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A FEASIBLE TIMETABLE GENERATOR SIMULATION MODELLING 

FRAMEWORK AND SIMULATION INTEGRATED GENETIC AND 

HYBRID GENETIC ALGORITHMS FOR TRAIN SCHEDULING PROBLEM 

 

ABSTRACT 

 

An important problem in management of railway systems is train scheduling 

problem (TrnSchPrb). This is the problem of determining a timetable for a set of 

trains that does not violate track capacities and satisfies some operational constraints. 

In this thesis, a feasible timetable generator stochastic simulation modelling 

framework is developed. The objective is to obtain a feasible train timetable for all 

trains in the system. The feasible train timetable includes train arrival and departure 

times at all visited stations with calculated average train travel time. In addition to 

obtaining a feasible timetable, hybrid algorithms are developed with the objective of 

minimizing the average train travel time. The first hybrid is obtained by integrating 

simulation and genetic algorithm (GA), and the other three hybrids are obtained by 

embedding each of three local search algorithms in simulation integrated GA. The 

simulation modelling framework developed in this thesis is implemented for a 

TrnSchPrb based on an infrastructure which was inspired by a real railway line 

system with single track corridor. The set of feasible train timetables found by 

simulation forms the initial solution space of the developed hybrid GAs. These 

hybrid GAs are run for getting a feasible train timetable with optimum average train 

travel time. The optimum average train travel times found by the hybrid GAs are 

compared, and the results are discussed. Although this thesis focuses on train 

scheduling/timetabling problem, the developed simulation integrated framework can 

also be used for train rescheduling/dispatching problem if this framework can be fed 

by real time data. Since the developed simulation model includes stochastic events, 

and this model can easily cope with the disturbances occur in the railway system. 

  

Keywords: Train, Scheduling, Timetabling, Rescheduling, Optimization, Simulation 

Integrated GA, Simulation Integrated Hybrid GA. 
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TREN ÇİZELGELEME PROBLEMİ İÇİN BİR OLURLU TARİFE ÜRETİCİ 

BENZETİM MODELLEME YAPISI VE BENZETİMLE BÜTÜNLEŞİK 

GENETİK VE MELEZ GENETİK ALGORİTMALAR 

 

ÖZ 

 

Demiryolu sistemlerinin yönetiminde önemli bir problem tren çizelgeleme 

problemidir (TrnÇzgPrb). Bu bir küme tren için ray kapasitelerini ihlal etmeyen ve 

bazı eylemsel kısıtları tatmin eden bir tarife belirleme problemidir. Bu tezde, bir 

olurlu tarife üretici stokastik benzetim modelleme yapısı geliştirilmiştir. Amaç 

sistemdeki tüm trenler için bir olurlu tren tarifesi elde etmektir. Olurlu tren tarifesi 

hesaplanmış ortalama tren seyahat süresi ile birlikte tüm ziyaret edilen istasyonlar 

için tren geliş ve hareket zamanlarını içerir. Bir olurlu tarife elde etmenin yanında, 

ortalama tren seyahat süresini minimize etmek amacıyla melez algoritmalar 

geliştirilmiştir. İlk melez, benzetim ve genetik algoritma (GA) bütünleştirilerek elde 

edilmiştir, diğer üç melez ise üç yerel arama algoritmasından her birinin benzetimle 

bütünleşik GA içerisine gömülmesiyle elde edilmiştir. Bu tezde geliştirilen benzetim 

modelleme yapısı gerçek bir demiryolu hat sisteminden esinlenmiş altyapı tabanlı bir 

tek ray koridorlu TrnÇzgPrb için uygulanmıştır. Benzetim tarafından bulunan olurlu 

tren tarifeleri kümesi geliştirilen melez GA’ların başlangıç çözüm alanını 

oluşturmaktadır. Bu melez GA’lar eniyi ortalama tren seyahat süresiyle birlikte bir 

olurlu tren tarifesi elde etmek için çalıştırılmıştır. Melez GA’lar tarafından bulunan 

en iyi ortalama tren seyahat süreleri karşılaştırılmış ve sonuçlar tartışılmıştır. Bu tez 

tren çizelgeleme/tarife oluşturma problemine odaklandığı halde, geliştirilen 

benzetimle bütünleşik yapı, eğer gerçek zamanlı veriler ile beslenebilirse, aynı 

zamanda yeniden tren çizelgeleme/sevk etme problemi için de kullanılabilir. Çünkü 

geliştirilen benzetim modeli stokastik olaylar içermektedir ve bu model demiryolu 

sisteminde meydana gelen bozulmalarla kolaylıkla baş edebilir. 

 

Anahtar sözcükler: Tren, Çizelgeleme, Tarife oluşturma, Yeniden çizelgeleme, 

Eniyileme, Benzetimle Bütünleşik GA, Benzetimle Bütünleşik Melez GA. 
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CHAPTER ONE 

INTRODUCTION 

 

In this chapter, the background, motivation and objectives of this study are stated, 

and the organization of this dissertation is outlined. 

 

1.1 Background and Motivation 

 

Management of railway systems is increasingly becoming an important issue of 

transport systems. Several reasons motivate better usage and planning of the rail 

infrastructures where track resources are limited due to greater traffic densities. One 

of the important reasons is that in many European countries railways are being 

transformed into more liberalized and privatized companies, which are expected to 

compete on a more profit oriented basis. Another reason is that the rail transport 

system is subject to increasing pressure by governments and social interest groups to 

improve its overall efficiency and quality of service for passengers/customers. In 

addition, the strategic character of the sector is highlighted in view of ecological 

impacts and national policies aiming at spilling freight/passenger traffic from roads 

to rails. Also, the ratio of passenger transportation in an urban area is increasing in 

favour of the rail transport systems. 

 

One of the important problems in management of railway systems is train 

scheduling problem (TrnSchPrb). This is the problem of determining a timetable for 

a set of trains that does not violate track capacities and satisfies some operational 

constraints. Several variations of the problem can be considered, mainly depending 

on the objective function to be optimized, decision variables, constraints and on the 

complexity of the relevant railway network. Several names are given to the problem 

widely using three-word phrases; beginning with train or railway words and going 

on with one of the words; scheduling, rescheduling, planning, timetabling, 

dispatching, and pathing, and ending with problem word with a few exceptions. 
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A general TrnSchPrb considers a single one way track linking two major stations 

with a number of intermediate stations in between. We assume that S = {1, …, s} 

represents the set of stations, numbered according to the order in which they appear 

along the rail line. In particular, 1 and s denote the initial and final station, 

respectively. Analogously, we assume that T = {1, …, t} denotes the set of trains 

which are candidate to be run in a given time horizon. For each train j ∈ T, a starting 

station fj and an ending station lj (lj > fj) are given. Let Sj = {fj, …, lj} ⊆ S be the 

ordered set of stations visited by train j. A timetable defines, for each train j ∈ T, the 

arrival and departure times for the stations fj, fj+1, …lj−1, lj. The running time of 

train j in the timetable is the time elapsed between origin to destination station of the 

train (Caprara, Fischetti & Toth, 2002). This general TrnSchPrb can be more 

sophisticated by adding some real life behaviour of rail systems or relaxing some 

assumptions made related with the railway system under consideration. 

 

The TrnSchPrb has been studied by researchers and so far many efforts have been 

spent to solve the problem. The first scientific article was published in 1966, and till 

now more than one hundred articles have been published. In early years, due to the 

limitations of computers’ abilities and the complexity of the problem, the problem 

was relaxed by unrealistic assumptions and generally deterministic models were 

studied. Depending on the increasing computer capabilities more realistic models 

were developed, and optimization methods were integrated with the modelling 

structures. The researchers tried to develop fast solution generator algorithms, and 

these efforts are increasingly going on. Although simulation for modelling has been 

used in some articles, none of them includes a comprehensive framework. This has 

been motivation for us to develop a feasible timetable generator simulation 

modelling framework. Another motivation for us to develop simulation integrated 

genetic algorithms (GAs) is that GAs have been successfully adapted to solve several 

combinatorial optimization problems and have become increasingly popular 

techniques among approximation techniques for finding optimal or near optimal 

solutions in a reasonable time (Gen & Cheng, 1997; Gen & Cheng, 2000; Gen, 

Cheng & Lin, 2008; Yu & Gen, 2010). Although a few article studied integration of 

simulation with GAs to solve the TrnSchPrb, they did not handle the problem 
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comprehensively. In addition, since GA provides flexibility to hybridize with domain 

dependent heuristics to make an efficient implementation for a specific problem (Gen 

et al., 2008) we develop simulation integrated hybrid GAs. 

 

1.2 Research Objectives 

 

In this thesis, the TrnSchPrb is studied with three main objectives; 

• To review the relevant literature. 

• To develop a feasible solution generator model for the problem. 

• To develop an optimization algorithm(s) for the problem. 

 

In order to meet the objectives; 

• The studies on TrnSchPrb are reviewed through 1966-2009 and classified 

according to the problem type, railway infrastructure, objective(s), developed 

model structure(s) and solution approach(es). 

• A feasible timetable generator stochastic simulation modelling framework is 

developed for obtaining a feasible train timetable for all trains in a railway 

system. This framework includes train arrival and departure times for all 

stations visited by each train and calculated average train travel time. 

• A simulation integrated GA, and three local search embedded simulation 

integrated hybrid GA are developed to obtain a feasible train timetable with 

optimized average train travel time. 

 

The contributions can be summarized as follows; 

• During literature review, we have confronted with some survey papers in 

which the TrnSchPrb was considered briefly since these papers focused on 

commonly studied rail transportation problems. On the other hand, there exist 

some short survey papers which involve only a few popular articles. Our 

literature review includes a lot of studies which focused on the TrnSchPrb and 

published in years between 1966 and 2009, 140 papers along 44 years. Our 

literature review exhibits the evolution of the related researches over 44 years.   
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• A general stochastic simulation modelling framework is developed and 

depicted step by step in order to guide to researchers who aim to develop a 

simulation model of railway transportation systems. By using this framework 

all the railway transportation systems can be modelled with only 

problem/infrastructure specific modifications and feasible solutions can be 

easily obtained. In order to avoid a deadlock, a general Blockage Preventive 

Algorithm is developed and embedded into the simulation model. 

• In the studies of Ping, Axin, Limin & Fuzhang (2001), Rebreyend (2005), and 

Geske (2006) a simulation model is developed and integrated with GA. The 

first two studies are focused on rescheduling/dispatching problem that is not 

the main scope of the thesis. In the last one scheduling/timetabling problem is 

considered and a deterministic simulation model is developed. To the best of 

our knowledge our study is the first one which integrates stochastic simulation 

model with GA and also with hybrid GAs to deal with train scheduling 

/timetabling problem.     

• In the study of Ping, Axin, Limin & Fuzhang (2001), the used encoding is 

directly dependent to the trains in the system. The articles of Rebreyend (2005) 

and Geske (2006) do not contain the encoding, one of the most important parts 

of GAs. The developed encoding structure in this thesis is not dependent to 

trains which are the causes of problems (conflicts). Thus, the encoding 

provides to obtain feasible chromosome structures in GA part of our study. 

• Another contribution is that three local search embedded GAs are integrated 

with the simulation model. To the best of our knowledge our study is the first 

one that employs simulation integrated hybrid GAs to solve the TrnSchPrb. 

 

1.3 Organization of the Thesis 

 

The organization of this thesis is as follows. 

 

In chapter two, a comprehensive literature review of the studies on the TrnSchPrb 

that have appeared 1966-2009 is given. Chapter three comprises an overview of GA. 

In chapter four, first a hypothetic TrnSchPrb is introduced, than the proposed 
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simulation modelling framework is explained step by step, and finally the simulation 

model results are discussed. Four approaches; a simulation integrated GA and three 

local search embedded simulation integrated GAs, to the TrnSchPrb are presented 

and tested on our hypothetic TrnSchPrb in chapter five. The objective of using these 

four approaches is to obtain a feasible train timetable with optimized average train 

travel time. Concluding remarks and future research directions are listed in the last 

chapter.  
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CHAPTER TWO 

LITERATURE REVIEW ON TRAIN SCHEDULING PROBLEM 

 

We reviewed 140 papers on the TrnSchPrb published in 1966-2009 and then 

classified in Table A.10 in Appendix in chronological order, and also discussed more 

than 70 papers we reviewed.  

 

The studies in the relevant literature can be classified into two main groups; 

scheduling (timetabling) and rescheduling (dispatching). The studies in the former 

group aim at achieving a train timetable with arrival and departure times of all trains 

at the visited stations in the system. These studies generally begin with a planned 

infeasible initial (draft) timetable with many conflicts. After these conflicts were 

solved a feasible train timetable is composed, and the train operating authority runs 

the trains according to the timetable. The studies in the latter group reschedule the 

trains after disturbances. These studies generally begin with a planned feasible 

timetable with no conflicts. During the implementation of the feasible timetable, it is 

possible to be encountered various problems. Of course, these problems prevent to 

obey the feasible timetable. At this point, the timetable is needed to be revised, that is 

the trains must be rescheduled. The rescheduling is temporary, depends on real time 

information and the equipment to gather data from the whole system. The goal is to 

regulate the system temporary in order to implement the train schedule/timetable.  

For rescheduling real time data and the equipment that will gather data from the 

whole system are needed. 

 

We classified the papers we examined under four headings; review, scheduling 

/timetabling, rescheduling/dispatching, and scheduling/timetabling and rescheduling 

/dispatching. 

 

2.1 Review Papers 

 

There exist a few review papers in the literature (Assad, 1980; Bussieck, Winter 

& Zimmermann, 1997; Cordeau, Toth & Vigo, 1998; Newman, Nozick & Yano,
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2002; Caprara, Kroon, Monaci, Peeters & Toth, 2007). In these papers, some railway 

optimization problems are considered, and the TrnSchPrb is regarded in only one 

section, and no one concentrates only on the TrnSchPrb. 

 

The first review paper, Assad (1980), is related with the mathematical models for 

rail transportation, and considers two objectives; the first is to collect and categorize 

rail modelling efforts, and the second is to position the related literature in the 

context of other transportation models and provide an introduction to this field for 

nonspecialists. The role of each model class is discussed in relation to its function 

and its position within the total planning activity of a railroad. After years, Bussieck 

et al. (1997) consider the development and the usage of mathematical programming 

methods in public rail transport planning. The authors focus on some aspects of the 

planning process, and on some planning results which lead to more comprehensive 

planning and optimization of railroad network systems. They discussed in particular 

the computation of the line plans, train schedules, and schedules of rolling stock. In 

another review paper, Cordeau et al. (1998) present a comprehensive survey of 

optimization models for the most commonly studied rail transportation problems. For 

each group of problems, they propose a classification of models and describe 

important class characteristics in terms of model structure and algorithmic aspects. 

The review concentrates on routing and scheduling problems since these problems 

form the most important portion of the planning activities performed on the railways. 

The routing models concern the operating policies for freight transportation and 

railcar fleet management, whereas scheduling models address the dispatching of 

trains and the assignment of locomotives and cars. On the other hand, Newman et al. 

(2002) review optimization problems in the rail industry such as infrastructure (track 

and siding) planning and track maintenance; sizing of fleets of locomotives and 

railcars; locomotive, railcar, and container repositioning; train scheduling; freight 

routing; meet-pass planning; and timetable construction. These problems are specific 

to the rail industry with technological or cost considerations. A recent review by 

Caprara et al. (2007) is related with the operational planning problems such as line 

planning, timetabling, platforming, rolling stock circulation, shunting, and crew 

planning problems in passenger transportation in Europe.  
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2.2 Papers on Scheduling/Timetabling  

 

These papers deal with to prepare a train timetable that includes arrival and 

departure times of all trains at visited stations. In these papers, first an initial (draft) 

timetable with conflicts is planned, then these conflicts are solved and a feasible train 

timetable is obtained. In the following subsections, we classify these papers 

according to the developed model structure such as mathematical model, simulation 

model, and the others. 

 

2.2.1 Mathematical Models  

 

In the preliminary scheduling (timetabling) articles (Frank, 1966; Salzborn, 1969; 

Nemhauser, 1969; Amit & Goldfarb, 1971; Szpigel, 1973; Cury, Gomide & Mendes, 

1979, and Cury, Gomide & Mendes, 1980) mathematical models are used. 

 

Frank (1966) studied the capacity for one way traffic and for certain regular 

systems of two way traffic with priority at the nodes for trains going in one direction. 

This problem is called railway planning problem. The cycle times of the trains and 

the number of trains needed to accomplish the transports for different systems was 

also studied. Two cases were considered; in the first case only one train was allowed 

to wait at every inner node, and in the second case more than one train was allowed 

to wait at every inner node. The objective was to find the optimum traffic system that 

maximizes the traffic capacity. Some of the prominent characteristics of the study 

can be itemized as follows. There can be at most one train on a track; the nodes had 

space for an unlimited number of trains; the trains’ speed was fixed for both 

directions; and the trains can not overtake each other. The system infrastructure is a 

single tracked line with double tracked stations and this infrastructure has been 

widely used in the literature so far. Salzborn (1969) developed a method in order to 

construct timetables for a suburban railway line without branches. It was shown that 

such timetables were largely determined by stop schedules. Two criteria for stop 

schedules was considered; the number of intermediate passenger stops and the 

number of carriage miles. A mathematical formulation was presented and dynamic 
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programming was used for solution. The objective was to find stop schedules with 

minimum number of carriage miles or with minimum number of passenger stops. 

Nemhauser (1969) developed a model for finding a jointly optimal schedule of local 

and express transportation service operates between an origin point and a termination 

point. The objective was to find a schedule that yields maximum total profit which 

was the sum of the profits over all scheduled trains, and the model was solved by 

dynamic programming. Amit & Goldfarb (1971) studied on timetable problem of 

railways, in which the objective was to minimize the overall passage time of trains 

and a one train at a time based heuristic algorithm was developed for solution. Many 

studies indicate that Szpigel (1973) is the first author studies on the TrnSchPrb.  The 

problem was to determine the best crossing and overtaking (meet/pass) locations 

with a given routes and departure times of the trains on a single track railway. The 

objective was to minimize the weighted average of train travel times. The 

mathematical model built in this study was solved by dynamic programming. Cury et 

al. (1979) and Cury et al. (1980) presented a methodology developed for the 

automatic generation of optimal schedules for a metro line. An analytical model was 

created to represent the behaviour of the system which includes train and passenger 

movements. Based on the model characteristics, the goal coordination method was 

utilized to produce the optimal reference schedule by considering comfort levels for 

passengers, the number of trains in the line, and the performance of the trains. The 

objective was to minimize a total cost function of average delay, headways and 

passengers.  

 

Some of the mostly citied articles such as Mees (1991), Jovanovic & Harker 

(1989, 1991b), Odijk (1996) also used mathematical models. Mees (1991) presented 

an approximate algorithm to find feasible solutions for railway scheduling problem 

with a single track network. The objective of the study was to minimize the total cost 

of running trains on arcs. A shortest path algorithm was developed to solve the 

integer linear programming model constructed for the problem. Jovanovic & Harker 

(1989 and 1991b) presented an overview of a decision support model, SChedule 

ANalysis (SCAN), for the tactical scheduling of freight railroad traffic which was 

designed to support the weekly or monthly scheduling of rail operations. The purpose 
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of SCAN was to help in the design of robust (reliable) train schedules, not to provide 

an optimal schedule. This decision support model starts with given train schedules 

and evaluates their feasibility. If these schedules are found to be infeasible, the 

decision support system offers automatic procedures to modify the given schedules 

until these schedules become feasible. Three algorithms are incorporated within the 

SCAN system; the first one evaluates the feasibility of a given set of schedules over a 

given lane, the second one modifies the infeasible schedules until feasibility is 

achieved, and the last one estimates a measure of reliability of a given set of 

schedules. Odijk (1996) discussed the usage of a particular mathematical model to 

construct periodic railway timetables. In the model, departure and arrival times of 

trains are related pair wise on a clock by means of periodic time window constraints, 

and a solution to a set of such constraints constitutes a periodic timetable. A cut 

generation algorithm is presented to solve the problem. This algorithm is terminated 

in a finite number of iterations result in a feasible timetable structure.  

 

After the  preliminary articles discussed above, a series of articles - Cai & Goh, 

1994; Cai, Goh & Mees, 1998; Carey, 1994a; Carey, 1994b; Carey & Lockwood, 

1995 – related with each other were published. Cai & Goh (1994) concerned with the 

problem of scheduling trains on a single track railway where the trains were allowed 

to cross only at one of the passing loops. The objective was to minimize the total cost 

due to stopping and waiting. A one train at a time base heuristic algorithm was 

developed to solve the related integer programming model. Cai et al. (1998) 

described a heuristic algorithm for train scheduling problem and had shown that it 

can produce schedules for a single track system. Although the algorithm was 

demonstrated on artificial examples, a more complex version of it was installed on a 

real railway system. It was the aim of the paper to construct an algorithm that 

extends the model of Cai & Goh (1994) to a greater generality, to include most of the 

practical constraints whilst retaining the essential characteristic of the greedy 

heuristic approach, namely the ability to compute a good feasible solution quickly. 

Two of important extensions were; firstly the algorithm allowed a train to start from 

any position (not necessarily from a node or terminus) at any time instant, and 
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secondly the algorithm possessed a capability to schedule, if needed, physical 

backups (reverse) of some trains. The objective was the same as Cai & Goh (1994).   

 

Carey & Lockwood (1995) set out a model, algorithms and strategies for the train 

pathing problem for a single line, which was the problem of assigning trains to 

available track (lines, platforms, etc) in a rail network so as to minimize train delays 

or delay costs. They proposed a solution heuristic and strategies analogous to those 

which had enabled expert train pathers to plan large scale complex rail systems by 

traditional manual graphical methods. They set out a basic train pathing problem as a 

mathematical programming model and then decomposed it into a sequence of similar 

subproblems, each representing pathing a single train while holding fixed the 

sequence order of all already pathed trains. They did not intended to provide a ready 

to implement train pathing system, rather it was a research contribution to developing 

suitable basic models and algorithms and demonstrating that these can be resolved in 

acceptable times. Carey (1994a) set out a detailed mathematical programming model 

for train pathing and planning by extending the basic single line pathing model 

introduced in Carey & Lockwood (1995). The author allowed trains to choice a line, 

station platform, and route, and to make it tractable when solving the mathematical 

programming model, decomposed the mathematical model into a sequence of 

simpler mathematical programming subproblems. Each of these models corresponds 

to pathing a single train while temporarily holding fixed the sequence order but not 

the timings of all other already pathed trains. The basic strategy was to path trains 

one at a time, until all trains are pathed once, and if necessary iteratively repath trains 

until an acceptable solution was found. The objective was to minimize cost 

associated with arrival times, departure times, trip times on links and dwell times at 

stations. In Carey (1994a), and Carey & Lockwood (1995), it is assumed that each 

rail line has two or more tracks and each is dedicated to traffic in one direction (one 

way tracks), Carey (1994b) showed how to adapt and extend the model and the 

algorithms presented in Carey (1994a) and Carey & Lockwood (1995) to handle 

trains on single line two way tracks.  
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The metaheuristics have attracted the authors who deal with the solution of the 

mathematical models developed for train scheduling. Nachtigall & Voget (1996) 

considered the compilation of timetables for periodic served railway networks and 

focused on railway synchronization. The calculation of timetables with minimal 

waiting time for passengers who were changing trains (used more than one train for a 

trip) was modelled by a periodic network optimization problem. They developed a 

mathematical model and presented a GA which was combined with a greedy 

heuristic and a local improvement procedure. Higgins, Kozan & Ferreira (1997) 

developed a mathematical model and applied a local search heuristic (LSH), GAs, 

tabu search (TS), and two hybrid algorithms to train scheduling problem. The 

purpose of a single line train scheduling model in their paper was to resolve the train 

conflicts (overtaking as well as crossing) at the sidings in such a way so as to achieve 

the minimization of total weighted travel time objective. Total weighted travel time 

was the total travel time from origin to destination (including conflict delays) for all 

trains, weighted by train priority. The LSH was based upon repeatedly replacing a 

current solution with an improved neighbouring solution. The main aim for applying 

the possible moves was to try to improve the train schedule in terms of reducing total 

weighted travel time. In GA each gene in the solution was a conflict with three 

attributes; the train delayed, the train with right of way, and the track segment where 

the conflict occurs. When two train schedule solutions (parents) in the population 

were selected to mate, genes from both solutions were used to make two offspring 

and a single point crossover was used for the train scheduling problem so as to keep 

the number of infeasible child train schedule solutions at a minimum. As the LSH 

methods, the general TS heuristic was based on transforming a current solution to 

one of the neighbouring. The proposed first hybrid algorithm (HA1) consists of 

applying the LSH to the best five percent of the population, after the crossover 

operator was performed. HA1 uses the LSH as a new genetic operator. The second 

hybrid algorithm (HA2) incorporates the advantages of TS into the crossover 

operator for conducting a search for suitable parents and crossover points. 

Brännlund, Lindberg, Nou & Nilsson (1998) presented an optimization approach for 

the timetabling problem of a railway company. The objective was to schedule a set of 

trains to obtain a profit maximizing timetable, while not violating track capacity 
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constraints. The authors constructed a very large integer programming model, and 

used a Lagrangian relaxation solution approach, in which the track capacity 

constraints are relaxed and assigned prices. Thus, the problem was separated into 

shortest path programs for each physical train.  

 

In recent years, the authors have spent efforts to optimize multi objectives. Chang 

et al. (2000) developed a multi objective linear programming model for the optimal 

allocation of passenger train services on an intercity high speed rail line without 

branches. Minimizing the operator's total operating cost and minimizing the 

passenger's total travel time loss were the two planning objectives of the model. The 

operator's total operating cost was defined to be the sum of the fixed and variable 

operating costs over all train trips that were required to meet the travel demand. The 

passenger's total travel time loss was defined as the sum of the time losses for 

stopping at intermediate stations for all the passengers served by all the train trips. 

For a given many-to-many travel demand and a specified operating capacity, the 

model was solved by a fuzzy mathematical programming approach to determine the 

best compromise train service plan, including the train stop schedule plan, service 

frequency, and fleet size. Ghoseiri, Szidarovszky & Asgharpour (2004) developed a 

multi objective optimization model for passenger train scheduling problem on a 

railway network with single and multiple tracks, as well as multiple platforms with 

different train capacities. The lowering the fuel consumption cost, the measure of 

satisfaction of the railway company, was regarded as a criterion of efficiency, and 

shortening the total passenger time, the passenger satisfaction criterion, was regarded 

as a criterion of effectiveness. The solution of the problem consists of two steps; at 

first the Pareto frontier is determined, and then based on the obtained Pareto frontier 

detailed multi objective optimization is performed. Zhou & Zhong (2005) concerned 

with a double track train scheduling problem for planning applications with multiple 

objectives on a high speed passenger rail line in an existing network. The problem 

was to minimize both the expected waiting times for high speed trains and the total 

travel times of high speed and medium speed trains. By applying two practical 

priority rules, the problem with the second criterion was decomposed and formulated 

as a series of multi mode resource constrained project scheduling problems. The high 
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speed trains always take priority over medium speed trains rule was used to 

determine the priorities between different types of trains. The earlier a train enters a 

station, the earlier it will leave the station rule was used to specify the priorities 

between the same types of trains. Liebchen (2008) concentrated on periodic railway 

timetabling problem related with a subway network. The minimization of the 

weighted sum of passenger waiting times and the minimization of the number of 

trains that was required to operate the timetable were the objectives of the study. In a 

recent study, Lee & Chen (2009) proposed an optimization oriented four step 

heuristic to solve a set of train paths and a timetable for a train system. The heuristic 

uses a simple rule to generate an initial feasible solution, and then improves the 

solution iteratively. Each iteration attempts to improve the current solution by 

altering the order the train services travel from station to station, assigning the 

services to tracks within the stations, determining the order the services pass through 

the stations, and finally solving to obtain a timetable. According to the quality of the 

timetable, the solution is accepted or rejected with a threshold accepting rule. The 

objectives are to minimize the sum of weights of tracks assigned to all services at all 

stations and to minimize the sum of the difference between the services’ scheduled 

departure time and the target departure time.  

 

Recently three study series have appeared. The first serial includes four articles; 

Caprara, Fischetti, Guida, Monaci, Sacco & Toth (2001), Caprara, Fischetti & Toth 

(2002), Caprara, Monaci, Toth & Guida (2006) and Cacchiani, Caprara & Toth 

(2008). The second one consists of Peeters & Kroon (2001) and Kroon & Peeters 

(2003), and the last one contains Zhou & Zhong (2007) and Castillo, Gallego, Ureña 

& Coronado (2009). Caprara et al. (2001) and Caprara et al. (2002) concentrate on 

train timetabling problem relevant to a single, one way track linking two major 

stations with a number of intermediate stations between them. The railway networks 

typically contain few important lines, called also corridors, connecting major 

stations. On these corridors, made of two independent one way tracks carrying traffic 

in opposite directions, track resource is limited by great traffic densities. Once the 

timetable for the trains on the corridors is determined, it is relatively easy to find a 

convenient timetable for the trains on the other lines of the network. A graph 
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theoretic formulation is proposed for the problem using a directed multigraph in 

which nodes correspond to departures or arrivals at a certain station at a given time 

instant. This formulation is used to derive an integer linear programming model that 

is relaxed in a Lagrangian way and the relaxation is embedded within a heuristic 

algorithm. The objective is to maximize sum of the profits of the scheduled trains. 

An ideal timetable is assigned to each train. An ideal timetable, which would be the 

most desirable timetable for the train, however, may be modified to satisfy the track 

capacity constraints. In particular, it is allowed to slow down each train with respect 

to its ideal timetable and/or to increase the stopping time interval at the stations. The 

final solution of the problem is called the actual timetable. Caprara et al. (2006) 

extend the train timetabling problem, considered by Caprara et al. (2002), by taking 

into account additional real world constraints, the manual block signalling 

constraints, the station capacities constraints, the prescribed timetable for a subset of 

the train constraints, and the maintenance operations constraints. On the other hand, 

Cacchiani et al. (2008) propose heuristic and exact algorithms for the periodic and 

nonperiodic train timetabling problem on a corridor to maximize the sum of the 

profits of the scheduled trains. The heuristic and the exact algorithms are based on 

the solution of the relaxation of an integer linear programming formulation in which 

each variable corresponds to a full timetable for a train. This approach is in contrast 

with previous approaches proposed by Caprara et al. (2001), Caprara et al. (2002) 

and Caprara et al. (2006) so that these authors considered the same problem, and 

used integer linear programming formulations in which each variable was associated 

with a departure and/or arrival of a train at a specific station in a specific time instant. 

Peeters & Kroon (2001) propose an optimization approach to the cyclic railway 

timetabling problem. This approach enables one to search for an optimal timetable 

and to make the necessary changes to an infeasible instance, by allowing a penalized 

violation of the constraints. The authors use a mixed integer programming 

formulation for the problem, where the integer variables correspond to cycles in the 

graph. The objective is to minimize halting and transfer times. In addition, Kroon & 

Peeters (2003) describe how variable trip times can be embedded into an existing 

cyclic railway timetabling model for the periodic event scheduling problem. Thereby 

they provide an extension of the existing model presented in Peeters & Kroon 
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(2001). Because in the existing model it was assumed that the trip times of all trains 

on all tracks of the railway network were fixed and known a priori which may be too 

restrictive in practice. Since the extended model has the same general structure as the 

original model, the developed solution methods are applied to the extended model. 

The study of Kroon & Peeters (2003) only deals with the planning process of 

generating an appropriate feasible timetable where the trip times may be varied in 

order to obtain a feasible timetable. However, the paper do not consider real time 

traffic control of railway operations, and the variable trip times should therefore not 

be interpreted as a tool to deal with disturbances that occur during the operation of a 

railway timetable. Zhou & Zhong (2007) focus on single track and propose a 

generalized resource constrained project scheduling formulation for train timetabling 

problem. In this study, segment and station headway capacities are considered as 

limited resources, and a branch and bound solution procedure is presented to obtain 

feasible schedules. The developed algorithm chronologically adds precedence 

relation constraints between conflicting trains to eliminate conflicts, and the resulting 

subproblems are solved by the longest path algorithm to determine the earliest start 

times for each train in different segments. The authors adapt three approaches to 

reduce the solution space. First, a Lagrangian relaxation based lower bound rule 

issued to dualize the segment and station entering headway capacity constraints. 

Second, an exact lower bound rule is used to estimate the least train delay for 

resolving the remaining crossing conflicts in a partial schedule. Third, a tight upper 

bound is constructed by a beam search heuristic method. The objective is to 

minimize the total train travel time, the sum of the free running time and additional 

delay. Castillo et al. (2009) use an optimization method to solve train timetabling 

problem for a single tracked bidirectional line, similar to the one presented by Zhou 

& Zhong (2007) but more complex, and discuss the problem of sensitivity analysis. 

A three stage method is proposed to deal with the problem and a sequential 

combination of objective functions is used for solution. In fact, the proposed method 

sequentially minimizes the maximum travel time for single trains, allocates trains to 

circulate as soon as possible, and minimizes the total station dwell time of all the 

trains, i.e., the model can be considered as a sequential multi stage approach. 
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2.2.2 Simulation Models  

 

In a few papers a simulation model was developed for train scheduling 

(timetabling) problem. To our knowledge, Wong & Rosser (1978) is the first study in 

the literature that developed a simulation model for train scheduling (timetabling) 

problem. The output of the simulation model comprises a pictorial representation of 

the pattern of train movements as well as detailed statistics for each train. The 

problem is to determine where a crossing or overtaking should be allowed to occur, 

and the objective is to minimize the sum of weighted costs of delaying trains at 

passing loops where the weights chosen reflect the importance of each type of train. 

To improve the system performance, train starting times are varied, and one train at a 

time heuristic iterative procedure is used for improvements. Petersen & Taylor 

(1982) presented a state space description for the problem of moving trains over a 

line, and an algebraic description of the relationships that must be hold for feasibility 

and safety considerations was given. The line blockage problem at high traffic 

intensities was discussed under conditions that ensure the blockage not to occur. The 

objective of the study is to minimize the terminating times of the trains. Geske 

(2006) focused on railway scheduling problem and developed a constraint based 

deterministic simulation model with the objective of reducing the lateness of trains. 

Selecting alternative paths in stations was an optimization task to reduce lateness and 

to find a conflict free solution. The results of the proposed sequentially train 

scheduling heuristic was compared with those of a GA.  

 

2.2.3 Other Models  

 

Salim & Cai (1997) proposed a GA for solving a simplified train scheduling 

problem in a mineral transport railway system. The problem under consideration 

involves moving a number of trains carrying mineral deposits across a long haul 

railway line with both single and double tracks in either direction. The problem was 

modelled to minimize environmental impacts in mineral transportation. The 

objective function to be minimized in the scheduling model is related to the costs of 

stopping and waiting for trains travelling on the railway line during a span of time. 
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Isaai & Singh (2000) developed a heuristic algorithm for predictive scheduling of 

passenger trains on a single track railway with some double track parts by using an 

object oriented methodology. The heuristic tends to minimize the total waiting time 

of the trains concerned. The model has three modules; the initialization module that 

deals with the creation of computational structures and data inputs for the problem, 

the scheduling module that generates a feasible solution using a heuristic, and the 

evaluation module that computes the quality of the solution. Real predictive 

schedules that were manually generated by train planning experts are used to 

evaluate the model’s outputs. Kwan & Mistry (2003) reported on an evolutionary 

approach for the automatic generation of planning train timetables at the early stages. 

The timetables produced at early stage (planning timetables) were used as the basis 

for planning and negotiations. After iterations of refinements and detailed conflict 

resolution, the planning timetables would eventually be evolved into the final 

operational timetables. The authors concerned with the automatic generation of 

planning timetables, and explored how train timetabling problem could be 

substructured. The problem was decomposed into modules such as the departure 

times, the scheduled run times and the resource options. The advantages of such 

decomposition are the independent representation of interacting subcomponents and 

the independent evolution of these subcomponents. The objective function of the 

study is to minimize the weighted sum of violations expressed in time units.  

 

Carey & Carville (2003) considered the problem of train platforming or 

scheduling for large, busy, complex train stations which are the key components of 

the busy passenger rail networks, and are the location of most train conflicts. Train 

schedule for a large busy station ensures that there are no conflicts among the trains 

by guaranteeing that each train is allowed at least its minimum required headways, 

dwell time, turnaround time and trip time. In the heuristic approach, which is similar 

to train planners using manual methods, the authors considered one train at a time, 

detected and resolved all the conflicts for that train before considering the next train. 

The objective is to minimize the cost of deviations from the desired times, platforms 

or lines for each train. There are a set of three costs; the time adjustment costs, the 

platform desirability costs, and the platform obstruction costs. Carey & Crawford 
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(2007) developed heuristic algorithms to assist in finding and resolving the conflicts 

in draft train schedules. They employed an algorithm developed by Carey & Carville 

(2003) for scheduling trains at a single station and extended this algorithm to obtain 

algorithms for multiple stations on a rail corridor. In the first algorithm of Carey & 

Carville (2007) when the current train conflicted with any other train, the conflict 

was resolved by adjusting the times of the current train. In the second algorithm (a 

new procedure) of Carey & Crawford (2007), conflicts were resolved by adjusting 

the times of either train, depending on which requires the smaller adjustments or 

smaller costs or penalties. Carey & Crawford (2007) applied the new procedure, 

adjusting the times of the current train or the other trains, to resolve conflicts 

between trains at station exits and conflicts between trains on lines between stations. 

In the third algorithm of Carey & Crawford (2007) they extend the procedure also to 

resolving conflicts between trains using the same platform. All these three algorithms 

resolved all conflicts, but the second gave much better solutions than the first, and 

the third gave better solutions than the second algorithm. Salido, Abril, Barber, 

Ingolotti, Tormos & Lova (2007) proposed to distribute the railway scheduling 

problem into a set of sub problems as independent as possible. Their goal was to 

model the railway scheduling problem as constraint satisfaction problems (CSPs) and 

solve it using constraint programming techniques. However, due to the huge number 

of variables and constraints that this problem generates, a distributed model was 

developed to distribute the resultant CSP into semi-independent sub problems such 

as the solution can be found. The first way to distribute the problem was carried out 

by means of a graph partitioning software called METIS. The second model was 

based on distributing the original railway problem by means of train type. The third 

model was based on distributing the original railway problem by means of 

contiguous stations. The objective in the study was to minimize the journey time of 

all trains. Tormos, Lova, Barber, Ingolotti, Abril & Salido (2008) focused on the 

application of evolutionary algorithms to solve train timetabling problem. The 

problem considered implied the optimization of trains on a railway line that was 

occupied (or not) by other trains with fixed timetables. The timetable for the new 

trains was obtained with a GA that included a guided process to build the initial 

population. The objective was to minimize the average delay of the new trains. Liu & 
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Kozan (2009) modelled train scheduling problem as a blocking parallel machine job 

shop scheduling problem. Firstly, a parallel machine job shop scheduling problem 

was solved by an improved shifting bottleneck procedure algorithm without 

considering blocking conditions. Inspired by the proposed shifting bottleneck 

procedure algorithm, feasibility satisfaction procedure algorithm was developed to 

solve and analyze the blocking parallel machine job shop scheduling problem by an 

alternative graph model. The objective was to minimize the makespan. 

 

2.3 Papers on Rescheduling/Dispatching  

 

These studies deal with the rescheduling of trains after disturbances, and at first 

begin with a planned feasible timetable that contains no conflicts. While 

implementing the feasible timetable, it is not surprise to have problems, which 

prevents to obey the feasible timetable. At that time the timetable is needed to be 

repaired, the trains must be rescheduled. Since the repairs depend on real time 

information and temporary, rescheduling is a temporary solution, the goal is to 

regulate the system in order to implement the train schedule/timetable. For 

rescheduling real time data are needed, and the equipments that can gather data from 

the whole system must be set up. The first article (Sauder & Westerman, 1983) on 

the rescheduling/dispatching was published 17 years later than the first one (Frank, 

1966) on the scheduling/timetabling problem.  

 

2.3.1 Mathematical and Simulation Models  

 

To our knowledge, Sauder & Westerman (1983) is the first paper dealing with the 

rescheduling problem. The authors developed a minicomputer based information 

system with online optimal route planning capability to assist dispatchers. The 

routing plan was revised automatically as conditions changed. The potential for an 

online planning algorithm laid in considering all feasible future train meets 

throughout the territory and advising the dispatcher of that combination which would 

minimize total train delay. The first attempt to model the process evaluated feasible 

train routes with a decomposition approach incorporated a shortest path algorithm 
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and a linear programming formulation. Although the optimal were obtainable, since 

convergence time was excessive suboptimal solutions were obtained. After that, the 

method was subsequently replaced with a branch and bound technique enumerating 

all feasible meet locations and this approach insured optimal results. The objective in 

the study was to minimize total train delay. In the study, only the delay within the 

limits controlled by the dispatcher was included and only the delay that the 

dispatcher's planning would influence was considered. In another study, Şahin (1999) 

dealt with inter train conflicts (meet/pass) problem which occurred when two 

opposing trains move on a single track section between neighbouring meet points, or 

if a faster train caught a slower one moving in the same direction. The objective was 

to minimize the sum of deviation of the expected arrival times of trains from their 

scheduled times within a prescribed time horizon. In his study, firstly, a zero one 

mixed integer programming model was built in order to have an optimal solution. 

After that, he analyzed dispatchers’ decision process in inter train conflict resolutions 

and developed a linear programming model of this decision process that produces 

same results with dispatchers’ preferences. In model building he assumed that the 

train dispatcher uses a utility function of weighted attributes in order to model his/her 

choice behaviour. Then, he developed a heuristic algorithm for rescheduling trains by 

modifying existing meet/pass plans in conflicting situations in a single track railway. 

The heuristic algorithm was developed in order to obtain better conflict solutions 

than train dispatchers and optimal or near optimal solutions in reasonable length of 

time. He compared three solution methods; the optimal solution of mixed integer 

programming, the dispatcher’s solution and the heuristic’s solution. The comparison 

criteria were total waiting times and computation time. As a result, the heuristic gave 

better solution than dispatcher’s, and also performed almost as well as the optimal 

solution method in selecting the better conflicting train to stop. 

 

2.3.2 Mathematical Models  

 

Mills, Perkins & Pudney (1991) described a dynamic rescheduling algorithm for 

scheduling future train movements with the objective of minimizing the overall cost 

of train lateness and energy consumption. The dynamic rescheduling system 
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calculated the location and time for each cross or overtakes and determined which of 

the trains involved in the cross should take the siding, so it was used to determine the 

arrival and departure times for each train at each station. Kraay, Harker & Chen 

(1991) presented a mathematical programming model for the pacing problem and 

described alternative solution algorithms for this model. The purpose of the pacing 

model, which included velocity as a decision variable, was to define a good operating 

policy for the dispatcher. A train dispatcher can improve the operations of a rail line 

by pacing trains over a territory, namely to permit trains to travel at less than 

maximum velocity to minimize fuel consumption while maintaining a given level of 

performance. Kraay & Harker (1995) presented a model for the optimization of 

freight trains schedules that was intended to be used as part of a real time control 

system. The goal of the model was to provide a link between strategic schedules and 

line dispatching or computer assisted dispatching models by providing starting and 

ending times for each line while taking into account overall performance of all the 

trains across the rail network. They described the model and associated algorithm for 

the real time scheduling of trains over the entire rail network. The time based 

objective function was to be minimized has three components; the first term was 

related with the deviation of arrival and departure times to the stations, the second 

term was a penalty term for a train violating the 12 hour rule (crews legally changed 

every 12 hours), and the third term was the cost of a block missing a scheduled 

connection. Higgins, Kozan & Ferreira (1996) designed a model to be used as a 

decision support tool for train dispatchers to schedule trains in real time in an optimal 

way and as a planning tool to evaluate the impacts of timetable changes, as well as 

rail road infrastructure changes on train arrival times and train delays. The objective 

was to minimize the cost function includes fuel consumption and train delays, with 

an assumption that the cost of tardiness has a higher priority than fuel costs. Adenso-

Diaz, Gonzalez & Gonzalez-Torre (1999) presented the experience of designing and 

implementing a system for rescheduling the services of a regional network. They 

tried to obtain a new schedule, which was the most similar as possible to the original 

one that had generated manually by the marketing department according to 

customers needs, when an unplanned event had occurred. The process of exploring 

the solutions space in order to select the best evaluated solutions was carried out by 
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means of a backtracking algorithm that was a depth first search based branch and 

bound implicit enumeration procedure. The evaluation of the quality of each solution 

obtained was made on the basis of the priority of each service, the passengers 

transported and the delays that these passengers had to suffer. The best results were 

offered to the traffic controller so that, using what-if tools, he/she may choose the 

alternative that he/she considers the most adequate from among these. The objective 

of the study was to maximize the number of passenger transported and the model 

was a mixed integer programming model.  

 

In recent years, Semet & Schoenauer (2005) concentrated on the particular 

problem of local reconstruction of the schedule following a small perturbation, 

seeking minimization of the total accumulated delay by adapting times of departure 

and arrival for each train and allocation of resources (tracks, routing nodes). They 

described a permutation based evolutionary algorithm that relied on a heuristic to 

gradually reconstruct the schedule by inserting trains one after the other following 

the permutation. This algorithm was hybridized with mixed integer programming 

tool CPLEX; the evolutionary part was used to quickly obtain a good but suboptimal 

solution and this intermediate solution was refined using CPLEX. Once the 

population had converged, its best individual was fed to CPLEX as a starting point. 

The goal of the optimization procedure was to minimize the total accumulated delay, 

i.e., for all trains at all nodes, the difference between the actual time of arrival and 

the theoretical one. Semet & Schoenauer (2006) described an inoculation procedure 

which enhanced an evolutionary algorithm for train rescheduling problem. The 

procedure consisted in building the initial population around a precomputed solution 

based on problem related information available beforehand. The optimization was 

performed by adapting times of departure and arrival, as well as allocation of tracks, 

for each train at each station. This was achieved by a permutation based evolutionary 

algorithm that relied on a heuristic scheduler inserted trains one after another. One 

difficulty was that; not all the individuals were feasible schedules. The goal of the 

optimization procedure was to minimize the total accumulated delay, i.e., for all 

trains at all nodes, the difference between the actual time of arrival and the 

theoretical one. Törnquist & Persson (2007) presented an optimization approach to 
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the problem of rescheduling railway traffic in an n-tracked network after a 

disturbance had been occurred. They developed a mixed integer linear programming 

model and used branch and bound algorithm for solution. There are two alternative 

objective functions; the first one is to minimize the total final delay of the traffic, i.e., 

the sum of the final delays when trains arrive at their final destination, or rather the 

last stop considered within the rescheduling time horizon, and the second one is to 

minimize the total cost associated with delays when trains arrive at their final 

destination (or last stop considered).  

 

2.3.3 Simulation Models  

 

The number of articles that used simulation model for the rescheduling 

/dispatching is much more than the articles for the scheduling/timetabling. 

 

Kraft (1987) presented a deterministic algorithm for train dispatching problem. A 

probability model of train delay was derived to show how dispatching decisions can 

be made, and by using a random number generator speed fluctuations were 

introduced into the simulation model. The objective of the study was to minimize the 

weighted average of the train delays. A branch and bound based combinatorial train 

dispatching algorithm was developed for solution and its performance was compared 

with a local optimization technique. Iyer & Ghosh (1991 and 1995) introduced a 

distributed decision making algorithm for railway networks (DARYN), wherein the 

overall decision process was analyzed and distributed onto every natural entity of the 

system; the trains and the stations. The decision process for every train was executed 

by an onboard processor that negotiated, dynamically and progressively, for 

temporary ownership of the tracks with the respective station controlling the tracks, 

through explicit processor to processor communication primitives. This processor 

then computed its own route utilizing the results of its negotiation, its knowledge of 

the track layout of the entire system, and its evaluation of the cost function. Every 

station’s decision process was also executed by a dedicated processor that, in 

addition, maintained absolute control over a given set of tracks and participated in 

the negotiation with the trains. Cheng (1998a) proposed a hybrid method of the 
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network based simulation and the event driven simulation for resolving resource 

conflicts in train traffic rescheduling, in where resolving resource conflicts was; to 

decide which train should use the shared resources first. The objective of the study 

was to minimize the total delay of trains. There were two kinds of trains running on 

the same railway lines; the long distance trains run with a high speed and had less 

stops at stations, and the local trains stop nearly at almost every station and used a 

normal speed. 

 

Ping, Axin, Limin & Fuzhang (2001) presented a GA based solution to train 

dispatching in which an individual describes the trains departure order. At first a 

model for the train dispatching on the lines with double tracks was established, 

which can optimize train dispatching by adjusting the orders and times of trains’ 

departure from stations. Then the efficiency of the method was demonstrated via 

simulation on a high speed railway. The objective was to minimize total delay time. 

Rebreyend (2005) presented a tool called DisTrain, dedicated to optimize railway 

dispatching and railway infrastructure, in order to help the dispatcher to reschedule 

trains if needed. There were some important points; the dispatcher (or user) should 

be able to interact with the software and the proposed solutions should be 

dispatcher’s oriented, and the number of changes from the previous schedule should 

be keep small, as well the complexity of the proposed solution (number of actions 

needed to run it). The objective of the study was to minimize the number of delayed 

trains, GAs and branch and bound algorithm were used for solution.  

 

Flamini & Pacciarelli (2008) addressed a scheduling problem arising in the real 

time management of a metro rail terminus. It consisted in routing incoming trains 

through the station and scheduling their departures with the objective of optimizing 

punctuality and regularity of the train service. The terminus was divided into blocks 

of different lengths in where a block being a track segment between two signals. 

Within the station a signal may turn into two colours; red or green. A red signal 

indicated that the subsequent block was not available, occupied by another train. A 

green signal indicated that the subsequent block section was empty and available. 

Two different objective functions were considered in lexicographical order; the first 
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one was the minimization of the sum of total tardiness plus total earliness for all 

trains with respect to the off line timetable, and the second objective function was the 

minimization of the difference between the off line headway and the actual headway 

for all pairs of consecutive trains leaving the station. The problem was solved in two 

steps; at first a heuristic built a feasible solution by considering the first objective 

function, and then the regularity was optimized without deteriorating the first 

objective function. In a recent study, Luethi, Medeossi, & Nash (2009) investigated a 

critical problem faced by railways that was how to increase capacity without 

investing heavily in infrastructure and impacting on schedule reliability. One way of 

increasing capacity was to reduce the buffer time added to timetables that was used 

to reduce the impact of train delays on overall network reliability. The performance 

of the two loop approach increased when the rail network was strategically divided 

into bottleneck areas; areas operating at or near their capacity limit, condensation 

zone and non bottleneck areas; compensation zone. The trains should be operated at 

their maximum allowed speeds and with very small buffer times in condensation 

zones. The objective was to minimize the total delay of all the trains. 

 

2.3.4 Other Models  

 

Khan, Zhang, Jun & Li (2006) presented an application of GA to solve problem 

with the aim to minimize delays at the intermediate and final train stations. The term 

delay describes the deviation of trains from its scheduled departure and arrival times. 

There may be infeasible child individuals that were replaced with one of their 

parents. Mazzarello & Ottaviani (2007) introduced the architecture, the approach and 

the current implementation of an advanced Traffic Management System (TMS) able 

to optimize traffic fluency in large railway networks equipped with either fixed or 

moving block signalling systems. They concentrated on the core modules of the TMS 

architecture, which were responsible for automatic local traffic optimization and 

control, respectively named Conflict Detection and Resolution (CDR) and Speed 

Profile Generator (SPG). The CDR was responsible for automatic real time train 

scheduling and routing, and applied a model based on the alternative graph 

formulation. The SPG was responsible for plan execution. Operating strictly 
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connected to CDR, SPG computed an optimal speed profile for each train, in order to 

make the CDR plan being executed in a safe and energy saving manner. The 

objective was to minimize delays, acting both on train precedence relations at 

conflict points and on train routings.  

 

D’Ariano, Pranzo & Hansen (2007) introduced a variable speed dispatching 

system that can control the railway traffic in a regional network. They focused on the 

real time optimization of train scheduling and speed coordination. The proposed 

model took into account simultaneously all trains and aims at minimizing the 

maximum delay due to conflicts. The railway network was composed of block 

sections separated by signals. The signals controlled the train traffic on the routes 

and imposed safe space distance headway. A block section was a track segment 

between two main signals, and a signal aspect may be red, yellow, or green. A red 

signal aspect indicated that the subsequent block section was either out of service or 

occupied by another train, on the other hand a yellow signal aspect indicated that the 

subsequent block section was empty, but the following block section was occupied 

by another train. A green signal aspect indicated that the next two block sections 

were empty. A train was allowed to enter the next block section if the signal aspect 

was either green or yellow, but the train required deceleration and stopping before 

the next signal if the signal aspect remained red.  

 

In a recent study, Cheng & Yang (2009) aimed to transform a train dispatcher’s 

expertise into a useful knowledge rule. They adopted the fuzzy Petri Net to formulate 

the decision processes based on the train dispatching rule in the case of abnormality, 

in order to obtain any possible dispatching options. The dispatching decision rules, 

factors, and possible options when perturbation happens were collected via expert 

interviews and literature reviews. The fuzzy membership function of individual 

dispatching factors derived the correspondent fuzzy value and incorporated it in the 

fuzzy Petri Net approach to simulate appropriate dispatching options under various 

abnormal circumstances such as; centralized traffic control system failure, automatic 

train protection failure, and locomotive failure. Dispatch decision factors were; train 

type, uncompleted distance, train connection, track layout, average stopping time at 
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the platform, current train delay, passenger balance, and travelling type. The 

dispatching options were; overtaking, backed trains, added trains, and combined 

trains. The objective of the study was to minimize the total passenger delay. 

 

2.4 Articles on Both Scheduling/Timetabling and Rescheduling/Dispatching  

 
Komaya & Fukuda (1991) are the first authors who dealt with not only scheduling 

/timetabling but also rescheduling/dispatching in the same paper. They proposed a 

problem solving architecture for knowledge based integration of simulation and 

scheduling, and described two knowledge based systems for railway scheduling; 

DIAPLAN and ESTRAC-III. The objective was to minimize total delay time that 

was the sum of the delays of each train at each station. In order to emulate experts’ 

problem solving processes the architecture included four components; partial 

simulation, basic command, tactical knowledge, and strategic knowledge. The partial 

simulation and the basic command were employed for simulation of train movements 

in a subsystem, the tactical knowledge was employed for local scheduling, and the 

strategic knowledge was employed to manage the order of integrating simulation 

with scheduling in order to solve subproblems. DIAPLAN and ESTRAC-III were 

designed to support experts in planning and restoration of railway systems, 

respectively. DIAPLAN was able to prepare a complete timetable from given initial 

conditions for a train, and ESTRAC-III could prepare a rescheduling plan in the case 

of disturbed train traffic. 

 

Medanic & Dorfman (2002c) concentrated on modelling a single line and 

presented an approach, which was called travel advance strategy (TAS), which was 

based on a discrete event model of a railway line. The discrete event formulation 

removed the complexity of the scheduling problem and allowed one to obtain 

suboptimal time efficient and energy efficient schedules. The energy related system 

wide performance was measured by the sum of all energy costs. The system wide 

time related performance measures were; the total time-to-clear-the-track criterion 

that was the time interval from the instant the first train on the schedule leaves its 

point of departure till the instant the last train on the schedule arrives at its 

destination, the total delay criterion that was the total delay of all trains, and the 
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maximal delay criterion that was the maximum delay of any individual train. In 

Dorfman & Medanic (2004) TAS concept proposed in Medanic & Dorfman (2002c) 

was extended to scheduling trains in a railway networks. Also, a capacity check was 

introduced that prevents deadlock from occurring due to the developed train 

schedule. The rules developed for the TAS for a single railway line and the three 

time related performance criteria were appropriately extended to the network 

situation. Also, in this study extensions to the strategy were developed for networks 

with double track sections and with variable train priorities. The TAS was a service 

discipline at each meet/pass point as to which train in the vicinity of another (i.e., on 

adjacent sections of the line) should continue to travel, and which trains should be 

stopped at a meet/pass point. The TAS can be used to quickly develop schedules for 

perturbed cases; a change in a particular departure time, a velocity modification in 

some section for some train, an existence of lateness in scheduled train, an addition 

of new train into a given schedule. The TAS did not generate mathematically optimal 

solutions, but developed suboptimal schedules that closely approach the optimal in 

practical situations. 

 
Chang & Chung (2005) proposed train operation model that considered not only 

the flexibility of train regulation, or train rescheduling problem, but also the 

objectives of timetabling process. There were two stages in the proposed operating 

mechanism. In the first stage, they used the historical passenger flow provided by the 

railway company to construct an optimized train timetable, called “planned 

timetable”. Since the occurrence of an unpredicted event might disrupt the planned 

timetable, in the second stage, they developed a rescheduling process. A GA was 

applied to solve the problem. The objective function was to minimize the average 

travel time of passengers and to maximize the utilization of the trains. 

 

2.5 Discussion on the Literature Review 

 

Although many papers indicate the study of Szpigel (1973) to be the first study on 

the TrnSchPrb, we see that the article of Frank (1966) is the first one in this area. An 

interesting point is that although the first study was published many years ago, it is 
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still going on to be cited by recent papers such as Cheng & Yang (2009), Yang et al. 

(2009), Castillo et al. (2009) and Lee & Chen (2009). 

 

There exist a few review papers where the authors concentrate on the problem in 

only one section. Although there have been more than one hundred articles, 

published so far, deals with the TrnSchPrb, to the best of our knowledge, none of  

these papers have directly focused on the problem.  

 

The preliminary articles in the relevant area were focused on the scheduling and 

used mathematical models. On the other hand, in a few papers simulation models 

were constructed for the scheduling problem. The first article which focused on the 

rescheduling problem was published 17 years later than the first one on the 

scheduling problem. While the mathematical models were generally used for 

scheduling, simulation models were often built for rescheduling.  

 

The metaheuristics were employed by the researchers in the relevant area after 

1990s, multi objectives were optimized after 2000s. We confronted with only a few 

articles on both the scheduling and the rescheduling. They were published in 1990s.  

 

Although the current study focuses on the scheduling/timetabling problem, the 

simulation integrated framework developed can also be used for the rescheduling 

/dispatching problem if this framework can be fed by real time data. The current 

study can be located among a few studies which comprise simulation modelling for 

scheduling/timetabling.   

  

In the studies of Ping et al. (2001), Rebreyend (2005), and Geske (2006) a 

simulation model was developed and integrated with a GA. The first two studies are 

on the rescheduling that is not the main scope of the current study. In the last one the 

scheduling problem was considered and a deterministic simulation model was built. 

To the best of our knowledge our study is the first one which integrates a stochastic 

simulation model with GA and also with hybrid GAs to deal with the scheduling 

problem.  
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2.6 The First Studies in the Relevant Literature 

 

As a result of our literature review, the studies which are the first in their area are 

listed in Table A.10 in Appendix in chronological order. Some of them are given 

below. 

• Frank (1966) is the first author among the others who studied a single tracked 

line with double tracked stations. This infrastructure has been widely used in 

the scheduling literature.  

• Salzborn (1969) is the first author who considered passenger dimension, 

headway and dwell time.   

• The first study where overtaking, passenger demand, capacity of train 

concepts, and different train types were employed belongs to Nemhauser 

(1969). 

• One train at a time based algorithm was presented firstly by Amit & Goldfarb 

(1971). The technical data (speed limits, acceleration time, slope and curves), 

motive power units and crews concepts were also firstly placed in this study.  

• The first study that developed a branch and bound algorithm is Szpigel (1973). 

• The first study that developed a simulation model for the problem is Wong & 

Rosser (1978). 

• The first review paper belongs to Assad (1980).  

• The first study that mentioned the problem of line blockage and also took the 

train length into account is Petersen & Taylor (1982). 

• The first study that dealt with the rescheduling (dispatching) problem is Sauder 

& Westerman (1983), and this is also the first study that developed a shortest 

path algorithm and considered a network instead of a single line.  

• The first study that used a rule based solution approach is Araya, Abe & 

Fukumori (1983). 

• The first study that included train velocity as a decision variable in the model is 

Kraay et al. (1991). 

• The first study that dealt with not only the scheduling (timetabling) problem 

but also the rescheduling (dispatching) problem in the same study is Komaya & 

Fukuda (1991). 
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• The first study that used a constraint based solution approach is Chiang & Hau 

(1993). 

• The first study that integrated tabu search and simulated annealing 

metaheuristics to its solution approach is Chiang & Hau (1995). 

• The first study assumed that the trains can follow each other on a track segment 

with a minimum headway is Higgins et al. (1996). 

• The first study that focused on the periodic TrnSchPrb is Odijk (1996). 

• The first study that developed a GA for solution is Nachtigall & Voget (1996). 

• The first study that described an algorithm possessed a capability to schedule 

physical backups (reverse) of some trains if it is needed is Cai et al. (1998). 

• The first study that included cancelling a train as an option instead of 

scheduling all the trains is Brännlund et al. (1998), and also Lagrangian 

relaxation solution approach is used in the first time in this study. 

• The first study that had more than one objective (multi objective) to be 

optimized simultaneously is Chang et al. (2000), and also this is the first study 

that included fuzzy concept in its solution approach. 

• Petri Net approach was firstly used for solution of the TrnSchPrb by Fay 

(2000). 

• A graph model was firstly evolved by Caprara et al. (2001). 

• The first study that mentioned the attraction of the service for the passengers is 

Peeters & Kroon (2001). 

• The first study that took the junctions into account is Semet & Schoenauer 

(2005). 

• The first studies that used ant colony heuristic in order to solve the problem are 

Ghoseiri & Morshedsolouk (2006) and Su & Huang (2006), which were 

published in the same year. 

• The first study that permitted real time decision on alternative train routes is 

Mazzarello & Ottaviani (2007). 

• The first study that mentioned condensation zone and compensation zone 

concepts is Caimi et al. (2007). 

• The first study that concentrated on only a terminus part of a track is Flamini & 

Pacciarelli (2008). 
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CHAPTER THREE  

AN OVERVIEW OF GENETIC ALGORITHMS 

 

GAs are powerful and broadly applicable stochastic search and optimization 

approaches, and simulate the natural behaviour of biological systems. Holland (1975) 

introduced the developed fundamental ideas of GAs and then GAs became a popular 

method by the study of David Goldberg (Goldberg, 1989), one of Holland’s students, 

who solved a difficult problem involving the control of gas pipeline transmission by 

using GA.  

 

GAs have been successfully adapted to solve several combinatorial optimization 

problems for finding optimal or near optimal solutions in a reasonable time (Gen & 

Cheng, 1997; Gen & Cheng, 2000; Gen et al., 2008; Yu & Gen, 2010). A typical GA 

might consist of the followings (Coley, 2003);  

• A number, or population, of guesses of the solution to the problem. 

• A way of calculating how good or bad the individual solutions within the 

population are. 

• A method for mixing fragments of the better solutions to form new, on average 

even better solutions.  

• A mutation operator to avoid permanent loss of diversity within the solutions. 

 

Goldberg (1989) introduced the differences of GAs from traditional optimization 

techniques in four ways (Gen & Cheng, 1997); 

• GAs work with a coding of the parameter set, not the parameters themselves. 

• GAs search from a population of points, not a single point. 

• GAs use payoff (objective function) information, not derivatives or other 

auxiliary knowledge. 

• GAs use probabilistic transition rules, not deterministic rules. 

 

GAs maintain a population of chromosomes (individuals), each of them represents 

a solution to the problem at hand. Each chromosome is evaluated to give measure of 

its fitness. In order to create new chromosomes some chromosomes (parents) from
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the population undergo stochastic transformations by means of genetic operators; 

crossover and mutation. Crossover creates new chromosomes (children, offspring) by 

combining parts (mating) from generally two parents. Mutation creates new 

individuals by making changes (mutating) in a single chromosome. A new 

population is formed by selecting individuals from the parent population and the 

children population according to a selection procedure. After several generations (a 

predefined iteration number), the algorithm converges the most fit individual, which 

represents an optimal or suboptimal solution to the problem at hand (Goldberg, 1989; 

Gen & Cheng, 1997; Gen & Cheng, 2000; Coley, 2003; Haupt & Haupt, 2004; Gen 

et al., 2008; Yu & Gen, 2010). 

 

Haupt & Haupt (2004) mentioned the below advantages of GAs; 

• Optimize with continuous or discrete variables, 

• Do not require derivative information, 

• Simultaneously searches from a wide sampling of the cost surface, 

• Deal with a large number of variables, 

• Are well suited for parallel computers, 

• Optimize variables with extremely complex cost surfaces (they can jump out of 

a local minimum), 

• Provide a list of optimum variables, not just a single solution, 

• May encode the variables so that the optimization is done with the encoded 

variables, and 

• Work with numerically generated data, experimental data, or analytical 

functions. 

 

GAs have received considerable attention regarding their potential as a novel 

optimization technique. There are three major advantages when applying GA to 

optimization problems (Gen et al., 2008);  

•  Adaptability: GA does not have much mathematical requirement regarding 

about the optimization problems. Due to the evolutionary nature, GA will 

search for solutions without regard to the specific inner workings of the 

problem. GA can handle any kind of objective functions and any kind of 



 

 

35

constraints, i.e., linear or nonlinear, defined on discrete, continuous or mixed 

search spaces. 

• Robustness: The use of evolution operators makes GA very effective in 

performing a global search (in probability), while most conventional heuristics 

usually perform a local search. It has been proved by many studies that GA is 

more efficient and more robust in locating optimal solution and reducing 

computational effort than other conventional heuristics. 

• Flexibility: GA provides flexibility to hybridize with domain dependent 

heuristics to make an efficient implementation for a specific problem. 

 

3.1 GA Vocabulary 

 

Because GA is rooted in both natural genetics and computer science, the 

terminologies used in GA literatures are a mixture of the natural and the artificial. In 

a biological organism, the structure that encodes the prescription that specifies how 

the organism is to be constructed is called a chromosome. One or more chromosomes 

may be required to specify the complete organism. The complete set of chromosomes 

is called a genotype, and the resulting organism is called a phenotype. Each 

chromosome comprises a number of individual structures called genes. Each gene 

encodes a particular feature of the organism, and the location, or locus, of the gene 

within the chromosome structure, determines what particular characteristic the gene 

represents. At a particular locus, a gene may encode one of several different values 

of the particular characteristic it represents. The different values of a gene are called 

alleles. The correspondence of GA terms and optimization terms is summarized in 

Table 3.1 (Gen & Cheng, 1997; Gen et al., 2008). 

 
Table 3.1 Explanation of GA terms 

GAs Explanation 
Chromosome (string, individual) Solution (Coding)  
Genes (Bits) Part of the Solution 
Locus Position of Gene 
Alleles Values of Gene 
Phenotype Decoded Solution 
Genotype Encoded Solution 
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GAs have a number of components and operators that must be specified in order 

to define a particular GA. The most important are given below. 

 

3.2 Components of GAs 

 

Representation (encoding of chromosomes). The first step in defining a GA is to 

link the “real world" to the “GA world", that is to set up a bridge between the 

original problem context and the problem solving space where evolution will take 

place. Objects forming possible solutions within the original problem context are 

referred to as phenotypes, their encoding, the individuals within the GA, are called 

genotypes. The first design step is commonly called representation, as it amounts to 

specifying a mapping from the phenotypes onto a set of genotypes that are said to 

represent these phenotypes. It is important to understand that the phenotype space 

can be very different from the genotype space, and that the whole evolutionary 

search takes place in the genotype space (Eiben & Smith, 2003). 

 

Binary encoding (Figure 3.2) is the most common one, mainly because the first 

research of GA used this type of encoding and because of its relative simplicity. In 

binary encoding, every chromosome is a string of bits 0 or 1. Permutation encoding 

(Figure 3.3) can be used in ordering problems, such as travelling salesman problem 

or task ordering problem. In permutation encoding, every chromosome is a string of 

numbers that represent a position in a sequence. Direct value encoding (Figure 3.4) 

can be used in problems where some more complicated values such as real numbers 

are used. In the value encoding, every chromosome consists some values that can be 

anything connected to the problem.  

 

Figure 3.2 Examples for binary encoding 

 

Figure 3.3 Examples for permutation encoding 
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Figure 3.4 Examples for direct value encoding 

 

 Population. The role of the population is to hold (the representation of) possible 

solutions. A population is a multiset (a set where multiple copies of an element are 

possible) of genotypes. Given a representation, defining a population can be as 

simple as specifying how many individuals are in it, that is, setting the population 

size (Eiben & Smith, 2003). The initial population is usually generated randomly. 

There are also other alternatives. One of them is to carry out a series of initializations 

for each individual and then pick the highest performing values. Another alternative 

is to locate approximate solutions by using other methods (i.e., simulated annealing, 

tabu search) and to start the algorithm from such points (Coley, 2003). 

 

Evaluation. Each chromosome is evaluated and assigned a fitness value after the 

creation of an initial population. The fitness evaluation is a black box for the GA this 

may be achieved by a mathematical function, a simulation model, or a human expert 

that decides the quality of a chromosome. 

 

 Parent selection. The role of parent selection or mating selection is to distinguish 

among individuals based on their quality, in particular, to allow the better individuals 

to become parents of the next generation. An individual is a parent if it has been 

selected to undergo variation in order to create offspring (Eiben & Smith, 2003). 

 

Crossover. It is the main genetic operator that operates on two chromosomes at a 

time and generates offspring by combining both chromosomes’ features. A simple 

way to achieve crossover would be to choose a random cut-point and generate the 

offspring by combining the segment of one parent to the left of the cut point with the 

segment of the other parent to the right of the cut point (Gen et al., 2008). For two 

individuals selected to cross over, we assign a point between 1 and l−1 randomly, 

where l is the length of the chromosome. This means generating a random integer in 
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the range [1, l−1]. The genes after the point are changed between parents and the 

resulting chromosomes are offspring. This operator is called single point crossover 

exhibited in Figure 3.5 (Yu & Gen, 2010). 

 
          Figure 3.5 Single point crossover 
 

The crossover rate is defined as the probability of the number of offspring 

produced in each generation to the population size. This rate controls the expected 

number of chromosomes to undergo the crossover operation. A higher crossover rate 

allows exploration of more of the solution space, and reduces the chances of settling 

for a false optimum; but if this rate is too high, it results in the wastage of a lot of 

computation time in exploring unpromising regions of the solution space (Gen et al., 

2008). 

 

Mutation. It is a background operator which produces spontaneous random 

changes in various chromosomes. A simple way to achieve mutation would be to 

alter one or more genes. In GA, mutation serves the crucial role of either (a) 

replacing the genes lost from the population during the selection process so that they 

can be tried in a new context or (b) providing the genes that were not present in the 

initial population (Gen & Cheng, 1997; Gen et al., 2008). An illustration is given in 

Figure 3.6, in where the jth gene is changed from 1 to 0 randomly (Yu & Gen, 2010).  

 
  Figure 3.6 An illustration of mutation 

 

The mutation rate controls the probability with which new genes are introduced 

into the population for trial. If it is too low, many genes that would have been useful 

are never tried out, while if it is too high, there will be much random perturbation, 
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the offspring will start losing their resemblance to the parents, and the algorithm will 

lose the ability to learn from the history of the search (Gen et al., 2008). 

 

A replacement strategy is required in order to form new generation. This strategy 

determines which chromosomes stay in population and which are replaced by 

offsprings, generated by crossover or mutation. The individuals of the new 

generation may be (a) individuals from the current generation, (b) offspring product 

of crossover or (c) individuals who underwent mutation. One of the commonly used 

replacement strategy is elitism, which makes survive some number of the best 

individuals at each generation, hence guaranteeing that the final population contains 

the best solution ever found (Gen & Cheng, 1997; Gen & Cheng, 2000; Coley, 2003; 

Haupt & Haupt, 2004). 

 

Termination criteria. Unlike other search methods that terminate when a local 

optimum is reached, GAs are stochastic search methods that could in principle run 

forever. In practice, a termination criterion is needed, common approaches are; to set 

a limit on the number of fitness evaluations or the computer clock time, or to track 

the population’s diversity and stop when this falls below a preset threshold (Gen & 

Cheng, 1997; Gen & Cheng, 2000; Coley, 2003; Haupt & Haupt, 2004). 

 

The flowchart of the used GA in this study is exhibited in Figure 3.1. 
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3.3 Hybrid GAs 

 

GA have proved to be a versatile and effective approach for solving optimization 

problems. Nevertheless, there are many situations in which the simple GA does not 

perform particularly well, and various methods of hybridization have been proposed. 

One of most common forms of hybrid GA is to incorporate local optimization as an 

add on extra to the conventional GA loop. With the hybrid approach, local 

optimization is applied to each newly generated offspring to move it to a local 

optimum before injecting it into the population. GA is used to perform global 

exploration among a population while heuristic methods are used to perform local 

exploitation around chromosomes (Gen et al., 2008). 

 

A hybrid GA combines the power of the GA with the speed of a local optimizer, 

in where GA finds the region of the optimum, and then the local optimizer takes over 

to find the better. Hybrid GA can take one of the following forms; 

• Running a GA until it slows down, then letting a local optimizer take over. 

Hopefully the GA is very close to the global minimum. 

• Seeding the GA population with some local minima found from random 

starting points in the population. 

• Every so many iterations, running a local optimizer on the best solution or the 

best few solutions and adding the resulting chromosomes to the population. 

(Haupt & Haupt, 2004) 
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CHAPTER FOUR 

 

A FEASIBLE TIMETABLE GENERATOR SIMULATION MODELLING 

FRAMEWORK FOR TRAIN SCHEDULING PROBLEM  

 

In this chapter, a feasible timetable generator simulation modelling framework for 

the TrnSchPrb is given. The objective is to obtain a feasible train timetable for all 

trains in the system. The feasible train timetable includes train arrival and departure 

times at all visited stations with calculated average train travel time. This chapter 

involves three subsections. In the first subsection, a hypothetic TrnSchPrb is 

introduced. In the next section, the simulation modelling framework is developed and 

applied on the hypothetic TrnSchPrb. In the last subsection, the results are discussed.   

 

4.1 A Hypothetic Train Scheduling Problem  

 

The proposed simulation modelling framework is implemented on a hypothetic 

TrnSchPrb. The infrastructure in the problem has a line structure inspired by a real 

railway line system, and has a planned initial timetable with arrival and departure 

times of trains only at two end stations of the infrastructure. 

 

4.1.1 Railway Line Description 

 

The railway line, which is inspired by a real line, is a single track corridor as 

analogous to many lines in the literature and in real railway systems. The line-station 

diagram of the single track corridor and the infrastructure of stations are shown in 

Figure 4.1. There are 10 real stations on the single track corridor that are labelled as 

Si (i = 1, 2, …, 10) from the east to the west. 

 

The single track corridor has two terminuses, TS1 and TS10. TS1 at the east point 

and TS10 at the west point indicate the beginning and the finishing points of the 

single track corridor. As it is seen in Table 4.1, the total track length from the TS1 to 

the TS10 is 286270 meters. Since all the real stations have 200 meters platform for
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boarding and alighting events, and there are 10 real stations on the corridor, the 

whole length of the corridor is 288270 meters.  

 

 
   Figure 4.1Line-station diagram of the single track corridor  

 
Table 4.1 Track lengths between the real stations 

To 
From 

TS1 
(East) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 TS10

(West)
TS1 

(East) 0 500 28070 60170 88400 125210 170060 197060 214460 243560 285770 286270

S1 500 0 27570 59670 87900 124710 169560 196560 213960 243060 285270 285770
S2 28070 27570 0 32100 60330 97140 141990 168990 186390 215490 257700 258200
S3 60170 59670 32100 0 28230 65040 109890 136890 154290 183390 225600 226100
S4 88400 87900 60330 28230 0 36810 81660 108660 126060 155160 197370 197870
S5 125210 124710 97140 65040 36810 0 44850 71850 89250 118350 160560 161060
S6 170060 169560 141990 109890 81660 44850 0 27000 44400 73500 115710 116210
S7 197060 196560 168990 136890 108660 71850 27000 0 17400 46500 88710 89210
S8 214460 213960 186390 154290 126060 89250 44400 17400 0 29100 71310 71810
S9 243560 243060 215490 183390 155160 118350 73500 46500 29100 0 42210 42710

S10 285770 285270 257700 225600 197370 160560 115710 88710 71310 42210 0 500 
TS10 
(West) 286270 285770 258200 226100 197870 161060 116210 89210 71810 42710 500 0 
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4.1.2 Planned Initial Train Timetable  

 

The train arrival and departure times at two end stations are given in Table 4.2, 

where WBi (i = 1, 2, …, 10) indicates a westbound train that begins its trip from the 

S1 (on the east of the corridor) and plans to finish at the S10 (on the west of the 

corridor), and EBi (i = 1, 2, …, 10) indicates an eastbound train which departures 

from the S10 (on the west of the corridor) and arrives to the S1 (on the east of the 

corridor). The planned initial timetable is formed with the assumption that there will 

be 20 trains running in a day, 10 of them are the WB trains and the other 10 are the 

EB trains. 

 
Table 4.2 Planned initial train timetable 

Station Train Arrival Time Departure Time 
WB1 00:00 00:10 
WB2 02:00 02:10 
WB3 04:00 04:10 
WB4 06:00 06:10 
WB5 08:00 08:10 
WB6 10:00 10:10 
WB7 12:00 12:10 
WB8 14:00 14:10 
WB9 16:00 16:10 

S1 

WB10 18:00 18:10 
EB1 00:00 00:10 
EB2 02:00 02:10 
EB3 04:00 04:10 
EB4 06:00 06:10 
EB5 08:00 08:10 
EB6 10:00 10:10 
EB7 12:00 12:10 
EB8 14:00 14:10 
EB9 16:00 16:10 

S10 

EB10 18:00 18:10 
 

4.2 A Feasible Timetable Generator Simulation Model 

 

A feasible timetable generator simulation model is developed by using ARENA 

10.0 discrete event simulation software in a modular manner. First, the railway 

corridor with links, intersections and the stations is modelled, and track failures and 

repairs are included. Then, train movement logic on the corridor is modelled. We use 
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a rule for track allocation to candidate trains that are the trains waiting at neighbour 

stations of the track to use it. Fixed train speeds are relaxed, and additional 

unplanned delays at the stations are inserted. The number of trains in the system is 

increased and randomness is added to the planned initial train timetable. As a last 

step, animation of the system is developed. 

  

Some assumptions are made during modelling phase of the simulation model. It 

must be noted that many our assumptions are the fundamental assumptions made by 

the existing studies.  

  

Some of the assumptions made for our simulation model are; 

• The unit for length and time is meter and second, respectively. 

• It takes 32 seconds for trains to reach the real stations S1 and S10 from park 

area, then the trains wait 568 seconds at these stations, i.e., they spend totally 

600 seconds (10 minutes) as a dwell time. First trips are planned to begin at 

00:10:00 o’clock. But due to additional unplanned delays at the stations 

lateness may occur. 

• Time spent for reaching to a terminus (TS1 or TS10) from the park area is 

negligible. 

• The WB trains’ departure station is the S1 and destination is the S10, and the 

EB trains’ departure station is the S10 and destination is the S1. 

• There will be 20 trains running in a day, 10 of them are the WB and the other 

10 are the EB trains. 

• All the trains are the same type. 

• Passengers are ignored at this level of the model. 

• There is a time interval (headway) between two consecutive trains at a station, 

which have the same trip direction, in order to have a safe trip. 

• The train lengths are 50 meters. 

• Earliness and lateness time in the planned initial train timetable, due to some 

uncontrollable events that occur out side of the corridor, is uniformly 

distributed between -900 and +900 seconds.  
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4.2.1 Railway Corridor Modelling 

 

The detailed line-station diagram of the corridor is denoted in Figures 4.2(a)-

4.2(c). The letter “E” indicates the east and the letter “W” indicates the west 

directions. 

 

The railway corridor is a union of intersections and links, and modelled via 

Networks Element of the ARENA. The links are the track parts on which train 

traverses during its trip from a station to another neighbour station. The links are 

numbered from 1 to 111, and shown as lines in Figures 4.2(a)-4.2(c), and are 

modelled via Links Element of the ARENA. 

 

The intersections, the connection points of the links, are numbered from 1 to 102 

and shown in lozenge shape in Figures 4.2(a)-4.2(c). The big lozenge shapes denote 

the intersections related to the real stations, and have lengths in meter. For instance, 

the big lozenge shape numbered as 2 is related to the first part of the S2 and connects 

the link 9 with link 10. The small lozenge shapes denote the intersections that are 

only used for connecting the links and dummy stations that are located on the tracks 

between the real stations to keep a train wait during the repairing of a track failure, 

and have no length. For instance, the small lozenge shape numbered as 22 connects 

the link 1 with link 2 and link 4. The intersections numbered from 63 to 102 are 

related to the park areas where the empty trains can park. The intersections are 

modelled via Intersections Element of the ARENA. 

 

The stations are locations where a train can stop for boarding and alighting events, 

for parking or for waiting until a failure is accomplished. The real stations, Si (i = 1, 

2, …, 10), are interrelated with 2 intersections, that is, the real stations have capacity 

of two, at most two trains can locate on a real station at the same time. The dummy 

stations, dSij (j = 1 for i = 7; j = 1, 2 for i = 1, 2, 3, 6, 8;  j = 1, 2, 3 for i = 4, 5, 9), are 

located on the tracks between the real stations to keep a train wait during the 

repairing of a failure, if the failure occurs while a train is traversing between the real 

stations. The stations are modelled via Stations Element of the ARENA. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2(a) D
etailed line-station 

dia gram
of the corridor from

 S1 to S3
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Figure 4.2(b) D
etailed line-station 

dia gram
of the corridor from

 S4
to S7
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Figure 4.2(c) D
etailed line-station 

dia gram
of the corridor from

 S8
to S10
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The links and the intersections related to the corridor are shown in Table 4.3, and 

the stations related to the corridor are depicted in Table 4.4. In Description column 

of the Table 4.3, a brief explanation is given to define the corresponding link and 

intersection. In this column, while describing an intersection the dummy station 

related with the described intersection is given.  

 
Table 4.3 Links and intersections related to the corridor  

 Name Description 
Link number 
i = 1, …, 111 Lnk(i) Link (i) in the railway network that is the track part 

trains traverse on  
Intersection number 
i = 1, ..., 10 Int(i)_S(i)_1 Intersection (i) interrelated with first part of station (i) 
i = 11, ..., 20 Int(i)_S(i-10)_2 Intersection (i) interrelated with second part of  

station (i -10) 
21 Int21_TS1 Intersection interrelated with TS1 
i = 22, 23, 26, 27, 30, 31, 
34, 35, 39, 40, 44, 45, 48, 
49, 51, 52, 55, 56, 60, 61 

Int(i) Intersection (i) in the railway network that is connecting 
neighbour links  

24 Int24_dS11 dS11 
25 Int25_dS12 dS12 
28 Int28_dS21 dS21 
29 Int29_dS22 dS22 
32 Int32_dS31 dS31 
33 Int33_dS32 dS32 
36 Int36_dS41 dS41 
37 Int37_dS42 dS42 
38 Int38_dS43 dS43 
41 Int41_dS51 dS51 
42 Int42_dS52 dS52 
43 Int43_dS53 dS53 
46 Int46_dS61 dS61 
47 Int47_dS62 dS62 
50 Int50_dS71 dS71 
53 Int53_dS81 dS81 
54 Int54_dS82 dS82 
57 Int57_dS91 dS91 
58 Int58_dS92 dS92 
59 Int59_dS93 dS93 
62 Int62_TS10 Intersection interrelated with TS10 
i = 63, ..., 102 Int(i)_park Intersection (i) interrelated with park area 
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Table 4.4 Stations related to the corridor  

 

In the simulation model the links, the intersections and the track failures are 

controlled via variables. For instance, the link 2 is controlled by a variable that has 

number 102 in Variables Element of the simulation model and demonstrated by 

V(102) in Figure 4.2(a). The variables related to the corridor model are given in 

Table 4.5. In this table, Description column defines the dummy station related with 

the intersection that is controlled by the corresponding variable.  

 

Assumptions related to the railway corridor part of the simulation model are; 

• The railway system is a single track line, a corridor. 

• The traffic on tracks is bidirectional, two way.  

• All the real stations have 200 meters platforms for boarding and alighting 

events. 

 Name Description 
Station number 
i = 1, ..., 10 S(i)_1 First part of real station (i) 
i = 11, ..., 20 S(i-10)_2 Second part of real station (i -10) 
21 TS1 Terminus TS1 
24 dS11 Dummy station  
25 dS12 Dummy station  
28 dS21 Dummy station  
29 dS22 Dummy station  
32 dS31 Dummy station  
33 dS32 Dummy station  
36 dS41 Dummy station  
37 dS42 Dummy station  
38 dS43 Dummy station  
41 dS51 Dummy station  
42 dS52 Dummy station  
43 dS53 Dummy station  
46 dS61 Dummy station  
47 dS62 Dummy station  
50 dS71 Dummy station  
53 dS81 Dummy station  
54 dS82 Dummy station  
57 dS91 Dummy station  
58 dS92 Dummy station  
59 dS93 Dummy station  
62 TS10 Terminus TS10 
i = 63, ..., 102 Sta(i)_park Station (i) interrelated with park area 
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Table 4.5 Variables related to the corridor 

 Name Description 
Variable number 
i = 1, ..., 10 V(i)_S(i)_1_Int(i) Variable (i) controls intersection (i) interrelated with 

first part of station (i) 
i = 11, ..., 20 V(i)_S(i-10)_2_Int(i) Variable (i) controls intersection (i) interrelated with 

second part of station (i -10) 
21 V21_TS1_Int21 Variable controls intersection 21 interrelated with TS1 
i = 22, 23, 26, 27, 30, 
31, 34, 35, 39, 40, 44, 
45, 48, 49, 51, 52, 55, 
56, 60, 61 

Var(i)_Int(i) Variable (i) controls intersection (i) 

24 V24_dS11_Int24 dS11 
25 V25_dS12_Int25 dS12 
28 V28_dS21_Int28 dS21 
29 V29_dS22_Int29 dS22 
32 V32_dS31_Int32 dS31 
33 V33_dS32_Int33 dS32 
36 V36_dS41_Int36 dS41 
37 V37_dS42_Int37 dS42 
38 V38_dS43_Int38 dS43 
41 V41_dS51_Int41 dS51 
42 V42_dS52_Int42 dS52 
43 V43_dS53_Int43 dS53 
46 V46_dS61_Int46 dS61 
47 V47_dS62_Int47 dS62 
50 V50_dS71_Int50 dS71 
53 V53_dS81_Int53 dS81 
54 V54_dS82_Int54 dS82 
57 V57_dS91_Int57 dS91 
58 V58_dS92_Int58 dS92 
59 V59_dS93_Int59 dS93 
62 V62_TS10_Int42 Variable controls intersection 62 interrelated with TS10 
i = 101, ..., 171 V(i)_Lnk(i-100) Variable (i) controls link (i -100) 
 

• There are 10 real stations and 20 dummy stations on the corridor, that is, the 

corridor is 288270 meter long.  

• The terminuses (TS1 and TS10) have infinitive train capacity. 

• The terminus TS1 is located on the east point, and the terminus TS10 is located 

on the west point of the corridor. 

• Every middle real station has capacity of two trains, that is, there will be at 

most two trains at a real station at the same time. 
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• Every dummy station has capacity of one train, that is, there will be at most 

one train at a dummy station at a specific time. 

• There are 100 meter length park areas near the terminuses. These park areas are 

used by a train, which finished its trip, while leaving the corridor, or waiting to 

enter the corridor.  

• Distance between these park areas and terminuses are 100 meters. 

 

4.2.2 Track Failure Modelling 

 

Track failure is an event that prevents a train to occupy the impaired track for a 

trip. The train can use the track after it is repaired. Distributions for failure times and 

repair times for the failed tracks are depicted in Table 4.6.  

 
Table 4.6 Failure times and repair times distributions 

Variable 
number Location Length 

(meter) Rank Ratio 1/Ratio Failure time 
distribution 

Repair time 
distribution 

1001 S1-S2 27370 3 1.591 0.628 Expo (54296) Expo (2864) 
1002 S2-S3 31900 6 1.855 0.539 Expo (46586) Expo (3338) 
1003 S3-S4 28030 4 1.630 0.614 Expo (53017) Expo (2933) 
1004 S4-S5 36610 7 2.128 0.470 Expo (40592) Expo (3831) 
1005 S5-S6 44650 9 2.596 0.385 Expo (33283) Expo (4673) 
1006 S6-S7 26800 2 1.558 0.642 Expo (55451) Expo (2805) 
1007 S7-S8 17200 1 1.000 1.000 Expo (86400) Expo (1800) 
1008 S8-S9 28900 5 1.680 0.595 Expo (51421) Expo (3024) 
1009 S9-S10 42010 8 2.442 0.409 Expo (35374) Expo (4396) 
 

In the first three columns, variable number, location and length of the tracks are 

given. These tracks are ranked according to their lengths. The shortest one has rank 1 

and lies between the S7 and the S8, and is selected to be base track. The longest one 

has rank 9 and lies between the S5 and the S6. The ratios are obtained by dividing 

lengths of the tracks to the length of the base track.  

 

It is assumed that failure time of the base track is distributed exponentially with a 

mean of 86400 seconds (24 hours), that is, it is expected to observe one failure for 

the base track in a day. Failure times of the other tracks are also assumed to be 

distributed exponentially with a mean of 86400 seconds (24 hours) times 1/ratio. 
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That is, they have expected values inverse ratio to their lengths, namely the longer 

the track part the more frequently the track failure occurrence. For instance, it is 

assumed that failure time of the longest track is distributed exponentially with a 

mean of 33283 seconds (9.25 hours), that is, it is expected to observe more than two 

(24 / 9.25 = 2.6) failures in a day for the longest track. The repair time distribution is 

assumed to be exponential with a mean of 1800 seconds (0.5 hours) for the base 

track, and with a mean of 1800 seconds (0.5 hours) times ratio value for the other 

tracks.  

 

We divided the long tracks into smaller parts (links) and located the dummy 

stations between the links as depicted in Figures 4.2(a)-4.2(c). After obtaining 

failures for tracks according to the distributions shown in Table 4.6, these failures are 

transferred to the links with the probabilities exhibited in Table 4.7. 

 

In the simulation model, the track failures are controlled via variables. If a failure 

occurs in a track part, trains are prevented to use this part until it is repaired. The 

variables related to the track failure model are exhibited in Table 4.8.  

 

The line-station diagram of the track between the S5 and the S6 is given in Figure 

A.1 in Appendix, and the SIMAN View of the failure model logic related to the track 

between the S5 and the S6 is given in Table A.1 in Appendix. The flowcharts for 

track failure event and track repair event are exhibited in Figure 4.3 and Figure 4.4 

respectively. 

 

Assumptions related to the track failure part of the simulation model are; 

• There will be track failures that will stop traffic on the related track. The failure 

and repair times distributions are given in Table 4.6. 

• The failure time of the base track is distributed exponentially with a mean of 

86400 seconds (24 hours), that is, it is expected to observe one failure for the 

base track in a day. 

• Failure times for other tracks are also exponentially distributed with a mean of 

86400 seconds (24 hours) times 1/ratio value. That is, failure times of other 
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tracks have expected values inverse ratio to their lengths, namely the longer the 

track part the more frequently the track failure occurrence.  

• The repair time distribution is exponential with 1800 seconds (0.5 hours) mean 

for the base track. 

• Repair times for other tracks are also exponentially distributed with a mean of 

1800 seconds (0.5 hours) times related ratio value. 

• After failures for the tracks were created according to the probability 

distributions shown in Table 4.6, these failures are transferred to the links due 

to the probabilities given in Table 4.7. 

 
Table 4.7 Failure probabilities of the links 

Variable number 
of track 

Location 
of track 

Length of track
(meter) 

Link 
number

Variable
number

Length
(meter)

Probability 
(%) 

Location 
of link 

6 1106 10000 33 S1-dS11
7 1107 10000 33 dS11-dS121001 S1-S2 27370 
8 1108 7370 34 dS12-S2 

13 1113 10000 33 S2-dS21
14 1114 10000 33 dS21-dS221002 S2-S3 31900 
15 1115 11900 34 dS22-S3 
20 1120 10000 33 S3-dS31
21 1121 10000 33 dS31-dS321003 S3-S4 28030 
22 1122 8030 34 dS32-S4 
27 1127 10000 25 S4-dS41
28 1128 10000 25 dS41-dS42
29 1129 10000 25 dS42-dS43

1004 S4-S5 36610 

30 1130 6610 25 dS43-S5 
35 1135 10000 25 S5-dS51
36 1136 10000 25 dS51-dS52
37 1137 10000 25 dS52-dS53

1005 S5-S6 44650 

38 1138 14650 25 dS53-S6 
43 1143 10000 33 S6-dS61
44 1144 10000 33 dS61-dS621006 S6-S7 26800 
45 1145 6800 34 dS62-S7 
50 1150 10000 50 S7-dS711007 S7-S8 17200 
51 1151 7200 50 dS71-S8 
56 1156 10000 33 S8-dS81
57 1157 10000 33 dS81-dS821008 S8-S9 28900 
58 1158 8900 34 dS82-S9 
63 1163 10000 25 S9-dS91
64 1164 10000 25 dS91-dS92
65 1165 10000 25 dS92-dS93

1009 S9-S10 42010 

66 1166 12010 25 dS93-S10 
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• If a track failure happens while a train is traversing on this track and if the next 

station is a dummy one, train goes to next dummy station and a check is made 

if the failure is on that train’s destination direction or not. If the failure is on its 

destination side, the train waits until failure is repaired, else the train goes on 

its trip. 
 
Table 4.8 Variables related to the track failure model 

 Name Description 
Variable number 
i =  
1001, …, 1009 

V(i)_fS(i-1000) Variable (i) controls track  failure between S(i) and S(i +1), 
default value is 0, takes value 1 when there is a failure, 
and after repair again takes value 0 

i =  
1106, 1107, 1108, 
1113, 1114, 1115, 
1120, 1121, 1122, 
1127, 1128, 1129, 
1130, 1135, 1136, 
1137, 1138, 1143, 
1144, 1145, 1150, 
1151, 1156, 1157, 
1158, 1163, 1164, 
1165, 1166 

V(i)_fLnk(i-1100) Variable (i) controls track failure interrelated with 
link (i -1100), default value is 0, takes value 1 when 
there is a failure, and after repair again takes value 0 

 

 
              Figure 4.3 Flowchart for track failure event 

 
         Figure 4.4 Flowchart for track repair event 

Track repair event

Open the track for all trains

Return 
 

Track failure event

Close the track for new trains
that are outside of the track 

Determine the failed part of the track
based on predefined probabilities 

Close the failed part of the track for the trains those 
are already on the track but outside the failed part 

Return 
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4.2.3 Train Movement Modelling 

 

The train movement modelling logic in the simulation model is explained on some 

parts of the corridor. 

 

4.2.3.1 Train Movement Logic from Park Area to a Real Station via a Terminus  

 

Assume that a train is moving from the park area located at the east to reach the 

S1 via the TS1. In Figure A.2 in Appendix, the line-station diagram of the TS1 and 

its neighbourhood is given. The SIMAN Views of the train movement logic from the 

park area to the TS1 is depicted in Table A.2 in Appendix, and the train movement 

logic at the TS1 is denoted in Table A.3 in Appendix. The flowcharts for train 

movement from the park area event and train arrival to the terminus event are given 

in Figures 4.5 and 4.6 respectively. 

 

4.2.3.2 Train Movement Logic at a Real Station 

 

Assume that a train is just arrived to the first part of the real station S5 that is 

interrelated with the intersection 5 in the simulation model. The line-station diagram 

of the S5 and its neighbourhood were given in Figure 4.2(b). The SIMAN View of 

the train movement logic at the first part of the S5 is shown in Table A.4 in 

Appendix. The flowcharts for train arrival to the real station event and train 

departure from the real station event are exhibited in Figure 4.7 and 4.8 respectively. 

 

4.2.3.3 Train Movement Logic at a Dummy Station 

 

We assume that a train is just arrived to the dummy station dS51. The line-station 

diagram of the dS51 and its neighbourhood were depicted in Figure 4.2(b). The 

SIMAN View of the train movement logic at the dummy station is shown in Table 

A.5 in Appendicx. The flowcharts for train arrival to the dummy station event and 

train departure from the dummy station event are exhibited in Figure 4.9 and 4.10 

respectively. 
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Figure 4.5 Flowchart for train movement from the park area event 
 

 
 

           Figure 4.6 Flowchart for train arrival to the terminus event 
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Figure 4.7 Flowchart for train arrival to the real station event 
 
 

 
 

Figure 4.8 Flowchart for train departure from  

a real station event 
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Figure 4.9 Flowchart for train arrival to the dummy 

station event 

 

 
 

Figure 4.10 Flowchart for train departure from the 

dummy station event 

 

Assumptions related to the train movement part of the simulation model are as 

follows. 

• Trains’ speeds are uniformly distributed over an interval (90 kilometres/hour, 

110 kilometres/hour). 

• Dwell times for each station are 600 seconds (10 minutes). That is each train 

will stop at least 600 seconds at the all stations for boarding and alighting 

events. 

• To represent unplanned delays at a station, a time, it is assumed that delay time 

is exponentially distributed with a mean of 90 seconds. Delay time is added to 

the dwell times. Due to this unplanned delay, overtaking is possible. 

• Each train stops at real stations except terminuses.  

• A train stops at a dummy station if there is a failure in a track placed in front of 

that train.  

Train departure from the dummy station event

Run the train to the next station

Return

Train arrival to the dummy station event

Return

Yes 

No

Wait

Is there any 
track failure in the
train’s direction?
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• Track occupying decision is taken at the real stations based on the answers 

given the following questions; Are the links and intersections suitable? Does a 

track failure exist? Does this decision cause a deadlock? 

• First come first served (FCFS) dispatching rule is used to select one train 

among the candidate trains, which are the trains waiting at neighbour stations 

of the track that want to use the same track. If the all conditions to move are 

suitable for a candidate train, which arrived first to one of neighbour station of 

the track it will begin to trip, else the same check is made for another train 

arrived second. Checking goes on until a suitable train is found.  

• Trains that have reverse directions can cross each other only at the real stations. 

• The number of currently running trains on the corridor can not exceed total 

available capacity of the stations minus one (e.g. 20 in our hypothetic case)  

 

4.2.4 Blockage Preventive Algorithm 

 

A common potential deadlock is exhibited in Figure 4.11 where there are four 

trains; two trains are the WB trains and located at S(i) and the other trains are the EB 

trains and located at S(i+1). As can be seen in this figure, the system has a deadlock. 

Deadlock situation goes on until one of those trains reverses its direction.  

 

 

     Figure 4.11 An example of a deadlock 
 

Another example of a deadlock is shown in Figure 4.12. There are two WB trains 

at S(i), two EB trains at S(i+2) and two trains (not important to be a WB or an EB 

train) at S(i+1). Since we avoid reversing the direction of trains the deadlock 
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problem can not be solved. In order to obtain a feasible train timetable we must take 

course of action to prevent a deadlock. 

 

 

      Figure 4.12 Deadlock between six trains 
 

In order to avoid a deadlock, which prevents the movement of trains, the whole 

system is checked in the direction of the train before permitting the train to departure 

from its current station. The Blockage Preventive Algorithm, given in Table 4.9, is 

developed to obtain a deadlock free system and consequently a feasible train 

timetable. 

 

4.2.5 Verification of the Simulation Model 

 

The simulation model is verified by developing the model in a modular manner, 

using interactive debuggers, substituting constants for random variables, manually 

checking the results and animating the system. 

 

In order to develop the simulation model in a modular manner a step by step 

approach was used. This approach gives an ability to systematically model a complex 

system. First the railway network that includes the links, the intersections and the 

stations was modelled. Then, the track failures and repairs were added, and the train 

movement logic on the railway corridor was modelled. Next, we added a rule for 

track allocation to the candidate trains. The fixed train speeds were relaxed, and then 

additional unplanned delays at the stations were modelled. The number of trains in 

the system was increased and randomness was added to the planned initial train 

timetable. As a last step, animation of the system was developed. The animation part 
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of the simulation model was built by using Animate tool of the ARENA, to see if 

model is working as intended, and to understand the system clearer. 

 
Table 4.9 Blockage preventive algorithm 

Assume that a WB train is at the S(i, j) station and aimed to travel to the S(i+1, 1) station  
where i = 1, …, 9 denotes the station number and j = 1, 2 denotes the platform number. 
 
Step = 1 
     S(i+1, 1) empty ?  
          Yes: Go next.  
          No: Prohibit the train to travel, STOP the algorithm for that train. 
     i+1 = 10 ? 
          Yes: Permit the train to travel, STOP checking blockage.  
          No: Go next. 
Step = 2 
     S(i+1, 2) empty or allocated to an EB train ?   
     or S(i+2, j) empty or allocated to a WB train ? 
          Yes: Go next. 
          No: Prohibit the train to travel, STOP the algorithm for that train. 
     i+2 = 10 ? 
          Yes: Permit the train to travel, STOP checking blockage.  
          No: Go next. 
Step = 3 
     S(i+1, 2) empty or allocated to an EB train ?   
     or { S(i+2, j) empty? } 
     or S(i+3, j) empty or allocated to a WB train ? 
          Yes: Go next. 
          No: Prohibit the train to travel, STOP the algorithm for that train. 
     i+3 = 10 ? 
          Yes: Permit the train to travel, STOP checking blockage.  
          No: Go next. 
From Step = 4 to Step = 8 
     S(i+1, 2) empty or allocated to an EB train ?   
     or { S(i+k, j) empty?; k = 2,…, (Step-1)} 
     or S(i+Step, j) empty or allocated to a WB train ? 
          Yes: Go next.  
          No: Prohibit the train to travel, STOP the algorithm for that train. 
     i+Step = 10 ? 
          Yes: Permit the train to travel, STOP checking blockage.  
          No: Go next. 
Step = 9 
     S(i+1, 2) empty or allocated to an EB train ?   
     or { S(i+k, j) empty?; k = 2,…, (Step-1)} 
     or S(i+Step, j) empty or allocated to a WB train ? 
          Yes: Permit the train to travel, STOP the algorithm for that train.  
          No: Prohibit the train to travel, STOP the algorithm for that train. 
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4.3 Discussion 

 

In this section we discuss on some results of the simulation model. As a first step, 

we begin with an initial train timetable we obtained. This timetable is infeasible since 

it includes conflicts. Secondly, we focus on a feasible, conflict free initial train 

timetable we obtained by the deterministic simulation model. Lastly, a feasible train 

timetable we obtained by the stochastic simulation model is given by detail. 

 

4.3.1 Infeasible Planned Initial Train Timetable 

 

The trains are scheduled on a single track corridor regarding the initial train 

timetable, where all the inputs are deterministic, given in Table 4.2. The corridor has 

10 real and 20 dummy, totally 30 stations. There is no randomness in the planned 

train arrival and departure times, failures and repairs are excluded, train speeds are 

fixed at 100 kilometres / an hour, and no additional delay is added to the dwell times. 

 

We begin our discussion on an empty corridor, on which only the WB1 train is 

running. The simulation model is run for this scenario and the train-station diagram 

exhibited in Figure 4.13 is obtained. The train travel time of the WB1 is calculated as 

16350 seconds.  

 

 
Figure 4.13 Train-station diagram for the WB1 
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The next scenario is related to the EB1 train that is running on the empty corridor. 

The train-station diagram exhibited in Figure 4.14 is obtained by the deterministic 

simulation model. The calculated train travel time is the same as the previous one, 

16350 seconds. 

 

 
Figure 4.14 Train-station diagram for the EB1 
 

After that, the train-station diagram for the planned initial train timetable given in 

Table 4.2 is manually obtained. This diagram is based on the WB1 and the EB1 train 

timetables, and depicted in Figure 4.15.  

 

The timetable in Figure 4.15 is not conflict free, it is infeasible. The conflict 

locations are indicated by dotted line circles, and it is calculated that there are 44 

conflicts to be solved in such a deterministic system.  

 

To introduce the problem clearer the conflicts between the WB3 and some EB 

trains are displayed in Figure 4.16. As it is seen in this figure, the WB3 will have the 

first conflict with the EB1 train between the S1 and the S2. The other conflicts will 

be with the EB2, the EB3, the EB4 and the EB5 trains between the S3 - S4, between 

the S5 - S6, between the S7 - S8, and between the S9 - S10, respectively. The 

infeasible initial train timetable is given in Table 4.10. 
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Figure 4.15 Infeasible train-station diagram for the planned initial train timetable 

 

 

 
Figure 4.16 Infeasible train-station diagram for the WB3 
 



 

 

Table 4.10 Infeasible initial train timetable  

 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
Train# WB/ 

EB ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT 
Travel time 

1 WB1 32 600 1600 2200 3363 3963 4986 5586 6919 7519 9140 9740 10719 11319 11952 12552 13607 14207 15734 16334 16350 04:32:30 

2 EB1 15734 16334 14134 14734 12371 12971 10748 11348 8816 9416 6595 7195 5016 5616 3782 4382 2127 2727 32 600 16350 04:32:30 

3 WB2 7232 7801 8800 9400 10563 11163 12186 12786 14119 14719 16340 16940 17919 18519 19152 19752 20807 21407 22934 23534 16350 04:32:30 

4 EB2 22934 23534 21334 21934 19571 20171 17948 18548 16016 16616 13795 14395 12216 12816 10982 11582 9327 9927 7232 7801 16350 04:32:30 

5 WB3 14432 15001 16000 16600 17763 18363 19386 19986 21319 21919 23540 24140 25119 25719 26352 26952 28007 28607 30134 30734 16350 04:32:30 

6 EB3 30134 30734 28534 29134 26771 27371 25148 25748 23216 23816 20995 21595 19416 20016 18182 18782 16527 17127 14432 15001 16350 04:32:30 

7 WB4 21632 22201 23200 23800 24963 25563 26586 27186 28519 29119 30740 31340 32319 32919 33552 34152 35207 35807 37334 37934 16350 04:32:30 

8 EB4 37334 37934 35734 36334 33971 34571 32348 32948 30416 31016 28195 28795 26616 27216 25382 25982 23727 24327 21632 22201 16350 04:32:30 

9 WB5 28832 29401 30400 31000 32163 32763 33786 34386 35719 36319 37940 38540 39519 40119 40752 41352 42407 43007 44534 45134 16350 04:32:30 

10 EB5 44534 45134 42934 43534 41171 41771 39548 40148 37616 38216 35395 35995 33816 34416 32582 33182 30927 31527 28832 29401 16350 04:32:30 

11 WB6 36032 36601 37600 38200 39363 39963 40986 41586 42919 43519 45140 45740 46719 47319 47952 48552 49607 50207 51734 52334 16350 04:32:30 

12 EB6 51734 52334 50134 50734 48371 48971 46748 47348 44816 45416 42595 43195 41016 41616 39782 40382 38127 38727 36032 36601 16350 04:32:30 

13 WB7 43232 43801 44800 45400 46563 47163 48186 48786 50119 50719 52340 52940 53919 54519 55152 55752 56807 57407 58934 59534 16350 04:32:30 

14 EB7 58934 59534 57334 57934 55571 56171 53948 54548 52016 52616 49795 50395 48216 48816 46982 47582 45327 45927 43232 43801 16350 04:32:30 

15 WB8 50432 51001 52000 52600 53763 54363 55386 55986 57319 57919 59540 60140 61119 61719 62352 62952 64007 64607 66134 66734 16350 04:32:30 

16 EB8 66134 66734 64534 65134 62771 63371 61148 61748 59216 59816 56995 57595 55416 56016 54182 54782 52527 53127 50432 51001 16350 04:32:30 

17 WB9 57632 58201 59200 59800 60963 61563 62586 63186 64519 65119 66740 67340 68319 68919 69552 70152 71207 71807 73334 73934 16350 04:32:30 

18 EB9 73334 73934 71734 72334 69971 70571 68348 68948 66416 67016 64195 64795 62616 63216 61382 61982 59727 60327 57632 58201 16350 04:32:30 

19 WB10 64832 65401 66400 67000 68163 68763 69786 70386 71719 72319 73940 74540 75519 76119 76752 77352 78407 79007 80534 81134 16350 04:32:30 

20 EB10 80534 81134 78934 79534 77171 77771 75548 76148 73616 74216 71395 71995 69816 70416 68582 69182 66927 67527 64832 65401 16350 04:32:30 

                  Average train travel time 16350 04:32:30 
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4.3.2 Feasible Planned Initial Train Timetable 

 

The developed simulation model has the ability to solve the conflicts and create a 

conflict free feasible train timetable. The feasible train-station diagram obtained by 

our deterministic simulation model is given in Figure 4.17. 

 

Figure 4.18 shows the conflict free feasible train station diagram for the WB3.  

We see that the EB1 train waits at the S2 and permits the WB3 to travel from the S1 

to the S2, and the EB2 waits the WB3 at the S4 for empty the track part between the 

S4 and the S3. On the other hand the WB3 waits at S5 to permit EB3 to travel from 

the S6 to the S5. Since the WB3 spends additional time while waiting the EB3, the 

WB3 meets the EB4 at the S7 and passes without spending additional time. The 

WB3 waits the EB5 at the S9 and then finishes its trip. The feasible train timetable 

calculated by the deterministic simulation model is given in Table 4.11. The 

calculated average train travel time for this scenario is 17956 seconds.  

 

In order to observe the change in the computer running time versus the number of 

trains in the deterministic simulation model, the model is run for different number of  

trains, the result are shown in Figure 4.19.  

 

As it is seen in Figure 4.19(a) the computer running time is increasing nonlinearly 

when we increase the number of trains in the system. On the other hand, Figure 

4.19(b) shows the increments in computer running time versus the added two trains. 

It is seen that the amount of increment caused by addition of two trains into the 

system depends on the number of current trains in the system. To make it clearer, we 

assume that there are 4 trains in the system. In this case, the computer running time is 

9.0 seconds. When two new trains are added in the system (i.e. there will be 6 trains 

in the system), the computer running time will be 15.0 seconds (i.e. the increase in 

computer running time will be 6.0 seconds). On the other hand the increment will be 

17.4 seconds if two trains are also added into the system that has 18 trains. 
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Figure 4.17 Feasible train-station diagram for the planned initial train timetable 
 

 
Figure 4.18 Feasible train-station diagram for the WB3 

 

 
Figure 4.19 Computer running time for 20 replications versus the number of trains in the system 



 

 

Table 4.11 Feasible planned initial train timetable  

 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
Train# WB/ 

EB ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT 
Travel time 

1 WB1 32 600 1600 2200 3363 3963 4986 5586 6919 8816 10438 11038 12017 12617 13250 13850 14905 16527 18053 18653 18670 05:11:10 

2 EB1 17000 17600 14972 16000 13209 13809 10748 12186 8816 9416 6595 7195 5016 5616 3782 4382 2127 2727 32 600 17616 04:53:36 

3 WB2 7232 7801 8800 9400 10563 11163 12186 12786 14118 16016 17638 18238 19217 19817 20450 21050 22105 23727 25254 25854 18670 05:11:10 

4 EB2 24200 24800 22172 23200 20409 21009 17948 19386 16016 16616 13794 14394 12215 12815 10982 11582 9327 9927 7232 7801 17616 04:53:36 

5 WB3 14431 15000 16000 16600 17763 18363 19386 19986 21318 23216 24838 25438 26417 27017 27650 28250 29305 30927 32454 33054 18670 05:11:10 

6 EB3 31400 32000 29372 30400 27609 28209 25148 26586 23216 23816 20994 21594 19415 20015 18182 18782 16527 17127 14431 15000 17616 04:53:36 

7 WB4 21631 22200 23200 23800 24963 25563 26586 27186 28518 30416 32038 32638 33617 34217 34850 35450 36505 38127 39654 40254 18670 05:11:10 

8 EB4 38600 39200 36572 37600 34809 35409 32348 33786 30416 31016 28194 28794 26615 27215 25382 25982 23727 24327 21631 22200 17616 04:53:36 

9 WB5 28831 29400 30400 31000 32163 32763 33786 34386 35718 37616 39238 39838 40817 41417 42050 42650 43705 45327 46854 47454 18670 05:11:10 

10 EB5 45800 46400 43772 44800 42009 42609 39548 40986 37616 38216 35394 35994 33815 34415 32582 33182 30927 31527 28831 29400 17616 04:53:36 

11 WB6 36031 36600 37600 38200 39363 39963 40986 41586 42918 44816 46438 47038 48017 48617 49250 49850 50905 52527 54054 54654 18670 05:11:10 

12 EB6 53000 53600 50972 52000 49210 49810 46748 48186 44816 45416 42594 43194 41015 41615 39782 40382 38127 38727 36031 36600 17616 04:53:36 

13 WB7 43231 43800 44800 45400 46563 47163 48186 48786 50118 52016 53638 54238 55217 55817 56450 57050 58105 59727 61254 61854 18670 05:11:10 

14 EB7 60200 60800 58172 59200 56410 57010 53948 55386 52016 52616 49794 50394 48215 48815 46982 47582 45327 45927 43231 43800 17616 04:53:36 

15 WB8 50431 51000 52000 52600 53763 54363 55386 55986 57318 59216 60838 61438 62417 63017 63650 64250 65305 66927 68454 69054 18670 05:11:10 

16 EB8 67400 68000 65372 66400 63610 64210 61148 62586 59216 59816 56994 57594 55415 56015 54182 54782 52527 53127 50431 51000 17616 04:53:36 

17 WB9 57631 58200 59200 59800 60963 61563 62586 63186 64518 66416 68038 68638 69617 70217 70850 71450 72505 73105 74632 75232 17648 04:54:08 

18 EB9 74172 74772 72572 73172 70810 71410 68348 69786 66416 67016 64194 64794 62615 63215 61382 61982 59727 60327 57631 58200 17188 04:46:28 

19 WB10 64832 65401 66400 67000 68163 68763 69786 70386 71718 73616 75238 75838 76817 77417 78051 78651 79705 80305 81832 82432 17648 04:54:08 

20 EB10 80534 81134 78935 79535 77172 77772 75548 76148 73616 74216 71395 71995 69815 70415 68582 69182 66927 67527 64832 65401 16350 04:32:30 

                  Average train travel time 17956 04:59:17 
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4.3.3 Feasible Train Timetable 

 

In this section we discuss on a feasible train timetable obtained by our stochastic 

simulation model. The train-station diagram of the feasible solution of which the 

calculated average train timetable is 24218 seconds is given in Figure 4.20, and the 

related train timetable is depicted in Table 4.12. 

 

In order to see what happens in the system after a failure was occurred, Figure 

4.21 should be examined. In this figure, while the simulation model is running 

through 39600-79200 seconds a part of the system between the stations dS31 and the 

dS81 is displayed. 

 

As can be seen in the dotted line circle denoted by 1, a failure occurred after the 

EB8 train begins its trip from the S5 to the S4. Therefore, the EB8 waits at the dS43 

during the repair, and then the EB8 and the EB9 trains traverse on the track part 

between the S5 - S4. More than one train that have the same direction can use the 

same track with time headway between them.  

 

While the simulation model is running through 39600-70200 seconds, a part of 

the system between dS43 and the dS71 is displayed in Figure 4.22, which is the 

dotted line rectangle denoted by 2 in Figure 4.21. In this figure, if we look at the 

dotted line rectangle, there is a track failure between the S6 and S7. After the track is 

repaired the trains can travel. But at that time there are more than one candidate 

trains waiting for using the repaired track part. To make it clearer we exhibited the 

train positions pi (i = 1, …, 39) on the track part between the S5 - S7 step by step in 

Figures 4.23(a) - 4.23(f). 
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Figure 4.20 Feasible train-station diagram 
 

 
Figure 4.21 Feasible train-station diagram for the dS31-dS81 part from 39600 to 79200 seconds 
 

 
Figure 4.22 Feasible train-station diagram for the dS43-dS71 part from 39600 to 70200 seconds 
 



 

 

Table 4.12 Feasible train timetable  

 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
Train# WB/ 

EB ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT ArT DpT 
Travel time 

1 WB1 32 710 1718 2370 3610 4334 5369 6058 7405 9305 10892 11500 12493 13179 13809 14801 15907 17423 18945 19620 19637 05:27:17 

2 EB1 16591 17269 14957 15573 12943 13853 11303 11937 9305 9951 6932 7740 5097 5980 3829 4447 2159 2797 32 650 17285 04:48:05 

3 WB2 6548 7504 8509 9188 10290 10922 11937 12622 13893 16067 17704 19598 20541 21152 21829 22458 23558 24545 26036 26679 20180 05:36:20 

4 EB2 23290 23924 21554 22270 19653 20448 17916 18623 16067 16670 13801 14437 12227 12854 11029 11639 9325 9968 7283 7857 16690 04:38:10 

5 WB3 13020 13591 14638 15388 16611 17340 18326 18976 20294 20895 22540 23171 24136 24749 25406 26202 27217 27838 29383 30010 17038 04:43:58 

6 EB3 31527 32135 29896 30517 28123 28777 26433 27125 24447 25093 22209 22849 20483 21226 19079 19838 17423 18049 15379 15958 16803 04:40:03 

7 WB4 20482 21132 22091 22868 24065 24696 25727 26433 27761 28604 30172 30819 31800 32469 33108 33738 34753 35360 36890 37550 17115 04:45:15 

8 EB4 46640 47324 44649 45661 37693 43468 35829 36631 31849 34501 29219 30172 27521 28253 26202 26909 24545 25155 22421 23018 24950 06:55:50 

9 WB5 27385 28019 29001 29896 31104 31747 32767 35829 37166 38678 40369 53030 54044 54747 55439 56092 57165 57770 59293 59933 32596 09:03:16 

10 EB5 48714 49327 46972 47699 42436 45825 40544 41435 38678 39280 36323 37067 34621 35323 33398 34008 31670 32329 29492 30072 19883 05:31:23 

11 WB6 35341 35989 36985 44649 45825 46653 47731 48549 49867 53040 54700 55333 56306 56976 57567 58193 59230 60861 62387 63080 27786 07:43:06 

12 EB6 74382 75006 72588 73402 70830 71441 67792 69818 65769 66416 53030 64195 41820 52014 40556 41181 38850 39521 36611 37316 38443 10:40:43 

13 WB7 42111 44659 45661 46972 48174 48822 49834 50604 52001 61513 63183 67413 68363 69297 69884 70503 71577 72320 73816 74426 32362 08:59:22 

14 EB7 76396 77102 74750 75359 72906 73599 71171 71812 68094 69828 65202 66426 49420 64205 48164 48787 46450 47068 44232 44874 32917 09:08:37 

15 WB8 49975 50809 51791 52485 53650 54414 55464 56081 57392 68094 69661 70854 71854 72687 73278 74006 75089 76121 77664 78281 28354 07:52:34 

16 EB8 83023 83697 81360 82003 79611 80222 77844 78578 71400 72740 67413 69838 58193 66436 55932 57567 54105 54822 51945 52603 31800 08:50:00 

17 WB9 58059 58681 59752 60392 61551 62183 63237 68104 69470 71400 73043 74060 75066 75882 76526 77146 78229 78912 80349 81026 23015 06:23:35 

18 EB9 83488 84113 81735 82464 79913 80555 78091 78897 74716 76741 70854 73043 64837 69848 62580 64215 60861 61498 58604 59293 25557 07:05:57 

19 WB10 64678 65342 66358 66960 68129 68751 69818 71410 72740 74716 76355 76967 77940 78636 79243 79855 80986 81638 83094 83775 19144 05:19:04 

20 EB10 88473 89102 83680 87468 81722 82446 80019 80686 77981 78685 74060 76355 71558 73053 70199 70907 68497 69114 66341 67052 22808 06:20:08 

                  Average train travel time 24218 06:43:39 
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In the first position (p1) the time is just after 39600 seconds, all the three stations 

are empty, the WB5 is travelling between the S5 - S6, and there is a failure event 

between the S6 - S7. In p2, the WB5 is at the S6 and the failure is still going on. In 

p3, the EB6 is at the S7, and in p4 the other part of the S7 is occupied by the EB7 

since the trains are waiting because of the failure is still going on. In p5, the WB6 

occupies the S5, and in p6 the other part of the S5 is occupied by the WB7. Although 

there is an empty capacity at the S6, both the WB6 and the WB7 stop at the S5 since 

a movement from the S5 to the S6 will cause a blockage. The failure is still going on, 

and the five trains are waiting for the track repair. In p7, it is seen that the failure 

track has been repaired and has opened for the candidate trains. Although the first 

train in the queue is the WB5, its move will cause a blockage. Thus, the EB6 moves 

and uses the repaired track part. All the other positions related to Figure 4.22 are 

depicted in Figures 4.23(a) - 4.23(f), and in the followings we explain what happens 

in these positions. 

• p13; the WB5 has just left and there are four trains at this part (the track part 

between the S5 - S7) of the system. 

• p16; the WB6 has just left and there are three trains at this part. 

• p17; a new train, the WB8, has just entered from S5 and there are four trains at 

this part. 

• p18; a new train, the EB8, has just entered from S7 and there are five trains at 

this part. 

• p23; a new train, the EB9, has just entered from S7 and there are six trains at 

this part. 

• p26; the EB6 has just left from S5 and there are five trains at this part. 

• p34; the WB7 has just left from S7 and there are four trains at this part. 

• p35; a new train, the WB9, has just entered from S5 and there are five trains at 

this part. 

• p37; the EB7 that is the last one entered this track part before its repair has just 

left from S5 and there are four trains at this part. 

• p39; the simulation time is 70200 seconds and there are four trains that have 

entered this part after the repair.  
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Figure 4.23(a) Train positions on the part dS43-dS71 from 39600 to 70200 seconds 
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Figure 4.23(b) Train positions on the part dS43-dS71 from 39600 to 70200 seconds 
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Figure 4.23(c) Train positions on the part dS43-dS71 from 39600 to 70200 seconds 
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Figure 4.23(d) Train positions on the part dS43-dS71 from 39600 to 70200 seconds 
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Figure 4.23(e) Train positions on the part dS43-dS71 from 39600 to 70200 seconds 



 

 

80

 

 
Figure 4.23(f) Train positions on the part dS43-dS71 from 39600 to 70200 seconds 
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CHAPTER FIVE 

SIMULATION INTEGRATED GENETIC AND HYBRID GENETIC 

ALGORITHMS FOR TRAIN SCHEDULING PROBLEM 

 

In this chapter, a simulation integrated GA and three local search (LS) embedded 

hybrid GAs for the TrnSchPrb are given. The objective is to obtain a feasible train 

timetable with optimized average train travel time. This chapter includes two 

subsections. In the first subsection, a simulation integrated GA (SimGA) and three 

hybrid GAs integrated with simulation are developed. In the second subsection, these 

algorithms are employed to solve the hypothetic TrnSchPrb presented in chapter four 

and the results are given in detail.  

  

5.1 The SimGA for the Hypothetic TrnSchPrb   

 

Here, encoding of a chromosome and parameters of the GA are denoted. 

 

5.1.1 Representation 

 

In our GA, a chromosome (solution) in the initial population is composed of nine 

genes each of which is related with a decision point and indicates a dispatching rule. 

As it is shown in Figures 4.2(a)-4.2(c), since there are nine main track parts between 

the real stations, a chromosome in the proposed GA has nine genes. The first gene in 

the chromosome is the dispatching rule that is used for the candidate trains waiting in 

the queue of the track between the S1 - S2, the second gene is the dispatching rule 

that is used for the candidate trains waiting in the queue of the track between the S2 - 

S3 and etc. A gene can take values in a range of (1, 6), and each value in this range 

indicates a dispatching rule such that; 1 denotes the first come first served (FCFS) 

rule, 2 the last come first served (LCFS) rule, 3 the shortest current travelling time 

(ShrCTT) rule, 4 the longest current travelling time (LngCTT) rule, 5 the shortest 

remained track part (ShrRTP) rule, and 6 the longest remained track part (LngRTP) 

rule. 
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A chromosome structure is exhibited in Figure 5.1, in which the first gene value 1 

means the dispatching rule used for the candidate trains waiting in the queue of the 

track between the S1 - S2 is FCFS rule, the fourth gene value 2 means the 

dispatching rule used for the candidate trains waiting in the queue of the track 

between the S4 - S5 is LCFS rule. 

 
decision 

point 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

track 
between  S1-S2 S2-S3 S3-S4 S4-S5 S5-S6 S6-S7 S7-S8 S8-S9 S9-S10 

a chromosome 1 3 4 2 5 1 6 2 4 
 
Figure 5.1 Representation of a chromosome  

 
For this chromosome representation, there are 69 = 10,077,696 possible feasible 

solutions for the hypothetic TrnSchPrb. Since the GAs presented in this study are 

simulation integrated, and the simulation model is run in order to calculate the fitness 

value for each chromosome, we have to make more than one simulation replications. 

 

In order to make 20 replications for each possible feasible solution, totally 

201,553,920 replications are needed to obtain fitness values of all the possible 

feasible solutions. One replication lasts 0.26 seconds, thus we need 52,404,019 

seconds (more than 606 days) for testing all the possible feasible solutions. That 

gives us an evidence to say the problem is NP Hard with this representation. 

Fortunately the developed SimGA has an ability to solve the problem in an acceptable 

time.  

 

The chromosome representation used in the SimGA is flexible for both the 

changes in the railway infrastructure and in the total number of dispatching rules. 

While the changes in the railway infrastructure can influence on the length of the 

chromosome, and the changes in the total number of dispatching rules can influence 

on the value which a gene takes. Therefore, this chromosome representation can be 

used for the several types of TrnSchPrbs. Because it is not matter which railway 

infrastructures they have and which dispatching rules they use. For a train schedule 

on a single track corridor, the problem is meeting of the trains while they are 
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travelling in the system. With the encoding presented here any changes in the 

number of trains or number of meetings that increase the complexity have no 

damaging influence on the chromosome those strengths the developed chromosome 

structure to cope with more complex systems. Also this chromosome structure 

generates feasible chromosomes all time and provides the simulation model to go on 

generating feasible train timetables. So the chromosome structure tightens the search 

space by preventing us to deal with infeasible solutions that will, no doubt, take a 

huge calculation time. 

 

5.1.2 Initial Population and Evaluation 

 

The chromosomes in initial population are randomly generated. After generating a 

chromosome, the dispatching rules in the simulation model that are used for the 

candidate trains waiting in the queues of the tracks are rearranged according to the 

gene values of the chromosome. Then, the simulation model is run for 20 replications 

and the average train travel time value is noted to be the fitness value of the 

chromosome. The procedure for generating the initial population and evaluation is 

given in Table 5.1. 

 
5.1.3 Parent Selection and Crossover 

 

The procedure for parent selection and crossover is exhibited in Table 5.2. At 

first, the parents are selected from the previous generation according to their fitness 

values. The best one is selected to be the first mother and the second best is selected 

to be the first father. Two children are obtained from the parents based on the single 

point crossover. Then, the third best one is selected to be the mother and the fourth 

best one to be the father of the new family. Two children are also attained from these 

parents by the single point crossover. Crossover goes on according to the 

predetermined crossover rate. The simulation model is rearranged for every child, the 

model is run for 20 replications, and the average train travel time value is hold to be 

the fitness value of the child. 
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Table 5.1 Procedure for generating the initial population and evaluation 

Begin SimGA 
 
Generate INITIAL POPULATION 
     PS; population size 
     From k = 1 to k = PS 
          Randomly generate a chromosome  
          Chr(k); kth chromosome in population 
          Chr(k) = [  - , - , - , - , - , - , - , - , -  ] 
               From m =1 to m = 9 
                    im ; the gene related with mth decision point 
                    im = takes a random value from the set S = {1, 2, 3, 4, 5, 6} 
               Next m 
          Chr(k) = [ i1, i2, i3, i4, i5, i6, i7, i8, i9 ] 
          Rearrange the simulation model 
               From m =1 to m = 9 
                    If im = 1 rearrange Q(m) rule as FCFS 
                    If im = 2 rearrange Q(m) rule as LCFS 
                    If im = 3 rearrange Q(m) rule as ShrCTT 
                    If im = 4 rearrange Q(m) rule as LngCTT 
                    If im = 5 rearrange Q(m) rule as ShrRTP 
                    If im = 6 rearrange Q(m) rule as LngRTP 
               Next m 
          Run the rearranged simulation model 
               From n = 1 to n = 20  
                    Catch average train travel time of 20 trains for the nth replication 
               Next n 
          Calculate the fitness value 
               Fitness; the average of n average train travel time values 
     Next k 
Rank the initial population 
     Rank the initial population according to the fitness values of the chromosomes 
Select best of the initial population 
     Record the best fitness value and related chromosome 

 
Table 5.2 Procedure for crossover 
GN; generation number 
maxGN; maximum generation number 
From GN = 1 to GN = maxGN 
     CROSSOVER 
     CR; crossover rate 
     nCrs; the number of chromosomes selected for crossover 
     nCrs = PS * CR 
          From k =1 to k = nCrs - 1 
               rChr(k); kth chromosome in the ranked population of the previous generation 
               Select the parents 
               rChr(k); the mother 
               rChr(k+1); the father 
               Implement the single point crossover and obtain two children 
                    From n = 1 to n = 2 
                         cChr(k,k+1,n); nth child from the parents rChr(k) and rChr(k+1) 
                         cChr(k,k+1,n) = [ i1, i2, i3, i4, i5, i6, i7, i8, i9 ] 
                         Rearrange the simulation model (Sub steps are given in Table 5.1) 
                         Run the rearranged simulation model (Sub steps are given in Table 5.1) 
                         Calculate the fitness value 
                    Next n 
          k = k +1 
          Next k 
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5.1.4 Mutation  

 

The procedure for mutation and replacement strategy is denoted in Table 5.3. At 

first, a child is selected randomly for mutation. Next, a gene of the child is selected 

randomly and this gene is changed with one of the other potential value of the gene. 

The new gene value is randomly taken from the set S = {1, 2, 3, 4, 5, 6} except the 

current value of the gene. Then, the simulation model is rearranged, the model is run 

for 20 replications, and the average train travel time value is noted to be the fitness of 

the mutated child. Mutation goes on according to the predetermined mutation rate. 

 
Table 5.3 Procedure for mutation and replacement strategy 
     MUTATION 
          MR; mutation rate 
          nMtt; the number of chromosomes selected for mutation 
          nMtt = PS * MR 
               From k =1 to k = nMtt 
                    Select a child randomly 
                    cChr(k); the randomly selected child for mutation 
                    cChr(k) = [ i1, i2, i3, i4, i5, i6, i7, i8, i9 ] 
                    Select a gene of the child randomly 
                    ij ; the selected gene related with jth decision point, j = 1, …, 9 
                         If ij  = 1 change the ij with a random value from the set S = {2, 3, 4, 5, 6} 
                         If ij  = 2 change the ij with a random value from the set S = {1, 3, 4, 5, 6} 
                         If ij  = 3 change the ij with a random value from the set S = {1, 2, 4, 5, 6} 
                         If ij  = 4 change the ij with a random value from the set S = {1, 2, 3, 5, 6} 
                         If ij  = 5 change the ij with a random value from the set S = {1, 2, 3, 4, 6} 
                         If ij  = 6 change the ij with a random value from the set S = {1, 2, 3, 4, 5} 
                    mcChr(k); the mutated child 
                    mcChr(k) = [ i1, i2, i3, i4, i5, i6, i7, i8, i9 ] 
                    Rearrange the simulation model (Sub steps are given in Table 5.1) 
                    Run the rearranged simulation model (Sub steps are given in Table 5.1) 
                    Calculate the fitness value 
               Next k 
     Rank the population 
          The current population includes; individuals from the previous generation population, 
          children and mutated child(ren) 
     Select best of the population 
          Record the best fitness value and related chromosome 
 

5.1.5 Termination Criteria and Replacement Strategy 

 

The procedure for termination and replacement strategy is denoted in Table 5.4. 

By using the termination criteria procedure, if it is desired, the SimGA can be stopped 

at the generation that has successively result the same best fitness value in a 

predetermined number of previous generations. The replacement is made according 
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to elitism strategy. Elitism strategy makes a number of the best individuals at each 

generation survive. In order to form the new generation, the parents, children and 

mutated children are ranked according to their fitness values. The newly generated 

population is formed by using the ranked population adhered to the prescribed 

population size.  

 
Table 5.4 Procedure for termination criteria and replacement strategy 
     Check TERMINATION CRITERIA 
          TrmCnt; termination counter 
          maxTrmCnt; the maximum termination counter 
          bFtV(GN); the best fitness value of the current generation GN 
               If bFtV(GN) = bFtV(GN-1) 
               TrmCnt = TrmCnt +1 
                    If  TrmCnt < (maxTrmCnt -1) go Next GN  
                    Else go Stop SimGA 
               Else TrmCnt = 0 
     Form the population of the next generation 
          Form by using the ranked population adhered to the PS 
Next GN 
 
Stop SimGA 

 

Framework of the SimGA for the hypothetic TrnSchPrb is exhibited in Table 5.5. 

 
Table 5.5 Framework of the SimGA 

Begin SimGA 
 
Generate INITIAL POPULATION (Sub steps are given in Table 5.1) 
Rank the initial population 
     Rank the initial population according to the fitness values of the chromosomes 
Select best of the initial population 
     Record the best fitness value and related chromosome 
 
GN; generation number 
maxGN; maximum generation number 
     From GN = 1 to GN = maxGN 
          CROSSOVER (Sub steps are given in Table 5.2) 
          MUTATION (Sub steps are given in Table 5.3) 
          Rank the population 
              The current population includes; individuals from the previous generation 
              population, children and mutated child(ren) 
          Select best of the population 
              Record the best fitness value and related chromosome  
          Check TERMINATION CRITERIA (Sub steps are given in Table 5.4) 
          Form the population of the next generation 
              Form by using the ranked population adhered to the PS 
     Next GN 
 
Stop SimGA 
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5.2 Hybridization of the SimGA with Local Searches 

 

Although the SimGA itself is a hybrid of the simulation model with GA, we also 

hybridized the GA with problem specific local searches (LS) in order to improve its 

searching capability and then we integrated each hybrid GA with simulation. Three 

LS algorithm are used for hybridization, 

• LS on the best, 

• LS on the first and the second best, and 

• LS on the best and the worst. 

 

In the rest of the study, three hybrid GA are denoted by GAb, GAfs, and GAbw. 

 

5.2.1 Simulation integrated GAb (SimGAb)  

 

While implementing the GA, after the best chromosome in the new generation is 

found, some problem specific neighbours of the best chromosome are searched via 

the SimGAb given in Table A.6 in Appendix.  

 

Verbally to obtain a problem specific neighbour, every time only one gene of the 

best chromosome is changed using the opposite pair rule. For instance, if the 

dispatching rule on use is FCFS, it is altered to LCFS, or if it is ShrCTT it is altered 

to LngCTT, or if it is ShrRTP it is altered to LngRTP. Each time only one gene is 

changed, and thus for each generation nine neighbours are obtained by the LS on the 

best algorithm. The simulation model is rearranged and run for 20 replications for the 

each neighbour, and the average train travel time value is noted to be the fitness 

value of the neighbour. 

 

5.2.2 Simulation integrated GAfs (SimGAfs) 
 

While implementing the GA, after the first and the second best chromosomes in 

the new generation are found, some problem specific neighbours of the 
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chromosomes are searched via the LS on the first and the second best algorithm 

depicted in Table A.7 in Appendix.  

 

5.2.3 Simulation integrated GAbw (SimGAbw) 

 

While implementing the GA, after the best and the worst chromosomes in the new 

generation are found, some problem specific neighbours of the chromosomes are 

searched via the LS on the best and the worst algorithm exhibited in Table A.8 in 

Appendix. 
 

5.3 Application of Simulation Integrated GA and Hybrid GAs on the Hypothetic 

TrnSchPrb and Discussion on the Results  

 
At first, we run the stochastic simulation model for the different dispatching rules, 

but the same rules for all the decision points. For instance a chromosome that is 

composed of the nine same gene values, for instance 1, means that all dispatching 

rules used for the candidate trains waiting in the queues of the tracks are FCFS. On 

the other hand, if all the gene values are 5, all dispatching rules used are ShrRTP. 

Since there are six different dispatching rules, there are six chromosomes that are 

composed of the nine same gene values, exhibited in Table 5.6.  

 

After the simulation model was rearranged with FCFS rule for all the decision 

points, the model is run for 20 replications. At the end of the simulation run average 

train travel time value is found as 21408 seconds. The other average train travel time 

values for other chromosomes that have the same dispatching rules for all decision 

points are given in Table 5.6. As can be seen, the minimum average travel time value 

(i.e. 21230 seconds) is obtained by the LCFS rule.  

 
Table 5.6 Average train travel time (in seconds) 

Dispatching rule FCFS LCFS ShrCTT LngCTT ShrRTP LngRTP 

Chromosome 111111111 222222222 333333333 444444444 555555555 666666666

Average train travel time 21408 21230 21465 21346 21346 21465 
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For different values of the GA parameters, the population size (PS), the crossover 

rate (CR) and the mutation rate (MR), the presented algorithms are run, and the 

observed best average travel time values are recorded. The utilized values are; 10, 20 

and 30 for PS, 40%, 60% and 80% for CR, and 10%, 20% and 30% for MR. So there 

are 3.3.3 = 27 different combinations of the parameters. These combinations will be 

represented by PS/CR/MR for short. The presented algorithms are run for each 

PS/CR/MR combination, and all the results are displayed in Table A.9 in Appendix.  

 

As displayed in Table A.9, the first conducted algorithm is the SimGA. The all 

PS/CR/MR combinations in the GA were applied. The best average travel time value 

is 20742.93 seconds. The earliest generation number, in which the best is reached, is 

six and appeared in 10/0.8/0.3 and 30/0.8/0.1 combinations. The latest generation 

number in which the best is observed is 37, and appeared in 10/0.6/0.1 combination. 

On the other hand the earliest time to reach the best is 6.59 minutes, and the latest 

time is 46.28 minutes.   

 

The second algorithm is the SimGAb. In all PS/CR/MR combinations the best 

value is reached. The earliest generation number is three, the related combinations 

are 30/0.4/0.3 and 30/0.6/0.2 combinations, and the latest generation number is 56 

and the combination is 10/0.4/0.1. On the other hand the earliest time to reach the 

best is 10.40 minutes and the latest time is 68.81 minutes. 

 

The third algorithm is the SimGAfs. The best value is reached in all PS/CR/MR 

combinations. The earliest generation number is two and the combination is 

10/0.4/0.1. We note that the SimGAfs has the minimum generation number (i.e. two) 

among the presented algorithms. The latest generation number is 34 and the 

combination is 10/0.6/0.1. On the other hand the earliest time to reach the best is 4.85 

minutes (i.e. the best time among the presented algorithms). The latest time is 88.40 

minutes. 

 

The fourth algorithm is the SimGAbw. Except the combination of 10/0.8/0.1, all 

the other PS/CR/MR combinations have the best value. The earliest generation 
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number is three and appeared in combinations 10/0.4/0.1, 20/0.8/0.2 and 30/0.4/0.3.  

The earliest time is to reach the best is 6.85 minutes. Although the SimGAbw is run 

for 100 generations for the combination of 10/0.8/0.1, that lasts 234.87 minutes, the 

best fitness value can not be approached, but it gets too close to the best found so far 

and only in this combination the best value can not be arrived. The reached average 

train travel time is 20753.02 seconds that is only 10.09 seconds (0.049%) more than 

the best (20742.93 seconds). In this combination the SimGAbw trapped in a local 

optimum in the second generation, and can not get out.  

 

We see that only one combination in 108 combinations get trapped in a local 

optimum. Although some of the other 107 combinations get trapped in a local 

optimum, they were able to get out.  

 

In the parts given below, in order to see the variation in fitness values, one of the 

three parameters examined above is allowed to take different values while the other 

two are held constant. In Figures A3-A11, given in Appendix, A1 represents the 

SimGA, A2 represents the SimGAb, A3 represents the SimGAfs and A4 represents the 

SimGAbw.  

 

At first we look the results of 10/0.4/MR combinations, while the parameter MR 

takes the values 10%, 20% or 30%, respectively, the PS and CR are set to 10 and 

40%, respectively. The earliest generation number belongs to the SimGAfs and is 

equal to two, in the combination of 10/0.4/0.1. It is the best generation number, and 

to reach the generation, only lasts 4.85 minutes (the best time). The latest generation 

number, 56, appears in SimGAb in the combination of 10/0.4/0.1. It takes 68.81 

minutes to reach. It is the worst generation number and time among the combinations 

of 10/0.4/MR. 

 

The best fitness values of the generations for combination of 10/0.4/0.1 are 

exhibited in Figure A.3 in Appendix. It is seen that; 

• The SimGA reached the best in 25th generation in 6 steps in; 1st, 5th, 6th, 8th, 20th 

and 25th generations.  
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• The SimGAb reached the best in 56th generation in 3 steps in; 2nd, 3rd and 56th 

generations.  

• The SimGAfs reached the best in 2nd generation, which is the best generation 

number, in 2 steps in; 1st and 2nd generations.  

• The SimGAbw reached the best in 3rd generation in 3 steps in; 1st, 2nd and 3rd 

generations. 

• Although all algorithms reached the best in an acceptable time the SimGAfs and 

the SimGAbw arrived too fast. 

 

The best fitness values of the generations for 10/0.4/0.2 combination are denoted 

in Figure A.4 in Appendix. It is seen that; 

• The SimGA reached the best in 16th generation in 5 steps in; 1st, 6th, 7th, 10th and 

16th generations.  

• The SimGAb and the SimGAfs reached the best in the same generation; 29th 

generation in the same 4 steps in; 1st, 2nd, 3rd and 29th generations.  

• The SimGAbw reached the best in 20th generation in 5 steps in; 1st, 2nd, 3rd, 4th 

and 20th generations. 

• All algorithms reached the best in an acceptable time, the fastest is The SimGA. 

 

The best fitness values of the generations for 10/0.4/0.3 combination are depicted 

in Figure A.5 in Appendix. It is seen that; 

• The SimGA reached the best at 13th generation in 6 steps in; 1st, 4th, 6th, 7th, 10th 

and 13th generations.  

• The SimGAb, the SimGAfs and the SimGAbw reached the best in the same 

generation, 28th generation, in the same 4 steps that are in; 1st, 2nd, 3rd and 28th 

generations. 

• The fastest is The SimGA, the others show same pattern.  

 

Secondly when we look the results of 20/CR/0.2 combinations, while the 

parameter MR takes the values 40%, 60% or 80%, respectively, the PS and MR are 

set to 20 and 20%, respectively. The earliest generation number belongs to the 

SimGAbw and is equal to three, in the combination of 20/0.8/0.2. It takes 11.61 
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minutes to reach the best is also the earliest time in this set of combinations. The 

latest generation number, 19, appears in SimGAb in the combination of 20/0.4/0.2. It 

takes 36.31 minutes to reach the best. It is the worst generation number and time 

among the combinations of 20/CR/0.2. 

 

The best fitness values of the generations for 20/0.4/0.2 combination are exhibited 

in Figure A.6 in Appendix. It is seen that; 

• The SimGA reached the best in 12th generation in 5 steps in; 1st, 2nd, 4th, 5th and 

12th generations. The fitness value reached in 5th generation, 20743.05 seconds, 

is a local optimum and it is too close to the reached optimum, so from now on 

we will call this local as the nearest local. It is only 0.12 seconds more that the 

best that is 20742.93 seconds. 

• The SimGAb reached the best in 19th generation in 3 steps in; 1st, 2nd and 19th 

generations.  

• The SimGAfs reached the best in 6th generation in 3 steps in; 1st, 2nd and 6th 

generations, and it is seen that it reached to the nearest local in an early (2nd) 

generation.  

• The SimGAbw reached the best in 6th generation in 4 steps in; 1st, 2nd, 3rd and 

6th generations, and it reached to the nearest local in 3rd generation. 

• The SimGAfs and the SimGAbw reached the best fast. Except the SimGAb, all 

algorithms visited the nearest local in early generations but they had the ability 

to escape.   

 

The best fitness values of the generations for 20/0.6/0.2 combination are denoted 

in Figure A.7 in Appendix. It is seen that; 

• The SimGA reached the best in 15th generation in 5 steps in; 1st, 2nd, 5th, 8th and 

15th generations.  

• The SimGAb and the SimGAbw reached the best in the same 7th generation in 

the same 4 steps that are in; 1st, 2nd, 3rd and 7th generations, and both reached to 

the nearest local in 3rd generation.  
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• The SimGAfs has nearly the same pattern with the SimGAb and the SimGAbw, 

reached the best in 6th generation in 4 steps in; 1st, 2nd, 3rd and 6th generations, 

and with the nearest local reached in 3rd generation. 

• Except the SimGA, the others reached the best in early generations and also 

visited the nearest local, and achieved to escape. 

 

The best fitness values of the generations for 20/0.8/0.2 combination are depicted 

in Figure A.8 in Appendix. It is seen that; 

• The SimGA reached the best in 17th generation in 8 steps which are in; 1st, 2nd, 

5th, 6th, 8th, 9th, 12th and 17th generations. 

• Both the SimGAb and the SimGAfs reached the best in the same 8th generation 

in the same 4 steps in; 1st, 2nd, 3rd and 8th generations, in addition they both 

reached to the nearest local in 3rd generation.  

• The SimGAbw reached the best too fast in 3rd generation in 3 steps in; 1st, 2nd 

and 3rd generations.  

• Except the SimGA, the others reached the best in early generations and also 

visited the nearest local, and achieved to escape. 

 

Lastly when we look the results of PS/0.8/0.1 combinations, while the parameter 

PS takes the values 10, 20 or 30, respectively, the CR and MR are set to 80% and 

10%, respectively. The earliest generation number belongs to the SimGA and is equal 

to six, in the combination of 30/0.8/0.1. It takes 16.64 minutes to reach the best is 

also the earliest time in this set of combinations. Although the SimGAbw is run for 

100 generations, which lasts 234.87 minutes, the best fitness value can not be 

reached in 10/0.8/0.1 combination, but it closes to the best and is the only 

combination that can not reach the best. In this combination, in an early (2nd) 

generation the SimGAbw trapped in one of a local (20753.02 seconds) and can not 

get away from the local although the algorithm is run an additional 98 generations.  
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The best fitness values of the generations for 10/0.8/0.1 combination are exhibited 

in Figure A.9 in Appendix. It is seen that; 

•  The SimGA reached the best in 31st generation in 5 steps in; 1st, 2nd, 3rd, 26th 

and 31st generations.  

• The SimGAb and the SimGAfs both reached the best in the same 14th 

generation in the same 4 steps that are in; 1st, 2nd, 3rd and 14th generations.  

• The SimGAbw trapped in a local in 2nd generation and can not get away in 

additional 98 generations. 

• Except the SimGAbw, the other algorithms reached the best in acceptable 

times. 

 

The best fitness values of the generations for 20/0.8/0.1 combination are denoted 

in Figure A.10 in Appendix. It is seen that; 

• The SimGA reached the best in 10th generation in 5 steps in; 1st, 2nd, 3rd, 5th and 

10th generations.  

• The SimGAb reached the best in 16th generation in 4 steps in; 1st, 2nd, 3rd and 

16th generations, with the nearest local reached in an early (3rd) generation.  

• Both the SimGAfs and the SimGAbw reached the best in the same 7th generation 

in the same 4 steps that are in; 1st, 2nd, 3rd and 7th generations, and it is seen that 

the fitness value reached at the 3rd generation is the nearest local. 

• All algorithms reached the best in acceptable times. Except the SimGA, the 

others visited the nearest local, and achieved to escape. 

 

The best fitness values of the generations for the 30/0.8/0.1 combination are 

depicted in Figure A.11 in Appendix. It is seen that; 

• The SimGA reached the best in 6th generation in 6 steps in; 1st, 2nd, 3rd, 4th, 5th 

and 6th generations.  

• The SimGAb reached the best in 10th generation in 4 steps in; 1st, 2nd, 3rd and 

10th generations, with the nearest local reached in 3rd generation.  

• The SimGAfs reached the best in 10th generation in 5 steps in; 1st, 2nd, 3rd, 5th 

and 10th generations and also reached the nearest local in 5th generation.  
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• The SimGAbw reached the best in a late generation (38th) in 4 steps in; 1st, 2nd, 

3rd and 38th generations, but it reached the nearest local that is too close to the 

best in an early (just 3rd) generation. 

• All algorithms reached the best in acceptable times. Except the SimGA, the 

others visited the nearest local, and achieved to escape. 

 

It is seen that all algorithms have an ability to escape from a very near local point 

and reach the best, but generally the SimGAb, the SimGAfs and the SimGAbw visited 

the nearest local in early generations. 
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CHAPTER SIX 

CONCLUSIONS 

 

The TrnSchPrb is the problem of determining a timetable for a set of trains which 

satisfies some operational constraints without violating track capacities. In this thesis 

the aim is to present an approach to solve this problem. To realize this aim, first the 

relevant studies published in the range of 1966-2009 were reviewed. We divided the 

studies in the TrnSchPrb literature into two main parts; scheduling/timetabling and 

rescheduling/dispatching. The objective in the scheduling is to prepare a train 

timetable that includes arrival and departure times of all trains at the visited stations. 

The objective in the rescheduling is to reschedule the trains after disturbances. This 

thesis focused on the train scheduling/timetabling problem. 

 

Simulation gives a chance to researchers to model complex problems that have 

stochastic nature. Although simulation modelling has been used in a few articles 

those focused on the scheduling/timetabling, none of them includes a comprehensive 

framework. In this thesis, we developed a comprehensive feasible timetable 

generator simulation modelling framework for the train scheduling/timetabling 

problem. The simulation model was developed to cope with the disturbances, 

therefore stochastic events were allowed in the simulation model. To cope with 

disturbances is also the interest of rescheduling/dispatching. Therefore, the 

simulation framework can also be used for the train rescheduling/dispatching 

problem if it can be feed by the real time data. The study is located in the train 

scheduling/timetabling problems that used simulation modelling class, which 

includes too few articles. The feasible timetable generator simulation modelling 

framework was developed with the objective of obtaining a feasible train timetable 

that includes train arrival and departure times at all visited stations and calculated 

average train travel time for all trains in a railway system.  

 

By using the presented approaches, all the railway transportation systems can be 

modelled with only problem/infrastructure specific modifications and feasible 

solutions can be easily attained. In order to avoid a deadlock, a general Blockage
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Preventive Algorithm is developed. This algorithm can be embedded in the 

simulation model and can be easily adapted to problem/infrastructure specific 

modifications.  

 

Although a few article studied integration of simulation with GAs to solve the 

TrnSchPrb, they did not handle the problem comprehensively. In addition, since GA 

provides flexibility to hybridize with domain dependent heuristics to make an 

efficient implementation for a specific problem we developed simulation integrated 

hybrid GAs. To get an optimum average train travel time, first a GA was integrated 

with the feasible timetable generator simulation model, and second three local search 

embedded hybrid GAs were also developed and integrated with the feasible timetable 

generator simulation model. To the best of our knowledge our study is the first one 

that integrates stochastic simulation model with GA and hybrid GA to deal with the 

train scheduling/timetabling problem. On the other hand, this is the first time that 

local search embedded GAs were exhibited and integrated to simulation model for 

the train scheduling/timetabling problem. 

 

Using the encoding structure presented in the current study, any changes in the 

number of trains or number of train meetings can be overcame easily and 

consequently the simulation model generates feasible train timetables. So the 

chromosome structure tightens the search space by preventing us to deal with 

infeasible solutions that will, no doubt, take a huge calculation time. 

 

Finally, the feasible timetable generator simulation model, the simulation 

integrated GA, and the three hybrid GAs were applied on a hypothetic TrnSchPrb to 

compare their performance at average train travel time. The problem is based on an 

artificial infrastructure inspired by a real railway line system. The line structure in 

the problem is a single track corridor as analogous to many lines in the literature and 

also real railway systems. By the application of the presented approaches on the 

hypothetic TrnSchPrb good results were obtained. We conducted several 

experiments with different population size, cross over rate and mutation rate 
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parameters of the GA, and found that all algorithms have an ability to reach the best 

solution in a reasonable time depicted in Table 6.1.  

 
Table 6.1 The best generation numbers and the best times 

Generation Time Algorithm 

Best Combination(s) Best Combination(s) 

SimGA 6 10/0.8/0.3 
30/0.8/0.1 

6.59 10/0.8/0.3 

SimGAb 3 30/0.4/0.3 
30/0.6/0.2 

10.40 30/0.4/0.3 
 

SimGAfs 2 10/0.4/0.1 4.85 10/0.4/0.1 

SimGAbw 3 10/0.4/0.1 
20/0.8/0.2 
30/0.4/0.3 

6.85 10/0.4/0.1 

 

In Table 6.1, the best generation number and the best time belong to the SimGAfs, 

(i.e. simulation integrated local search on the first and the second best embedded 

hybrid GA), with parameter combination 10/0.4/0.1. For this hypothetical TrnSchPrb 

the SimGAfs with these parameter values is preferred.  

 

Future work directions can be as follows; 

• So far we dealt with the problem from the service provider (train operating 

authority) point of view, but there are also the service users (passengers or 

freight transporting companies) in the system. The simulation modelling 

framework can be extended by including the service users. 

• The performance criterion of the study is the average train travel time. 

Different criteria of service users and energy consumptions can be considered. 

Energy consumption is getting more and more important since the energy 

resources are limited and minimizing energy consumption is essential to have 

an inhabitable world in future.  

• The single objective problem can be extended to a multi objective problem 

with additional criteria, and the multi objective evolutionary algorithms can be 

used in order to solve the problem. 

• The infrastructure considered in the hypothetic problem is a single track 

corridor. It can be extended to have double track parts that can also be 
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modelled as one way, and the system can contain not only a corridor but also a 

network. 

• If very long multi platforms where more than one train can accommodate are 

regarded, the problem of sequencing of trains on the multi platforms arises and 

new decision variables are needed to solve the problem.      

• In the thesis, the speed of trains is assumed to be uniformly distributed random 

variable. The speed which influences the energy consumption can be also 

modelled as a decision variable and the optimum speeds at different parts of 

the track can be calculated.  
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APPENDICES 

 

 
Figure A.1 The line-station diagram of the track between the S5 and the S6 

 
Table A.1 SIMAN View of failure model logic related to track between the S5 and the S6 

1$            DELAY:         Expo(33283):2$; 
2$            ASSIGN:        V1005_fS5=1:3$; 
3$            BRANCH,        1: 
                         With,0.25:4$; 
                         With,0.25:5$; 
                         With,0.25:6$; 
                         With,0.25:7$; 
4$            ASSIGN:        V1135_fLnk35=1:8$; 
5$            ASSIGN:        V1136_fLnk36=1:8$; 
6$            ASSIGN:        V1137_fLnk37=1:8$; 
7$            ASSIGN:        V1138_fLnk38=1:8$; 
8$            DELAY:         Expo(4673):9$; 
9$            ASSIGN:        V1005_fS5=0: 
                             V1135_fLnk35=0: 
                             V1136_fLnk36=0: 
                             V1137_fLnk37=0: 
                             V1138_fLnk38=0:10$; 
10$           BRANCH,        1: 
                  If,(#ofWestboundTrains+#ofEastboundTrains)==0:11$; 
                  Else:1$; 
11$           DISPOSE:        
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     Figure A.2 Line-station diagram of the TS1 and its neighbourhood 

 

Table A.2 SIMAN View of the train movement logic from the park area to the TS1 

1$            CREATE,        1:2$; 
2$            BRANCH,        1: 
                             If,(ed(211)==1):3$; 
                             If,(ed(212)==1):4$; 
                             Else:5$; 
3$            ASSIGN:        m=21: 
                             FromStation=63: 
                             ToStation=21: 
                             Destination=1: 
                             v(21)=v(21)+1: 
                             v(101)=v(101)+1: 
                             v(22)=v(22)+1: 
                             v(102)=v(102)+1: 
                             v(1)=v(1)+1: 
                             v(103)=v(103)+1: 
                         #ofWestboundTrains=#ofWestboundTrains-1:6$; 
4$            ASSIGN:        m=21: 
                             FromStation=63: 
                             ToStation=21: 
                             Destination=11: 
                             v(21)=v(21)+1: 
                             v(101)=v(101)+1: 
                             v(22)=v(22)+1: 
                             v(104)=v(104)+1: 
                             v(11)=v(11)+1: 
                             v(105)=v(105)+1: 
                         #ofWestboundTrains=#ofWestboundTrains-1:6$; 
5$            SCAN:          (ed(211)==1).or.(ed(212)==1):2$; 
6$            DUPLICATE:     7$; 
                             1:9$; 
7$            REQUEST,       1:TrainFleet(sds,Train#):8$; 
8$            TRANSPORT:     TrainFleet,TS1; 
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9$            BRANCH,        1: 
                             If,#ofWestboundTrains==0:11$; 
                             Else:10$; 
10$           DELAY:         7200+unif(-900,900):2$; 
11$           DISPOSE:        
 
EXPRESSIONS: 
 
211,FromParkViaTS1ToS1p1, 
((ed(21101)==1).and.(ed(21102)==1)): 
 
21101,FromParkViaTS1ToS1p1_1, 
(v(21)==0).and.(v(101)==0).and.(v(22)==0).and.(v(102)==0).and.(v(1)=
=0).and.(v(103)==0).and.((v(11)<=0).or.(v(2)>=0).or.(v(12)>=0)).and.
((v(11)<=0).or.((v(2)==0).or.(v(12)==0)).or.(v(3)>=0).or.(v(13)>=0))
.and.((v(11)<=0).or.((v(2)==0).or.(v(12)==0).or.(v(3)==0).or.(v(13)=
=0)).or.(v(4)>=0).or.(v(14)>=0)).and.((v(11)<=0).or.((v(2)==0).or.(v
(12)==0).or.(v(3)==0).or.(v(13)==0).or.(v(4)==0).or.(v(14)==0)).or.(
v(5)>=0).or.(v(15)>=0)).and.((v(11)<=0).or.((v(2)==0).or.(v(12)==0).
or.(v(3)==0).or.(v(13)==0).or.(v(4)==0).or.(v(14)==0).or.(v(5)==0).o
r.(v(15)==0)).or.(v(6)>=0).or.(v(16)>=0)).and.((v(11)<=0).or.((v(2)=
=0).or.(v(12)==0).or.(v(3)==0).or.(v(13)==0).or.(v(4)==0).or.(v(14)=
=0).or.(v(5)==0).or.(v(15)==0).or.(v(6)==0).or.(v(16)==0)).or.(v(7)>
=0).or.(v(17)>=0)).and.((v(11)<=0).or.((v(2)==0).or.(v(12)==0).or.(v
(3)==0).or.(v(13)==0).or.(v(4)==0).or.(v(14)==0).or.(v(5)==0).or.(v(
15)==0).or.(v(6)==0).or.(v(16)==0).or.(v(7)==0).or.(v(17)==0)).or.(v
(8)>=0).or.(v(18)>=0)): 
 
21102,FromParkViaTS1ToS1p1_2, 
((v(11)<=0).or.((v(2)==0).or.(v(12)==0).or.(v(3)==0).or.(v(13)==0).o
r.(v(4)==0).or.(v(14)==0).or.(v(5)==0).or.(v(15)==0).or.(v(6)==0).or
.(v(16)==0).or.(v(7)==0).or.(v(17)==0).or.(v(8)==0).or.(v(18)==0)).o
r.(v(9)>=0).or.(v(19)>=0)).and.((v(11)<=0).or.((v(2)==0).or.(v(12)==
0).or.(v(3)==0).or.(v(13)==0).or.(v(4)==0).or.(v(14)==0).or.(v(5)==0
).or.(v(15)==0).or.(v(6)==0).or.(v(16)==0).or.(v(7)==0).or.(v(17)==0
).or.(v(8)==0).or.(v(18)==0).or.(v(9)==0).or.(v(19)==0)).or.(v(10)>=
0).or.(v(20)>=0)): 
 
212,FromParkViaTS1ToS1p2, 
((ed(21201)==1).and.(ed(21202)==1)): 
 
21201,FromParkViaTS1ToS1p2_1, 
(v(21)==0).and.(v(101)==0).and.(v(22)==0).and.(v(104)==0).and.(v(11)
==0).and.(v(105)==0).and.((v(1)<=0).or.(v(2)>=0).or.(v(12)>=0)).and.
((v(1)<=0).or.((v(2)==0).or.(v(12)==0)).or.(v(3)>=0).or.(v(13)>=0)).
and.((v(1)<=0).or.((v(2)==0).or.(v(12)==0).or.(v(3)==0).or.(v(13)==0
)).or.(v(4)>=0).or.(v(14)>=0)).and.((v(1)<=0).or.((v(2)==0).or.(v(12
)==0).or.(v(3)==0).or.(v(13)==0).or.(v(4)==0).or.(v(14)==0)).or.(v(5
)>=0).or.(v(15)>=0)).and.((v(1)<=0).or.((v(2)==0).or.(v(12)==0).or.(
v(3)==0).or.(v(13)==0).or.(v(4)==0).or.(v(14)==0).or.(v(5)==0).or.(v
(15)==0)).or.(v(6)>=0).or.(v(16)>=0)).and.((v(1)<=0).or.((v(2)==0).o
r.(v(12)==0).or.(v(3)==0).or.(v(13)==0).or.(v(4)==0).or.(v(14)==0).o
r.(v(5)==0).or.(v(15)==0).or.(v(6)==0).or.(v(16)==0)).or.(v(7)>=0).o
r.(v(17)>=0)).and.((v(1)<=0).or.((v(2)==0).or.(v(12)==0).or.(v(3)==0
).or.(v(13)==0).or.(v(4)==0).or.(v(14)==0).or.(v(5)==0).or.(v(15)==0
).or.(v(6)==0).or.(v(16)==0).or.(v(7)==0).or.(v(17)==0)).or.(v(8)>=0
).or.(v(18)>=0)): 
 
 



 

 

120

21202,FromParkViaTS1ToS1p2_2, 
((v(1)<=0).or.((v(2)==0).or.(v(12)==0).or.(v(3)==0).or.(v(13)==0).or
.(v(4)==0).or.(v(14)==0).or.(v(5)==0).or.(v(15)==0).or.(v(6)==0).or.
(v(16)==0).or.(v(7)==0).or.(v(17)==0).or.(v(8)==0).or.(v(18)==0)).or
.(v(9)>=0).or.(v(19)>=0)).and.((v(1)<=0).or.((v(2)==0).or.(v(12)==0)
.or.(v(3)==0).or.(v(13)==0).or.(v(4)==0).or.(v(14)==0).or.(v(5)==0).
or.(v(15)==0).or.(v(6)==0).or.(v(16)==0).or.(v(7)==0).or.(v(17)==0).
or.(v(8)==0).or.(v(18)==0).or.(v(9)==0).or.(v(19)==0)).or.(v(10)>=0)
.or.(v(20)>=0)): 

 
Table A.3 SIMAN View of the train movement logic at the TS1 

1$            STATION,       TS1;2$; 
2$            BRANCH,        1: 
                             If,FromStation==1:3$; 
                             If,FromStation==11:3$; 
                             Else:7$; 
3$            DUPLICATE:     4$; 
                             1:6$; 
4$            ASSIGN:   TravelTimeOfTrain(Train#,1)=tnow-TimeIn:12$; 
5$            DELAY:         5:6$; 
6$            ASSIGN:        v(22)=v(22)+1: 
                             v(101)=v(101)+1: 
                             v(21)=v(21)+1:23$; 
7$            BRANCH,        1: 
                             If,Destination==1:8$; 
                             If,Destination==11:10$; 
8$            ASSIGN:        FromStation=21: 
                             ToStation=1: 
                             TimeIn=tnow:9$; 
9$            TRANSPORT:     TrainFleet,S1_1; 
10$           ASSIGN:        FromStation=21: 
                             ToStation=11: 
                             TimeIn=tnow:$11; 
11$           TRANSPORT:     TrainFleet,S1_2; 
12$           BRANCH,        1: 
                             If,(nx(73)==0).and.(ndx(82)==0):13$; 
                             If,(nx(74)==0).and.(ndx(83)==0):14$; 
                             If,(nx(75)==0).and.(ndx(84)==0):15$; 
                             If,(nx(76)==0).and.(ndx(85)==0):16$; 
                             If,(nx(77)==0).and.(ndx(86)==0):17$; 
                             If,(nx(78)==0).and.(ndx(87)==0):18$; 
                             If,(nx(79)==0).and.(ndx(88)==0):19$; 
                             If,(nx(80)==0).and.(ndx(89)==0):20$; 
                             If,(nx(81)==0).and.(ndx(90)==0):21$; 
                             If,(nx(82)==0).and.(ndx(91)==0):22$; 
13$           TRANSPORT:     TrainFleet,Sta73_park; 
14$           TRANSPORT:     TrainFleet,Sta74_park; 
15$           TRANSPORT:     TrainFleet,Sta75_park; 
16$           TRANSPORT:     TrainFleet,Sta76_park; 
17$           TRANSPORT:     TrainFleet,Sta77_park; 
18$           TRANSPORT:     TrainFleet,Sta78_park; 
19$           TRANSPORT:     TrainFleet,Sta79_park; 
20$           TRANSPORT:     TrainFleet,Sta80_park; 
21$           TRANSPORT:     TrainFleet,Sta81_park; 
22$           TRANSPORT:     TrainFleet,Sta82_park; 
23$           DISPOSE:        
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Table A.4 SIMAN View of the train movement logic at the first part of the S5 

1$            STATION,       S5_1:2$; 
2$            BRANCH,        1: 
                             If,FromStation==4:3$; 
                             If,FromStation==14:3$; 
                             If,FromStation==6:5$; 
                             If,FromStation==16:5$; 
3$            ASSIGN:        TrainArrivalTime(Train#,14)=tnow: 
                             v(35)=v(35)-1: 
                             v(127)=v(127)-1: 
                             v(36)=v(36)-1: 
                             v(128)=v(128)-1: 
                             v(37)=v(37)-1: 
                             v(129)=v(129)-1: 
                             v(38)=v(38)-1: 
                             v(130)=v(130)-1: 
                             v(39)=v(39)-1: 
                             FromStation=5:4$; 
4$            DELAY:         600+expo(90):7$; 
5$            ASSIGN:        TrainArrivalTime(Train#,14)=tnow: 
                             v(44)=v(44)+1: 
                             v(138)=v(138)+1: 
                             v(43)=v(43)+1: 
                             v(137)=v(137)+1: 
                             v(42)=v(42)+1: 
                             v(136)=v(136)+1: 
                             v(41)=v(41)+1: 
                             v(135)=v(135)+1: 
                             v(40)=v(40)+1: 
                             FromStation=5:6$; 
6$            DELAY:         600+expo(90):29$; 
7$            ASSIGN:        v(2000)=v(2000)+1: 
                             TrainOrderInQ=v(2000):8$; 
8$            QUEUE,         Q5:9$; 
9$            SCAN:          (v(1005)==0):10$; 
10$           SEIZE,         R5,1:11$; 
11$           DELAY:         0.000001:12$; 
12$           BRANCH,        1: 
                             If,FromStation==5:13$; 
                             If,FromStation==15:16$: 
                             If,FromStation==6:21$; 
                             If,FromStation==16:24$; 
 
13$           BRANCH,        1: 
                             If,(ed(51)==1):14$; 
                             If,(ed(52)==1):15$; 
                             Else:19$; 
14$           RELEASE:       R5,1:51$; 
15$           RELEASE:       R5,1:52$; 
16$           BRANCH,        1: 
                             If,(ed(51)==1):17$; 
                             If,(ed(52)==1):18$; 
                             Else:19$; 
17$           RELEASE:       R5,1:related with 2.part of S5; 
18$           RELEASE:       R5,1:related with 2.part of S5; 
19$           RELEASE:       R5,1:20$; 
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20$           SCAN:          (ed(51)==1).or.(ed(52)==1):8$; 
21$           BRANCH,        1: 
                             If,(ed(63)==1):22$; 
                             If,(ed(64)==1):23$; 
                             Else:27$; 
22$           RELEASE:       R5,1:related with 1.part of S6; 
23$           RELEASE:       R5,1:related with 1.part of S6; 
24$           BRANCH,        1: 
                             If,(ed(63)==1):25$; 
                             If,(ed(64)==1):26$; 
                             Else:27$; 
25$           RELEASE:       R5,1:related with 2.part of S6; 
26$           RELEASE:       R5,1:related with 2.part of S6; 
27$           RELEASE:       R5,1:28$; 
28$           SCAN:          (ed(63)==1).or.(ed(64)==1):8$; 
29$           ASSIGN:        v(2000)=v(2000)+1: 
                             TrainOrderInQ=v(2000):30$; 
30$           QUEUE,         Q4:31$; 
31$           SCAN:          (v(1004)==0):32$; 
32$           SEIZE,         R4,1:33$; 
33$           DELAY:         0.000001:34$; 
34$           BRANCH,        1: 
                             If,FromStation==4:35$; 
                             If,FromStation==14:38$; 
                             If,FromStation==5:43$; 
                             If,FromStation==15:46$; 
35$           BRANCH,        1: 
                             If,(ed(41)==1):36$; 
                             If,(ed(42)==1):37$; 
                             Else:41$; 
36$           RELEASE:       R4,1:related with 1.part of S4; 
37$           RELEASE:       R4,1:related with 1.part of S4; 
38$           BRANCH,        1: 
                             If,(ed(41)==1):39$; 
                             If,(ed(42)==1):40$; 
                             Else:41$; 
39$           RELEASE:       R4,1:related with 2.part of S4; 
40$           RELEASE:       R4,1:related with 2.part of S4; 
41$           RELEASE:       R4,1:42$; 
42$           SCAN:          (ed(41)==1).or.(ed(42)==1):30$; 
43$           BRANCH,        1: 
                             If,(ed(53)==1):44$; 
                             If,(ed(54)==1):45$; 
                             Else:49$; 
44$           RELEASE:       R4,1:57$; 
45$           RELEASE:       R4,1:58$; 
46$           BRANCH,        1: 
                             If,(ed(53)==1):47$; 
                             If,(ed(54)==1):48$; 
                             Else:49$; 
47$           RELEASE:       R4,1:related with 2.part of S5; 
48$           RELEASE:       R4,1:related with 2.part of S5; 
49$           RELEASE:       R4,1:50$; 
50$           SCAN:          (ed(53)==1).or.(ed(54)==1):30$; 
51$           ASSIGN:        ToStation=6: 
                             v(40)=v(40)+1: 
                             v(135)=v(135)+1: 
                             v(41)=v(41)+1: 
                             v(136)=v(136)+1: 
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                             v(42)=v(42)+1: 
                             v(137)=v(137)+1: 
                             v(43)=v(43)+1: 
                             v(138)=v(138)+1: 
                             v(44)=v(44)+1: 
                             v(139)=v(139)+1: 
                             v(6)=v(6)+1: 
                             v(140)=v(140)+1: 
                             TrainDepartureTime(Train#,14)=tnow:53$; 
52$           ASSIGN:        ToStation=16: 
                             v(40)=v(40)+1: 
                             v(135)=v(135)+1: 
                             v(41)=v(41)+1: 
                             v(136)=v(136)+1: 
                             v(42)=v(42)+1: 
                             v(137)=v(137)+1: 
                             v(43)=v(43)+1: 
                             v(138)=v(138)+1: 
                             v(44)=v(44)+1: 
                             v(141)=v(141)+1: 
                             v(16)=v(16)+1: 
                             v(142)=v(142)+1: 
                             TrainDepartureTime(Train#,14)=tnow:53$; 
53$           DUPLICATE:     54$; 
                             1:55$; 
54$           TRANSPORT:     TrainFleet,dS51,unif(25.00,30.56); 
55$           DELAY:         10:56$; 
56$           ASSIGN:        v(131)=v(131)-1: 
                             v(5)=v(5)-1: 
                             v(132)=v(132)-1:63$; 
57$           ASSIGN:        ToStation=4: 
                             v(39)=v(39)-1: 
                             v(130)=v(130)-1: 
                             v(38)=v(38)-1: 
                             v(129)=v(129)-1: 
                             v(37)=v(37)-1: 
                             v(128)=v(128)-1: 
                             v(36)=v(36)-1: 
                             v(127)=v(127)-1: 
                             v(35)=v(35)-1: 
                             v(124)=v(124)-1: 
                             v(4)=v(4)-1: 
                             v(123)=v(123)-1: 
                             TrainDepartureTime(Train#,14)=tnow:59$; 
58$           ASSIGN:        ToStation=14: 
                             v(39)=v(39)-1: 
                             v(130)=v(130)-1: 
                             v(38)=v(38)-1: 
                             v(129)=v(129)-1: 
                             v(37)=v(37)-1: 
                             v(128)=v(128)-1: 
                             v(36)=v(36)-1: 
                             v(127)=v(127)-1: 
                             v(35)=v(35)-1: 
                             v(126)=v(126)-1: 
                             v(14)=v(14)-1: 
                             v(125)=v(125)-1: 
                             TrainDepartureTime(Train#,14)=tnow:59$; 
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59$           DUPLICATE:     60$; 
                             1:61$; 
60$           TRANSPORT:     TrainFleet,dS43,unif(25.00,30.56); 
61$           DELAY:         10:62$; 
62$           ASSIGN:        v(132)=v(132)+1: 
                             v(5)=v(5)+1: 
                             v(131)=v(131)+1:63$; 
63$           DISPOSE: 
 
EXPRESSIONS: 
 
41,FromS4p1OrS4p2ToS5p1, 
(v(35)>=0).and.(v(127)>=0).and.(v(36)>=0).and.(v(128)>=0).and.(v(37)
>=0).and.(v(129)>=0).and.(v(38)>=0).and.(v(130)>=0).and.(v(39)>=0).a
nd.(v(131)==0).and.(v(5)==0).and.(v(132)==0).and.(v(1004)==0).and.((
v(15)<=0).or.(v(6)>=0).or.(v(16)>=0)).and.((v(15)<=0).or.((v(6)==0).
or.(v(16)==0)).or.(v(7)>=0).or.(v(17)>=0)).and.((v(15)<=0).or.((v(6)
==0).or.(v(16)==0).or.(v(7)==0).or.(v(17)==0)).or.(v(8)>=0).or.(v(18
)>=0)).and.((v(15)<=0).or.((v(6)==0).or.(v(16)==0).or.(v(7)==0).or.(
v(17)==0).or.(v(8)==0).or.(v(18)==0)).or.(v(9)>=0).or.(v(19)>=0)).an
d.((v(15)<=0).or.((v(6)==0).or.(v(16)==0).or.(v(7)==0).or.(v(17)==0)
.or.(v(8)==0).or.(v(18)==0).or.(v(9)==0).or.(v(19)==0)).or.(v(109)>=
0).or.(v(20)>=0)): 
 
42,FromS4p1OrS4p2ToS5p2, 
(v(35)>=0).and.(v(127)>=0).and.(v(36)>=0).and.(v(128)>=0).and.(v(37)
>=0).and.(v(129)>=0).and.(v(38)>=0).and.(v(130)>=0).and.(v(39)>=0).a
nd.(v(133)==0).and.(v(15)==0).and.(v(134)==0).and.(v(1004)==0).and.(
(v(5)<=0).or.(v(6)>=0).or.(v(16)>=0)).and.((v(5)<=0).or.((v(6)==0).o
r.(v(16)==0)).or.(v(7)>=0).or.(v(17)>=0)).and.((v(5)<=0).or.((v(6)==
0).or.(v(16)==0).or.(v(7)==0).or.(v(17)==0)).or.(v(8)>=0).or.(v(18)>
=0)).and.((v(5)<=0).or.((v(6)==0).or.(v(16)==0).or.(v(7)==0).or.(v(1
7)==0).or.(v(8)==0).or.(v(18)==0)).or.(v(9)>=0).or.(v(19)>=0)).and.(
(v(5)<=0).or.((v(6)==0).or.(v(16)==0).or.(v(7)==0).or.(v(17)==0).or.
(v(8)==0).or.(v(18)==0).or.(v(9)==0).or.(v(19)==0)).or.(v(109)>=0).o
r.(v(20)>=0)): 
 
51,FromS5p1OrS5p2ToS6p1, 
(v(40)>=0).and.(v(135)>=0).and.(v(41)>=0).and.(v(136)>=0).and.(v(42)
>=0).and.(v(137)>=0).and.(v(43)>=0).and.(v(138)>=0).and.(v(44)>=0).a
nd.(v(139)==0).and.(v(6)==0).and.(v(140)==0).and.(v(1005)==0).and.((
v(16)<=0).or.(v(7)>=0).or.(v(17)>=0)).and.((v(16)<=0).or.((v(7)==0).
or.(v(17)==0)).or.(v(8)>=0).or.(v(18)>=0)).and.((v(16)<=0).or.((v(7)
==0).or.(v(17)==0).or.(v(8)==0).or.(v(18)==0)).or.(v(9)>=0).or.(v(19
)>=0)).and.((v(16)<=0).or.((v(7)==0).or.(v(17)==0).or.(v(8)==0).or.(
v(18)==0).or.(v(9)==0).or.(v(19)==0)).or.(v(10)>=0).or.(v(20)>=0)): 
 
52,FromS5p1OrS5p2ToS6p2, 
(v(40)>=0).and.(v(135)>=0).and.(v(41)>=0).and.(v(136)>=0).and.(v(42)
>=0).and.(v(137)>=0).and.(v(43)>=0).and.(v(138)>=0).and.(v(44)>=0).a
nd.(v(141)==0).and.(v(16)==0).and.(v(142)==0).and.(v(1005)==0).and.(
(v(6)<=0).or.(v(7)>=0).or.(v(17)>=0)).and.((v(6)<=0).or.((v(7)==0).o
r.(v(17)==0)).or.(v(8)>=0).or.(v(18)>=0)).and.((v(6)<=0).or.((v(7)==
0).or.(v(17)==0).or.(v(8)==0).or.(v(18)==0)).or.(v(9)>=0).or.(v(19)>
=0)).and.((v(6)<=0).or.((v(7)==0).or.(v(17)==0).or.(v(8)==0).or.(v(1
8)==0).or.(v(9)==0).or.(v(19)==0)).or.(v(10)>=0).or.(v(20)>=0)): 
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53,FromS5p1OrS5p2ToS4p1, 
(v(39)<=0).and.(v(130)<=0).and.(v(38)<=0).and.(v(129)<=0).and.(v(37)
<=0).and.(v(128)<=0).and.(v(36)<=0).and.(v(127)<=0).and.(v(35)<=0).a
nd.(v(124)==0).and.(v(4)==0).and.(v(123)==0).and.(v(1004)==0).and.((
v(14)>=0).or.(v(3)<=0).or.(v(13)<=0)).and.((v(14)>=0).or.((v(3)==0).
or.(v(13)==0)).or.(v(2)<=0).or.(v(12)<=0)).and.((v(14)>=0).or.((v(3)
==0).or.(v(13)==0).or.(v(2)==0).or.(v(12)==0)).or.(v(1)<=0).or.(v(11
)<=0)): 
 
54,FromS5p1OrS5p2ToS4p2, 
(v(39)<=0).and.(v(130)<=0).and.(v(38)<=0).and.(v(129)<=0).and.(v(37)
<=0).and.(v(128)<=0).and.(v(36)<=0).and.(v(127)<=0).and.(v(35)<=0).a
nd.(v(126)==0).and.(v(14)==0).and.(v(125)==0).and.(v(1004)==0).and.(
(v(4)>=0).or.(v(3)<=0).or.(v(13)<=0)).and.((v(4)>=0).or.((v(3)==0).o
r.(v(13)==0)).or.(v(2)<=0).or.(v(12)<=0)).and.((v(4)>=0).or.((v(3)==
0).or.(v(13)==0).or.(v(2)==0).or.(v(12)==0)).or.(v(1)<=0).or.(v(11)<
=0)): 
 
63,FromS6p1OrS6p2ToS5p1, 
(v(44)<=0).and.(v(138)<=0).and.(v(43)<=0).and.(v(137)<=0).and.(v(42)
<=0).and.(v(136)<=0).and.(v(41)<=0).and.(v(135)<=0).and.(v(40)<=0).a
nd.(v(132)==0).and.(v(5)==0).and.(v(131)==0).and.(v(1005)==0).and.((
v(15)>=0).or.(v(4)<=0).or.(v(14)<=0)).and.((v(15)>=0).or.((v(4)==0).
or.(v(14)==0)).or.(v(3)<=0).or.(v(13)<=0)).and.((v(15)>=0).or.((v(4)
==0).or.(v(14)==0).or.(v(3)==0).or.(v(13)==0)).or.(v(2)<=0).or.(v(12
)<=0)).and.((v(15)>=0).or.((v(4)==0).or.(v(14)==0).or.(v(3)==0).or.(
v(13)==0).or.(v(2)==0).or.(v(12)==0)).or.(v(1)<=0).or.(v(11)<=0)): 
 
64,FromS6p1OrS6p2ToS5p2, 
(v(44)<=0).and.(v(138)<=0).and.(v(43)<=0).and.(v(137)<=0).and.(v(42)
<=0).and.(v(136)<=0).and.(v(41)<=0).and.(v(135)<=0).and.(v(40)<=0).a
nd.(v(134)==0).and.(v(15)==0).and.(v(133)==0).and.(v(1005)==0).and.(
(v(5)>=0).or.(v(4)<=0).or.(v(14)<=0)).and.((v(5)>=0).or.((v(4)==0).o
r.(v(14)==0)).or.(v(3)<=0).or.(v(13)<=0)).and.((v(5)>=0).or.((v(4)==
0).or.(v(14)==0).or.(v(3)==0).or.(v(13)==0)).or.(v(2)<=0).or.(v(12)<
=0)).and.((v(5)>=0).or.((v(4)==0).or.(v(14)==0).or.(v(3)==0).or.(v(1
3)==0).or.(v(2)==0).or.(v(12)==0)).or.(v(1)<=0).or.(v(11)<=0)): 
 
Table A.5 SIMAN View of train movement logic at the dummy station dS51 

0$            STATION,       dS51:1$; 
1$            ASSIGN:        TrainArrivalTime(Train#,15)=tnow:2$; 
2$            BRANCH,        1: 
                             If,ToStation==5:3$; 
                             If,ToStation==15:3$; 
                             If,ToStation==6:4$; 
                             If,ToStation==16:4$; 
3$            SCAN:          v(1135)==0:5$; 
4$            SCAN:          v(1136)==0:5$; 
5$            ASSIGN:        TrainDepartureTime(Train#,15)=tnow:6$; 
6$            BRANCH,        1: 
                             If,ToStation==5:7$; 
                             If,ToStation==15:8$; 
                             If,ToStation==6:9$; 
                             If,ToStation==16:9$; 
7$            TRANSPORT:     TrainFleet,S5_1,unif(23.6,26.4); 
8$            TRANSPORT:     TrainFleet,S5_2,unif(23.6,26.4); 
9$            TRANSPORT:     TrainFleet,dS52,unif(23.6,26.4); 
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Table A.6 Framework of the SimGAb 

Begin SimGAb 
 
Generate INITIAL POPULATION (Sub steps are given in Table 5.1) 
Rank the initial population 
Select best of the initial population 
 
GN; generation number 
maxGN; maximum generation number 
From GN = 1 to GN = maxGN 
     CROSSOVER (Sub steps are given in Table 5.2) 
     MUTATION (Sub steps are given in Table 5.3) 
     Rank the population 
          The current population includes; individuals from the previous generation population, 
          children and mutated child(ren) 
     Select best of the population 
     LOCAL SEARCH on the best 
     Search neighbours of the best chromosome  
     bChr(GN); the best chromosome in the current generation 
     bChr(GN) = [ i1, i2, i3, i4, i5, i6, i7, i8, i9 ] 
          From p =1 to p = 9 
               ip; the gene related with pth decision point 
                    If ip = 1 change the value to 2 
                    If ip = 2 change the value to 1 
                    If ip = 3 change the value to 4 
                    If ip = 4 change the value to 3 
                    If ip = 5 change the value to 6 
                    If ip = 6 change the value to 5 
                         nbChr(GN, p); pth neighbour of the best chromosome 
                         Rearrange the simulation model (Sub steps are given in Table 5.1) 
                         Run the rearranged simulation model (Sub steps are given in Table 5.1) 
                         Calculate the fitness value 
               Next p 
     Rank the population 
          The current population includes; individuals from the previous generation population, 
          children, mutated child(ren) and nine neighbours of the best chromosome 
     Select best of the population 
     Check TERMINATION CRITERIA (Sub steps are given in Table 5.4) 
     Form the population of the next generation 
Next GN 
 
Stop SimGAb 
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Table A.7 Framework of the SimGAfs 

Begin SimGAfs 
 
Generate INITIAL POPULATION (Sub steps are given in Table 5.1) 
Rank the initial population 
Select best of the initial population 
 
GN; generation number 
maxGN; maximum generation number 
From GN = 1 to GN = maxGN 
     CROSSOVER (Sub steps are given in Table 5.2) 
     MUTATION (Sub steps are given in Table 5.3) 
     Rank the population 
          The current population includes; individuals from the previous generation population, 
          children and mutated child(ren) 
     Select best of the population 
     LOCAL SEARCH on the best (Sub steps are given in Table A.6) 
     Select the second best of the population 
          Record the second best fitness value and related chromosome 
     LOCAL SEARCH on the second best 
     Search neighbours of the second best chromosome  
     sbChr(GN); the second best chromosome in the current generation 
     sbChr(GN) = [ i1, i2, i3, i4, i5, i6, i7, i8, i9 ] 
          From p =1 to p = 9 
               ip; the gene related with pth decision point 
                    If ip = 1 change the value to 2 
                    If ip = 2 change the value to 1 
                    If ip = 3 change the value to 4 
                    If ip = 4 change the value to 3 
                    If ip = 5 change the value to 6 
                    If ip = 6 change the value to 5 
               nsbChr(GN, p); pth neighbour of the second best chromosome 
               Rearrange the simulation model (Sub steps are given in Table 5.1) 
               Run the rearranged simulation model (Sub steps are given in Table 5.1) 
               Calculate the fitness value 
          Next p 
     Rank the population 
          The current population includes; individuals from the previous generation population, 
          children, mutated child(ren), nine neighbours of the best chromosome, and nine 
          neighbours of the second best chromosome 
     Select best of the population 
     Check TERMINATION CRITERIA (Sub steps are given in Table 5.4) 
     Form the population of the next generation 
Next GN 
 
Stop SimGAfs 
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Table A.8 Framework of the SimGAbw 

Begin SimGAbw 
 
Generate INITIAL POPULATION (Sub steps are given in Table 5.1) 
Rank the initial population 
Select best of the initial population 
 
GN; generation number 
maxGN; maximum generation number 
From GN = 1 to GN = maxGN 
     CROSSOVER (Sub steps are given in Table 5.2) 
     MUTATION (Sub steps are given in Table 5.3) 
     Rank the population 
          The current population includes; individuals from the previous generation population, 
          children and mutated child(ren) 
     Select best of the population 
     LOCAL SEARCH on the best (Sub steps are given in Table A.6) 
     Select the worst of the population 
          Record the worst fitness value and related chromosome 
     LOCAL SEARCH on the worst 
     Search neighbours of the worst chromosome  
     wChr(GN); the worst chromosome in the current generation 
     wChr(GN) = [ i1, i2, i3, i4, i5, i6, i7, i8, i9 ] 
          From p =1 to p = 9 
               ip; the gene related with pth decision point 
                    If ip = 1 change the value to 2 
                    If ip = 2 change the value to 1 
                    If ip = 3 change the value to 4 
                    If ip = 4 change the value to 3 
                    If ip = 5 change the value to 6 
                    If ip = 6 change the value to 5 
               nwChr(GN, p); pth neighbour of the worst chromosome 
               Rearrange the simulation model (Sub steps are given in Table 5.1) 
               Run the rearranged simulation model (Sub steps are given in Table 5.1) 
               Calculate the fitness value 
          Next p 
     Rank the population 
          The current population includes; individuals from the previous generation population, 
          children, mutated child(ren), nine neighbours of the best chromosome, and nine 
          neighbours of the worst chromosome 
     Select best of the population 
     Check TERMINATION CRITERIA (Sub steps are given in Table 5.4) 
     Form the population of the next generation 
Next GN 
 
Stop SimGAbw 
 

 

 



 

 

Table A.9 Results of the algorithms 

    SimGA SimGAb SimGAfs SimGAbw 
 PS CR MR Chromosome Fitness GN Chromosome Fitness GN Chromosome Fitness GN Chromosome Fitness GN 

1 10 0.4 0.1 6,3,4,2,4,4,4,1,4 20742.93 25 1,3,1,2,2,4,4,1,4 20742.93 56 1,6,4,2,4,1,5,3,5 20742.93 2 6,3,4,2,2,4,4,3,5 20742.93 3 
2 10 0.4 0.2 1,3,1,2,4,4,5,6,4 20742.93 16 1,3,1,2,4,4,4,1,4 20742.93 29 1,3,1,2,4,4,4,1,4 20742.93 29 1,3,1,2,4,1,4,6,5 20742.93 20 
3 10 0.4 0.3 1,3,1,2,4,4,2,6,4 20742.93 13 1,3,1,2,4,4,4,1,4 20742.93 28 1,3,1,2,4,4,4,1,4 20742.93 28 1,3,1,2,4,4,4,1,4 20742.93 28 
4 10 0.6 0.1 6,3,4,2,2,4,4,1,4 20742.93 37 1,3,4,2,2,4,4,1,4 20742.93 38 1,3,1,2,2,4,4,1,4 20742.93 34 1,3,1,2,2,4,4,1,4 20742.93 34 
5 10 0.6 0.2 1,3,5,2,4,4,5,1,4 20742.93 27 1,3,1,2,2,4,4,1,4 20742.93 27 1,3,1,2,2,4,4,1,4 20742.93 27 1,3,1,2,2,4,4,1,4 20742.93 27 
6 10 0.6 0.3 6,3,4,2,2,5,5,1,4 20742.93 13 1,3,1,2,2,4,4,1,4 20742.93 18 1,3,4,2,2,4,4,1,4 20742.93 23 6,3,1,2,4,1,4,6,5 20742.93 5 
7 10 0.8 0.1 6,3,5,2,4,4,5,3,4 20742.93 31 6,3,4,2,2,4,4,1,4 20742.93 14 6,3,4,2,2,4,4,1,4 20742.93 14 1,3,1,2,4,1,4,6,2 20753.02 100 
8 10 0.8 0.2 1,6,5,2,4,4,5,1,4 20742.93 20 6,3,4,2,2,4,4,1,4 20742.93 9 6,3,1,2,2,4,4,1,4 20742.93 16 6,3,4,2,4,1,4,6,5 20742.93 8 
9 10 0.8 0.3 6,3,4,2,2,4,4,1,4 20742.93 6 6,3,1,2,2,4,4,1,4 20742.93 7 6,3,1,2,2,4,4,1,4 20742.93 7 1,3,1,2,4,1,5,6,4 20742.93 14 

10 20 0.4 0.1 6,3,1,2,2,4,2,6,4 20742.93 19 6,3,5,2,2,1,2,6,4 20742.93 9 6,6,5,2,2,1,2,6,4 20742.93 9 6,3,5,2,2,1,2,6,4 20742.93 9 
11 20 0.4 0.2 3,6,5,2,5,4,4,1,4 20742.93 12 6,3,1,2,5,4,4,1,4 20742.93 19 6,3,5,2,2,1,2,1,4 20742.93 6 6,3,5,2,2,4,4,1,4 20742.93 6 
12 20 0.4 0.3 6,3,1,2,5,1,4,6,4 20742.93 13 6,3,4,2,2,1,2,6,4 20742.93 6 6,3,5,2,2,1,4,1,4 20742.93 5 6,3,4,2,2,1,2,6,4 20742.93 6 
13 20 0.6 0.1 6,3,1,2,4,4,5,1,4 20742.93 17 1,3,1,2,2,1,5,6,4 20742.93 27 1,3,1,2,2,1,5,6,4 20742.93 27 1,3,1,2,2,1,5,6,4 20742.93 27 
14 20 0.6 0.2 6,3,5,2,5,1,2,1,4 20742.93 15 6,6,5,2,2,1,2,6,4 20742.93 7 6,3,5,2,2,1,2,6,4 20742.93 6 6,6,5,2,2,1,2,1,4 20742.93 7 
15 20 0.6 0.3 1,3,1,2,4,4,5,1,5 20742.93 24 6,3,5,2,2,1,2,6,4 20742.93 9 6,3,5,2,2,5,2,6,4 20742.93 8 6,3,5,2,2,1,2,6,4 20742.93 9 
16 20 0.8 0.1 6,3,5,2,2,1,2,1,4 20742.93 10 6,6,5,2,2,1,2,6,4 20742.93 16 6,3,5,2,2,1,2,6,4 20742.93 7 6,3,5,2,2,1,2,6,4 20742.93 7 
17 20 0.8 0.2 3,3,5,2,4,1,5,6,4 20742.93 17 6,6,5,2,2,1,2,6,4 20742.93 8 6,6,5,2,2,1,5,6,4 20742.93 8 6,3,4,2,2,1,2,6,4 20742.93 3 
18 20 0.8 0.3 1,3,1,2,4,5,4,6,4 20742.93 9 6,3,5,2,2,1,2,6,4 20742.93 5 6,6,5,2,2,1,2,6,4 20742.93 6 6,3,5,2,2,1,2,6,4 20742.93 6 
19 30 0.4 0.1 6,3,4,2,5,1,2,1,4 20742.93 12 6,3,1,2,4,4,4,1,4 20742.93 30 6,3,1,2,4,4,4,1,4 20742.93 30 6,3,1,2,4,4,4,1,4 20742.93 30 
20 30 0.4 0.2 6,3,4,2,4,5,2,6,4 20742.93 7 1,6,5,2,4,4,4,1,4 20742.93 14 3,6,5,2,2,1,2,6,5 20742.93 9 6,3,4,2,4,4,4,1,4 20742.93 7 
21 30 0.4 0.3 6,3,1,2,4,1,2,1,4 20742.93 7 6,3,4,2,4,4,4,1,4 20742.93 3 6,3,4,2,4,4,2,1,4 20742.93 3 6,3,4,2,4,4,4,1,4 20742.93 3 
22 30 0.6 0.1 6,3,4,2,4,1,2,1,4 20742.93 24 6,3,4,2,4,4,4,1,4 20742.93 24 6,3,4,2,4,4,4,1,4 20742.93 7 6,3,4,2,4,4,4,1,4 20742.93 24 
23 30 0.6 0.2 6,3,5,2,2,4,2,1,4 20742.93 7 6,3,5,2,2,1,2,1,4 20742.93 3 6,3,4,2,4,4,4,1,4 20742.93 3 6,3,4,2,4,4,4,6,4 20742.93 4 
24 30 0.6 0.3 6,3,5,2,4,1,2,3,4 20742.93 8 6,3,4,2,4,4,4,1,4 20742.93 4 6,3,4,2,4,4,4,1,4 20742.93 3 6,3,4,2,4,4,4,1,4 20742.93 4 
25 30 0.8 0.1 6,3,5,2,4,4,2,3,4 20742.93 6 1,6,4,2,2,5,2,3,5 20742.93 10 6,6,5,2,2,1,4,1,4 20742.93 10 1,6,1,2,2,5,2,6,5 20742.93 38 
26 30 0.8 0.2 6,3,1,2,5,4,2,3,4 20742.93 11 6,3,4,2,2,1,2,6,5 20742.93 6 6,3,4,2,4,4,2,6,5 20742.93 9 6,3,5,2,2,5,5,6,5 20742.93 4 
27 30 0.8 0.3 6,3,4,2,4,1,2,3,4 20742.93 12 6,3,4,2,4,4,5,1,4 20742.93 7 6,3,4,2,5,4,4,1,4 20742.93 4 6,3,4,2,4,4,4,1,4 20742.93 7 
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Figure A.3 Best fitness values of the generations for 10/0.4/0.1  
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Figure A.4 Best fitness values of the generations for 10/0.4/0.2  
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Figure A.5 Best fitness values of the generations for 10/0.4/0.3  
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Figure A.6 Best fitness values of the generations for 20/0.4/0.2 
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Figure A.7 Best fitness values of the generations for 20/0.6/0.2 
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Figure A.8 Best fitness values of the generations for 20/0.8/0.2 
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         Figure A.9 Best fitness values of the generations for 10/0.8/0.1 
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Figure A.10 Best fitness values of the generations for the 20/0.8/0.1 
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             Figure A.11 Best fitness values of the generations for 30/0.8/0.1 

 



 

 

Table A.10 Articles on TrnSchPrb in chronological order 

No Author(s) Reference(s) Citation(s) Problem Infrastructure Objective(s) Model  Solution  
 (year)   type railway station  structure(s) approach(es) 
1 Frank(1) 

(1966) 
 (6, 7, 10, 13, 

28, 55, 61, 
87, 106, 135, 
138, 139, 140) 
 

railway 
planning 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

double 
tracked 

to find the optimum 
traffic system that 
maximizes the traffic 
capacity 

analytic 
model 

solution on 
a set of theorems 

2 Salzborn(1) 
(1969) 

 (10, 12, 55, 64) suburban 
railway 
timetabling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

no clear 
information 
 

to find stop-schedules 
with minimum number 
of carriage miles 
or 
to find stop-schedules 
with minimum number 
of passenger stops 

mathematical 
model 

dynamic 
programming 
algorithm 

3 Nemhauser(1) 
(1969) 

 (10, 11, 12,  
55, 64) 

train 
scheduling 
problem 
scheduling 
(timetabling) 

unrestricted 
tracked 
line 

no clear 
information 
 

to find a schedule that 
yields maximum total 
profit 

mathematical 
model 

dynamic 
programming 
algorithm 

4 Amit(1), 
Goldfarb(1) 
(1971) 

 (7, 10, 61, 87, 
106, 138, 139) 

railway 
timetabling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

no clear 
information 

to minimize the  
overall passage time 
of trains 

nonlinear 
programming 
model 

heuristic  
algorithm 
based on one  
train at a time 

5 Szpigel(1) 
(1973) 

 (7, 10, 22, 23, 28, 
34, 37, 42, 43, 53,
55, 57, 61, 62, 70,
72, 74, 79, 87, 94,
101, 103, 105, 
106, 114, 115, 
127, 131, 139) 
 
 

train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

double 
tracked 

to minimize the 
weighted average of  
train travel times 

linear 
programming 
model 
programmed 
in FORTRAN 

branch and bound 
algorithm, 
dual simplex 
algorithm 

139 



 

 

6 Petersen(1) 
(1974) 

1 
 

(7, 10, 13, 28, 
55, 57, 83, 106) 
 

railway 
planning 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

no clear 
information 
 

to estimate the 
congestion delays 
and the interaction 
between different 
types of trains 

analytic 
model 

solution on 
a set of linear 
equations 

7 Wong(1), 
Rosser(1) 
(1978) 
 

1, 4, 5, 6 
 

 train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

double or 
quadruple 
tracked 

to minimize the sum  
of weighted costs of   
delaying trains at  
passing loops 

simulation  
model 
programmed 
in FORTRAN  
 

iterative heuristic  
procedure 
based on one  
train at a time 

8 Cury(1), 
Gomide(1), 
Mendes(1) 
(1979) 
 

9 
 

(9) metro line 
scheduling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

double 
tracked 

to minimize the 
total cost  

analytic  
model 

hierarchical 
multilevel 
method 

9 Cury(2), 
Gomide(2), 
Mendes(2) 
(1980) 

8  
 

(8, 15, 32, 41, 
47, 56, 86, 106) 

metro line 
scheduling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

double 
tracked 

to minimize the 
total cost  

analytic  
model 

hierarchical 
multilevel 
method 

10 Assad(1) 
(1980) 
 

1, 2, 3, 
4, 5, 6 
 

(20, 27, 28,37, 40,
55, 57, 61, 62, 64,
75, 81, 83, 87, 94,
99, 101, 102, 106,
115, 126,  
135, 139) 

 
     reported on the literature models for rail transportation 

11 Petersen(2), 
Merchant(1) 
(1981) 
 

3 
 

(70, 74) 
 

train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

no clear 
information 

to minimize the 
train operating cost 

linear 
programming 
model 

dynamic 
programming 
algorithm, 
branch and bound 
algorithm, 
heuristic 
algorithm 
 

140 



 

 

12 Assad(2) 
(1982) 

2, 3 
 

(55, 64) 
 

train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

no clear 
information 
 

to minimize total 
car-hours of delay 

integer  
programming  
model 
programmed 
in PL/1  

heuristic 
algorithm, 
branch and bound 
algorithm 

13 Petersen(3), 
Taylor(1) 
(1982) 
 

1, 6  
 

(16, 27, 28, 53, 
55, 57, 61, 62, 
63, 79, 87, 97, 
101, 115, 135, 
138, 139) 

moving trains 
over a line  
problem 
scheduling 
(timetabling) 

unrestricted 
tracked 
line 

unrestricted 
tracked 

to minimize the 
terminating times 
of trains 

discrete event 
simulation  
model 
programmed 
in FORTRAN  

heuristic  
algorithm 
based on one  
train at a time 

14 Sauder(1), 
Westerman(1) 
(1983) 
 

 (16, 20, 22, 23,  
24, 27, 28, 34, 37, 
52, 55, 57, 60, 61, 
62, 72, 75, 78, 87,
101, 105, 135) 

train 
dispatching 
problem 
rescheduling 
(dispatching) 

single 
tracked 
network 

double 
tracked 

to minimize total 
train delay 

simulation 
model, 
linear 
programming 
model  

shortest path 
algorithm, 
branch and bound 
algorithm 

15 Araya(1), 
Abe(1), 
Fukumori(1) 
(1983) 
 

9 
 

(17, 19, 30, 31, 
56, 106) 

train traffic 
control 
problem 
rescheduling 
(dispatching) 

double 
tracked 
line 

double 
tracked 

to minimize the 
length of the total 
delay 

zero-one 
mixed integer 
programming 
model, 
linear 
programming 
model, 
knowledge- 
based model 
programmed  
in FORTRAN 

rule-based 
heuristic  
algorithm, 
branch and bound 
algorithm 

16 Petersen(4), 
Taylor(2), 
Martland(1) 
(1986) 
 

13, 14 
 

(22, 23, 24, 28, 
34, 37, 40, 42, 
53, 55, 57, 61, 
79, 81, 87, 105, 
115, 116, 
135, 139) 
 
 

train 
dispatching 
problem 
rescheduling 
(dispatching) 

single 
tracked 
line 

double 
tracked 

to minimize overall 
train delay 

mathematical 
model 

no clear 
information 
 

141 



 

 

17 Fukumori(2), 
Sano(1), 
Hasegawa(1), 
Sakai(1) 
(1987) 

15 (29, 36, 38, 41, 
44, 47, 56) 

train 
scheduling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

double  
or triple 
tracked 

to determine the  
arrival and departure  
times of each train 
at each station 

discrete event 
model  
programmed 
in FORTRAN 
 

diagram 
rough-sketching 
algorithm 

18 Kraft(1) 
(1987) 
 

 (28, 42, 43, 55, 
76, 77, 78, 79, 
84, 94, 105) 

train 
dispatching 
problem 
rescheduling 
(dispatching) 

single 
or double 
tracked 
line 

no clear 
information 

to minimize  
weighted average  
of train delays 

simulation 
model 
programmed 
in FORTRAN 
 

branch and bound 
based dispatching  
algorithm 

19 Tsuruta(1), 
Matsumoto(1) 
(1988) 
 

15 (36, 56, 58, 59) subway train 
scheduling 
problem 
scheduling 
(timetabling) 

no clear 
information 
 

no clear 
information 

to generate a  
balanced train 
schedule 

knowledge- 
based model 
programmed 
in C  

rule-based 
approach 

20 Jovanovic(1), 
Harker(1) 
(1989) 
 

10, 14, 27 
 

(27, 28) 
  

train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
network 

double 
tracked 

to find all or the  
prespecified number 
of feasible solution 

mixed integer 
programming 
model  
programmed  
in PASCAL 

branch and bound 
algorithm 

21 Smith(1), 
Patel(1), 
Resor(1),  
Kondapalli(1) 
(1990) 

 (40) 
 

meet/pass 
planning 
problem 
rescheduling 
(dispatching) 

no clear 
information 
line 

no clear 
information 

to meet required 
running times while  
minimizing fuel 
consumption 

simulation model,
mixed integer 
nonlinear 
programming 
model 

a meet/pass 
planning  
algorithm 

22 Jovanovic(2), 
Harker(2), 
(1990) 
 

5, 14, 16, 
23, 28  
 

(23, 40, 55, 61, 
105, 106) 

train 
dispatching 
problem 
rescheduling 
(dispatching) 
 
 
 
 

 
     presented a methodological framework for the role of  
     computer-aided train-dispatching systems 
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23 Jovanovic(3), 
Harker(3), 
(1991a) 
 

5, 14, 16, 
22, 28  

(22, 40, 67) train 
dispatching 
problem 
rescheduling 
(dispatching) 

 
     presented a methodological framework for the role of  
     computer-aided train-dispatching systems 

24 Mills(1), 
Perkins(1), 
Pudney(1) 
(1991) 
 

14, 16,  
25, 28 
 

(42, 43, 50, 52, 
53, 79, 97) 
 

train 
scheduling 
problem 
rescheduling 
(dispatching) 

single 
or double 
tracked 
line 

double 
tracked 

to minimize the  
overall cost of 
train lateness and 
energy consumption 

nonlinear 
programming 
model 
programmed 
in PASCAL 
and GAMS 

discrete dynamic 
rescheduling 
algorithm 
based on one  
train at a time 

25 Mees(1) 
(1991) 
 

 (24, 26, 33, 42,  
53, 54, 57, 63, 67,
79, 97, 110, 133) 

railway 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
network 

double 
tracked 

to minimize the 
total cost 

integer linear 
programming 
model 

modified 
shortest path 
algorithm 

26 Goh(1), 
Mees(2) 
(1991) 
 

25 (33, 53, 57, 
79, 97) 

train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
network 

double 
tracked 

to minimize total 
fuel consumption 

mixed integer 
nonlinear 
programming 
model 

shortest path 
algorithm 

27 Jovanovic(4), 
Harker(4) 
(1991b) 
 

10, 13, 
14, 20 
 

(20, 28, 34, 37, 
40, 42, 53, 55, 58,
59, 60, 62, 67, 70,
74, 75, 78, 79, 81,
83, 87, 103, 114, 
115, 116, 122,  
127, 131, 138, 
139, 140) 
 
 
 
 
  

train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
network 

double 
tracked 

to find all or the  
prespecified number 
of feasible solution 

mixed integer 
programming 
model 
programmed 
in PASCAL 
 

branch and bound 
algorithm 
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28 Kraay(1), 
Harker(5), 
Chen(1) 
(1991) 
 

1, 5, 6, 10, 
13, 14, 16, 
18, 20, 27 
 

(22, 23, 24, 34, 
37, 40, 42, 43, 50,
53, 55, 57, 61, 62,
69, 75, 78, 79, 81,
83, 87, 116, 120, 
133, 135, 138, 
139, 140) 

train 
pacing 
problem 
rescheduling 
(dispatching) 

single 
tracked 
line  

double 
tracked 

to minimize total 
fuel consumption 

mixed integer 
nonlinear 
programming 
model 

implicit  
enumeration 
algorithm, 
set generation 
algorithm, 
heuristic rounding 
procedure 
based on one  
train at a time 

29 Iyer(1), 
Ghosh(1) 
(1991) 
 

17, 38 
 

(38) 
 
 

railway 
scheduling 
problem 
rescheduling 
(dispatching) 

single 
tracked 
network 

no clear 
information 

to minimize cost simulation 
model 
programmed 
in C 

distributed 
decision-making 
algorithm 
 

30 Komaya(1), 
Fukuda(1) 
(1991) 
 

15 (32, 36, 41, 44 
47, 56, 58, 59, 
101, 102, 106, 
126, 135, 139) 

railway 
scheduling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

no clear 
information 
line 

no clear 
information 
 

to minimize total 
delay time  

simulation 
model, 
knowledge- 
based model 
programmed 
in C 

rule-based 
approach 

31 Bai-gen(1), 
Ju-zhen(1) 
(1993) 
 

15 
 

 train 
dispatching 
problem 
rescheduling 
(dispatching) 

no clear 
information 
 

no clear 
information 
 

to find a feasible 
solution 

simulation 
model, 
knowledge- 
based model 
programmed  
in C 

rule-based 
approach 

32 Chiang(1), 
Hau(1) 
(1993) 
 
 

9, 30 
 

(41, 47, 56) railway 
scheduling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

quadruple 
tracked 

to generate a feasible 
local schedule 

simulation 
model, 
knowledge- 
based model 
 

rule-based 
approach, 
constraint 
propagation 
technique 
 
 

144 



 

 

33 Cai(1), 
Goh(2) 
(1994) 
 
 

25, 26 
 

(43, 50, 54, 57, 
62, 63, 66, 67, 70,
74, 79, 97, 100, 
103, 106, 110, 
114, 123, 127, 
131, 133) 

train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line  

double 
tracked 

to minimize the 
total cost  

integer  
programming  
model 

heuristic  
algorithm 
based on one  
train at a time 

34 Carey(1) 
(1994a) 
 
 

5, 14, 16, 
27, 28, 
35, 37 
 

(35, 37, 51, 55, 
58, 59, 63, 81, 87,
99, 100, 101, 115,
116, 124, 125, 
128, 139, 140) 

train 
pathing 
problem 
scheduling 
(timetabling) 

double 
or more 
tracked 
network  

double  
or  more 
tracked 

to minimize the cost 
 

zero-one 
mixed integer 
programming 
model 
programmed 
in GAMS 

heuristic algorithm 
based on one train 
at a time, 
branch and bound 
algorithm 

35 Carey(2) 
(1994b) 
 
 

34, 37 
 

(34, 37, 55, 58, 
59, 81, 101, 115, 
116, 139, 140) 

train 
pathing 
problem 
scheduling 
(timetabling) 

single 
tracked 
network 

double 
or more 
tracked 

to minimize the cost 
 

zero-one 
mixed integer 
programming 
model 
programmed 
in GAMS 

heuristic algorithm 
based on one train 
at a time, 
branch and bound 
algorithm  

36 Lin(1), 
Hsu(1), 
(1994) 
 
 

17, 19, 30 
 

(44, 59, 97, 101) train 
scheduling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

single 
or double 
tracked 
line 

no clear 
information 

to minimize the 
delay time 

knowledge- 
based model 
programmed  
in C 

rule-based 
approach 

37 Carey(3), 
Lockwood(1) 
(1995) 
 
 

5, 10, 14, 
16, 27, 28,  
34, 35  
 

(34, 35, 53, 55, 
58, 59, 62, 66, 67,
68, 70, 74, 75, 80,
81, 87, 97, 101, 
103, 106, 114, 
115, 116, 127,  
128, 131, 133,  
138, 139, 140) 

train 
pathing 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

no clear 
information 

to minimize the cost 
 

zero-one 
mixed integer 
programming 
model 
programmed 
in FORTRAN 
and 
GAMS/ZOOM 
 

heuristic algorithm 
based on one train 
at a time, 
depth-first 
branching based 
branch and bound 
algorithm  145 



 

 

38 Iyer(2), 
Ghosh(2) 
(1995) 
 
 

17, 29 
 

(29, 76, 84, 
101, 126) 

railway 
scheduling 
problem 
rescheduling 
(dispatching) 

single 
tracked 
network 

no clear 
information 

to minimize cost simulation 
model 
programmed 
in C 

distributed 
decision-making 
algorithm 
 

39 Schaefer(1) 
(1995) 
 
 

 (58, 59) 
 

train 
dispatching 
problem 
rescheduling 
(dispatching) 

single 
or double 
tracked 
line 

double 
tracked 

to minimize cost simulation 
model 

greedy  
algorithm 
 

40 Kraay(2), 
Harker(6) 
(1995) 
 
 

10, 16, 21, 
22, 23, 
27, 28  
 

(55, 69, 87, 94, 
101, 106, 115,  
118, 138,  
139, 140) 
 
 

train 
scheduling 
problem 
rescheduling 
(dispatching) 

single 
or double 
tracked 
network 

triple or 
fivefold 
tracked 
 

to minimize the time 
based objective  
function  

mixed integer 
nonlinear 
programming 
model 

simplicial 
decomposition 
algorithm, 
network flow 
solution algorithm, 
heuristic rounding 
procedure based on 
one train at a time, 
local search 
method 

41 Chiang(2), 
Hau(2) 
(1995) 
 
 

9, 17, 30, 32 
 

(44, 47, 56, 102) railway 
scheduling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

quadruple 
tracked 

to minimize the total  
running time and the  
start time deviation  
of each train 

mathematical 
model 

local search 
based route 
preprocessing 
algorithm, 
tabu search / 
simulated 
annealing and 
earliest-conflict 
-first based  
iterative 
repair algorithm 
 
 
 
 

146 



 

 

42 Higgins(1), 
Kozan(1), 
Ferreira(1) 
(1996) 
 

5, 16, 18, 
24, 25, 
27, 28 
 

(43, 50, 55, 62, 
64, 66, 79, 83, 87,
94, 97, 110, 115, 
133, 138, 
139, 140) 

train 
scheduling 
problem 
rescheduling 
(dispatching) 

single 
or double 
tracked 
line 

double 
tracked 

to minimize the cost 
function includes fuel  
consumption and 
train delays 

mixed integer 
nonlinear 
programming 
model  
programmed 
in FORTRAN 

branch and bound 
algorithm, 
tabu search 
 

43 Ferreira(2), 
Higgins(2), 
(1996) 

5, 18, 24, 
28, 33, 42 
 

 train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

double 
tracked 

to minimize train 
trip times, while 
maximising reliability 
of arrival times 

mathematical 
model 

branch and bound 
algorithm 

44 Chiu(1), 
Chou(1), 
Lee(1), 
Leung(1), 
Leung(1) 
(1996) 

17, 30, 
36, 41 
 

(63, 79, 97, 123) 
 

train 
scheduling 
problem 
rescheduling 
(dispatching) 

single 
tracked 
line 

no clear 
information 

to minimize 
passenger delay and 
the number of  
station visit  
modifications 

constraint 
satisfaction 
model  
programmed 
in C++ 

propagation 
based constraint  
solver,  
heuristic  
algorithm 
 

45 Odijk(1) 
(1996) 
 

 (51, 55, 71, 81, 
82, 89, 95, 99, 
114, 116, 119, 
124, 125, 127, 
129, 131) 

periodic 
railway 
timetabling 
problem 
scheduling 
(timetabling) 

no clear 
information 
 

multiple 
tracked 

to find a feasible 
timetable structure 

mathematical 
model  
programmed 
in PASCAL 

cut generation  
algorithm 

46 Nachtigall(1), 
Voget(1) 
(1996) 
 

 (55, 82, 99, 106, 
114, 119, 125,  
129, 131) 

periodic 
railway 
scheduling 
problem 
scheduling 
(timetabling) 

double 
tracked 
network 

no clear 
information 

to minimize waiting 
time for passengers 
changing trains 

mathematical 
model  
programmed  
in C++ 

greedy heuristic , 
local 
improvement 
procedure, 
genetic algorithms 

47 Chiang(3), 
Hau(3) 
(1996) 
 

9, 17, 30, 
32, 41  
 

(56) 
 

railway 
scheduling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

quadruple 
tracked 

to minimize the total  
running time and the  
start time deviation  
of each train 

mathematical 
model 

earliest-conflict 
-first based  
iterative 
repair algorithm 147 



 

 

48 Kreuger(1), 
Carlsson(1), 
Olsson(1), 
Sjöland(1), 
Aström(1) 
(1997a) 

 (66, 69, 98, 123) train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
network 

no clear 
information 

to schedule a set of 
train trips over a fixed 
network of 
predetermined paths 

constraint  
model 
programmed 
in OZ 

constraint  
solver 

49 Kreuger(2), 
Carlsson(2), 
Olsson(2), 
Sjöland(2), 
Aström(2) 
(1997b) 

 (85, 90, 91, 
92, 121) 

train 
scheduling 
problem 
scheduling 
(timetabling)  

single 
tracked 
network 

no clear 
information 

to schedule a set of 
train trips over a fixed 
network of 
predetermined paths 

constraint  
model 
programmed 
in OZ 

constraint  
solver 

50 Higgins(3), 
Kozan(2), 
Ferreira(3) 
(1997) 
 
 

24, 28, 
33, 42  
 

(62, 67, 70, 74, 
83, 97, 101, 102, 
103, 106, 114, 
127, 131,  
136, 138) 

train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 

double 
tracked 

to minimize the total 
weighted travel time 

mathematical 
model 

local search 
heuristic, 
genetic algorithms, 
branch and bound 
algorithm, 
tabu search, 
hybrid algorithms 

51 Bussieck(1), 
Winter(1), 
Zimmermann(1) 
(1997) 

34, 45 
 

(55, 64, 79, 85, 
87, 89, 90, 91, 92,
95, 96, 101, 114, 
119, 121, 129) 

 
     focused on some new aspects of the planning process, and on some new results which lead to 
     more comprehensive planning and optimization of railroad network systems 

52 Hellström(1), 
Frej(1), 
Gideon(1), 
Sandblad(1) 
(1997) 

14, 24 
 

  
     performed a survey  on a set of interviews of train 
     dispatchers and other experts on train traffic control 

53 Ferreira(4) 
(1997) 

5, 13, 16, 
24, 25, 26, 
27, 28, 37  
 

  
     reviewed some of the research effort designed to provide rail planners 
     with optimization and simulation based tools to undertake train planning, 
     train and locomotive scheduling, as well as track maintenance planning 
 
 

148 



 

 

54 Salim(1), 
Cai(2) 
(1997) 
 

25, 33 
 

(101) railway/train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 
 

unrestricted 
tracked 

to minimize the 
cost of stopping and 
waiting for trains 

genetic 
model 

genetic 
algorithms 

55 Cordeau(1), 
Toth(1), 
Vigo(1) 
(1998) 

1, 2, 3, 5, 6, 
10, 12, 13, 
14, 16, 18, 
22, 27, 28, 
34, 35, 37, 
40, 42, 45, 
46, 51, 60 
 

(68, 75, 76, 77, 
78, 79, 81, 83, 84,
85, 87, 89, 94, 95,
99, 101, 102, 105,
106, 107, 108, 
109, 113, 114,  
115, 116, 120,  
121, 126, 
128, 139) 

 
     presented a survey of optimization models for the most commonly 
     studied rail transportation problems 

56 Chiang(4), 
Hau(4), 
Chiang(1), 
Ko(1), 
Hsieh(1) 
(1998) 

9, 15, 17, 
19, 30, 32, 
41, 47 
 

(98, 101, 106) railway/train 
scheduling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

single 
or double 
tracked 
network  

multiple 
tracked 

to minimizing the 
number of constraint 
violations and the 
average stopover time 
of trains 

knowledge- 
based system  
model 
programmed 
in C  
 

earliest-conflict 
-first based  
iterative 
repair algorithm 

57 Cai(3), 
Goh(3), 
Mees(3) 
(1998) 
 

5, 6, 10, 13,  
14, 16, 25, 
26, 28, 33 

(101, 102, 115, 
128, 139) 

train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
network 

double 
tracked 

to minimize the 
total cost due to train 
stopping and waiting 

integer  
programming  
model 

greedy heuristic  
algorithm 
based on one  
train at a time 

58 Cheng(1) 
(1998a) 
 
 

19, 27, 30, 
34, 35, 
37, 39 
 

(101, 106,  
126, 135) 

train traffic 
rescheduling 
problem 
rescheduling 
(dispatching) 
 
 
 

double 
tracked 
line 
 

no clear 
information 

to minimize the total 
delay of trains 

simulation 
model 

hybrid  
algorithm 
 

149 



 

 

59 Cheng(2) 
(1998b) 

19, 27, 30, 
34, 35, 36, 
37, 39  
 

 train traffic 
control 
problem 
rescheduling 
(dispatching) 

double 
tracked 
line 
 

no clear 
information 

to confirm the  
applicability of a  
train traffic schedule 

simulation 
model 
programmed 
in NEXPERT  
OBJECT  

rule-based 
heuristic  
algorithm 

60 Brännlund(1), 
Lindberg(1), 
Nou(1), 
Nilsson(1) 
(1998) 

14, 27 
 

(55, 70, 74, 75,  
94, 97, 101, 103, 
114, 115, 127, 
130, 138,  
139, 140) 

railway 
timetabling 
problem 
scheduling 
(timetabling) 
 

single 
tracked 
line 

double  
or  more 
tracked 

to maximize the  
total profit 

integer  
programming  
model 
programmed 
in MATLAB, 
C and FORTRAN

Lagrangian 
relaxation 
heuristic algorithm 
based on one train  
at a time 

61 Şahin(1) 
(1999) 
 
 

1, 4, 5, 10, 
13, 14, 16, 
22, 28 
 

(66, 67, 79, 87,  
98, 101, 102,  
105, 115, 120, 
126, 128, 135,  
138, 139) 

railway 
traffic  
control and 
train 
scheduling 
problem 
rescheduling 
(dispatching) 

single 
tracked 
line 

double  
or  more 
tracked 

to minimize the sum 
of deviation of the  
expected arrival  
times of trains from 
their scheduled  
times within 
a pre-specified 
time horizon 

zero-one 
mixed integer 
programming 
model, 
linear 
programming 
model 
programmed 
in BASIC, 
simulation 
model 
programmed 
in BASIC 

heuristic  
algorithm 
based on  
one conflict 
at a time 
 

62 Adenso-Diaz(1), 
Gonzalez(1), 
Gonzalez-Torre(1) 
(1999) 

5, 10, 13, 
14, 27, 28, 
33, 37,  
42, 50 

(94, 102, 115, 
120, 128, 
138, 139) 

timetable 
rescheduling 
problem 
rescheduling 
(dispatching) 

single 
or double 
tracked 
network 

no clear 
information 

to maximise the  
number of passenger 
transported 

mixed integer 
programming 
model 

heuristic algorithm 
based on  
backtracking, 
branch and bound 
algorithm 

63 Isaai(1), 
Singh(1) 
(2000) 
 
 

13, 25, 33,  
34, 44 
 

(66, 67, 79, 97) train 
scheduling 
problem 
scheduling 
(timetabling) 
 

single 
or double 
tracked 
line 

no clear 
information 

to minimize total 
waiting time of the 
trains 

object-oriented 
model 
programmed in  
BORLAND 
C++ 

constraint-based 
lookahead 
heuristic  
algorithm 

150 



 

 

64 Chang(1), 
Yeh(1), 
Shen(1) 
(2000) 
 

2, 3, 10, 12, 
42, 51 
 

(87, 94) train service 
planning 
problem 
scheduling 
(timetabling) 

no clear 
information 
line 

no clear 
information 

to minimize the  
total operating cost 
and 
to minimize the 
total travel time loss 

multi objective 
linear  
programming 
model 

fuzzy 
approach 

65 Fay(1) 
(2000) 
 
 

 (135) train traffic  
control 
problem 
rescheduling 
(dispatching) 

no clear 
information 
 

no clear 
information 

to ensure optimal 
train traffic performance 
and 
to minimize the impacts 
of schedule deviations 

object-oriented 
simulation 
model, 
fuzzy Petri Net 
model 
programmed in 
VISUAL BASIC

fuzzy Petri Net 
approach 
integrated 
knowledge-based 
decision support 
system 

66 Oliveira(1), 
Smith(1) 
(2000) 
 
 

33, 37, 42, 
48, 61, 63 
 

(90, 91, 92, 
103, 114,  
133, 136) 

railway 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 

infinitive 
tracked 

to minimize the 
total delay 

constraint 
programming 
model 
 

shortest 
processing 
time heuristic 

67 Isaai(2), 
Cassaigne(1) 
(2001) 
 
 

23, 25, 27, 
33, 37, 50, 
61, 63 
 

(102) train 
scheduling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

single 
or double 
tracked 
line 

double 
tracked 

to minimize total 
local waiting time 
summed over all 
the trains 

database model 
programmed in 
MS ACCESS 

knowledge-based 
heuristic algorithm 

68 Isaai(3), 
Singh(2) 
(2001) 
 

37, 55  
 

(100, 101) train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 

double 
tracked 

to minimize total 
waiting time of the 
trains 

object-oriented 
model  
programmed 
in C  
 

constraint-based 
heuristic algorithm, 
hybrid of  the 
constraint-based 
with tabu search, 
hybrid of  the 
constraint-based 
with simulated 
annealing 
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69 Parkes(1), 
Ungar(1) 
(2001) 

28, 40, 48 
 

(93, 104) decentralized 
train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 

infinitive 
tracked 

to maximize the total 
net value 

mixed integer 
programming 
model 
programmed in 
CPLEX 

LP-based 
branch and bound 
algorithm 

70 Caprara(1), 
Fischetti(1), 
Guida(1), 
Monaci(1), 
Sacco(1), 
Toth(2) 
(2001) 

5, 11, 27, 
33, 37, 50, 
60, 74 
 

(80, 90, 91, 92, 
93, 100, 104, 
130, 140) 

train  
timetabling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

infinitive 
tracked 

to maximize sum of 
the profits of the 
scheduled trains 

graph theoretic 
model, 
integer linear 
programming  
model 
programmed 
in C  

Lagrangian 
heuristic algorithm 
based on one train 
at a time 

71 Peeters(1),  
Kroon(1) 
(2001) 

45, 82 
 

(82, 99, 103, 
125, 127) 

cyclic railway 
timetabling 
problem 
scheduling 
(timetabling) 

multiple 
tracked 
network 

no clear 
information 

to minimize  
halting and 
transfer times 

mixed integer 
programming 
model 
programmed in 
CPLEX 

branch and bound 
algorithm 

72 Ping(1), 
Axin(1), 
Limin(1), 
Fuzhang(1) 
(2001) 

5, 14  
 

(101, 102, 126) train 
dispatching 
problem 
rescheduling 
(dispatching) 

double 
tracked 
line 

no clear 
information 

to minimize 
total delay time 

genetic 
model, 
simulation 
model 

genetic 
algorithms 

73 Pacciarelli(1), 
Pranzo(1) 
(2001) 
 
 

 (101, 102,  
106, 136) 

railway 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
network 

double 
tracked 

to find a feasible 
solution 

alternative 
graph 
model 

tabu search 
 

74 Caprara(2), 
Fischetti(2), 
Toth(3) 
(2002) 
 
 

5, 11, 27, 
33, 37,  
50, 60 
 

(70, 89, 93, 
101, 103, 110, 
114, 115, 125, 
127, 129, 130, 
131, 139, 140) 

train  
timetabling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

infinitive 
tracked 

to maximize sum of 
the profits of the 
scheduled trains 

graph theoretic 
model, 
integer linear 
programming  
model 
programmed in C 

Lagrangian 
heuristic algorithm 
based on one train 
at a time 
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75 Newman(1), 
Nozick(1), 
Yano(1) 
(2002) 

10, 14, 27, 
28, 37,  
55, 60  
 

(115)  
     described optimization problems that arise in the rail industry 

76 Medanic(1), 
Dorfman(1) 
(2002a) 
 
 

18, 38, 55  
 

(77, 78, 84) train 
scheduling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

single 
or double 
tracked 
line 

no clear 
information 

to obtain suboptimal 
time-efficient schedules 

discrete 
event 
model 

greedy travel 
advance strategy 
 

77 Medanic(2), 
Dorfman(2) 
(2002b) 
 
 

18, 55, 76 
 

(78, 84) train 
scheduling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

single 
tracked 
line 

no clear 
information 

to obtain suboptimal 
energy-efficient schedules

discrete 
event 
model 

greedy travel 
advance strategy 
 

78 Medanic(3), 
Dorfman(3) 
(2002c) 
 
 

14, 18, 27, 
28, 55,  
76, 77 
 

(84) train 
scheduling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

single 
tracked 
line 

no clear 
information 

to obtain suboptimal 
time-efficient and 
energy-efficient 
schedules 

discrete 
event 
model 

greedy travel 
advance strategy 
 

79 Brucker(1), 
Heitmann(1), 
Knust(1) 
(2002) 
 
 

5, 13, 16, 
18, 24, 25, 
26, 27, 28,  
33, 42, 44, 
51, 55, 
61, 63 
 

 train 
rescheduling 
problem 
rescheduling 
(dispatching) 

single 
tracked 
line 

double 
tracked 

to minimize the maximum
lateness 
or  
to minimize the weighted 
maximum lateness 

graph 
model 
programmed 
in C  
 

reaching  
algorithm, 
iterative 
improvement, 
tabu seach 153 



 

 

80 Kwan(1), 
Mistry(1) 
(2003) 

37, 70 
 

(93, 104, 131) train 
timetabling  
problem 
scheduling 
(timetabling) 

no clear 
information  
network 

double 
tracked 

to minimize the 
weighted sum of 
violations expressed 
in time units 

evolutionary 
model 

co-operating 
co-evolutionary 
algorithm, 
simulated 
annealing 

81 Carey(4), 
Carville(1) 
(2003) 
 
 

10, 16, 27, 
28, 34, 35, 
37, 45, 55 
 

(98, 99, 101, 
114, 116, 124, 
128, 140) 

train 
platforming 
problem 
scheduling 
(timetabling) 

multiple 
tracked 
no clear 
information  
 

multiple 
tracked 

to minimize cost of 
deviations  

set of modules 
programmed 
in C  
 

heuristic algorithm 
based on one train  
at a time 

82 Kroon(2), 
Peeters(2) 
(2003) 
 
 

45, 46, 71 
 

(71, 99, 114, 
115, 119, 125, 
127, 131, 140) 

cyclic railway 
timetabling 
problem 
scheduling 
(timetabling) 

multiple 
tracked 
network 

no clear 
information 

to obtain a feasible 
timetable 

periodic event 
scheduling 
model 
 

decision support 
system 
 

83 Crainic(1) 
(2003) 
 

6, 10, 27, 
28, 42, 
50, 55 

(101)      presented the main freight transportation planning and management issues, briefly reviewed the  
     associated literature, described a number of major developments, and identified trends and challenges 

84 Dorfman(4), 
Medanic(4) 
(2004) 
 
 

18, 38, 55, 
76, 77, 78 
 

(98, 101, 115, 
120, 128, 139) 

train 
scheduling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

single 
or double 
tracked 
network 

double 
tracked 

to obtain suboptimal 
time-efficient and 
energy-efficient 
schedules 

discrete 
event 
model 

greedy travel 
advance strategy 
 

85 Ingolotti(1), 
Barber(1), 
Tormos(1), 
Lova(1),  
Salido(1), 
Abril(1) 
(2004) 
 

49, 51, 55 
 

(101) train 
scheduling 
problem 
rescheduling 
(dispatching) 
 
 

single 
tracked 
network 

no clear 
information 

to minimize the  
traversal time of 
each new train 

model 
programmed 
in C ++ 
 

iterative based 
sequential 
algorithm 
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86 Assis(1), 
Milani(1) 
(2004) 
 
 

9 
 

(132, 134) metro line 
train time 
scheduling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

double 
tracked 

to minimize the  
performance index  
 

linear 
programming 
model, 
predictive  
control 
formulation 

solution on 
a software 
package 

87 Ghoseiri(1), 
Szidarovszky(1), 
Asgharpour(1) 
(2004) 

1, 4, 5, 10, 
13, 14, 16, 
27, 28, 34, 
37, 40, 42, 
51, 55, 
61, 64 

(101, 106, 
138, 139) 

multi objective
train  
scheduling 
problem 
scheduling 
(timetabling) 

single 
or multiple 
tracked 
network 

multiple 
tracked 
 

to lower the fuel 
consumption cost 
and 
to shorten the total 
passenger time 

mathematical 
programming 
model 

pareto frontier 
and distance based 
algorithm 

88 Wikström(1), 
Kauppi(1), 
Hellström(2), 
Andersson(1), 
Sandblad(2) 
(2004) 

  train traffic 
control 
problem 
rescheduling 
(dispatching) 

no clear 
information 
 

no clear 
information 

to minimize the 
overall delay 

simulation 
model, 
questionnaire 

control by 
re-planning  
strategy 

89 Ingolotti(2), 
Tormos(2), 
Lova(2), 
Barber(2), 
Salido(2), 
Abril(2) 
(2004) 

45, 51,  
55, 74 

(136) railway 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

no clear 
information 

to minimize average   
traversal time 

mixed integer 
programming 
model 
 

constraint 
satisfaction 
integrated solver 
process module 
of decision 
support system 

90 Barber(3), 
Salido(3), 
Ingolotti(3), 
Abril(3), 
Lova(3), 
Tormos(3) 
(2004) 
 
 
 

49, 51,  
66, 70  
 

(91, 92, 100) train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
network 

double  
or  more 
tracked 

to obtain a correct 
and optimized 
running map 

mixed integer 
programming 
model, 
linear 
programming 
model 
 
 

heuristics, 
constraint 
solver 
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91 Salido(4), 
Abril(4), 
Barber(4), 
Ingolotti(4), 
Tormos(4), 
Lova(4) 
(2004) 

49, 51, 66, 
70, 90 
 

 periodic train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
network 

double  
or  more 
tracked 

to minimize the 
journey time of 
all trains 

mixed integer 
programming 
model, 
linear 
programming 
model 

topological 
constraint 
optimization 
technique 

92 Salido(5), 
Barber(5), 
Abril(5), 
Tormos(5), 
Lova(5), 
Ingolotti(5) 
(2004) 

49, 51, 66, 
70, 90 
 

 periodic train  
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
network 

double  
or  more 
tracked 

to minimize the 
journey time of 
all trains 

mixed integer 
programming 
model, 
linear 
programming 
model 

topological 
constraint 
optimization 
technique 

93 Semet(1), 
Schoenauer(1) 
(2005) 
 
 

69, 70,  
74, 80 
 

(104) train  
timetabling 
problem 
rescheduling 
(dispatching) 

multiple 
tracked 
network 

multiple 
tracked 

to minimize the total 
accumulated delay 

mixed integer 
programming 
model 
programmed in 
CPLEX, 
evolutionary 
model 

branch and bound 
algorithm, 
evolutionary 
algorithm, 
hybrid greedy 
algorithm based on 
one train at a time 

94 Zhou(1),  
Zhong(1) 
(2005) 
 
 

5, 10, 18, 
40, 42, 55, 
60, 62, 64 
 

(101, 115,  
136, 139) 

bicriteria train 
scheduling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 
 

no clear 
information 

to minimize the variation 
of  interdeparture times 
for high-speed trains 
and 
to minimize the 
total travel time 

integer 
programming 
model 
programmed 
in VISUAL  
C ++ 6.0 
and 
GAMS/ZOOM 

train-based 
breadth-first 
search included  
branch and bound  
algorithm 
with effective  
dominance 
rules, 
beam search 
algorithm with 
utility evaluation 
rule and with 
random selection 
rule 
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95 Lindner(1), 
Zimmermann(2) 
(2005) 
 
 

45, 51, 55  
 

(127, 136) periodic train 
scheduling 
problem 
scheduling 
(timetabling) 

no clear 
information 
network 

no clear 
information 

to minimize cost  
assignment of  
different train types 

graph model, 
mixed integer 
linear 
programming 
model 
programmed in 
CPLEX 

decomposition 
based  
branch and bound  
algorithm 

96 Rebreyend(1) 
(2005) 
 
 

51 
 

(135) train  
dispatching 
problem 
rescheduling 
(dispatching) 

single 
or double 
tracked 
network 

no clear 
information 

to minimize the number 
of  delayed trains 

event based 
simulation 
model 
programmed 
in C 

genetic 
algorithms, 
branch and bound  
algorithm 

97 Isaai(4) 
(2005) 
 
 

13, 24, 25, 
26, 33, 36, 
37, 42, 44, 
50, 60, 63 
 

 train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 

no clear 
information 

to minimize total 
local waiting time 
summed over all 
the trains 

object-oriented 
model 
 

hybrid algorithm 
combination of  
the lookahead 
constraint-based 
heuristic with 
simulated 
annealing 

98 Yalçınkaya(1), 
Bayhan(1) 
(2005) 
 
 

48, 56, 61, 
81, 84 
 

 metro line 
scheduling 
problem 
scheduling 
(timetabling) 
 

double 
tracked 
line 

double  
or triple 
tracked 

to minimize the average 
passenger travel time 
and 
to reach fifty percent 
fullness rate of  
the carriages 

discrete event 
based simulation 
model 
programmed 
in ARENA, 
simulation 
metamodel 

response surface 
methodology, 
desirability 
functions based 
multi response 
optimization 
procedure, 
genetic 
algorithms 

99 Huisman(1), 
Kroon(3), 
Lentink(1), 
Vromans(1) 
(2005) 
 
 

10, 34, 45, 
46, 55, 71, 
81, 82 
 

(114, 124)  
     gave an overview of operations research models and techniques used 
     in passenger railway transportation 
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100 Chang(1), 
Chung(1) 
(2005) 
 
 

33, 34, 68, 
70, 90 
 

(101) train 
timetabling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

double 
tracked 
line 

no clear 
information 

to minimize the average 
travel time of passengers 
and 
to maximize the 
utilization of trains 

genetic 
model 

genetic 
algorithms 

101 Törnquist(1) 
(2005) 
 
 

5, 10, 13, 14, 
30, 34, 35,  
36, 37, 38,  
40, 50, 51, 
54, 55, 56,  
57, 58, 60,  
61, 68, 72,  
73, 74, 81, 
83, 84, 85,  
87, 94, 100  

(126) railway 
traffic 
scheduling 
problem 
scheduling 
(timetabling) 
and 
rescheduling 
(dispatching) 

 
     reviewed the researches carried out within the area of  
     railway scheduling and dispatching 

102 Törnquist(2), 
Persson(1) 
(2005) 
 
 

10, 30, 41, 
50, 55, 57, 
61, 62, 67, 
72, 73 
 

(126) train 
rescheduling 
problem 
rescheduling 
(dispatching) 

single 
tracked 
line 

no clear 
information 

to minimize the total  
delay for the trains 
and  
to minimize the costs  
due to the different delays

mixed integer 
programming 
model 
and linear 
programming 
model 
programmed 
in AMPL 
and CPLEX, 
simulation 
model 
programmed 
in JAVA 
 
 
 
 

simulated 
annealing, 
tabu search, 
branch and bound 
algorithm 
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103 Caprara(3), 
Monaci(2), 
Toth(4), 
Guida(2) 
(2006) 
 

5, 27, 33, 
37, 50, 60, 
66, 71, 74 
 

(114, 127, 130, 
131, 140) 

train  
timetabling 
problem 
scheduling 
(timetabling) 

double 
tracked 
line 

double  
or more 
tracked 

to maximize sum of 
the profits of the 
scheduled trains 

graph theoretic 
model, 
integer linear 
programming  
model 
programmed in C

Lagrangian 
heuristic included 
traffic capacity 
management 
algorithm based on 
one train at a time 

104 Semet(2), 
Schoenauer(2) 
(2006) 
 
 

69, 70,  
80, 93 
 

 train 
rescheduling 
problem 
rescheduling 
(dispatching) 

multiple 
tracked 
network 

multiple 
tracked 

to minimize the total 
accumulated delay 

mixed integer 
programming 
model 
programmed in 
CPLEX, 
evolutionary 
model 

branch and bound 
algorithm, 
evolutionary 
algorithm 

105 Khan(1), 
Zhang(1), 
Jun(1), 
Li(1) 
(2006) 

5, 14, 16, 
18, 22,  
55, 61 
 

 train 
rescheduling 
problem 
rescheduling 
(dispatching) 

single 
tracked 
line 

no clear 
information 

to minimize  the 
total delay of trains 

genetic 
model 

genetic 
algorithms 

106 Ghoseiri(2), 
Morshedsolouk(1) 
(2006) 
 
 

1, 4, 5, 6, 9,  
10, 15, 22, 
30, 33, 37,  
40, 46, 50,  
55, 56, 58,  
73, 87 

 train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

no clear 
information 

to minimize the total train 
delays in the stations 

mathematical 
model 

ant colony 
system 

107 Ingolotti(6), 
Lova(6), 
Barber(6), 
Tormos(6), 
Salido(6), 
Abril(6) 
(2006) 
 
 
 
 

55, 121 
 

(131) railway 
timetabling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 

no clear 
information 

to minimize the delay and 
time based deviation 
 

constraint 
satisfaction 
model 
programmed 
in C ++ 
 

train priorities 
based decision 
support system 

159 



 

 

108 Ingolotti(7), 
Barber(7), 
Tormos(7), 
Lova(7), 
Salido(7), 
Abril(7) 
(2006) 

55, 121 
 

 train 
timetabling 
problem 
scheduling 
(timetabling) 
 

single 
or double 
tracked 
line 

no clear 
information 

to minimize the 
average deviation 

model 
programmed 
in C ++ 
 

track priorities 
based irrevocable 
heuristic-driven 
search included 
branch and bound 
algorithm 

109 Abril(8), 
Salido(8), 
Barber(8), 
Ingolotti(8), 
Tormos(8), 
Lova(8) 
(2006) 

55, 121 
 

 railway 
scheduling 
problem 
scheduling 
(timetabling) 
 

single 
tracked 
network 

double  
or more 
tracked 

to minimize the journey  
time of all trains 
 

distributed 
constraint 
satisfaction 
model 

constraint 
solver, 
graph 
partitioning 
 

110 Su(1),  
Huang(1) 
(2006) 
 
 

25, 33,  
42, 74  
 

 train 
timetabling 
problem 
scheduling 
(timetabling) 
 

single 
tracked 
line 

no clear 
information 

to minimize sum of 
headway difference 

time-space 
diagram model 
programmed in  
MICROSOFT 
VISUAL  
C ++.NET 

ant colony 

111 Kauppi(2), 
Wikström(2), 
Sandblad(3), 
Andersson(1) 
(2006) 

  train traffic 
control 
problem 
rescheduling 
(dispatching) 

single 
tracked 
line 

no clear 
information 

to minimize train delays simulation 
model 
 

control by 
re-planning  
strategy 

112 Geske(1) 
(2006) 
 
 

  railway 
scheduling 
problem 
scheduling 
(timetabling) 
 
 
 
 
 

single 
tracked 
network 

double  
or triple 
tracked 

to reduce the 
lateness of trains 

constraint based 
deterministic 
simulation 
model 

one train at a time 
based heuristic, 
genetic 
algorithms 

160 



 

 

113 Salido(9), 
Abril(9), 
Barber(9), 
Ingolotti(9), 
Tormos(9), 
Lova(9) 
(2007) 

55 
 

 railway 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
network 

double  
or more 
tracked 

to minimize the journey  
time of all trains 
 

distributed 
constraint 
satisfaction 
model 

graph 
partitioning, 
constraint 
solver 

114 Caprara(4), 
Kroon(4), 
Monaci(3), 
Peeters(1), 
Toth(5) 
(2007) 

5, 27, 33, 
37, 45, 46, 
50, 51, 55, 
60, 66, 74, 
81, 82, 
99, 103 

(127, 139)  
     focused on passenger transportation in European, and surveyed operational planning problems 
     such as; line planning, timetabling, platforming, rolling stock circulation, shunting, and  
     crew planning problems 
 

115 Zhou(2), 
Zhong(2) 
(2007) 
 
 

5, 10, 13, 
16, 27, 34, 
35, 37, 40, 
42, 55, 57, 
60, 61, 62, 
74, 75, 82, 
84, 94 

(138, 139, 140) train 
timetabling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

multiple 
tracked 

to minimize the total 
train travel time 

integer 
programming 
model 
programmed 
in VISUAL  
C ++  
 

branch and bound 
algorithm, 
longest path 
algorithm, 
Lagrangian 
relaxation 
approach, 
beam search 
algorithm 

116 Carey(5), 
Crawford(1) 
(2007) 
 

16, 27, 28, 
34, 35, 37, 
45, 55, 81 
 

(128, 140) train 
scheduling 
problem 
scheduling 
(timetabling) 

single or 
multiple 
tracked 
line 

multiple 
tracked 
 

to minimize cost of 
deviations  

set of modules  
programmed 
in C 
 

heuristic 
algorithms 
based on one train 
at a time 

117 Rodriguez(1) 
(2007) 
 
 

 (140) train 
scheduling 
problem 
rescheduling 
(dispatching) 
 
 
 

no clear 
information 
 

no clear 
information 

to minimize the sum of  
delays 

simulation 
model, 
constraint 
programming 
model 

branch and bound 
algorithm, 
decision support 
system 
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118 Mazzarello(1), 
Ottaviani(1) 
(2007) 
 
 

40 
 

(137) real-time 
traffic 
regulation 
problem 
rescheduling 
(dispatching) 

quadruple 
tracked 
network 

triple 
tracked 

to minimize delays alternative 
graph 
model 

heuristic 
algorithms 
based on one train 
at a time 

119 Liebchen(1), 
Möhring(1) 
(2007) 
 

45, 46,  
51, 82 
 

(125, 129) periodic 
railway 
timetabling 
problem 
scheduling 
(timetabling) 

single or 
more 
tracked 
network 

double  
or more 
tracked 

to obtain a feasible  
periodic timetable 

graph theoretic 
model, 
mixed integer 
linear 
programming 
model 

no clear 
information 

120 D’Ariano(1), 
Pranzo(2), 
Hansen(1) 
(2007) 
 
 

28, 55, 61, 
62, 84, 126 
 

(137) train 
dispatching 
problem 
rescheduling 
(dispatching) 

quadruple 
tracked 
network 

double  
or more 
tracked 

to minimize the 
maximum delay 
caused by conflicts 

alternative 
graph 
model 

iterative 
rescheduling 
algorithm, 
dispatching rules, 
greedy heuristic, 
branch and bound 
algorithm 

121 Lova(10),  
Tormos(10), 
Barber(10), 
Ingolotti(10), 
Salido(10), 
Abril(10) 
(2007) 

49, 51, 55 
 

(107, 108, 109) train 
scheduling 
problem 
rescheduling 
(dispatching) 
 

single 
or double 
tracked 
network 

no clear 
information 

to minimize the  
traversal time of 
each new train 

model 
programmed 
in C ++ 

iterative based 
sequential 
algorithm 

122 Luethi(1), 
Weidmann(1), 
Laube(1), 
Medeossi(1) 
(2007) 
 

27 
 

 train 
rescheduling 
and  control 
problem 
rescheduling 
(dispatching) 
 
 
 

single, 
double  
or triple 
tracked 
network 

multiple 
tracked  

to minimize the total delay 
of all trains 

simulation 
model 
 

iterative based 
process comparing 
algorithm 

162 



 

 

123 Mladenović(1), 
Čangalović(1) 
(2007) 
 
 

33, 44, 48 
 

 train 
rescheduling 
problem 
rescheduling 
(dispatching) 
 

single 
tracked 
line 

double  
or more 
tracked 

to minimize maximum 
tardiness 
or 
to minimize maximum 
weighted tardiness 
or 
to minimize total tardiness
or 
to minimize total 
weighted tardiness 
or 
to minimize maximum 
slack of trains in stations 
or 
to minimize makespan   
or 
to minimize the number 
of late trains  

constraint 
satisfaction 
model  
programmed 
in OPL 
 

bound heuristic, 
separation 
heuristics, 
search heuristics, 
constraint solver 

124 Caimi(1), 
Burkolter(1), 
Herrmann(1),  
Chudak(1),  
Laumanns(1) 
(2007) 

34, 45,  
81, 99 
 

(125, 137) train 
scheduling 
problem 
scheduling 
(timetabling) 

single, 
double,   
triple or 
quadruple 
tracked 
network 

multiple 
tracked 
 

to minimize time loose independent 
set in a conflict 
graph model, 
integer linear 
programming 
model 

fixed-point 
iteration based 
heuristic 

125 Caimi(2), 
Fuchsberger(1), 
Laumanns(2), 
Schüpbach(1) 
(2007) 

34, 45, 46, 
71, 74, 82,  
119, 124 
 

 periodic train  
timetabling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
network 

no clear 
information 

to minimize a weighted  
sum of the passenger 
times 
or 
to optimize both the  
quality of the timetable  
and the time slots 

mixed integer 
linear  
programming 
model 
programmed 
in MATLAB 
and MOSEK 
 
 
 
 

solver 
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126 Törnquist(3),  
Persson(2) 
(2007) 
 
 

10, 30, 38, 
55, 58, 61,  
72, 101, 102 
 

(120) railway 
traffic 
rescheduling 
problem 
rescheduling 
(dispatching) 

single, 
double or  
n-tracked 
network 

quadruple 
tracked 

to minimize the total final 
delay of the  traffic 
or 
to minimize the total cost 
associated with delays 
 

mixed integer 
linear  
programming 
model 
programmed in 
AMPL and  
CPLEX 

branch and bound 
algorithm, 
solver 

127 Cacchiani(1), 
Caprara(5), 
Toth(6) 
(2008) 
 
 

5, 27, 33, 
37, 45, 50, 
60, 71, 74, 
82, 95,  
103, 114 
 

(130) train  
timetabling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

no clear 
information 

to maximize sum of 
the profits of the 
scheduled trains 

graph theoretic 
model, 
integer linear 
programming  
model 
programmed 
in C and CPLEX 

column generation 
and one train 
at a time based 
heuristic algorithm, 
branch and cut 
and price  
algorithm 

128 Flamini(1), 
Pacciarelli(2) 
(2008) 
 
 

34, 37, 55, 
57, 61, 62, 
81, 84, 116 
 

(132, 134) train routing/ 
sequencing 
problem, 
metro terminus
scheduling 
problem 
rescheduling 
(dispatching) 

no clear 
information 
 

multiple 
tracked 
 

to minimize of the sum of 
total tardiness plus total  
earliness 
and 
to minimize of the  
difference between the  
off-line and the actual  
headway 

alternative 
graph model, 
simulation 
model 
programmed 
in C++ 
 

one train 
at a time based 
heuristic algorithm, 
polynomial time 
algorithm 

129 Liebchen(2) 
(2008) 
 
 

45, 46, 51, 
74, 119 
 

 periodic 
railway 
timetabling 
problem 
scheduling 
(timetabling) 

double 
tracked 
network 

double  
or more 
tracked 

to minimize the weighted 
sum of passenger waiting 
times 
and 
to minimize the number  
of trains that is required  
to operate the timetable 
 
 
 
 
 
 

graph 
model, 
integer  
programming  
model 
programmed in 
CPLEX 

simple 
approximation 
algorithm, 
cut heuristic, 
genetic 
algorithms 
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130 Fischer(1), 
Helmberg(1), 
Janssen(1), 
Krostitz(1), 
(2008) 
 
 

60, 70, 74, 
103, 127 
 

 train 
timetabling 
problem 
scheduling 
(timetabling) 

no clear 
information 
network 

no clear 
information 
 

to obtain a feasible 
timetable 

graph model, 
integer linear 
programming  
model 
programmed 
in C ++ and 
CPLEX and 
ConicBundle, 
simulation 
model 

Lagrangian 
relaxation 
algorithm, 
bundle cutting 
plane approach, 
rounding heuristic 

131 Tormos(11), 
Lova(11),  
Barber(11), 
Ingolotti(11), 
Abril(11), 
Salido(11) 
(2008) 

5, 27, 33, 
37, 45, 46, 
50, 74, 80, 
82, 103, 107 
 

 train 
timetabling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 

no clear 
information 

to minimize the average  
delay of the new trains 

genetic 
model 

iterative heuristic  
based on random  
sampling methods, 
 
genetic 
algorithms 

132 Yalçınkaya(2), 
Bayhan(2) 
(2008) 
 
 

86, 128, 134 
 

 metro line 
scheduling 
problem 
scheduling 
(timetabling) 
 

double 
tracked 
line 

double  
or triple 
tracked 

to minimize the average  
passenger travel time 
and 
to reach a satisfactory 
carriage fullness rate 

discrete event 
based simulation 
model 
programmed 
in ARENA, 
simulation 
metamodel 

response surface 
methodology, 
desirability 
functions based 
multi response 
optimization 
procedure 

133 Nagarajan(1), 
Ranade(1) 
(2008) 
 

25, 28, 33, 
37, 42, 66 
 

 single train 
pathing 
problem 
scheduling 
(timetabling) 

no clear 
information 
network 

no clear 
information 

to minimize the new 
train’s journey time 
without affecting the 
schedules for the 
old trains 
 
 
 
 
 
 

graph 
model 

shortest path 
based 
train path 
algorithm 
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134 Yalçınkaya(3), 
Bayhan(3) 
(2009) 
 
 

86, 128 
 

(132) metro line 
scheduling 
problem 
scheduling 
(timetabling) 
 

double 
tracked 
line 

double  
or triple 
tracked 

to minimize the average  
passenger travel time 
and 
to reach a satisfactory 
carriage fullness rate 

discrete event 
based simulation 
model 
programmed 
in ARENA, 
simulation 
metamodel 

response surface 
methodology, 
desirability 
functions based 
multi response 
optimization 
procedure 

135 Cheng(1), 
Yang(1) 
(2009) 
 
 

1, 10, 13, 
14, 16, 28, 
30, 58, 61, 
65, 96 
 

 railway traffic 
control 
problem 
rescheduling 
(dispatching) 

no clear 
information 
network 

no clear 
information 

to minimize the total 
passenger delay 

fuzzy 
Petri Net 
model 

dispatching 
decision support 
system 

136 Liu(1), 
Kozan(3) 
(2009) 
 
 

50, 66, 73, 
89, 94, 95 
 

 train 
scheduling 
problem 
scheduling 
(timetabling) 

single 
tracked 
network 

double  
or triple 
tracked 

to minimize the makespan alternative 
graph model 
programmed 
in VISUAL 
C++ 
 

improved shifting  
bottleneck  
procedure includes; 
the topological- 
sequence 
algorithm,  
a modified Carlier  
algorithm, 
an extended 
algorithm  
based on 
Jackson rules, 
tabu search 
and simulated 
annealing, 
feasibility 
satisfaction 
procedure based on 
one train at a time, 
insertion algorithm 
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137 Luethi(2), 
Medeossi(2), 
Nash(1) 
(2009) 

118, 120, 
124 
 

 real-time train 
rescheduling 
problem 
rescheduling 
(dispatching) 

single, 
double  
or triple 
tracked 
network 

multiple 
tracked 

to minimize the 
total delay of all trains 

simulation 
model 

two-loop 
real-time 
rescheduling 
approach 
 

138 Yang(1), 
Li(1), 
Gao(1) 
(2009) 

1, 4, 13, 27, 
28, 37, 40, 
42, 50, 60, 
61, 62, 
87, 115 

 train 
timetabling 
problem 
scheduling 
(timetabling) 

single 
tracked 
line 

double  
or more 
tracked 

to minimize the  
total passengers’ time 
and 
to minimize the  
the total delay time 

fuzzy 
mixed integer 
goal  
programming 
model 

fuzzy 
simulation 
based branch  
and bound 
algorithm 

139 Castillo(1), 
Gallego(1), 
Ureña(1), 
Coronado(1) 
(2009) 
 
 

1, 4, 5, 10, 
13, 16, 27, 
28, 30, 34, 
35, 37, 40, 
42, 55, 57, 
60, 61, 62, 
74, 84, 87, 
94, 114, 115 

 train 
timetabling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 

no clear 
information 

to minimize the relative 
travel times of all trains 
and determine the train 
priorities 
and 
to minimize the sum 
of the train entry 
times to all segments 
and 
to minimize total 
dwell times of all trains 

mixed integer 
linear 
programming 
model 
programmed 
in CPLEX 
and GAMS 

iteration based 
bisection method 
included  
three step 
heuristic algorithm 

140 Lee(1), 
Chen(1) 
(2009) 
 
 

1, 27, 28, 
34, 35, 37, 
40, 42, 60, 
70, 74, 81, 
82, 103, 115, 
116, 117 
 

 train 
pathing and 
timetabling 
problem 
scheduling 
(timetabling) 

single 
or double 
tracked 
line 

multiple 
tracked 

to minimize the sum 
of weights of tracks 
assigned to all  
services at all stations  
and 
to minimize the sum 
of the difference 
between the services’ 
scheduled departure 
time and the target 
departure time 

binary integer 
programming 
model 
programmed 
in CPLEX 
and C++, 
linear 
programming 
model 
programmed 
in CPLEX  
and C++ 

iteration based 
four step heuristic 
algorithm, 
threshold accepting 
heuristic 
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