as performance criteria of each network 

structure. 

 

In the construction of the whole system, combined KNN classifier with the 

selected features by GA are used in the first stage of the classification system.  

 

5.7  Classification 

 

The classification model is an important part of the pattern recognition systems. It 

should be easily comprehensible and have high performance. The purpose of this 
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research is to explore methods for improving the performance of automated ECG 

beat classifiers. Therefore, the constructed system has two stages: in the first stage, it 

separates all beats to few classes which are called main groups (as shown in Table 

5.2.) then in the second stage, each main group is further separated into subclasses 

(Kutlu, & Kuntalp, 2010). Proposed classification model is shown in Figure 5.22. In 

the first classifier stage, five KNN classifiers are used. One KNN classifier separates 

one main group from others. Then combination of individual decisions produces the 

final decision of the first stage. In the second classification stage, separated main 

groups are classified into the subgroups as similar to the first stage. Each main group 

is separated into subgroups by combined KNN classifiers. At the end of the 

constructed system final decision is evaluated. The constructed system with 

combined KNN classifiers is shown in Figure 5.23.  

 

Each classifier in constructed system uses different input sets because of the beat-

based feature selection algorithm. For the first stage classifier, the best input vectors 

are obtained from the GA based feature selection algorithm. At the second stage 

classifier, the input vectors are obtained from the SFSM based feature selection 

algorithm. 
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Figure 5.22 Two stage classification system. 
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Figure 5.23 Detail of two stage Two stage classification 

system. 
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The purpose of this research is to explore methods for improving the 

performance of automated ECG beat classifiers. Therefore, the constructed system 

has two stages: in the first stage, it separates all beats to few classes which are called 

main groups then in the second stage, each main group is further separated into 

subclasses. But, combination of classifier may cause a contradiction and these beats 

from each stage are labeled as unclassified beat. This approach decreases the 

performance measures of classification model. Therefore, the third stage is added in 

the system to classified only unclassified beats into 16 beat types. KNN classifier and 

raw data as input vector is used in this stage.  The constructed three stage system is 

shown in Figure 5.24. 

 

 
  Figure 5.24 Three stage classification system. 

 

5.8 Results and Discussion 

 

In this implementation, a classification system is constructed for automatic 

heartbeat recognition. For this purpose, in feature extraction stage, total of 150 

features were extracted from HOS measures, HOSofWPT measures, morphology 

measures, and frequency domain measures. After feature extraction stage, beat-based 
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feature selection is performed in two stages. In the first stage of classification, two 

different selection algorithms are used: GA based feature selection algorithm and 

SFSM base feature selection algorithm. Overall accuracy and ROC area measure of 

classifier are used as performance measure for selection algorithm. According to the 

results of these algorithms, the features which are obtained by GA algorithm provide 

better classification performance. Results of the selection algorithms are given in 

detail in Table 5.9. In addition, dimension of extracted features is reduced from 150 

to different new dimensions using an MLP network. Results are discussed in detailed 

in section 5.6. Previously a single MLP classifier and combined MLP classifiers are 

used to classify five main groups of the first stage of classification using reduced 

dimension feature sets. The results show that the features obtained with GA and 

combined KNN classifiers have better results than MLP based classification process.  

 

Consequently, the desired system is constructed with combined KNN classifier 

using the obtained features by GA in the first classifier stage. In the second classifier 

stage, also combined KNN classifiers using features obtained by SFSM are used. 

 

Using all of the extracted features, the classification performance of the 

constructed two stage system is %79.50 for overall accuracy, and the other 

performance measures are given in Table 5.28.  
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Table 5.28 Performance measures of two stage system for all features 

Labels SEN SEL SPE ROC 

Area 

1 95.20 95.58 99.52 0.97 

2 96.00 96.77 99.65 0.98 

3 67.20 97.11 99.78 0.83 

4 94.69 76.98 98.68 0.97 

5 87.50 77.78 99.92 0.94 

6 28.38 33.33 98.30 0.63 

7 0.00 0.00 100.00 0.50 

8 92.40 60.16 93.32 0.93 

9 53.66 35.48 98.40 0.76 

10 75.42 89.45 99.09 0.87 

11 92.45 89.09 99.76 0.96 

12 79.60 56.37 93.28 0.86 

13 27.20 70.83 98.78 0.63 

14 99.60 96.89 99.65 1.00 

15 0.00 0.00 99.96 0.50 

16 97.60 96.06 99.56 0.99 

Average 67.93 66.99 98.60 0.83 

 

Using only selected features with GA, the classification performance of the 

constructed two stage system is %91.97 for overall accuracy, and the other 

performance measures are shown in Table 5.29. 
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Table 5.29 Performance measures of the constructed two stage 

system for selected features with GA 

Labels SEN SEL SPE 
ROC 

Area 

1 97.20 100.00 100.00 0.99 

2 96.80 100.00 100.00 0.98 

3 91.60 100.00 100.00 0.96 

4 99.12 95.73 99.79 0.99 

5 37.50 100.00 100.00 0.69 

6 43.24 91.43 99.88 0.72 

7 100.00 100.00 100.00 1.00 

8 95.20 91.89 99.08 0.97 

9 85.37 97.22 99.96 0.93 

10 86.86 98.56 99.87 0.93 

11 88.68 100.00 100.00 0.94 

12 86.00 94.30 99.43 0.93 

13 92.00 95.44 99.52 0.96 

14 100.00 98.43 99.83 1.00 

15 37.50 8.70 97.51 0.68 

16 100.00 75.76 96.51 0.98 

Average 83.57 90.47 99.46 0.92 

 

The third stage is added in the system to increase the performance of the multi-

stage classification system. Using raw data as feature set and KNN classifier for the 

third stage, the classification performance of the proposed three stage system is 

%93.59 for overall accuracy, and the other performance measures are shown in Table 

5.30. 
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Table 5.30 Performance measures of the constructed three 

stage system using selected features 

Labels SEN SEL SPE 
ROC 

Area 

1 97.20 100.0 100.0 0.99 
2 98.00 99.19 99.91 0.99 
3 95.20 100.0 100.0 0.98 
4 99.12 91.06 99.55 0.99 
5 50.00 100.0 100.0 0.75 
6 48.65 90.00 99.84 0.74 
7 100.0 100.0 100.0 1.00 
8 95.60 91.22 99.00 0.97 
9 97.56 97.56 99.96 0.99 

10 88.98 97.22 99.74 0.94 
11 90.57 100.0 100.0 0.95 
12 90.80 93.03 99.26 0.95 
13 92.80 93.93 99.35 0.96 
14 100.0 98.43 99.83 1.00 
15 25.00 100.0 100.0 0.63 
16 100.0 75.76 96.51 0.98 

Average 85.59 95.46 99.56 0.93 

 

 

The proposed system can work as a real time recognition system since it is beat 

based. It means that system requires features which are obtained only from the 

segmented beat and all ECG record is not necessary. This may be a limitation, 

because time domain measures such as R-R intervals, which are significant 

discriminative features for some beat types (ventricular beats, supraventricular beats), 

are not used in this system. Time domain measures, 30 R-R intervals (15 previous 

and 15 next), are prepared from the ECG signals and used as additional features. 

However, in this approach, 30 second record time is needed  to start the recognition 

algorithm. When feature selection steps are restarted with new feature set, which 

includes time domain measures, the overall accuracy of the three stage classification 

system becomes 97.76% and other performance measures are given in Table 5.31.  
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Table 5.31 Performance measures of the three stage system 

using new feature set (including time domain measures) 

Labels SEN SEL SPE 
ROC 

Area 

1 100.0  100.0  100.0  1.00 
2 100.0  99.60 99.96 1.00 
3 98.40 100.0  100.0  0.99 
4 97.35 93.22 99.67 0.99 
5 100.0  100.0  100.0  1.00 
6 74.32 100.0  100.0  0.87 
7 100.0  100.0  100.0  1.00 
8 99.60 93.61 99.26 0.99 
9 100.0  93.18 99.88 1.00 

10 100.0  98.33 99.83 1.00 
11 92.45 100.0  100.0  0.96 
12 99.20 94.66 99.39 0.99 
13 95.60 97.55 99.74 0.98 
14 100.0  99.60 99.96 1.00 
15 18.75 100.0  100.0  0.59 
16 100.0  98.81 99.87 1.00 

Average 92.23 98.04 99.85 0.96 

 

 
Comparison of proposed system with other systems reported in the literature is 

really difficult because of the varieties in the classification techniques and data 

properties (e.g. different number of beat types belonging to different patients). But 

still, results show that the proposed novel system based on two stage combined KNN 

classifier for discriminating a broad range of heartbeats performs very good with 

average sensitivity, average selectivity, average specificity, average ROC area and 

overall accuracy of 85.59%, 95.46%, 99.56%, 0.93, and 93.59% respectively. 
 

Hosseini, Reynolds, & Powers, (2001) used three stage ANN based system to 

classify six arrhythmias using QRS area, PR, QT, RS interval, ST segment area, QRS 

energy, ST slope, ST level, Autocorrelation coefficient, 52 sample QRS window that 

resample as 4:1. In first stage of system, using MLP and classify three classes and 

others (used in second stage), second stage: using MLP and classify three classes and 
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others (used in third stage) and third stage: using SOM for increase performance and 

classify the unknown beats which come from stage 2. Overall recognition rate is 

0.883. 
 

Nasiri et al. (2009) have presented a recognition system to discriminate four beat 

types. Only morphological measures of the QRS complexes are extracted as features. 

They applied all features, principle components and selected features by genetic-

SVM method to classify heartbeats. Genetic algorithm with SVM method is 

presented as feature selection. The overall accuracy of 93.46% has reported using 

SVM classifier with selected features by GA.  
 

Osowski & Linh, (2001) used two stage system to classify seven arrhythmias 

using 60 sample window, cumulants (second, third, and fourth), RR interval, QRS 

width, average RR interval (last 10). Fuzzy self organizing layer was used for pre-

classifier, and MLP was used for final classifier in two stage classification system. 

The output of Fuzzy NN was used as the input of MLP and output of MLP is 7 that is 

class size. The efficiency of the system is 96.06%, misclassification rate of the 

system is 3.94%. 
 

Chazal, O’Dwyer, & Reilly, (2004) used a linear discriminant based classification 

system. Morphology (QRS duration in time, T wave duration in time, P wave flag, 

QRS complex (10 sample), T-wave segment (9 sample), RR interval: Pre RR, Post 

RR interval, average RR interval, Local average RR interval (10 sample), 

Normalized (std), and combination of all were used as feature sets. They reported 

sensitivity of 75.9%, positive prediction of 38.5%, false prediction of 4.7% for 

performance of supraventricular beats and sensitivity of 77.7%, and positive 

prediction of 81.9%, false prediction of 1.2% for performance of ventricular beats. 

The system has been constructed to classify five classes (normal beat (N), 

supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and 

unknown beat (Q)) according to AAMI. Average sensitivity, selectivity and 

specificity have been calculated from Table V in the work of Chazal et al. The 

measures were 73%, 45%, and 96% for sensitivity, selectivity and specificity, 

respectively.  
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Song et al, (2005) used ANN, Fuzzy Inference System, Support Vector Machine 

to classify six classes using pre RR and post RR intervals, 144 sample window, WT 

coefficient (4, 5, 6, 7 order).  Using LDA, PCA features was reduced 4 features. The 

average performance of classifiers are sensitivity 98.9%  , specificity %93.7 accuracy 

%98.1 for original feature, sensitivity 98.2%,  specificity 92.5%, accuracy 97.5% for 

PCA feature, sensitivity %99.6,  specificity 95.1%, accuracy 98.9% for  LDA feature. 

According to feature set LDA features have best accuracy. Using LDA feature 

average sensitivity 92.2%,  specificity %98.1, accuracy  98.6% for  MLP, sensitivity 

89.6%,  specificity 98.0%, accuracy %98.9 for  FIS, sensitivity %92.3,  specificity 

99.1%, accuracy  99.3% for SVM. 
 

Tsipourasa, Fotiadisa, & Sideris (2005) used decision tree and simple threshold 

technique to classify four class arrhythmias using RR intervals, Pre RR, Current RR, 

and Post RR intervals. Sensitivity, positive prediction and accuracy are 94.9%, 

96.1% and 98.2%, respectively.  
 

Alliche & Mokrani (2003) used distance measurement method to classify three 

arrhythmias using higher order statistic (HOS). The misclassification rate is  5.5%. 
 

Acır (2005) used MLP and least Square SVM system to classify six class of 

arrhythmias  using Raw data, DFT (Discrete Fourier Transform), DCT (Discrete 

Cosine Transform), DWT (Discrete Wavelet Transform), AAR ( 15th order).  Using 

Dynamic programming feature redundant and for each group 15 features was taken 

for each set. Sensitivity, specificity and accuracy are 97.6%, 93.8%, and 95.2%, 

respectively, for LS-SVM, 94.4%, 89.2%, and 91.2%, respectively, for MLP. 
 

The expert system methods are presented by Hu, Palreddy, & Tompkins (1997). 

They applied Global Expert (GE), Local Expert (LE), and the mixture of expert 

(MOE) for classification into four main groups (normal beats (N), ventricular ectopic 

beats (V), fusion beats (F), and unknown beats (Q)).  The average classification rate 

obtained by MOE was 94% and the average error obtained by LE was 4.1%.  
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Besrour, Lachiri, & Ellouze (2008) applied two ECG feature sets reported 

sensitivity of 98.3% and specificity of 94.4% for 12-rhythm types, applying HOS (2, 

3, 4 cumulant obtained and used only five point  different lag(15,30,45,60,75))  and 

Morphological features ( min max of QRS, QRS width, area of QRS, slope) and RR 

interval (RR interval  between a given heartbeat and the previous heartbeat and post 

RR interval between a given heartbeat and the following heartbeat)  with SVM 

classifier. 

 

Lagerholm,  Peterson, & Braccini (2000) presented a recognition system using 16 

beat types existed in the MIT-BIH database. Hermite function representation of the 

QRS complexes and self-organized clustering method are presented. It is reported a 

total classification accuracy of 98.5%. Other performance measures of 16 heartbeat 

types from the confusion matrix in Table VI in the work of (Lagerholm,  Peterson, & 

Braccini, 2000) have been calculated as average sensitivity of 67.3%, average 

selectivity of 81.8%, and average specificity of 99.8%.   

 

Chazal  & Reilly (2006) constructed system to classify five classes (normal beat 

(N), supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), 

and unknown beat (Q)). It is reported that sensitivity of 94.34%, selectivity of 

94.30%, and specificity of 98.63% for only performance of ventricular beats. But the 

constructed system was used to classify five classes (normal beat (N), 

supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and 

unknown beat (Q)).  Average sensitivity, selectivity and specificity have been 

calculated from Table V in the work of Chazal  & Reilly (2006). The measures were 

70%, 53%, and 97% for average sensitivity, average selectivity and average 

specificity, respectively. 

 

Melgani  & Yakoub (2008) presented a particle swarm optimization and SVM 

based systems for six types of ECG beats (normal beat, atrial premature beat, 

ventricular premature beat, right bundle branch block, left bundle branch block, and 

paced beat). It is reported a total classification accuracy of 91.67%. 
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Chia-Hung Lin et al. (2009) used probabilistic neural network to classify five 

classes using fractal properties as features.  They reported 96%-97% of overall 

accuracy.  

 

Arif, Akram, & Afsar (2009) reported that overall recognition rate is 97.33% 

using a Fuzzy K-NN based system to classify six arrhythmias using statistical 

properties of wavelet transform and R-R interval.  

 

These results show that the classifier designed in this study has very good 

performance with an average sensitivity of 83.57%, average selectivity of 90.46%, 

average specificity of 99.46%, and ROC area of 0.92 for 16 heartbeat types. 

However, it should be noted that, in each study in the literature, different number of 

beat types belonging to different patients have been recognized, thus, it is really 

difficult to compare the results in a fair and objective way. 
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CHAPTER SIX 

CONCLUSIONS 

 

 

 

Automatic pattern recognition systems for EEG and ECG patterns have been 

proposed in this thesis. Pattern recognition techniques, ECG signals, EEG signals, 

performance measures and combined classifier models have been introduced for 

pattern classification.   

 

The first phase of the study focuses on the automatic spike detection from EEG 

records. Interictal spike detection plays a crucial role in the diagnosis of epilepsy. 

Epilepsy is a very common neurological disorder leading to disturbing seizures. In 

the interictal period; i.e., in between seizures, epileptic transients, in the form of 

spikes and sharp waves, are typically observed in the EEG recordings.  

 

True spike waves are aimed to be detected from EEG records by different 

nonlinear classifiers constructed using single MLP structures utilizing different 

number of hidden neurons.  For training the MLP networks, early stopping versions 

of backpropagation, backpropagation with adaptive learning rate, Levenberg-

Marquardt algorithms and regularization methods are used. In this study, two 

approaches, the parameterized and raw forms of data, are used as input in MLP-

based detection systems. In the first approach, the raw EEG data is directly used as 

the input to the MLP. In the second approach, some features are extracted from the 

EEG records and fed into the MLP as the input.  In addition, different linear and 

nonlinear transformations are applied to the available data set in order to obtain 

different representations of them. The best classifier designed in this study has better 

performance (with an average sensitivity of 94.1%, an average selectivity of 87.5%, 

and an average specificity of 95.8%) than all studies in literature. The second system 

is constructed as a multi-stage classification system. In this approach two classifiers 

are used in the first stage and one classifier used in the second stage. The definite 
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spike and definite non-spikes are determined in the first stage and possible spikes and 

possible non-spikes are used in the second stage. The best performance measures of 

constructed multi-stage classification system are sensitivity of 94.8%, selectivity of 

92.5%, specificity of 96.3%, and overall accuracy of 95.8%. Due to high accuracy 

rates, the proposed systems could be used to help the physicians in diagnosing 

epileptic activity in clinical environments.  

 

The second part of this study aims to construct a robust arrhythmia classification 

system. The detection of different types of arrhythmias from an electrocardiogram 

has been a very important subject. This is due to the fact that the accurate recognition 

and classification of various types of arrhythmias are essential for the correct 

treatment of the patient. This study introduces an automatic classification system 

based on a diverse set of features for the automatic detection of 16 heartbeat classes. 

Nearest neighbor based multi-stage classification system is constructed in this 

respect.  

 

The studies in literature show that there is no unique robust feature set which 

could successfully discriminate all 16 arrhythmic type beats from each other. 

Therefore, diverse range of features should be examined to represent each beat in the 

classification system to achieve a robust performance. A beat-based feature selection 

is performed to determine the most discriminative feature set for each beat type. The 

genetic algorithm is used for finding the optimal or near-optimal combination of 

features for discrimination. Experimental results indicate that the feature selection 

step not only eliminates a large number of redundant features but also helps to avoid 

the curse of dimensionality problem. 

 

Most of the similar work reported in the literature seems to deal with the 

classification of only a few beat types. A major reason for this situation is the lack of 

available data for some arrhythmic beats so that it is almost impossible to train a 

classifier such as neural networks for these beat types.  Another reason is related to 

the fact that no unique robust feature set has yet to be found to successfully 

discriminate all beat types. Regarding these facts, the proposed system shows very 
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satisfactory performance in discriminating 16 different beat types. The success of the 

proposed system is due to its beat-based feature selection from a diverse set of 

various features such as higher order statistics, Fourier transform components, the 

higher order statistics of wavelet packet decomposition, and morphological features. 

In the proposed system, the nearest neighbor rule is used as the classifier. There are 

two reasons for using this algorithm. Wrapper type feature selection algorithms 

require extensive time during the selection process. Having a classification 

algorithm, which does not demand a training step such as nearest neighbor algorithm, 

reduces the processing time in this step. The other reason for preferring nearest 

neighbor rule as classifier is the fact that it is provides robust results compared to 

other algorithms that have more parameters and training step.  

 

In conclusion, the proposed method can be put into practice easily in any 

computer-based monitoring system. The proposed system is consists of three 

classification stages. At the first stage, heartbeats are classified into 5 main groups 

using optimal feature sets for each main group. Then at the second stage, main 

groups are classified into subgroups using optimal features for each subgroup. A 

diverse set of features including higher order statistics, morphological features, 

Fourier transform coefficients, higher order statistics of the wavelet package 

coefficients are extracted for each different type of ECG beat. At the first stage 

optimal features for main groups are determined by using a wrapper type feature 

selection algorithm. Then at the second stage optimal features are similarly selected 

for discriminating each subgroup of the main groups. In both stages, the classifiers 

are based on the nearest neighbor algorithm. Then at the third stage unclassified 

beats from both first and second stages are classified into 16 heartbeats using raw 

ECG data. The results show that the proposed novel system based on multi-stage 

classifier for discriminating a broad range of heartbeats performs very good with 

average sensitivity, average selectivity, average specificity, average ROC area and 

overall accuracy of 85.59%, 95.46%, 99.56%, 0.93, and 93.59% respectively when it 

is compared with the studies in literature.  
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Obviously, the performance of the system depends on the classifiers since feature 

selection steps is based on wrapper approach. In the proposed system, KNN and 

MLP classifiers are used. Furthermore, other feature extraction techniques which are 

not used in this thesis, and other classifiers such as support vector machines, radial 

basis function networks, could be explored for improving the performance of 

automated ECG beat classifiers as a future work. 
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