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GENETIC ALGORITHM BASED HYBRID APPROACHES TO SOLVE 
CAPACITATED LOT SIZING PROBLEM WITH SETUP CARRYOVER 

AND BACKORDERING 
 
 

ABSTRACT 
 

Lot sizing studies aim at determining the periods where production takes place and 

the quantities to be produced in order to satisfy the customer demand while 

minimizing the total cost. Having an important impact on the efficiency of 

production and inventory systems, lot sizing problem is one of the most challenging 

production planning problems. Due to their applications in production planning, lot 

sizing problems have been studied for many years with different features. Among 

these problems, The Capacitated Lot Sizing Problem (CLSP) has received a lot of 

attention from researchers. The primary aim of this Ph.D. study is to propose novel 

Genetic Algorithm (GA) based hybrid approaches for solving the CLSP with three 

extensions, i.e. setup times, setup carryover and backordering. In this thesis, the 

capacitated lot sizing problem with setup carryover and backordering is solved in 

two stages. In the first stage, two novel hybrid approaches are proposed for solving 

the capacitated lot sizing problem with setup times and setup carryover (CLSPC). 

These two hybrid approaches combine a meta-heuristic, i.e. GA, with a Mixed 

Integer Programming (MIP) based heuristic, i.e. the Fix-and-Optimize heuristic, in 

two different ways. In the first methodology, i.e. sequential hybridization, the Fix-

and-Optimize heuristic is performed after the GA. The second methodology involves 

a different hybridization scheme where the Fix-and-Optimize heuristic is embedded 

into the GA. As an alternative to a random initial population, a novel initialization 

scheme which consists of problem specific information and randomness is proposed. 

Moreover, in order to sustain the feasibility during the search of GA, several repair 

operators are proposed. Lastly, the performances of proposed hybrid approaches are 

evaluated on various sets of problems from published literature. In the second stage, 

the CLSPC is extended to include the backorder option, called capacitated lot sizing 

problem with setup carryover and backordering. For solving the capacitated lot 

sizing problem with setup carryover and backordering, eight hybrid approaches are 

proposed. These approaches are modified versions of the hybrid approaches 

developed for solving the CLSPC. Unlike the hybrid approaches proposed in the first 
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stage, in these hybrid approaches, the Fix-and-Optimize heuristic is implemented 

with different decomposition schemes. An extensive experimental analysis is carried 

out to compare the performances of the proposed hybrid approaches to the pure GAs 

using various problem instances. Moreover, the robustness of the performances of 

the proposed approaches under different parameter values is examined.  

 

Keywords: Capacitated lot sizing problem, backordering, setup carryover, genetic 

algorithm, fix-and-optimize heuristic.  
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HAZIRLIK TAŞIMALI, BİRİKMİŞ SİPARİŞLİ KAPASİTE KISITLI PARTİ 
BÜYÜKLÜĞÜ PROBLEMİ İÇİN GENETİK ALGORİTMA TABANLI 

MELEZ ÇÖZÜM YAKLAŞIMLARI 
 
 

ÖZ 
 

Müşteri taleplerini zamanında karşılayacak ve toplam maliyeti en küçükleyecek 

şekilde üretimin olacağı dönemleri ve bu dönemlerde üretilecek ürün miktarlarını 

belirleme amacını taşıyan parti büyüklüğü problemleri, zor üretim planlama 

problemlerinden birisidir ve üretim ve stok sistemlerinin etkinliği üzerinde önemli 

bir etkiye sahiptir. Üretim planlamadaki uygulamalarından dolayı, farklı özellikleri 

taşıyan parti büyüklüğü problemleri uzun yıllardır çalışılmaktadır. Bu problemler 

arasında, Kapasite Kısıtlı Parti Büyüklüğü Problemi (KKPBP) araştırmacıların 

ilgisini en çok çeken problemlerden biridir. Bu doktora tezinin başlıca amacı hazırlık 

zamanları, hazırlık taşıma ve birikmiş sipariş özellikleri eklenen KKPBP’ni çözmek 

üzere özgün Genetik Algoritma (GA) tabanlı yaklaşımlar sunmaktır. Hazırlık 

taşımalı ve birikmiş siparişli KKPBP bu tez çalışmasında iki aşamada çözülmüştür. 

İlk aşamada, sadece hazırlık süreleri ve hazırlık taşımasının olduğu KKPBP 

(KKPBPC) için iki tane özgün melez yaklaşım önerilmiştir. Bu melez yaklaşımlar bir 

meta-sezgisel olan GA ve karışık tamsayı programlama (KTP) tabanlı bir sezgisel 

olan Sabitle-ve-Optimize Et sezgiselini iki farklı şekilde birleştirmektedir. İlk 

yaklaşımda, ardışık melezleme kullanılmış ve Sabitle-ve-Optimize Et sezgiseli 

GA’dan sonra uygulanmıştır. İkinci yaklaşım Sabitle-ve-Optimize Et sezgiselini 

GA’nin içerisine yerleştirerek farklı bir melezleme çeşidi içermektedir. Rastsal 

başlangıç popülasyonuna alternatif olmak üzere probleme özgü bilgileri ve rastsallık 

içeren özgün bir başlangıç popülasyonu oluşturma yöntemi önerilmiştir. Bunun yanı 

sıra, başlangıç popülasyonundaki probleme özgü ve rastsal kısımların oranlarını 

belirlemek için de bir deneysel çalışma yürütülmüştür. Ayrıca, GA’nın arama 

süresince olabilirliği sağlayabilmesi için çeşitli tamir operatörleri önerilmiştir. Son 

olarak da, önerilen yaklaşımların performansları literatürdeki mevcut problemler 

üzerinde test edilmiştir. İkinci aşamada, KKPBPC’ye birikmiş sipariş özelliği 

eklenmiş ve hazırlık taşımalı ve birikmiş siparişli KKPBP olarak adlandırılan bu 

problemi çözmek üzere sekiz farklı melez yaklaşım önerilmiştir. Bu melez 

yaklaşımlar, KKPBPC için önerilen melez yaklaşımları modifiye ederek 
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geliştirilmiştir. İlk aşamada önerilen melez yaklaşımlardan farklı olarak, bu aşamada 

önerilen melez yaklaşımlarda Sabitle-ve-Optimize Et sezgiseli farklı şekillerde 

uygulanmış ve problemin ayrıştırılmasında çeşitli ölçütler kullanılmıştır. Farklı 

problem örnekleri üzerinde, önerilen yaklaşımların performansı GA ile 

karşılaştırılmıştır. Ayrıca, önerilen yaklaşımların performanslarının problem 

parametrelerindeki değişikliklere ne kadar duyarlı olduğu araştırılmıştır.  

 
Anahtar sözcükler: Kapasite kısıtlı parti büyüklüğü problemi, birikmiş sipariş, 

hazırlık taşıma, genetik algoritma, sabitle-ve-optimize et sezgiseli.  
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CHAPTER ONE 

INTRODUCTION 

 

 

1.1 Objectives and Motivations 

 

Considering the increasing interest in operations, service and logistics costs, 

strategic planning decisions such as allocating scarce resources and operations 

scheduling have important effect on the success of many industrial firms. The 

problem of satisfying customer demands on time at the lowest possible cost is 

complicated and hard to determine which requires complicated solution approaches 

for decision support.  

 

Production planning is one important area in strategic decisions that considers the 

best use of production resources such as parts, raw materials, machines and labor, in 

order to satisfy production goals over a certain period named planning horizon. It 

encompasses three time ranges for decision making: long-term, medium-term and 

short-term. The long-term planning focuses on strategic decisions such as product, 

equipment and process choices, facility location and design and resource planning. 

The short-term planning usually involves decisions related to the day-to-day 

scheduling of operations such as sequencing or control in a workshop. The focus of 

the medium-term planning is making decisions on material requirements planning 

(MRP) and establishing production quantities or lot sizing over the planning horizon  

(Karimi et al., 2003).  

 

Lot sizing problems determine whether and how many items (i.e. lot size) to 

produce for a particular product for a given horizon. Lot is a batch of the items of the 

same type. The production lots are determined by the trade-offs among machine 

setup costs, production costs, and inventory holding costs (Gao, 1998). The overall 

objective is to satisfy customer demands at the lowest possible cost under a set of 

constraints.  
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Depending on the characteristics of the production process and the planning detail 

required, different types of lot sizing models are commonly used in practice (Suerie 

& Stadtler, 2003). Lot sizing models fall into either small bucket or big bucket 

problems. In big bucket problems, the time period is long enough to produce more 

than one product on each resource, whereas in small bucket models the time period is 

short that at most one product can be produced thus allowing at most one setup per 

period and machine. The capacitated lot sizing problem (CLSP) can be defined as an 

example for big bucket models. The discrete lot sizing and scheduling problem 

(DLSP), continuous setup lot sizing problem (CSLP) and proportional lot sizing and 

scheduling (PLSP) problem are considered to be small bucket models. The small 

bucket models solve the lot sizing and scheduling problems together; however the 

big bucket models only deal with the lot sizing decisions. Moreover, in small bucket 

models, carrying of at most one setup of a product from one period to another is 

permitted while this property is not valid for big bucket models. Among these 

problems, a vast amount of literature has been devoted to the solution of CLSP with 

different extensions. Since the general case of the single item CLSP is shown to be 

NP-Hard (Florian et al., 1980), almost all studies in this area focus on proposing 

efficient solution approaches for solving this hard problem.  

 

The primary aim of this PhD study is to introduce efficient solution approaches 

for an extended version of the CLSP, namely the capacitated lot sizing problem with 

setup times, setup carryover and backordering which deals with determining the 

quantity and timing of production lot sizes and also the semi-sequencing of the 

products to be produced in each period. 

 

The considered problem extends the classical CLSP with respect to three 

additional aspects:  

 

Firstly, setup times are considered in this study. The capacity lost due to cleaning, 

preheating, machine adjustments, calibration, inspection, test runs, change in tooling 

and starting up a new product is considered as setup time. Considering the setup time 
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issue makes the problem more complicated, but ignoring it makes the 

implementation of the methods suggested impractical for real-life applications. 

 

Secondly, a setup carryover from one period to another is permitted. The most 

common practice in the relevant literature is to model the lot sizing problem as small 

bucket problem in order to obtain more accurate plans. However, to yield a solution 

comparable to that of a big-bucket model it is required to divide the planning horizon 

into many more buckets (Suerie & Stadtler, 2003). This increases the complexity of 

the model. In recent years, a new model combining the characteristics of small and 

big bucket models has emerged. This model is called the capacitated lot sizing 

problem with setup times and setup carryover (CLSPC). The CLSPC is a big bucket 

model but it allows carrying one setup state of a product from one period to the next. 

Allowing setup carryover also helps finding feasible solutions in such situations 

where too much capacity is consumed by setup times that are not necessary in reality. 

 

Thirdly, the model in this study allows backordering meaning that if customer 

demand can not be met on time, it can be satisfied later in future periods of the 

planning horizon. In traditional lot sizing models, this issue is generally ignored and 

a product is produced prior to its delivery date. As a result, inventory costs occur. 

However, in real life problems, it might not always be possible to satisfy the 

customer demand on time and unsatisfied demand is often backordered. Due to the 

delay of customer needs, backorder costs are incurred for every unit and period of the 

delay. Allowing backorders has a great importance in practical settings as sometimes 

some products may have to be backordered since capacity is limited (Quadt & Kuhn, 

2009).  

 

In this Ph.D. study, we first focused on the capacitated lot sizing problem with 

setup times and setup carryover and proposed two novel GA based hybrid 

approaches to solve this problem. Next, we added backordering issue to this problem 

and developed eight GA based approaches to solve the extended problem, i.e. the 

capacitated lot sizing problem with setup times, setup carryover and backordering.  
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1.2 Research Methodology 

 

The general problem considered in this study is an extension of the classical 

CLSP. Several optimum seeking methods such as linear programming, integer 

programming, dynamic programming and branch-and-bound approaches have been 

used to solve this problem. However, none of these methods have proven to be 

effective especially for large size problems due to their computational inefficiency. 

Hence, in recent years, research efforts have been directed to the development of 

several heuristic approaches.  

 

Among these heuristic approaches, in recent years, evolutionary computation has 

received increasing attention. The most well known evolutionary computation 

method is Genetic Algorithms (GAs). GAs are optimization techniques that use the 

principles of evaluation and heredity to arrive at near optimal solutions to difficult 

problems (Khouja et al., 1998). GAs have been employed to solve different 

optimization problems across various disciplines due to their flexibility and 

simplicity. However, as the problem complexity increases the search space becomes 

very large and pure GAs may lack the capability of exploring the solution space 

effectively (Taşan, 2007). To improve the exploration capability of pure GAs for 

faster and better search in recent years, the attention has focused on the hybridization 

of GAs. In hybrid GAs, local search methods, problem specific information, other 

meta-heuristics and exact approaches are used.  

 

In this PhD study, we first solve the CLSPC by employing two novel hybrid 

approaches. These hybrid approaches include two different hybridization schemes 

namely, sequential and embedded (see Figure 1.1). The first methodology hybridizes 

GAs and Fix-and-Optimize heuristic in a sequential way, where the Fix-and-

Optimize heuristic is performed after GA. In the second one, the Fix-and-Optimize 

heuristic is embedded into the loop of GAs to refine the solutions obtained by GAs.  

 

Next, we add the backorder issue into the model and solve this extended problem 

by employing eight hybrid approaches. While the first four of these approaches are 
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      GA 
       . 
       . 
 
 
 
 
       . 
       . 
       . 
 

the modified versions of the proposed sequential hybrid approach, the remaining four 

are the modified versions of the proposed embedded hybrid approach. The Fix-and-

Optimize heuristic in these hybrid approaches is applied with different 

decomposition schemes.  

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 1.1 Proposed hybridization schemes 

 

Moreover, to further improve the performance of the proposed hybrid approaches, 

a novel initialization scheme is proposed for creating the initial population of the GA 

and its efficiency is tested under various experimental conditions. This initialization 

scheme utilizes both problem specific information and randomness to create the 

initial members of the population. A repair procedure employing some novel repair 

operators is embedded into GAs to fix the infeasible individuals in each generation. 

Furthermore, to improve the performance of the proposed hybrid approaches, an 

extensive experimental analysis is carried out to identify efficient GA control 

parameter settings. 
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1.3 Outline of the Thesis 

 

The primary focus of this thesis is to develop efficient GA-based solution 

approaches for solving the capacitated lot sizing problem with setup times, setup 

carryover and backordering. A brief outline of this thesis is as follows.  

 

In Chapter 2, background information on lot sizing problems are provided with 

the problem specifications, variants and solution approaches that have been proposed 

so far.  

 

In Chapter 3, the solution approaches employed in this Ph.D. study, GAs and Fix-

and-Optimize heuristic are explained in detail and also hybridization concepts in 

meta-heuristics are presented.  

 

In Chapter 4, to determine the research gaps in the current literature, a 

comprehensive literature review on applications of GAs for lot sizing problems is 

presented. The focus of literature review is twofold. Firstly, the current relevant 

research is reviewed from the perspective of lot sizing problem specifications; next, 

the features of GA-based methodologies are discussed to identify possible 

methodological contributions.  

 

In Chapter 5, two hybrid approaches are proposed to solve the CLSPC. 

Additionally, a new initialization scheme is proposed and efficient control 

parameters of GA are determined through pilot experiments to improve the 

performance of the proposed hybrid approaches. The performances of proposed 

hybrid approaches are tested on a set of benchmark problems from the literature and 

the results of comparative experiments are presented.  

 

In Chapter 6, the CLSPC is extended to the capacitated lot sizing problem with 

setup times, setup carryover and backordering, abbreviated to CLSP+. The proposed 

hybrid approaches are modified to deal with this more complicated problem. To 

further improve the performance of these approaches the efficient control parameters 
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of GA are determined based on pilot experiments and also Fix-and-Optimize 

heuristic is implemented with new decomposition schemes. Various sets of 

computational experiments are carried out on a set of problem instances ranging 

from small to large size. Moreover, a statistical analysis is carried out to see whether 

there are statistically significant differences between the performances of proposed 

hybrid approaches. Lastly, the sensitivity of the performances of the proposed hybrid 

approaches to various parameters including backorder cost, capacity utilization, time 

between orders (TBO), demand variability and setup time are examined in detail.  

 

Finally, in Chapter 7, the summary and contributions of this thesis study are 

discussed. The future research directions are also presented.  
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CHAPTER TWO 

BACKGROUND INFORMATION FOR LOT SIZING PROBLEMS 
 

 

2.1 Introduction 

 

The problem considered in this study is the extended version of the capacitated lot 

sizing problem. This chapter is devoted to the definition of several lot sizing 

problems, introduction to some of the most important concepts of lot sizing problems 

and discussion of several solution approaches. The chapter is organized as follows. 

In Section 2.2, a brief introduction to basic concepts of lot sizing problems is given. 

In Section 2.3, different variants of lot sizing problems are explained. In Section 2.4, 

various solution methods proposed for solving the capacitated lot sizing problem are 

discussed. Finally, in Section 2.5, the context of this chapter is summarized.  

  

2.2 Lot Sizing 

 

Many production processes can only start after the required resources have been 

set up which involves a setup time and/or setup cost (Buschkühl et al., 2008). 

Simply, finding the timing and quantity of production to satisfy the customer demand 

so that production, setup and inventory costs can be minimized, known as lot sizing 

problem. Since lot sizing problems are critical to the efficiency of production and 

inventory systems, it is very important to determine the right lot sizes in order to 

minimize the overall cost (Gören et al., 2010).  

 

Research on lot sizing has started in the early twentieth century and since then a 

large number of lot sizing problems with different modeling features have been 

identified (Buschkühl et al., 2008). In order to solve these problems, a lot of solution 

approaches and algorithms have been developed. 
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2.2.1 Problem Specifications of Lot Sizing Problems 

 

The complexity of lot sizing problems is dependent on the problem specifications 

taken into account by the model. The problem specifications can be named as the  

planning horizon, number of levels, number of products, capacity constraints, type of 

demand, setup time issue and inventory shortage. These will be explained in details 

in the following.  

 

a. Planning horizon: 

The planning horizon can be defined as the time interval on which the master 

production schedule extends into the future (Karimi et al., 2003). The planning 

horizon can be infinite, finite or rolling. An infinite planning horizon is usually 

accompanied by stationary demand, whereas a finite planning horizon is 

accompanied by dynamic demand. Under rolling horizon, a production planning is 

made for a fixed number of periods for which the demand is known. The first 

production decision is implemented and the horizon is rolled forward to the period 

where the next production decision needs to be made (van den Heuvel & 

Wagelmans, 2005).  

 

b. Number of levels: 

Production systems can be single level or multi level. In single level systems, raw 

materials are changed into the final process after a single operation. Product demands 

come directly from the customer orders or market forecasts. This is the independent 

demand. However, in multi level production systems, there is a relationship among 

products which create dependent demands. The output of one level is input for 

another operation. Raw materials are converted into final products after several 

operations.  

 

c. Number of products: 

Another important problem specification affecting the modeling and complexity 

of the problem is the number of end products considered. In terms of number of 

products, there are two types of production systems. The first one is the single item 
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production system, where there is only one end product. The second one is the multi 

item production system, where there are several end products.  

 

d. Capacity constraints: 

When there are no limitations on the resources, the lot sizing problem is said to be 

uncapacitated. The capacitated lot sizing problems are more complicated than the 

uncapacitated lot sizing problems since the capacity constraints directly affect the 

problem complexity.  

 

e. Type of demand: 

If the value of the demand is known, it is termed as deterministic which can be 

static or dynamic. If the value of the demand is not known exactly and occurs based 

on some probabilities, it is termed as probabilistic.  

 

f. Setup time issue: 

In capacitated lot sizing problems, adding the setup time issue makes the problem 

more complex (Degraeve & Jans, 2007). A production changeover between different 

products incurs setup time and setup cost. The setup structure can be defined into two 

types, namely, simple and complex setup structures.  

 

Simple setup structure: If the setup time and cost in a period do not depend on the 

sequences, the decisions in previous periods or decisions for other products, the 

setup structure is said to be simple.  

 

Complex setup structure: The complex setup structure can be defined in three 

types. The first one involves the setup carryover which allows the continuation of 

the production run from the previous period into the current period without any 

additional setup. The second one involves the family or major setup which is 

caused by the similarities in manufacturing process and design of group of 

products (this is related to decision for other products, but in the same period). 

This type of the setup structure also involves an item or minor setup which occurs 

during the change of the production among products within the same family. The 
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last type of complex setup structure occurs when the setup decisions depend on 

the production sequence which is called sequence dependent (Karimi et al., 2003).   

 

g. Inventory shortage: 

Inventory shortage is an important specification affecting the problem modeling 

and complexity. If inventory shortage is allowed, it is possible to satisfy the demand 

of the current period by production in future periods. This is called backordering. 

There is another option that the demand of the current period may not be satisfied at 

all. This is called lost sales.  

 

2.3 Variants of Lot Sizing Problems 

 

Research on lot sizing starts with the classical economic order quantity (EOQ) 

model. The EOQ model is developed for a single level production process with a 

single product and no capacity constraints under stationary demand. Since the 

assumptions of the EOQ model do not appear realistic, other models have evolved. 

The classification of lot sizing problems based on the main specifications explained 

above is given in Figure 2.1 which is adapted from the classification in Bahl et al. 

(1987).  

 

The first group of lot sizing problems is the static lot sizing problems namely the 

Economic Lot Scheduling Problem (ELSP). The ELSP is a single level multi item 

problem with capacity constraints under stationary demand and infinite planning 

horizon. It deals with scheduling the production of a set of products on a single 

machine to minimize the long run average holding and setup cost under the 

assumptions of known constant demand and production rates. The objective of the 

ELSP is to determine a production cycle of N products, {1,2,..., }i N∈ in a repetitive 

schedule. A repetitive schedule is achieved if there is a time period Ti for each 

product that represents the time between successive production runs (batches or 

“lots”) of product i (Chatfield, 2007). The repetitive schedule is subject to the 

following conditions related to the production facility and marketplace, as stated in 

Bomberger (1966).   
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1. Only one product i can be produced at a time.  

2. Setup for a certain product incurs both a specific setup cost (si) and setup time 

(ti).  

3. Setup time and setup cost are determined solely by the product going into the 

production (sequence independent).  

4. Demand rate (ri) and production rate (pi) are known and constant for all 

products.  

5. All demand must be met, which means backordering is not allowed.  

6. Holding costs (hi) are determined by the value of products held. 

7. Total variable cost for a product equals the average setup cost plus holding 

cost over a specific period of time.  

8. Production time for a lot of product i, 
i

σ , equals the sum of the processing 

time and the setup time, ( / )*
i i i i i

r p T tσ = + .  

 

A solution set consists of a set 1 2{ , ,..., }
N

T T T T= such that 
i

T  is sufficiently long 

enough to allow enough production of product i at the beginning of the cycle to meet 

the demand during the entire cycle 
i

T , plus allow production of other products in the 

time left between the end of production of product i and the start of the next cycle. 

The cost per unit for a product i is defined as in the following.  

 

( cos cos )
i

C average setup t average holding t= +     (1) 

( )

2
i i i i i i

i

i i

s h rT p r
C

T p

−
= +         (2) 

 

Due to the non-linearity and combinatorial characteristics of the problem, the 

ELSP falls into the class of NP-Hard problems.  

 

The second group is the dynamic lot sizing problems which deal with dynamic 

demand under a finite planning horizon. The dynamic lot sizing problem can be 

formulated for a single level with infinite production capacity and a single product 

over P periods of time as follows:  
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1

( )
T

t t t t t t

t

Minimise S Y c X h I
=

+ +∑        (3) 

1. . ( )
t t t t

s t X I I d t P−+ − = ∀ ∈        (4) 

( )
t t t

X M Y t P≤ ∀ ∈         (5) 

{0,1} ( )tY t P∈ ∀ ∈         (6) 

, 0 ( )
t t

X I t P≥ ∀ ∈          (7) 

 

This problem is known as the uncapacitated single item single level lot sizing 

problem (Wagner & Whitin, 1958), where ht is the inventory holding cost of the 

product from one period to the next, dt represents the product demand at the end of 

period t, Ct is the variable unit production cost in period t, St is the setup cost in 

period t and Yt is a binary variable that assumes value 1 if the product is produced in 

period t and 0 otherwise. Mt is the upper bound on the production. The decision 

variables Xt represent the production level in each period t and It represents the 

inventory variable of the product at the end of period t. The objective function, 

Equation 3, includes total holding, setup and production costs. The inventory balance 

equation for each period is given in Equation 4. The second constraint, Equation 5, 

forces the setup variable to take the value 1 if there is any production. Equations 6 

and 7 are the non-negativity constraints.  

 

The first dynamic lot sizing model was developed in 1958 by Wagner and Whitin. 

The problem is a single item single level uncapacitated lot sizing problem where 

there are constant production costs over the planning horizon. In 1960, it was proved 

by the authors that for the production costs that are not constant there exists an 

optimal solution that satisfies the following property:  

 

1 0
t t

I X t P− = ∀ ∈          (8) 

 

This property means that in an optimal solution, one never produces in a period 

and has inventory coming in from the previous period at the same time. This is called 

the Wagner-Whitin (WW) property and the problem is said to be WW problem.  
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2.3.1 The Capacitated Lot Sizing Problem 

 

The Capacitated Lot Sizing Problem (CLSP) can be seen as the extension of the 

WW problem to capacity constraints. The CLSP can be grouped in large bucket 

models thus similar to the ELSP; the CLSP is a multi product problem (Drexl & 

Kimms, 1997). 

 

The linear programming formulation for the CLSP was proposed by Manne in 

1958. There are n different products to be produced on a single machine with a 

production capacity Ct and K is the set of all products. Producing one unit of product 

i consumes aj units of capacity, the variable production time. An extra index j is used 

for defining the product specific variables and parameters. The formulation in the 

original production and setup variables, Xjt and Yjt, is as follows: 

 

( )
jt jt jt jt jt jt

j K t P

Min S Y C X h I
∈ ∈

+ +∑∑        (9) 

, 1 , ,. . ,
j t jt j t j t

s t I X I d j K t P− + − = ∀ ∈ ∀ ∈       (10) 

min{ / , } ,
jt t j jtm jt

X C a sd Y j K t P≤ ∀ ∈ ∀ ∈       (11) 

jt j t

j K

X a C t P
∈

≤ ∀ ∈∑          (12) 

, 0; {0,1} ,
jt jt jt

X I Y j K t P≥ ∈ ∀ ∈ ∀ ∈        (13) 

 

The objective function (9) minimizes the total cost for all products. The demand 

equations (10) remain same. In the setup constraints (11), production is limited by 

both capacity and remaining demand which is different from the uncapacitated 

dynamic lot sizing problem. Total production in each period is now limited by the 

capacity constraint defined in (12). Equations (13) define the integrality constraints 

of the decision variables.  

 

The CLSP can be extended to include the setup times. The setup times represent 

the capacity lost due to cleaning, preheating, machine adjustments, calibration, 

inspection, test runs, change in tooling etc., when the production for a new product 
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starts. The setup time must be accounted for in the capacity constraint (Jans & 

Degraeve, 2008). Several studies can be found in the literature considering setup 

times for the CLSP (Manne, 1958; Trigeiro et al., 1989; Gopalakrishnan et al., 2001; 

Degraeve & Jans, 2007; Hindi et al., 2003; Jans & Degraeve, 2004).  

 

2.3.2 The Discrete Lot Sizing and Scheduling Problem 

 

Subdividing the (macro-) periods of the CLSP into several (micro-) periods leads 

to the DLSP (Drexl & Kimms, 1997). The Discrete Lot Sizing and Scheduling 

Problem (DLSP) is a small bucket problem in which at most one type of product is 

produced. In DLSP, a discrete production policy is assumed (i.e. all-or-nothing 

assumption), meaning a product must be produced at full capacity (Jans, 2002). The 

mathematical programming model of the DLSP can be expressed as follows. 

 

( )
jt jt jt jt jt jt jt jt

j K t P

Min g z S Y C X h I
∈ ∈

+ + +∑∑       (14) 

 

, 1. . ,
j t jt jt jt

s t I X d I j K t P− + = + ∀ ∈ ∀ ∈       (15) 

 

1

1
n

jt

j

y t P
=

≤ ∀ ∈∑           (16) 

 
,

j jt t jt
a X C Y j K t P= ∀ ∈ ∀ ∈         (17) 

 

, 1 ,
jt jt j t

z Y Y j K t P−≥ − ∀ ∈ ∀ ∈        (18) 

 
, 0; , {0,1} ,

jt jt jt jt
X I Y z j K t P≥ ∈ ∀ ∈ ∀ ∈       (19) 

 

The new variable zjt is the start up variable and there is an associated start up cost 

of gjt. A start up occurs when the machine is set up for an item for which it was not 

set up in the previous period. The objective function (14) minimizes the total cost of 

start ups, setups, variable production and inventory. The regular demand constraints 

are stated in (15). The constraints (16) impose that at most one type of product can be 

made in each time period. For each product, production can be at full capacity if 

there is a setup as shown in (17). The start up variables are modeled in constraints 
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(18). There will be only one start up if the machine is set up for an item for which it 

was not set up in the previous period. A setup can be carried over to the next period 

if the production of the same product is continued. The constraints (19) show that the 

start up and set up variables are binary.  

 

Fleischmann (1990) solves DLSP with sequence-independent setup costs using 

branch-and-bound where in a further study Fleischmann (1994) adds the sequence 

dependent costs into the model of DLSP. Cattrysse et al. (1993) propose a heuristic 

for the DLSP with positive setup times based on dual ascent and column generation 

techniques. Jordan and Drexl (1998) show the equivalence between DLSP for a 

single resource and the batch sequencing problem.  

 

2.3.3 The Continuous Setup Lot Sizing Problem  

 

The Continuous Setup Lot Sizing Problem (CSLP) is more realistic than the 

DLSP. The all-or-nothing assumption does not exist in the CSLP but there is still 

only one product that can be produced per period (Drexl & Kimms, 1997). The 

generic model has a similar structure as the DLSP (14)-(19), except that the capacity 

and set up constraints (17) become an inequality: 

 

,
j jt t jt

a X C Y j K t P≤ ∀ ∈ ∀ ∈        (20) 

 

Karmarkar and Schrage (1985) consider this problem without setup costs and in a 

later study, Karmarkar et al. (1987) focus on the single item version of the CSLP 

with and without capacity constraints. Wolsey (1989) refers this problem as lot sizing 

with start up costs.  

 

2.3.4 The Proportional Lot Sizing and Scheduling Problem 

 

In the CSLP, if the capacity of a period is not used in full, the remaining capacity 

is left unused. In order to avoid this problem, The Proportional Lot Sizing and 

Scheduling Problem (PLSP) has emerged (Drexl & Kimms, 1997). The basic idea of 
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the PLSP is to use the remaining capacity for a second product per period. The 

underlying assumption of the PLSP is that the setup state can be changed at most 

once per period. Production in a period may take place if the machine is properly 

setup either at the beginning or at the end of the period. Hence, at most two items 

may be produced per period (Drexl & Kimms, 1997). If two products are produced in 

a period, then the first product must be the same as the last product in the previous 

period. Drexl and Haase (1995, 1996) extend this model with setup times and multi 

machines. The multi level version of the PLSP can be found in Kimms (1996a, 

1996b, 1999).  

 

2.3.5 The Capacitated Lot Sizing Problem with Setup Carryover 

 

In practice, to obtain more accurate plans, smaller bucket sizes are usually 

preferred. But in small bucket problems, to yield an optimum solution the planning 

horizon is divided into more buckets than big bucket models and this increases the 

complexity of the problem since the numbers of constraints and variables increase. 

Therefore, a new model called “The Capacitated Lot Sizing Problem with Setup 

Carryover”, which combines the big-bucket and small-bucket models, has recently 

received the attention of researchers in recent years.  

 

The capacitated lot sizing problem with setup carryover (CLSPC) is also called 

“The Capacitated Lot Sizing Problem with Linked Lot Sizes (CLSPL)” as indicated 

in Suerie and Stadtler (2003). The main characteristics of the CLSPL, which is a big 

bucket model (see Figure 2.2), can be summarized as follows (Suerie & Stadtler, 

2003): 

 

1. Several products requiring a unique setup state can be produced on each 

resource in each period (big bucket model). 

2. At most one setup state can be carried over from one period to the next.  So 

that two lots of adjacent periods are linked, requiring no new setup activity in 

the second period.  
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 Figure 2.2 Characterization of lot sizing and scheduling models (Suerie & Stadtler, 2003) 

 

Sox and Gao (1999) present a reformulation of the mathematical programming 

model for the CLSPC. The reformulation is based on a shortest-route representation 

and a Lagrangian decomposition heuristic is proposed to solve the problem. The 

reformulation allows multi period setup carryovers for small size problems (i.e. eight 

products, eight periods, one resource). The authors, however, add the constraint of 

single period setup carryover to deal with large size problems. The first meta-

heuristic application addressing the solution for the CLSPC can be found in 

Gopalakrishnan et al. (2001). The authors propose a Tabu Search (TS) heuristic 

which consists of five basic move types, three for the sequencing and two for the lot 

sizing decisions. In another study, Karimi and Ghomi (2002) propose a four-stage 

greedy heuristic approach for the capacitated lot sizing problem with setup carryover 

and backlogging. The feasibility of the production plan is maintained with lot 

shifting. However; the model does not include setup times. Karimi et al. (2006) 

extend their previous work (Karimi & Ghomi, 2002) by suggesting a TS approach to 

solve the same problem. Parallel with the conclusions derived from the study of 

Gopalakrishnan et al. (2001), Porkka et al. (2003) modify the model proposed by Sox 

and Gao (1999) by using setup times instead of fixed setup costs and compare its 

behavior with a benchmark model without the setup carryover. The results show that 
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counting the setup times and setup carryover cuts down the number of setups and 

also frees a significant amount of capacity.  

 

Suerie and Stadtler (2003) propose an extended formulation and valid inequalities 

for the CLSPC under the assumption of conservation of one setup state for the same 

product over two consecutive periods which leads to linking two lots of the adjacent 

periods together. The authors also propose a time decomposition heuristic for solving 

the problem for both the single and multi level case.  

 

The sequence-dependent setup costs and times are taken into account in Gupta 

and Magnusson (2005). However, the exact formulation of the problem consists of a 

large number of binary variables and also the issue of sequence-dependent setup 

times and costs make the problem more complicated. To deal with large problem 

instances the authors propose a heuristic approach coupled with a procedure for 

obtaining a lower bound on the optimal solution. Motivated by a real world problem 

in the glass container industry, Almada-Lobo et al. (2007) present two novel Mixed 

Integer Programming (MIP) formulations for the CLSPC, sequence dependent setup 

times and costs. A five-step heuristic is proposed in which the first two steps attempt 

to find an initial feasible solution and the last three are geared towards improving the 

quality of the solution. The idea of the multi-plants is incorporated in the CLSPC in 

Nascimento and Toledo (2008). The authors propose a GRASP meta-heuristic to 

solve the problem with this idea.  

 

The problem is also extended to parallel machines by Quadt and Kuhn (2009) and 

a period-by-period heuristic is proposed to solve the capacitated lot sizing problem 

with setup carryover and backordering in parallel machine environment.  

 

2.4 Solution Approaches for the Lot Sizing Problems  

 

Complexity theory and computational experiments indicate that most lot sizing 

problems are hard to solve (Jans & Degraeve, 2007). To deal with the complexity 

and find optimal or near-optimal results in reasonable computational time, various 
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solution approaches have been proposed to solve different types of lot sizing 

problems. Since this study deals with an extension of the CLSP namely the 

capacitated lot sizing problem with setup times, setup carryover and backordering, 

the solution approaches that have been proposed for solving other types of lot sizing 

problems (i.e. ELSP, DLSP, PLSP, CSLP) are out of the scope of this chapter.  

 

In the following sub-sections, we mainly focused on the solution approaches used 

to solve CLSP with different extensions and investigated the relevant literature 

according to the classification given in Figure 2.3 which is adapted from the 

classification given in Buschkühl et al. (2008).     

 

2.4.1 Exact Methods 

 

Apart from using branch-and-bound technique to solve the CLSP, there are other 

exact approaches such as reformulations and valid inequalities. Since these methods 

need considerable computational time to find an optimal solution, they can only be 

used for small size problems. Table 2.1 lists the number of binary and continuous 

variables along with the number of constraints for the CLSP and some of its 

extensions.  

 

Table 2.1 Model sizes of the CLSP and some of its extensions (Quadt & Kuhn, 2008) 

Model Binary variables Continous 

variables 

Constraints 

CLSP PT 2PT 5PT+P+T 

CLSP+ Backorder PT 3PT 6PT+3P+T 

CLSP + Setup 

Carryover (Linked 

Lot Sizes) 

2PT 2PT PPT+6PT+2P+2T 

CLSP + Sequence 

dependent 

PPT+PT 3PT PPT+8PT+2P+2T 

CLSP + Parallel 

Machines 

PTM PTM+PT 3PTM+2PT+TM+P 

CLSP + Backorder 

+ Parallel Machines  

2PTM PTM+2PT PPTM+4PTM+3PT+PM+TM+3

P+T 

   * M number of parallel machines, P number of products, T number of periods  
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2.4.1.1 Branch-and-Bound 

 

Branch-and-bound (B&B) method is an exact solution procedure that enumerates 

feasible solutions implicitly (Buschkühl et al., 2008). The method has two parts 

namely, “branching” and “bounding”. “Branching” generates new disjoint subsets in 

the solution space while “bounding” removes the unpromising ones from the solution 

space. For MIP models with binary variables, branching is based on subsequently 

fixing the binary variables to 0 and 1 and a relaxed version of each sub-problem is 

solved to determine a bound. There are different ways to relax the mathematical 

model such as linear programming (LP) relaxation and lagrangian relaxation. 

Different B&B applications which are embedded into Lagrangian relaxation scheme 

can be found in Billington et al. (1986), Chen and Thizy (1990) and Diaby (1992a, 

1992b).   
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Figure 2.3 Classification of solution approaches for solving CLSP 
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2.4.1.2 Reformulations  

 

The bounds obtained by relaxing the regular formulation of the CLSP consisting 

of the inventory and production variables are quite poor. For this reason, one of the 

research trends in lot sizing area is to reformulate the model and redefine the 

corresponding decision variables. Two reformulations have been introduced which 

assign each production quantity to a corresponding demand quantity (Buschkühl et 

al., 2008). The first one is the simple plant location and the second one is the shortest 

route reformulations.  

 

 Simple Plant Location Reformulation 

 

The idea behind the Simple Plant Location Reformulation (SPL) is that a 

product/period combination can be regarded as a “plant location” (Rosling, 1986). 

Only if the “plant location” is set up, it may produce the current period’s demand of 

the particular product as well as any subsequent demand (Stadtler, 1996).  

 

Rosling (1986) introduces the SPL reformulation for the multi level uncapacitated 

lot sizing problem as an extension of the work by Krarup and Bilde (1977). Then, 

capacity constraints are added to the model by Maes et al. (1991). Stadtler (1996) 

extends these models considering only the assembly-type bill-of material structures 

to the case of general bill-of-material structures.  

 

In this formulation, the production quantity variables are replaced by variables Zst 

in the regular formulation according to  

:
P

t s ts

s t

X D Z
=

=∑           (21) 

 

Dt denotes the demand for product in period t, and the variable Zst represents the 

portion of demand of product produced in period s ( s t≤ ) to fulfill the demand in 

period t. The SPL model for the single product uncapacitated lot sizing problem can 

be formulated as follows: 
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A setup is required in period t for the product whenever a production takes place 

to cover the demand of period t or any subsequent period s as shown in constraint 

(23). Constraint (24) imposes that the demand in each period is satisfied from 

production in that period or from a previous period. The simple upper bound on the 

setup variables (Yt) is stated in constraint (25). The non-negativity constraints are 

given in (26).  

 

Shortest Route Reformulation 

 

The other reformulation is the shortest route (SR) reformulation which is 

introduced by Eppen and Martin (1987). In this formulation, a new variable zvtk, 

which represents the fraction of demand from period t to k that will be satisfied by 

the production in period t, is introduced into the model. Based on the Wagner-Whitin 

property, the zvtk variable can be imposed to be binary. If zvtk equals one, then in 

period t we can produce the demand for period t until period k (Jans, 2002). So, the 

lot sizing problem can be described as a shortest path network problem. Figure 2.4 

shows an example of a shortest network problem for a four period problem.  
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  Figure 2.4 Shortest path network for a four period problem (Jans, 2002) 

 

The single product uncapacitated lot sizing problem can be reformulated as 

follows: 
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where PCt is the production cost and cvtk is defined as the total cost for producing 

the demands for period t until period k in period t (Jans, 2002). The according 

inventory cost is calculated as   
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Constraints (28), (29) and (30) are the conservation of flow equalities for the 

shortest path network. Constraint (31) is the setup forcing constraint.  

 

The SR reformulation is extended to the multi level case with capacity constraints 

by Tempelmeier and Helber (1994). Stadtler (1996, 1997) suggests an improved SR 

formulation which decreases the computational effort.  

 

It should be noted that the LP relaxation of the SR reformulation and the SPL 

reformulation have identical objective function values (Denizel et al., 2008). While 

the number of decision variables is same in both reformulations, the number of 

constraints is more in the SPL reformulation.  

 

2.4.1.3 Valid Inequalities 

 

Another way to strengthen the bounds of the LP relaxation is to generate valid 

inequalities. Valid inequalities reduce the size of the solution space by cutting off the 

unpromising areas. There are three types of valid inequalities. The first one is named 

as “Cutting Plane Method” which generates the valid inequalities dynamically to cut 

off current non-integer solutions. The second one is the “Branch and Cut Method” 

which introduces the valid inequalities during the course of a B&B algorithm. The 

last one is the “Cut and Branch method” which incorporates all valid inequalities into 

the model formulation before the execution of the B&B algorithm (Buschkühl et al., 

2008).  

 

The first valid inequalities for lot sizing problems are proposed by Barany et al. 

(1984). These inequalities describe the convex hull of the single item uncapacitated 

lot sizing problem and can also be applied to the CLSP. Pochet and Wolsey (1988) 

present strong valid inequalities for the case with backlogging. Pochet (1988), Leung 

et al. (1989), Pochet and Wolsey (1993), Miller et al. (2000) and Van Wyne (2003) 

derive several valid inequalities for the capacitated lot sizing problem and variants. 

Pochet and Wolsey (1991) review several inequalities for various models such as 

capacitated models, start ups and multi-level problems. Belvaux and Wolsey (2000) 
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provide a general framework for modeling and solving lot sizing problems. This 

framework is called bc-prod system and includes preprocessing for lot sizing 

problems and generates lot-sizing specific cutting planes for a variety of lot sizing 

models. The work is extended in Belvaux and Wolsey (2001) where start-ups, 

changeovers and switch-offs are introduced into the modeling. Suerie and Stadtler 

(2003) present valid inequalities for the CLSPC both in single and multi levels.  

 

2.4.2 Special-Purpose Heuristics 

 

The CLSP is known for its computational complexity. Florian et al. (1980) have 

shown that the general case of the single-item CLSP is NP-Hard. When setup times 

are introduced into the multi-item CLSP, even the feasibility problem becomes NP-

Complete (Trigeiro et al., 1989). Therefore, to deal with the combinatorial nature of 

the problem the trend in the lot sizing literature is to employ computationally 

efficient solution techniques such as heuristics. Several heuristics have been 

proposed for lot sizing problems with different modeling features. We classify them 

as simple, greedy, lagrangian, decomposition, aggregation and mathematical 

programming heuristics. The details of these heuristics are given in the following.  

 

2.4.2.1 Simple Heuristics 

 

These heuristics are often used as lot size rules in MRP systems instead of the 

Wagner-Whitin algorithm (Jans & Degraeve, 2007). These lot size rules can be 

named as economic order quantity, period order quantity, least period cost, least unit 

cost, part period balancing, least total cost etc. The definitions of these heuristics can 

be found in many text books on production planning such as Nahmias (2005). These 

heuristics are also named as uncapacitated dynamic lot sizing heuristics (Buschkühl 

et al., 2008).  

 

These simple heuristics can be used in constructing an initial solution for the multi 

item capacitated lot sizing problem as in Eisenhut (1975) and Lambrecht and 
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Vanderveken (1979). A recent overview including comparisons of some of these 

heuristics can be found in Simpson (2001).  

 

2.4.2.2 Greedy Heuristics 

 

The second class in this group is greedy heuristics. These heuristics start from 

scratch and increase lot sizes successively to achieve cost savings working period-

by-period or starting from an initial solution. During a run of the heuristic, the 

feasibility is checked and a cost criterion is used for minimizing the overall cost. 

There are two ways used for checking the feasibility of the problems. The first one is 

feedback mechanisms which push infeasible production quantities to earlier periods 

and the second one is look-ahead mechanisms which try to adjust production lots by 

looking at the future demands (Buschkühl et al., 2008).  

 

Greedy heuristics which start from scratch are called constructive greedy 

heuristics. Most of these heuristics work period by period either forward or backward 

(Buschkühl et al., 2008). Dixon and Silver (1981), Doğramacı et al. (1981) and 

Gupta and Magnusson (2005) propose constructive greedy heuristics.  

 

In contrast to starting from scratch, the second type of greedy heuristics starts 

from an initial solution. This type of heuristics is called improvement greedy 

heuristics. These heuristics try to generate a better feasible solution by shifting 

production lots forward or backward. Examples of these heuristics can be found in 

Günther (1987), Trigeiro (1989), Clark and Armentano (1995), França et al. (1997).  

 

2.4.2.3 Lagrangian Heuristics 

 

Lagrangian heuristics are solution approaches based on Lagrangian relaxation. 

The complicating constraints of an optimization problem are relaxed and put into the 

objective function with penalty costs (i.e. Lagrangian multipliers) in Lagrangian 

heuristics. At each step, with the given Lagrangian multipliers a lower bound is 

computed. A feasible solution is constructed and serves as the new upper bound. 
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Finally, the Lagrangian multipliers are updated (Buschkühl et al., 2008). Throughout 

the iterations, the lower and upper bounds start to converge with the updates in the 

Lagrangian multipliers. The most popular method in updating the Lagrangian 

multipliers is the subgradient optimization. The subgradient shows the direction of 

the search where the greatest possible improvement can be achieved. 

 

In solving the CLSP by using Lagrangian heuristics, the most widely used 

procedure is to relax the capacity constraints. When capacity constraints are relaxed, 

the remaining problem is decomposed into the single level uncapacitated lot sizing 

problems. These problems can be solved by using different exact and heuristic 

approaches such as Wagner and Whitin (1958), Silver and Meal (1969, 1973), Groff 

(1979) and Wagelmans et al. (1992). One alternative is to relax the demand 

constraints (Diaby et al., 1992a; Jans & Degraeve, 2004; Süral et al., 2009). The 

other alternative is to relax the binary constraints for setup variables in the multi 

level capacitated lot sizing problem as in Chen and Chu (2003).   

 

Trigeiro (1987) solves the CLSP without setup times and proposes a heuristic 

approach. Then, this work is extended by Trigeiro et al. (1989) for solving the CLSP 

with setup times. Campbell and Mabert (1991) propose a lagrangian heuristic similar 

to Trigeiro et al. (1989) for solving the CLSP with cyclic schedules in which the 

times between production periods of an item are constant. A different lagrangian 

heuristic is proposed by Sox and Gao (1999) for solving the CLSPC. The authors 

relax the capacity and setup carryover constraints in this approach. Tempelmeier and 

Derstoff (1993, 1996) present a solution approach based on Lagrangian relaxation for 

solving the multi level capacitated lot sizing problem with setup times and lead 

times. The backlogging for end items is added to the same model by Moorkanat 

(2000). Sambasivan and Yahya (2005) propose a lagrangian heuristic for solving the 

CLSP with the idea of multi plants. Several Lagrangian heuristics are proposed in 

Brahimi et al. (2006) for solving the CLSP with time windows.  

 

Developing hybrid algorithms consisting of Lagrangian relaxation and meta-

heuristics is a recent trend for solving the CLSP. A number of different approaches 
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can be found in Özdamar and Barbarosoğlu (1999), Özdamar and Barbarosoğlu 

(2000) and Hindi et al. (2003). Özdamar and Barbarosoğlu (1999) combine 

Lagrangian relaxation with simulated annealing to solve a multi level production 

system with serial product structures for several end items in a parallel machine 

environment. A similar approach is proposed in Özdamar and Barbarosoğlu (2000) 

to solve the multi level capacitated lot sizing problem with general product 

structures. They propose two relaxation schemes. The first one is the hierarchical 

relaxation in which the capacity constraints are relaxed. The second one is the type of 

the relaxation scheme where capacity and inventory balance constraints are relaxed.  

Hindi et al. (2003) propose a solution approach combining Lagrangian relaxation and 

Variable Neighborhood Search.  

 

2.4.2.4 Decomposition Heuristics 

 

The idea of the decomposition heuristics is to divide the whole problem into 

smaller sub-problems and coordinate the schedules later (Buschkühl et al., 2008). 

Newson (1975a, 1975b) presents an item based heuristic approach for solving the 

CLSP without and with overtime, respectively. The heuristic ignores the capacity 

constraints first and decomposes the CLSP into single item problems which can be 

solved using WW algorithm. Another item based decomposition heuristic is 

proposed by Kırca and Kökten (1994) for solving the CLSP. They decompose the 

CLSP into single item problems and solve a single item problem with adjusted 

capacities and extra bounds on production and inventory to guarantee the feasibility 

of the whole problem.  

 

To deal with the multi level capacitated lot sizing problem Tempelmeier and 

Helber (1994) decompose the whole problem into a sequences of single level CLSPs. 

Then, the CLSPs are solved using Dixon-Silver heuristic. The work is extended to 

cover the problems with setup times by Helber (1995).   
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2.4.2.5 Aggregation Heuristics 

 

Aggregation heuristics reduce the problem size by omitting details first and 

breaking the solution down later (Buschkühl et al., 2008). 

 

Özdamar and Bozyel (2000) propose to aggregate the demand of all products in a 

period. The authors avoid using binary setup variables explicitly. However, they use 

a setup allowance percentage, which reduces both the capacity and complexity of the 

MIP model. Then, lots that respect the aggregated lot sizes are determined via a 

filling procedure.   

 

2.4.2.6 Mathematical Programming Heuristics 

 

These heuristics are all based on exact methods which are truncated in some way 

to reduce the computational effort. Since these approaches are not transparent to the 

casual user, they have some distinctive advantages (Maes & Van Wassenhove, 

1988). These techniques are based on standard mathematical programming 

techniques which are quite general and their application is not so much restricted to a 

specific problem formulation. Most methods can be generalized to problems 

involving several resources, overtime considerations, time-consuming set ups, time 

variable capacity absorption, etc. Fix-and-Relax heuristics, Rounding heuristics, LP 

based heuristics, Dantzig-Wolfe and Column Generation are examples of this class.  

 

Fix-and-Relax heuristics: The logic behind the Fix-and-Relax heuristics is to 

divide the overall problem into several sub-problems and obtain the overall 

solution from these sub-problems. Dividing the overall problem helps to reduce 

the number of binary variables which also decreases the problem complexity. 

Three kinds of binary variables can be distinguished in these heuristics. The first 

ones are the binary variables which are to be optimized, the second ones are the 

relaxed variables and the third ones are the variables which are fixed to the values 

of a previous iteration.  

 



 

 

33 

Dillenberger et al. (1993) develop a Fix-and-Relax heuristic to solve the 

capacitated lot sizing problem with setup carryover where Dillenberger et al. 

(1994) apply the same heuristic to an extended model formulation. Stadtler (2003) 

uses a Fix-and-Relax heuristic with the idea of overlapping windows for solving 

the multi level capacitated lot sizing problems. The performance of the same 

heuristic is also tested in Suerie and Stadtler (2003) for solving the CLSPC. A 

different version of the Fix-and-Relax heuristic is proposed in Mercé and Fontan 

(2003) for solving the capacitated lot sizing problems with backorder options. 

Federgruen et al. (2007) present a different Fix-and-Relax heuristic for solving the 

capacitated lot sizing problem with joint setup costs and call it progressive 

interval heuristic. The heuristic starts with a small subset of periods (i.e. time 

window) and the binary variables are solved to optimality within this time 

window. In each iteration of the heuristic, the time window is extended while the 

binary variables of the last τ periods are solved to optimality. The binary variables 

related to the earlier periods are fixed and the heuristic stops when the end of the 

planning horizon is reached. A number of Fix-and-Relax heuristics can be found 

in Absi and Sidhoum (2007) to find feasible solutions for the CLSP with setup 

times and shortage costs. The hybridization of the Relax-and-Fix heuristic with a 

partitioning and sampling method is used for solving the CLSP in Wu et al. 

(2010).  

 

Recently, another different version of the Fix-and-Relax heuristic, namely Fix-

and-Optimize heuristic, is proposed for solving the multi level capacitated lot 

sizing problem (Sahling et al., 2009; Helber & Sahling, 2010). Unlike the Fix-and 

Relax heuristic which deals with three types of binary variables (i.e. relaxed, 

optimized, fixed) throughout the iterations, the Fix-and-Optimize heuristic deals 

with only two types of binary variables (i.e. fixed and optimized). Elimination of 

relaxed binary variables greatly reduces the computational effort of the Fix-and-

Optimize heuristic. Further explanation about this heuristic is given in chapter 

three.    
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Rounding heuristics: The logic of the rounding heuristics is to solve the LP 

relaxation of the MIP model and round the fractional binary variables 

subsequently. However, for the CLSP, these solutions are generally infeasible, as 

capacity may not be sufficient. To deal with this issue, generally a threshold is 

used for rounding the fractional binary variables.  

 

Maes et al. (1991) and Kuik et al. (1993) present a number of rounding 

heuristics for solving the multi level capacitated lot sizing problems without setup 

times. For the CLSP, Eppen and Martin (1987), Alfieri et al. (2002) and Denizel 

and Süral (2006) use several rounding heuristics. Recently, Akartunalı and Miller 

(2008) combine a rounding heuristic with a Fix-and-Relax heuristic for solving 

the multi level capacitated lot sizing problem. Gören et al. (2011) propose a novel 

initialization scheme for generating the initial population in GAs for solving the 

CLSPC. The proposed initialization scheme is a simple rounding heuristic which 

utilizes the solution of the LP relaxation of the CLSP.  

 

LP based heuristics: In LP based heuristics, the setup variables are omitted and 

the resulting problem which is easier than the actual problem, is solved to 

optimality. In these heuristics, the complete setup pattern is either given or only 

implicitly accounted for, and then the remaining LP with the fixed setup patterns 

are solved to optimality. Harrison and Lewis (1996) present an iterative 

coefficient modification heuristic for solving the multi level capacitated lot sizing 

problem. Since each setup variable is linked to a corresponding continuous 

production variable, both variables (setup and production variables) must be zero 

or positive at the same time. Therefore, when the binary setup variables are 

omitted, this complex problem reduces to a LP. The setup times are accounted for 

implicitly via modification of the production time coefficients of the related 

production variables. In each iteration, the reduced LP is solved and production 

time coefficients are modified. Later, Katok et al. (1998) extend this work by 

introducing the cost balancing for the modification of the production time 

coefficients.  
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Hung and Hu (1998) present another LP based heuristic for solving the CLSP. 

The authors fix the setup pattern at each iteration, and solve the remaining LP. 

They use the information of the shadow prices relating to the capacity constraints 

following the solution of LP. Doing so helps to decide in which periods it is better 

not to have a setup.   

 

Dantzig-Wolfe Decomposition and Column Generation: Dantzig-Wolfe 

decomposition is an algorithm for solving LPs with special structure. It is 

originally developed by George Dantzig and Phil Wolfe (Dantzig & Wolfe, 1960). 

The basic idea is to divide the problem into smaller sub-problems which are much 

easier to solve and coordinating mechanism ensuring that a good approximation 

for the overall problem (Jans & Degraeve, 2007) is obtained.  

 

Dantzig-Wolfe decomposition has been applied to the CLSP which is modeled 

as a set partitioning problem (Buschkühl et al., 2008). The objective is to find 

optimum schedules for each item which do not violate the capacity constraint and 

lead to minimal costs. In order to solve the set partitioning problem, column 

generation is applied. Column generation is an efficient algorithm for solving 

large scale LPs. Column generation deals with two problems. The first one is the 

master problem and the second one is the sub-problem. The process in column 

generation begins with solving the master problem with a few columns (i.e. 

schedules for each product). The corresponding sub-problem is to find the single 

item schedules to feed into the master problem. At each iteration, a separate single 

item uncapacitated sub-problem for each product is solved. If the new column has 

a negative reduced cost, it is added to the master problem. In order to generate 

new columns, the master problem is solved again. Using the new dual prices, new 

columns are generated. This process continues until no new solution is found or 

the stopping criterion is reached. At the end of the process, a promising lower 

bound for the CLSP is obtained. In order to generate a feasible solution, an 

additional heuristic has to be applied. Manne (1958) proposes to use the column 

generation for solving the CLSP. Later, this work is extended by Dzielinski and 

Gomory (1965), who develop a column selection procedure to handle larger 
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problems. However, there is a structural problem with the formulation proposed 

by Manne (1958). Bitran and Matsuo (1986) present error bounds for the solution 

obtained by Manne’s formulation. Other approaches in this group can be found in 

Lasdon and Terjung (1971), Bahl et al. (1983), Cattrysse et al. (1990), Salomon et 

al. (1993), Degraeve and Jans (2007) and Huisman et al. (2003). Recently, 

Tempelmeier (2010) develops a heuristic solution approach based on column 

generation for solving the dynamic capacitated lot sizing problem with random 

demand.  

 

2.4.3 Meta-heuristics 

 

Meta-heuristics are computational methods that solve optimization problems in an 

iterative manner trying to improve a candidate solution. Meta-heuristics start with a 

given initial solution. There are two basic principles that determine the behavior of a 

meta-heuristic, namely intensification and diversification (Buschkühl et al., 2008). 

Diversification generally refers to the ability to visit many and different regions of 

the search space whereas intensification refers to the ability to obtain high quality 

solutions within those regions (Lozano & Martínez, 2010).  

 

In recent years, the usage of meta-heuristics for solving CLSP and its extensions 

have become popular among researchers in lot sizing field. In this section, we 

investigated a number of meta-heuristics such as Tabu Search (TS), Simulated 

Annealing (SA), Genetic Algorithms (GA), Ant Colony Optimization (ACO), 

Variable Neighborhood Search (VNS) and Memetic Algorithm (MA) proposed for 

solving different variants of CLSP. 

 

 Tabu Search (Glover, 1986) is a mathematical optimization method which is 

based on local search. The main difference between TS and local search is that TS 

uses memory structures (i.e. tabu list) during the search. Tabu list is used to keep 

track of the parts in the search space that are already visited. Salomon et al. (1993) 

present a TS approach to solve the sub-problems of their column generation heuristic 

for solving the CLSP without setup times. Another TS approach for the same 
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problem is presented in Hindi (1996). Gopalakrashinan et al. (2001) incorporate 

setup carryover into CLSP and they present a TS approach for the extended problem. 

Another extension to the CLSP is to consider backlogging. Hung et al. (2003) 

propose a TS approach to solve the CLSP with backlogging. The multi level 

capacitated lot sizing problem is also solved by using TS in Hung and Chien (2000) 

and Berretta et al. (2005).  

 

Simulated Annealing (Kirkpatrick et al., 1983) is a meta-heuristic proposed for 

combinatorial optimization problems. It combines iterative improvement and random 

walk. The inspiration of SA comes from the annealing process in metallurgy, a 

technique involving heating and controlled cooling of a material to increase the size 

of its crystals and reduce their defects. SA starts with a non-optimal initial solution. 

At each step, a random neighbor solution is selected and the difference between the 

current best solution and random solution is calculated. If there is an improvement, 

the random neighbor solution is accepted as the current best solution and the search 

continues from that point. If not, the random neighbor solution may still be accepted 

according to a probability, which is based on annealing schedule. Salomon et al. 

(1993) present a SA approach for solving the CLSP without setup times. For solving 

the CLSP with setup times, Özdamar and Bozyel (2000) propose another SA 

approach. The CLSP with sequence dependent setup times and costs is solved by 

Mirabi and Ghomi (2010) in which a hybrid SA is proposed. There are also studies 

evaluating the performance of SA (Kuik & Salomon, 1990; Tang, 2004) for solving 

the multi level uncapacitated lot sizing problem. The multi level lot sizing problem 

can also be extended with capacity restrictions and SA has made important 

contribution to the solution of this difficult problem. Salomon et al. (1993), Helber 

(1995), Özdamar and Barbarosoğlu (1999), Hung and Chien (2000), Barbarosoğlu 

and Özdamar (2000) and Özdamar and Barbarosoğlu (2000) propose different SA 

approaches to deal with this problem. 

 

Genetic Algorithm (Holland, 1975) is a population based heuristic method 

proposed for solving combinatorial optimization problems. GAs are modeled on 

natural evolution and inspired by the natural evolution process. It is based on the 
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genetic process of biological organisms. Various applications of GAs to solve the 

CLSP with different modeling features can be found in Özdamar and Birbil (1998), 

Özdamar and Barbarosoğlu (1999), Özdamar and Bozyel (2000), Özdamar et al. 

(2002) and Xie and Dong (2002). A detailed review of the GA applications on lot 

sizing problems is presented in chapter four.  

 

Variable Neigborhood Search (Hansen & Mlaydenović, 1999, 2001) is a meta-

heuristic approach for solving combinatorial and global optimization problems 

whose basic idea is a systematic change of neighborhood within local search. At first, 

a neighboring solution is generated from incumbent solution. If this solution is better 

than the incumbent solution, the search moves in that direction. If not, another 

neighboring solution is generated from the incumbent solution. Hindi et al. (2003) 

propose a solution approach combining Lagrangian Relaxation and VNS to solve the 

CLSP. The proposed solution approach starts with Lagrangian Relaxation and this 

solution is set as an initial solution in the smoothing heuristic which is used to 

eliminate the capacity infeasibilities. The last solution is improved by using the VNS 

in the last step. Recently, Xiao and Kaku (2010) present an effective approach based 

on VNS for solving the multi level lot sizing problem. To improve the performance 

of the proposed approach, the authors use two different neighborhood strategies such 

as move at first improvement and move at best improvement.  

 

Ant Colony Optimization (Dorigo et al., 1996, 1999) is inspired from the behavior 

of ant colonies. During food search, ants lay down pheromone trails. The other 

following ants choose the trail with the highest concentration of pheromone. The 

similar mechanism is observed in solving optimization problems using ACO. In 

ACO, a set of software agents called artificial ants search for good solutions to a 

given optimization problem and exchange information on the quality of these 

solutions. Pitakaso et al. (2006) combine ACO and exact methods and propose a 

hybrid approach for solving the multi level capacitated lot sizing problem. The idea 

of the hybrid approach is to decompose the problem into smaller ones and solve 

these smaller problems by exact methods. The decomposition in the hybrid approach 

is controlled by ACO. In another study, Pitakaso et al. (2007) present another ACO 



 

 

39 

based hybrid approach for solving the uncapacitated multi level lot sizing problem. 

This approach starts with finding a good lot sizing sequence which is controlled by 

ants and then a modified WW algorithm is applied for each product in the sequence 

separately. Recently, Almeder (2010) combines ACO and an exact method for 

solving the multi-level capacitated lot sizing problem. The ACO determines the 

principal production decisions and then an exact method is used to calculate the 

corresponding production quantities and inventory levels.  

 

Memetic Algorithm is an evolutionary algorithm similar to GA. It combines an 

evolutionary or population-based approach with separate individual learning or local 

improvement procedures. The first application of MA in lot sizing literature can be 

found in Berretta and Rodrigues (2004). In this study, the authors propose a MA for 

the multi level capacitated lot sizing problem based on the work of França et al. 

(1997).  

 

2.5 Chapter Summary 

 

In this chapter, basic concepts of lot sizing problem, variants of lot sizing problem 

and its solution methods were presented. Since lot sizing problem has an important 

role in production planning, a massive body of academic literature covers the lot 

sizing problems.  

 

In recent years the application of meta-heuristics has taken the attention of the 

researchers in lot sizing area, since meta-heuristics provide an alternative to optimum 

seeking methods for solving NP-Hard combinatorial problems such as CLSP with 

setup carryover and backordering. Among these meta-heuristics, in this Ph.D. study, 

GAs are employed to solve the CLSP with setup carryover and backordering. To 

further improve the performance of GAs, a MIP based heuristic, namely Fix-and-

Optimize heuristic is integrated into GAs in different ways. As a consequence, novel 

GA-based hybrid meta-heuristic approaches are proposed for solving the CLSP with 

setup carryover and backordering.  
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The detailed information regarding GAs and Fix-and-Optimize heuristic and also 

the concept of hybridization are presented in the next chapter.     
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CHAPTER THREE 

BACKGROUND INFORMATION FOR PROPOSED SOLUTION 

METHODOLOGIES 

 
 

3.1 Introduction 

 

This study proposes a number of novel hybrid approaches for solving the 

capacitated lot sizing problem with setup carryover and backordering. These hybrid 

approaches combine Genetic Algorithms (GAs) with a MIP based heuristic, namely 

Fix-and-Optimize heuristic. To clarify the contribution of these proposed hybrid 

methodologies, first some general information on GAs and Fix-and-Optimize 

heuristic are presented in the following two sections, next the concept of hybrid 

meta-heuristics is explained and finally the context of this chapter is summarized in 

Section 3.5. 

 

3.2 Genetic Algorithms 

 

First pioneered by John Holland in 1975, Genetic Algorithms have been widely 

studied, experimented and applied in many fields. Many of the real world problems 

involve finding optimal parameters, which might prove difficult for traditional 

methods but ideal for GAs (De Jong, 1993). GAs have been successfully adapted to 

solve several combinatorial optimization problems in the literature and have become 

increasingly popular among meta-heuristic approaches for finding optimal or near 

optimal solutions in a reasonable time. GAs are modeled on natural evolution and 

inspired by the natural evolution process. It is based on the genetic process of 

biological organisms. Over many generations, natural populations evolve according 

to the principle of “natural selection” and “survival of the fittest”. By mimicking this 

process and by suitable coding, GAs make the solution evolve and approach the best. 

Genetic operators manipulate individuals in a population over several generations to 

improve their fitness.  
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Unlike simulated annealing and tabu search, GAs use a collection of solutions, from 

which, using selective breeding and recombination strategies, better and better 

solutions can be produced. 

 

The steps that should be taken in application of the GAs can be stated as follows 

(see Figure 3.1): 

1. Choice of a representation scheme for a possible solution (coding or 

chromosome representation.) 

2. Decision on how to create the initial population. 

3. Definition of the fitness function. 

4. Definition of the genetic operators to be used (reproduction, mutation, 

crossover, elitism). 

5. Choice of the parameters of the GAs such as population size, probability of 

applying genetic operators. 

6. Definition of the termination rule. 

 

To start the search GAs are initialized with a population of individuals. The 

individuals are encoded as chromosomes in the search space. GAs use mainly two 

operators namely, crossover and mutation to direct the population to the global 

optimum. Crossover allows exchanging information between different solutions 

(chromosomes) and mutation increases the variety in the population. After the 

selection and evaluation of the initial population, chromosomes are selected on 

which the crossover and mutation operators are applied. Next the new population is 

formed. This process is continued until a termination criterion is met. 

 

3.2.1 Basic Concepts of GA 

 

In order to understand the philosophy of GAs, the basic concepts should be 

defined. These concepts include coding of solution, population, fitness function, 

selection scheme, genetic operators (mutation and crossover), survival scheme and 

termination criteria.  

 



 

 

43 

In GA terminology, a solution is an individual or a chromosome. Chromosomes 

consist of discrete units called genes, which control one or more features of a 

chromosome. In the original implementation of Holland, a binary string is used for 

representing a chromosome (see Figure 3.2). However, various chromosome 

representations have been used in many GA applications so far. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 Figure 3.1 Flowchart of a simple GA 
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 Figure 3.2 Binary chromosome representation 
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     Hence, a chromosome corresponds to a unique solution in the solution space. This 

requires a mapping mechanism between the solution space and the chromosomes. 

This mapping is called an encoding. In fact, GA works on the encoding of a problem, 

not on the problem itself. The use of an inappropriate coding scheme has been the 

cause of many GA failures (Taşan, 2007). 

  

Unlike single search approaches such as Tabu Search or Simulated Annealing, 

GAs work with a group of chromosomes called population. It is well known in the 

literature that the performance of GAs is affected by the quality of initial population. 

In most of the GA applications in the literature, the initial population is created 

randomly in order to improve the diversity of the population. When no priori 

knowledge exists for assessing the performance of the algorithm, random initial 

population generation method is usually preferred to others. Using problem specific 

information is another method to form an initial population. In this case, GA starts 

with a set of solutions (i.e. chromosomes) satisfying problem specific requirements 

(Pham & Karaboga, 2000).  

 

After forming the initial population, each chromosome in the population is 

evaluated using an appropriate fitness function. The fitness function is used to 

evaluate and rate the performance of a chromosome. The fitness of a chromosome is 

a real number which forms the basis of the selection process.  

 

Selection involves selecting the chromosomes which will go under the genetic 

operators. The aim of the selection is to reproduce more copies of chromosomes 

which have higher fitness values. Therefore, the selection process has an important 

role on driving the search towards a promising area and finding good solutions in a 

short time. The two most widely used selection methods are the roulette wheel and 

tournament.  

 

In roulette wheel selection, the fitness values of chromosomes represent the 

widths of slots on the wheel. The algorithm for the roulette wheel can be summarized 

as follows (Coley, 2003):  
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� Sum the fitness of all the population members. Call this sum fsum. 

� Choose a random number, Rs, between 0 and fsum. 

� Add together the fitness of the population members (one at a time) stopping 

immediately when the sum is greater than Rs. The last individual added is the 

selected individual and a copy is passed to the next generation. 

 

Basically, tournament selection involves running several tournaments among a 

few chromosomes chosen randomly from the population. The winner of each 

tournament (the one with the best fitness) is selected for crossover. 

 

To generate new chromosomes from the existing ones, GA uses two kinds of 

genetic operators: crossover and mutation. The crossover operator which makes the 

GA different from other algorithms, is used to create two new chromosomes, namely 

offsprings from two existing chromosomes (i.e. parents). A number of crossover 

operators have been proposed but some common ones are one-point, two-point and 

uniform crossover. In one point crossover, the simplest version of the crossover 

operator, all genes to the left of the crossover point are exchanged. Crossover points 

are usually randomly determined. Figure 3.3 explains one-point crossover operator.   

 

Unlike crossover, mutation is a monadic operation which means that it is 

generally applied at the gene level. In mutation, all chromosomes in the population 

are checked gene by gene and the values of the genes are changed according to a 

specified rate, known as the mutation rate. The mutation operator forces the 

algorithm to search new areas in the solution space. Like crossover operator, many 

versions of this operator can be found in the literature. Figure 3.4 shows the simplest 

version of it, single bit flip mutation. 
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1 1 0 1 0 0 1 0 1 1 

 

 

1 1 1 1 1 0 0 0 1 0 

 

 

 

 

1 1 0 1 1 0 0 0 1 0 

 

 

1 1 1 1 0 0 1 0 1 1 

 

Figure 3.3 One point crossover  

 

 

1 1 0 1 0 0 1 0 1 1 

 

 

 

1 1 0 0 0 0 1 0 1 1 

 

Figure 3.4 Single bit flip mutation 

 

Survival schemes are related to the creation of the next generation. Survival 

involves selection of chromosomes for the next generation. In the simplest version of 

the GA, the child replaces the parents. However, in literature there are many variants 

of this rule. The most commonly used survival scheme is elitism, which makes 

survival of some number of the best individuals at each generation; hence 

guaranteeing that the final population contains the best solution ever found.  
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For termination criteria, various stopping conditions are proposed. The most 

widely used ones are to stop the algorithm after a fixed number of generations, or 

after a given time period. Another option is to stop the search when there is no 

change in the average or best fitness value in the population for a number of 

generations.  

 

3.2.2 Identifying Efficient GA Control Parameters 

 

As given in earlier sections, GA has several parameters including crossover, 

mutation rate and population size, and it is well known in the literature (Boyabatlı & 

Sabuncuoğlu, 2004) that the performance of GAs is affected by the values of these 

parameters. Hence, an important decision faced in many GA applications is to 

identify efficient GA control parameters. While inappropriate choice of GA 

parameters can lead to inferior performance and slow down the convergence, good 

values might cause the algorithm converge to the best result in short time. As a 

result, identification of the efficient GA parameters plays a crucial role on the quality 

of solution and convergence speed of GA application. However, choosing the right 

parameter values is a time consuming task.  

 

Eiben et al. (1999) classify the parameter setting efforts in two classes as 

parameter tuning and parameter control. Parameter tuning is a widely used 

approach in which the good values for the parameters are determined before the 

genetic search starts. Then, the search starts with these parameters and these 

parameters are fixed during the search. As an alternative approach, parameter 

control is quiet different from parameter tuning as it starts the search with some 

initial parameter values and these values are changed during the run.  

 

3.3 The Fix-and-Optimize Heuristic 

 

The Fix-and-Optimize heuristic is a MIP based heuristic in which a sequence of 

MIPs is solved over all real-valued decision variables and a subset of the binary 

variables. The Fix-and-Optimize heuristic is an improved version of the relax-and-fix 
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heuristic and is originally named as Exchange by Pochet and Wolsey (2000, pg. 

113). The numerical effort required to solve the MIP model is mostly affected by the 

number of binary setup and setup carryover variables rather than the number of real-

valued variables. The idea in the Fix-and-Optimize heuristic is to solve a series of 

smaller problems in a systematic manner. In each iteration of the algorithm, one 

problem is solved by setting most of the binary setup and carryover variables to fixed 

values. This reduction leads to a limited number of non-fixed binary variables which 

are optimized for a given problem. Then the problem is solved using a standard MIP 

solver. In the next iteration, there is a new problem with a different subset of fixed 

binary variables and the rest of the binary variables are optimized. However, in each 

problem the complete set of real-valued decision variables is considered (Sahling et 

al., 2009).  

 

The Fix-and-Optimize heuristic is originally implemented in Sahling et al. (2009) 

for solving the multi level CLSP with setup carryover and later in Helber and Sahling 

(2010) for solving the multi level capacitated lot sizing problem. 

 

3.3.1 The Algorithm 

  

The algorithm needs an initial solution to start and goes through the problems 

defined by different types of decomposition schemes either once ( max=� � ) or until it 

reaches a local optimum. A problem is defined based on the type of decomposition 

scheme which yields a temporary solution.  

 

Each temporary solution to a problem yields an objective value of Z which is at 

least as good as the current best solution (Zold). So, a new solution is only accepted if 

it yields an objective value better than the current best solution.  

 

There are two issues affecting the quality of the solution obtained by the Fix-and-

Optimize heuristic:  

� How to generate the initial solution? 

� What should be the number of iterations ( max� )? 
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The basic outline of the algorithm is explained in the following.  

 
Input: The initial solution. 

Set the initial solution as the best solution. The objective value of the best solution is 

named as Zold.  

repeat 

1l =  (the iteration number) 

 for each problem  (determined by the type of the decomposition) 

   determine the set of the binary variables that will be optimized and fixed.  

Fix the determined binary values to the values based on the best solution and   optimize 

the rest. 

Solve the problem, compute Znew and obtain a temporary solution. 

if Znew is better than  Zold 

then 

         Z
old=Z

new 

        best solution= temporary solution 

end if 

else 

 Keep the best solution and Zold 

end for  

1l l= +  

until max new oldl l or Z Z= ≥  

Output: The best solution after the Fix-and-Optimize heuristic. 

 
Figure 3.5 The algorithm of the Fix-and-Optimize heuristic 

 

3.4 Hybrid Meta-heuristics 

 
Meta-heuristics have received a lot attention of the researchers in the field of 

combinatorial optimization in recent years. However, as the problem size and 

complexity increases, the probability of finding good solutions by meta-heuristics 

decreases. Therefore, the trend in recent years is to combine meta-heuristics with 

other solution techniques in order to find better solutions in shorter time. These 

combined approaches are commonly referred as hybrid meta-heuristics. The 

motivation behind hybridization of different algorithms is to obtain a better 

performing system that exploits and unites advantages of the individual pure 

strategies (Raidl, 2006).  In the past 10 years the focus of research on meta-heuristics 



 

 

50 

has moved from an algorithm-oriented point of view to a problem-oriented point of 

view. In other words, today the main motivation for the researchers is to solve the 

problem under consideration as best as possible. This leads to designing more 

powerful hybrid algorithms which combine strong properties of different algorithms. 

However, the key issue in designing a hybrid algorithm is to decide which 

components to hybridize in order to create an effective algorithm (Caserta & Voss, 

2009). Effective decision making in this area will greatly affect the performance of 

hybrid algorithms in solving difficult problems.  

 

3.4.1 Classification of Hybridization 

 

As a result of surveying current relevant literature it is noted that hybrid meta-

heuristics are classified from different perspectives (Preux & Talbi, 1999; Talbi, 

2002; Raidl, 2006). In this study, the classification given by Raidl (2006) is 

presented to illustrate the various classes and properties used for the categorization of 

hybrid meta-heuristics.  

 

As seen in Figure 3.6, hybrid meta-heuristics can be formed by integrating meta-

heuristics with different meta-heuristic strategies, or with problem-specific 

algorithms such as special simulations. Exact approaches like branch-and-bound, 

dynamic programming and various specific LP techniques and soft computation 

techniques like neural networks and fuzzy logic are also successfully combined with 

different meta-heuristics to form different types of hybrid meta-heuristics. Among 

these, matheuristics, which exploit mathematical programming techniques in (meta) 

heuristic frameworks, have attracted the attention of the researchers in recent years 

(Caserta & Voss, 2009).  
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Figure 3.6 Classification of hybrid meta-heuristics (Raidl, 2006) 

 
 

Another criterion which is used in classifying hybrid metaheuristics is the level at 

which different algorithms are combined. The identities of the algorithms in high-

level combinations remain unchanged. There is no direct and strong relationship 

between the algorithms. However, in low-level combinations, the algorithms depend 

on each other and some components or functions of the algorithms are exchanged 

(Raidl, 2006).  

 

Based on the order of execution, hybrid meta-heuristics are classified as 

sequential and parallel (Preux & Talbi, 1999). In sequential hybridization, one 

algorithm is performed after another; hence the output of the first algorithm is the 

input to the second algorithm. Unlike sequential hybridization, in parallel hybrid 

meta-heuristics, algorithms interact in more sophisticated ways.  
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The last group categorizes hybrid meta-heuristics as collaborative and integrative 

based on the control strategy used. In integrative approaches, one algorithm is 

embedded in another algorithm. In collaborative approaches, algorithms exchange 

information but are not part of each other (Raidl, 2006).  

 

3.4.2 Hybridization of GA 

 

The motivation of hybridizations of GAs and other solution approaches is to 

obtain better search algorithms that unite the advantages of the individual pure 

strategies (Raidl, 2006). Although GAs can rapidly locate the region in which the 

global optimum exists, they take a relatively long time to locate the exact local 

optimum in the region of convergence (Preux & Talbi, 1999). There are many other, 

more efficient, traditional algorithms for climbing the last few steps to the global 

optimum. This implies that using a GA to locate the hills and a traditional technique 

to climb them might be very powerful optimization technique (Coley, 2003). 

Goldberg (2002) states that hybridization is an important efficieny enhancement 

technique of GA. Incorporating a search method within a GA can improve the search 

performance on the condition that their roles cooperate to achieve the optimization 

goal (El-Mihoub et al., 2006).   

 

The most popular form of hybrid GAs is to incorporate a local optimization 

method as an add-on extra with the pure GA loop. A combination of a GA and a 

local search method can speed up the search to locate the exact global optimum. In 

such a hybrid, applying a local search to the solution or solutions that are guided by a 

GA to the most promising region can accelerate convergence to the global optimum 

(El-Mihoub et al., 2006).  

 

3.5 Chapter Summary 

 

In this chapter, basic concepts of GA and Fix-and-Optimize heuristic are 

presented in detail. Unlike most conventional heuristic methods and some of the 

meta-heuristics (i.e. Tabu Search and Simulated Annealing) which conduct single 
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directional search, GA performs multiple directional searches using a set of 

candidate solutions (Gen & Cheng, 1997). Moreover, no domain knowledge is 

required in GAs and stochastic transition rules are used during the search. It is well-

known that GAs are better in finding promising areas in the search space. However, 

they are not good at locating the minimum or maximum of these points in large 

complex search spaces and can easily get stuck at local optimas. Therefore to avoid 

the premature convergence to local optima and hence, to further improve the 

performance of proposed GAs in solving lot sizing problem with setup carryover and 

backordering in this study, we concentrated on hybridization of GAs with  a MIP 

based heuristic, namely the Fix-and-Optimize heuristic.  

 

Next chapter is devoted to the review of the relevant literature. Since the focus in 

this study is on the application of GAs for lot sizing problems, we mainly focus on 

studies proposing GAs for solving lot sizing problems with different modeling 

features.   
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CHAPTER FOUR 

LITERATURE REVIEW: APPLICATIONS OF GENETIC ALGORITHMS 

IN LOT SIZING 

 

 

4. 1 Introduction 

 

Lot sizing problems have attracted the attention of many researchers. There are a 

number of survey studies on lot sizing. De Bodt et al. (1984) discuss the state of the 

art of lot sizing under dynamic demand conditions, the impact of the use of rolling 

horizon and the influence of demand uncertainty on lot sizing decisions. Bahl et al. 

(1987) classify the lot sizing problems based on the demand type and resource 

constraints and concentrate on capacity dimensions of the production planning 

problem. Kuik et al. (1994) discuss the impacts of lot sizing and production planning 

at different decision levels in an organization. The basis of this review is a distinction 

of lot sizing issues related to process design/choice, activity planning and activity 

control. Wolsey (1995) reviews the history of the single item uncapacitated lot sizing 

problems by various solution algorithms, extensions and important reformulations. 

Drexl and Kimms (1997) present a classification on different variants of lot sizing 

and scheduling problems for both discrete and continuous time models. Belvaux and 

Wolsey (2001) show how to model the basic lot sizing problems including different 

extensions such as backordering, start up costs etc. and present some computational 

results for various sets of problems. Karimi et al. (2003) review the studies 

employing exact and heuristic approaches to solve the single level capacitated lot 

sizing problems. Brahimi et al. (2006) review the single item lot sizing problems 

under uncapacitated or capacitated situations. Jans and Degraeve (2008) give an 

overview of recent developments in the field of modeling single level dynamic lot 

sizing problems. Complexity theory and computational experiments indicate that 

most lot sizing problems are hard to solve (Jans & Degraeve, 2007). To deal with the 

complexity and find optimal or near-optimal results in reasonable computational 

time, in recent years, a growing number of researchers have  
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employed heuristic approaches to solve lot sizing problems (Afentakis, 1987; 

Tempelmeier & Helber, 1994; Gopalakrashinan et al., 2001; Tang, 2004; Karimi et 

al., 2006; Pitakaso, 2007). Among these heuristic approaches, evolutionary 

computation has received increasing attention. The most well known evolutionary 

computation method is Genetic Algorithms (GAs). GAs are optimization techniques 

that use the principles of evolution and heredity to arrive at near optimum solutions 

to difficult problems (Khouja et al., 1998). GAs have been employed to solve 

different optimization problems across various disciplines due to their flexibility and 

simplicity.  

 

During the literature survey, we noted two review studies (Aytuğ et al., 2003; Jans 

& Degraeve, 2007) discussing applications of GAs to lot sizing problems. Aytuğ et 

al. (2003) discuss different applications of GAs in the broad field of production and 

operations management problems by analyzing over 110 papers, including some lot 

sizing problems, while Jans and Degraeve (2007) review the recent literature 

employing a variety of meta-heuristics and other solution approaches (dynamic 

programming, Dantzig-Wolfe decomposition, Lagrange relaxation) to solve the 

dynamic lot sizing problem. Unlike these two studies which review the relevant 

literature from a broader perspective, in this chapter we will particularly focus on lot 

sizing problem with many different features and discuss how GAs are applied to 

these various lot sizing problems. 

 

Considering the large  number of studies in this area, to better highlight the 

research gaps the current literature was reviewed from two different perspectives: 1. 

The specifications of the lot sizing problems, 2. The features of the proposed GAs to 

deal with these problem specifications (Gören et al., 2010). Figure 4.1 presents the 

structural framework for reviewing.  
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 Figure 4.1 Structural framework for reviewing 

 

As seen in Figure 4.1, problem specifications contain the main features of the lot 

sizing problem mentioned in chapter two. GA specifications summarize information 

about the chromosome representation, initialization of the population, evaluation, 

selection, genetic operators, choice of the GA parameters and termination criteria.  

 

This chapter is organized as follows. Using this framework, in section 4.2, we 

focused on the problem specifications of the published literature in chronological 

order, in section 4.3; we analyzed the GAs proposed solving lot sizing problems with 

different modeling features. Finally, in section 4.4, the context of this chapter is 

summarized along with the concluding remarks.  
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4.2 Problem Specifications 

 

This study reviews the literature published after 1995 based on the number of 

levels, capacity constraints, setup time issue, planning horizon, demand type and 

inventory shortage. Table 4.1 chronologically lists the recent published literature 

based on the problem specifications. 

 

4.2.1 Research on Single Level Uncapacitated Lot Sizing Problems 

 

The main issue in single level uncapacitated lot sizing problems is to determine 

production lot sizes for the planning horizon so that the sum of setup, inventory 

holding and production cost is minimized.  

 

The first application of GAs to a single item, single level lot sizing problem 

without backordering appears in Hernandez and Süer (1999). The authors employ 

scaling in the fitness function to give higher reproduction probabilities to those 

chromosomes that represent better solutions. To evaluate how different aspects such 

as the population size, reproduction probability and scaling affect the results, they 

carry out various sets of experimental studies and state that a higher scale factor 

increases the chance of obtaining better solutions.  

 

Van Hop and Tabucanon (2005) present a new adaptive GA for uncapacitated lot 

sizing problem in single level. The authors encode the timing of the replenishment as 

a chromosome. During the evaluation, the rates of GA operators such as mutation, 

selection and crossover for the next generation are automatically adjusted based on 

the rate of survivor offsprings. The proposed procedure gives faster and better results 

than using the static rates for the GA operators.  

 

Gaafar (2006) applies GAs to the deterministic time-varying lot sizing problem 

with batch ordering and backorders. The author proposes a new coding scheme for 

the batch ordering policy. A comparative study with the modified Silver-Meal 

heuristic indicates that the GAs outperform over the modified Silver-Meal heuristic.  
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4.2.2 Research on Single Level Capacitated Lot Sizing Problems 

 

The presence of capacity constraints increases the complexity of lot sizing 

problems. The first study in this group belongs to Özdamar and Birbil (1998) in 

which the authors propose a hybrid approach combining TS, SA and GAs to solve 

capacitated lot sizing and loading problem in single level with setup and overtimes. 

The hybrid approach integrates a GA into a local search scheme which incorporates 

features from TS and SA. The approach starts with GAs and when the population 

tends to get stuck to the same area of the feasible/infeasible solution space, TS/SA 

procedure carries out the local search on randomly selected chromosomes in the 

current population. Computational results show that the proposed hybrid heuristic is 

efficient and has high potential in solving different complex problems in production 

planning and control.   

 

Khouja et al. (1998) use GAs in solving ELSP. The authors propose different 

binary representations, crossover methods and initialization methods in order to 

identify the best settings and the results of comparative experiments yield good 

results.  
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Table 4.1 The published literature based on the problem specification 
 

PROBLEM SPECIFICATIONS 
Demand Type 

Number of levels Planning horizon 
Deterministic Demand Literature reviewed 

Single 
Level 

Multi 
level 

Capacitated 

 
Setup 
time 
issue Infinite Finite Rolling 

Static 
Demand 

Dynamic 
Demand 

Probabilistic  
Demand 

Backordering 

Xie and Dong (1995) 
 

 *    *   *   

Khouja et al. (1998) 
 

*  * * *   *    

Özdamar and Birbil (1998) 
 

*  * *  *   *   

Hernandez and Suer (1999) 
 

*     *   *   

Kimms (1999) 
 

 * *   *   *   

Özdamar and Barbarosoğlu 
(1999) 
 

 * * *  *   *  * 

Hung et. al. (1999) 
 

*  * *  *   *  * 

 
Kohlmorgen et al. (1999) 
 

*  *   *   *   

Özdamar and Bozyel 
(2000) 
 

*  * *  *   *   

Dellaert and Jeunet (2000) 
 

 *    *   *   
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 Table 4.1 The published literature based on the problem specification (cont.) 

PROBLEM SPECIFICATIONS 
Demand Type 

Number of levels Planning horizon 
Deterministic Demand Literature reviewed 

Single 
Level 

Multi 
level 

Capacitated 

 
Setup 
time 
issue Infinite Finite Rolling 

Static 
Demand 

Dynamic 
Demand 

Probabilistic  
Demand 

Backordering 

Dellaert et al. (2000) 
 

 *    *   *   

Hung and Chien (2000) 
 

 * * *  *   *  * 

Prasad and Chetty (2001) 
 

 *    * * * *   

Sarker and Newton (2002) 
 

*  *  *   *    

Özdamar et al. (2002) 
 

*  * *  *   *   

Moon et. al. (2002) 
 

*  * * *   *    

Xie and Dong (2002) 
 

 * * *  *   *   

 
Duda (2005) 
 

*  *   *   *  * 

Yao and Huang (2005) 
 

*  * * *   * 
 
 
 

  

Hop and Tabucanon (2005) 
 

*     *   *   

Chang et. al. (2006) 
 

*  * * *   *  Fuzzy 
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Table 4.1 The published literature based on the problem specification (cont.) 

PROBLEM SPECIFICATIONS 
Demand Type 

Number of levels Planning horizon 
Deterministic Demand Literature reviewed 

Single 
Level 

Multi 
level 

Capacitated 

 
Setup 
time 
issue Infinite Finite Rolling 

Static 
Demand 

Dynamic 
Demand 

Probabilistic  
Demand 

Backordering 

Kämpf and Köchel (2006) *  * *  *    * * 

Megala and Jawahar 
(2006) 

*  *   *   *  * 

Moon et al. (2006) *  * * *   *    

Gaafar (2006) *     *   *  * 

Li et al. (2007) *  *   *   *   

Chatfield (2007) *  * * *   *   
 
 
 

Jung et al. (2007)  * *   *   *   

 
Duda and Osyczka (2007) 

*  *   *   *  * 

Fakhrzad and Zare (2009)  * * *  *   *   

Rao et al. (2009) *  * * *     Fuzzy  

 
Sun et al. (2009) 

*  * * *   *    

Santos et al. (2010) *           

Mohammadi and Ghomi 
(2011) 

*  * *   *  *   

Gören et al. (2011) *  * *  *   *   

Gonçalves and Sousa 
(2011) 

*  * * *   *   * 
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In another study, Kohlmorgen et al. (1999) deal with the CLSP using island GA. 

Potential solutions are genetically represented by a string of real values. The 

empirical study shows that the parallel GA achieves the same solution quality with 

the heuristic proposed by Kırca and Kökten (1994). Hung et al. (1999) use 

evolutionary algorithms for production planning with setup decisions. Firstly, to 

generate new chromosomes traditional GAs are used with the conventional crossover 

and mutation operators. Secondly, the GA modified with the sibling operator and the 

conventional reproduction operators are used to produce new chromosomes. Lastly, a 

sibling evolution algorithm using the sibling operator is employed to reproduce. 

Experimental studies show that the sibling evolution algorithm performs the best 

among all the algorithms used.  

 

Özdamar and Bozyel (2000) propose three heuristic approaches including the 

hierarchical production planning approach, GAs and SA to solve the capacitated 

family lot sizing problem with setup time and overtime decisions for the single level 

case. The computational results show that GAs provide good performance only in 

small sized populations and the SA outperforms the others irregardless of the 

population size.  

 

Sarker and Newton (2002) present a GA approach to determine a purchasing 

policy for raw materials of a firm under a limited storage space and transportation 

fleet of known capacity. In order to deal with the capacity constraints, three different 

penalty functions namely static, dynamic and adaptive penalties, are proposed. 

Experimental results show that the performances of all three proposed penalty 

functions are similar.  

 

Özdamar et al. (2002) reconsider the capacitated lot sizing problem with overtime 

and setup times given in a previous study (Özdamar & Bozyel, 2000). Unlike the 

earlier study where transportation type of presentation and three different solution 

approaches (Hierarchical Production Planning, GAs, SA) are used, in this study the 

authors prefer using the direct coding and a hybrid approach consisting of GAs, TS 
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and SA. The computational results show that the proposed hybrid approach is 

capable of finding good solutions in reasonable computational time.  

 

Moon et al. (2002) develop a hybrid GA for the ELSP. The proposed hybrid 

algorithm integrates GAs with Dobson’s heuristic, which has been regarded as the 

best in its performance for the economic lot size scheduling problem in literature. 

The hybrid GA outperforms Dobson’s heuristic.  

 

Yao and Huang (2005) solve the Economic Lot Size Scheduling Problem with 

deteriorating items using the basic period approach under power of two heuristic. 

The study presents a hybrid GA with a feasibility testing procedure and a binary 

search heuristic to efficiently solve the problem. The computational results show that 

the hybrid approach can be very helpful to derive the production scheduling and lot 

sizing strategies for deteriorating items efficiently in the food industry. 

 

Duda (2005) presents a GA approach with repair functions for the classical DLSP 

originating from a real production environment, in single level where multi items are 

produced. The author employs three variants of GA each using special crossover, 

mutation operators and repair functions.  

 

Kämpf and Köchel (2006) combine GAs with simulation for the stochastic 

capacitated lot sizing problem. The problem involves defining a manufacturing 

policy consisting of a sequencing rule and a lot size rule, which maximizes the 

expected profit per time unit. In this study, the sequencing and lot sizing decisions 

are represented in a chromosome as an individual. Each individual representing a 

chromosome is then evaluated by using simulation under different sequencing 

policies such as First Come First Serve, Random and Cyclic. Experimental studies 

show that the proposed approach can be applied to arbitrary system structures and 

control policies.   

 

Megala and Jawahar (2006) study the single item dynamic lot sizing problem 

using GAs and Hopfield neural network under capacity constraints and discount 
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price structure. The authors carry out a comparative study and note that while GAs 

provide either optimal or near optimal solutions in most of the cases, Hopfield neural 

network produces satisfactory results for only small sized problems. 

 

Chang et al. (2006) present a fuzzy extension of the economic lot-size scheduling 

problem for fuzzy demands. The problem is formulated via the power-of-two policy 

and basic period approach which allows different items to have different cycle 

lengths restricting each product’s cycle time to be an integer multiple k of a time 

period called basic period (Moon et al., 2002). GAs are employed with triangular 

fuzzy numbers in order to find the cycle time and start time of the production.  

 

Moon et al. (2006) apply Group Technology (GT) principles to the ELSP. GT is 

an approach to manufacturing and engineering management that seeks to achieve the 

efficiency of high speed and mass production by identifying similar parts and 

classifying them into groups based on their similarities. The GT approach often has 

many benefits in manufacturing systems such as shortened setup times, reduced 

work-in-process inventory, less material handling, and better production planning 

and control. The authors modify the heuristic proposed by Kuo and Inman (1990) by 

considering the modified cycle length and propose a hybrid GA to solve the ELSP. 

The computational results show that the proposed hybrid heuristic outperforms the 

heuristic of Kuo and Inman (1990). 

 

In another study, Li et al. (2007) analyze a version of the capacitated dynamic lot-

sizing problem with substitutions and return products using GAs. The authors first 

identify the periods requiring setups by applying a GA then they develop a dynamic 

programming approach to determine the number of new products to be manufactured 

or the number of return products to be remanufactured in each of these periods.  

 

The performance of pure GA is tested in Chatfield (2007) for the ELSP. The 

author creates a binary encoding scheme for chromosome representation and applies 

it to a benchmark problem in the literature. The results are impressive such that some 

of them are the best ones up-to date.  
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Duda and Osyczka (2007) develop a GA for solving the DLSP with a capacity 

loading criterion. The authors include the technological constraints into the 

optimization model directly and test the performance of the GA on real world 

problems.  

 

Sun et al. (2009) propose a GA approach for solving the ELSP under the extended 

basic period and power-of-two policy. The designed GA uses an integer encoding 

scheme which speeds up the search. With keeping both feasible and infeasible 

solutions in the population, optimal solutions are obtained for almost all the tested 

sample problems.  

 

Rao et al. (2009) consider the ELSP in fuzzy environment with fuzzy costs and 

objective goal and propose a fuzzy GA approach for solving this problem. The 

impreciseness in inventory costs are taken into account and represented by fuzzy 

linear membership functions. To test the performance of the approach, benchmark 

problems are used and the results are compared with the results of crisp model. The 

results show that fuzzy GA gives good results and works better for higher utilization 

levels of the ELSP.  

 

Santos et al. (2010) present a new GA with new components to deal with the 

capacitated lot sizing and scheduling problem with sequence dependent setups. To 

deal with the infeasibilities occurring during the run of GAs, the authors classify 

individuals according to their level of infeasibility in bands. Within each band, the 

fitness functions of individuals are different. Throughout iterations, the widths of 

bands are dynamically adjusted to improve the convergence of the individuals into 

the feasible domain. The computational results show that the proposed approach is 

effective in guiding the search toward feasible domain especially for highly 

capacitated instances. 

 

Recently, Mohammadi and Ghomi (2011) propose a GA based heuristic for the 

CSLP in flow shops with sequence-dependent setups. The authors combine rolling 
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horizon approach with GA. Experimental results show the outperformance of the 

proposed heuristic especially in solving large scale problems.   

 

Gonçalves and Sousa (2011) develop a hybrid approach combining GA and linear 

programming for solving the ELSP. The authors develop a mixed integer non-linear 

programming formulation which takes explicit account of initial inventories, setup 

times and backorders. Experimental results validate the quality of the solutions and 

the effectiveness of the proposed approach.  

 

Another GA based heuristic can be found in Gören et al. (2011) for solving the 

CLSP with setup carryover. The authors hybridize GA with a MIP based heuristic, 

namely the Fix-and-Optimize heuristic and also present a new initialization scheme 

based on the solution of the LP relaxation of the CLSP. In this study, the Fix-and-

Optimize heuristic is embedded into the loop of GA. Following the mutation 

operator, a new population is formed and a randomly selected solution from this new 

population is set as an initial solution in the Fix-and-Optimize heuristic. After the 

solution is improved by the Fix-and-Optimize heuristic, it is put back into the 

population and the execution of the GA continues. The experimental studies show 

that the solution quality of the proposed hybrid approach is good when compared to 

the recent results reported in the literature. The details of this approach can be found 

in chapter five.  

 

4.2.3 Research on Multi Level Uncapacitated Lot Sizing Problems 

 

Multi level lot sizing introduces dependent demands: the lot sizing and timing 

decisions for items at one level in the product structure depend on the decisions made 

for their parents (Bahl et al., 1987).  

 

The first GAs in solving uncapacitated multi level lot sizing problems is proposed 

by Xie and Dong (1995). The setup patterns are coded as binary integers in the 

chromosome and other decision variables are computed from these patterns.  
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Following Xie and Dong (1995), Dellaert and Jeunet (2000) develop a hybrid GA 

to solve uncapacitated multi level lot sizing problem. The authors employ the period 

order technique, the STIL algorithm and Wagner-Whitin based techniques to create 

the initial population and state that the proposed hybrid approach provides cost-

effective solutions in a moderate execution time when compared with other 

techniques proposed in the literature.  

 

Dellaert et al. (2000) develop a hybrid GA to solve the multi level lot sizing 

problem with no capacity and product structure constraints. The authors consider the 

most general statement of the problem in which the inventory holding and setup costs 

vary from one period to the next. The simulation results show that the proposed 

approach considering time varying costs makes it an appealing tool to industrials.   

 

Prasad and Chetty (2001) present a new heuristic called Bit_Mod combined with a 

GA for multi level lot sizing under both fixed and rolling horizon and evaluate the 

influence of different parameters such as demand pattern, lot sizing rule, product 

structure and forecasting model under fixed and rolling horizon through simulation 

experiments.  

 

4.2.4 Research on Multi Level Capacitated Lot Sizing Problems 

 

Inclusion of capacity constraints and dependent demand between items make the 

problem much more complicated than the multi level uncapacitated lot sizing 

problems.  

 

Kimms (1999) presents a MIP formulation and a GA approach for the multi level, 

multi-machine proportional lot sizing and scheduling problem. The author proposes a 

procedure in which a two-dimensional matrix is used to encode the solutions. The 

computational results show that the proposed approach outperforms the TS in terms 

of both run-time performance and finding the feasible solutions.  
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Özdamar and Barbarosoğlu (1999) propose two hybrid approaches for the multi 

level capacitated lot sizing and loading problem. The first one integrates GAs and SA 

whereas the second one consists of the lagrangean relaxation and SA. Experimental 

results show that the hybrid approach consisting of lagrangean relaxation and SA 

yields better results with respect to the solution quality and computation time.  

 

Hung and Chien (2000) examine multiple demand classes in multi level 

capacitated lot sizing problem. Each demand class corresponds to a MIP model. The 

authors first generate feasible solutions by sequentially solving the MIP models each 

corresponding to a demand class, and then they employ TS, GAs and SA to solve the 

problem. Experimental results show that TS and SA yield better results than GAs. 

 

Xie and Dong (2002) study the capacitated lot sizing problem with setup times 

and overtimes using GAs where the product structure is general acyclic network. The 

authors use only setup decision variables as chromosomes and other decision 

variables (inventory and lot sizes) are derived from these patterns. Since the problem 

involves capacity constraints, a heuristic approach based on lot shifting is embedded 

in the loop of GAs in order to eliminate the infeasible chromosomes.  

 

Jung et al. (2007) use GAs in solving the integrated production planning problem 

in case of manufacturing partners (suppliers). The objective of this study is to 

provide efficient integrated production plans for manufacturing partners and a local 

firm under finite production capacity, while minimizing the total production cost. 

The authors formulate a MIP model by modifying the multi level lot sizing problem. 

With the unique chromosome structure, chromosome generation method and genetic 

operators, the proposed heuristic generates quite good solutions when compared with 

a commercial software optimization package.  

 

Recently, another GA approach is proposed in Fakhrzad and Zare (2009) for 

solving the lot sizing problem in multi stage production systems. In the first step, the 

original problem is converted to several individual problems using a heuristic 

approach which is based on the Lagrangean multipliers. For solving these individual 
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problems, in the second step a new approach combining GA and neighborhood 

search techniques is employed. In the last step, remaining capacities are calculated 

and resource leveling is implemented. These steps continue until a stopping criterion 

is met. The computational results show the effectiveness of the proposed approach in 

solving lot sizing problems.  

 

4.2.5 Findings Based on the Problem Specifications  

 

In single level systems, the product demands are directly derived from customer 

orders or market forecasts. However, in multi level systems due to the relationship 

between items, the researchers need to deal with the dependent demand which makes 

the multi level lot sizing problem more complicated. Adding other constraints such 

as capacity, setup times, backordering etc. makes this problem even more complex. 

As a result of surveying current relevant literature, it has been noted that most of the 

studies (i.e. 26 out of 36) focused on single level capacitated lot sizing problems.  

 

When the capacity is tight, considering the issue of setup carryover helps in 

reducing the number of setups and related costs. This issue has been considered in 

only one study dealing with small bucket lot sizing problem involving proportional 

lot sizing and scheduling decisions (Kimms, 1999). Dealing with the large bucket lot 

sizing problem using GAs under setup carryover and capacity constraints can be a 

promising research area. 

  

 It has been noted that the issue of backordering has not received much attention 

(i.e. 9 out of 36 studies). Another important specification in lot sizing problems is the 

lead time. Except for Kimms (1999), Dellaert et al. (2000) and Hung and Chien 

(2000) nearly all studies reviewed, assume that the lead times are neglected. 

Moreover, in the majority of the studies reviewed, the planning horizon is assumed to 

be infinite or finite. Only two studies deal with the multi level uncapacitated lot 

sizing problem employing rolling horizon (Prasad & Chetty, 2001; Mohammadi & 

Ghomi, 2011). Under rolling horizon, making revisions in the current plan according 

to the demand forecast, often cause disturbances in production, inventory cost and 



 

 

70 

supply of raw materials and subassemblies. These disturbances are called 

nervousness. Thus, lot sizing techniques developed for single level under 

deterministic conditions may not perform well under rolling horizon. The Wagner-

Whitin algorithm (1958) which gives an optimum solution with fixed horizon, does 

not necessarily give good solutions under rolling horizon so other lot sizing 

heuristics are preferred in multi level settings (Prasad & Chetty, 2001). Hence, 

considering the fact that most real world problems are solved under rolling horizon, 

this issue has enough merits to take the attention of the researchers.     

 

4.3 Genetic Algorithm Specifications 

 

In this section, the proposed GAs were investigated based on six criteria; 

chromosome representation, initialization of the population, evaluation and selection, 

genetic operators (crossover and mutation), choice of the GA parameters and 

termination criteria. Table 4.2 presents the chronological order of published literature 

based on these six criteria.  

 

4.3.1 Chromosome Representation Scheme 

 

The first and the most important step in applying GAs to a particular problem is to 

convert solutions (individuals) of lot sizing problem into a string type structure called 

chromosome. This representation must uniquely map the chromosome values onto 

the decision variable domain. To represent a solution the following two classes have 

been noted:  

 

Direct Representation: MIP models of dynamic lot sizing problems contain integer 

variables both for the setups and possibly for the sequencing. Moreover, continuous 

variables for the production quantities are also present in these models. Direct 

representation uses the integer variables representing the setup decisions as well as 

sequencing decisions and continuous variables representing the production quantities 

in the solution of GAs when dealing with dynamic lot sizing problems. Two options 

for this representation can be defined as follows:  
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1. The first option of this group includes variables for both the binary setup 

decisions and the continuous production quantities (Özdamar & Birbil, 

1998; Özdamar & Barbarosoğlu, 1999; Barbarosoğlu & Özdamar, 2000; 

Özdamar & Barbarosoğlu, 2000; Özdamar & Bozyel, 2000; Özdamar et 

al., 2002).  

2. The second option of this group includes only the integer variables and 

the production quantities can be found by solving the LP model, which is 

the original MIP problem with the integer variables fixed as in Hung et al. 

(1999) and Gören et al. (2011).  

 

In the case of multi level uncapacitated lot sizing problem (Xie and Dong, 1995; 

Dellaert and Jeunet, 2000; Dellaert et al., 2000) the set up decisions automatically 

determine the optimal production quantities through the zero-switch rule (Askin & 

Goldberg, 2001). When dealing with the ELSPs, direct representation includes the 

variables for cycle times, integer multipliers and other variables related to the 

solution of the problem. The cycle times and integer multipliers are coded in the 

solution of GAs in Khouja et al. (1998) in which Basic Period Approach is used. In 

dealing with the ELSP using Extended Basic Period approach, Yao and Huang 

(2005) represent the solution as the multipliers of a basic period, Chang et al. (2006) 

use fundamental cycle time (basic period) in the solution encoding and Chatfield 

(2007) codes the fundamental cycle time, integer multipliers and production 

beginning periods in a chromosome. In Moon et al. (2006), each gene in a 

chromosome represents the frequency of each product. The cycle times and other 

related variables are calculated based on these frequencies obtained by GAs.  

 



 

 

 Table 4.2 The published literature based on the GA specifications in a chronological order 
 

GENETIC ALGORITHM SPECIFICATIONS 
Genetic operators 

Literature reviewed Initialization of the 
population 

Chromosome 
representation 

Selection 
Crossover 

Mutation 
 

Xie and Dong (1995) Randomly Direct Roulette wheel+elitism One-point 
Bit flip 

 

Khouja et al. (1998) Randomly Direct Tournament+ elitism 
One point 
Two point 
Uniform 

Bit flip 

Ozdamar and Birbil (1998) Randomly Direct Proportional to the objective value Two point 
Randomly 

 

Hernandez and Suer (1999) Randomly Direct Roulette wheel+scaling One-point 
Bit flip 

 

Kimms (1999) Randomly Indirect Deterministically Problem specific 
Problem specific 

 

Ozdamar and Barbarosoglu (1999) Randomly Direct Proportional to the objective value Two point 
Randomly 

 

Hung et al. (1999) NA Direct Roulette wheel Problem specific 
Bit flip 

 

Kohlmorgen et al. (1999) NA Direct NA Two point 
Randomly 

 
 
Ozdamar and Bozyel (2000) 
 

Randomly Direct NA  Linear Order (two point) Randomly 

Dellaert and Jeunet (2000) 
From insertion of the 

solutions of different lot 
sizing rules 

Direct Clustering+elitism One point Bit flip 

Dellaert et al. (2000) 
Application of the mutation 

operator and a replenishment 
rule 

Direct Scaling+elitism Problem specific Bit flip 

Hung and Chien (2000) NA Direct Roulette wheel+scaling Problem specific 
Problem specific 

 
 
Prasad and Chetty (2001) 
 

 
Randomly 

 
Direct 

 
Ranking 

 
NA 

 
NA 

Sarker and Newton (2002) Randomly Direct Ranking Two point 
 

Bit flip 
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Table 4.2 The published literature based on the GA specifications in a chronological order (cont.) 

GENETIC ALGORITHM SPECIFICATIONS 
Genetic operators 

Literature reviewed Initialization of the 
population 

Chromosome 
representation 

Selection 
Crossover 

Mutation 

 

Ozdamar et al. (2002) Randomly Direct Proportional to the objective value Two point 

Randomly 
 
 
 

Moon et. al. (2002) 
From the solution of the 

nonlinear model of the ELSP 
Indirect 

Stochastic 
tournament+scaling+elitism 

Partial Mapped Randomly 

Xie and Dong (2002) Randomly Direct Roulette wheel + elitisim One point 
Bit flip 

 

Duda (2005) 
Only the predetermined part 

is randomly generated 
Direct Binary tournament+elitism Problem specific Irregular 

Yao and Huang (2005) Randomly Direct 
Roulette wheel+elitism+linear 

ranking 
Two point 
Uniform 

Bit flip 

Hop and Tabucanon (2005) NA Direct NA One point 
Bit flip 

 

Chang et. al. (2006) Randomly Direct Roulette wheel One point 
Bit flip 

 

Kämpf and Köchel (2006) NA Direct Tournament+elitism One point 
One gene Randomly 

 

Megala and Jawahar (2006) Randomly Direct Roulette wheel+scaling Partial Mapped 
Randomly 

 

Moon et al. (2006) From heuristic solutions Direct Ranking Uniform 
Randomly 

 

Gaafar (2006) 
 

Randomly Direct Roulette wheel with elitism 
 

Simple 
Uniform 

 
Randomly 

 
Li et al. (2007) 
 

Randomly Direct Ranking+Elitism One point 
Bit flip 

 
Chatfield  (2007) 
 

Randomly Direct Roulette wheel+elitism+scaling One point 
Bit flip 

 
Jung et al. (2007) 
 

From the Proposed 
procedure  

Direct Minimum generation gap selection Problem specific 
Problem specific 
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Table 4.2 The published literature based on the GA specifications in a chronological order (cont.) 

GENETIC ALGORITHM SPECIFICATIONS 
Literature reviewed Initialization of the 

population 
Chromosome 
representation 

Selection 
Genetic operators 

Duda and Osyczka (2007) 
 

NA Direct Roulette wheel + Tournament Problem specific 
Regular  

 
Fakhrzad and Zare (2009) 
 

From heuristic solutions and 
randomly 

Direct Restart strategy NA 
Problem specific 

 
Rao et al. (2009) 
 

Randomly Direct Tournament Simulated Binary 
Problem specific 

 
Sun et al. (2009) 
 

Randomly Direct 
Elitism + proportional to the 

fitness value 
Two point 

Problem specific 
 

Santos et al. (2010) 
 

From heuristic solutions Indirect Positional roulette wheel + elitism 
One point crossover + 

problem specific 
Problem specific 

 
Mohammadi and Ghomi (2011) 
 

From heuristic solution Indirect Tournament  Problem specific 
Shift 

 
Gören et al. (2011) 
 

From heuristic solutions and 
randomly  

Direct 
Ranking based roulette wheel + 

elitism 
One point 

Bit flip  
 

Gonçalves and Sousa (2011) 
 

Randomly Indirect Elitism Parameterized uniform Problem specific 
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Indirect Representation: The second class in the representation is indirect 

representation of the solution. To represent a solution, a two dimensional matrix in 

which each entry represents a rule for selecting the setup state for each machine at 

the end of the period is employed in Kimms (1999). Recently, in Santos et al. (2010) 

and Mohammadi and Ghomi (2011) the chromosome shows the sequence of the 

products produced in a period.  

 
In the case of ELSPs, Moon et al. (2002), who deal the problem with time varying 

lot size approach, use two kinds of chromosomes, the first of which represents the 

item number and the second one shows the absolute locations of the genes. These 

two chromosomes are useful in determining the frequencies of the items. Gonçalves 

and Sousa (2011) propose another different representation which shows the maximal 

production sequence and number of setups used to construct the production 

sequence.  

 

4.3.2 Initial Population 

 

The search in GA starts from an initial population. In the majority of the papers 

surveyed, the initial population is created randomly (i.e. 19 out of 36). Inclusion of 

heuristically generated solutions to the initial population is first reported in Dellaert 

and Jeunet (2000). As initial population, Moon et al. (2002) employ the nonlinear 

solution of the economic lot size scheduling problem. In Duda (2005), only the 

predetermined part (only about 3%) of the initial population is generated randomly. 

Moon et al. (2006) use the heuristic solutions of Kuo and Inman’s (1990) in 

constructing a diversified initial population. Fakhrzad and Zare (2009) utilize from 

Wagner-Whitin algorithm for the initial population.  

 

Moreover, Santos et al. (2010) use four different heuristic methods based on lot-

for-lot basis for creating the initial population. Mohammadi and Ghomi (2011) 

construct the initial population through a simple and effective heuristic which 

considers the setup costs of the products. Recently, Gören et al. (2011) propose a 

new strategy for creating the initial population. This strategy utilizes the solution 
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obtained from the LP relaxation of the CLSP. The half of the initial population is 

created based on the solution and the other half is created randomly.  

 

4.3.3 Evaluation and Selection 

 

Following the generation of the initial population, the fitness of each individual in 

the population is calculated by employing an appropriate objective function. The 

objective function provides a measure of a chromosome’s performance or fitness in 

the search space. The potential parents are selected to create the offsprings based on 

their relative fitness after the evaluation of each chromosome. It has been noted in 

this review study that with some exceptions (see Table 4.2); the roulette wheel 

selection is used in most of the studies. In roulette wheel selection, a sector of a 

roulette wheel whose size is proportional to the appropriate fitness measure is 

assigned to the individuals. Then a random number is generated and the parents are 

selected according to their random position on the wheel.  

 

Besides the roulette wheel selection operator, a number of other different selection 

operators are also used in the studies reviewed. Kimms (1999) select the parents 

deterministically in which the individuals with the highest fitness functions are 

chosen to become parents. Özdamar and Bozyel (2000) and Özdamar et al. (2002) 

select the chromosomes according to their fitness values. The difference from the 

probability calculation in roulette wheel selection lies in the calculation of the 

reproduction probability which is a second degree polynomial of the inverse of the 

chromosome’s objective function value given in Equation (1).  
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The parents are selected based on the stochastic tournament in Moon et al. (2002). 

In a recent study, Jung et al. (2007) propose a different selection operator based on 

the minimum generation gap selection method. The proposed operator randomly 

selects two different chromosomes from the old population and applies genetic 
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operators to produce the offsprings. Two chromosomes with the highest fitness 

values are selected among two chromosomes from the offsprings and two parents 

and then enter the next generation. One of the strengths of this method is that it tries 

to preserve the good parents in the next generation, while other typical selection 

methods construct a set of candidates consisting of only child chromosomes so that 

the parents with good genes can not enter the next generation.  

 

It has been noted that in order to control the selection process, scaling is used in a 

number of studies reviewed. In the proportional selection procedure, the selection 

probability of a chromosome is proportional to its fitness. However, this selection 

property exhibits some undesirable properties. For example, in early generations, 

there is a tendency for a few super chromosomes to dominate the selection process. 

In later generations, when the population has largely converged, the competition 

among chromosomes becomes less strong and a random search behavior emerges. 

Hence, scaling and ranking are proposed to mitigate these problems. Scaling maps 

the raw objective function to some positive real values in which the survival 

probability for each chromosome is determined according to these values (Gen & 

Cheng, 1997). Hernandez and Suer (1999), Hung and Chien (2000), Dellaert et al. 

(2000), Moon et al. (2002), Yao and Huang (2005), Megala and Jawahar (2006) use 

the scaling procedure in the selection process. Recently, Gören et al. (2011) 

determine the selection probabilities based on the ranking of the chromosomes. In 

this approach, chromosomes in the population are sorted according to their fitness 

values and a rank is assigned to each chromosome. Based on these rankings, the 

selection probabilities are determined and then the standard roulette wheel selection 

operator is applied to select parents which will produce offsprings. The authors name 

this selection procedure Ranking based roulette wheel selection operator.  

 
In a GA, survival is an important process that removes the individuals having low 

fitness. Survival is related to the population size. All the studies reviewed assume a 

constant population size. In steady-state GAs, which employ a constant population 

size a survival scheme is needed to reduce the population size to its predetermined 

value after generating the offsprings. In nearly half of the studies reviewed (i.e. 16 

out of 36), elitism strategy is used as a survival scheme. Elitism strategy preserves 
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the best individuals in one generation and translates them to the next generation 

without any change.  

 

Another important issue in designing the GA is to decide on whether infeasible 

individuals should be allowed in the population or not. We noted a number of 

approaches dealing with the infeasible solutions. These approaches can be listed as 

follows: 

 

• To discard all infeasible solutions or attach an infinite cost to them (Kimms, 

1999; Dellaert et al., 2000; Dellaert & Jeunet, 2000; Duda, 2005; Li et al., 

2007).  

• To use some penalty costs (Khouja et al., 1998; Özdamar & Birbil, 1998; 

Özdamar & Barbarosoğlu, 1999; Özdamar & Barbarosoğlu, 2000; Xie & 

Dong, 2002; Sarker & Newton, 2002; Duda, 2005; Moon et al., 2006; Duda 

& Osyczka, 2007; Chatfield, 2007; Gören et al., 2011). 

• To repair the infeasible solutions by introducing some repair operators 

(Özdamar & Birbil, 1998; Özdamar & Barbarosoğlu, 1999; Özdamar & 

Bozyel, 2000; Dellaert et al., 2000; Duda, 2005; Van Hop & Tabucanon, 

2005; Jung et al., 2007; Duda & Osyczka, 2007; Sun et al., 2009; Santos et 

al., 2010; Gören et al., 2011). 

 

4.3.4 Genetic Operators 

 

Genetic operators such as crossover and mutation are used in order to explore the 

search space. The crossover operator combines the chromosomes selected by the 

selection operator into a new chromosome. The mutation is used to maintain the 

diversity in the population.  

 

During the literature survey, it has been noted that the authors develop problem-

specific crossover operators to reflect the peculiarities of the lot sizing problems they 

study. Some of these crossover operators include Period (Hung et al., 1999; Dellaert 

et al., 2000; Jung et al., 2007), Product (Hung et al., 1999; Dellaert et al., 2000), 
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Compare (Hung et al., 1999), Random (Hung et al., 1999; Hung & Chien, 2000), and 

Partial Mapped Crossover (PMX) (Moon et al., 2002; Megala & Jawahar, 2006). 

Similar block order crossover, Similar job two point crossover and Similar block two 

point crossover (Mohammadi & Ghomi, 2011).  

 

Moon et al. (2002) use PMX Crossover which prevents two or more genes having 

the same value. Under PMX, two strings are aligned, and two crossing points are 

picked uniformly at random along the strings. These two points define a matching 

selection that is used to affect a cross through position-by-position exchange of 

operators. Duda (2005) presents a new type of crossover in which the fitness’s of the 

parents are considered. In his representation, a chromosome shows the lots produced 

per shift in a day. The crossover operator randomly chooses a string of genes 

(representing the lots in a single shift) in two parents. If the fitness value of the first 

parent is better than that of the second parent, the string in the first parent is placed in 

the second parent. If the second parent has better fitness, the string in the second 

parent replaces the lots in the first parent. Four different crossover operators are 

proposed in Santos et al. (2010) for creating offsprings. The first one is the standard 

one point crossover which works by choosing a period randomly and then swapping 

segments of two parents. The second one is the intersection crossover which works 

by checking the common parts of both parents. If both parents have the same 

common parts, then these parts are automatically put in the offsprings. The third one 

is the union crossover operator which considers the ranking positions of the parents 

in the population. The last crossover operator combines the weighted roulette and T-

point (T is the number of periods) crossover in producing offsprings. Gonçalves and 

Sousa (2011) employ parameterized uniform crossover in place of the traditional 

one-point and two-point crossover. After choosing two parents this crossover 

operator involves generating a random number between 0 and 1 for each gene. If this 

random number is less than or equal to the crossover probability, the gene of the 

offspring is set to the corresponding gene in the first parent; otherwise it is set to the 

corresponding gene of the second parent.  
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Moreover, it has been noted that single bit flip mutation operator is used in most 

of the studies where the setup state is changed for a randomly chosen item and period 

(Dellaert et al., 2000; Dellaert & Jeunet, 2000; Xie & Dong, 2002; Gören et al., 

2011). In a representation in which the lot sizes are also included, the mutation 

operator can change the lot size by a random amount (Özdamar & Birbil, 1998; 

Barbarosoğlu & Özdamar, 1999; Özdamar & Bozyel; 2000, Fakhrzad & Zare, 2009). 

Specialized mutation operators are also developed to reflect the peculiarities of the 

lot sizing problems in a number of studies. To account for product interdependencies 

in multi level case, Dellaert et al. (2000) propose a mutation operator called 

Cumulative, in which the setup periods for the predecessors are changed when 

mutation is performed on a given item. The mutation operator performs the same 

mutation on the immediate predecessors of the item under consideration and tries to 

ensure the feasibility. Gaafar (2006) uses different mutation operators during the 

genetic algorithm application such as Random, Boundary, Ordering, Change 

ordering, Random swapping and Neighbor swapping. Random mutation replaces a 

randomly chosen chromosome with a new one generated randomly. Boundary 

mutation randomly switches genes from a randomly selected position till the end of 

the chromosome. Ordering mutation maintains the number of orders in a randomly 

chosen chromosome. Change ordering mutation randomly increases or decreases the 

number of orders in a randomly chosen chromosome. Random swapping mutation 

swaps two randomly chosen genes in a randomly chosen chromosome and Neighbor 

swapping mutation swaps a randomly chosen gene with the neighbor gene (before or 

next to it) in a randomly chosen chromosome. Jung et al. (2007) propose different 

problem specific mutation operators matching with the chromosome representation 

they use. These operators along with the chromosome representation and the 

crossover operator proved to be efficient in terms of solution quality. A number of 

different mutation operators can also be found in Santos et al. (2010) such as 

Scramble, Insertion, Displacement, Replacement, Setup Carryover, Minmax 

feasibility (random), Minmax feasibility (static), Minmax feasibility and shifting 

forward. Scramble selects a random period and scrambles the productions in it. 

Insertion chooses a period randomly and a product that is not produced in that period 

and inserts this product in a random position. Displacement picks a period randomly 
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and removes a random product from the chromosome. Replacement combines an 

insertion and a displacement procedure. Setup carryover looks for improvement in 

the solution by changing the initial setup state of the machine in a randomly selected 

period. Minmax feasibility (random) re-sequences every chromosome according to 

the minmax random version detailed in Almada-Lobo (2007) who tries to minimize 

the setup times. Shifting forward tries to reduce the inventory holding costs by 

shifting forward a fraction or an entire lot of every product from a source period to 

the following period. Instead of using a traditional mutation operator, Gonçalves and 

Sousa (2011) randomly generate some new chromosomes to prevent premature 

convergence of the population, like a mutation operator.  

 

In addition to crossover and mutation operators, some different operators such as 

the migration and sibling operators are also proposed for lot sizing problems. The 

migration operator allows for a crossover between chromosomes from different 

populations (Özdamar & Birbil, 1998; Barbarosoğlu & Özdamar; 1999, Özdamar et 

al., 2002) helping in generating good quality offsprings and variety in population. 

Hung et al. (1999) propose a sibling operator which performs like crossover and 

mutation operators. It stochastically chooses a better sibling from the neighborhood 

of a chromosome in the current generation and creates new chromosomes from the 

next generation.  

 

4.3.5 Choice of the Parameters of GAs 

 

The performance of the GAs depends on the rates of the parameters such as the 

population size, crossover rate and mutation rate. However, the optimization of the 

parameter set has not attracted the attention of the researchers. Hung et al. (1999) 

determine the suitable parameters through conducting a series of pilot experiments. 

The authors use the default parameter file and vary only one control parameter at a 

time from the default control parameter set. Jung et al. (2007) determine the 

parameter set through an experimental setup including three levels for each 

parameter. The details of the experiments are not explained in the study. Chatfield 

(2007) tests different crossover and mutation rates and uses a performance metric 
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which tracks a genetic algorithm’s progress toward finding the best solution. 

Mohammadi and Ghomi (2011), Gonçalves and Sousa (2011) and Gören et al. 

(2011) also determine the level of GA parameters through a set of preliminary tests.  

 

A new trend in parameter setting in GAs is adaptive genetic operators in which 

the rates of genetic operators change during the search. Özdamar and Birbil (1998), 

Özdamar and Barbarosoğlu (1999), Özdamar and Bozyel (2000), Özdamar et al. 

(2002) determine the crossover and mutation probability according to the 

convergence of the population’s performance range. The crossover and mutation 

probabilities increase when the population’s performance range tends to get stuck at 

a local optimum. Dellaert and Jeunet (2000) implement learning algorithm on the 

probabilities to the operators in GAs. Hung and Chien (2000) and Prasad and Chetty 

(2001) use the adaptive GA proposed by Srinivas and Patnaik (1994), which 

dynamically adjusts the crossover and mutation probability. Starting with a high 

crossover rate and a low mutation rate, Yao and Huang (2005) keep decreasing the 

crossover rate and increasing the mutation rate until a specified level. The authors 

hope that in doing so the GAs can still explore the new regions in the search space 

and raise the diversity of the population, during the evolutionary process. Van Hop 

and Tabucanon (2005) propose using adaptive genetic operators which are based on 

the rate of survivor off-springs. Chang et al. (2006) use adaptive probabilities for the 

crossover and mutation. Namely, when the GA keeps finding the same chromosome 

with the highest fitness value for some number of generations, both crossover and 

mutation probabilities are increased gradually to further increase the chromosome 

diversity. Once another chromosome is found, these probabilities are set to their 

default values.   

 

4.3.6 Termination 

 

The search in GAs is terminated according to some rules. In surveying the current 

relevant literature, it has been noted that most of the researchers specified a 

maximum number of generations as a terminating condition. However, in some 

studies, the search is stopped if there is no improvement in the last predefined 
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generations or the best individual does not improve more than the predetermined 

threshold in a predetermined number of generations.  

 

4.3.7 Findings Based on the GA Specifications 

 

Since the search in GAs starts from an initial population, the initial population has 

an important effect on the performance of the GAs. In this survey study, it has been 

noted that the initial population is generated randomly in most of the studies. Most of 

the researchers use the direct representation as a representation scheme.  

 

In order to reflect the peculiarities of the lot sizing problems, a number of 

different crossover and mutation operators are used (see Section 4.3.4). Despite the 

great variety in proposed GA operators, it has been noted that the researchers mainly 

employ one point crossover and single bit flip. Moreover, it has been noted that when 

the representation of the solution is unique to the problem type (Delleart et al., 2000; 

Moon et al., 2002; Gaafar, 2006; Jung et al., 2007; Santos et al., 2010; Mohammadi 

& Ghomi, 2011) usually problem specific genetic operators are used. To help the 

convergence of the GAs, other operators such as migration (Özdamar & Birbil, 1998; 

Barbarosoğlu & Özdamar, 1999; Özdamar et al., 2002) and sibling operator (Hung et 

al., 1999) are also proposed.  

 

Since the performance of the GAs heavily depends on the genetic operators used, 

the determination of efficient GA parameters is another important issue in designing 

the GAs. However, any study dealing with this issue has not been noted during the 

literature review. In recent years, a new trend focusing on adaptive genetic operators 

has received attention in the literature. To obtain better and faster solutions, Özdamar 

and Birbil (1998), Özdamar and Barbarosoğlu (1999), Özdamar and Bozyel (2000), 

Özdamar et al. (2002), Hung and Chien (2000), Prasad and Chetty (2001), Van Hop 

and Tabucanon (2005), Yao and Huang (2005), Chang et al. (2006) propose adaptive 

genetic operators in which the rates of the genetic operators are automatically 

adjusted during the search.  
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As a result of surveying the current relevant literature, it has been noted that when 

the representation of the solution is unique to the problem type, the problem specific 

genetic operators are used to reflect the peculiarities of the problems. This statement 

implies that for an effective GA design, taking into account the genetic operators 

together with the chromosome representation is a better idea.  

 

The insight gained as a result of surveying current relative literature with respect 

to problem specifications and also GA specifications can be given as follows: 

 

• Unlike single level lot sizing problems where the researchers employed 

standard genetic operators, for multi level lot sizing problems, some problem 

specific operators considering the interdependency among items in the 

product structure have been proposed (Dellaert & Jeunet 2000; Dellaert et al. 

2000; Jung et al. 2007). This can be attributed to the complexity of multi 

level lot sizing problems. These specific genetic operators constrain the 

search to the set of feasible solutions rather than letting the algorithm explore 

infeasible solutions. This speeds the convergence of the algorithm to the 

optimum.  

• An important issue in solving multi item stochastic capacitated lot sizing 

problem using GAs is to realistically deal with probabilistic demand. It has 

been noted that combining specially designed GAs with simulation has quite 

potential to find sufficiently good solutions (Kämpf & Köchel, 2006).   

• In most studies considering ELSPs the penalty functions are used to deal with 

infeasible solutions. A recent trend to enhance the feasibility testing and 

generate a feasible production schedule is to employ heuristics (Yao & 

Huang, 2005). These heuristics check the feasibility of solutions generated 

and GAs search for the best solution among all feasible ones.  

• The island GAs which are executed concurrently on several sub-populations 

with the added possibility of exchanging regularly good individuals between 

neighboring islands offer many advantages in obtaining satisfying results in a 

reasonable computational time. It has been noted these island GAs are 

employed only for single level capacitated lot sizing problem (Kohlmorgen et 
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al., 1999). This can be attributed to the complex structure of the multi level 

lot sizing problem.  

• In solving dynamic lot sizing problems which involve many constraints to be 

satisfied, repair operators are widely used to ensure the feasibility of the 

capacity, inventory and other constraints (Özdamar & Birbil 1998; Kimms 

1999; Özdamar & Barbarosoğlu 1999; Dellaert et al. 2000; Özdamar et al. 

2002; Duda, 2005; Jung et al., 2007; Santos et al., 2010; Gören et al., 2011). 

• In solving capacitated lot sizing and loading problem involving the issues of 

setup and overtime, the chromosome is structured to include both lot sizing 

and loading decisions (Özdamar & Birbil, 1998; Özdamar & Barbarosoğlu; 

1999). 

• Unlike classical lot sizing problem in the literature, some researchers (Jung et 

al., 2007) take into account manufacturing partners and they propose case 

specific GAs approach, i.e. problem specific representation, genetic 

operators. 

 

4.3.8 Motivation of This Ph.D. Study 

 

GAs are increasingly used to solve many different production and operations 

management problems. One of the most well-known of these problems is lot sizing 

problems which deals with the determination of the lot sizes in order to minimize 

average total cost per time unit. To state the current research issues on solving lot 

sizing problems using GAs, this chapter summarizes the main specifications of the 

problems studied, and discusses the features of the proposed GAs to deal with these 

problem specifications.  

 

From the perspective of GAs, it is noted in most of the published literature that the 

proposed GAs are found to have better performance with respect to solution quality 

and speed than exact solution approaches and other heuristic approaches. However, it 

is known from published literature that it is possible to further improve the efficiency 

of the proposed GAs by appropriate selection of control parameters and the initial 



 

 

86 

population. Despite this fact, it has been noted that choosing efficient parameters and 

population initialization did not attract many researchers.  

 

As for the lot sizing perspective, more than half of the studies reviewed focus on 

the single level lot sizing problems. To get more realistic results regarding the 

performance of the GAs, the focus might be on real world lot sizing problems or 

more complex lot sizing problems including features such as setup times, setup 

carryover, sequence dependent setup costs, parallel machines, backordering, rolling 

horizon and lead times can be taken into consideration. To the best of our 

knowledge, we have not noted any study dealing with single level or multi level 

multi-item lot sizing problem with setup times, setup carryover and backordering 

using GAs.  

 

Having gained insight on application of GAs to lot sizing problems, and identified 

the current research gaps, we set our research directions for this Ph.D study as 

follows:  

 

• To focus on the single level capacitated lot sizing problem with setup times, 

setup carryover and backordering.  

 

This literature survey reveals that the number of studies addressing the 

solution of the capacitated lot sizing problem with setup times, setup 

carryover and backordering is very limited. To fill this perceived gap, in 

this study the focus will be on the single level capacitated lot sizing 

problem with setup times, setup carryover and backordering.  

 

• To propose hybrid GA approaches to solve the capacitated lot sizing 

problem with setup times, setup carryover and backordering.  

 

  The CLSP with extensions such as setup times, setup carryover and 

backorder is more complicated than the regular CLSP. However, as a 

result of surveying current relevant research, it is noted that the emphasis 
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given to the development and application of hybrid GA approaches for 

solving this complicated problem is not adequate. Hence, to fill the 

perceived gap, this Ph.D. study proposes a number of GA-based hybrid 

approaches to solve the capacitated lot sizing problem with setup times, 

setup carryover and backordering.  

 

• To propose a new population initialization scheme utilizing problem 

specific knowledge.  

 

It is noted that most of the published studies in this field prefer random 

initial population in the GA search. However, it is a well known fact that 

the initial population has an important effect on the performance of the 

GA. To further improve the performance of proposed GA-based hybrid 

approaches, in this Ph.D. study we propose a novel initialization scheme 

based on problem specific information.  

 

• To set the values of efficient GA parameters through pilot experiments over 

different instances.  

 

It is known from the literature that performance of GAs is affected by 

choice of control parameters.  However, it is noted that in the most of the 

published literature, no effort has been made to determine the efficient 

GA parameters. Unlike previous relevant research, in this study, 

experimental studies are carried out to select efficient GA parameters.   

 

In summary, this Ph.D. study proposes novel GA-based hybrid approaches which 

integrate GA with Fix and Optimize Heuristic to solve the capacitated lot sizing 

problem with setup times, setup carryover and backordering. Moreover, to further 

improve the performance of proposed GA-based hybrid approaches, it proposes to 

use a novel initialization scheme in these approaches. 
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4.4 Chapter Summary  

 

In this chaper, the current studies on applications of GAs for solving lot sizing 

problems with different features were extensively reviewed to state the current 

research gaps and motivation for this Ph.D. thesis.  

 

The review includes the studies published after 1995. The current literature was 

reviewed from two different perspectives. The first one is the specifications of the lot 

sizing problems such as number of levels, capacity constraints, setup time issue, 

planning horizon, demand type and inventory shortage. The second one is the 

features of the proposed GAs to deal with these problem specifications such as 

chromosome representation scheme, initialization of the population, evaluation, 

selection, genetic operators, choice of the GA parameters and termination.  

 

To fill the perceived research gap, this Ph.D. study focuses on capacitated lot 

sizing problem with setup times, setup carryover and backordering which is the least 

studied lot sizing problem in the literature and proposes novel GA-based hybrid 

approaches to solve this complex problem. The details about these hybrid approaches 

are presented in next chapters.  
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CHAPTER FIVE 

HYBRID APPROACHES FOR SOLVING THE CAPACITATED LOT 

SIZING PROBLEM WITH SETUP CARRYOVER 

 

 

5.1 Introduction 

 

The main objective of this Ph.D. study is to develop efficient GA-based solution 

approaches for solving capacitated lot sizing problem with setup carryover and 

backordering. It is known that pure GAs are good at identifying promising areas in 

the search space, however they have problems in finding the exact global optimum 

(Taşan, 2007). In order to improve the performance of the pure GAs, this Ph.D. study 

presents novel hybrid approaches combining GAs with a MIP based heuristic, 

namely Fix-and-Optimize heuristic. It should be noted that all these hybrid 

approaches employ a new population initialization scheme and an efficient GA 

control parameter setting determined as a result of experimental analysis.  The 

capacitated lot sizing problem with setup carryover and backordering is solved in 

two stages. First, the proposed hybrid approaches are used to solve the capacitated lot 

sizing problem with setup carryover (CLSPC). In the second stage, the issue of 

backordering is considered and the problem is extended to the capacitated lot sizing 

problem with setup carryover and backordering (CLSP+). While this chapter presents 

the studies done during the first stage, how the proposed hybrid approaches are 

adapted to solve the capacitated lot sizing problem with setup carryover and 

backordering are given in chapter six. 

 

The rest of the chapter is organized as follows. In section 5.2, the statement of the 

problem is given. The details of the proposed approaches are given in section 5.3. 

The results of experimental studies carried out to test the performance of the 

proposed hybrid approaches are discussed in section 5.4. Finally, in section 5.5 the 

context of this chapter is summarized.  
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5.2 Problem Statement: The Capacitated Lot Sizing Problem with Setup 

Carryover 

 

The CLSPC determines the timing and sizing of the production along with the 

semi-sequencing (i.e. first and last product produced in a period) of the products in a 

period. In this study, the model proposed by Suerie and Stadtler (2003) has been 

employed under the following assumptions to solve the CLSPC:  

 

• The planning horizon P is fixed and divided into time buckets (1,….., P).  

• There is one resource available. 

• Several products requiring a unique setup state can be produced on the 

resource in each period (property of a big bucket model). 

• The resource consumption to produce one unit of product j is fixed.  

• Setups incur setup costs and consume setup time. Setup costs and setup 

times are sequence independent.  

• At most one setup state can be carried over from one period to the next on 

the resource.  

• Single item production is possible (i.e. the conservation of one setup state 

for the same product over two consecutive bucket boundaries). 

• A setup state is not lost if there is no production on the resource within a 

bucket.  

 

 5.2.1 Sets, Indices, Parameters, and Variables 

 

The sets, indices, parameters and decision variables in this problem are given as 
follows.  
 
Sets and indices:  
j: items {1,2,3,... }j K K∈ = ; 

t:  periods {1, 2,3,... }t P P∈ = . 

Parameters: 
scj: setup cost for item j; 
hjt: unit holding cost for item j in period t; 
Ct: amount of capacity available in period t; 
aj: time to process one unit of item j; 
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stj: setup time of item j; 
M: a large number; 
djt: demand for item j in period t. 
Decision Variables: 

Ijt: Inventory level for item j at the end of period t, 
Xjt: Production amount of item j in period t, 

jt
Y : Binary setup variable (=1, if a setup for item j is performed in period t, =0 

otherwise), 
Wjt: Binary linkage variable which indicates whether a setup state for item j is 

carried from period (t-1) to (t) (=1) or not (=0), 

t
Q : Single item variable which indicates that the resource is occupied solely by 

item i in period t (=1) or not (=0).   
 

5.2.2 Mathematical Model of the CLSPC 

 

The mathematical programming model in the form of “Inventory and Lot Size 

Representation (I&L)” for the CSLPC can be stated as follows (Suerie & Stadtler, 

2003): 

1 1
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j t
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, 0
jt jt

X I ≥   ;j K t P∀ ∈ ∀ ∈       (11)

  
 

The objective function (1) aims at the minimization of inventory holding and 

setup costs. Constraints (2) are the inventory balance equations. The capacity 

constraints are placed in Constraints (3). Constraints (4) ensure that at most one setup 

state can be preserved from one period to the next on the resource. Constraints (5) 

guarantee that a setup can be carried over to period t only if either item j is setup in 

period t-1 or the setup state is already carried over from period t-2 to t-1. A setup 

state can only be preserved over two bucket boundaries, if  1
t

Q =  in constraints (6), 

which is only possible if there is no setup in this period (7).  Constraints (8) are the 

upper bounds on the production quantities. Finally, variables are restricted to be 

nonnegative or binary, respectively, (9) to (11). It is assumed that there are no setup 

carryovers in the first period as stated in constraints (10). More details on this 

formulation can be found in Suerie and Stadtler (2003). 

 

5.3 Proposed Hybrid Approaches 

 

In this section, two hybrid approaches are proposed to solve the CLSPC. First, the 

details and logic of the genetic search is given. For hybridization of GA, two 

different schemes are proposed. The main elements of these two hybrid approaches 

and the proposed methodologies are given in the following sections.  

 

5.3.1 The Logic of the Search in GAs 

 

The search in a GA is done for the setup (Yjt) and setup carryover variables (Wjt), 

which are binary. Once these variables are fixed to the specific values according to 

the chromosome values, the result is a LP model which deals with determining the 

optimal production and inventory decision variables. This LP model is called a sub-

problem. Therefore, for each chromosome in the population of the GA, the setup and 

setup carryover variables are fixed to the values determined throughout the search 

and the production and inventory variables are determined by the LP model. The 

advantage of embedding a LP sub-problem in the GA can be explained as follows. 
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For a given integer solution, there may be infinite combinations of the values for the 

continuous variables. By solving the LP sub-problem, values that optimally 

correspond to integer solution can be obtained easily (Defersha & Chen, 2008). 

Hence, the objective value of the sub-problem is used to determine the fitness of the 

chromosome during the search.  

 

5.3.2 Elements of the Hybrid Approaches  

 

The following sections present the elements of the proposed hybrid approaches 

for solving the CLSPC. 

 

5.3.2.1 The Fix-and-Optimize Heuristic 

 

The Fix-and-Optimize heuristic is a MIP based heuristic in which a sequence of 

MIPs is solved over all real-valued decision variables and a subset of the binary 

variables. The background information about this MIP based heuristic can be found 

in chapter three. In this chapter, only the heuristic with the time decomposition is 

explained.  

 

The Fix-and-Optimize heuristic is originally implemented in Sahling et al. (2009) 

for solving the multi level CLSPC. Later, in another study, Helber and Sahling 

(2010) employed a Fix-and-Optimize heuristic to solve the multi level capacitated lot 

sizing problem. It should be noted that our Fix-and-Optimize heuristic differs from 

Sahling et al. (2009) and Helber and Sahling (2010) in the following ways:  

 

• The Fix-and-Optimize heuristic is implemented as a stand-alone heuristic by 

Sahling et al. (2009) and Helber and Sahling (2010), whereas in this study it is 

integrated with GA and it is used to improve the solutions obtained by the GA 

in both of the proposed hybrid approaches.  

• In Sahling et al. (2009) and Helber and Sahling (2010), it is assumed that 

initially, there is a setup for each product in each period. The heuristic 

proceeds based on this initial solution and tries to improve it throughout the 
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iterations. In both hybrid approaches proposed in this study, the initial solution 

is determined by the GA.  

 

Integrating the GA with the Fix-and-Optimize heuristic, it is hoped that the Fix-

and-Optimize heuristic will act like a diversification tool in the solution space and 

help the GA to overcome local minima by guiding it to new regions. Particularly, the 

Fix-and-Optimize heuristic is used to improve the solution quality of the GAs. The 

definitions of the problems and algorithm are given in detail in the following 

sections.  

 

5.3.2.2 Definition of Problems Obtained by Time Decomposition in the Fix-and-

Optimize Heuristic 

 

By adding the following constraints into the MIP model given, the smaller 

problems used in the Fix-and-Optimize heuristic are obtained.  

 

,( , ) fix

jt jt Y sY Y j t KP= ∀ ∈         (12) 

,( , ) fix

jt jt W sW W j t KP= ∀ ∈         (13) 

 

The explanations of the parameters used above can be found in Table 5.1. The 

Fix-and-Optimize heuristic starts with an initial solution. This initial solution yields 

an initial objective value which is indicated as Zold. After initialization, the algorithm 

iterates through the ordered set of problems according to the time decomposition 

scheme either once or until it reaches a local optimum.  
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Table 5.1 Additional notation for the definition of a problem 

Sets:  

KP  Set of all product-period ( , )j t  combinations | j K and t P∈ ∈  

,
opt

Y sKP KP⊆  Set of product-period combinations for which the binary setup variables Yjt  

are optimized in the current problem s 

,
opt

W sKP KP⊆  Set of product-period combinations for which the binary setup carryover Wjt 

variables are optimized in the current problem s 

,
fix

Y sKP KP⊆  Set of product-period combinations for which the binary setup variables Yjt are 

fixed in the current problem s 

,
fix

W sKP KP⊆  Set of product-period combinations for which the binary setup carryover 

variables Wjt are fixed in the current problem s 

Parameters:  

jtY  Exogenous value of the fixed setup variable Yjt 

jtW  Exogenous value of the fixed setup carryover variable Wjt 

 

5.3.2.3 The Algorithm with Time Decomposition 

 

The basic structure of the Fix-and-Optimize algorithm with the time 

decomposition scheme is outlined in Figure 5.1. The algorithm needs an initial 

solution to start and goes through the problems obtained by the time decomposition 

scheme either once or until it reaches a local optimum. For example, if time window 

is set to five for an instance with 15 periods, in one iteration ( � ) of the Fix-and-

Optimize heuristic, three problems are solved. The implementation of the Fix-and-

Optimize heuristic to solve such a problem is illustrated in Figure 5.1. Each 

temporary solution to a problem yields an objective value of Z which is at least as 

good as the current best solution (Zold). So, a new solution is accepted only if it yields 

an objective value better than the current best solution.  

 

It should be noted that a capacity infeasible solution is never considered as a 

candidate for the best solution.  
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Figure 5.1 The outline of the Fix-and-Optimize heuristic with time decomposition 
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Figure 5.1 The outline of the Fix-and-Optimize heuristic with time decomposition (cont.) 

 

There are two issues affecting the quality of the solution obtained by the Fix-and-

Optimize heuristic:  

Change the best solution 
Best solution =Temporary solution 

Solve the 3rd problem  and  determine the objective value Z  and  temporary solution 

Change the best solution 
Best solution =Temporary solution 
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� How to generate the initial solution? 

� What should be the number of iterations ( max� )?  

 

Instead of using a random initial solution like in Sahling et al. (2009) and Helber 

and Sahling (2010), in this study, the initial solution of the Fix-and-Optimize 

heuristic comes from GA in both proposed hybrid approaches.  

 

5.3.2.4 Chromosome Representation 

 

The first and most important step in applying GAs to a particular problem is to 

convert solutions (individuals) of lot sizing problem into a string type called 

chromosome. In this study, encoding the proposed model involves the binary 

decision variables Yjt and Wjt. Hence, a chromosome is a binary string type. A matrix 

representation is used for representing a chromosome. The matrix consists of two 

rows in which the first row shows the setup variables (Yjt) and the second row shows 

the setup carryover variables (Wjt). The columns of the matrix show the products and 

periods. Thus, the length of the chromosome is the number of periods (P) multiplied 

by the number of products (K). Figure 5.2 shows a chromosome for four products 

over a planning horizon of three periods.  

 

Period 1 Period 2 Period 3 

Y11 Y21 Y31 Y41 Y12 Y22 Y32 Y42 Y13 Y23 Y33 Y43 

W11 W21 W31 W41 W12 W22 W32 W42 W13 W23 W33 W43 

 
Figure 5.2 Chromosome representation 

 

5.3.2.5 Initial Population 

 

The search in GA starts from an initial population. It is well known that the 

performance of the meta-heuristics is affected by the choice of the initial 

solution/solutions (Gören et al., 2011; Mohammadi & Ghomi, 2011). If the initial 

solution/solutions is/are good enough, the probability of finding better solutions will 

increase and the convergence to the near-optimal or optimal solution will be more 
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quickly. The initial population of a GA has a special role on the performance since 

all the populations in the iterative search process depend, to some extent, on the 

preceding solution and, eventually on the initial population (Maaranen et al., 2004). 

However, we noted during the review of the current relevant literature that the 

initialization of the population has not gained much attention of the researchers in lot 

sizing area. Hence, to further improve the performance of the proposed hybrid 

approach a novel initialization scheme is suggested in this study.  

 

The proposed initialization is implemented in two steps to determine the first row 

(i.e. setup variables) and the second row of the chromosomes (i.e. setup carryover 

variables), respectively (see Figure 5. 3). 

 

 

Figure 5.3 The control logic of creating a chromosome 

 

5.3.2.5.1 Generating the Setup Variables. The main idea of the proposed 

initialization scheme is to use problem-specific information in generating some 

portion of the initial population. This part of the initial population is called Smart 

Part. More specifically, in order to generate problem specific chromosomes so that 

the search can be directed toward the search spaces where feasible and good quality 

solutions exist, we suggest utilizing the information gained from the LP relaxation of 

the CLSP with setup times. The procedure followed in creating the Smart Part is 

given in Figure 5.4. 

 

 

 

 

 

 

 

Construct the first row of 
the chromosomes 

Construct the second 
row of the chromosomes 

  
Chromosome 

Step 1 Step 2 
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Figure 5.4 Procedure to generate the Smart Part  

 

It should be noted that ε  giving the level of Smart Part in the initial population is 

a threshold parameter. An experimental study is made in section 5.4 to evaluate 

different levels of this threshold parameter. Hoping that the population will be more 

diverse and initiate a more effective search, we suggest also using some randomness 

in forming the initial population. After the Smart Part is generated based on the 

value ofε , the Random Part is generated following the procedure given in Figure 

5.5. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Procedure to generate the Random Part 

 

SMART PART 

 POP: The population size 

λ : The number of problem-specific chromosomes in the population 

ε  : Threshold 

Step 1. Solve the LP relaxation of the problem using the Simple Plant Location formulation to 

get a good lower bound.  

Set the cut off point to a specific value ε . 

FOR i=1 to  λ  

FOR k=0 to (K*P) 

Step 2. If the value of the setup variable in the LP relaxation is under ε , set Y  (the 

value of the gene k) in chromosome i to 0 otherwise set it to 1.  

Step 3. Increase the cut off point by ε .  

RANDOM PART 

 POP: The population size 

λ : The number of problem-specific chromosomes in the population 

β : Threshold 

FOR i= ( 1)λ +  to POP  

FOR k=0 to (K*P) 

Step 1. Pick a random number between 0 and 1.  

Step 2. If the random number is less than or equal to β , set Y (the value of the gene k) 

in chromosome i to 0, otherwise set it to the value of 1.  
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5.3.2.5.2 Generating the Setup Carryover Variables. Once the setup variables are 

generated, next the setup carryover variables are generated by following the logic 

given in Figure 5.6. The constraint (10) in the MIP model given in section two 

suggests that there cannot be any setup carryovers in the first period; therefore the 

procedure creating the setup carryover variables starts from the second period. 

Assuming the products are ordered according to decreasing setup costs, the logic 

behind creating the setup carryover is to check the setup and setup carryover 

variables in the previous period along with the setup costs of the products. If there is 

a setup and no setup carryover in the previous period, then a setup carryover can be 

assigned for the product in that period. Due to the infeasibility that might occur, the 

setup variable in the relevant period is also checked. In case there is a setup, this 

setup should be eliminated if a setup carryover is already assigned in this period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Procedure for the second row (i.e. setup carryover variables) in the initial 

population 

 

5.3.2.6 Fitness Function 

 

Following the generation of the initial population, the fitness of each individual in 

the population is calculated by employing an appropriate objective function. The 

objective function provides a measure of a chromosome’s performance or fitness in 

the search spaces. In this study, the fitness of each individual is calculated based on 

FOR i=1 to POP 

FOR t=2 to P 

 FOR j=1 to K (Assume products are ordered according to decreasing setup costs)  

IF Yjt-1=1 and Wjt-1=0,  

THEN  

Set Wjt=1  

  IF Yjt=1 

  THEN  

Set Yjt=0 

ENDIF 

ENDIF 

BREAK (go to the next period) 
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the sum of the objective function of the MIP model presented. The total cost is the 

sum of the inventory and setup costs which are calculated by fixing the setup 

variables in the sub-problem and optimizing the remaining continuous variables. 

There might be some chromosomes that violate the capacity constraint during the 

search. In order to deal with this infeasibility, a penalty cost is added to the total cost 

as shown in (14).  

 

Total cost= Setup cost + Inventory cost + Penalty cost     (14) 

 

5.3.2.7 Selection Scheme 

 

After calculating the fitness of each chromosome in the initial population, 

potential parents are selected using the modified roulette wheel selection. Roulette 

wheel selection scheme scales the fitness values of the members within the 

population so that the sum of the rescaled fitness values is equal to 1. Based on pilot 

experiments it was observed that the performance of the roulette wheel selection 

operator was rather poor for our CLSPC. We noticed that chromosomes having low 

fitness values were never selected for crossover. This reduced the chance to 

introduce diversity into the new solutions and affected the solution quality. To deal 

with this issue, we added the ranking issue to the roulette wheel selection operator. 

The pseudo-code for this rank-based roulette wheel selection operator is given 

below.  

 

Step 1. Calculate the total cost of each chromosome.  

 

Total cost of chromosome n = Setup cost + Inventory cost + Penalty cost 

 

Step 2. Order the chromosomes according to their total cost in an ascending 

order and give a rank to each chromosome. This rank shows the fitness of 

the chromosome.  

 

Step 3. Calculate the selection probability of each chromosome by its rank, n, 

based on the following equation (Haupt & Haupt, 2004): 
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1

1
population size

n

population size n
selection probability of chromosome n

n
=

− +
=

∑   (15) 

for i=0 to (population size-1)  

 

Step  4.  Generate a random number between 0 and 1.  

 

Step 5. Starting from the top of the list, choose the first chromosome with a 

cumulative probability that is greater than the random number.  

 This process continues until all the parents are selected.  

 
5.3.2.8 Genetic Operators 

 

Genetic operators such as crossover and mutation are used in order to explore the 

search space. The crossover operator combines the chromosomes selected by the 

selection scheme into a new chromosome. The mutation operator is used to maintain 

the diversity in the population.  

 

A new population is produced using the single point crossover and single bit flip 

mutation operators. The crossover probability rate, Rc, is used to determine whether 

the offspring represents a blend of the parents. If no crossover takes place according 

to the crossover probability, the two offsprings become the clones of their parents. 

But, if crossover occurs, a random crossover point is selected and the parts after the 

crossover point are exchanged between two parents.  

 

Similar to the crossover operation, mutation operation occurs during the evolution 

according to a specified mutation probability rate defined as RM. This probability rate 

is used to decide how often gene values of the chromosomes will be mutated. Based 

on the RM, we consider the setup and carryover variables together and apply the 

single bit flip mutation operator based on these variables. In the single bit flip 

mutation operator, the value of 1 is changed to the value of 0 and vice versa. The 

mutation operator is detailed in Figure 5.7.  
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Input: A gene showing the value of setup variable for a specific product (a) and   

period (b) randomly 

 
IF Yab=0 

 IF Wab=0 
 THEN Set Yab=1 
 ENDIF 
 ELSE Set Wab=0 and Yab=1  
  Introduce a setup carryover for product i (i≠a) in period b.  
  Wib=1 
 ELSE 
 IF Wab+1=0 
 THEN Set Yab=0 
  IF Yab-1=1 
  THEN Wab=1 
   IF there are 2 setup carryovers in period b 

   THEN Call the REPAIR Operator 
   ENDIF 

ENDIF 
ENDIF 
 

Output: Mutated gene 

 

 
Figure 5.7 The pseudo-code for the single bit flip mutation operator 

 

5.3.2.9 Repair Operators 

 

After employing the crossover and mutation operators, there might be infeasible 

chromosomes that do not satisfy the constraints (4), (5), (6) and (7) of the model 

stated in Section 5.2.2. It should be noted that infeasible chromosomes violating 

these constraints are not allowed in the population. In this study, the proposed repair 

operators are grouped into two and the details of each operator are given in the 

following. 

 

1.The repair operator used after crossover 

The single point crossover operation might create some infeasible 

chromosomes while producing offspring. Therefore; a number of repair operators 

are proposed to fix these infeasibilities. There are four kinds of repair operators in 
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this group. The first operator is applied after the crossover operator in order to 

maintain the feasibility. The second one removes the setup carryovers if there are 

two or more setup carryovers in one period and the third one introduces a setup 

carryover if there is no setup carryover in the current period. The last one checks 

the carryover and setup variables in the previous period and repairs the 

infeasibilities that occur due to this situation.  

 

Crossover repair operator: This repair operator corrects the infeasibilities by 

looking at the period in which crossover takes place. Based on the place of the 

crossover point, this operator looks at the following and the previous periods of 

the period in which crossover occurs. The details are given in Figure 5.8. 

 

Input: Crossover point (k) indicating a specific time period and a product, an    

infeasible chromosome violating constraints (4), (5) and (6). 

 

FOR Period t 

IF k=1 (the crossover point is at the beginning or end of a period) 

THEN  

FOR j=1 to K 

IF Wjt=1 
      THEN  

Look at the previous period.  
IF Wj,t-1=1 
THEN  
 Check for single production in period t-1. 

IF there is no single item production in period 
t-1, 

THEN  
Set Wjt=0  

     Set Yjt=1 
ENDIF 

ENDIF 
ELSE 
Call A SETUP CARRYOVER WITHOUT A 
SETUP IN THE   PREVIOUS PERIOD 

ENDIF 
ENDIF 

 
      Figure 5.8   The pseudo-code of the crossover repair operator     
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ELSE 
 

FOR j=1 to K 

IF (j < k) 
 IF Wjt=1 

IF Wjt-1=1  
    IF there is no single item production in period t-1,  

THEN  
Set Wjt=0 
Set Yjt=1 
ENDIF 

ENDIF 
ELSE 
Call A SETUP CARRYOVER WITHOUT A SETUP 
IN THE   PREVIOUS PERIOD 

ENDIF 
ENDIF 
 
ELSE 
 IF Wjt=1 

IF Wjt+1=1  
IF there is no single item production in period t,  

                                                         THEN  
                                                         Set Wjt=0 
                                                         Set Yjt=1 

ENDIF 
ENDIF 

ENDIF 
IF ∑Wjt=0 
THEN call HIGHEST SETUP REPAIR OPERATOR 
IF ∑Wjt>=2 
THEN call MORE THAN 2 SETUP CARRYOVER IN A PERIOD REPAIR 
OPERATOR 

 

   Output: A feasible chromosome satisfying constraints (4), (5) and (6). 

 

Figure 5.8   The pseudo-code of the crossover repair operator (cont.)    

 

More than 2 setup carryover in a period repair operator: If there are two setup 

carryovers or more in a period, this operator keeps the setup carryover of the 

product with the highest setup cost (if there is a setup in the previous period for 

this product) and removes other setup carryovers.  Figure 5.9 presents the details. 
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     Input: An infeasible chromosome violating constraints (4). 

   FOR Period t 

IF  ∑ Wjt ≥ 2 

  FOR j=1 to K (start with the product with the lowest setup cost) 

    IF Wjt=1  

THEN  

 Set Wjt=0 

         IF ∑ Wjt =1  

         THEN BREAK! 

 Output: A feasible chromosome satisfying constraints (4). 

 

Figure 5.9 The pseudo-code of the “More than 2 setup carryover in a period” repair operator 

 

Highest setup repair operator: If there is no setup carryover in a period, this 

operator introduces a setup carryover for a product with the highest setup cost and 

without a setup in the previous period (Yjt-1=1) as shown in Figure 5.10.  

 

    Input: A chromosome without setup carryover in a specific period. 

   FOR Period t 

FOR j=1 to K (start with the product with the highest setup cost) 

 IF Yjt=1 

    IF Yjt-1=1  

    THEN  

     Set Wjt=1  

     Set Yjt=0  

     BREAK! 

  Output: A chromosome with setup carryover in a specific period. 

 

Figure 5.10 The pseudo-code of the “Highest setup” repair operator 

 

A setup carryover without a setup in the previous period: If there is a setup 

carryover in the current period without a setup in the previous period, this 

operator deals with this case. The details of the operator are shown in Figure 5.11. 
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   Input: An infeasible chromosome violating constraints (5). 

     FOR Period t 

       IF Wjt=1  

IF Yjt-1=0 

  THEN  

   Set Wjt=0 

  ENDIF 

ENDIF 

  Output: An infeasible chromosome satisfying constraints (5). 

 
Figure 5.11 The pseudo-code of the “A setup carryover without a setup in the previous period” 

repair operator 

 

2. The repair operators used after mutation  

Similar to the crossover operator, the mutation operator might lead to some 

infeasibility. To correct these, a repair operator is proposed. This operator is 

developed by modifying the repair operator which is used after the crossover 

operator. The only difference here is that in this operator the setup cost is not 

taken into consideration in removing the setup carryovers.  

 

Repair operator for more than 2 setup carryovers in a period (for mutation):  If 

two or more setup carryovers occur in a period (i.e. period b) after a mutation 

operator is applied this operator keeps the setup carryover of the product (i.e. 

product a) that has just been assigned after mutation and removes the other setup 

carryover in the related period (i.e. period b). The pseudo-code of the operator is 

given in Figure 5.12. 
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      Input: An infeasible chromosome violating constraints (4). 

   FOR Period b 

IF ∑ Wjb ≥ 2 

  FOR j=1 to K & j ≠ a 

    IF Wjb=1  

THEN  

 Set Wjb=0 

         IF ∑ Wjb =1  

         THEN BREAK! 

  Output: A feasible chromosome satisfying constraints (4). 

 
Figure 5.12 The pseudo-code of the “More than 2 setup carryover in a period (for mutation)” 

repair operator 

 

5.3.2.10 Survival Scheme 

 

Survival is an essential process in GAs that removes individuals with a low fitness 

and drives the population towards better solutions. Following the Fix-and-Optimize 

heuristic, a part of the existing population survives and forms a new population in the 

next generation. An elitist strategy, which ensures the best solution of the previous 

generation into the current generation, is used in this study.  

 

5.3.2.11 GA Search Termination 

 

Termination criterion is the last decision point by which the GA decides whether 

to continue searching the search space or stop evolution. In this study, the genetic 

search stops when the total number of generations exceeds a maximum number.  

 

5.3.3 Proposed Hybrid Methodologies 

 

In this section, two hybrid approaches are proposed to solve the CLSPC. The first 

hybrid approach is a kind of sequential hybrid approach where the GA is run for a 

predetermined number of generations and then Fix-and-Optimize heuristic is 
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employed to further improve the solution quality. In the second hybrid approach, the 

Fix-and-Optimize heuristic is embedded into the GA. In the framework of these 

hybrid approaches, the original algorithms of the GA and Fix-and-Optimize remain 

unchanged.  

 
5.3.3.1 Methodology of the First Hybrid Approach  

 

The first hybrid approach combines GA and Fix-and-Optimize heuristic in a 

sequential way. First, GA and then the Fix-and-Optimize heuristic are performed. 

Figure 5.13 illustrates the control logic of the first hybrid approach.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5.13 The control logic of the sequential hybrid approach 
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5.3.3.2 Methodology of the Second Hybrid Approach  

 

The second hybrid approach is an example of embedded hybridization where the 

Fix-and-Optimize heuristic is used to improve the solution quality of each generation 

in GA. Figure 5.14 shows the control logic of the the embedded hybrid approach 

with Fix-and-Optimize refinement.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.14 The control logic of the embedded hybrid approach 
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After the chromosomes are evaluated, selection, crossover and mutation take 

place (See Figure 5.14).  In order to deal with the infeasibilities, appropriate repair 

operators are called. As indicated in Figure 5.14, before determining the survival of 

the individuals into the next generation, an individual is randomly selected from the 

new population and it is used as an initial solution in the Fix-and-Optimize heuristic. 

In doing so, a Fix-and-Optimize heuristic is used to refine the solutions, which are 

generated by GAs and it acts like a diversification strategy which leads the search to 

the regions where near optimal or optimal solutions exist. Particularly, by employing 

the Fix-and-Optimize heuristic, we hope to improve the solution quality of the GA-

generated solutions in every generation.  

 

5.4 Computational Experiments 

 

Computational experiments involve three sets of experiments. First, the effects of 

the initialization scheme on the performance of the pure GAs were evaluated by 

employing three groups of problems (i.e. small, medium and large size). Next, using 

these three groups of problems, optimal parameter settings for GAs were identified. 

Finally, the performance of pure GAs and proposed hybrid approaches were 

evaluated using some benchmark problems reported in the literature. All the results 

obtained were compared to those of  Gopalakrashinan et al. (2001) and Suerie and 

Stadtler (2003), the latest results reported in the literature.  All computations were 

carried out on a PC with Dual Core, 2 GHz microprocessor and 2 GB RAM. The 

pure and hybrid GAs were coded in Visual C++ 2008 Express Edition and all 

problems were solved using Concert Technology of  Cplex 11.2. 

 

5.4.1 Benchmark Problems 

 

Trigeiro et al. (1989) proposed an algorithm (referred to as TTM, Trigeiro-

Thomas-McClain) to solve the CLSP and they generated various test instances to test 

the performance of this algorithm. These test instances were generated in three 

phases. Phase one involved 70 problem instances which were used for fine-tuning of 

the parameters of the TTM algorithm. In phase two, 141 problem instances were 
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used to analyze different problem characteristics, and in phase three, 540 problem 

instances were generated to test the algorithm. However, no results have been 

reported in the literature for problem instances in phase one. Hence, in this study, to 

evaluate the performance of the proposed hybrid approaches only the problem 

instances generated in phase two and three (i.e. total of 681 instances) were used. 

Table 5.2 gives the classification of these instances (Suerie & Stadtler, 2003).  

 

Table 5.2 Classification of TTM-test set (Suerie & Stadtler, 2003). 

Phase II 
Class # Items # Periods # Instances 

1 6 15 116 

2 6 30 5 

3 12 15 5 

4 12 30 5 

5 24 15 5 

6 24 30 5 

Phase III 
7 10 20 180 

8 20 20 180 

9 30 20 180 

 

Based on the number of binary variables (number of periods*number of products) 

which is considered as a measure of the problem complexity, these problem classes 

have been placed into three groups, small, medium and large (See Table 5.3).  

 
Table 5.3 Problem sizes 

Small Medium Large 

� Class 1 

� Class 2 

� Class 3 

� Class 7 

� Class 4 

� Class 5 

� Class 6 

� Class 8 

� Class 9  

 

5.4.2 Investigating the Proposed Initialization Scheme 

 
The effects of the proposed initialization scheme were investigated on three 

groups of problems (small, medium, large). Five problem instances randomly picked 

from each problem class (see Table 5.3) were solved using the pure GAs with the 

initial population created by the proposed initialization scheme. As stated earlier in 
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the previous section, the initial population consists of two parts: random and smart 

part. One of the design issues in these computational studies is to evaluate the effects 

of the ratio of smart part to random part on solution quality. The experimental design 

used in these computations is given in Table 5.4. The other design parameter is the 

threshold value ( β ) used in creating the random part of the initial population. Based 

on some pilot experiments, we set the threshold value ( β ) to 0.5 in creating the 

random part. Throughout all experiments the same parameters were used (i.e., 

combination of population size and number of generations, the crossover rate and the 

mutation rate were set to 20/500, 0.9 and 0.011, respectively) and the results of 10 

runs using different random seeds were reported. Therefore, 20 instances for small 

size problems (200 runs in total), 10 instances for medium size problems (100 runs in 

total) and 15 instances for large size problems (150 runs in total) were solved.  

 
Table 5.4 Experimental design for the portion of random and smart part in the initial population 

 Random 
Part % 

Smart 
Part % 

Abbreviated 

Pure Random initial population  100 0 R 

Random initial population+ Smart initial population : 90 10 RS10 

Random initial population+ Smart initial population: 80 20 RS20 

Random initial population+ Smart initial population  : 70 30 RS30 

Random initial population+ Smart initial population  : 60 40 RS40 

Random initial population+ Smart initial population  : 50 50 RS 

Random initial population+ Smart initial population  : 40 60 RS04 

Random initial population+ Smart initial population : 30 70 RS03 

Random initial population+ Smart initial population:  20 80 RS02 

Random initial population+ Smart initial population: 10 90 RS01 

Pure Smart initial population: 0 100 S 

 

The results of computational experiments are summarized in Table 5.5. It should 

be noted that the computational time is not taken into consideration in comparisons 

since it is observed to be similar across all problem sizes (i.e. small, medium, large).  

 
In Table 5.5, the results given in parenthesis show the number of infeasible 

solutions obtained throughout the runs. It should be noted that while calculating the 

average gap only feasible solutions are taken into consideration. The gap is 
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calculated based on the formula given in the following where the lower bounds are 

taken from the study of Suerie and Stadtler (2003).  

 

( )
100*

heuristic solution lower bound
Gap

lower bound

−
=      (16) 

 

As seen from the table, using pure random initial population results in large 

number of infeasible solutions, i.e., 150 infeasible solutions out of 200 runs for small 

size problems and for large problems, it is not even possible to find a feasible 

solution. It can be seen from Table 5.5 that as the problem size increases, the number 

of feasible solutions found during 10 runs of the pure GAs with a random initial 

population decreases.  

 
Table 5.5 Results of Comparative Experiments  

SMALL MEDIUM LARGE 

Avg. gap  Avg. gap Avg. gap Avg. gap Avg. gap Avg. gap  

  

(average of 
10 runs) 

(best of  
10 runs) 

(average of 
 10 runs) 

(best of  
10 runs) 

(average of  
10 runs) 

(best of  
10 runs) 

R 10.11 % 
(150) 

 8.64 % 
(150)  

13.65 %  
(95)  

 12.92 %  
(95)  

*  
(150) 

* 
(150) 

RS10  6.36 %  5.48 % 6.56 % (2) 5.71 % 3.04 % 2.87 % 

RS20  6.31 %  5.30 %  5.56 %  4.97 % 3.01 % 2.80 % 

RS30  6.34 %  5.24 %  5.51 %  5.04 % 3.03 % 2.89 % 

RS40  6.38 %  5.36 %  5.49 %  4.98 % 2.97 % 2.83 % 

RS 6.29 % 5.45 % 5.25 % 4.80 % 2.99 % 2.81 % 
RS04 6.33 % 5.34 % 5.36 % 4.90 % 2.93 % 2.81 % 
RS03 6.26 % 5.14 % 5.43 % 4.84 % 2.97 % 2.84 % 
RS02 6.17 % 5.28 % 5.30 % 4.89 % 2.97 % 2.82 % 
RS01 6.30 % 5.30 % 5.30 % 4.95 % 2.97 % 2.83 % 
S 6.20 % 5.34 % 5.26 % 4.88 % 2.97 % 2.83 % 

* indicates that no feasible solution is obtained under this initialization scheme 
 

As stated in Section 5.3.2.5, the proposed initialization scheme suggests creating a 

smart part in the initial population by utilizing the information obtained from the LP 

relaxation of the CLSP which is the basis of the CLSPC. It is hoped that this 

information will help to generate problem specific chromosomes so that the search 

will be directed towards the search spaces where feasible and good quality solutions 

exist. As seen from Table 5.5, the results of experimental studies support our 
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expectation and when some problem specific information is added into the initial 

population generation scheme, GA finds feasible solutions in nearly all runs for all 

problem sizes. For all problem sizes, while the worst performance is obtained with 

pure random initial population (R), the second best performance is obtained with 

pure smart initial population (S). It is also quite clear from Table 5.5 that for all 

problem sizes, generating some portion of the initial population randomly creates 

diversity in the initial population and this further improves the performance of GAs 

in solving the CLSPC. However, when both randomness and problem specific 

information are included in the initial population, the ratio of random and smart part 

giving minimum average gap changes for each problem size i.e. RS02 for small size 

problems, RS for medium size problems and RS04 for large size problems. Hence, 

based on the experimental results given in Table 5.5, it is not possible to draw a 

general conclusion regarding the ideal ratio of random and smart part in the initial 

population. However, in overall, we could state that keeping the portion of the smart 

part bigger than the portion of the random part might improve the performance of the 

proposed initialization scheme.  

 

Based on these results, it can be stated that the proposed initial population 

generation method using problem specific information scheme has high potential to 

reduce the number of infeasible solutions in each generation and hence it can ensure 

a feasible solution at each run of the GAs. Another insight gained as a result of these 

experimental studies is that generating some part of the initial population randomly 

further improves the performance of the proposed initialization scheme. However, 

how to set the ratio of random part to smart part in the initial population seems to be 

a problem dependent parameter, hence, it is suggested to determine this parameter 

experimentally. Based on the computational experiments carried out in this study, 

this parameter is set to RS02, RS and RS04 (see Table 5.4) for small, medium and 

large size problems, respectively.  
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5.4.3 Identifying Efficient GAs Parameters 

 

It should be noted that identifying best search parameters which are used 

throughout the search process is an important step of any meta-heuristic application. 

So this section focuses on a critical dilemma faced in many GA applications; the 

selection of the efficient GA parameters to ensure high performance. The parameters 

of a GA namely the population size (P), number of generations (G), crossover rate 

(%C) and mutation rate (%M) significantly affect the convergence speed of the GAs. 

In order to determine the most efficient parameters, in this section a set of 

experiments was performed for three different problem sizes. All these experiments 

were carried out using the pure GAs with the proposed initial population generation 

scheme.  

 

It is known that large populations and many generations which imply large 

number of chromosomes can result in high quality solutions if computational time is 

unlimited. However, it is not practical to assume unlimited computational time. In 

this study, like in Pongcharoen et al. (2002) the computational time is limited by 

fixing the total number of chromosomes at 10000. As seen in Table 5.6, all 

parameters have been varied in three levels. It should be noted that for all problem 

sizes, the mutation rate is set to the inverse of the chromosome length (Khouja et al., 

1998). Since chromosomes’ lengths change according to the number of products and 

periods in the problem, different mutation rates are used for each problem size. The 

overall objective is to use the most efficient GA parameters that achieve the 

minimum total cost and minimum spread (Pongcharoen et al., 2002). Experiments 

involved five problem instances from each problem size and a full factorial design 

with 10 runs were carried out at each design point leading to 270 runs in total. 
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Table 5.6 Experimental factors and levels for each problem size 

Problem size Factors Levels 

Small Medium Large 

1 20/500  20/500  40/250  

2 50/200 50/200 100/100 P/G 

3 100/100 100/100 200/50 

1 0.5 0.5 0.5 

2 0.7 0.7 0.7 %C 

3 0.9 0.9 0.9 

1 0.005 0.0006 0.001 

2 0.011 0.003 0.0025 %M 

3 0.05 0.015 0.005 

 

In order to determine which control parameter effects are significant, a statistical 

analysis of variance (ANOVA) is conducted for each problem size and the results are 

presented in Tables 5.7, 5.8 and 5.9.  

 

Table 5.7 ANOVA results for small size problems 

 
Source of variation DF Fcalc Prob[F>Fcalc] 

Within + residual 26   

P/G 2 7.259 0.001* 

%C 2 0.398 0.672 

%M 2 1437.659 0.000* 

P/G & %C 4 0.345 0.848 

P/G & %M 4 7.436 0.000* 

%C & % M 4 1.982 0.098 

P/G & % C & % M 8 0.843 0.565 
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Table 5.8 ANOVA results for medium size problems 

 
Source of variation DF Fcalc Prob[F>Fcalc] 

Within+residual 26 184.980 0.000 

P/G 2 113.975 0.000* 

%C 2 0.858 0.425 

%M 2 2093.087 0.000* 

P/G*%C 4 1.070 0.372 

P/G*%M 4 89.555 0.000* 

%C*%M 4 2.418 0.049* 

P/G*%C*%M 8 2.683 0.008* 

 

Table 5.9 ANOVA results for large size problems 

 
Source of variation DF Fcalc Prob[F>Fcalc] 

Within+residual 26 105.694 0.000 

P/G 2 503.799 0.000* 

%C 2 0.753 0.472 

%M 2 569,016 0.000* 

P/G*%C 4 2.828 0.025* 

P/G*%M 4 144.286 0.000* 

%C*%M 4 1.760 0.138 

P/G*%C*%M 8 0.677 0.712 

 

As stated in Table 5.7, the combination of population size and number of 

generations (P/G), the mutation rate (%M) and the interaction between the mutation 

rate and the combination of population size and number of generations (P/G*%M) 

are statistically significant factors for small size problems. For medium size 

problems, the combination of population size and number of generations (P/G), the 

mutation rate (%M), the interaction between the mutation rate and the combination of 

population size and number of generations (P/G*%M), the interaction between the 

crossover rate and mutation rate and the three way interaction (P/G*%C*%M) are all 

statistically significant factors (see Table 5.8). Finally, the results in Table 5.9 show 

that the combination of population size and number of generations (P/G), the 

mutation rate (%M), the interaction between the mutation rate and the combination of 

population size and number of generations (P/G*%M) and the interaction between 
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the combination of population size and number of generations and crossover rate 

(P/G*%C) are statistically significant factors for large size problems.  

 

Having identified the mutation rate as a statistically significant factor for all 

problem sizes, in scatter plots below (Figures 5.15, 5.16, and 5.17) we summarized 

the results of experiments based on different values of mutation rate.    

 

 

  Figure 5.15 Scatter plot of total cost from ten runs for small size problems 

 

While observing the scatter plots, the parameters which yielded the lowest total 

cost and smallest spread between the results were chosen and these parameter values 

were defined as the efficient GA parameters. Based on the observations, it is possible 

to recommend the values of P/G=50/200, %C=0.9 and %M=0.005 (see Figure 5.15); 

the values of P/G=20/500, %C=0.5 and %M=0.003 (see Figure 5.16); the values of 

P/G=100/100, %C=0.9 and %M=0.001 (see Figure 5.17) as efficient control 

parameters for small, medium and large size problems, respectively.  
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  Figure 5.16 Scatter plot of total cost from ten runs for medium size problems 

 

 
 

  Figure 5.17 Scatter plot of total cost from ten runs for large size problems 

 

The efficient parameter settings for each problem size can be summarized in 

Table 5.10.  

 

Table 5.10 Parameter settings for each problem size 

 Small Medium Large 

P/G 50/200 20/500 100/100 

%C 0.9 0.5 0.9 

%M 0.005 0.003 0.001 
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5.4.4 Analysis and Discussion of the Results 

 
This section presents the results of the computational studies comparing the 

performance of the pure GAs and proposed hybrid approaches to the recent results 

reported in the literature. It should be noted that the problem instances generated in 

phase two and three (i.e. total of 681 instances) were used to evaluate the 

performance of the proposed approaches and pure GAs which are named as H1, H2 

and PGA, respectively. The experiments were repeated 10 times for every instance, 

the best and average performance for the solutions were recorded. All the results 

obtained were compared to those of Gopalakrashinan et al. (2001) and Suerie and 

Stadtler (2003), the most recent ones for the problem considered in this study.  

 

The results of comparing the pure GAs and the proposed hybrid approaches to the 

time decomposition heuristic of Suerie and Stadtler (2003) were given in Table 5.11. 

To obtain compatible test results for each problem class, the computational times for 

the proposed hybrid approaches were set to the average computational time (i.e. the 

time calculated based on the computational times of 10 runs) of the pure GAs. For 

instance, the proposed hybrid approaches were run for 58.75 seconds for each run to 

solve the problem instances in Class 1 (see Table 5.11). Moreover, as a result of 

some preliminary tests the computational time to solve each problem using the Fix-

and-Optimize heuristic was limited to 2 seconds. In order to improve the 

computational efficiency of the second proposed hybrid approach, while 

implementing the second proposed hybrid approach the Fix-and-Optimize heuristic 

was run only once in each generation of GAs.   



 

 

 Table 5.11 Experimental results for the pure GAs and proposed hybrid approaches using TTM test sets 

PGA H1 H2 Suerie and 
Stadtler (2003) 

Average of  10 runs Best of 
10 runs Average of  10 runs Best of 10 

runs Average of  10 runs Best of 10 
runs 

Class 

Avg  
Gap 

Avg. 
Comp. 
Time 

Avg. 
Gap 

Avg. 
Comp. 
Time 

Avg. 
Gap 

Avg. 
Gap 

Avg. 
Number of 

Generations 

Avg. 
Gap 

Avg. 
Gap 

Avg. 
Number of 

Generations 

Avg. 
Gap 

1 2.53% 5.2 s 8.39 % 58.75 s 7.19 % 3.02 % 26.16 2.68 % 3.19 % 14.61 2.54 % 
2 2.32% 8.8 s 8.20 % 72.88 s 7.24 % 2.78 % 32.22 2.64 % 2.62 % 12.4 2.17 % 
3 0.95% 6.2 s 5.31 % 72.65 s 4.71 % 1.87 % 29.1 0.96 % 1.53 % 10.86 1.10 % 
4 0.72% 11.8 s 5.13 % 77.13 s 4.66 % 1.56 % 60.78 1.15 % 1.67% 6.08 1.19% 
5 0.54% 9.2 s 3.05 % 98.70 s 2.6 % 1.65 % 75.68 1.07 % 1.22% 14.18 0.80% 
6 0.30% 13.2 s 2.95 % 144.21 s 2.79 % 2.10 % 16.82 1.50 % 1.65 % 8.1 1.25 % 
7 3.14% 9.2 s 4.87 % 48.91 s 4.12 % 2.10 %  23.38 1.71 %  2.31 % 10.46 1.80 % 
8 2.73% 12.7 s 2.81 % 99.94 s 2.53 % 1.58 %  18.84 1.25 %  1.81 % 12.1 1.44 % 

9 2.21% 18.0 s 1.95 % 127.74 s 1.75 % 1.54 %  15.79 1.29 %  1.48 % 14.13 1.25 % 

 
  Table 5.12 Experimental results for the pure GAs and proposed hybrid approaches using TTM test sets (Aggregation of Classes) 

Pure GAs 
[Dual Core, 2 GHz] 

 

H1 
[Dual Core, 2 GHz] 

 

H2 
[Dual Core, 2 GHz] 

 

Gopalakrashinan 
et al. (2001) 

 [Pentium III, 
550 MHz] Average of  

 10 runs 
Best of 10 

runs 
Average of   

10 runs 
Best of 
10 runs 

Average of  
 10 runs 

Best of 10 
runs 

Classes 

Avg. 
Gap 

Avg. 
Comp. 
Time 

Avg.  
Gap 

Avg.  
Comp.  
Time 

Avg.  
Gap 

Avg.  
Gap 

Avg.  
Comp.  
Time 

Avg.  
Gap 

Avg.  
Gap 

Avg. 
Comp.  
Time 

Avg.  
Gap 

1,2 27.8% 8.38  % 65.82 s 7.19 % 3.01 %  59.33 s 2.68 %  3.17 % 59.33 s 2.53 % 
3,4 13.9% 5.22 % 74.89 s 4.69 % 1.71 %  74.89 s 1.06 % 1.36 % 74.89 s 1.15 % 
5,6 6.0% 

20.8 
3.00 % 121.46 s 2.70 % 1.88 %  121.46 s 1.29 % 1.23 % 121.46 s 1.03 % 

7-9 12.4% 81.7 3.21 % 92.20 s 2.80 % 1.74 % 92.20 s 1.42 % 1.86 % 92.20 s 1.50 % 
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When compared to the pure GAs, the solution quality of the proposed hybrid 

approaches is quite remarkable in every problem class. As seen in Table 5.11, the 

average gaps obtained by hybrid approaches are smaller than those of the pure GAs. 

Furthermore, as expected, the Fix-and-Optimize heuristic used after GAs in the first 

hybrid approach improves the solution quality throughout the iterations. Likewise, in 

the second hybrid approach, the Fix-and-Optimize heuristic which is used in each 

generation of the GAs acts like a diversification tool in the search of GAs by leading 

the search to the regions where good quality solutions exist and as a result finds good 

quality solutions in less number of generations. Hence, we might state that when 

hybridised with a MIP-based heuristic in both ways (i.e. sequential and embedded) 

the solution quality of the pure GAs improves significantly. 

 

Considering the average of ten runs for the problem instances in Classes 7, 8, and 

9, the solution qualities of both of the proposed hybrid approaches are better than the 

time decomposition heuristic of Suerie and Stadtler (2003). Another conclusion 

which can be drawn from these experimental results is that the performances of the 

hybrid approaches improve as the problem complexity increases. In other words, the 

average gap for the proposed hybrid approaches tends to decrease as the number of 

products increases. For instance, the average gap observed for the proposed 

approaches in classes 3 and 4 is less than the one observed in classes 1 and 2. 

Likewise, in classes 7, 8 and 9 a decreasing tendency in average gap is observed. 

However, regarding the computational time, the proposed hybrid approaches require 

much more computational effort than the time decomposition heuristic.  

 

Comparing two proposed hybrid approaches with respect to the average and best 

results of ten runs, it is observed that for five problem classes (i.e. Classes 2, 3, 5, 6, 

9) the solution quality of the second hybrid approach is better than that of the first 

hybrid approach. Thus, we could state that using the Fix-and-Optimize heuristic in 

each generation of GAs, i.e., embedded hybrid approach, improves the solution 

quality much more than using it after a predetermined number of generations, i.e., 

sequential hybrid approach.   

 



 

 

125 

A comparison of the performance of the pure GAs and proposed hybrid 

approaches with the performance of the TS heuristic of Gopalakrishnan et al. (2001) 

is given in Table 5.12. The gaps in Table 5.12 are taken from Gopalakrishnan et al. 

(2001). As seen in the table, for all problem classes, the solution quality of both the 

pure GAs and proposed hybrid approaches is better than that of the TS heuristic. 

However, since TS deals with one solution throughout the search in contrast to the 

multiple solutions of the GAs it is computationally more efficient. 

 

The general conclusion which can be drawn from this comparative experimental 

study is that apart from requiring a long computational time to find good quality 

solutions, hybridising the pure GAs with the MIP-based heuristic significantly 

improves its performance. 

 

5.5 Chapter Summary 

 

In this chapter, we proposed two novel hybrid approaches for solving the CLSPC. 

These proposed hybrid approaches combine a meta-heuristic and a MIP based 

heuristic. In the first hybrid approach, the hybridization scheme is a sequential 

scheme where Fix-and-Optimize heuristic approach is executed after GAs. In the 

second hybrid approach, the Fix-and-Optimize heuristic is embedded into the loop of 

GAs and it is used in every generation to improve the solution quality of the GAs.  

 

To evaluate the performances of pure GAs and proposed hybrid approaches, we 

carried out comparative experiments using benchmark problems reported in the 

literature. The results show that the performance of pure GAs improves notably when 

hybridized with the Fix-and-Optimize heuristic.  

 

In this chapter, the capacitated lot sizing problem with setup carryover is 

considered. Since our ultimate goal is to propose a solution approach for the 

capacitated lot sizing problem with setup carryover and backordering, in the next 

chapter, the problem is extended to include the backorder issue and the proposed 

hybrid approaches are modified to deal with this extended problem. 



 

 126 

CHAPTER SIX 

GENETIC ALGORITHM BASED APPROACHES FOR SOLVING THE 

CAPACITATED LOT SIZING PROBLEM WITH SETUP CARRYOVER 

AND BACKORDERING 

 
 
6.1 Introduction 

 

As mentioned in chapter five, the capacitated lot sizing problem with setup 

carryover and backordering is solved in two stages. The hybrid approaches proposed 

to solve the capacitated lot sizing problem with setup carryover (CLSPC) are 

presented in chapter five. In this chapter, the model presented in previous chapter is 

extended both to meet unsatisfied demand in future periods by backordering and also 

to include backorder costs which are incurred for every unit and period of the delay. 

Throughout this chapter, the CLSP with setup carryover and backordering is 

abbreviated to CLSP+.      

 

This chapter presents how the hybrid approaches proposed in chapter five are 

adapted to solve the CLSP+. Besides adapting these hybrid approaches to the intrinsic 

features of the CLSP+, different decomposition schemes are suggested in 

implementation of Fix-and-Optimize heuristic. The performance of Fix-and-

Optimize heuristic is evaluated experimentally on a number of problem instances to 

gain insight into the effects of these decomposition schemes. To further improve the 

performance of the proposed hybrid approaches, efficient GA parameters are 

determined through some pilot experiments. Lastly, the performance of the proposed 

hybrid approaches under different values of backorder costs is investigated.  

 

The rest of this chapter is organized as follows. In section 6.2, the capacitated lot 

sizing problem with setup carryover and backordering is defined with the necessary 

notations. In section 6.3, the proposed GA-based approaches are discussed in detail.  
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The results of comparative experiments are presented in section 6.4. In Section 6.5, 

the robustness of the proposed hybrid approaches with respect to backorder costs is 

examined. Finally, in section 6.6 the context of this chapter is summarized.  

 

6.2 Problem Statement: The Capacitated Lot Sizing Problem with Setup 

Carryover and Backordering 

 

The model to solve CLSP+ determines the level and timing of production along 

with the semi-sequencing of the products in a period. If the demand can not be 

satisfied in a period, it is backordered meaning that it is satisfied in the following 

periods. Hence, the main difference between the problem in this chapter and the 

problem in the previous chapter is the consideration of the backordering issue. In 

solving the CLSP+, the model proposed by Suerie and Stadtler (2003) is modified to 

include backordering costs and constraints.  

 

Sets and Indices: 
j: items {1,2,3,..., }j K K∈ =  

t: periods {1, 2,3,... }t P P∈ =  

 

Parameters: 

scj setup cost for item j  
hjt unit holding cost for item j in period t 
Ct amount of resource available in period t 
aj time to process one unit of item j  
stj setup time of item j  
M a large number 
djt independent demand for end item j in period t 
bj  backordering cost of item j 
 

Decision Variables:  

jtI
+

   Inventory level for item j at the end of period t 

jtI
−  Backorder level for item j at the end of period t 

Xjt Production amount of item j in period t 

jt
Y  Binary setup variable for item j in period t (=1, if a setup for item j is performed 

in period t, =0, otherwise), 
Wjt Binary linkage variable which indicates whether a setup state for item j is carried 
from period (t-1) to (t) (=1) or not (=0). 
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t
Q Single item variable which indicates that resource is occupied solely by item i on 

period t (=1) or not (=0).  
 

The MIP Model (I&L representation) 

1 1

( )
K P

j jt jt jt j jt

j t

Min sc Y h I b I
+ −

= =

+ +∑∑        (1)

  
s.t.    

, 1 , 1 ;j t jt jt j t jt jtI X I I I d j K t P
+ + − −

− −+ − − + = ∀ ∈ ∀ ∈      (2) 

 

( )
j jt j jt t

j K

a X s Y C t P
∈

+ ≤ ∀ ∈∑        (3) 

 

1 {2,...., }
jt

j K

W t P
∈

≤ ∀ ∈∑          (4) 

 

1 1 , {2,...., }
jt jt jt

W Y W j K t P− −≤ + ∀ ∈ ∀ ∈       (5) 

 

1 1 {1,...., 1}
jt jt t

W W Q t P+ + ≤ + ∀ ∈ −       (6) 

 
1 {1,...., 1}

jt t
Y Q t P+ ≤ ∀ ∈ −        (7) 

 
( ) , {1,...., }

jt jt jt
X M Y W j K t P≤ + ∀ ∈ ∀ ∈       (8) 

 
0 {1,...., 1}

t
Q t P≥ ∀ ∈ −         (9) 

 

{ } 10,1 ( 0) , {0,1} ,jt j jtW W Y j K t P∈ = ∈ ∀ ∈ ∀ ∈              (10) 

 

, 0, 0 0 ;jt jt jtX I I j K t P
+ −≥ ≥ ≥ ∀ ∈ ∀ ∈                   (11)

                   

0, ;jtI j K t P
− = ∀ ∈ =                  (12)    

The objective function (1) aims at minimizing inventory holding and setup costs. 

Constraints (2) are the inventory balance equations. The capacity constraints are 

placed in Constraints (3). Constraints (4) ensure that at most one setup state can be 

preserved from one period to the next on each resource. Constraints (5) guarantee 

that a setup can be carried over to period t only if either item j is setup in period t-1 

or the setup state is already carried over from period t-2 to t-1. A setup state can only 

be preserved over two bucket boundaries, if  1
t

Q =  in constraints (6), which is only 

possible if there is no setup in this period (7).  Constraints (8) are the upper bounds 
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on the production quantities. Finally, variables are restricted to be nonnegative or 

binary, respectively, (9) to (11). It is assumed that there are no setup carryovers in 

the first period as stated in constraints (10). All the demand should be satisfied 

during the planning horizon as stated in constraints (12). 

 

6.3 Proposed GA Based Approaches 

 

In this chapter, different GA based hybrid methodologies are proposed to solve 

the CLSP+. The search in GA follows almost the same logic explained in the 

previous chapter. The only difference is that the LP model to solve CLSP+ includes 

backordering constraints. Besides the time decomposition scheme, in this chapter the 

product decomposition scheme is integrated into the Fix-and-Optimize heuristic, and 

its performance is evaluated experimentally to gain an insight. 

 

6.3.1 Elements of the Proposed GA Based Hybrid Approaches 

 

The elements of the proposed GA based hybrid approaches are explained in the 

following.  

 

6.3.1.1 Chromosome Representation 

 

To represent the chromosomes, the matrix representation given in chapter five is 

used. While the first row of this matrix shows the setup variables (Yjt), the second 

row shows the setup carryover variables (Wjt). The values of these binary variables 

for each product in each period are stated in the columns of the matrix. Thus, the 

length of the chromosome is the number of periods (P) multiplied by the number of 

products (K). 

 

6.3.1.2 Initial Population 

 

It was observed in chapter five that generating some portion of the initial 

population randomly and the remaining part in a smart way definitely improved the 
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performance of GAs. Hence, we used this new initialization scheme for creating the 

initial population in solving the CLSP+ and set the ratio of random part to small part 

to 0.5 throughout the computational experiments of this chapter. The procedure to 

generate the initial population is presented in Figure 6.1.  

 

1. Creating the setup variables (Yjt) 2. Creating the setup carryover variables (Wjt) 

POP: The population size 

Solve the LP relaxation of the problem using the Simple 

Plant Location formulation to get a good lower bound.  

FOR i=1 to POP/2 (SMART PART) 

FOR g=0 to (K*P) 

Step 1. Set the cut off point to (1/ (POP/2)). If the 

value of the setup variable in the LP relaxation is 

under this cut off point, set Y  (the value of the gene g) 

in chromosome i to 0 otherwise set it to 1.  

Step 2. Increase the cut off point by (1/ (POP/2)) and go 

to Step 1.  

FOR i=POP/2 to POP (RANDOM PART) 

FOR g=0 to (K*P) 

Step 1. Pick a random number between 0 and 1.  

Step 2. If the random number is less than or equal to 

0.5, set Y (the value of the gene g) in chromosome i to 

0, otherwise set it to the value of 1.  

FOR i=1 to POP 

FOR t=2 to P 

 FOR j=1 to K (Start with the product that has the 

highest setup cost)  

IF Yjt-1=1 and Wjt-1=0 (there is a setup and no 

setup carryover for this product in the previous 

period),  

THEN  

Set Wjt=1 (assign a setup carryover for that   

product in the current period) 

  IF Yjt=1 

  THEN  

Set Yjt=0 

ENDIF 

ENDIF 

BREAK (go to the next period) 

 

 

Figure 6.1 Initial population generation 

 

6.3.1.3 Genetic and Repair Operators 

 

The modified roulette wheel selection operator that was explained in the previous 

chapter is used to select the chromosomes for recombination. The offsprings are 

created using one point crossover. Single bit flip mutation operator is used as the 

mutation operator. To repair the infeasibilities that occur after crossover and 

mutation operators, the same repair operators presented in chapter five are used. 

Elitism is used as a survival scheme. The genetic search is terminated when the total 

number of generations exceeds a maximum number.  
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6.3.2 The Fix-and-Optimize Heuristic with Product Decomposition 

 

As given in earlier chapter, the hybrid approaches proposed to solve the CLSPC 

combine the GA and the Fix-and-Optimize heuristic. The Fix-and-Optimize heuristic 

decomposes the problem into smaller problems by considering the periods in the 

planning horizon. In each iteration of the algorithm, one problem is optimized while 

the others are fixed to the best values obtained so far. Starting from the first period, 

the proposed time decomposition algorithm optimizes the binary setup and setup 

carryover variables in each time window (see Figure 5.1).  

 

In this chapter, besides the time decomposition scheme, we propose to decompose 

the whole problem into manageable problems by considering some product specific 

information. Particularly, based on some product specific information such as setup 

costs and holding costs, first a priority is assigned to each product, and problems are 

ordered according to these priorities (i.e., the higher the cost the higher the priority). 

Starting with high priority product the relevant binary setup and setup carryover 

variables are optimized while the rest is set to the fixed values based on the best 

solution obtained so far. Figure 6.2 illustrates the implementation of the product 

decomposition scheme for a three product problem with five periods.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

132 

1=�  
Zold=Z 

 
 
 
 

 
 
 

 
 
 

 
 

 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 Y15 Y25 Y35 
W11 W21 W31 W12 W22 W32 W13 W23 W33 W14 W24 W34 W15 W25 W35 

 
 

 
 

 
 
 
 
 
 
 
 

 

  Figure 6.2 The outline of the Fix-and-Optimize heuristic with product decomposition 
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 The binary variables that are fixed according to the best solution in the current problem 

 The binary variables that will be optimized in the current problem 

 

 Figure 6.2 The outline of the Fix-and-Optimize heuristic with product decomposition (cont.) 

 

     In this study, five different criteria are used to give a priority to the products: the 

setup cost, the holding cost, the ratio of setup cost to holding cost, the total demand 

of a product and the total cost of a product obtained from the Economic Order 

Quantity (EOQ). The results of a computational study investigating the effects of 
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these five criteria on performance of the proposed product decomposition scheme are 

given in section 6.4. 

 

6.3.3. Modified Hybrid Approaches  

 

This chapter presents how the two hybrid approaches presented in chapter five are 

modified to solve the CLSP+. As before, these hybrid approaches include two 

different hybridization schemes namely, sequential and embedded. While in the 

sequential hybridization scheme the Fix-and-Optimize heuristic is performed after 

GA, in the second one, the Fix-and-Optimize heuristic is embedded into the loop of 

GAs to refine the solutions obtained by GAs.  Unlike the two hybridization schemes 

presented in chapter five where the Fix-and-Optimize heuristic is applied with only 

time decomposition scheme, the Fix-and-Optimize heuristic in all of the 

hybridization schemes presented in this chapter is applied with both the time 

decomposition, and also product decomposition. 

 

6.3.3.1. Sequential Hybrid Approaches 

 

Sequential hybrid approaches are based on modification of the first hybrid 

approach proposed for solving the CLSPC. They are called “sequential” because first 

the GA is run for a predetermined number of generations and then the Fix-and-

Optimize heuristic is applied with both time and also product decomposition 

schemes.  

 

The main idea of the sequential hybrid approaches is presented in Figure 6.3. As 

seen in Figure 6.3, first a GA is run until a termination criterion is met (Step 2) and 

the best solution (Step 1) of these generations is identified as the initial solution for 

the Fix-and-Optimize heuristic (Step 3). Then a Fix-and-Optimize heuristic is 

employed to further improve the solution quality (Step 4). This approach can be 

classified as a kind of a sequential hybridization scheme in which the Fix-and-

Optimize heuristic is executed after GAs.  
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Figure 6.3 The control logic of the sequential hybrid approaches 

 

Applying the decomposition schemes in Fix-and-Optimize heuristic in different 

ways, we developed the following sequential GA based hybrid approaches:  

Hybrid Approach 1 (H1): 
GAs first and then the Fix-and-Optimize heuristic 
with time decomposition only. 

Hybrid Approach 2 (H2): 
GAs first and then the Fix-and-Optimize heuristic 
with product decomposition only. 

Hybrid Approach 3 (H3): 
GAs first and then the Fix-and-Optimize heuristic 
with time decomposition first, then product 

decomposition. 

Hybrid Approach 4 (H4): 
GAs first and then the Fix-and-Optimize heuristic 
with product decomposition first, then time 

decomposition. 

 

It should also be noted that the procedure to implement H3 and H4 is different 

from that of H1 and H2 (see Figure 6.4). Unlike H1 and H2 in which one 

GA  
(Step 1) 
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decomposition scheme is used at each iteration to improve the best solution 

generated so far, while implementing H3 and H4 the two decomposition schemes 

are used sequentially at each iteration (i.e. either in the sequence of time and 

product decomposition or product and time decomposition).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 The control logic for H3 and H4. 

 

6.3.3.2. Embedded Hybrid Approaches 

 

Embedded hybrid approaches are based on modification of the second hybrid 

approach proposed for solving the CLSPC in chapter five. They are called 

“embedded” because the Fix-and-Optimize heuristic is embedded into the loop of 

GAs in these approaches. During the search of GAs, after a new population is 

formed, a random solution is chosen from the new population and it is set as the 

initial solution in the Fix-and-Optimize heuristic. Then, the Fix-and-Optimize 

heuristic improves this solution until a termination criterion is met. The improved 

solution is then placed back into the new population and the genetic search continues 

(see Figure 6.5). Thus, in these approaches the Fix-and-Optimize heuristic is called 

in every generation which is quiet different from the sequential hybrid approaches. 
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Like sequential hybrid approaches, two decomposition schemes are employed in four 

different ways to form the following embedded hybrid approaches:  

Hybrid Approach 5 (H5): 
The Fix-and-Optimize heuristic with time 
decomposition in the loop of GAs. 

Hybrid Approach 6 (H6): 
The Fix-and-Optimize heuristic with product 
decomposition in the loop of GAs. 

Hybrid Approach 7 (H7): 

The Fix-and-Optimize heuristic with time 
decomposition in one generation and product 

decomposition in another generation in the loop of 
GAs. 

Hybrid Approach 8 (H8): 
The Fix-and-Optimize heuristic with two 
decomposition schemes in the sequence of product 
and time decomposition in the loop of GAs.  
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Figure 6.5 The control logic of embedded hybrid approaches 

 

6.4 Computational Results 

 

To evaluate the performance of the proposed hybrid approaches for solving the 

CLSP+, we carried out experiments on a number of problem instances.  
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As a result of some preliminary tests the computational time to solve each 

problem using Fix-and-Optimize heuristic was limited to 2 seconds. All 

computations were carried out on a PC with Dual Core, 2 GHz microprocessor and 2 

GB RAM. The pure and hybrid GAs were coded in Visual C++ 2008 Express 

Edition and all problems were solved using Concert Technology of Cplex 11.2.   

 

6.4.1 Benchmark Problems 

 

We found no published test problems with backorder costs to evaluate the 

performance of the proposed hybrid approaches. So to form the test problems, we 

modified the problem instances given in Trigeiro et al. (1989) by adding the 

backorder costs.  Specifically, to introduce backordering, the demands were modified 

and multiplied by 1.1 and backorder cost was defined as a linear function of the 

holding cost (b=fh), where f=2 as in Millar and Yang (1994). Table 6.1 presents the 

features of the data instances studied.  

 

Table 6.1 Classification of data instances 

Problem Class  

1 2 3 4 5 6 

Number of products 6 12 24 6 12 24 

Number of periods 15 15 15 30 30 30 

Number of instances 5 5 5 5 5 5 

 

The results were compared to the lower bounds obtained from the Simple Plant 

Location (SPL) formulation of the MIP model since there was no study in the 

literature to which the results could be compared. The solution quality of the 

proposed approaches was measured by computing the gap as follows.  

( )
100*

heuristic solution lower bound
Gap

lower bound

−
=       (13) 
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6.4.2 Identifying Efficient GA Parameters 

 

Similar to the sub-section 5.4.3 in the previous chapter, this sub-section also 

focuses on a critical dilemma faced in many GA applications; determination of 

efficient GA parameters to ensure high performance. Prior to evaluating the 

performance of proposed hybrid approaches, a preliminary analysis was performed to 

identify optimal GA control parameters. The aim is to further improve the 

performance of proposed hybrid approaches in solving CLSP+. 

  

The parameters of a GA namely the population size (P), number of generations 

(G), crossover rate (%C) and mutation rate (%M) significantly affect the 

convergence speed of the GAs.  To identify efficient GA parameters, the experiments 

were conducted on a medium complexity CLSP+ (i.e. 10 products and 20 periods).   

To carry out the experiments a full factorial design given in Table 6.2 has been 

employed and 10 runs were carried out at each design point leading to 270 runs in 

total. 

 

As shown in Table 6.2, three different combinations of population size and the 

number of generations (P/G), 20/500, 40/ 250 and 100/100 were used by fixing the 

total number of chromosomes at 10000.  

 

In order to determine statistically significant control parameters, a statistical 

analysis of variance (ANOVA) was conducted and the results are presented in Table 

6.3. 
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Table 6.2 Experimental factors and levels  

Factors Levels  

1 20/500  

2 50/200 P/G 

3 100/100 

1 0.5 

2 0.75 %C 

3 0.95 

1 0.001 

2 0.005 %M 

3 0.025 

 

Table 6.3 ANOVA results  

Source of variation DF Fcalc Prob[F>Fcalc] 

Within + residual 26 39.276 0.000 

P/G 2 5.633 0.004* 

%C 2 0.454 0.636 

%M 2 489.442 0.000* 

P/G & %C 4 0.704 0.590 

P/G & %M 4 2.598 0.037* 

%C & % M 4 2.973 0.020* 

P/G & % C & % M 8 0.628 0.754 

 

As stated in Table 6.3, the combination of population size and number of 

generations (P/G), the mutation rate (%M), the interaction between the mutation rate 

and the combination of population size and number of generations (P/G*%M), the 

interaction between the crossover rate and mutation rate (%C*%M) are all significant 

factors. The scatter plot of total cost for 270 runs is graphically shown in Figure 6.5.   
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Figure 6.6 Scatter plot of total cost from ten runs 

 

From Figure 6.6, it can be clearly seen that as mutation rate increases, the solution 

quality of GA deteriorates, i.e., the total cost increases (Experiments 7, 8, 9, 16, 17, 

18, 25, 26, and 27). Therefore, the results of experiments do not suggest using a high 

mutation rate. Moreover, a population size of 100 with 100 generations results in 

smallest spread among the experiments with low and medium mutation rates 

(Experiment 24). Therefore, the parameter values used in experiment 24 were 

recommended as efficient parameters. Based on these experiments, population size 

of 100, crossover rate of 0.95 and mutation rate of 0.005 were used for 100 

generations in the computational experiments given in the next sub-section. 

 

6.4.3 Analysis and Discussion of the Results 

 

This section presents the results of computational studies investigating the 

performance of proposed hybrid approaches for solving the CLSP+. It must be noted 

that in all comparative experiments, the same GA parameter settings presented above 

in section 6.4.2 were used.  
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6.4.3.1 Results of Pure GAs 

 

First, the performance of pure GAs (PGAs) for each problem class is summarized. 

The average gaps over lower bounds obtained from the SPL formulation are given in 

in terms of both the average of 10 runs and the best result among these runs (see 

Table 6.4). The “computational time” shows the average time required by the PGAs 

to solve the problems instances in a given class and “feasibility” shows the fraction 

of problem instances that could be solved by the PGAs. As seen in Table 6.4, all 

problem instances could be solved using the PGAs; however the large gaps from the 

lower bounds indicate that the overall performance of PGAs is rather poor for 

solving CLSP+. 

  

Table 6.4 The results of PGAs 

Avg. % gap over 
Lower Bound 

PGA 

Avg. of 
10 runs 

Best 
among 10 

runs 

Computational 
Time (s) 

Feasibility 
% 

Class 1 30.16 % 26.4 % 252.37 100.00 

Class 2 34.98 % 33.8 % 198.6 100.00 

Class 3 17.25 % 15.4 % 226.7 100.00 

Class 4 16.80 % 15.8 % 287.56 100.00 

Class 5 8.64 % 7.9 % 302.75 100.00 

Class 6 8.82 % 8.5 %  357.05 100.00 

 

6.4.3.2 Results of Sequential GA-based Hybrid Approaches 

 

This sub-section presents the results of computational studies investigating the 

performance of the proposed sequential GA-based hybrid approaches for solving the 

CLSP+. Prior to carrying out a comparative experimental study, first a set of 

experiments was conducted to select a criterion for the implementation of the 

proposed product decomposition scheme. As stated above, to obtain compatible 

results the CPU-time limit for solving each class of problem was set to the 

computational times given in Table 6.4. For instance, the CPU-time limit to solve the 

problem instances in Class 1 using proposed hybrid approaches was set to 252.37 s. 



 

 

144 

(see Table 6.4) and half of this duration was devoted to the GAs and the other half 

was devoted to the Fix-and-Optimize heuristic. 

 

6.4.3.2.1 Experimental Results for Product Decomposition Scheme. As mentioned 

earlier, the proposed product decomposition scheme uses five types of product 

specific criteria in forming the problems used in the Fix-and-Optimize heuristic. To 

decide whether the problems should be formed in ascending, descending or random 

ordering of these five criteria a pilot experiment was carried out and noted that the 

performance of the proposed product decomposition scheme was not substantially 

affected by the order of these criteria. However, since descending order of the criteria 

resulted in slightly better performance than the other two, in the following 

computational experiments, descending order of these criteria was used. To evaluate 

the performance of H2 (GA+product decomposition), 10 independent runs were 

carried out using descending order of these five criteria. Experimental results given 

in Table 6.5 are based on the average of these runs.  

 

Table 6.5 Average % gap over lower bound (based on 10 runs) 

 According to  
“Setup cost” 

According to 
“Holding cost” 

According to  
“(setup 
cost/holding 
cost)” 

According to 
“Total demand” 

According to 
the “Total cost” 

Class 1 27.7% 28.07% 27.6% 28.14 % 27.4 % 
Class 2 34.3% 34.5% 34.5% 34.5 % 34.5 % 
Class 3 15.1% 15.4% 15.3% 15.3 % 15.2 % 
Class 4 14.2% 14.8% 14.6% 14.6 % 14.6 % 
Class 5 6.4% 6.5% 6.2% 6.3 % 6.3 % 
Class 6 6.8% 7.04% 7% 6.9 % 7.03 % 

 

As seen in Table 6.5, for the majority of the problem classes, the product 

decomposition based on setup cost resulted in a better performance than the others. 

Hence, we decided to employ this decomposition criterion in the following 

computational comparative studies.  

 

6.4.3.2.2 Comparative Experimental Results. In this section, the experimental 

studies evaluating the performance of the proposed sequential GA based hybrid 

approaches are given. To obtain compatible results the performance of the proposed 

sequential hybrid approaches and PGA were tested under the same run time 
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limitation. For instance, the time limitation to solve problem instances in Class 1 was 

set to 252.37 s. (see Table 6.4).  

 

The overall results obtained across all problem classes are shown in Table 6.6. It 

is quite clear from Table 6.6 that the proposed hybridized approaches outperform the 

PGA which has the highest gap for all problem classes. As for the performance of the 

proposed hybrid approaches, while H4 (i.e., GAs first and then the Fix-and-Optimize 

heuristic in the sequence of product decomposition and time decomposition) slightly 

outperforms H1 and H3, H2 (i.e., GAs first and then the Fix-and Optimize heuristic 

with product decomposition only) has the worst performance among four 

approaches. Overall we could state that H4 and H3 employing Fix-and-Optimize 

heuristic with two decomposition schemes are better than H1 and H2 having one 

decomposition scheme. 

 

Table 6.6 Overall results of sequential proposed hybrid approaches 

 Based on average of 10 runs 
Decomp. 
scheme Time Product Time+Product Product+Time 
Abbrev. H1 H2 H3 H4 

 Avg. Gap 
Avg. #  

gen. Avg. Gap 
Avg. # 

gen. Avg. Gap 
Avg. # 

gen. 
Avg. 
Gap 

Avg. # 
gen. 

Class 1 21.10 % 54.04 27.70 % 44.66 21.05 % 56.16 21.07 % 58.66 

Class 2 26.05 % 37.86 34.27 % 34.8 26.10 % 40.2 25.95 % 38.72 

Class 3 10.10 % 41.52 15.14 % 35.78 9.912 % 42.56 8.69 % 43.04 

Class 4 10.57 % 43.54 14.24 % 43.98 10.36 % 45.04 10.07 % 43.34 

Class 5 5.57 % 36.14 6.40 % 37.74 4.58 % 50.88 4.57 % 44.52 

Class 6 6.86 % 33.54 6.81 % 36.22 5.67 % 40.06 5.60 % 38.16 

 

Moreover, it has been observed that H3 and H4 substantially outperform H2 and 

also outperform H1 on more difficult instances. Next, the behaviour of the H3 and 

H4 heuristics is analyzed in more detail. The summary of this analysis is given in 

Tables 6.7 and 6.8 which show the improvements (i.e. the decrease in the gaps) 

obtained throughout the iterations of the Fix and Optimize heuristic in H3 and H4, 

respectively. In these tables, while the second column shows the average number of 

iterations in the Fix-and-Optimize heuristic, the third column gives the gap of the 

best solution from GAs which is set as an initial solution in the Fix-and-Optimize 
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heuristic. The other columns show the average of the gaps in ten runs obtained after 

the first, fifth, tenth, fifteenth, twentieth and thirtieth iterations.   

 

As mentioned earlier, the proposed hybrid approaches start from an initial solution 

which is generated with GA and iteratively improve it. Results of experiments 

summarized in Tables 6.7 and 6.8 show that for all problem classes both in H3 and 

H4, a great portion of the improvement in solution quality occurs in the first five 

iterations and further iterations yield only a negligible improvement in solution 

quality. Another thing which can be observed from these two tables is that as 

expected the Fix-and-Optimize heuristic converges more quickly for small-size 

problems (i.e. Class 1).  

 

Based on the results of these experimental studies, we could state that using a 

decomposition scheme is definitely improving the performance of the proposed 

hybrid approaches. It has been also observed during the experiments that the time 

decomposition scheme outperforms the product decomposition scheme. As seen in 

Table 6.6, for all problem classes, H1, H3 and H4 employing the time decomposition 

scheme outperform H2 employing only the product decomposition scheme. 

Moreover, it has been observed that using two decomposition schemes within the 

same hybrid approach in a sequential manner further improves the performance of 

these approaches. It should be noted that in H3 and H4 the two decomposition 

schemes were used sequentially at each iteration (i.e. either in the sequence of time 

and product decomposition or product and time decomposition) (see Figure 6.4).  

 

In order to clarify the additive effect of implementing two decomposition schemes 

sequentially within the same hybrid approach we presented a more detailed analysis 

of the results in Table 6.9. For instance, the second column of Table 6.9 shows the 

percentage of the improvement achieved by the time decomposition in H3 after the 

product decomposition (i.e. the initial solution for the time decomposition is the best 

solution obtained after the product decomposition). This additive effect is measured 

using the following equation:  
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*100

improvement with time decomposition

solution after product decomposition solution after time decomposition

lower bound

=

−

(14) 

 

Improvements given in the remaining columns of Table 6.9 are also measured in a 

similar way.  



 

 

Table 6.7 Experimental Results for H3 (based on 10 runs) 

H3 Avg. # 

of 

iteratio

ns 

Best solution 

gap from GA 

1st  

iteration 

5th 

 iteration 

10th  

Iteration 

15th  

iteration 

20th  

iteration 

30th  

iteration 

Class 1 30.74 30.78 % 21.9696 % 21.0478 % 21.0478 % 21.0478 % 21.0478 % 21.0478 % 

Class 2 13.28 36.12 % 27.0339 % 26.1083 % 26.1028 % * * * 

Class 3 14.96 19.67 % 10.7734 % 9.9694 % 9.927 % 9.912 % * * 

Class 4 10.82 17.83 % 11.7469 % 10.4634 % 10.3599 % * * * 

Class 5 15.38 9.67 % 5.1291 % 4.6248 % 4.5925 % 4.5778 % * * 

Class 6 9.88 8.89 % 6.242 % 5.6974 % 5.684 % 5.67 % * * 

 

Table 6.8 Experimental Results for H4 (based on 10 runs) 

H4 Avg. # 

of 

iteratio

ns 

Best solution 

gap from GA 

1st  

iteration 

5th  

iteration 

10th 

iteration 

15th 

iteration 

20th 

iteration 

30th 

iteration 

Class 1 30.68 30.63 % 22.1932 % 21.0718 % 21.0718 % 21.0705 % 21.0705 % 21.0705 % 

Class 2 13.14 35.75 % 26.9399 % 25.9501 % 25.9497 % * * * 

Class 3 14.62 19.18 % 9.66 % 8.7155 % 8.6912 % 8.6912 % * * 

Class 4 10.52 17.36 % 11.4317 % 10.1612 % 10.0724 % * * * 

Class 5 14.6 9.50 % 5.4429 % 4.6439 % 4.5719 % 4.568 % * * 

Class 6 9.28 8.88 % 6.6067 % 5.6986 % 5.5979 % * * * 
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Table 6.9 illustrates the improvements obtained for each problem class.  

 

Table 6.9 Comparative analysis of the improvements obtained (based on all iterations in 10 runs). 

H3 H4  
 

Problem Class 
Improvement  

with time 

 decomposition % 

Improvement  

with product  

decomposition % 

Improvement  

with product  

decomposition % 

Improvement  

with time 

 decomposition 

% 

Class 1 0.034 0.2156 0.011 0.011 

Class 2 0.0445 0.0149 0.0141 0.4695 

Class 3 0.0162 0.0233 0.0245 0.3163 

Class 4 0.0521 0.0665 0.0546 0.3357 

Class 5 0.0845 0.0541 0.0430 0.0903 

Class 6 0.3917 0.1491 0.087 0.0591 

 

For H3, it can be easily seen that both decomposition schemes improve the 

solution quality; however, it is not possible to draw a general conclusion about which 

decomposition type contributes the most. For medium-size problems (see problem 

classes 3 and 4), while the improvement by product decomposition is more than the 

improvement by the time decomposition, for large-sized problems (see problem 

classes 5 and 6) the time decomposition improves the solution quality more than the 

product decomposition. However, for H4, the results of our analysis are quite clear. 

In comparison to the product decomposition, the contribution of time decomposition 

to the solution quality is remarkable. As given in Table 6.9, using the time 

decomposition after the product decomposition further improves the solution quality 

in four problem classes out of six. These results further clarify why H4 outperforms 

H3 in most of the problem classes (see Table 6.6).  

 

The general conclusion which can be drawn from this comparative experimental 

study is that the proposed hybrid approaches which combine the PGA with a MIP-

based heuristic significantly outperforms the PGA in solving the CLSP+. Moreover, 

it has been observed that the performance of these hybrid approaches is affected by 

both the type of the decomposition scheme and also in which sequence to use these 

schemes. In summary, the proposed H4 approach using both decompositions 
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schemes in the sequence of time and product decomposition has the best 

performance among the four proposed sequential hybrid approaches.   

 

6.4.3.3 Comparative Experimental Results for Embedded GA-based Approaches 

 

In this section, the experimental studies evaluating the performance of the 

proposed embedded GA-based hybrid approaches are given. Similar to the sequential 

hybrid approaches, the PGA and embedded proposed hybrid approaches were tested 

under the same run time limitation in order to obtain compatible results. Having 

observed outperformance of implementing decomposition schemes in the sequence 

of time and product decomposition schemes we evaluated the performance of 

embedded hybrid approaches also in the same way, i.e. first time decomposition, and 

then product decomposition. The results of experiments are summarized in Table 

6.10. The table presents the average of gaps obtained based on 10 runs and the 

number of generations in the genetic search. 

 

Similar to the results obtained for sequential hybrid approaches (i.e. H2), H6 

employing only product decomposition in the loop of GAs has the worst 

performance and H8 which uses both decomposition schemes in the loop of GAs 

slightly outperforms H5 and H7. Overall, it can be stated that compared to using a 

single decomposition scheme in the loop of GAs, using both decomposition schemes 

sequentially has more potential to improve the solution quality. Moreover, it has 

been observed that the performance of proposed embedded hybrid approaches is 

affected by the type of decomposition scheme and the embedded hybrid approaches 

employing time decomposition scheme have better performance (H5, H7 and H8).  
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Table 6.10 Results of experiments (based on average of 10 runs) 

 

 

6.4.4 Summary of the findings 

 

In this chapter, the performances of the proposed hybrid approaches are compared 

to that of PGA in solving the CLSP+. The percentages of the average gaps obtained 

by each approach for each problem class are summarized in Table 6.11. As seen in 

the table, PGA has the worst performance among all approaches and all proposed 

hybrid approaches work very well to improve the solution quality across all problem 

classes. This can be attributed to the success of employing the Fix-and-Optimize 

heuristic in proposed hybrid approaches. As mentioned earlier, the GAs can locate 

the promising region for global optimum, but in large search spaces they often have 

tendency to converge to local optimum. In this study, to improve the solution quality 

of GAs two types of hybrid approaches, i.e., sequential and embedded have been 

proposed. These hybrid approaches integrate GAs with a MIP based heuristic, the 

Fix-and-Optimize heuristic in different ways. In the sequential hybrid approaches, 

the final solution of GA is used as the initial solution for the Fix-and-Optimize 

heuristic. In doing so, it is hoped that GA will find a promising region in the search 

space and following, the Fix-and-Optimize heuristic will further explore this 

promising region to find the best solution. On the other hand, in the embedded hybrid 

approaches, the Fix-and-Optimize heuristic, which is embedded into the loop of GA, 

 Proposed Embedded Hybrid Approaches 
Abbrev. 

H5 H6 H7 H8 

Decomp. 
scheme 

Time Product Time in one 
generation & 

Product in other 
generation 

Product + Time 

 
Avg.  
Gap 

Avg. # 
gen. 

Avg. 
Gap 

Avg. # 
gen. 

Avg. 
Gap 

Avg. # 
gen. 

Avg. Gap Avg. # 
gen. 

Class 1 
19.93 % 39.38 22.57 % 53.96 20.05 % 43.38 19.80 % 34.22 

Class 2 
25.80 % 17.4 29.09 % 37.86 25.81 % 24.3 25.67 % 15.32 

Class 3 9.65 % 24.96 11.53 % 29.38 9.77 % 29.2 9.46 % 18.6 

Class 4 
11.18 % 17.44 12.29 % 39.76 11.55 % 21.64 11.11 % 12.56 

Class 5 5.06 % 29.8 5.26 % 31.66 4.80 % 29.04 4.58 % 18.62 
Class 6 6.91 % 19.44 6.30 % 18.14 6.51 % 18.04 6.19 % 10.68 
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acts like a diversification strategy and improves the solution quality in each 

generation by guiding the GAs to the promising areas in the search space.  

 

Overall, it can be stated that the proposed sequential hybrid approaches have 

better performance than proposed embedded hybrid approaches. Namely, sequential 

hybrid approaches outperformed embedded hybrid approaches in four problem 

classes out of six (see Table 6.11).  

 

Table 6.11 Summary of experimental studies (based on average of 10 runs) 

Proposed Hybrid Approaches 

Sequential Approaches Embedded Approaches 

 

PGA 

H1 H2 H3 H4 H5 H6 H7 H8 

Class 1 30.16 % 21.10 % 27.70 % 21.05 % 21.07 % 19.93 % 22.57 % 20.05 % 19.80 % 

Class 2 34.98 % 26.05 % 34.27 % 26.10 % 25.95 % 25.80 % 29.09 % 25.81 % 25.67 % 

Class 3 17.25 % 10.10 % 15.14 % 9.912 % 8.69 % 9.65 % 11.53 % 9.77 % 9.46 % 

Class 4 16.80 % 10.57 % 14.24 % 10.36 % 10.07 % 11.18 % 12.29 % 11.55 % 11.11 % 

Class 5 8.64 % 5.57 % 6.40 % 4.58 % 4.57 % 5.06 % 5.26 % 4.80 % 4.58 % 

Class 6 8.82 % 6.86 % 6.81 % 5.67 % 5.60 % 6.91 % 6.30 % 6.51 % 6.19 % 

Avg. 19.44 % 13.38 % 17.43 % 12.95 % 12.66 % 13.09 % 14.51 % 13.08 % 12.80 % 

 

In order to check whether these performance differences, i.e., average gaps, are 

statistically significant, we employed one-way ANOVA test. For each problem class, 

five instances were generated and each instance was run 10 times to compare eight 

hybrid approaches. The results are stated in Tables 6.12 - 6.17.  

 

Table 6.12 ANOVA table for Class 1 

Source Sum of 

squares 

Degrees of  

freedom 

Mean square F-Ratio P-Value 

Between groups 0.269 7 3.850E-02 5.126 0.000 

Within groups 2.944 392 7.510E-03   

Total (corrected) 3.213 399    
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Table 6.13 ANOVA table for Class 2 

Source Sum of 

squares 

Degrees of  

freedom 

Mean square F-Ratio P-Value 

Between groups 0.366 7 5.226E-02 16.254 0.000 

Within groups 1.260 392 3.215E-03   

Total (corrected) 1.626 399    

 

Table 6.14 ANOVA table Class 3 

Source Sum of 

squares 

Degrees of  

freedom 

Mean square F-Ratio P-Value 

Between groups 0.140 7 1.994E-02 29.877 0.000 

Within groups 0.262 392 6.673E-04   

Total (corrected) 0.401 399    

 

Table 6.15 ANOVA table for Class 4 

Source Sum of 

squares 

Degrees of  

freedom 

Mean square F-Ratio P-Value 

Between groups 7.907E-02 7 1.130E-02 12.022 0.000 

Within groups 0.368 392 9.396E-04   

Total (corrected) 0.447 399    

 

Table 6.16 ANOVA table for Class 5 

Source Sum of 

squares 

Degrees of  

freedom 

Mean square F-Ratio P-Value 

Between groups 1.784E-02 7 2.549E-03 31.857 0.000 

Within groups 3.136E-02 392 8.000E-05   

Total (corrected) 4.920E-02 399    

 

Table 6.17 ANOVA table for Class 6 

Source Sum of 

squares 

Degrees of  

freedom 

Mean square F-Ratio P-Value 

Between groups 8.904E-03 7 1.272E-03 13.761 0.000 

Within groups 3.623E-02 392 9.243E-05   

Total (corrected) 4.514E-02 399    

 
As seen in Tables 6.12 – 6.17, the performance differences for each problem class 

are statistically significant. Moreover, to carry out all pairwise comparisons of the 

proposed hybrid approaches we employed Tukey’s test that is a single step multi 
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comparison procedure to be used in conjunction with ANOVA. The results for Class 

1 are presented in Tables 6.18 and the other results are given in Appendix A.  

 

Table 6.18 Multiple comparisons for Class 1 

Proposed 
Hybrid  

Approach  
(I) 

Proposed 
Hybrid 

Approaches 
(J) 

Mean Difference  
(I-J) 

Sig. (p) 

H1 H2 -6.5600E-02* 0.004 
 H3 2.000E-04 1.000 
 H4 -5.5511E-17 1.000 
 H5 1.140E-02 0.998 
 H6 -3.4800E-02 0.476 
 H7 1.000E-02 0.999 
 H8 1.340E-02 0.994 

H2 H1 6.560E-02* 0.004 
 H3 6.580E-02* 0.004 
 H4 6.560E-02* 0.004 
 H5 7.700E-02* 0.000 
 H6 3.080E-02 0.636 
 H7 7.560E-02* 0.000 
 H8 7.900E-02* 0.000 

H3 H1 -2.0000E-04 1.000 
 H2 -6.5800E-02* 0.004 
 H4 -2.0000E-04 1.000 
 H5 1.120E-02 0.998 
 H6 -3.5000E-02 0.469 
 H7 9.800E-03 0.999 
 H8 1.320E-02 0.995 

H4 H1 5.551E-17 1.000 
 H2 -6.5600E-02* 0.004 
 H3 2.000E-04 1.000 
 H5 1.140E-02 0.998 
 H6 -3.4800E-02 0.476 
 H7 1.000E-02 0.999 
 H8 1.340E-02 0.994 

H5 H1 -1.1400E-02 0.998 
 H2 -7.7000E-02* 0.000 
 H3 -1.1200E-02 0.998 
 H4 -1.1400E-02 0.998 
 H6 -4.6200E-02 0.133 
 H7 -1.4000E-03 1.000 
 H8 2.000E-03 1.000 
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Table 6.18 Multiple comparisons for Class 1 (cont.) 

H6 H1 3.480E-02 0.476 
 H2 -3.0800E-02 0.636 
 H3 3.500E-02 0.469 
 H4 3.480E-02 0.476 
 H5 4.620E-02 0.133 
 H7 4.480E-02 0.161 
 H8 4.820E-02 0.100 

H7 H1 -1.0000E-02 0.999 
 H2 -7.5600E-02* 0.000 
 H3 -9.8000E-03 0.999 
 H4 -1.0000E-02 0.999 
 H5 1.400E-03 1.000 
 H6 -4.4800E-02 0.161 
 H8 3.400E-03 1.000 

H8 H1 -1.3400E-02 0.994 
 H2 -7.9000E-02* 0.000 
 H3 -1.3200E-02 0.995 
 H4 -1.3400E-02 0.994 
 H5 -2.0000E-03 1.000 
 H6 -4.8200E-02 0.100 
 H7 -3.4000E-03 1.000 

* shows that the mean difference is significant at the 0.05 level 

 

As seen in Table 6.18 and in Appendices A1 - A4, for the problem instances in 

almost all classes, i.e., Classes 1 to 5, the difference between H2 and other hybrid 

approaches with respect to average gap is found to be statistically significant in great 

majority of pair-wise comparisons. Likewise, based on the observations reported in 

Table 6.18 and in Appendices A1 – A4, the same statistical inference can be made 

for the performance of H6. As given in earlier section, H2 and H6 using only the 

product decomposition scheme were identified as poorly performing hybrid 

approaches.  So, the Tukey’s test further verified these results by providing statistical 

support for the low performance of H2 and H6 (i.e., having large average gap against 

other hybrid approaches).  

 

Table 6.19 summarizes the total number of statistically significant differences 

among proposed hybrid approaches for each problem class. 
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Table 6.19 Summary of results 

 
 
 
 
 

 

 

 

 

 

As noted before in earlier sections, the proposed hybrid approaches employing 

only the time decomposition scheme (H1 and H5) or combination of time and 

product decomposition schemes in different forms (H3, H4, H7, H8) outperformed 

the hybrid approaches employing only the product decomposition scheme (H2 and 

H6) and this was statistically supported by the results from Tukey’s test.  

  

Having identified H4 and H8 as best performing hybrid approaches, in the next 

section, we investigated how the performances of these two approaches and also 

PGA are affected by the changes in values of various problem-specific parameters 

including backorder costs, setup times, setup costs, capacity utilization and demand 

variability.   

 

6.5 Investigation of the Robustness of the Proposed Hybrid Approaches 

 

In this sub-section, the performances of the PGA and the two hybrid approaches 

proposed, i.e. H4 and H8 are further analyzed.  

 

6.5.1 The Experimental Design  

 

As stated in Section 6.4.1, we found no published benchmark problems for 

evaluating the performance of the proposed hybrid approaches. To generate test 

problems, we added the backorder costs to the problems with 10 products and 20 

periods in Trigeiro et al. (1989). Table 6.20 summarizes the experimental factors 

used in generating these problem instances: capacity utilization (low and high), time 

Proposed 
Hybrid  

Approach  
 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

H1 1 2 2 2 5 2 
H2 6 6 7 6 7 3 
H3 1 2 2 2 3 6 
H4 1 2 2 2 3 5 
H5 1 2 2 2 2 3 
H6 0 6 7 5 6 2 
H7 1 2 2 1 3 2 
H8 1 2 2 2 3 3 
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between orders (TBO) (low, medium or high), coefficient of variation (CV) in 

demand (low and high), and setup time (low or medium). The TBO is changed by 

changing the setup cost. It should be noted that the holding cost is assumed to be 

constant for all products.  

 
Table 6.20 The experimental design 
 

Parameter Values used Total values 
2*holding cost (Low)  Backorder cost 

6*holding cost (High) 

2 

75% (Low) Capacity utilization 
85%  (High) 

2 

1 period  (Low) 
2 periods (Medium) 

Time between 
Orders (TBO) 

4 periods (High) 

3 

11 units of capacity (Low) Setup time 
43 units of capacity (High) 

2 

0.35 (Low) CV in demand 
0.59 (High) 

2 

   
 Total parameter 

combinations 
48 

 Number of 
problems/combinations 

5 

 Total problems 240 

 

For each combination 5 random problems were generated. Thus, a total of 240 

problems were generated to test the performances of the proposed approaches. For 

the purpose of the experiments, backorder cost was defined as a linear function of the 

holding cost (b=fh), where f>=1, as in Millar and Yang (1994). In this study, the 

actual value of the backorder cost is not the primary issue, but rather, the quality of 

the performances of the proposed approaches when backordering is allowed. 

 

6.5.2 The Statistical Analysis of the Proposed Approaches 

 

In summarizing the results, the means and standard deviations of the gaps for five 

problem instances in each of the 48 categories were computed. As stated in Millar 

and Yang (1994), the standard deviations provide a measure of the stability of the 

algorithms which is very important in the design of heuristics. It should be noted that 

the best solutions (i.e. minimum solution) found during 10 runs is used to calculate 

the gaps. 
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Table 6.21 shows a summary of statistics for each of the proposed solution 

approach. The performances of H4 and H8 appear to be comparable, though H8 

slightly outperforms H4. PGA has the worst mean and standard deviation of the gaps 

as stated in Table 6.21.  

 
Table 6.21 Summary statistics for the proposed solution approaches 
 

 PGA H4 H8 
Sample size 240 240 240 
Minimum 0 0 0 
Maximum 0.60378 0.392949 0.382354 
Mean value 0.160215 0.124868 0.123501 
Standard Deviation 0.134757 0.118936 0.117927 

 

In order to identify the statistically significant factors that affect the performance 

of the proposed approaches, we carried out analysis of variance (ANOVA). Table 

6.22 summarizes the results of analysis for all the main effects, two-way, and all 

higher level interactions using 720 observations (240 problem instances tested for 3 

solution approaches).  

 
Table 6.22 Analysis of variance 
 

Source of variation 

Degrees of 

freedom F Sig. (p) 

Approach 2 178.636 0.000 

CV 1 23.908 0.000 

TBO 2 8716.091 0.000 

Setuptime 1 3.388 0.066 

Capacity utilization 1 166.681 0.000 

Backorder cost 1 119.809 0.000 

Approach * CV 2 17.777 0.000 

Approach * TBO 4 16.728 0.000 

Approach * Setuptime 2 0.383 0.682 
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Table 6.22 Analysis of variance (cont.) 
 

Approach * Capacity utilization 2 3.087 0.046 

Approach * Backorder cost 2 3.159 0.043 

CV * TBO 2 23.657 0.000 

CV * Setuptime 1 8.450 0.004 

CV * Capacity utilization 1 42.269 0.000 

CV * Backorder cost 1 1.393 0.238 

TBO * Setuptime 2 10.398 0.000 

TBO* Capacity utilization 2 1.090 0.337 

TBO* Backorder cost 2 141.876 0.000 

Setuptime * Capacity utilization 1 23.132 0.000 

Setuptime * Backorder cost 1 0.034 0.853 

Capacity utilization * Backorder cost 1 4.561 0.033 

Approach * CV * TBO 4 1.257 0.286 

Approach * CV * Setuptime 2 1.265 0.283 

Approach * CV * Capacity utilization 2 0.692 0.501 

Approach * CV * Backorder cost 2 0.026 0.974 

Approach * TBO* Setuptime 4 2.121 0.077 

Approach * TBO* Capacity utilization 4 0.068 0.992 

Approach * TBO* Backorder cost 4 1.681 0.153 

Approach * Setuptime * Capacity utilization 2 1.108 0.331 

Approach * Setuptime * Backorder cost 2 0.011 0.989 

Approach * Capacity utilization * Backorder cost 2 0.383 0.682 

CV * TBO* Setuptime 2 5.262 0.005 

CV * TBO* Capacity utilization 2 12.801 0.000 

CV * TBO*  

Backorder cost 

2 0.315 0.730 

CV * Setuptime * Capacity utilization 1 6.661 0.010 

CV * Setuptime * Backorder cost 1 0.031 0.861 

CV * Capacity utilization * Backorder cost 1 0.595 0.441 

TBO* Setuptime * Capacity utilization 2 0.134 0.874 

TBO* Setuptime * Backorder cost 2 0.126 0.882 

TBO* Capacity utilization * Backorder cost 2 0.140 0.869 
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Table 6.22 Analysis of variance (cont.) 
 

Setuptime * Capacity utilization * Backorder cost 1 0.124 0.725 

Approach * CV * TBO* Setuptime 4 0.809 0.520 

Approach * CV * TBO* Capacity utilization 4 0.445 0.776 

Approach * CV * TBO* Backorder cost 4 0.302 0.877 

Approach * CV * Setuptime * Capacity 

utilization 

2 1.720 0.180 

Approach * CV * Setuptime * Backorder cost 2 0.096 0.909 

Approach * CV * Capacity utilization * 

Backorder cost 

2 0.084 0.919 

Approach * TBO* Setuptime * Capacity 

utilization 

4 2.482 0.043 

Approach * TBO* Setuptime * Backorder cost 4 0.027 0.999 

Approach * TBO* Capacity utilization * 

Backorder cost 

4 0.365 0.834 

Approach * Setuptime * Capacity utilization * 

Backorder cost 

2 0.135 0.874 

CV * TBO* Setuptime * Capacity utilization 2 0.086 0.918 

CV * TBO* Setuptime * Backorder cost 2 0.185 0.831 

CV * TBO* Capacity utilization * Backorder cost 2 0.434 0.648 

CV * Setuptime * Capacity utilization * 

Backorder cost 

1 0.453 0.501 

TBO* Setuptime * Capacity utilization * 

Backorder cost 

2 0.138 0.871 

Approach * CV * TBO* Setuptime * Capacity 

utilization 

4 1.704 0.148 

Approach * CV * TBO* Setuptime * Backorder 

cost 

4 0.028 0.998 

Approach * CV * TBO* Capacity utilization * 

Backorder cost 

4 0.077 0.989 

Approach * CV * Setuptime * Capacity 

utilization * Backorder cost 

2 0.192 0.825 

Approach * TBO* Setuptime * Capacity 

utilization * Backorder cost 

4 0.105 0.981 



 

 

161 

Table 6.22 Analysis of variance (cont.) 
 

CV * TBO* Setuptime * Capacity utilization * 

Backorder cost 

2 0.323 0.724 

Approach * CV * TBO* Setuptime * Capacity 

utilization * Backorder cost 

4 0.111 0.979 

Error 576   

 

It can be seen in the table that the main effects such as solution approaches, CV in 

demand, TBO, capacity utilization and backorder cost are statistically significant. 

Moreover, a couple of two-way interactions, a few three-way interactions and one 

four-way interactions are found to be statistically significant.  

 

Since the ultimate goal in this experimental study is to investigate the sensitivity 

of the three approaches to the changes in backorder costs, the results obtained were 

further analyzed under two category: 1. Backorder cost is two times of holding cost, 

(b=2h, see Tables 6.23 – 6.29), 2. Backorder cost is six times of holding cost (b=6h, 

see Tables 6.30 – 6.36). The effects of interactions between different factors are 

examined under two different levels of backorder cost.  

 

In Table 6.23, for all problem instances, the average gap between the proposed 

approaches and the lower bound under different levels of experimental factors are 

shown.  

 

Table 6.23 The effects of different experimental factors on average gap (b=2h) 
 

 TBO Capacity 
utilization 

CV in demand Setup time 

 Low Medium High Low High Low High Low High 
PGA 2.9 % 11.9 % 37.2 % 16.2 % 18.5 % 17.1 % 17.5 % 17.4 % 17.3 % 
H4 1.5 % 7.4 % 31.0 % 12.4 % 14.2 % 14.2 % 12.6 % 13.5 % 13.1 % 
H8 1.4 % 7.3 % 30.9 % 12.3 % 14.0 % 14.1 % 12.2 % 13.4 % 13.0 % 

 

• From Table 6.23, it can be seen that the most significant effect on the gap is 

due to the TBO which is related to the setup cost. As setup cost increases 

(i.e. TBO increases), the gap increases significantly for all proposed 

solution approaches.  
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• As far as the capacity utilization, there are minor differences in the average 

gaps. Millar and Yang (1994) state that for a special case of the capacitated 

lot sizing problem with backordering the performance of the algorithms 

gets worse as the capacity becomes tighter. The results in Table 6.23 also 

support this idea.  

• Regarding the CV in demand, the gaps in the proposed hybrid approaches 

decrease as the CV in demand increases. However, the performance of the 

PGA deteriorates under high level of CV in demand.  

• As the setup time increases, the performances of the solution approaches 

improve (i.e. the gaps decrease).  

 

The insight gained as a result of analyzing the effects of interaction between 

different experimental factors when backorder cost is two times of holding cost is 

given in the following.  

 

• In comparison to the performance of PGA and H4 under low setup times, their 

performance under high setup times and different levels of TBO (i.e. low and 

medium) is better. The performance of H8 is observed to be good under high 

setup times and all levels of TBO.  

• As the simultaneous effect of TBO and CV is considered (Table 6.25), H4 and H8 

perform better for high CV and medium and high TBO cases. When low CV is 

considered, the performances of H4 and H8 are better in low TBO cases. On the 

other hand, the performance of PGA is better in low CV cases than the 

performance in high CV cases. For low setup costs and low CV, all proposed 

solution approaches perform better than medium and high TBO cases.  

• The simultaneous effects of TBO and capacity utilization (see Table 6.26) show 

that all solution approaches perform better for low capacity cases.  

• Across all levels of setup times, H4 and H8 perform better for high CV cases (see 

Table 6.27). However, levels of CV and setup time have a different effect on the 

performance of the PGA. The average gap is the lowest for high CV and low 

setup time cases but the highest for high CV and high setup time cases.  
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• Like the case in Table 6.27, all solution approaches perform better for low 

capacity cases across all levels of setup time when the effect of interaction of 

setup time and capacity utilization is considered (see Table 6.28).  

• The simultaneous effect of CV and capacity utilization on the gap is shown in 

Table 6.29. Across all levels of capacity, H4 and H8 perform better for high CV 

cases. However, the performance of PGA changes according to the level of CV. In 

low CV and capacity cases, the performance of PGA is better than the 

performance in low CV and high capacity cases.  

 

Table 6.24 The effects of interaction of TBO and setup time on gap (b=2h) 

PGA H4 H8  

TBO TBO TBO 

Setup 

time 

Low Medium High Low Medium High Low Medium High 

Low 3.83 % 11.96 % 36.37 % 1.95% 7.51% 30.93% 1.90% 7.43% 30.88% 

High 1.97% 11.75 % 38.07% 0.96% 7.26% 31.21% 0.93% 7.09% 30.85% 

 

Table 6.25 The effect of interaction of TBO and CV on gap (b=2h) 

PGA H4 H8  

TBO TBO TBO 

CV Low Medium High Low Medium High Low Medium High 

Low 1.99 % 11.84 % 37.56 % 1.36 % 8.40 % 32.80 % 1.33 % 8.35 % 32.71 % 

High 3.81 % 11.87 % 36.88 % 1.56 % 6.37 % 29.35 % 1.49 % 6.17 % 29.03 % 

 

Table 6.26 The effect of interaction of TBO and capacity utilization on gap (b=2h) 

PGA H4 H8  

TBO TBO TBO 

Capacity 

utilization 

Low Medium High Low Medium High Low Medium High 

Low 1.38 % 10.80 % 36.27 % 0.43 % 6.71 % 30.17 % 0.39 % 6.61 % 29.95 % 

High 4.42 % 12.90 % 38.17 % 2.48 % 8.05 % 31.97 % 2.44 % 7.91 % 31.79 % 
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Table 6.27 The effect of interaction of setup time and CV on gap (b=2h) 

PGA H4 H8  

 
Setup time Setup time Setup time 

CV Low High Low High Low High 

Low 17.62 % 16.65 % 14.64 % 13.73 % 14.47 % 13.80 % 

High 17.16 % 17.87 % 12.29 % 12.56 % 12.34 % 12.12 % 

 

Table 6.28 The effect of interaction of setup time and capacity utilization on gap (b=2h) 

PGA H4 H8  

Setup time Setup time Setup time 

Capacity 

utilization 

Low High Low High Low High 

Low 15.94 % 16.36 % 12.14 % 12.73 % 12.07 % 12.57 % 

High 18.84 % 18.16 % 14.78 % 13.56 % 14.74 % 13.35 % 

 

Table 6.29 The effect of interaction of CV and capacity utilization on gap (b=2h) 

PGA H4 H8  

Capacity utilization Capacity utilization Capacity utilization 

CV Low High Low High Low High 

Low 15.42 % 18.84 % 12.59 % 15.78 % 12.57 % 15.70 % 

High 16.88 % 18.15 % 12.28 % 12.57 % 12.07 % 12.40 % 

 

In Table 6.30, for all problem instances, the average gaps between the proposed 

approaches and the lower bound under different levels of experimental factors are 

shown.  

 

Table 6.30 The effects of different experimental factors on average gap (b=6h) 
 

 TBO Capacity utilization CV in demand Setup time 
 Low Medium High Low High Low High Low High 
PGA 3.07 % 11.66 % 29.42 % 12.94 % 16.50 % 14.28 % 15.16 % 14.78 % 14.65 % 
H4 1.66 % 7.70 % 25.65 % 10.38 % 12.66 % 12.52 % 11.34 % 11.86 % 11.48 % 
H8 1.61 % 7.60 % 25.34 % 10.53 % 12.81 % 12.31 % 10.72 % 11.81 % 11.23 % 

 
 

The results stated in Table 6.30 are very similar to those presented in Table 6.23. 

The insight gained can be summarized as follows.  
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• The gap increases for all proposed solution approaches as setup cost 

increases (i.e. TBO increases).  

• Minor differences in the average gaps are observed when the capacity 

utilization is changed from low to high.  

• As for the CV in demand is concerned, the gaps in the proposed hybrid 

approaches decrease as the CV in demand increases. However, the 

performance of the PGA deteriorates under high level of CV in demand. So 

we can conclude that unlike PGA, proposed hybrid approaches perform 

better when the variability of demand increases. 

• The performances of the solution approaches improve (i.e. the gaps 

decrease) as the setup time increases.  

 
The effects of interaction between different experimental factors when backorder 

cost is six times of holding cost are given in the following.  

 

Table 6.31 The effects of interaction of TBO and setup time on gap (b=6h) 

PGA H4 H8  

TBO TBO TBO 

Setup 

time 

Low Medium High Low Medium High Low Medium High 

Low 4.03 % 11.94 % 28.39 % 2.17 % 7.99 % 25.42 % 2.099 % 7.89 % 25.43 % 

High 2.12 % 11.39 % 30.46 % 1.14 % 7.41 % 25.87 % 1.12 % 7.31 % 25.25 % 

 

Table 6.32 The effect of interaction of TBO and CV on gap (b=6h) 

PGA H4 H8  

TBO TBO TBO 

CV Low Medium High Low Medium High Low Medium High 

Low 2.12 % 11.74 % 28.98 % 1.49 % 8.37 % 27.08 % 1.50 % 8.37 % 27.07 % 

High 4.02 % 11.58 % 29.86 % 1.82 % 7.03 % 24.22 % 1.72 % 6.83 % 23.61 % 
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Table 6.33 The effect of interaction of TBO and capacity utilization on gap (b=6h) 

PGA H4 H8  

TBO TBO TBO 

Capacity 

utilization 

Low Medium High Low Medium High Low Medium High 

Low 1.20 % 10.27 % 27.34 % 0.41 % 6.62 % 24.57 % 0.39 % 6.47 % 24.27 % 

High 4.95 % 13.05 % 31.50 % 2.90 % 8.79 % 26.73 % 2.83 % 8.73 % 26.41 % 

 

Table 6.34 The effect of interaction of setup time and CV on gap (b=6h) 

PGA H4 H8  

Setup time Setup time Setup time 

CV Low High Low High Low High 

Low 14.82 % 13.74 % 12.67 % 11.96 % 12.70 % 11.93 % 

High 14.74 % 15.57 % 11.06 % 11.00 % 10.92 % 10.53 % 

 

Table 6.35 The effect of interaction of setup time and capacity utilization on gap (b=6h) 

PGA H4 H8  

Setup time Setup time Setup time 

Capacity 

utilization 

Low High Low High Low High 

Low 12.79 % 13.08 % 10.14 % 10.93 % 10.07 % 10.68 % 

High 16.77 % 16.22 % 13.59 % 12.02 % 13.54 % 11.78 % 

 

Table 6.36 The effect of interaction of CV and capacity utilization on gap (b=6h) 

PGA H4 H8  

Capacity utilization Capacity utilization Capacity utilization 

CV Low High Low High Low High 

Low 12.16 % 16.40 % 10.64 % 13.99 % 10.51 % 14.12 % 

High 13.71 % 16.60 % 10.43 % 11.62 % 10.25 % 11.20 % 

 

The insight gained as a result of analyzing interactions between different factors 

can be summarized as follows: 

• For high setup times and different levels of TBO (i.e. low and medium), PGA and 

H4 perform better than low setup times. However, the performance of H8 is good 

for high setup times and all levels of TBO.  
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• As the simultaneous effect of TBO and CV is considered (Table 6.32), H4 and H8 

perform better for high CV and medium and high TBO cases. When low CV is 

taken into account, the performance of H4 and H8 deteriorates as TBO increases. 

For low TBOs and low CV, all proposed solution approaches perform better than 

medium and high TBO cases.  

• When simultaneous effects of TBO and capacity utilization (see Table 6.33) are 

concerned all solution approaches perform better for low capacity cases.  

• Across all levels of setup times, H4 and H8 perform better for high CV cases (see 

Table 6.34). However, levels of CV and setup time have a different effect on the 

performance of the PGA. The average gap is the lowest for high CV and low 

setup time cases but the highest for high CV and high setup time cases.  

• When the effect of interaction of setup time and capacity utilization is considered, 

all solution approaches perform better for low capacity cases across all levels of 

setup time (see Table 6.35).  

• Across all levels of capacity, H4 and H8 perform better for high CV cases. 

However, the performance of PGA is better in low CV cases than the performance 

in the high CV cases (see Table 6.36).  

 

Having analyzed the effects of changing backorder cost on performances of PGA, 

H4 and H8 under various experimental factors, we can state that all approaches show 

a similar performance. In other words, their performance is quite robust against the 

changes in backorder cost. Regardless of the level of backorder cost, proposed hybrid 

approaches, H4 and H8 perform better when the demand variability is high and the 

PGA performs better when the demand variability is low. Another insight gained is 

that the performances of all approaches are better under low setup costs and low 

capacity utilization and lastly, all approaches have better performances under high 

setup times in comparison to low setup times.   

 

6.6 Chapter Summary 

 

Lot sizing is one of the most well-known optimization problem in production 

planning. Most of the previous studies in this field focus on solving the CLSP which 
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is known to be NP-Hard. Including the setup carryover and backordering to the 

model makes it more complex so exact algorithms are not capable of producing good 

quality solutions in reasonable computational time. In this chapter, a number of 

hybrid approaches are presented to solve the CLSP+. These hybrid approaches are 

based on the integration of GAs with a MIP based heuristic, Fix-and-Optimize 

heuristic. To our knowledge, this is the first extensive study proposing GAs to deal 

with the CLSP+.  

 

An extensive computational study is made to compare the performance of these 

hybrid approaches to the pure GAs. Since there is no study in the literature to which 

the results can be compared, the results are compared to the lower bounds obtained 

from the Simple Plant Location (SPL) formulation of the MIP model. As a result of 

this comparative study, we could state that the performance of GAs can be improved 

noticeably by hybridizing it with Fix-and-Optimize heuristic in different ways. 

Moreover, the type of decomposition scheme applied in the Fix-and-Optimize 

heuristic has been observed to have an important effect on the solution quality of the 

proposed hybrid approaches.  

 

In order to investigate how the performances of proposed hybrid approaches are 

affected by changes in problem specific parameter values including backorder costs, 

setup times, setup costs, capacity utilization and demand variability an extensive 

experimental analysis is carried out. The results of these experiments are summarized 

with respect to two levels of backorder cost and it is observed that the performances 

of the proposed hybrid approaches are not sensitive to changes in backorder cost.  
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CHAPTER SEVEN 

CONCLUSION 
 
 
7.1 Summary of the Thesis 

 

Lot sizing studies aim at determining the timing and quantity of production in 

order to satisfy the customer demand while minimizing the total cost. Lot sizing 

problem is one of the most challenging production planning problems and solving 

this problem optimally has an important impact on the efficiency of production and 

inventory systems. 

 

The Capacitated Lot Sizing Problem (CLSP) has received a lot of attention of the 

researchers. Due to their importance in production planning and inventory 

management, lot sizing problems have been studied for many years with different 

extensions such as setup times, setup carryover, backordering, parallel machines etc. 

Since most lot sizing problems are hard to solve, the main focus of the research in 

this area has been on developing heuristic approaches to deal with the complexity of 

the problems in reasonable computational time. Among these heuristic approaches, 

evolutionary computation has received increasing attention in recent years. The most 

well known evolutionary computation method is GAs that have been employed to 

solve different optimization problems across various disciplines due to their 

flexibility and simplicity. 

 

Based on the extensive literature review of GA applications for solving lot sizing 

problems given in chapter four, it was noted that most of the research in this area has 

addressed the solution of the CLSP with setup times in single level. Although various 

applications of GAs have been proposed for solving lot sizing problem with different 

modeling features, we have not noted any application of GAs in solving the 

capacitated lot sizing problem with setup times, setup carryover and backordering in 

single level.  
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Regarding methodological contributions in this area, it was noted that  generally, 

pure GAs were employed in most of the studies to solve lot sizing problems and not 

much research was noted in the area of hybridizing GAs with other solution 

approaches. However, since pure GAs are not good at finding the exact minimum in 

a large search space,  the solutions found by pure GAs can still be improved by  

integrating GAs with other metaheuristics or exact methods.  

 

Regarding these perceived research gaps in relevant literature, this Ph.D study 

aims at proposing efficient GA-based hybrid approaches for solving the CLSP+. 

Solution approaches to this complex problem have been developed in two stages. In 

the first stage we focused on the CLSPC, which is less complicated than the CLSP+ 

and proposed two hybrid approaches combining GAs with Fix-and-Optimize 

heuristic. While in the first hybrid approach, two approaches were hybridized 

sequentially where the Fix-and-Optimize heuristic was performed after GAs, in the 

second hybrid approach, the Fix-and-Optimize heuristic was embedded into the loop 

of GAs. Before forming a new population at each generation of GAs, a random 

solution is chosen and it is set as an initial solution for the Fix-and-Optimize 

heuristic. Thus, the Fix-and-Optimize heuristic is used to refine the solution quality 

in each generation of GA and help GA direct the search toward promising regions in 

the search space. In these two hybrid approaches, to divide the problem into smaller 

ones the Fix-and-Optimize heuristic is applied with the time decomposition scheme.  

 

Moreover, to further improve the performance of the proposed hybrid approaches, 

a novel initialization scheme was proposed. The new initialization scheme utilizes 

problem specific information and randomness to create the initial population. 

Problem specific information is obtained by solving the LP relaxation of the CLSP. 

An important experimental design issue in the implementation of this new 

initialization scheme is the determination of ratio of smart part to random part in the 

initial population. This ratio was determined by testing the proposed initialization 

scheme on a set of benchmark problems. Additionally, to maintain the feasibility 

during the search of GAs, a number of repair operators were proposed. To evaluate 

the performance of the proposed approaches, a number of comparative experiments 
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were carried out and it was noted that the proposed hybrid approaches outperform the 

recent results reported in the published literature.  

 

In the second stage of this Ph.D. study, eight GA-based hybrid approaches were 

proposed to solve the CLSP+. While the first four of these approaches are developed 

by modifying sequential hybrid approaches, the remaining four are the modifications 

of embedded hybrid approaches. The Fix-and-Optimize heuristic in these eight 

hybrid approaches was applied with the product decomposition scheme besides the 

time decomposition scheme. The performances of proposed hybrid approaches were 

tested on various instances and it is noted that combining GAs with the Fix-and-

Optimize heuristic in different ways improves the solution quality notably for solving 

the CLSP+. Moreover, a statistical analysis was carried out to examine whether the 

differences between the proposed hybrid approaches are statistically significant. 

Finally, the effects of various parameters including backorder costs, setup times, 

setup costs, capacity utilization and demand variability on performances of proposed 

hybrid approaches were investigated experimentally and it was observed that the 

performances of proposed hybrid approaches are quite robust. 

 

7.2 Contributions 

 

The original contributions of this thesis can be summarized as follows.  

 

• This is the first extensive study employing GAs to solve the capacitated lot 

sizing problem with setup carryover and backordering.  

 

Although there have been numerous solution approaches proposed for 

solving lot sizing problems with different modeling features, there has 

not been enough emphasis on application of GAs for solving the 

capacitated lot sizing problem with setup times, setup carryover and 

backordering. Hence, to fill this research gap, we proposed a number 

of GA-based hybrid solution approaches.  
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• To our knowledge, this is also the first study proposing novel hybrid 

approaches that combine GAs with Fix-and-Optimize heuristic in lot 

sizing area. These hybrid approaches integrate two methods in two ways: 

sequential and embedded. To divide the problem into smaller ones the Fix-

and-Optimize heuristic is implemented with the time decomposition 

scheme.  

 

Pure GAs can quickly identify promising areas in the search space; 

however they are not good at reaching the optimum in large complex 

search spaces. In such cases, the performance of GAs can still be 

improved. Therefore, in order to improve the performance of GAs in 

solving the CLSPC, we proposed two hybridization schemes.  

 

The first methodology hybridizes the GAs and Fix-and-Optimize 

heuristic sequentially, where the Fix-and-Optimize heuristic is 

implemented after GAs. The second methodology is an example of 

embedded hybridization where the Fix-and-Optimize heuristic is 

embedded into the loop of GAs.    

 

• Second, to solve the CLSP+, eight hybrid approaches are proposed.  

 

While the first four of these approaches are the modified versions of 

the sequential hybrid approach the others are developed by modifying 

the embedded hybrid approach. The Fix-and-Optimize heuristic in 

these hybrid approaches utilizes the product decomposition scheme 

besides the time decomposition scheme. Moreover, to divide the 

problem into smaller ones, these two decomposition schemes were 

combined in different ways while implementing the proposed hybrid 

approaches. An extensive experimental analysis was carried out to 

investigate the effects of these combinations on the performance of 

proposed approaches. 

 



 

 

173 

• Unlike the current relevant literature generally employing random 

initialization, in this study, a new approach is proposed to generate the 

initial population of GA.   

 

Considering the complexity of the problem studied in this thesis that 

requires a very large space to be searched for, we proposed a new 

population initialization scheme to improve the search efficiency. The 

proposed initialization scheme consists of both problem specific 

information and randomness. Problem specific chromosomes, called 

smart part were generated based on the solution of the LP relaxation 

of the CLSP, which was the basis of two problems considered in this 

study. An experimental study was carried out to determine the ratio of 

smart part to random part in order to obtain the best results.  

 

• Problem-specific repair operators are proposed to fix the infeasibilities that 

occur after crossover and mutation operators.  

 

The feasibility control has an important effect on the genetic search. To 

maintain the feasibility during the search of GAs, infeasible individuals 

were converted into feasible ones by using some problem specific 

repair operators.   

 

7.3 Future Research Directions 

 

Future research directions can be summarized in two categories.  

 

From the perspective of problem features, some of the future research directions 

can be stated as follows: 

 

• This study considers the capacitated lot sizing problem on a single machine. 

To show the effectiveness of the proposed approaches in solving lot sizing 

problems, the CLSP with setup carryover and backordering can be 
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extended to include features such as parallel machines, lost sales and 

sequence dependent setup times and costs and the proposed hybrid 

approaches can be modified to deal with these new features.   

 

• In this study, we only consider the capacitated lot sizing problem in single 

level. The proposed hybrid approaches can also be modified to solve the 

capacitated lot sizing problems in multi level.  

 

• This study focuses on an example of deterministic lot sizing problem where 

demand is assumed to be known. The proposed hybrid methodologies can 

be adapted to solve the stochastic version of the problem studied.  

 

From the perspective of methodological research, some of the future research 

directions can be stated as follows: 

 

•  To improve the computational efficiency of the proposed hybrid 

approaches the computer programs implementing the proposed methods can 

be optimized so that they execute more rapidly. 

 

•  Another approach to improve the computational efficiency of the proposed 

approaches could be to design parallel GAs and distribute the basic 

elements of GAs to different processors which can work on different parts 

of the program at the same time.  

 

•  The problem can be solved in a multi-objective manner by using pareto 

optimization methods. 

 

Lastly, the performance of proposed hybrid approaches can be investigated 

over real-life problems to identify the limitations of the proposed approaches.  
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Appendix A1 Multiple comparisons for Class 2 

Proposed 
Hybrid  

Approach  
(I) 

Proposed 
Hybrid 

Approaches 
(J) 

Mean Difference  
(I-J) 

Sig. 
(p) 

H1 H2 -8.2600E-02* 0.000 
 H3 -1.2000E-03 1.000 
 H4 -6.0000E-04 1.000 
 H5 2.400E-03 1.000 
 H6 -4.9400E-02* 0.000 
 H7 2.400E-03 1.000 
 H8 3.400E-03 1.000 

H2 H1 8.260E-02* 0.000 
 H3 8.140E-02* 0.000 
 H4 8.200E-02* 0.000 
 H5 8.500E-02* 0.000 
 H6 3.320E-02 0.067 
 H7 8.500E-02* 0.000 
 H8 8.600E-02* 0.000 

H3 H1 1.200E-03 1.000 
 H2 -8.1400E-02* 0.000 
 H4 6.000E-04 1.000 
 H5 3.600E-03 1.000 
 H6 -4.8200E-02* 0.001 
 H7 3.600E-03 1.000 
 H8 4.600E-03 1.000 

H4 H1 6.000E-04 1.000 
 H2 -8.2000E-02* 0.000 
 H3 -6.0000E-04 1.000 
 H5 3.000E-03 1.000 
 H6 -4.8800E-02* 0.000 
 H7 3.000E-03 1.000 
 H8 4.000E-03 1.000 

H5 H1 -2.4000E-03 1.000 
 H2 -8.5000E-02* 0.000 
 H3 -3.6000E-03 1.000 
 H4 -3.0000E-03 1.000 
 H6 -5.1800E-02* 0.000 
 H7 0.0000 1.000 
 H8 1.000E-03 1.000 

H6 H1 4.940E-02* 0.000 
 H2 -3.3200E-02 0.067 
 H3 4.820E-02* 0.001 
 H4 4.880E-02* 0.000 
 H5 5.180E-02* 0.000 
 H7 5.180E-02* 0.000 
 H8 5.280E-02* 0.000 
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Appendix A1 Multiple comparisons for Class 2 (cont.) 

H7 H1 -2.4000E-03 1.000 
 H2 -8.5000E-02* 0.000 
 H3 -3.6000E-03 1.000 
 H4 -3.0000E-03 1.000 
 H5 0.0000 1.000 
 H6 -5.1800E-02* 0.000 
 H8 1.000E-03 1.000 

H8 H1 -3.4000E-03 1.000 
 H2 -8.6000E-02* 0.000 
 H3 -4.6000E-03 1.000 
 H4 -4.0000E-03 1.000 
 H5 -1.0000E-03 1.000 
 H6 -5.2800E-02* 0.000 
 H7 -1.0000E-03 1.000 

* shows that the mean difference is significant at the 0.05 level 

 
Appendix A2 Multiple comparisons for Class 3 

Proposed 
Hybrid  

Approach  
(I) 

Proposed 
Hybrid 

Approaches 
(J) 

Mean Difference  
(I-J) 

Sig. 
(p) 

H1 H2 -4.9800E-02* 0.000 
 H3 3.200E-03 0.999 
 H4 1.800E-03 1.000 
 H5 4.800E-03 0.983 
 H6 -2.4600E-02* 0.000 
 H7 4.000E-03 0.994 
 H8 5.600E-03 0.960 

H2 H1 4.980E-02* 0.000 
 H3 5.300E-02* 0.000 
 H4 5.160E-02* 0.000 
 H5 5.460E-02* 0.000 
 H6 2.520E-02* 0.000 
 H7 5.380E-02* 0.000 
 H8 5.540E-02* 0.000 

H3 H1 -3.2000E-03 0.999 
 H2 -5.3000E-02* 0.000 
 H4 -1.4000E-03 1.000 
 H5 1.600E-03 1.000 
 H6 -2.7800E-02* 0.000 
 H7 8.000E-04 1.000 
 H8 2.400E-03 1.000 

H4 H1 -1.8000E-03 1.000 
 H2 -5.1600E-02* 0.000 
 H3 1.400E-03 1.000 
 H5 3.000E-03 0.999 
 H6 -2.6400E-02* 0.000 
 H7 2.200E-03 1.000 
 H8 3.800E-03 0.996 
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Appendix A2 Multiple comparisons for Class 3 (cont.) 

H5 H1 -4.8000E-03 0.983 
 H2 -5.4600E-02* 0.000 
 H3 -1.6000E-03 1.000 
 H4 -3.0000E-03 0.999 
 H6 -2.9400E-02* 0.000 
 H7 -8.0000E-04 1.000 
 H8 8.000E-04 1.000 

H6 H1 2.460E-02* 0.000 
 H2 -2.5200E-02* 0.000 
 H3 2.780E-02* 0.000 
 H4 2.640E-02* 0.000 
 H5 2.940E-02* 0.000 
 H7 2.860E-02* 0.000 
 H8 3.020E-02* 0.000 

H7 H1 -4.0000E-03 0.994 
 H2 -5.3800E-02* 0.000 
 H3 -8.0000E-04 1.000 
 H4 -2.2000E-03 1.000 
 H5 8.000E-04 1.000 
 H6 -2.8600E-02* 0.000 
 H8 1.600E-03 1.000 

H8 H1 -5.6000E-03 0.960 
 H2 -5.5400E-02* 0.000 
 H3 -2.4000E-03 1.000 
 H4 -3.8000E-03 0.996 
 H5 -8.0000E-04 1.000 
 H6 -3.0200E-02* 0.000 
 H7 -1.6000E-03 1.000 

* shows that the mean difference is significant at the 0.05 level 

 

Appendix A3 Multiple comparisons for Class 4 

Proposed 
Hybrid  

Approach  
(I) 

Proposed 
Hybrid 

Approaches 
(J) 

Mean Difference  
(I-J) 

Sig. (p) 

H1 H2 -3.7800E-02* 0.000 
 H3 1.000E-03 1.000 
 H4 6.400E-03 0.968 
 H5 -7.6000E-03 0.920 
 H6 -2.7000E-02* 0.000 
 H7 -1.1000E-02 0.624 
 H8 -5.2000E-03 0.990 

H2 H1 3.780E-02* 0.000 
 H3 3.880E-02* 0.000 
 H4 4.420E-02* 0.000 
 H5 3.020E-02* 0.000 
 H6 1.080E-02 0.646 
 H7 2.680E-02* 0.000 
 H8 3.260E-02* 0.000 
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Appendix A3 Multiple comparisons for Class 4 (cont.) 

H3 H1 -1.0000E-03 1.000 
 H2 -3.8800E-02* 0.000 
 H4 5.400E-03 0.988 
 H5 -8.6000E-03 0.856 
 H6 -2.8000E-02* 0.000 
 H7 -1.2000E-02 0.511 
 H8 -6.2000E-03 0.973 

H4 H1 -6.4000E-03 0.968 
 H2 -4.4200E-02* 0.000 
 H3 -5.4000E-03 0.988 
 H5 -1.4000E-02 0.303 
 H6 -3.3400E-02* 0.000 
 H7 -1.7400E-02 0.086 
 H8 -1.1600E-02 0.556 

H5 H1 7.600E-03 0.920 
 H2 -3.0200E-02* 0.000 
 H3 8.600E-03 0.856 
 H4 1.400E-02 0.303 
 H6 -1.9400E-02* 0.033 
 H7 -3.4000E-03 0.999 
 H8 2.400E-03 1.000 

H6 H1 2.700E-02* 0.000 
 H2 -1.0800E-02 0.646 
 H3 2.800E-02* 0.000 
 H4 3.340E-02* 0.000 
 H5 1.940E-02* 0.033 
 H7 1.600E-02 0.152 
 H8 2.180E-02* 0.009 

H7 H1 1.100E-02 0.624 
 H2 -2.6800E-02* 0.000 
 H3 1.200E-02 0.511 
 H4 1.740E-02 0.086 
 H5 3.400E-03 0.999 
 H6 -1.6000E-02 0.152 
 H8 5.800E-03 0.981 

H8 H1 5.200E-03 0.990 
 H2 -3.2600E-02* 0.000 
 H3 6.200E-03 0.973 
 H4 1.160E-02 0.556 
 H5 -2.4000E-03 1.000 
 H6 -2.1800E-02* 0.009 
 H7 -5.8000E-03 0.981 

* shows that the mean difference is significant at the 0.05 level 
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Appendix A4 Multiple comparisons for Class 5 

Proposed 
Hybrid  

Approach  
(I) 

Proposed 
Hybrid 

Approaches 
(J) 

Mean Difference  
(I-J) 

Sig. (p) 

H1 H2 -1.0000E-02* 0.000 
 H3 8.800E-03* 0.000 
 H4 9.600E-03* 0.000 
 H5 4.800E-03 0.128 
 H6 -3.6000E-03 0.473 
 H7 6.400E-03* 0.008 
 H8 9.600E-03* 0.000 

H2 H1 1.000E-02* 0.000 
 H3 1.880E-02* 0.000 
 H4 1.960E-02* 0.000 
 H5 1.480E-02* 0.000 
 H6 6.400E-03* 0.008 
 H7 1.640E-02* 0.000 
 H8 1.960E-02* 0.000 

H3 H1 -8.8000E-03* 0.000 
 H2 -1.8800E-02* 0.000 
 H4 8.000E-04 1.000 
 H5 -4.0000E-03 0.330 
 H6 -1.2400E-02* 0.000 
 H7 -2.4000E-03 0.883 
 H8 8.000E-04 1.000 

H4 H1 -9.6000E-03* 0.000 
 H2 -1.9600E-02* 0.000 
 H3 -8.0000E-04 1.000 
 H5 -4.8000E-03 0.128 
 H6 -1.3200E-02* 0.000 
 H7 -3.2000E-03 0.628 
 H8 -2.0817E-17 1.000 

H5 H1 -4.8000E-03 0.128 
 H2 -1.4800E-02* 0.000 
 H3 4.000E-03 0.330 
 H4 4.800E-03 0.128 
 H6 -8.4000E-03* 0.000 
 H7 1.600E-03 0.987 
 H8 4.800E-03 0.128 

H6 H1 3.600E-03 0.473 
 H2 -6.4000E-03* 0.008 
 H3 1.240E-02* 0.000 
 H4 1.320E-02* 0.000 
 H5 8.400E-03* 0.000 
 H7 1.000E-02* 0.000 
 H8 1.320E-02* 0.000 
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Appendix A4 Multiple comparisons for Class 5 (cont.) 

H7 H1 -6.4000E-03* 0.008 
 H2 -1.6400E-02* 0.000 
 H3 2.400E-03 0.883 
 H4 3.200E-03 0.628 
 H5 -1.6000E-03 0.987 
 H6 -1.0000E-02* 0.000 
 H8 3.200E-03 0.628 

H8 H1 -9.6000E-03* 0.000 
 H2 -1.9600E-02* 0.000 
 H3 -8.0000E-04 1.000 
 H4 2.082E-17 1.000 
 H5 -4.8000E-03 0.128 
 H6 -1.3200E-02* 0.000 
 H7 -3.2000E-03 0.628 

* shows that the mean difference is significant at the 0.05 level 

 

Appendix A5 Multiple comparisons for Class 6 

Proposed Hybrid  
Approach  

(I) 

Proposed Hybrid 
Approaches 

(J) 
Mean Difference  

(I-J) 
Sig. (p) 

H1 H2 -2.0000E-04 1.000 
 H3 1.180E-02* 0.000 
 H4 1.100E-02* 0.000 
 H5 -1.2000E-03 0.999 
 H6 2.000E-03 0.968 
 H7 3.400E-03 0.642 
 H8 5.800E-03 0.052 

H2 H1 2.000E-04 1.000 
 H3 1.200E-02* 0.000 
 H4 1.120E-02* 0.000 
 H5 -1.0000E-03 1.000 
 H6 2.200E-03 0.947 
 H7 3.600E-03 0.570 
 H8 6.000E-03* 0.038 

H3 H1 -1.1800E-02* 0.000 
 H2 -1.2000E-02* 0.000 
 H4 -8.0000E-04 1.000 
 H5 -1.3000E-02* 0.000 
 H6 -9.8000E-03* 0.000 
 H7 -8.4000E-03* 0.000 
 H8 -6.0000E-03* 0.038 

H4 H1 -1.1000E-02* 0.000 
 H2 -1.1200E-02* 0.000 
 H3 8.000E-04 1.000 
 H5 -1.2200E-02* 0.000 
 H6 -9.0000E-03* 0.000 
 H7 -7.6000E-03* 0.002 
 H8 -5.2000E-03 0.121 
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Appendix A5 Multiple comparisons for Class 6 (cont.) 

H5 H1 1.200E-03 0.999 
 H2 1.000E-03 1.000 
 H3 1.300E-02* 0.000 
 H4 1.220E-02* 0.000 
 H6 3.200E-03 0.711 
 H7 4.600E-03 0.245 
 H8 7.000E-03* 0.007 

H6 H1 -2.0000E-03 0.968 
 H2 -2.2000E-03 0.947 
 H3 9.800E-03* 0.000 
 H4 9.000E-03* 0.000 
 H5 -3.2000E-03 0.711 
 H7 1.400E-03 0.996 
 H8 3.800E-03 0.498 

H7 H1 -3.4000E-03 0.642 
 H2 -3.6000E-03 0.570 
 H3 8.400E-03* 0.000 
 H4 7.600E-03* 0.002 
 H5 -4.6000E-03 0.245 
 H6 -1.4000E-03 0.996 
 H8 2.400E-03 0.917 

H8 H1 -5.8000E-03 0.052 
 H2 -6.0000E-03* 0.038 
 H3 6.000E-03* 0.038 
 H4 5.200E-03 0.121 
 H5 -7.0000E-03* 0.007 
 H6 -3.8000E-03 0.498 
 H7 -2.4000E-03 0.917 

* shows that the mean difference is significant at the 0.05 level 

 

 
 
 
 
 
 
 




