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DEVELOPING 3 DIMENSIONAL IMAGE ANALYSIS METHODS FOR 

DETERMINING CHARACTERISTIC AND CLASSIFICATION OF 

AGGREGATES 

 

ABSTRACT 

In this thesis, an interdisciplinary study is presented. In this study, a method for 

three-dimensional (3D) shape characterization and classification is proposed for the 

six different aggregates. In the first phase, a new 3D laser based imaging system is 

designed to capture images of aggregates. The imaging system has been optimized to 

minimize the errors during image capturing. In the second phase, novel 3D shape 

characterization parameters of the aggregates are extracted. Geometrical parameters 

of the aggregates are calculated in 3D spatial domain. The last phase, the aggregates 

are classified by using different classifier models (ANN, FLDA and KNN) with the 

help of these parameters. Among the classifier types, multi-layer perceptron neural 

network model that has two hidden layers gives the best performance that is 99.20 

percent. The performance of the proposed system is evaluated using manual 

measurement method and two-dimensional image processing method. Results are 

analyzed and compared with other studies given in the literature. 

 

Keywords: Aggregate, three-dimensional imaging system, characterization, 

classification
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AGREGALARIN SINIFLANDIRILMASI VE KARAKTERİZE EDİLMESİ 

İÇİN ÜÇ BOYUTLU GÖRÜNTÜ ANALİZ METOTLARI GELİŞTİRME 

 

ÖZ 

Bu tezde, disiplinler arası bir çalışma sunulmuştur. Bu çalışmada, altı farklı 

agrega türü için üç-boyutlu (3B) şekil karakterizasyonu ve sınıflandırılması 

sunulmuştur. İlk aşamada, agrega görüntülerini çekmek için yeni bir 3B lazer tabanlı 

görüntüleme sistemi oluşturulmuştur. Görüntüleme sistemi görüntü alımı sırasında 

yaşanan sorunları minimize etmek için optimize edilmiştir. İkinci aşamada, 

agregaları karakterize eden yeni 3B şekil parametrelerini elde etmek amaçlanmıştır. 

Agregaların geometrik parametreleri 3B uzamsal düzlemde hesaplanmıştır. Son 

aşamada, agregalar bu parametreler yardımıyla farklı sınıflandırıcılarda (YSS, FLAA 

ve KNN) sınıflandırılmıştır. Bu sınıflandırıcı türlerinden en iyi başarımı (yüzde 

99.20) veren çok katmanlı algılayıcı sinir ağı modelidir. Amaçlanan sistemin 

performansı elle ölçüm ve iki-boyutlu (2B) görüntü işleme yöntemleri kullanılarak 

değerlendirilmiştir. Sonuçlar literatürdeki çalışmalar ile karşılaştırılmış ve analiz 

edilmiştir. 

 

Anahtar Kelimeler: Agrega, üç-boyutlu görüntüleme sistemi, karakterizasyon, 

sınıflandırma 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 The Problem Statement 

 

Aggregates, which occupy approximately 75-85 percent of the total volume of 

concrete, affect the performance of fresh and hardened concrete. Shape and texture 

characteristics of aggregate are important for workability, reliability, bleeding, 

pumpability and segregation of concrete. 

 

Classical methods, like sieving or screening, are too inefficient for extracting 

shape parameters of aggregates. Moreover, they have many disadvantages such as; 

time consumption, dependence on laboratory conditions, their results may change 

from person to person. In addition, they do not provide any true measurement of the 

size of aggregates because of calculating cumulative weight of aggregates. 

 

The image analysis methods are concerned with obtaining information from 

images. The pictorial information is extracted from captured objects on the screen by 

using digital image processing techniques. These two-dimensional data, which is 

derived from three-dimensional real world, is used for classifying objects. In some 

conditions, 3D data (depth information), which belong to geometrical properties of 

object, are necessary to do accurate classification.  

 

Many properties of concrete depend on the 3D shape of aggregates. Traditional 

methods do not give a complete 3D shape characterization and analysis. The aim of 

this thesis is to develop quantitative 3D image analysis methods for characterization 

and classification of aggregates. 
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1.2 Measurement of the Physical Properties of Aggregate 

 

Shape, angularity and texture are the key geometrical properties that are 

frequently used to characterize aggregates. However, these properties have 

significant effects on the performance of construction materials such as concrete and 

asphalt pavements. There is no established and accepted general test method for 

determination of the geometrical properties of aggregates. 

 

1.2.1 Traditional Methods 

 

The texture and shape characteristics of aggregates are becoming important issues 

for affecting performance of both Asphalt Concrete (AC) and Portland Cement 

Concrete (PCC) (Barksdale R. , 1991), (Dilek, 2000), (Galloway, 1994), (Kwan, 

Mora, & Chan, 1999), (Mora & Kwan, 2000), (Lanaro & Tolppanen, 2002). In 

addition, physical properties of aggregates are extremely important in terms of 

cement paste requirement and workability of fresh concrete. Cement paste fills the 

gaps among aggregates and acts as a binder that holds aggregates together. 

Moreover, it allows fresh concrete to mix better and has an effect on workability and 

durability of concrete to various reasons. Staying within the limits of water to cement 

(W/C) ratio means less cement paste and more durable concrete (Fernlund, 

Zimmerman, & Kragic, 2007), (Erdogan, et al., 2006).  

 

The physical properties of aggregates can be tested by using different methods 

such as EN 933, ASTM C1252, ASTM D3398, ASTM D4791, and Indian Standard 

(IS-2386). These manual test methods that are laborious, time consuming depend on 

laboratory conditions, and the results may change from person to person and greatly 

affected the features of the aggregates (Quiroga & Fowler, 2004). 

 

Two different devices are shown in Figure 1.1. EN 933 is a standard about tests 

for geometrical properties of aggregates. It was accepted by Institute of Turkish 

Standard in January 2003. Shape Index Gauge is used to determine the shape factor, 
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Length Gauge is used for elongated aggregates (if length of aggregate is more than 

1.8 cm, it is called long), Flakiness Gauge is used for flaky aggregates (if thickness 

of aggregate is less than 0.6 cm, it is called flaky) (Anonymous, UTEST Material 

Testing Equipment, 2011). The uncompacted void content of a fine aggregate is 

determined by using ASTM C1252. This method indicates the angularity, spherically 

and workability of a fine aggregate mixture (Anonymous, ASTM International 

Standards Worldwide - Home, 2011), (Anonymous, Integrated Publishing, 2011). 

 

 

 

 

 
(a) EN 933 (Anonymous, UTEST Material Testing 

Equipment, 2011). 

(b) ASTM C1252 (Anonymous, 

ASTM International 

Standards Worldwide - 

Home, 2011). 

Figure 1.1 Device of manual measurement of aggregate. 

 

1.2.2 Derived Features Using Digital Image Processing Methods 

 

Aggregate geometry is very complex, so even simple, manual experiments cannot 

be fully explained. Particle geometry also requires very complex definition. 

Therefore, some simplifications are necessary to summarize shape parameters that 

are used in aggregate analysis. These shape parameter (feature) definitions are given 

in the following pages (Equations 1.1-1.13). 
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 Sphericity (Galloway, 1994) 

 

           √
               

       

 

 
(1.1) 

  

 Shape Factor (Hudson, 1995) 

 

             
             

      
 

(1.2) 

  

 Length Factor (Kwan, Mora, & Chan, 1999) 

              
     

      
 

(1.3) 

  

 Flatness Factor (Kwan, Mora, & Chan, 1999) 

 

                
      

     
 

(1.4) 

  

 Roundness (Kwan, Mora, & Chan, 1999) 

 

          
          

        
 

(1.5) 

  

 Form Factor (Kuo, Rollings, & Lynch, 1998) 

 

            
        

          
 (1.6) 

  

 Angularity (Kwan, Mora, & Chan, 1999) 
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(1.7) 

  

 Front Ratio (Ellipse that is drawn round of aggregate) (Dilek, 2000) 

 

            
            

            
 

(1.8) 

  

 Roughness (Dilek, 2000) 

 

          
         

  (            (              
 (1.9) 

  

 Radius Ratio (Dilek, 2000) 

             
          

            
 

(1.10) 

  

 Rectangular Area Ratio (Dilek, 2000) 

 

                       
    

                      
 (1.11) 

  

 Concave (Garboczi, 2002) 

 

        
           

    
 

(1.12) 

  

 Convexity (Garboczi, 2002) 

 

          
    

           
 (1.13) 
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Recent technological advances (in camera optics, CCD cameras and laser 

rangefinders), availability of high performance computers and low cost imaging 

systems support the usage of image analysis methods for quantitative measurement 

of aggregate shape and surface texture properties (Nichols & Lange, 2006), (Jähne, 

Haussecker, & Geissler, 1999), (Kim, Haas, & Rauch, 2003), (Gonzalez & Woods, 

2002), (Russ, 2002). By the way, modern image analysis systems have been 

developed by through advances in digital imaging devices and computers help to 

process and store large amount of data at the same time. In this way, the physical 

properties (diameter, height, width, perimeter, etc.) of aggregate particles can be 

measured in a much shorter time and aggregates can be classified correctly  (Quiroga 

& Fowler, 2004). 

 

 The measurement on three different axes of a particle indicates sphericity. Forms 

are based on the ratio of long, intermediate and short axis of a particle and a measure 

of the relation among the three dimensions. As shown Figure 1.2, main dimensions 

of a particle are Long (L), Intermediate (I) and Short (S). 

 

 
Figure 1.2 Principal dimensions of an aggregate (Haas, Rauch, Kim, & 

Browne, 2002). 

 

1.3 Literature Review 

 

In recent years, two dimensional (2D) and three-dimensional (3D) image analysis 

techniques have been used for shape and surface characteristics measurement of 

aggregate particles. Recent work is summarized in the following paragraph. 
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Isa, Al-Batah, Zamli, Azizli, Jore, & Noor (2008) used image processing 

techniques for computing the features such as area and perimeter of aggregate 

particles. Their study is about Hu‟s and Zernike‟s moments related to aggregates. 

They used image processing methods and artificial neural networks models to find 

best definition for the features of aggregates. Maerz (1998) used shape measuring 

system with top and side view of aggregate (Figure 1.3). Mora & Kwan (2000) 

calculated size properties of three different types of aggregates by using image 

processing techniques and compared the results by sieve analysis. Lanora & 

Tolppanen, (2002) used 3D laser scanning system as shown in Figure 1.4 for 

determining a total 3D geometry of aggregate. Kim, Haas, & Rauch, (2002) used Laser 

Aggregate Scanning System (LASS) for acquiring 3D data on stone particles. They 

extracted features using wavelet transforms of the 3D data (Figure 1.5). Wang (2006) 

calculated shape and size features of aggregates by using image processing 

techniques by best Ferret methods and compared the results with sieve analysis 

methods. Fernuld (2005) calculated length, width and thickness features by capturing 

images of aggregate in lying and standing positions and searched relationship 

between those features. Lee, Smith, & Smith (2007) calculated shape and form 

properties of rough aggregates by using 3D image analysis methods. Al-Batah, Isa, 

Zamli, Sani, & Azizli, (2009) classified aggregates having six different shape types 

(cubical, angular, irregular, flaky, elongated, flaky elongated) by using artificial 

neural networks which have different learning algorithms. Itoh, Matsuo, Oida, 

Miyasaka, & Izumi, (2008) captured image of 7.14 mm, 14.3 mm, 25.4 mm, 25.4 

mm, 34.9 mm and 44.5 mm size of aggregates in 22 different lighting levels and 

measured properties of aggregate shape by using image analysis techniques. Al-

Rousan, Masad, Tutumluer, & Tongyan (2007) calculated form, texture and 

angularity of aggregate by using image analysis techniques and found that these 

properties were useful to define the characteristics of aggregates. Erdogan, et al. 

(2006) aimed to find 3D shape properties of aggregates using laser detection and 

ranging (LADAR). They compared length, width and thickness values obtained from 

LADAR and X-Ray CT methods and indicated benefits of using LADAR. 
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Figure 1.3 Sample of shape measurement system (Maerz, 1998). 

 

 

Figure 1.4 Sample of three-dimensional measurement system (Lanaro & Tolppanen, 2002). 

 

    

Figure 1.5 Sample of three-dimensional measurement system (Kim, Rauch, & Haas, 2002). 
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1.4 Goal and Contributions 

 

The goal of this research is to determine the three-dimensional geometrical 

properties of aggregates and is to classify them into elongate, sphere, round, flat, 

angular and formless groups. To accomplish this goal, an automated system is 

designed to aid the civil engineers. Aggregates can be automatically analyzed and 

classified with this computer-controlled system. It is fast, easier to use and has low 

error rate than traditional methods. 

 

The main contributions of this work are: 

 

 In this work, an interdisciplinary approach that combines the knowledge from 

civil engineering and electrical electronics engineering is presented. 

 Some new geometrical definitions for morphological properties of aggregate 

are presented for measurement and classification of aggregates. 

 Considering hardware and software implementations, developed 

measurement device is easy to use, fast, autonomous and has low error rates. 

 

1.5 Organization 

 

The rest of the dissertation is organized as follows: 

 

 The Second Chapter, “What is Aggregate?”, gives information about 

aggregates. 

 The Third Chapter, “3D Imaging Systems”, 3D imaging techniques in the 

literature are summarized. 

 The Fourth Chapter, “Materials and Methodology”, explains materials used 

and the methods developed. 

 The Fifth Chapter, “Results and Future Work”, gives information about 

future levels of this work, evaluates the results and presents new 

contributions.  
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CHAPTER TWO 

AGGREGATES 

 

2.1 What is Aggregate? 

 

Aggregates, which are the natural and artificial inert granular materials such as; 

sand, gravel or crushed stone, occupy approximately 75-85 % volume of concrete 

(Figure 2.1) (Erdoğan, 2002) (Anonymous, Aggregate, 2011). 

 

 
Figure 2.1 Aggregate samples. 

 

Characteristics of aggregates affect performance and cost of concrete (Maerz, 

1998). The shape of aggregates change amount of paste (water/cement) such as; non-

uniform aggregates require more paste. Within the limits of water to cement (W/C) 

ratio, it means less cement paste and more durable concrete (Quiroga & Fowler, 

2004), (Ugurlu, 1999). One or more of the following properties of aggregates affect 

concrete durability; 
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 Gradation, 

 Maximum aggregate size, 

 Shape and surface texture of the particles, 

 Unit weight, 

 Specific gravity, 

 Water absorption, 

 Elasticity, 

 Thermal properties. 

 

Aggregate size measurement is an important issue because it affects the 

performance and cost of concrete. Sieve method, which is called gradation test, is 

used to measure particle size. Sieve method contains more than one sieve with wire 

mesh screen (Figure 2.2 and Figure 2.3) and is placed in a mechanical shaker (Figure 

2.4). Each sieve has smaller screen openings than the one above. Weighed aggregate 

samples are poured into the top sieve, and shake for specific time (about 10 minutes). 

After that, retaining aggregate on each sieve is weighed (Figure 2.5) and divided by 

the total weight as shown in Equation 2.1. Total passing aggregate is found by using 

Equation 2.2 (Anonymous, Sieve Analysis, 2011). 

 

            
      

      
      (2.1) 

 

                        (2.2) 

 

Where       : retaining aggregate weight on each sieve, 

       : the total weight of aggregate. 
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Figure 2.2 Sieves samples (Anonymous, Gradation Test, 2011). 

 

 
Figure 2.3 Stacked sieves used for a gradation and size test 

(Anonymous, Gradation Test, 2011). 
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Figure 2.4 Mechanical shaker used for sieve analysis. 

(Anonymous, Gradation Test, 2011). 

 

 
Figure 2.5 Weighing the aggregate retained on a sieve 

(Anonymous, Gradation Test, 2011). 
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Aggregate gradation type is identified with the result of sieve analysis and 

procedure is outlined in the American Society for Testing and Materials (ASTM) C 

136. 

 
Table 2.1 Minimum mass of sample for sieving analysis according to BS812:Part 103:1985. 

Nominal size of material (mm) Minimum mass of sample to be tested 

(kg) 

63.0 50 

50.0 35 

40.0 15 

28.0 5 

20.0 2 

14.0 1 

10.0 0.5 

3.0-6.0 0.2 

<3.0 0.1 

 

This test has some disadvantages; 

  

 Sieve analysis connects to aggregate sizes because of being standard sieve 

opening sizes as shown in Table 2.1 (coarse material sizes range down to 150 

μm) (Anonymous, Sieve Analysis, 2011),  

 Wet and dry materials have different weight (Anonymous, Sieve Analysis, 

2011),  

 This method assumes that all aggregate are round, which may not be, as 

shown in Figure 2.5.  
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Figure 2.6 An elongated particle passing through a square sieve 

aperture (Mora & Kwan, 2000). 

 

Two methods used for analyzing shape are ASTM (Aggregate Shape 

Evaluation) and PN (Polish Standard). They used to measure aggregate shape 

parameter, such as flakiness, elongation index, and angularity number is 

measured by Indian standard IS-2386(I), ASTM D4791 is used for flat and 

elongated aggregates, ASTM D2488, BS812 for measuring angularity (Das, 

2006). These methods have disadvantages that are being slow, manual, prone to 

human errors, etc.  

 

New image processing methods and computer technologies give us new 

opportunities for aggregate measurements. These methods are faster and more 

accurate than traditional methods. Studies of image analysis on size and shape 

measuring of aggregates are many and they are macro and micro scaling size 

and shape studies in specific laboratories. 
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2.2 Shape and Texture Definitions of Aggregates  

 

2.2.1 Aggregates Shape 

 

Aggregate geometry is very complex, so even simple experiments cannot be 

explained fully. Particle geometry requires very complex definition. Therefore, some 

simplifications must be made. For this purpose, shape must be defined using both 

sphericity and surface texture model. Sphericity depends on relationship among three 

main sizes, Length (L), Width (W) and Height (H). Surface texture indicates surface 

roughness and texture of particle (Brzezichi & Kasperkiewicz, 1999). 

 

Shape, roundness and surface texture are shown on aggregate particle in Figure 

2.7 (Kuo & Freeman, 2000). According to that figure; shape represents whole of 

particle, roundness relates to corner angle of particle and surface structure is a 

measure of surface texture and roughness of particle. 

 

 
Figure 2.7 Aggregate particle shape (form), 

angularity and surface texture properties (Kuo & 

Freeman, 2000). 

 

In the literature, there are many different definitions about aggregate particle 

shape and surface texture. Sometimes, they are described by using mathematical 
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expressions, sample figures and table of comparison (Janoo, 1998), (Persson, 1998), 

(Dilek, 2000), (Mora & Kwan, 2000), (MacLeod, 2002). 

 

Descriptive terms related to aggregates form are given in ASTM D2488 “Standard 

Practice for Description and Identification of Soils (Visual-Manual Procedure)” as 

shown in Figure 2.8. Another shape classification of aggregates particle is also given 

in BS812 “Testing aggregates, Methods for determination of particle size and shape” 

such as Rounded, Irregular, Angular and Flat. 

 

ROUNDED 

 

SUBROUNDED 

 

SUBANGULAR 

 

ANGULAR 

Figure 2.8 Angularity of coarse aggregate particles 

(Neville, 1995). 

 

The shape of aggregate particles can be described by using two principal 

properties: „sphericity‟ and „roundness‟ (Topal, 2001) (Tam, 2007).  Aggregate 

particles are classified as flaky when they have a thickness (smaller dimension) of 

less than 0.6 of their mean sieve size. Aggregate particles are also classified as 
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elongated when they have a length (greatest dimension) of more than 1.8 of their 

mean sieve size according to BS 812 (Part 105.2, 1989). BS 882 also provides limits 

for the flakiness index (particle thickness relative to other dimensions).  Flaky and 

elongated particles could lead to low workability of fresh concrete, bleeding water 

accumulation under the aggregate, causing planes of weakness, higher water demand 

in fresh concrete, lower strength and durability problems in hardened concrete 

(Topal, 2008).  

 

Sphericity measures what three different axes or size of a particle level equivalent. 

Forms are based on ratio of dimensions of long, intermediate and short axis of a 

particle and a measure of the relation among the three dimensions. As shown in 

Figure 2.9, main dimensions of a particle are Long (L), Intermediate (I) and Short 

(S), and, sphericity is given by Equation 2.3 (Al-Rousan, 2004). 

 

 
Figure 2.9 Principal dimensions of an aggregate. 

 

            √
   

  

 

 (2.3) 
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According to Wadell, (1935), sphericity is defined as “ratio of particle with sphere 

diameter of equivalent volume and smallest sphere diameter that is surrounding of 

particle”. Krumbein, (1991) developed the definition that is based on the dimensions 

regarding three different axis instead of smallest sphere diameter surrounding the 

particle. 

 

Form is also defined by “shape factor” and is used to discriminate particles from 

each other (Hudson, 1999), (Mora & Kwan, 2000). According to Aschenbremer 

(1956) shape factor is defined by a relationship between the main size of particle 

(long, intermediate, short) (Equation 2.4). According to this equation, if increasing 

sphericity value greater than 1, it is long and if decreasing sphericity value less than 

1, it is flat.  

 

              
 

√   
 (2.4) 

 

 

Besides sphericity and shape factor definitions, two measures are also defined as 

“Elongation” or “Length factor” (Equation 2.5) and “Flatness factor” (Equation 2.6) 

in order to get better description of aggregate shape (Aschenbrenner, 1956), (Kuo, 

Rollings, & Lynch, 1998). 

 

            
 

 
 (2.5) 

 

          
 

  
(2.6) 

 

 

Other definitions about aggregate characteristics are: 

 Aspect Ratio 

 Rugosity 
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 Radius Ratio 

 % Rectangle Area 

 Convexity 

 Roundness 

 

2.2.1.1 Aspect Ratio (Rc) 

 

The ratio of the major to minor axes of an ellipse that has the same first moment 

as the particle outlines (Figure 2.10) (Persson, 1998). 

 

 
Figure 2.10 The aspect ratio of the object (Persson, 1998). 

 

             
    

    
 (2.7) 

 

2.2.1.2 Rugosity (Rg) 

 

Dilek, (2000), deduced rugosity property that is related to the ratio of the 

perimeter of the particle (P) to the perimeter of a rectangle, which encloses the 

particle (Figure 2.11). 
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Figure 2.11 Angularity measures (Dilek, 2000). 

 

   
 

 (    
 (2.8) 

 

Where  P: perimeter of aggregate 

 a: short side of rectangle that encloses the particle 

 b: long side of rectangle that encloses the particle 

 

2.2.1.3 Radius Ratio (Ry) 

 

Radius Ratio is the ratio of the maximum radius to the minimum radius that is the 

maximum and minimum possible distances respectively from the centroid of the 

particle to its perimeter (Figure 2.11). A highly irregular surface is likely to have a 

very small minimum radius and radius ratio will increase (Dilek, 2000). 

 

   
    

    
 (2.9) 

 

2.2.1.4 % Rectangle Area (%DA) 

 

Rectangle Area is the ratio of the particle area to the area of the rectangle 

enclosing the particle (Dilek, 2000). 
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(2.10) 

 

2.2.1.5 Convexity (C) 

 

Convexity (Mora & Kwan, 2000) can be evaluated by means of the convexity 

ratio C that is defined as: 

 

   
 

  
 (2.11) 

 

 
Figure 2.12 Convexity of aggregate (Mora & Kwan, 2000). 

 

Where:  

 A (Area) =  

 CA (Convex Area) = +  
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2.2.1.6 Roundness 

 

Roundness (Janoo, 1998) is a common measure computed from two-dimensional 

image of aggregate particle as shown in Figure 2.13 and described as: 

 

          
  

   
 (2.12) 

 

  

a. Area of an aggregate calculated through image 

analysis. 

c. Typical ferret measurement. 

 

 

b. Perimeter of an aggregate calculated through 

image analysis. 

d. Illustration of convex perimeter. 

Figure 2.13 Material characterization using image analysis (Janoo, 1998). 

 

Where P and A are perimeter and area of object, and, if roundness value is 1, the 

object is circular (Al-Rousan, 2004). 
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A commonly used scale for describing aggregates in the USA is given as follows 

(Mora, Kwan, & Chan, 1998): 

 

 Angular: Little evidence of wear 

 Sub-angular:  Some wear but faces untouched 

 Sub-rounded: Considerable wear, faces reduced in area 

 Rounded: Faces almost gone 

 Well-rounded: No original faces left 

 

We can see shape definitions comparatively in Figure 2.14. 

 

 

 

Figure 2.14 Aggregate roundness and angularity scale (MacLeod, 2002), 

(Krumbein & Sloss, 1951). 
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2.2.2 Aggregate Texture 

 

The surface texture, also called surface roughness, is the local corrosions of the 

surface of ideal flat shape (Figure 2.15). Surface texture of the aggregate may be 

rough or smooth and plays an important role for the formation of bonds between 

aggregate and pasting material in production process of the concrete or asphalt. 

Surface texture provides a gripping structure producing stronger bonds, and resulting 

stronger asphalt or concrete (Janoo, 1998), (Anonymous, INDOT, 2011). In the 

literature, (Bikerman, 1964), (Terzaghi & Peck, 1967), (Wright, 1955), (Barksdale & 

Itani, 1994), (Masad, 2002) defined surface texture of aggregates and used different 

methods to measure them. 

 

 
Figure 2.15 Surface texture (roughness) of a material (Anonymous, Surface Roughness Review, 

2011). 

 

2.2.3 Aggregate Size and Shape Measurement by Using Digital Image 

Processing 

 

Sieving method is commonly used for measuring aggregate size. However, it has 

many disadvantages such as; being time consuming, high cost, too inefficient, prone 

to human errors, being just a bulk approximation, etc. For decades, advances of 
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computer technologies together with digital image processing techniques have 

become increasingly prevalent for many applications.  

 

Analyzing aggregate by using digital image processing (DIP) techniques has been 

extensively used for the past 20 years. Compared with traditional methods, it is found 

that DIP techniques have many advantages such as; low cost, high performance, 

more automated, being simple to implement, etc. From this point of view, 3D image 

processing techniques are given in the following chapter.  
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CHAPTER THREE 

3D IMAGE PROCESSING 

 

3.1 Introduction 

 

Many kind of animals receive the information about their surroundings without 

depending on their eyes, such as; bats use high-frequency sound, cats have a rich 

sense of smell and hearing ability, snakes locate prey by their heat emission, sharks 

have organs that sense electrical fields (Gonzalez & Woods, 2002), (Russ, 2002), 

(McAndrew, 2004). However, human beings perceive, process, analyze and classify 

visually and they have the ability of seeing all the objects around them in 3D. 

Researchers are still studying on human vision (Jain, Kasturi, & Schmoh, 1995). 

 

Aims of computer vision are to perceive and understand an image on the scene 

electronically like human vision. Advanced charge coupled devices (CCD) and 

digital image processing methods have been utilized in widespread applications 

(manufacture, security field, geographical information systems, etc.) for the past 

years. Digital image processing is a basic field of computer vision because it is used 

in the process of creating a model of the real world from images (Jähne, Haussecker, 

& Geissler, 1999), (Ferron, 2000), (Gonzalez & Woods, 2002). 

 

Digitized images give us 2D information, but it is not enough for the real world 

because we live in a 3D world.  When capturing images of an object in 3D space, the 

image sensors give two-dimensional projections, and this cause many information 

loss and decreases number of dimensions. 

 

A 3D image has many advantages over its 2D counterpart, which are; 

 

 3D images express the geometry in terms of 3D coordinates, 

 Volume of an object is calculated from its 3D data, 

 3D images can give surface texture, 
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 Size, position and shape of an object in a scene can be straightforwardly 

computed from its 3D coordinates. 

 

In many cases, image-based methods are the only way for measurements, but as a 

manual visual interpretation and calculation, requirements may be difficult. 3D 

imaging can most of the times minimize the requirements for visual inspection. This 

is an advantage in terms of time and cost. 

 

3.2 3D Imaging-Related Issues 

 

Summaries of some important 3D imaging related topics are given in this part. 

These topics are digital image processing, computer graphics, computer vision, and 

pattern recognition. Reader can find further and detailed information in the 

references given. 

 

3.2.1 Digital Image Processing (DIP) 

 

The smallest element of a digital image in the spatial coordinate plane is pixel. A 

digital image is formed by more than one pixel with the gray levels or intensity 

(Figure 3.1). Digital image processing extracts information for human interpretation 

or edits information for automatic perception into a digital image. DIP is a technique 

that has different algorithms, such as; blurring, cropping, resizing, enhancement, etc., 

for images in 2D data (Jähne B. , 2002), (Pratt, 2001), (Russ, 2002), (Young, 

Gerbrands, & Vliet, 1995).  
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Figure 3.1 Gray levels of an aggregate image. 

 

3.2.2 Computer Graphics (CG) 

 

Computer graphics renders objects to look like to its real life counterpart with 

"realistic" study. One major factor holding back low-end computer graphics is 

created patterns appear too smooth (Figure 3.2). In addition, natural objects have 

surface texture (Shapiro & C., 2001), (Çetin & Güdükbay, 2006). 

 

 

Figure 3.2 A modern render of the Utah teapot, an iconic 

model in 3D computer graphics created by Martin Newell in 

1975. 
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3.2.3 Computer Vision (CV) 

 

Computer vision gathers information for perception the objects on the 

environment through using optical devices without any physical interaction. As 

shown Figure 3.3, CV contains image processing techniques, pattern recognition, 

artificial intelligence and different kinds of classifiers (Forsyth & Ponce, 2002), 

(Jain, Kasturi, & Schmoh, 1995), (Shirai, 1992).  
 

 

Figure 3.3 Relation between computer vision and various other fields (Anonymous, Computer Vision, 

2011). 

 

3.2.4 Pattern Recognition (PR)  

 

Pattern recognition algorithms classify numeric or symbolic data through using 

the feature vectors (patterns) according to different types of learning or training 

procedures. It aims to make decisions about patterns. It has many application fields 

like handwritten character recognition, biometrics, speech recognition, medical 
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diagnosis, etc. (Bishop, 2006), (Duda, Hart, & Stork, 2000), (Sá, 2001).  As simple 

example is given from the book of Duda, Hart & Stork in Figure 3.4. 

 

 

(a) Example of classification 

 

(b) Histograms of values 
Figure 3.4 An example of pattern recognition (Duda, Hart, & Stork, 2000). 
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3.3 3D Data Acquisition 

 

3D data can be acquired through recent technological advances related with CCD 

cameras, computers and laser sources. 3D data acquisition allows the generation of 

3D models using different methods and systems. In this section, different 3D data 

acquisition systems are explained. 

 

3.3.1 Laser Ranging System 

 

Laser ranging systems are based on distance measurement to an object using laser 

beam. It measures time of the laser pulse sent and reflected from the object's surface 

(Marshall D., 1997). Laser ranging systems are used in different application areas, 

such as; military, forest, sports, industrial, etc. 

 

3.3.2 Structural Light Method 

 

A grid or a stripe light pattern is sent on the object and the deformation of the 

pattern reflected from surface of the object is captured using a digital camera. The 

model of the object is extracted through measuring the distance at each point in the 

deformed pattern (Figure 3.5). The most important property of the method is its 

simplicity and its speed (because of scanning multiple points), but it has low spatial 

resolution (Figure 3.6) (Anonymous, 3D scanner, 2011).  
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Figure 3.5 Triangulation principle shown by one of multiple stripes (Anonymous, 

Structured-light 3D scanner, 2011). 

 

 
Figure 3.6 3D survey of a car seat (GFMesstechnik, 2008). 

3.3.3 Moirѐ Fringe Method 

 

Property of this method is that the sent light is distributed by a grid then it is 

reflected from the surface of the object, which is shown in Figure 3.7 (a). Thus, the 

image is formed by mixing the reference and Moirѐ fringe patterns that has the dark 
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and light lines (Figure 3.7 (b)). Change in the depth and shape are detected by 

analysis of this pattern (Creath & Wyant, 2008). 

 

 
(a) 

 
Projection grading 

 
Reference grading 

 
Moiré pattern 

 (b)  

Figure 3.7 Moiré systems (Marshall D., 1997). 

 

3.3.4 Shape from Shading Method 

 

This method uses the photometric stereo techniques to measure depth. The object 

is illuminated with different light sources positioned around it. Images of the object 

(which is fixed in position) are taken using one or more cameras during this 

illumination time. This technique is not very suitable for 3D data acquisition, 

because it is very sensitive to lighting conditions and reflection property of the object 

(Jähne B., 2002), (Trucco & Verri, 1998).  
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3.3.5 Passive Stereoscopic Method 

 

The aim of the stereoscopy is to create a 3D depth model from two images of a 

scene using two cameras. Cameras are separated by a specific distance in the same 

plane. 3D depth map of object is reconstructed using paired similar features of 

images (Anonymous, Stereoscopy, 2011). Main problem of this method is matching 

(registration) process that is very difficult to find similar features of two images. 

 

3.3.6 Active Stereoscopic Method 

 

Active stereoscopic method contains a camera and a strong light source instead of 

two cameras. The scene is illuminated with the light source that is observed with the 

camera. Depth map is constructed for the whole of the scene scanned by the light 

source (Marshall D., 1997), (Dipanda A., Woo, Marzani, & Bilbault, 2003). 

 

3.4 3D Imaging Techniques 

 

3D imaging indicates an image of an object in all three real world dimensions.  In 

Cartesian coordinate system, these dimensions correspond to object‟s length, width 

and height. The aim of this section is to provide an overview of different 3D imaging 

techniques. 

 

3.4.1 Time-of-Flight (ToF) Technique 

 

In this technique, the laser light is used for gathering data on the object. The laser 

light is sent from the source to the object and reflected light returns to the receiver. 

The time of sent-received signal is measured. The distance is calculated as in 

Equation 3.1 (Jähne B., 2002), (Schwarte, Häusler, & Malz, 2000).  

 

   
   

 
 (3.1) 
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Where d: distance, 

 c: the speed of light, 

 t: time. 

 

The speed of light (c) is 3.10-8 ms-1 in ideal conditions, and the time (t) is 

measured from sent-received signal. Thus, the distance (d) is simply calculated. 

 

Nowadays, this method is used in different applications such as; face gesture 

detection and measurement of human body height (Dorrington, Kelly, McClure, 

Payne, & Cree, 2009), (Meers & Ward, 2009). 

 

3.4.2 Triangulation Technique 

 

In this technique, laser light source is used to illuminate a point on an object of 

interest. Captured image contains reflected laser dot and this dot moves on the image 

with an amount directly related with the distance between object and the camera. 

This technique is called as triangulation. In this technique, angles and distance of the 

laser light and the detector are known, thus, X-Y-Z values of a surface point on the 

object are calculated using simple trigonometry in the X-Y-Z coordinate‟s plane. 

Triangulation has four principal categories; stereoscopy, active triangulation, focus 

and confocal microscopy (Anonymous, 3D scanner, 2011), (Russ, 2002), (Beato, 

2011), (Grossmann, 1987), (Shim & Choi, 2010), (Kovács, 2004), (Price, 

Fundamentals: Three-dimensional Imaging, 1996), (Jähne B. , 2002), (Semwogerere 

& Weeks, 2005), (Al-Awadhi, Hurn, & Jennison, 2011). 

 

3.4.3 Interferometry Technique 

 

Interferometry is similar to time-of-flight technique. Although ToF measures sent-

reflected signal time, interferometry measures amplitude and phase of the signal that 

is interfered with a reference signal (Jähne, 2002). (Anonymous, Interferometry, 

2011). 
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3.5 Dynamic 3D-Vision 

 

Photonic Mixer Device (PMD), which is developed by PMDTechnologies®, is a 

new generation of time-of-flight camera. ToF technique is explained in Section 3.4.1. 

ToF cameras uses a single laser beam, PMD devices use integrated 64 x 48 smart 

pixel array to send and receive multiple laser beams (Schwarte R., 2001), (Ringbeck 

& Hagebeuker, 2007). 

 

In this chapter, we discussed the importance of some 3D data related issues 

because it is directly related with real world objects. Different 3D imaging 

techniques and data acquisition methods are explained.  Some studies in the literature 

are also addressed. 3D imaging and analysis system is developed after reviewing all 

the methods that are mentioned in this chapter. Detailed information about developed 

3D imaging and analysis system for aggregates is given in the following chapter.  
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CHAPTER FOUR 

MATERIAL AND METHODS 

 

4.1 Introduction 

 

In this chapter, developed 3D imaging system for the analysis of the aggregates 

(image acquisition, feature extraction and classification) is explained. In addition, 2D 

image analysis techniques and manual methods are given. They are compared with 

developed 3D analysis system to depict the advantages of the 3D system. Six1 

different types of aggregates are used for the analysis and comparison process, which 

are explained in the following section. 

 

4.2 Material 

 

Natural aggregate can be acquired in two ways: By crushing big rocks into 

smaller pieces and by excavating aggregate reach fields that are formed during time. 

Sieving, crashing and washing processes can be applied to these types of aggregates. 

In this study, six different types of Dalaman natural aggregate are used. An expert 

manually classified these samples and labeled each of them as angular, flat, round, 

formless, sphere and elongate (Figure 4.1). Total values of labeled aggregates are 

given Table 4.1. All aggregate samples are (Dalaman natural aggregate) provided by 

Famerit Company.  

 

 

 

 

 

 

 
 

1 Sphere type aggregatea are actually a ball shaped metal objects that are used in cement production. 
Experts from Dokuz Eylül University Civil Engineering Department used (for concrete production) 
and named these objects as aggregate. The experts approved usage of these as sixth type of aggregate. 
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Table 4.1 The number of samples for different shaped aggregate types. 

No Class Total Count Total Weight (Kg) 

1 Elongate 228 0,675 

2 Flat 447 0,705 

3 Angular 297 1,665 

4 Sphere 435 5,625 

5 Round 519 1,155 

6 Formless 267 1,260 

 

 

Figure 4.1 Sample images showing different aggregate 

types (a) Elongate, (b) Sphere, (c) Angular, (d) Round, 

(e) Irregular, (f) Flat. 

 

4.3 Method 

 

In this section, methods which are used in this thesis work are given in detail. 

Graph paper is used in manual measurement method. L, S and I values are measured 

sensitively and recorded. 2D image analysis part contains imaging, preprocessing 
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and feature extraction works. 3D image analysis section explains all the 

accomplishment achieved during 3D imaging system development and gives detailed 

information related with 3D reconstruction and feature extraction works. 

 

4.3.1 Manual Measurement Method 

 

The aim of the manual measurement is to acquire the real size of the aggregate for 

comparison with the developed 3D imaging system. Six samples from each of six 

different aggregate classes (as shown Figure 4.2 (a-f)) are randomly selected for 

measuring the L, S and I values.  

 

Graph paper is used for the manual measurement method. The top and side 

projections on the graph paper are measured and L, S and I values for each of the 

aggregates are recorded. Results are shown in Table 4.2. 

 

 
a) Formless type aggregates (top and side views). 
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b) Roundness type aggregates (top and side views). 

 
c) Sphere type aggregates (top and side views). 

 
d) Angularity type aggregates (top and side views). 
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e) Flat type aggregates (top and side views). 

 
f) Elongate type aggregates (top and side views). 

Figure 4.2 L, S and I measurement of aggregate samples with top and side views. 

 

 

 

 

 

 

 



43 

 

 

 

Table 4.2 Manual measurement result. 

No Class L (cm) S (cm) I (cm) 

1 Elongate 2.8 1.8 0.9 

2 Elongate 1.8 0.9 0.9 

3 Elongate 1.8 0.9 0.9 

4 Elongate 2.1 1.2 0.6 

5 Elongate 3.0 1.9 0.9 

6 Elongate 3.8 1.6 1.1 

7 Flat 2.8 2.3 0.9 

8 Flat 2.3 2.5 0.9 

9 Flat 2.3 1.9 0.5 

10 Flat 1.6 2.1 0.6 

11 Flat 2.0 1.8 0.6 

12 Flat 1.3 1.3 0.6 

13 Angular 2.2 2.1 1.9 

14 Angular 3.8 1.9 2.1 

15 Angular 2.8 2.0 1.8 

16 Angular 2.0 1.8 1.1 

17 Angular 3.1 1.4 1.8 

18 Angular 2.3 1.6 1.3 

19 Sphere 2.7 2.5 2.3 

20 Sphere 2.2 2.6 2.0 

21 Sphere 1.8 1.7 1.4 

22 Sphere 1.8 2.0 1.5 

23 Sphere 1.6 2.1 2.0 

24 Sphere 1.4 1.4 1.0 

25 Round 1.8 1.5 1.1 

26 Round 1.8 1.5 0.6 

27 Round 1.3 1.3 0.6 

28 Round 1.5 1.2 0.9 

29 Round 1.4 1.1 0.9 

30 Round 1.2 1.0 1.0 

31 Formless 2.0 1.4 1.2 

32 Formless 1.5 1.1 0.9 

33 Formless 1.3 1.4 1.0 

34 Formless 2.5 2.1 1.8 

35 Formless 2.0 1.5 1.2 

36 Formless 2.4 1.3 1.9 
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4.3.2 Two-Dimensional Method 

 

In this section, 2D imaging system, preprocessing and feature extraction methods 

are explained for measuring aggregate dimensions. The purpose of the work given in 

this section is to obtain L, S and I values of aggregates using 2D image analysis 

method. As a result, advantages of the developed 3D image analysis system can be 

demonstrated in a comparative way. Flow chart of the 2D image processing method 

is shown in Figure 4.3.  

 

 
Figure 4.3 Flow chart of the 2D image processing method 
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4.3.2.1 Imaging System 

 

Imaging system is set on medium density fiberboard coated panel, which is 50 cm 

x 50 cm in size, surrounded by white fabric in order to make a homogeneous 

lighting. 2 x 9 W halogen lamps and 1 x 24 W fluorescent lighting diffuser are used 

for a homogeneous illumination. To prevent the reflection, the base is covered with a 

white and matte paperboard. Sony® DSC-R1 digital camera, which is placed on a 

tripod to prevent vibrations that may occur during shooting is used to capture images 

(Figure 4.4). The top and side view images of aggregates (Figure 4.5) are taken 

separately to find their L, S and I values. Images are stored one by one as JPG file 

type in 3888 x 2592 image sizes as top and side views. 

 

 
Figure 4.4 2D imaging system setup 
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4.3.2.2 Preprocessing 

 

The images are preprocessed with 2D image processing techniques.  Firstly, 

captured images are combined and converted to gray scale image as shown in Figure 

4.6. All artifacts containing less than 30 pixels are removed from the image (Figure 

4.7). Thirdly, edges are detected using canny edge algorithm. After that, holes (that 

can occur as a background section inside of the aggregate image region) are filled in 

the image and aggregates are labeled. Figure 4.8 shows color coded form of the 

labeled image. Lastly, long, intermediate and short values are measured using 

bounding box method (Figure 4.9). 

 

 
Figure 4.5 2D top and side views of aggregates. 
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Figure 4.6 Gray scale images of aggregate samples. 

 

 
Figure 4.7 Removing all objects than 30 pixels. 
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Figure 4.8 Color labeling of aggregates. 

 

 
Figure 4.9 Measuring the L, S and I values. 
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4.3.2.3 Feature Extraction 

 

The L, S and I values are measured from segmented images of aggregate are 

shown in Figure 4.2 (a-f). Resolution of capturing images is 300 pixels/inch, so, the 

L, S and I values are converted from pixel to centimeter using Equation 4.1. These 

values are used to calculate sphericity, shape factor, elongation and flatness factor 

(Equation 1.1 – 1.4). This process is repeated for six different samples of six 

aggregate types. The measurement results are shown in Table 4.3. 

 
Table 4.3 Measurement results of 2D top and side views images of aggregate. 

No Class L(cm) S(cm) I(cm) Sphericity Shape Factor Elongation Flatness 

1 Elongate 2,8 1,8 1,1 0,61787 1,00240 1,61589 1,62366 

2 Elongate 2,1 1,0 0,9 0,59439 0,69567 2,14286 1,03704 

3 Elongate 1,9 1,0 0,8 0,58538 0,80390 1,97590 1,27692 

4 Elongate 2,2 1,2 0,8 0,56435 0,91961 1,87379 1,58462 

5 Elongate 3,5 1,9 0,9 0,50968 1,05921 1,88820 2,11842 

6 Elongate 3,9 1,6 1,3 0,51653 0,72903 2,39007 1,27027 

7 Flat 3,0 2,4 1,1 0,66171 1,30217 1,26733 2,14894 

8 Flat 2,6 2,5 0,7 0,63994 1,75057 1,07583 3,29688 

9 Flat 2,5 1,8 0,6 0,55231 1,48897 1,38854 3,07843 

10 Flat 1,7 1,4 0,4 0,59305 1,57079 1,24786 3,07895 

11 Flat 2,0 1,7 0,7 0,68832 1,42429 1,14765 2,32813 

12 Flat 1,3 1,3 0,5 0,73560 1,52342 1,02679 2,38298 

13 Angular 2,3 2,0 1,6 0,85162 1,02001 1,15882 1,20567 

14 Angular 3,6 1,9 1,7 0,63206 0,76991 1,88344 1,11644 

15 Angular 3,2 2,0 1,5 0,66360 0,89911 1,61765 1,30769 

16 Angular 1,7 1,5 0,9 0,78014 1,19472 1,13846 1,62500 

17 Angular 3,0 1,5 1,5 0,62832 0,70989 2,00000 1,00787 

18 Angular 2,3 1,9 1,5 0,80174 1,01961 1,23125 1,28000 

19 Sphere 2,5 2,4 2,4 0,99208 0,99764 1,00957 1,00481 

20 Sphere 2,5 2,5 2,5 0,98927 0,99541 1,01395 1,00467 

21 Sphere 2,0 1,9 1,7 0,94784 1,03649 1,03012 1,10667 

22 Sphere 2,0 2,0 2,0 0,98288 0,99146 1,02326 1,00585 

23 Sphere 2,0 1,7 1,7 0,91737 0,95168 1,12667 1,02041 

24 Sphere 1,5 1,5 1,4 0,97560 1,03775 1,00000 1,07692 

25 Round 1,9 1,5 1,2 0,77794 1,00098 1,28462 1,28713 

26 Round 2,1 1,5 0,8 0,64776 1,22132 1,35115 2,01539 
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No Class L(cm) S(cm) I(cm) Sphericity Shape Factor Elongation Flatness 

27 Round 1,5 1,3 0,7 0,72906 1,26743 1,17117 1,88136 

28 Round 1,7 1,2 0,7 0,67094 1,15699 1,35238 1,81035 

29 Round 1,6 1,1 0,9 0,74578 0,97111 1,36735 1,28947 

30 Round 1,2 1,0 1,0 0,86297 0,92753 1,21839 1,04819 

31 Formless 2,1 1,5 1,3 0,77045 0,88067 1,41270 1,09565 

32 Formless 1,7 1,1 1,1 0,77026 0,83515 1,46392 1,02105 

33 Formless 1,5 1,4 1,2 0,90842 1,06296 1,05691 1,19418 

34 Formless 2,5 2,2 1,6 0,83124 1,10486 1,12566 1,37410 

35 Formless 2,1 1,6 1,3 0,78209 0,96500 1,30935 1,21930 

36 Formless 2,7 1,5 1,3 0,64753 0,78327 1,81746 1,11504 

 

 

Average of feature vectors values are calculated. The results are shown in Table 

4.4. Elongation value of elongate type aggregate is greater than the other aggregate 

types, though sphere type aggregate has smallest elongation value. Sphere type 

aggregate has maximum value of sphericity, and flat type aggregate has maximum 

flatness and shape factor values. This shows that the feature vectors of sphericity, 

elongation, shape factor and flatness can be used for discriminating these types of 

aggregates. However, angular, formless and round types of aggregates are not 

successfully classified because of inappropriate features.  

 
Table 4.4 Average of feature vectors values. 

No Class Sphericity Shape Factor Elongation Flatness 

1 Elongate 0,56470 0,86830 1,98112 1,48516 

2 Flat 0,64516 1,51004 1,19233 2,71905 

3 Angular 0,72625 0,93554 1,50494 1,25711 

4 Sphere 0,96751 1,00174 1,03393 1,03656 

5 Round 0,73908 1,09089 1,29084 1,55532 

6 Formless 0,78499 0,93865 1,36433 1,16989 

 

4.3.3 Three-Dimensional Method 

 

Firstly, imaging system (as hardware and software) is designed. Sample 

aggregates‟ images are captured by using this system. Secondly, stored images are 
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preprocessed using image processing techniques for segmentation, and segmented 

images are reconstructed to form a 3D image of the aggregate. Thirdly, feature 

vectors are extracted from reconstructed images of aggregates. 3D image analysis 

system is shown in Figure 4.10. Classification work using feature vectors of 

aggregates is given in Section 4.4 of this chapter. 

 

 

Figure 4.10 Flow diagram of three-dimensional image analysis system. 
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4.3.3.1 Imaging System 

 

3D imaging system is created and used to acquire images of different classes of 

the aggregates. The aim of this system is to capture laser projections that are  created 

at a certain distance on the aggregate by the laser source. Two cameras that have the 

same characteristics are placed symmetrically on opposite sides on the laser source. 

A step motor is used to move the conveyor belt so that all upper side of an aggregate 

can be scanned. An illustration of the system is shown in Figure 4.11. 

 

 
Figure 4.11 Illustration of the 3D image acquisition system (bright green object is laser source, 

orange objects are cameras). 

 

Different models are designed and realized to create the desired imaging system. 

The first version of the imaging system is built using Symbol (Motorola®) LS2208 

(reading distance of 40 cm, 650 nm Laser Diode Light Source and Read Speed: 100 

scans / second) barcode reader (laser source), Fujifilm® FinePix S5600 (5.22 Mp 
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resolution, maximum resolution is 2592x1944, minimum resolution is 640x480, 

sensor type Super CCD IV HR) digital camera and Lego® Brainstorm kit (that is used 

for conveying system) (Figure 4.12). There are some drawbacks for this system. The 

laser illumination is not constant since the barcode reader‟s laser is switching to 

stand-by-state in 1 minute after it has been activated. In addition, one camera is 

insufficient for the 3D imaging process. 

 

 
Figure 4.12 Laser based 3D imaging system V.1. 

 

In the second design for a 3D imaging system, a conveyer belt, which is 

controlled by a step motor, is assembled (Figure 4.13). The size of it is 50 cm long, 

30 cm wide. Two webcams (IC-467PLUS (1280 x 960 image processor (1.3 MP), 

640 x 480 image sensor (300k) and the Video Power software, 2816 x 2112 (6 MP) 

resolution photo capture, the CMOS sensor), manufactured by IncaTM, are used. The 

main drawbacks of this imaging system are that webcam's resolution is low; also, 

webcams are placed away from the aggregate that is to be scanned. In addition, 

weight of conveyor belt system is 13.5 kg, so, it cannot be moved easily. 
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 Figure 4.13 Laser based 3D imaging system V.2. 

 

In this work, third and final version of the conveyor belt for imaging system is 

constructed. It is 25x30 cm in dimension (width, length), and driven by a step motor 

(Figure 4.14). A laser source that is C13635-2-3(5) type (manufactured by Huanic 

Corporation) is used. It has 650 nm wavelength, red line module and with a line 

thickness ≤ 1.5 mm that is made thin to 0.3 mm using 5 degree hypermetropic glass. 

Two cameras (Logitech® Quickcam Pro 9000 which has 2-mega pixel resolution, 

Carl-Zeiss® optics and up to 30 frames per second video capturing property) are 

attached to two opposite sides of the conveyor belt. Each of them has 45o (±45o) 

viewing angle according to laser source. Laser source is placed 15 cm above the 

conveyor belt.  Webcam and laser source holders are designed to be adjustable. This 

provides an advantage for positioning related equipment. Aggregates are moved on 

conveyor belt by a step motor. Step motor has specific run (100 ms because of laser 

line thickness) and hold on durations (2 sec because of stabilization time of conveyor 

belt). During the stopping period, line of laser source falls onto aggregate particle and 

at the same time two webcams capture images from both sides. In this way, two 

different images (one for each camera) are acquired for a single laser scan line. 
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Figure 4.14 Laser based 3D imaging system V.3. 

 

4.3.3.2 Calibration 

 

 Different objects (triangular prism, cube, and rectangular prism), which are 

cut from wood and painted with black color, are used for calibration of imaging 

system. Triangular prism is equilateral, the base length is 2 cm and height from base 

is 1 cm. Each edge of the cube has length of 1 cm. Rectangular prism‟s dimensions 

are 3 cm x 1 cm x 1 cm. Calibration objects and their reconstructed 3D upper side 

surfaces are shown in Figure 4.15. 

 

 

Figure 4.15 Calibration objects and their reconstructed 3D upper side surfaces. 

 

There are 2.54 centimeters per inch and DPI is the resolution in dots per inch, so 

the formula is rather simple: 
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      *    

   
 (4.1) 

 

As shown in Table 4.5, L, S and I values are calculated by Equation 4.1 (DPI = 

96). There is a difference between real dimensions and measured dimensions. This 

difference spans between -0.03 cm and +0.1 cm. On the edges, scattered laser light 

affected the measurement in a negative way. As a result, dimensions showed the 

given error values. 

 
Table 4.5 L, S and I values of calibration materials. 

Prism Type L (cm) S (cm) I (cm) 

Cubic  1.10 1.10 0.97 

Triangular  1.98 1.01 0.97 

Rectangular  3.10 1.10 1.10 

   

4.3.3.3 Image Preprocessing 

 

Preprocessing is accomplished on image slices using Image Processing Toolbox of 

Matlab® software. First, the captured image (resolution of 960x720 pixels) is cropped 

to specific coordinate values for segmentation. After that, image is converted to gray 

scale and then thresholded to obtain a binary image. Noise artifacts are removed by 

eliminating areas having less than 50 pixels for a correct labeling. Example output of 

the preprocessing is given in Figure 4.16. Image slices give values of distance 

information on X-Y-Z coordinate plane. Thus, this work is independent from rotation, 

scale, translation. Rotation of an aggregate does not have any affect as long as the 

scanned side of the sample remains same. Keeping the distance between camera and 

aggregate in certain limits, resolution and image quality will be enough for scale 

invariance. Effect of lateral position change is zero if aggregate stays in the scanning 

area. Translation on the longitudinal direction has also no effect since this movement 

is mandatory for 3D scanning process and conveyor belt provides this. 
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Figure 4.16 Image preprocessing steps.  

 

After preprocessing, image slices are merged to form the upper part 3D image of 

the sample aggregate (Figure 4.17). The center line is determined by subtracting the 
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image slices taken from the both angles with two cameras. For this operation, images 

acquired by the left-camera are rotated 180o with respect to vertical axis (since left-

camera looks to the aggregate from the opposite direction), and they are substracted 

from the right-camera images. As shown in Figure 4.18, if the number of pixels in 

the difference image is less than 1% of the total number of pixels of that image slice, 

second part of aggregate is created using the images of the second camera. This 

procedure is very important to calculate the real size of the each aggregate sample. 

 

 
(a) Original aggregate shape. 

 
 

(b) Image slice. (c) Merged image slices. 

  
(d) Front view of image slices. (e) Patched image slices. 

Figure 4.17 Merging slice images of an aggregate and patching the surface as 

3D image. 
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Figure 4.18 Finding center line from image slice. 

 

4.3.3.4 Feature Extraction 

 

Shape properties are important for characterization of aggregates. Shape indexes 

for aggregates are mainly shape factor, sphericity, flatness, and elongation that are 

calculated by Equations 1.1-1.4. Three-dimensional information (Long [L], 

Intermediate [I], and Short [S] are needed for aggregate characterization. Although 

these properties are not easily measured by mechanical or manual test methods, in 

this study 3D information is calculated easily in a short time.  Some features are 

calculated as variations of L, S and I measurements. The software is written in C# for 

in this work and used to distinguish principal dimensions of the aggregate. It also 

calculates shape factor, sphericity, flatness, and elongation values. 

 

As shown in Figure 1.2, the L, S and I values are calculated to test our 3D image 

analysis system. Aggregates are not completely seen because of the limited viewing 
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angle of the cameras. Therefore, real size of aggregates cannot be calculated 

correctly when single camera captures images. The results of left, right camera and 

combination of them are calculated one by one as shown in Table 4.6. Two images 

(acquired by left and right cameras) of a scan line provide more information than an 

image of a single camera which yields a measurement with higher accuracy. 

 

Laser line on left and right side edges of some aggregates cannot be correctly 

viewed by both of the cameras resulting incorrect L measurements. Laser line 

scattering and occlusion (of laser line by a raised part of the aggregate) can also 

affect the measurement accuracy. 

 
Table 4.6 Aggregate measurement results (cm). 

 

 

3D Measurement  

(Two Cameras) 

3D Measurement  

(Left Camera) 

3D Measurement 

(Right Camera) 

No Class L S I L S I L S I 

1 Elongate 2.8 0.9 1.7 2.8 0.9 1.8 2.8 0.9 1.8 

2 Elongate 1.7 0.9 0.9 1.7 0.9 1.0 1.6 0.9 0.9 

3 Elongate 1.8 0.8 0.9 1.8 0.8 0.9 1.8 0.7 0.9 

4 Elongate 2.1 0.6 1.1 2.1 0.6 1.2 2.0 0.6 1.2 

5 Elongate 2.9 0.8 1.8 2.9 0.8 1.8 2.8 0.7 1.7 

6 Elongate 3.7 1.1 1.5 3.7 1.1 1.5 3.8 1.1 1.4 

7 Flat 2.7 0.9 2.2 2.7 0.9 2.1 2.8 0.9 2.2 

8 Flat 2.3 0.9 2.3 2.2 0.8 2.2 2.3 0.9 2.3 

9 Flat 2.3 0.5 1.8 2.2 0.5 1.8 2.3 0.5 1.8 

10 Flat 1.6 0.7 2.1 1.5 0.7 1.9 1.6 0.6 2.1 

11 Flat 2.0 0.6 1.7 1.8 0.6 1.6 2.0 0.6 1.7 

12 Flat 1.3 0.6 1.2 1.3 0.5 1.2 1.3 0.6 1.1 

13 Angular 2.0 1.9 2.0 2.0 1.9 2.0 2.0 1.9 1.8 

14 Angular 3.8 2.1 1.8 3.7 2.1 1.8 3.8 2.1 1.7 

15 Angular 2.6 1.8 1.8 2.5 1.8 1.7 2.6 1.8 1.8 

16 Angular 1.9 1.2 1.7 1.9 1.1 1.6 1.8 1.1 1.7 

17 Angular 3.1 1.7 1.4 2.8 1.5 1.4 3.1 1.7 1.4 

18 Angular 2.3 1.3 1.5 2.1 1.1 1.5 2.3 1.3 1.5 

19 Sphere 2.3 2.3 2.3 2.3 2.0 2.2 2.4 2.3 2.3 



61 

 

 

 

 

 

3D Measurement  

(Two Cameras) 

3D Measurement  

(Left Camera) 

3D Measurement 

(Right Camera) 

No Class L S I L S I L S I 

20 Sphere 1.8 2.0 2.5 1.8 1.9 2.4 2.2 2.0 2.5 

21 Sphere 1.6 1.4 1.6 1.6 1.4 1.6 1.5 1.4 1.6 

22 Sphere 1.8 1.4 1.9 1.8 1.4 1.9 1.8 1.3 1.8 

23 Sphere 1.9 2.0 2.0 1.9 1.9 2.0 1.9 2.0 2.0 

24 Sphere 1.3 1.0 1.3 1.1 1.0 1.3 1.3 1.0 1.3 

25 Round 1.6 1.1 1.4 1.6 1.0 1.4 1.6 1.1 1.6 

26 Round 1.7 0.6 1.4 1.7 0.6 1.4 1.7 0.6 1.3 

27 Round 1.2 0.5 1.2 1.2 0.5 1.2 1.2 0.5 1.2 

28 Round 1.5 0.9 1.2 1.4 0.9 1.2 1.5 0.9 1.2 

29 Round 1.3 0.8 1.1 1.3 0.8 1.1 1.3 0.7 1.1 

30 Round 1.2 1.0 1.0 0.9 1.0 1.0 1.2 1.0 1.0 

31 Formless 1.9 1.2 1.3 1.9 1.2 1.3 1.7 1.2 1.3 

32 Formless 1.4 0.9 1.0 1.4 0.9 1.0 1.3 0.9 1.0 

33 Formless 1.2 1.8 1.5 1.2 1.8 1.4 1.2 1.8 1.5 

34 Formless 2.4 1.8 2.1 2.3 1.5 2.1 2.4 1.8 2.1 

35 Formless 1.8 1.4 1.4 1.8 1.4 1.4 1.7 1.4 1.4 

36 Formless 2.4 1.9 1.4 2.3 1.9 1.3 2.4 1.9 1.3 

 

In this section, shape features are described and their equations are given 

(Equation 4.2 – 4.16). Average of sphericity, shape factor, elongation and flatness 

vectors of all aggregates (2220 samples) are shown in Table 4.7. 

 

 Sphericity is defined as the ratio of particle with sphere diameter of 

equivalent volume and smallest sphere diameter that is surrounding of 

particle. 

  

           √
   

  

 

 (4.2) 
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 Shape factor is a commonly used index but different researchers adopt 

different definitions for it to describe different aspects of shape. 

 

             
 

√   
 (4.3) 

 

 The elongation ratio is defined as the length to short ratio.   

 

                  
 

 
 

 
(4.4) 

   

 Flatness ratio is defined as the thickness to short ratio.  

 

               
 

 
 (4.5) 

 

Table 4.7 Average of feature vector values of all aggregates. 

No Class Sphericity Shape Factor Elongation Flatness 

1 Elongate 0,69470 0,97096 2,11041 1,40182 

2 Flat 0,63852 1,54659 3,35289 2,83787 

3 Angular 0,79489 1,04596 1,67019 1,35399 

4 Sphere 0,85826 0,94190 1,35496 1,07842 

5 Round 0,74015 1,12276 2,13063 1,63272 

6 Formless 0,78390 1,13132 1,86013 1,54728 

 

 Averaged Minimum Height; mean value of miminum height to base line 

of the aggregate slice (Figure 4.19), 

 

                     
 

 
∑(          

 

   

 (4.6) 
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Figure 4.19 Features on the image slice. 

 

 Averaged Maximum Height; mean value of maximum height to base line 

of the aggregate slices (Figure 4.19), 

 

                     
 

 
∑(          

 

   

 (4.7) 

 

 Area; total value of area of the aggregate slices (Figure 4.19), 

 

     ∑  

 

   

 (4.8) 

 

 Length; total number of the aggregate slices, 

 

          (4.9) 

 

where, n is the total number of the aggregate slices, i is the ith slice, Ai is the area of 

i
th aggregate slice, (min_hei)i is the minimum height of ith aggregate slice, (max_hei)i 

is the maximum height of ith aggregate slice. 

 

 Slice Area; area under image slice (Figure 4.20), 

 

            ∑  

 

   

 (4.10) 
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Where pj is a pixel on an image slice corresponding to the point with minimum 

height of a laser reflecting surface part. Image slice consists of a set of pj‟s, 

{p1,p2,p3,….,pm}, and m is the width of the image slice (in units of pixel). 

 
Figure 4.20 Ferret features. 

 

 Image Volume; total area under slice of aggregate (Figure 4.20), 

 

              ∑(            

 

   

 (4.11) 

 

 Maximum Ferret Area, maximum of bounding box area of aggregate slices 

(Figure 4.20), 

 

                        (                 (4.12) 

 

 Ferret volume, bounding box area of aggregate slice multiplied by total 

number of aggregate slices (Figure 4.20), 

 

                                    (4.13) 

 

 Mean of 3D distance (µ) is the average of the distance between the center 

of mass and surface pixels of the aggregate,  
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 ∑  

 

   

 (4.14) 

 

Where di is Euclidean distance between center of mass and ith surface pixel that is 

defined by: 

 

    √(      
  (      

  (      
  (4.15) 

 

Where xc, yc, zc are center coordinates and xi, yi and zi are coordinates of surface 

pixels, k is the total pixel number.  

 

 S is the standard deviation of distance between the center of mass and 

surface pixels of the aggregate (Figure 4.21). 

 

  √
 

 
∑(      
 

   

 (4.16) 

 

 
Figure 4.21 3D distance is shown from center point of aggregate to a surface pixel. 
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4.4 Classification 

 

The aim of classification is to discriminate six different aggregate shape types 

using aggregate features. Two different artificial neural network models (multilayer 

perceptron, radial basis function) (Figure 4.22), linear discriminant analysis and k-

nearest neighbor methods are used for classification. Each method is described 

shortly in the following pages. Detailed explanations can be found in the given 

references. 

 

 
Figure 4.22 Artificial neural network models. 

 

4.4.1 Multi layer perceptron (MLP) 

 

The MLP is a feedforward network which is able to partition the pattern space 

using nonlinear boundaries for classification problems (Bishop, 1995), (Jain, M., & 

Mohiuddin, 1996), (Duda, Hart, & Stork, 2000). In this work, two MLP models are 

used. In the first model (MLP1) there is only one hidden layer, and in the second 

(MLP2) there are two hidden layers in the network. For both of these layers, the 

number of nodes are increased one by one from 3 to 15 to calculate the performance 

percentages of each topology. The network‟s hidden nodes have tangent sigmoid 

activation function. Levenberg-Marquardt  backpropagation algorithm (Jain, M., & 

Mohiuddin, 1996) is choosed for training. Gradient descent with momentum 

weight/bias value is 0.95 for learning function. Mean squared error with 

regularization value is 0.01 for performance function. The outputs have linear 

activation functions.  
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As shown in Figure 4.23, trainining of MLP1 is stoped when there is 5 validation 

failures. Maximum training performance (0.015551) is achieved at epoch 142. 

Training of MLP2 is stoped by the maximum validation failures which is 

predetermined as 5. Performance reaches to its best value (0.0052132) at epoch 284, 

as shown in Figure 4.24.  

 

4.4.2 Radial Basis Function (RBF) network 

 

The RBF is special kind of feedforward network which has a high dimensional 

hidden layer with Gaussian basis (kernels) (Haykin, 1994), (Bishop, 1995), (Jain, M., 

& Mohiuddin, 1996), (Öztemel, 2003). Output nodes form a linear combination of 

the basis functions computed by the hidden layer nodes. The basis functions are 

formed (learned) from the training samples. These basis functions produce a 

localized response to input stimulus. In this work, spread of RBF is selected as 10 

and tolerance for the mean squared error goal value is 1.10-9.  

 

As shown in Figure 4.25, the result of RBF neural network performance is 

0.005858 and it is achieved at epoch 550. 

 

4.4.3 Fisher Linear Discriminant Analysis 

 

Fisher linear discriminant analysis (FLDA) finds a linear projection that provides 

more accurate discrimination between classes. Projections can reduce dimension of 

the feature vector (Welling, 2006).  

 

4.4.4 K-Nearest Neighbor 

 

K-NN classifies an unlabeled vector through the training examples, each with a 

class label. Euclidean distance is generally used for calculating nearest k number of 

training samples to each test sample. The number of neighbors should not exceed the 
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number of samples (Peterson, 2009), (Değerli, 2011). In this work, k number is 

selected as 3. 

 

In this work, the inputs (features which are defined in Equation 4.2-4.16) used for 

training, testing and validation are shown in Table 4.8. Classifier outputs (i.e. 

aggregate class labels) are given in Table 4.9 as numeric values.  
 

Table 4.8 Input features and mathematical definitions. 

Inputs Mathematical Definition 

Sphericity            √
   

  

 

 

Shape factor              
 

√   
 

The elongation ratio                   
 

 
 

Flatness ratio                
 

 
 

Averaged Minimum Height                      
 

 
∑(          

 

   

 

Averaged Maximum Height                      
 

 
∑(          

 

   

 

Area      ∑  

 

   

 

Length         ∑ 

 

   

 

Slice Area               ∑  

 

   

 

Image Volume               ∑(             

 

   

 

Maximum Ferret Area                         (                 

Ferret Volume                                     

Mean of 3D distance   
 

 
 ∑  

 

   

 

Standard deviation of distance   √
 

 
∑(      
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Table 4.9 Aggregate class labels. 

Class Label Aggregate Definition 

1 Elongate 

2 Flat 

3 Angular 

4 Sphere 

5 Round 

6 Formless 

 

 
Neural network training. 

 
Plot of training state values. 

 
 Plot of network performance. 

Figure 4.23 Feed forward neural network outputs (one hidden layer). 
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Neural network training. 

 
Plot of training state values. 

 
 Plot of network performance. 

Figure 4.24 Feed forward neural network outputs (two hidden layers). 
 

 
Figure 4.25 Radial basis function neural network performance. 
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4.5 Results and Discussion 

 

In this study, a new three-dimensional image analysis system that obtains new 

feature vectors for characterizing six types of different aggregates is developed. The 

optimal analysis system is created with the experience gathered by using and 

improving different types of hardware and software components. 

 

The study is evaluated in two stages. In the first step, the developed three-

dimensional system is compared both with the manual measurement results and with 

the two-dimensional image analysis system to identify the advantages of it. Six 

samples from each of six different aggregate classes are used to compare three 

methods. Due to the required work for manual measurement is excessive total 

number of samples is kept small. The L, S and I values of the three methods are 

shown in Table 4.2, 4.3, 4.6. The disadvantages of manual measurement method are 

the long measurement times, since every aggregate sample needs to be examined for 

aggregate projections on graph paper for the top and side views, and requirement for 

high attention for each aggregate. The disadvantages of the two-dimensional system 

are manual setup requirement for the acquisition of top and side view aggregate 

images and environmental conditions (illumination system, camera, shooting range, 

etc.).  

 

On the other hand, the L, S and I values are directly and easily calculated with 

merged laser slice images of aggregates by the developed three-dimensional analysis 

system. In addition, three-dimensional image analysis method simplified the 

calculation of the volume of aggregate for the scanned (upper) part. Moreover, three-

dimensional image analysis system forms the first step for surface texture analysis of 

the aggregates. This is the most distinctive property of the system.  

 

Second stage of the study is classification work. Six different types of aggregates 

are classified using the new feature vectors that are obtained through three-

dimensional image analysis system. Anova analysis investigates relationships 
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between feature vectors (McClave, Dietrich II, & Sincich, 1997). Moreover, it 

analyzes the effects to classes. From these statistical results (Table 4.10) null 

hypothesis (H0 : model  which corresponds to extracted 3D feature vector  is 

useless) is rejected. This means 3D features are suitable for classification. The 

averaged maximum height, sphericity, long (L) feature vectors have the best 

discrimination power and they are statistically significant (p < 0.001) also as shown 

in Table 4.11.  
 

Table 4.10 Anova analysis. 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1355.001 75 90.333 158.344 0.000a 

Residual 401.052 2125 0.570   

Total 1756.053 2200    

a. Predictors; (constant), sphericity, shape factor, the elongation ratio, flatness ratio, averaged 

minimum height, averaged maximum height, area, long (L), short (S), intermediate (I), slice area, 

image volume, maximum ferret area, ferret volume, µ, S 

b. Dependent Variable: class 
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Table 4.11 Statistical analysis results of 3D aggregate features. 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -8.007 1.428  -5.609 .000 

Averaged Maximum Height .083 .003 1.118 25.939 .000 

Averaged Minimum Height -.035 .007 -.127 -5.196 .000 

Maximum Ferret Area -1.970E-6 .000 -.130 -1.699 .090 

Area 1.304E-5 .000 .219 4.679 .000 

µ .031 .018 .183 1.750 .081 

S -.141 .031 -.356 -4.535 .000 

Long 1.162 .227 .500 5.121 .000 

Short -1.820 .391 -.573 -4.657 .000 

Intermediate -.916 .329 -.392 -2.785 .005 

Sphericity 7.725 1.531 .592 5.045 .000 

Shape factor 3.484 1.388 .606 2.510 .012 

Elongation .328 .297 .188 1.103 .270 

Flatness -.436 .671 -.206 -.651 .516 

a. Dependent Variable: class 
 

Average performance results are given in Table 4.12. The results in confusion 

matrix (Table 4.13) show that shape parameters of some formless type aggregates are 

too close to the other aggregate classes. Sphere type aggregates are classified with 

the best performance (100%) because they naturally have maximum sphericity and 

their L, S and I values are close the each other.  

 

MLP2 network model has best performance with the accuracy value 99.20%. 

These results show that it is a positive approach to classify six different types of 

aggregates using the new feature vector. ROC curves for the neural network 
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classifiers are given in Figure 4.26. Area under the ROC curve is an important 

criterion about classifier performance (Table 4.14). 
 

Table 4.12 Classification results (a. Multilayer perceptron with one hidden layer, b. Multilayer 

perceptron with two hidden layers, c. Radial Basis Function, d. Fisher Linear Discriminant Analysis,    

e. K-Nearest Neighbor) 

 

Network Type 

Node Number  

(First Hidden Layer) 

Node Number  

(Second Hidden Layer) 

(%) 

Average 

Performance 

MLP1a 8 - 90.40 

MLP2b 15 15 99.20 

RBFc - - 93.79 

FLDd - - 96.20 

KNNe - - 91.39 

 

Table 4.13 Confusion matrix of neural network having best performance (1.Elongate, 2.Flat, 

3.Angular, 4.Sphere, 5.Round, 6.Formless). 

 

Target Class 

 
1 2 3 4 5 6 

O
u

tp
u

t 
C

la
ss

 

1 
228    

10.3 % 

0        

0.0 % 

0        

0.0 % 

0        

0.0 % 

0        

0.0 % 

3         

0.1 % 

98.7 %   

1.3 % 

2 
3         

0.1 % 

447        

20.2 % 

0        

0.0 % 

0        

0.0 % 

0        

0.0 % 

0        

0.0 % 

99.3 %   

0.7 % 

3 
0        

0.0 % 

0        

0.0 % 

297        

13.4 % 

0        

0.0 % 

0        

0.0 % 

0        

0.0 % 

100 %    

0.0 % 

4 
0        

0.0 % 

0        

0.0 % 

0        

0.0 % 

435        

19.7 % 

0        

0.0 % 

0        

0.0 % 

100 %    

0.0 % 

5 
0        

0.0 % 

0        

0.0 % 

0        

0.0 % 

0        

0.0 % 

519       

23.4 % 

6        

0.3 % 

98.9 %   

1.1 % 

6 
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Figure 4.26 ROC curve. 

 

Table 4.14 Area under the ROC curve. 

Class Area Under the Curve 

Elongate 0.9998 

Flat 1.0000 

Angular 0.9970 

Sphere 1.0000 

Round 1.0000 

Formless 0.9094 

 

In Table 4.15, the aggregates are classified into two groups as well-shaped and 

poor-shaped (Joret, Isa, Ali, Zamli, Azizli, & Batah, 2005). The aggregates are 

defined poor-shaped, if L/S ratio is more than 3 (Ünal, 2011). These type of 

aggregates are generally flat and elongate. Other type of aggregates are defined well-

shaped. The confusion matrix shows that MLP2 classify with the rate of 99.90%. 

Area under the ROC curve is calculated as 0.9922 (Figure 4.27). 
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Table 4.15 Confusion matrix of well-shaped and poor-shaped aggregates (1. Poor-shaped (elongate 

and flat), 2. Well-shaped (angular, sphere, round, formless)). 

 Target Class  

1 2 

O
u

tp
u

t 
C

la
ss

 

1 
678 

30.6 

3 

0.1% 

99.6% 

0.4% 

2 
0         

0.0 % 

1539 

69.3% 

100 %   

0.0 % 

  100 %   

0.0 % 

99.8% 

0.2% 

99.9% 

0.1% 
 

 
Figure 4.27 ROC curve of well-shaped and poor-shaped aggregate classifier. 
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In this chapter, material and methods are investigated. Developed 3D imaging 

system is explained and compared. The new features are formularized and 

statistically analyzed. Then they are used for classification. Classification 

performance is measured. Results are discussed. In following chapter, this work is 

concluded. 
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CHAPTER FIVE 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

5.1 Conclusions 

 

In this thesis work, 3D imaging system has been designed for the characterization 

and classification of aggregates that are grouped under six basic categories. 3D 

feature vectors are extracted in this process. Analysis of these features revealed that 

they have high discrimination power, which yielded successful classification results. 

 

The quality of aggregate directly affects the fresh concrete and its workability. 

Cement and water requirements and strength and durability of hardened concrete are 

also affected. Because of this reasons, determination of defective aggregate types 

(flat and elongate) is very important. Our system performed quite successful in this 

classification process with 99.90%. In addition, our system classified six type 

aggregates as the elongate, flat, angular, sphere, round and formless with 99.20%. 

 

We extracted the new feature vectors for shape characterization and classification 

of aggregate by efficiently utilizing the developed 3D imaging system. The averaged 

maximum height, sphericity, long feature vectors have the best discrimination power 

and statistically significant (p < 0.001). The averaged minimum height, short and 3D 

distance standard deviation feature vectors have the minimum discrimination power, 

though they are statistically significant. 

 

Averaged maximum height value of flat aggregate is generally similar since flat 

surface is only distorted at the edges which has a minimum effect on the feature. On 

the other hand, sphere aggregate has maximum value for this feature because of its 

surface geometry shows only change in a circular area. Formless aggregates, which 

are irregular, have different values of this feature. In generally this feature has the 

best discrimination power (statistically significant (p < 0.001)). 
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In this work, we used different classifier models (artificial neural network, fisher 

linear discriminant and k-nearest neighbor). Multi-layer perceptron neural network 

model, which has two hidden layers, provides the best discrimination. This shows 

that mathematical model (extracted 3D features) of aggregates fits to the model of 

the nonlinear classifier. In other words, feature space (with sixteen dimensions) is 

nonlinearly partitioned by the selected multi-layer perceptron neural network giving 

high classification performance. 

 

We designed different 3D laser based imaging systems to minimize error during 

capturing images of aggregates. The first two designs had different problems as 

mentioned previously. We improved designs to realize the optimal 3D laser imaging 

system. This process was continued about 1.5 years. 

 

Software has been developed using C# programming language. Step motor 

motion control system, imaging system and digital image storage system has been 

implemented. Required library files are created in Matlab® program and integrated 

to C# software. This program controls the capturing process. Captured images are 

processed and 3D shape features are extracted from them in a short time (with a 

maximum duration 65 seconds). We have written 3725 lines of code that contains 

capturing, preprocessing, reconstruction, feature extraction and classification 

processes. 

 

As a result, when compared with the works of others (Garboczi, 2002), (Fernlund, 

2005), (Lee, Smith, & Smith, 2007), our system is fast, cheap and easy to use. Novel 

features of six different types of aggregates provide higher classification results than 

the performance achieved in work of Al-Batah, et al. (2009). Our system can easily 

measure the shape parameters of the aggregates which makes it highly preferable to 

traditional methods (Anonymous, UTEST Material Testing Equipment, 2011), 

(Anonymous, ASTM International Standards Worldwide - Home, 2011). 
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5.2 Suggestions for Future Work 

 

Presented work is a step towards an advanced automation system for classification 

of the aggregates based on 3D shape parameters. Further studies are going to be 

related with the system performance enhancement, including new 3D shape 

parameters of aggregates. Quality control in building construction area can be done 

using this system. Thus, quantitative quality measurement of aggregate can be 

accomplished during concrete production. The aim of the next phase of this work is 

to enhance the classification system by including new aggregate samples. Moreover, 

the future works may include the surface roughness parameters of aggregate to 

improve the main idea of this thesis. 
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