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NOVEL POSSIBILITIES IN SQUARE-ROOT DOMAIN CIRCUIT D ESIGN 

ABSTRACT 

       

Square root domain circuits are a subclass of the companding circuits propound 

large dynamic range under low-voltage/low power, operating in high frequencies, 

and electronically tuneablity using DC current sources. Due to these advantages, 

companding circuits are compatible with CMOS VLSI technology. Since digital 

circuits are implemented in this technology, design of companding circuits has 

received great attention.  

 

 In this thesis, first order lowpass, second order lowpass, second order bandpass 

filter and an oscillator designed in square root domain are presented. Lossless 

integrator, first order highpass, allpass filters; second order highpass, notch with 

regular, highpass and lowpass cases, allpass filters; Kerwin-Huelsman-Newcomb 

biquad filter; Tow-Thomas biquad filter; fifth order Butterworth lowpass filter and 

quadrature oscillator are proposed as novel in the literature. All square root domain 

circuits are designed by using state space synthesis method. The cut-off frequency 

and the quality factor of filters are electronically tuneable by changing external 

currents and dimensions of MOS transistors, respectively. At the same time, 

oscillation frequency and oscillation condition of oscillators are adjustable by 

external currents. Only MOS transistors and grounded capacitors are used with 

single power supply.  The proposed filters have low THD values, low power 

consumption, large dynamic range due to having externally linear internally 

nonlinear structures.  

 

Keywords: square root domain circuits, state-space synthesis method, companding 

circuits, analog circuit design 
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KAREKÖK DOMEN ĐNDE DEVRE TASARIMINDA YEN Đ OLANAKLAR  

ÖZ 

 

 Karekök ortamı devreler, düşük gerilim/düşük güç altında geniş dinamik alana 

sahip olma, yüksek frekanslarda çalışma, doğru akım kaynakları ile elektronik 

olarak ayarlanabilme özelliklerini sergileyen sıkıştırma-genişletme devrelerinin bir 

alt kümesidir. Bu sözü edilen özelliklerinden dolayı, sıkıştırma-genişletme devreleri 

CMOS çok geniş çapta tümleştirme teknolojisi ile uyumludur. Aynı zamanda sayısal 

devreler CMOS teknolojisi ile gerçekleştirildi ğinden bu tip devreler büyük ilgi 

görmektedir. 

 

 Bu tezde; karekök ortamında tasarlanmış birinci derece alçak geçiren, ikinci 

derece alçak geçiren, ikinci derece bant geçiren filtre ve osilatör devreleri sunulmuş 

olup, kayıpsız integral alıcı, birinci derece yüksek geçiren; ikinci derece yüksek 

geçiren, tüm geçiren, bant süzen filtrenin düzenli, yüksek geçiren ve alçak geçiren 

durumları; Kerwin-Huelsman-Newcomb filtre; Tow-Thomas filtre; beşinci derece 

Butterworth alçak geçiren filtre ile dördün osilatör literatüre yenilik olarak 

önerilmiştir. Tüm karekök ortamı devreler durum-uzay sentez metodu kullanılarak 

tasarlanmıştır. Filterlerin kesim frekansları harici akım kaynakları ile, kalite faktörü 

ise MOS transistörlerin boyutları değiştirilerek elektronik olarak ayarlanabilir. Aynı 

zamanda, osilatörlerin osilasyon frekansı ve osilasyon koşulu harici akım kaynakları 

ile değiştirilebilir. Tüm önerilen devreler, tek güç kaynağı ile MOS transistörler ve 

topraklanmış kapasitelerden oluşturulmuş olup harici doğrusal dahili doğrusal 

olmayan yapıya sahip olmalarından dolayı düşük THD değeri, düşük güç tüketimi, 

geniş dinamik çalışma alanı özelliklerine sahiptir.  

        

Anahtar sözcükler: karekök domeni devreler, durum-uzay sentez metodu, 

sıkıştırma-genişletme devreleri, analog devre tasarımı  
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CHAPTER ONE  

INTRODUCTION 

 

 The fabrication technology of integration of analog and digital circuits on a single 

chip is optimized for digital processing because of limitation of digital circuitry area. 

So, there is a growing interest to design analog interface circuits that are compatible 

the CMOS VLSI technology in which digital circuits are fabricated (Eskiyerli & 

Payne, 2000).  

 

 Companding (compressing and expanding) circuits are very useful for low 

voltage, low power consumption, and high frequency analog systems. These circuits 

are realized based on translinear principle and quadratic current-voltage 

characteristic of MOS (Metal-Oxide Semiconductor) transistors or exponential 

current-voltage   characteristic of BJTs (bipolar junction transistors). In recent years, 

there is a growing interest in the area of companding circuits. The main advantages 

of these circuits can be ordered as having large dynamic range under low voltage 

and also low power consumption, electronically tenability through applied bias 

currents and being designed in current mode with usage in high frequencies 

(Tvisidis and others, 1990; Seevinck,1990; Vlassis & Psychalinos, 2002).  

 

 The companding circuits are classified in two main types, which are log-domain 

circuits and square-root domain circuits. Log-domain circuits are based on the 

exponential relationship between base-emitter voltage (VBE) and collector current 

(IC) of BJTs and translinear principle. In 1979, for the first time, the low-pass filter 

introduced by R. W. Adams is a nonlinear (exponential) mapping on the state 

variables of a state space description of a linear transfer function. Seevinck proposed 

a class AB translinear integrator which is a special type of log-domain circuits 

(1990). Frey offered the complete theory of the log-domain filters in 1993. 

Toumazou and others presented log domain filters in terms of MOSFET circuits that 

operate in weak inversion in 1994. The main disadvantages of these circuits are 

limited operation frequency and drawback caused of transistor mismatches. 

Whereupon, filters and integrators designed with MOSFETs operated in saturation 
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region were introduced by Eskiyerli and others in 1996. These circuits are based on 

the quadratic relationship between drain current (ID) and gate-source voltage (VGS) 

and on the MOS translinear principle. By design topology, these circuits are called 

square-root domain circuits. In square-root domain circuits, two main operators are 

used, which are taking square of voltage and taking square-root of current 

(Psychalinos, 2008). If a current source is applied to drain of MOS transistor, its 

gate-source voltage is expressed by square-root of applied current source; this circuit 

is called compressor. If a voltage is applied across gate to source of MOS transistor, 

drain current is expressed by square of applied gate- source voltage; this circuit is 

called expander.  

 

+

VIN

_

2)()( THGSIN VVVfi −== β
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Figure 1. 1 (a) Compressor, (b) Expander 

 

 Square root domain circuits, which are externally linear internally nonlinear 

(ELIN) circuits, mainly exhibits following features; high speed due to designable in 

current mode, tunability due to applied bias current, high linearity, needing only 

capacitors and transistors during the design, low-voltage/low power consumption, 

large dynamic range, and low fabrication cost.  

 

Synthesis methods for square root domain circuits can be arranged as state space 

synthesis, signal flow graph synthesis, and the substitution of the LC ladder of the 

corresponding prototype by their square root domain equivalents in the literature 

(Eskiyerli &Payne, 2000; Psychalinos, 2008; Vlassis & Psychalinos, 2002; Tsividis, 

1990). In this dissertation, the state space synthesis method, in which the state space 
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description of the transfer function is mapped on the state variables was used. This 

method is also very powerful and efficient approach for externally linear internally 

nonlinear circuits like square root domain circuits (Kırçay & Çam, 2008) 

  

 In this dissertation, it is aimed to propose new square-root domain filters and 

oscillators designed by using state space synthesis method. In this direction, this 

thesis is organized as follows. 

   

 In Chapter 2,  general knowledge about MOS transistors, MOS translinear 

principle with its topologies as stacked and up-down, state space synthesis method 

with its derivations are given. Geometric mean circuit that is a basic block of square 

root domain circuits is also given and simulated in this chapter.  

  

 In Chapter 3, first order lowpass filter is presented. This filter also exists in the 

literature but the presented has simpler structure. In this chapter, lossless integrator, 

first order highpass and allpass filters are proposed for the first time in the literature. 

 

 In Chapter 4, second order lowpass and second order bandpass filters are 

introduced in simpler structures than these reported in the literature. Second order 

highpass, second order notch, second order allpass, KHN biquad, and Tow-Thomas 

biquad filter are proposed as bringing novelty into the literature. 

  

 In Chapter 5, 5th order Butterworth lowpass filter, which is appropriate to be used 

in Wi-Fi and Bluetooth receivers and quadrature oscillator are proposed for the first 

time in the literature. And also an oscillator designed by using state space synthesis 

method is presented. All circuits are simulated in many analyses types as frequency, 

transient, Monte Carlo. Finally, in Chapter 6, the conclusion and future work are 

given. 
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CHAPTER TWO 

BACKGROUND FOR THE DESIGN OF SQUARE ROOT DOMAIN 

CIRCUITS 

 

 Square root domain circuits are based on the quadratic relationship between drain 

current and gate-source voltage of MOSFET (metal oxide semiconductor field effect 

transistor) operated in saturation region and MOS translinear principle. In this 

regard, operating regions of MOS transistors and MOS translinear principle and 

state space synthesis method are explained in this chapter. Besides, geometric mean 

circuit is a basic block for square root domain circuits. Geometric mean circuit, 

which is used in all designs in the thesis, is presented and simulated in this chapter. 

 

2.1 Operating Regions of Metal Oxide Semiconductor Field Effect Transistor 

 

 MOSFET is the most prominent type of field effect transistors. Due to relatively 

simple manufacturing process, requiring quite small silicon area on the IC chip in 

consequence of low cost, compatibility with popular CMOS VLSI technology, low 

power dissipation, MOSFETs have become prevailing in the area of both analog 

integrated and digital integrated circuit design. There are several circuit design 

methods according to operating region of MOSFETs. They have three operating 

regions; 

1. weak inversion  

2. ohmic/triode region (linear region) 

3. Pinch-off region (saturation region) 

 

 When the gate-source voltage, VGS, is less than the threshold voltage, VTH, the 

MOS transistor operates in weak inversion. In this region, n-channel MOS transistor 

behaves as an npn bipolar transistor, where the source acts as a emitter, the substrate 

as the base, the drain as the collector (Gray, Hurts, Lewis, and Meyer, 2001). The 

drain current of MOS transistor in weak inversion is 














−=

−−
)()(

1 TH

DS

TH

THGS

V

V

nV

VV

TD eeI
L

W
I                                (2.1) 
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where  

W : transistor width, 

L : transistor length, 

TI : drain current when VGS =VTH,  

n : 
OX

JS

C

C
+1 , where CJS , COX  are  depletion-region capacitance, oxide capacitance 

per unit area, respectively, 

DSV : drain-source voltage. 

 

 

 
Figure 2. 1 (a) N-channel MOS (NMOS) transistor, (b) P-channel 

MOS (PMOS) transistor 

 

When VDS is less than VGS –VTH, the device operates in the ohmic region. In this 

region, the transistor can be modeled as a nonlinear voltage-controlled resistor 

connected between the drain and source. The drain current of MOS transistor in 

ohmic region is;  

[ ]2)(2
2 DSDSTHGS
OX

D VVVV
L

WC
I −−=

µ
                               (2.2) 

 Since VDS is small, 2
DSV is also small, so the drain current equation becomes a 

linear equation, hence that’s why this region is sometimes called linear region.   

 

 The MOS transistor operates in the pinch-off region, known as saturation region, 

when VDS is greater than VGS –VTH. In the saturation region, the drain current is 

22 )()(
2 THGSTHGS
OX

D VVVV
L

WC
I −=−= βµ

                         (2.3) 



6 

 

where 
L

WCOX

2

µ
β =  is called transconductance parameter. The drain current 

equation in (2.3) known as MOS square law is legitimate for ideal case, second 

order effects like the body effect, mobility reduction, channel length modulation are 

neglected. The MOS square law paves the way for designing of square root domain 

circuits.  

 

2.2 The MOS Translinear Principle 

 

The translinear circuit principle was originally formulated by Gilbert in 1975 as 

meaning of implementing nonlinear signal processing functions by bipolar transistor 

circuits. The translinear circuit, namely transconductance linear, is based on 

exponential relation between voltage and current property of bipolar transistor. By 

trending the CMOS analog circuit techniques, this circuit principle was applied to 

MOS transistors in weak inversion by accepting exponential voltage-current 

characteristics (Vittoz & Fellrath, 1977). Because of  low dynamic range and low 

speed for general application due to the limitations of MOS transistor in weak 

inversion, the translinear principle was applied to MOS transistors operating in 

saturation region (Bult and Wallinga, 1987). In consequence of these developments, 

the translinear principle was generalized as applying to devices having 

transconductance linear with electrical variable such as current or voltage by 

Seevinck and Wiegerink in 1991. Translinear circuits containing bipolar transistors 

are called bipolar translinear (BTL), and translinear circuits containing MOS 

transistors are called MOS translinear (MTL) circuits (Wiegerink,1993).  

 

 MTL circuits are based on loop containing equal numbers of one type (n-type or 

p-type) transistors arranged clockwise (CW) and counterclockwise (CCW). Figure 

2.2 shows NMOS translinear circuit containing four identical NMOS transistors.   
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                          Figure 2. 2 Four transistor NMOS translinear circuit 

 

By using Kirchhoff’s voltage law, the equation of gate-source voltages in the 

counter clock-wise direction as;  

                                          0-- 2341 =+ GSGSGSGS VVVV                              (2.4) 

 

 The gate-source voltage (VGS) is obtained by arranging the Equation (2.3)  

THGS V
I

V +=
β

            (2.5) 

By substituting VGS equation into Equation (2.5), result is 

4

4
4

2

2
2

3

3
3

1

1
1 ββββ

D
TH

D
TH

D
TH

D
TH

I
V

I
V

I
V

I
V +++=+++                   (2.6) 

 

Due to cancellation of threshold voltage terms in both sides, the MLT principle 

can be stated as; the sum of the square roots of the drain currents divided by the 

transconductance parameters in the clock-wise direction is equal to the sum of the 

square roots of the drain current divided by the transconductance parameters in the 

counter clock-wise direction. 

 

A simple linear transconductor circuit proposed by Bult and Wallingra in 1987 is 

shown in Figure 2.3. If it is considered that all transistors are identical and operating 

in saturation region, drain current of M2 is; 

                                                           2
22 )( THGSD VVI −= β                                 (2.7) 

and drain current of M3 is; 

                                                            2
3 )( THIND VVI −= β                                  (2.8) 
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                              Figure 2. 3 A linear transconductor circuit  

 
 Furthermore, because both of these two currents equal to each other equality of 

these gate-source voltages of M2 and M3 are the same. So VIN   is equal to VGS2. 

Consequently, output current; 

)2).(2( 2221 INTH VVVVII −−=− β                                (2.9) 

 

 The circuit in Figure 2.3 is presented as linear V-I converter by Bult and Walling 

in 1987, due to the linear relationship between output current and input voltage. 

Also this linear transconductor is very common useful structure for square-root 

domain circuits to take difference between voltages.   

 

 MOS translinear circuits have two practical translinear loop topologies: stacked 

and up-down (Wiegerink, 1993). These topologies for a loop of four transistors are 

indicated in Figure 2.4. Both topologies in this figure realize the same equation:  

4

4

3

3

2

2

1

1

ββββ
IIII

+=+                                    (2.10) 

 

Although both loop topologies shows same results in ideal case, considering the 

second order effects, they exhibit worthy of notice differences. Body effect is more 
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influential in stacked loop topology. According to circuit complexity, the stacked 

one result in compact circuits and any loop equation can be easily implemented in 

such a topology. On the other hand, some extra circuitry is needed into the up-down 

to loop to force the desired currents.  

 

 MOS translinear topologies are used in squarer/divider, multiplier, geometric 

mean circuits.  

 

Figure 2. 4  (a) Stacked translinear loop, (b) Up-down translinear loop 

 

 

2.3 Geometric Mean Circuit 

 

 

1I 2I

21IIIO =

 
                               Figure 2. 5 Geometric mean circuit symbol 
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 In implementation of square root domain circuits, two different nonlinear 

functions, geometric mean and current squarer/divider, are required (Eskiyerli & 

Payne, 2000). In this thesis, according to the design procedure of square root domain 

circuit, geometric mean circuit was used.  

 

 The geometric mean circuits can be implemented by using stacked and up-down 

topologies. The basic geometric mean circuit with stacked MOS translinear topology 

(Wiegerink, 1993) is shown in Figure 2.6. 

 

 

 

 

 

 

                           Figure 2. 6 The basic geometric mean circuit  

 

 If it is assumed that all transistors in Figure 2.6 are identical, transconductance 

parameters β and threshold voltage VTH are the same. The relationship between 

currents is; 

4321 DDDD IIII +=+                                         (2.11) 

By substituting external current sources in Equation (2.8);  

M 1

M 2

M 3

M4

2I

1I

4
21 II +

2
21

0

II
I =

VDD



11 

 

                                            

(2.12) 

After some arrangements the output current I0 is obtained  

2
21

0

II
I =                                                     (2.13) 

 

 If transconductance parameters of M3 and M4 are taken as two times of 

transconductance of M1 and M2, and drain current of M3 is assumed as 
2

21
0

II
I

+
+ ,  

the output current becomes as 

                                                   210 III =                                                    (2.14) 

The geometric mean circuit which is used by Yu and others in 2005, is more 

complicated than the basic configuration and has advantage when the half value of 

currents does not applied externally. M17 and M18 transistors in the circuit are 

connected to change the direction of the geometric mean of the currents; if these 

transistors are placed in the schematic the output current direction is outward, if 

these transistors are disconnected; output current is drain current of M16 transistor, 

the output current direction is inward. 

 

XI

YI

YX II

Figure 2. 7 Geometric mean circuit used in this thesis 
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In the simulation, supply voltage of the circuit was chosen as 2.5V in TSMC 0.25 

CMOS process. IX current was 1µA and IY current was triangle source with 1µA 

amplitude. During the simulation the aspect ratios of transistors W/L=7 µm/ 0.7 µm 

except W/L = 3.5 µm/ 0.7 µm for transistors M13 and M14. 

4 8 12 16
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I Y
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Figure 2. 8 Simulation results of geometric mean circuit 

 

2.4 State Space Synthesis Method for Square-Root Domain Circuits 

 

As mentioned before, there are different synthesis methods for square root 

domain circuits as state space synthesis, signal flow graph synthesis, and the 

substitution of the LC ladder of the corresponding prototype by their square root 

domain equivalents in the literature (Psychalinos, 2007;  Psychalinos & Vlassis, 

2002). 

 

  It is known that square-root domain circuits are externally linear internally 

nonlinear circuits (ELIN) as log-domain circuits.  In ELIN circuits, linear state-

space models are used to realize any unknown externally linear systems. State space 
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synthesis method is very powerful and efficient approach in the synthesis of this 

type of circuits (Frey, 1993). The method can be also applied for nonlinear systems, 

time invariant systems, current mode circuits, systematic synthesis and computer 

aided design (Lathi, 1992) In this thesis, state-space synthesis method was used. 

The state-space synthesis method can be briefly reviewed and summarized for 

square-root domain circuits as follows; 

1. Find the appropriate state space description for a system. 

2. Make a quadratic mapping function to the input and state variables. 

3. Manipulate the equation to obtain a set of nodal equations. 

4. Design the circuit using transistors, grounded capacitors, and current sources 

(Tola & Frey, 2000; Kırçay and Çam, 2006).  

 

Any linear transfer function H(s) can be represented by a set of linear state 

equations; 

                  )()()( sBUsAXssX +=                                             (2.15) 

)()()( sDUsCXsY +=                                               (2.16) 

A, B, C, and D matrices are coefficient matrices, X(s) is a state variable, U(s) is 

input, and Y(s) is output in frequency domain. Various techniques can be used to 

determine the state- variable representation of a given transfer function, but all of 

them are functionally equivalent.  

 

2.4.1 The Companion Form Technique 

 

The companion form technique is one of the methods to obtain the state space 

representation of a transfer function. In general the transfer function of the nth order 

system is; 

nn
nn

nn
nn

asasas

bsbsbsb

sU

sY
sH

+++
+++

==
−

−
−

−

1
1

1

1
1

10

.......

.......

)(

)(
)(                            (2.17) 

 

According to the bi coefficients different type of filters are obtained as lowpass, 

highpass, bandpass, notch, and allpass filters. If the transfer function is rewritten in 

the time domain, nth order differential equation is;  
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ububububyayayay nn

nn

nn

nn

++++=++++ −

−

−

−
&& 1

)1(

1

)(

01

)1(

1

)(

..................       (2.18) 

In the companion form technique, to obtain state and output equations two situations 

is considered (Ogata, 2009).  

 

2.4.1.1 State Space Representation not Involved Derivative Terms of Input 

 

If the bi coefficients are zero except bn in the nth order system, differential 

equation in (2.14) becomes 

ubyayayay nnn

nn

=++++ −

−
&1

)1(

1

)(

.........                              (2.19) 

Under these conditions, by assuming that; 

 

 

                                             

                                             

(2.20) 

 

 

 

The state variable’s equations and output equation are obtained as follows by 

taking the derivative of the state variables and substituting the derivatives of output 

from the transfer function and delay state equations.   
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So, the state equation in time domain,   

BuAxx +=&                                                    (2.22) 

where      
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and the output equation, 

DuCxy +=                                           (2.23) 

where 

[ ]00...01=C ,  





























=

−

n

n

x

x

x

x

x

1

2

1

.

.

.

. 

In this situation D is zero and the system is first order.  

 

2.4.1.2 State Space Representation Involved Derivative Terms of Input 

 

If the transfer function involves derivative terms of input, differential equation in 

(2.15) is used. To obtain the state equations, there are many choices to determine the 

A, B, C, and D matrixes in state space representation. In the way mentioned by 

Ogata, state equations includes derivative of inputs as;    
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By using the prevalent β  parameters, the state variables are obtained as 
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where βn is given by  

011111 .......... ββββ −−− −−−−= nnnnn aaab                              (2.27) 

So, the state equation in time domain,   

BuAxx +=&                                                    (2.28) 

where      
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and the output equation, 

DuCxy +=                                           (2.29) 

where 
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 During the circuit design, it is known that the coefficients of the state and input 

variables determine currents and voltages of devices. Since the each device has 

some limited current and/or voltage range, if these coefficients are out of the range, 

this kind of circuit are not realizable. From this point of view Arslanalp and Tola 

were presented a modified companion form technique in 2006. In this method, state 

variables are multiplied with arbitrary coefficients;  

 

 

 

(2.30) 

 

 

 

 

 

By choosing values of these coefficients, the state equations become compatible for 

circuit design.   

 

2.4.2  Canonical Forms 

 

Another method to obtain state space representation is to use the canonical forms; 

observable canonical form and controllable canonical form. Observable and 

controllable canonical forms are often used when modeling starting from input-

output description or in pole placement design (Moscinski and Ogonowski,1995). 
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These two canonical forms provide appropriate state space representation to realize 

square root domain circuits.  

 

2.4.2.1 Observable Canonical Form 

 

For nth order differential equation in Equation (2.18), the state equation is 

BuAxx +=&                                                    (2.31) 

where      
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and the output equation is, 

DuCxy +=                                           (2.32) 

where 
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in observable canonical form.  

 

2.4.2.2 Controllable Canonical Form 

 

For nth order differential equation in Equation (2.15), the state equation is 

BuAxx +=&                                                    (2.33) 

where      
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and the output equation is, 

DuCxy +=                                           (2.34) 

where 
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in controllable canonical form.  
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CHAPTER THREE 

SQUARE ROOT DOMAIN FIRST ORDER CIRCUITS 

 

 In this chapter, lossless integrator, first order highpass filter, and first order 

allpass filter designed by using state space synthesis method in square root domain 

are proposed for the first time in the literature. First order lowpass which is 

introduced before in the literature, is presented that is designed by using different 

state space equations. All circuits are simulated by using PSpice simulation 

program. 

  

3.1 Lossless Integrator  

 
 Lossless integrator circuit is a useful basic element of integrated circuit filters. By 

combining lossless integrators and another circuit block, biquad filters and high 

order filters can be realized.  The transfer function of the lossless integrator is  

s

k
sH =)(                                                        (3.1) 

where k is scaling factor. To make appropriate the lossless integrator to realization 

of biquad filters and high order filters, k can be chosen ±ω0Q or ±ω0/Q  where ω0 is 

natural frequency and Q is the quality factor, respectively. In the literature, there are 

many lossless integrator circuit designed with OTA (Sinencio, Geiger, and Lozano, 

1998), current differential amplifiers (Souliotis, Chrisanthopoulos and Haritantis, 

2001). In square root domain, lossless integrator designed by using signal flow 

graph approach was presented by Psychalinos and Vlassis in 2002 and by using state 

space synthesis was presented by Ölmez and Çam in 2009. To predispose the 

lossless integrator to biquad filters, the transfer function is chosen as 

        
s

Q
sH

/
)( 0ω

=                                                    (3.2) 

where ω0, Q are natural frequency and quality factor, respectively. The state space 

representation obtained by using companion form technique is expressed as  

u
Q

x 0ω
=&                                                     (3.3) 

xy =  
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If the node voltage V1 and voltage signal U are assumed the state variable x and 

input  u, state and output equations in (3.3) are rewritten as  

Q

UC
VC 0

1
ω

=&                                               (3.4) 

1Vy =  

where C is a capacitor value seemed multiplying factor. By assuming that U is gate-

source voltages of MOS transistor operating in saturation region with  its drain 

current is defined as Iu and CIVC =1
&  is current of the capacitor Equation (3.4) is 

arranged that 

)(0
TH

u
C V

I

Q

C
I +=

β
ω

                                   (3.5) 

where Iu=β(U-VTH)2. Hence, the state equation in (3.5) is transformed into  

THuC I
Q

II
Q

I
11

0 +=                                      (3.6) 

where the bias current βω /)( 22
00 CI = , and threshold voltage compensation 

current ITH=ω0CVTH. The square root domain lossless integrator consisting of a 

geometric mean circuit, a current mirror, a capacitor is shown in Figure 3.1.   

 

 

U0 II

Q

1

Q

1

 
                        Figure 3. 1 The lossless integrator circuit 
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To implement the lossless integrator circuit, D.C. operating points must be 

considered. By assuming that the state variable x has D.C. term V1 and A.C. term v1 

and similarly the input u has D.C. term U and A.C. term u (Chen, 2003), state 

equation in Equation (3.4) is rearranged  as  

Q

uUC
vVC

)(
)( 0

11
+

=+
ω

&&                                           (3.7)        

When D.C. terms and A.C. terms are separated, the state equation is 

Q

uC

Q

UC
vCVC 00

11
ωω

+=+ &&                                        (3.8) 

 In D.C. operating point analysis, current of a capacitor must be zero. So, the D.C. 

terms must also be equal to zero.  To equate the D.C. terms of Equation (3.8) to zero 

a D.C. current is added  

00
1 =+= DCI

Q

UC
VC

ω
&                                            (3.9) 

where IDC=-(Cω0U)/Q. By substituting the D.C. current source in Equation (3.6) 

Q

UC
I

Q
II

Q
II

Q
II

Q
I THuDCTHuC

0
00

1111 ω
−+=++=               (3.10) 

Due to ITH is also a DC current source, an external current source Ibias added to 

state equation is    

Q

UC
VC

Q
I THbias

0
0

1 ωω −=                                         (3.11) 

 

According to adjustments, the D.C. current source applied to V1 node is changed 

with the Ibias current source. The quality factor can be adjusted by changing W/L 

ratio of M3 transistor and value of Ibias current source. 

 
 Similarly, to make appropriate lossless integrator to biquad filters, the transfer 

function can be chosen as 

        
s

Q
sH 0)(

ω
=                                                    (3.12) 

By using companion form technique, the state space representation is obtained as  

uQx 0ω=&                                                     (3.13) 
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xy =  

 While same design steps for first lossless integrator are followed, second lossless 

integrator is designed with state equations as follows 

THuC QIIIQI += 0                                               (3.14) 

1Vy =  

where  Iu=β(U-VTH)2, βω /)( 22
00 CI = , and THTH CVI 0ω= . The second lossless 

integrator circuit under these state equations is shown in Figure 3.2. 

 
 

U0 II

 

                       Figure 3. 2 Second lossless integrator circuit  

 

 Similarly to first lossless integrator circuit, to provide D.C. conditions, a bias 

current is added to state equation as Ibias=QCω0VTH - QCω0U and this current is 

changed with QITH current source.  

 

 By using TSMC 0.25µm CMOS Level 3 model parameters (Appendix), the 

proposed first lossless integrator was simulated with values of integrator parameters 

given in Table 3.1. Under these conditions, theoretical natural frequency is 1.87MHz 

while simulated is 1.84MHz. Gain and phase responses of the proposed lossless 

integrator are indicated in Figure 3.3 and Figure 3.4, respectively. 
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Table 3. 1 The parameters of the proposed first lossless integrator  
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                    Figure 3. 3 Gain response of the proposed first lossless integrator 

 

Parameter values 

Q  1 

VDD  2.5V 

U (D.C. voltage) 0.7V 

C 7pF 

I0 70µA 

Ibias 27.2µA 

Aspect ratio of transistor M1 7µm/7µm 

Aspect ratios of transistors M2 and M3 1µm/7µm 
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                  Figure 3. 4 Phase responses of the proposed first lossless integrator 

 

When input sinusoidal amplitude was 10mV at 1.87MHz, bias current was 70µA 

the time response of the lossless integrator was simulated as given in Figure 3.5. 

This causes 139ns time delay at the output of the integrator corresponding to 93.5° 

phase difference. As it is seen from the equations, the natural frequency and quality 

factor are tunable. So to verify the theoretical study, the cut-off frequency and the 

quality factor were varied by adjusting the bias current and by adjusting the aspect 

ratios of M3 transistor and value of Ibias current source, respectively. Electronically 

tunable gain response of the proposed filter for six different bias currents, from 40 

µA to 90 µA, is depicted in Figure 3.6. Figure 3.7 shows the gain response of the 

lossless integrator, while quality factor is 0.1, 0.5, 1, 5, and 10.  

 

The dependence of the output harmonic distortion of lossless integrator on input 

signal amplitude was illustrated in Figure 3.8. As shown in this Figure, THD 

increases with input signal. As such, input signal must be 340 mV or less to avoid 

output distortion. 
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                 Figure 3. 5 The time response of the proposed lossless integrator 
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  Figure 3. 6 The phase response of the proposed lossless integrator for I0 is  

  40µA, 50µA, 60µA, 70µA, 80µA, and 90µA 
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   Figure 3. 7 The gain response of the proposed lossless integrator for Q is 0.1,  

   0.5, 1, 5, and 10 
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                  Figure 3. 8 Total harmonic distortion (THD) as a    function    of    input   signal  

                  amplitude at 1.87 MHz. 
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3.2 First Order Lowpass Filter   

 
In square root domain, first order lowpass filter was presented by Eskiyerli, 

Payne, and Toumazou in 1996 with state space synthesis method and by Psychalinos 

and Vlassis in 2002 with combining geometric mean and multiplier/divider blocks. 

In this dissertation, a different first order lowpass filter was introduced by using state 

space synthesis method.   

 

It is known that, a transfer function of any system can be represented by different 

state space equations and also with different state variables but it does not cause any 

effect on system behavior. The transfer function of a first order low pass filter is 

expressed as 

                                                        
0

0)(
ω

ω
+

=
s

sH                                              (3.15) 

where ω0 is cut-off frequency. The state space representation obtained by using 

companion form technique (Eskiyerli and others, 1996) is expressed as  

xu 00x ωω −=&                                              (3.16) 

xy =  

If the node voltage V1 and voltage signal U are assumed the state variables x and 

u, state and output equations in (3.16) are rewritten as  

1001 VCUCVC ωω −=&                                        (3.17) 

1Vy =  

where C is a capacitor value as seemed multiplying factor. By assuming that U and 

V1 are gate-source voltages of MOS transistors operating in saturation region with 

their drain currents are defined as Iu, I1, respectively. So, CIVC =1
&  is current of the 

capacitor Equation (3.17) is arranged as 

)()( 1
00 THTH

u
C V

I
CV

I
CI +−+=

β
ω

β
ω                   (3.18) 

where Iu=β(U-VTH)2 and I1=β(V1-VTH)2. Hence, the state equation in (3.18) is 

transformed into  

100 IIIII uC −=                                      (3.19) 
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where the bias current βω /)( 22
00 CI = . The square root domain first order lowpass 

filter consisting of two geometric mean circuits, current mirror circuits, and a 

capacitor is shown in Figure 3.9.   

 

U0 II 10 II

 Figure 3. 9 A square root domain first order lowpass filter 

 

It is seen that, D.C. operating conditions must be provided. By assuming that the 

state variable x has D.C. term V1 and A.C. term v1 and similarly the input u has D.C. 

term U and A.C. term u, state equation in Equation (3.17) is rearranged as  

)()()( 110011 vVCuUCvVC +−+=+ ωω&&                              (3.20) 

When D.C. terms and A.C. terms are separated, the state equation is 

10100011. vCVCuCUCvCVC ωωωω −−+=+ &&                        (3.21) 

 Since current of a capacitor should be zero in D.C. operating point analysis, the 

D.C. terms of Equation (3.21) are set to zero. If it is assumed that V1 is equal to U, 

the D.C. operating conditions are provided and there is no need to add any bias 

current to the circuit.   

 

By using TSMC 0.25µm CMOS Level 3 model parameters (Appendix), the first 

order lowpass filter was simulated with values of parameters given in Table 3.2.  

Under these conditions, theoretical cut-off frequency is 1.66MHz while simulated is 

1.69MHz. Gain and phase responses of the first order lowpass filter are indicated in 

Figure 3.10 with theoretical response. 
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Similarly to lossless integrator, cut off frequency of all square root domain filters 

designed with state space synthesis method can be adjustable by changing the bias 

current I0. Electronically tunable gain response of the filter for five different bias 

currents, from 5 µA to 45 µA, is depicted in Figure 3.11 with theoretical response. 

 

Table 3. 2 The parameters of the first order lowpass filter 
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                      Figure 3. 10 Gain and phase responses of the first order lowpass filter  

 

Parameter values 

VDD  2.5V 

U (D.C. voltage) 0.7V 

C 1pF 

I0 10µA 

Aspect ratio of transistor M1 and  M2 10µm/10µm 

Aspect ratios of transistors M3-M7 0.7µm/7µm 
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When input sinusoidal amplitude was 10mV at 1.66MHz, bias current was 10µA 

the time response of the first order lowpass filter was simulated as given in Figure 

3.12. This causes 79.857ns time delay at the output of the filter corresponding to 47° 

phase difference.  
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Figure 3. 11 Electronically tunable gain response of the   first order   lowpass 

filter for I0 is 5µA, 15µA, 25µA, 35µA, and 45µA 

 
 

The dependence of the output harmonic distortion of first order lowpass filter on 

input signal amplitude was illustrated in Figure 3.13. As shown in this Figure, THD 

increases with input signal. As such, input signal must be 280 mV or less to avoid 

output distortion. 

 

The performance of the first order lowpass filter in terms of the sensitivity of 

MOS transistor parameter mismatch and tolerances of the capacitors has been 

evaluated by performing Monte Carlo simulations. For performing the Monte Carlo 
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analysis, W and L dimensions of the all transistors in the filter have uniform 

distribution with 5% tolerances and the capacitor in the filter circuit have uniform 

deviation with 10% tolerances. The gain response of the first order lowpass filter 

with Monte Carlo analysis for 100 runs is shown in Figure 3.14 when the cut off 

frequency is 1.66MHz. The cut off frequency was obtained between 1.54MHz and 

1.86 MHz during the analysis.   
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                       Figure 3. 12  The time response of the first order lowpass filter 
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Figure 3. 13 Total harmonic distortion (THD) of  first order    lowpass    filter  

as a function  of  input signal amplitude at 1.66 MHz. 
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                       Figure 3. 14 Gain response of the first order lowpass filter with Monte Carlo  

                       analysis 
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3.3 First Order Highpass Filter   

 
It is known that highpass filter is the one of useful basic filter type. In the 

literature, there are square root domain differentiator circuits that are pure 

differentiator and not designed by using state space synthesis method (Vlassis and 

Psychalinos, 2004; Fouad and Soliman, 2005). In this thesis, a square root domain  

first order highpass filter is presented for the first time in literature. 

 

The transfer function of a first order high pass filter is expressed as 

                                                        
0

)(
ω+

=
s

s
sH                                              (3.22) 

where ω0 is cut-off frequency. The state space representation obtained by using 

observable canonical form is expressed as  

ux 00x ωω −−=&                                              (3.23) 

uxy +=  

To realize the filter, state variable x  is multiplied with -1 and the final state 

equations are obtained;  

ux 00x ωω +−=&                                              (3.24) 

uxy +−=  

If the node voltage V1 and voltage signal U are assumed the state variables x and u, 

state and output equations in (3.24) are rewritten as  

UCVCVC 0101 ωω +−=&                                        (3.25) 

UVy +−= 1  

where C is a capacitor value as seemed multiplying factor. By assuming that U and 

V1 are gate-source voltages of MOS transistors operating in saturation region with 

their drain currents are defined as Iu, I1, respectively. So, CIVC =1
&  is current of the 

capacitor Equation (3.25) is arranged that 

)()( 1
00 THTH

u
C V

I
CV

I
CI +−+=

β
ω

β
ω                   (3.26) 

where Iu=β(U-VTH)2 and I1=β(V1-VTH)2. Hence, the state equation in (3.26) is 

transformed into  
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uC IIIII 010 +−=                                      (3.27) 

where the bias current βω /)( 22
00 CI = . The square root domain first order 

highpass filter consisting of two geometric mean circuits, current mirror circuits, a 

summation block and a capacitor is shown in Figure 3.15.   

 

At the first sight, it can be said that similarly to first order lowpass filter, when 

D.C. operating point analysis is considered, if it is assumed that V1 is equal to U, the 

D.C. operating conditions are provided and there is no need to add any bias current 

to the circuit. This is valid for state equation but not for output equation. So, if it is 

assumed that U/2 is equal to V1; Equation (3.25) is rearranged  

UC
U

CVC 001 2
ωω +−=&                                (3.28) 

To equate the D.C. terms of Equation (3.28) to zero a D.C. current is added  

0
2

. 001 =++−= DCIUC
U

CVC ωω&                         (3.29) 

where IDC=-Cω0U/2. By substituting the D.C. current source in Equation (3.27) 

DCuC IIIIII ++−= 010                                  (3.30) 

 

UII 0 10II

 Figure 3. 15 Square root domain first order highpass filter  
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According to adjustments, the modified square root domain first order highpass 

filter circuit is indicated in Figure 3.16.  

 

UII 0 10II

 Figure 3. 16 Modified square root domain first order highpass filter 

 

By using TSMC 0.25µm CMOS Level 3 model parameters (Appendix), the 

presented first order highpass filter was simulated with values of parameters given in 

Table 3.3.  Under these conditions, theoretical cut-off frequency is 1.65MHz while 

simulated is 1.7MHz. Gain and phase responses of the first order highpass filter are 

indicated in Figure 3.17 with theoretical response. 

Table 3. 3 The parameters of the first order highpass filter 

 Parameter values 

VDD  2.5V 

U (D.C. voltage) 1.4V 

C 3pF 

I0 10µA 

IDC 21.83µA 

Aspect ratio of transistor  M1 and M2  7µm/7µm 

Aspect ratios of transistors M3-M10 0.7µm/7µm 
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Figure 3. 17 Gain and phase responses of the first order highpass filter  
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                    Figure 3. 18 Electronically tunable gain response of the first order highpass  

   filter for I0 is 5µA, 10µA, 15µA, 20µA, and 25µA 



38 

 

Electronically tunable gain response of the filter for five different bias currents, 

from 5µA to 25µA, is depicted in Figure 3.18 with theoretical response. When input 

sinusoidal amplitude was 10mV at 2.02MHz, bias current was 15µA the time 

response of presented first order highpass filter was simulated as given in Figure 

3.19. This causes 59.4ns time delay at the output of the filter corresponding to -43.2° 

phase difference.  

 

The dependence of the output harmonic distortion of presented first order 

highpass filter on input signal amplitude was illustrated in Figure 3.20. As shown in 

this Figure, THD increases with input signal. As such, input signal must be 470 mV 

or less to avoid output distortion. 
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   Figure 3. 19 The time response of the first order highpass filter 
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                  Figure 3. 20 Total harmonic distortion (THD) of   presented   first order highpass   

                 filter as a function  of  input signal amplitude at 2.02MHz. 

 
 

The performance of the first order highpass filter in terms of the sensitivity of 

MOS transistor parameter mismatch and tolerances of the capacitors has been 

evaluated by performing Monte Carlo simulations. For performing the Monte Carlo 

analysis, W and L dimensions of the all transistors in the filter have uniform 

distribution with 5% tolerances and the capacitor in the filter circuit have uniform 

deviation with 10% tolerances. The gain response of the first order highpass filter 

with Monte Carlo analysis for 100 runs is shown in Figure 3.21 when the cut off 

frequency is 2.02MHz. The cut off frequency was obtained between 1.88MHz and 

2.25MHz during the analysis.   
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   Figure 3. 21 Gain response of the first order highpass filter with Monte Carlo  

                    analysis 

 

3.4  First Order Allpass Filter  

 
One of the most important building blocks in analog signal processing 

applications is the allpass filter. Allpass filters also called phase shifters generate 

frequency-dependent delay while holding the amplitude of the input signal over the 

desired frequency range (Schaumann & Valkenburg, 2001). There are two square 

root domain first order allpass filters presented in the literature. One of them is 

designed by using N-cell and P-cell (Ozoğuz, Abdelrahman, & Elwakil, 2006) and 

the other is designed by using state space synthesis method (Ölmez and Çam, 

2010a).  

 

A first-order allpass filter transfer function can be written as follows, 

0

0)(
ω
ω

+
−

=
s

s
asH                                             (3.31) 
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where 0ω  is the center frequency and a is gain of the filter. When a is chosen as -1, 

the transfer function of the first order allpass filter is expressed as   

0

0)(
ω
ω

+
−

−=
s

s
sH                                            (3.32) 

By using observable canonical form, transfer function in Equation (3.32) is 

transformed to the following equations: 

  ux 00 2x ωω +−=&                                           (3.33) 

uxy −=  

If the node voltage V1 and voltage signal U are assumed the state variables x and u, 

state and output equations in (3.33) are rewritten as  

UCVCVC 0101 2 ωω +−=&                                        (3.34) 

UVy −= 1  

where C is a capacitor value as seemed multiplying factor. By assuming that U and 

V1 are gate-source voltages of MOS transistors operating in saturation region with 

their drain currents are defined as Iu, I1, respectively. So, CIVC =1
&  is current of the 

capacitor Equation (3.34) is arranged that 

)(2)( 0
1

0 TH
u

THC V
I

CV
I

CI +++−=
β

ω
β

ω                   (3.35) 

where Iu=β(U-VTH)2 and I1=β(V1-VTH)2. Hence, the state equation in (3.35) is 

transformed into  

THuC IIIIII ++−= 010 2                                     (3.36)          

where 
1

VCI
C

&= , βω /)( 22
00 CI =  ,   and THTH

CVI 0ω= . When D.C. operating 

point analysis is considered, if it is assumed that V1 is equal to 2U, the output 

equation of the filter can be realized. Under this condition state equation in Equation 

(3.34) is rearranged as 

UCUCVC 001 22 ωω +−=&                                (3.37) 

 

To equate the D.C. terms of Equation (3.37) to zero there is no need to add any 

D.C. current. So, the state equation in (3.36) is appropriate to realize the filter. 
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According to this configuration, the negative gain first order allpass filter is 

indicated in Figure 3.22. 

 

U0 II 10 II

Figure 3. 22 The first order square-root domain allpass filter 

 

 To realize the negative gain first order allpass filter, there is a one way more that; 

if Iu is defined as 4β(U-VTH)2 , the state equation is rearranged as  

THuC IIIIII ++−= 010                                       (3.38) 

where 
1

VCI
C

&= , βω /)( 22
00 CI =  ,   and THTH

CVI 0ω= . 

By using TSMC 0.25µm CMOS Level 3 model parameters (Appendix), the first 

order allpass filter  was simulated with values of parameters given in Table 3.4.  

Under these conditions, theoretical cut-off frequency is 3.21MHz while simulated is 

3.18MHz. Gain and phase responses of the first order allpass filter are indicated in 

Figure 3.23 with theoretical response.  
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       Figure 3. 23 Gain and phase response of the first-order allpass filter 

 

 

 

Table 3. 4 The parameters of the first order allpass filter 

 

 

 

 

 

 

 

 

 

 

 

Similarly to other filter circuits, the cut off frequency of allpass filter can be 

adjustable by chancing the bias current I0. Electronically tunable gain response of 

Parameter values 

VDD  2.5V 

U (D.C. voltage) 0.85V 

C 1.5pF 

I0 10µA 

ITH 12.06 µA 

Aspect ratio of transistor M1 and  M2 7µm/7µm 

Aspect ratios of transistors M3-M5  and  M7-M10   0.7µm/7µm 

Aspect ratios of transistor M6 0.7µm /14µm 
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the filter for five different bias currents, from 5 µA to 25 µA, is depicted in Figure 

3.24. 

 

 

0.1 1 10 100
Frequency (MHz)

-200

-160

-120

-80

-40

0
P

ha
se

 (d
eg

re
e)

I 0=5µA f0=2.41MHz
I0=10µA f0=3.18MHz

I 0=15µA f0=3.75MHz

I 0=20µA f0=4.16MHz

I 0=25µA f0=4.52MHz

 
Figure 3. 24 Electronically tunable phase response of the first  order   allpass  

                    filter 

 

Figure 3.25 shows the time domain response of the filter when bias current is 

10µA and input voltage with 10mV amplitude at 3.21MHz frequency. This causes 

78.07ns time delay at the output of the filter corresponding to 91.94° phase 

difference which is close to the theoretical value (90°). The dependence of the 

output harmonic distortion of presented filter on input signal amplitude is illustrated 

in Figure 3.26. Due to this Figure THD increases when the input signal is increased. 

To avoid the distortions at the output signal, maximum amplitude value of the input 

signal must be 200mV.  
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  Figure 3. 25 Time domain response of the    presented negative    gain     first 

  order  all pass filter 
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Figure 3. 26 THD  versus input signal amplitude at 3.21MHz of allpass filter  
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CHAPTER FOUR 

SQUARE ROOT DOMAIN SECOND ORDER CIRCUITS 

 

 In this chapter, second order highpass, second order notch filter with regular, 

lowpass and highpass notch cases, second order allpass filter, KHN biquad filter, 

and Tow-Thomas biquad filter are proposed as novel square root domain filters to 

the literature. Second order lowpass and second order bandpass filters are also 

simulated in this chapter as having alternative structures from the papers in the 

literature. To obtain operating conditions of filters, different analysis are done.  

  

4.1 Second Order Lowpass  Filter  

 
In the literature, there are square root domain second order lowpass filters (Gwo-

Jeng Yu, 2005; Menekay, Tarcan, & Kuntman,  2006;) designed by using state space 

synthesis method. It is proven that any system having transfer function can be 

represented by different state and output equations. Although one form of state 

equations is seen in the literature, in this dissertation, to make easier to realize the 

filter circuit some modifications were done. The transfer function of second order 

low pass filter is expressed as 

2
0

02

2
0)(

ωω
ω

++
=

s
Q

s
sH                                                (4.1) 

where ω0, Q are cut-off frequency and quality factor, respectively. The state space 

representation obtained by using observable canonical form is expressed as  

ux 2
02

2
01x ωω +−=&                                              (4.2) 

2
0

12x x
Q

x
ω

−=&  

2xy =  

To realize the filter, state variable x  is multiplied with ω0/Q and the final state 

equations are obtained;  

uQxQ 0201x ωω +−=&                                              (4.3) 
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                                                 2
0

1
0

2x x
Q

x
Q

ωω
−=&  

2xy =  

If the node voltage V1, V2 and voltage signal U are assumed the state variables x1, x2, 

and input u, state and output equations in (3.24) are rewritten as  

UQCVQC 0201VC ωω +−=&                                              (4.4) 

                                          2
0

1
0

2VC V
Q

C
V

Q

C ωω
−=&  

2Vy =  

where C is a capacitor value seemed as multiplying factor. 
1

VC &  and 
2

VC &  are 

accepted a current flows through a grounded capacitor C  whose voltage across its 

terminals in order given V1  and V2 and by assuming that U, V2,  and V1 are gate-

source voltages of MOS transistors operating in saturation region with their drain 

currents are defined as Iu, I2, and I1, respectively. So capacitor current equations in 

(4.4) are arranged as 

)()( 0
2

01 TH
u

THC V
I

QCV
I

QCI +++−=
β

ω
β

ω                   (4.5) 

                                )()( 2010
2 THTHC V

I

Q

C
V

I

Q

C
I +−+=

β
ω

β
ω

 

where I1=β(V1-VTH)2 , I2=β(V2-VTH)2 , Iu=β(U-VTH)2 , 
11

VCI
C

&= , and 
22

VCI
C

&= . 

Hence, the state equations in (4.5) are transformed into  

uC IIQIIQI 0201 +−=                                      (4.6) 

20202
11

II
Q

II
Q

I C −=  

 

where the bias current βω /)( 22
00 CI = . The square root domain second order 

lowpass filter consisting of three geometric mean circuits, current mirror circuits, 

and two capacitors is shown in Figure 4.1.   
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Figure 4. 1 Square root domain second order lowpass filter  

 

 It is shown that, D.C. operating point must be considered to realize square root 

domain circuits. Similarly to first order circuits in Chapter 3, state equations 

symbolized of a capacitor’s current must be equal to zero. So, if V1 is assumed to 

equal to U and also to V2, D.C. operating point analysis is ensured.  

 

In the other square root domain second order lowpass filter simulations in the 

literature, there is an additive D.C. current source beside the configuration of the 

presented.  By using TSMC 0.25µm CMOS Level 3 model parameters (Appendix),  

the second order lowpass filter was simulated with values of parameters given in 

Table 4.1. Under these conditions, theoretical cut-off frequency is 1MHz while 

simulated is also 1MHz as seen in Figure 4.2.  

 

Table 4. 1 The parameters of the second order lowpass filter 

 
Parameter values 

VDD  2.5V 

U (D.C. voltage) 0.7 V 

Q 1 

C 5pF 

I0 10µA 

Aspect ratio of transistors M1-M3 10µm/10µm 

Aspect ratios of transistors M4-M12   0.7µm/7µm 
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                      Figure 4. 2 Gain and phase responses of the second order lowpass filter 

 
It can be noticed that the cut off frequency can be tuneable by chancing the bias 

current I0. Electronically tunable gain response of the filter for four different bias 

currents, from 10 µA to 40 µA, is depicted in Figure 4.3 with theoretical response. 

 

The quality factor can be adjusted by changing W/L ratio of M5, M7, M11, and 

M12 transistors. Figure 4.4 shows the gain response of the second order lowpass 

filter, while quality factor is 0.1, 0.5, 1, 2, and 5. 

 

To examine the time response of the filter, a sinusoidal signal was applied to 

input when its amplitude was 10mV at 1MHz. Figure 4.5 indicates the time response 

of the second order lowpass filter when bias current is 10µA.  This causes 246ns 

time delay at the output of the filter corresponding to -89° phase difference. The 

dependence of the output harmonic distortion of filter on input signal amplitude was 

illustrated in Figure 4.6. As shown in this figure, THD increases with input signal. 

As such, input signal must be 220 mV or less to avoid output distortion. 
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                   Figure 4. 3 Electronically tunable gain response of the second order   lowpass  

                   filter for I0 is 10µA, 20µA, 30µA, and 40µA 
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                    Figure 4. 4 The gain response of the second order lowpass filter  for Q is  0.1,  

                    0.5, 1, 2, and 5 
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    Figure 4. 5 The time response of the second order lowpass filter 
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                      Figure 4. 6 Total harmonic distortion (THD) as a   function of    input    signal  

                      amplitude at 1MHz 
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                       Figure 4. 7 Gain response of the second order lowpass filter with Monte Carlo 

                       analysis  

 
The performance of the second order lowpass filter in terms of the sensitivity of 

MOS transistor parameter mismatch and tolerances of the capacitors has been 

evaluated by performing Monte Carlo simulations. For performing the Monte Carlo 

analysis, W and L dimensions of the all transistors in the filter have uniform 

distribution with 5% tolerances and the capacitor in the filter circuit have uniform 

deviation with 10% tolerances. The gain response of the second order lowpass filter 

with Monte Carlo analysis for 100 runs is shown in Figure 4.7 under the conditions 

in Table 4.1. The cut off frequency was obtained between 963KHz and 1.19MHz 

during the analysis.   

 

4.2 Second Order Highpass  Filter  

 
The square root domain second order highpass filter is designed by mapping on 

the state variables of the state space description of its transfer function declared as; 
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2
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s
Q

s

s
sH                                                (4.7) 

where ω0, Q are cut-off frequency and quality factor, respectively. The state space 

representation obtained by using companion form technique is expressed as  

u
Q

x 0
21x

ω
−=&                                              (4.8) 

 

 

uxy += 1  

To realize the filter, state variable x1 and x2 are multiplied with -1 and ω0/Q, 

respectively. So the final state equations are obtained;  

u
Q

x
Q

0
2

0
1x

ωω
+−=&                                              (4.9) 

                                                 )(x 0
0

2
0

102 ωωωω Q
Q

ux
Q

xQ −+−=&  

uxy +−= 1  

If the node voltage V1 , V2 and voltage signal U are assumed the state variables x1, 

x2, and u, state and output equations in (4.9) are rewritten as  

U
Q

CV
Q

C 0
2

0
1VC

ωω
+−=&                                              (4.10) 

                              )(VC 0
0

2
0

102 ωωωω QC
Q

C
UV

Q

C
VQC −+−=&  

UVy +−= 1  

 

where C is a capacitor value seemed as multiplying factor. 
1

VC &  and 
2

VC &  are 

accepted a current flows through a grounded capacitor C  whose voltage across its 

terminals in order given V1  and V2 and by assuming that U, V2,  and V1 are gate-

source voltages of MOS transistors operating in saturation region with their drain 

currents are defined as Iu, I2, and I1, respectively. So capacitor current equations in 

(4.10) are arranged that 

)( x 2
02

2
0

2
0

1
2
02 ωωωω −+−−=

Q
ux

Q
x&
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where I1=β(V1-VTH)2 , I2=β(V2-VTH)2 , Iu=β(U-VTH)2 , 

11
VCI

C
&= , and 

22
VCI

C
&= . 

Hence, the state equations in (4.11) are transformed into  

uC II
Q

II
Q

I 0201
11 +−=                                      (4.12) 

        uuC IIQII
Q

II
Q

IIQI 0020102
11 −+−=  

where the bias current βω /)( 22
00 CI = . The square root domain second order 

highpass filter consisting of three geometric mean circuits, current mirror circuits, a 

summation block, and two capacitors is shown in Figure 4.8.   

 

When D.C. operating point analysis is considered, if it is assumed that V2 is equal 

to U, the D.C. operating condition in the first state equation is provided and there is 

no need to add any bias current to this equation. To realize the difference circuit, it is 

supposed that U/2 is equal to V1 , second  state equation  is rearranged as; 

)(
2

VC 0
00

02 ωωωω QC
Q

C
UU

Q

CU
QC −+−=&                                (4.13) 

To equate the D.C. terms of Equation (4.13) to zero a D.C. current is added  

0)(
2

VC 0
00

02 =+−+−= DCIQC
Q

C
UU

Q

CU
QC ωωωω&                         (4.14) 

where IDC=QCω0(U/2). By substituting the D.C. current source in second state 

equation  

DCuuC IIIQII
Q

II
Q

IIQI +−+−= 0020102
11

                     (4.15) 
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Figure 4. 8 Square root domain second order highpass filter 

 

According to adjustments, the modified square root domain second order 

highpass filter circuit is indicated in Figure 4.9.  

 

By using TSMC 0.25µm CMOS Level 3 model parameters (Appendix), the 

presented first order highpass filter was simulated with values of parameters given in 

Table 4.2.  Under these conditions, theoretical cut-off frequency is 1 MHz while 

simulated is 1MHz. Gain and phase responses of the second order highpass filter are 

indicated in Figure 4.10 with theoretical response. 

 

Electronically tunable gain response of the filter for four different bias currents, 

from 10µA to 40µA, is depicted in Figure 4.11 with theoretical response.  
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Figure 4. 9 Modified square root domain second order highpass filter 

 

 

Table 4. 2 The parameters of the second order highpass filter 

 

 

 

 

 

 

 

 

Parameter values 

VDD  2.5V 

U (D.C. voltage) 1.4V 

C 5pF 

Q 1 

I0 10µA 

IDC 21.99µA 

Aspect ratio of transistor  M1 - M3 ,  M17 and M18  10µm/10µm 

Aspect ratios of transistors M4-M16 0.7µm/7µm 
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                    Figure 4. 10 Gain and phase responses of the second order highpass filter 
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                   Figure 4. 11 Electronically tuneable gain response of the second order highpass 

                   filter for I0 is 10µA, 20µA, 30µA, and 40µA 
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W/L ratio of M6, M7, M9, M12, M14, and M16 transistors and value of IDC current 

source are changed to adjust the quality factor. Figure 4.12 shows the gain response 

of the second order highpass filter, while quality factor is 0.1, 0.5, 1, 2, and 5. 

 The time response of the filter was investigated by applying a sinusoidal signal to 

input when its amplitude was 10mV at 1MHz under the conditions in Table 4.2. This 

causes 262ns time delay at the output of the filter corresponding to 94.32° phase 

difference as shown in Figure 4.13. The dependence of the output harmonic 

distortion of second order highpass filter on input signal amplitude was illustrated in 

Figure4.14. As shown in this figure, THD increases with input signal. As such, input 

signal must be 130 mV or less to avoid output distortion. 
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          Figure 4. 12 The gain response of the second order highpass filter  for   Q is   

                    0.5, 1, 2, and 5 
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                   Figure 4. 13 The time response of the second order highpass filter 
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                    Figure 4. 14 Total harmonic distortion (THD) of the    second  order  highpass 

                    filter as a function of input signal amplitude at 1MHz 
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Monte Carlo simulation was used to examine the performance of the second 

order highpass fiter in terms of the sensitivity of MOS transistor parameter 

mismatch and tolerances of the capacitors. For performing the Monte Carlo analysis, 

W and L dimensions of the all transistors in the filter have uniform distribution with 

5% tolerances and the capacitor in the filter circuit have uniform deviation with 10% 

tolerances. The gain response of the second order highpass filter with Monte Carlo 

analysis for 100 runs is shown in Figure 4.15 under the conditions in Table 4.2. The 

cut off frequency was obtained between 999KHz and 1.17MHz during the analysis.   
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                    Figure 4. 15  Gain response of the second order   filter   with    Monte   Carlo 

                    analysis 

 

4.3 Second Order Bandpass Filter 

 

In the literature, a square root domain second order bandpass filter designed with 

state space synthesis method by Yu and others in 2005. In this thesis, a square root 

domain bandpass filter is introduced that its state space representation was obtained 
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by using companion form technique. The transfer function of second order band 

pass filter is expressed as 

2
0

02

0

)(
ωω

ω

++
=

s
Q

s

s
Q

sH                                                (4.16) 

where ω0, Q are cut-off frequency and quality factor, respectively. The state space 

representation obtained by using companion form technique is expressed as  

u
Q

x 0
21x

ω
+=&                                              (4.17) 
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1xy =  

To realize the filter, state variable x2  is multiplied with -ω0/Q. So the final state 

equations are obtained;  
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If the node voltage V1 , V2 and voltage signal U are assumed the state variables x1, 

x2, and input u, state and output equations in (4.18) are rewritten as  

U
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102VC
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where C is a capacitor value seemed as multiplying factor. 
1

VC &  and 
2

VC &  are 

accepted a current flows through a grounded capacitor C  whose voltage across its 

terminals in order given V1  and V2 and by assuming that U, V2,  and V1 are gate-

source voltages of MOS transistors operating in saturation region with their drain 

currents are defined as Iu, I2, and I1, respectively. So capacitor current equations in 
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(4.19) are arranged as 
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where I1=β(V1-VTH)2 , I2=β(V2-VTH)2 , Iu=β(U-VTH)2 , 
11

VCI
C

&= , and 
22

VCI
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&= . 

Hence, the state equations in (4.20) are transformed into  
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II
Q

IIQI ++−= 020102
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where the bias current βω /)( 22
00 CI =  and threshold voltage compensation current 

ITH=ω0CVTH. The square root domain second order bandpass filter consisting of 

three geometric mean circuits, current mirror circuits, and two capacitors is shown in 

Figure 4.16.  
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Figure 4. 16 Square root domain bandpass filter 

 

When D.C. operating point analysis is considered, if it is assumed that V2  is equal 

to U, and also V1 , the D.C. operating condition in the first state equation is provided 

and there is no need to add any bias current to this equation. Under these conditions 

second state equation is rearranged as; 
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02VC
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63 

 

To equate the D.C. terms of Equation (4.22) to zero a D.C. current is added  

0VC 00
02 =++−= DCIU

Q

C
U

Q

C
UQC

ωωω&                         (4.23) 

where IDC=-QCω0U. By substituting the D.C. current source in second state 

equation in Equation (4.21) 

DCTHuC IQIII
Q

II
Q

IIQI +++−= 020102
11

                     (4.24) 

 Since ITH is also a D.C. current source, an external current Ibias added to second 

state equation is  

UQCVQCI THbias 00 ωω −=                                      (4.25) 

On the way of rearrangements, the modified square root domain second order 

bandpass filter circuit is indicated in Figure 4.17.  
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Figure 4. 17 Modified square root domain bandpass filter  

 

The presented second order bandpass filter was simulated with values of 

parameters given in Table 4.3 by using TSMC 0.25µm CMOS Level 3 model 

parameters (Appendix).  Under these conditions, theoretical cut-off frequency is 

1.65 MHz while simulated is 1.60 MHz. Gain and phase responses of the second 

order bandpass filter are indicated in Figure 4.18 with theoretical response. 

Equations show that the cut off frequency of the filter can be adjustable. According 

to bias current value, gain response of the filter for four different bias currents, from 

10µA to 40µA, is depicted in Figure 4.19 with theoretical response. 
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Table 4. 3 The parameters of the second order bandpass filter 

 

 

 

 

 

 

 

 

 

 

 

W/L ratio of M5, M6, M9, M11, and M13 transistors and value of Ibias current source 

are changed to adjust the quality factor. Figure 4.20 shows the gain response of the 

second order bandpass filter, while quality factor is 0.1, 0.5, 1, 2, and 5 with other 

parameters in Table 4.3. 

0.1 1 10
Frequency (MHz)

-30

-20

-10

0

10

G
ai

n 
(d

B
)

-120

-80

-40

0

40

80

120

P
ha

se
 (

de
gr

ee
)

Simulated

Theoretical

 
Figure 4. 18 Gain and phase responses of the second order bandpass filter 

Parameter values 

VDD  2.5V 

U (D.C. voltage) 0.75V 

C 3pF 

Q 1 

I0 10µA 

Ibias -10.92µA 

Aspect ratio of transistor  M1 - M3  10µm/10µm 

Aspect ratios of transistors M4-M13 0.7µm/7µm 
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                       Figure 4. 19 Electronicaly  tuneable   gain    response   of    the   second order  

                       bandpass filter for I0 is 10µA, 20µA, 30µA, and 40µA 
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                      Figure 4. 20 The gain response of the second order bandpass filter  for   Q   is  

                      0.1,  0.5, 1, 5, and 10 
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 The time response with 10mV sinusoidal input voltage at 1.65MHz and the 

dependence of the harmonic distorition on input signal amplitude of the filter are 

indicated in Figure 4.22 and 4.23 respectively. As such, input signal must be 200mV 

or less to avoid output distortion. 

 
The performance of the second order bandpass filter in terms of the sensitivity of 

MOS transistor parameter mismatch and tolerances of the capacitors has been 

evaluated by performing Monte Carlo simulations. For performing the Monte Carlo 

analysis, W and L dimensions of the all transistors in the filter have uniform 

distribution with 5% tolerances and the capacitor in the filter circuit have uniform 

deviation with 10% tolerances. The gain response of the second order bandpass filter 

with Monte Carlo analysis for 100 runs is shown in Figure 4.24 when the cut off 

frequency is 1.65MHz.  
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                   Figure 4. 21 The time response of the second order bandpass filter 
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                   Figure 4. 22 Total harmonic   distortion  (THD) of    presented    second order  

                   bandpass filter as a function of input signal amplitude at 1.65MHz 
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                    Figure 4. 23 Gain response of     the      second   order   bandpass    filter with 

                   Monte Carlo analysis 
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4.4 Second Order Notch Filter 

 

In the literature, there is a square root domain notch filter in current mode 

designed by Kırçay, Keserlioğlu, and Çam in 2009. In this thesis, a square root 

domain notch filter in voltage mode was designed by using different state space 

form and has a simpler circuit structure. The transfer function of second order notch 

filter is expressed as 

2
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s
sH n                                                (4.26) 

where ω0, ωn, and Q are cut-off frequency, notch frequency and quality factor, 

respectively. The state space representation obtained by using observable canonical 

form is expressed as  
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                                                   uxy += 2  

To realize the filter, state variable x1 and x2  are multiplied with ω0 and -1, 

respectively. So the final state equations are obtained;  
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                                                    uxy +−= 2  

If the node voltage V1 , V2 and voltage signal U are assumed the state variables x1, 

x2, and u, state and output equations in (4.28) are rewritten as  
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where C is a capacitor value seemed as multiplying factor. 
1

VC &  and 
2

VC &  are 

accepted a current flows through a grounded capacitor C  whose voltage across its 

terminals in order given V1  and V2 and by assuming that U, V2,  and V1 are gate-

source voltages of MOS transistors operating in saturation region with their drain 

currents are defined as Iu, I2, and I1, respectively. So capacitor current equations in 

(4.29) are arranged that 
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where I1=β(V1-VTH)2 , I2=β(V2-VTH)2 , Iu=β(U-VTH)2 , 

11
VCI

C
&= , and 
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&= . 

Hence, the state equations in (4.30) are transformed into  

TH
n

uu
n

C IIIIIIII
2
0

2

002
0

2

201 ω
ω

ω
ω

+−+=                     (4.31) 

    THuC III
Q

II
Q

III −+−−= 020102
11

 

 

where the bias current βω /)( 22
00 CI =  and threshold voltage compensation current 

ITH=ω0CVTH. There is an important point that, if a regular notch filter is designed 

when ωn is equal to ω0, second state equation remains constant but first state 

equation in Equation (4.31) is rearranged that  

THC
IIII +=

201
                                          (4.32) 

 
 

So, the construction of the filter gets smaller. Square root domain notch filter has 

three cases as regular notch, lowpass notch, and highpass notch consisting of three 

geometric mean circuits, current mirror circuits, a summation block, and two 

capacitors as shown in Figure 4.24.  
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It is known that D.C. operating points are very important to make circuits 

operate. Because output equation is a difference equation, V2 must not be equal to U.  
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 Figure 4. 24 Square root domain second order notch filter 

 

If it is supposed that U/2 is equal to V2 , and also V1/2,  state equations  are 

rearranged as; 

UCUC
U

C n
0

0

2

01 2
VC ω

ω
ωω −= +&                              (4.33)                              

                                          U
Q

C
U

Q
CUC 00

02 2
VC

ωωω +−−=&                              

To equate the D.C. terms of Equation (4.33) to zero a D.C. currents are added  
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UCI DC ω . By substituting the D.C. 

current source in second state equation in Equation (4.31) 
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 Since ITH is also a D.C. current source, an external current Ibias1 and Ibias2 are 

added to state equations respectively.  
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On the way of rearrangements, the modified square root domain second order 

notch filter circuit is indicated in Figure 4.25.  
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Figure 4. 25 Modified square root domain notch filter 

 

 By using TSMC 0.25µm CMOS Level 3 model parameters (Appendix), the 

proposed first lossless integrator was simulated with values of integrator parameters 
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given in Table 4.4.The simulations was repeated for three cases; regular notch, low-

pass notch, and high-pass notch filter.  

 

 

Table 4. 4 The parameters of the proposed second order notch filter 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.1 Regular Notch 

 

While the notch frequency is equal to center frequency of the filter, regular notch 

filter is obtained.  Under the conditions in Table 4.4 the cut-off frequency is 

theoretically 992 KHz; the simulation result was  978 KHz. Figure 4.26 shows the 

gain and phase responses of the regular notch filter under these conditions with 

theorstical results. The center frequency of the filter can be tunable by changing the 

bias current I0. The theoretical and simulation results for different bias current are 

indicated in Figure 4.27. The quality factor tuning of the notch filter is done by 

changing the dimensions of the M7 and M13 transistors used in current mirrors. 

Figure 4.28 shows the quality factor tuning of the regular notch filter. The gain 

Parameter values 

Q  1 

VDD  2.5V 

U (D.C. voltage) 1.4V 

C 5pF 

I0 10µA 

Aspect ratio of transistor M1 - M3 7µm/7µm 

Aspect ratios of transistors M4 - M9 0.7µm/14µm 

Aspect ratios of transistors M10 - M18 0.7µm/7µm 

Aspect ratios of transistors M19 and M20 10µm/10µm 
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response of the regular notch filter with Monte Carlo analysis for 100 runs is shown 

in Figure 4.29 under the conditions in Table 4.4 and W and L dimensions of the all 

transistors and the capacitor in the filter have uniform distribution with 10 % 

tolerances and 5% tolerances, respectively. The cut off frequency was obtained 

between 963KHz and 1.19MHz during the analysis.   
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                   Figure 4. 26 Gain and phase responses of the regular notch filter 
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                   Figure 4. 27 Electronically tuneable    gain     response   of   the regular notch  

                   filter for I0 is 8µA, 10µA, 12µA, and 14µA 

1
Frequency (MHz)

-60

-40

-20

0

20

G
ai

n 
(d

B
)

Q=10

Q=1

Q=5

Simulated

Theoretical

Q=2

 
                 Figure 4. 28 The gain response of the regular notch filter for Q is 1,2,5,and 10      
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      Figure 4. 29 Gain response of the regular notch filter with Monte Carlo analysis 

 

 

 

 

4.4.2 Low-Pass Notch Filter 

 

The low-pass notch filter was obtained when the notch frequency  ωn was greater 

than the cut-off frequency ω0 of the filter. The notch frequency was adjusted to 1.2 

MHz, and the cut-off frequency of the filter was set to 992 KHz, when the bias 

current was 10 µA. The gain response of the second order low-pass notch filter is 

shown in Figure 4.30. The simulated filter notch frequency was 1.19 MHz. 
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                    Figure 4. 30 Gain response of the low-pass notch filter 

 

4.4.3 High-Pass Notch Filter 

 
The high-pass notch filter was obtained when ωn was less than ω0. The notch 

frequency and cut-off frequency of the filter were set to 800 KHz and 992 KHz, 

respectively with bias current 10 µA. Figure 4.31 shows the gain response high-pass 

and simulation results was observed that notch frequency was 777 KHz.   
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                    Figure 4. 31 Gain response of the high-pass notch filter 

 

4.5 Second Order Allpass Filter  

The square root domain second order allpass filter has a novel property which is 

presented for the first time in the literature. The transfer function of a second order 

allpass filter is expressed as 
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where ω0 and Q are cut-off frequency and quality factor, respectively. The state 

space representation obtained by using observable canonical form is expressed as  

                                                 2
2
01x xω−=&                                                          (4.37) 

                                        u
Q

x
Q

x 0
2

0
12

2
x

ωω −−=&  

                                                   uxy += 2  



78 

 

To realize the filter, state variable x1 and x2  are multiplied with 3ω0/Q and -1, 

respectively. So the final state equations are obtained;  
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                                           u
Q

x
Q

x
Q

0
2

0
1

0
2

23
x

ωωω
+−−=&  

                                                    uxy +−= 2  

If the node voltage V1 , V2 and voltage signal U are assumed the state variables x1, 

x2, and input u, state and output equations in (4.38) are rewritten as  
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where C is a capacitor value seemed as multiplying factor. 
1

VC &  and 
2

VC &  are 

accepted a current flows through a grounded capacitor C  whose voltage across its 

terminals in order given V1  and V2 and by assuming that U, V2,  and V1 are gate-

source voltages of MOS transistors operating in saturation region with their drain 

currents are defined as Iu, I2, and I1, respectively. So capacitor current equations in 

(4.39) are arranged that 
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where I1=β(V1-VTH)2 , I2=β(V2-VTH)2 , Iu=β(U-VTH)2 , 
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&= , and 
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Hence, the state equations in (4.40) are transformed into  
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where the bias current βω /)( 22
00 CI =  and threshold voltage compensation current 

ITH=ω0CVTH. In the light of the design, square root domain second order allpass 
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filter circuit composed of  three geometric mean circuits, current mirror circuits, a 

summation block, and two capacitors as shown in Figure 4.32.  
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Figure 4. 32 Square root domain second order allpass filter 

 

It is known that D.C. operating points are very important to make circuits 

operate. Because output equation is a difference equation, V2 must not be equal to U. 

When it is considered that V2 is equal to V1 and also U/2, state equations are 

rearranged that; 
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To provide the D.C. operating conditions, D.C. current sources are added to each 

state equation 
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where IDC1=-QCω0U/6 and IDC2=0. By substituting IDC1 current source in Equation 

(4.41) 
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1201 3 biasC III
Q

I +=                                              (4.44) 

where Ibias1 is  THCV
QU

QC 00 36
ωω +− . After this changing, the modified square 

root domain second order allpass filter is shown in Figure 4.33. 
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Figure 4. 33 Modified square root domain second order allpass filter 

Table 4. 5 The parameters of the second order allpass filter 

Parameter values 

Q  1 

VDD  2.5V 

U (D.C. voltage) 1.4V 

C 5pF 

I0 30µA 

Ibias1 3.7µA 

ITH 14.835µA 

Aspect ratio of transistor M1 - M3 14µm/7µm 

Aspect ratios of transistors M4,  M6 , M7,  M9– M11, and  

M13 - M16  

0.7µm/7µm 

Aspect ratios of transistor M5 0.7µm/14µm 

Aspect ratios of transistor M8  0.7µm/2.33µm 

Aspect ratios of transistor M12  0.7µm/21µm 
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  The presented second order allpass filter was simulated by using TSMC 0.25µm 

CMOS Level 3 model parameters (Appendix) with values of parameters given in 

Table 4.5. In the circumstance, theoretical cut-off frequency is 1.18MHz while 

simulated is 1.18MHz. Gain and phase responses of the second order allpass filter 

are indicated in Figure 4.34 with theoretical response. 
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                Figure 4. 34 Gain and phase responses of the second order allpass filter 

 
 

The time response with 10mV sinusoidal input voltage at 1.18MHz that causes 

428.9ns time delay at the output of the filter corresponding to 182.5˚ pahse 

difference. The time response and the dependence of the harmonic distorition on 

input signal amplitude of the filter are indicated in Figure 4.36 and 4.37 respectively. 

As such, input signal must be 200 mV or less to avoid output distortion. Quality 

factor of the filter can be adjusted with W/L parameters of the M5, M8, M12, and M14 

transistors in the current mirrors and bias currents. Figure 4.38 shows the quality 

factor tuning of the second order allpass filter for Q.  
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                   Figure 4. 35 Electronically tuneable phase response of the second order allpass 

                   filter I0 is 30µA, 40µA, 50µA, and 60µA 
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                   Figure 4. 36 The time response of the second order allpass filter          
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                      Figure 4. 37 THD versus input signal amplitude at 1.18MHz of allpass filter 
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                       Figure 4. 38 The phase response of the second order allpass filter for Q is 0.5, 

                       1,2,5,and 10      
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The performance of the second order allpass filter in terms of the sensitivity of 

MOS transistor parameter mismatch and tolerances of the capacitors has been 

evaluated by performing Monte Carlo simulations. For performing the Monte Carlo 

analysis, W and L dimensions of the all transistors in the filter have uniform 

distribution with 5% tolerances and the capacitor in the filter circuit have uniform 

deviation with 10% tolerances. The phase response of the second order allpass filter 

with Monte Carlo analysis for 100 runs is shown in Figure 4.39 when the cut off 

frequency is 1.18MHz. The phase degree was obtained between 154˚ and 201˚ 

during the analysis.    
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                 Figure 4. 39 Phase response of the second order allpass filter with  Monte Carlo  

                 analysis 

 

4.6 KHN Biquad Filter   

 

 KHN (Kerwin-Huelsman-Newcomb) biquad filter that provides lowpass, 

highpass, and bandpass filter outputs at a time has several advantages such as low 

passive and active sensitivities, low component spread and good stability behavior 
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(Kerwin, Huelsman, & Newcomb, 1967). In the literature, as a companding circuit, a 

KHN biquad filter was presented by Tola and others in 2009 and square root domain 

KHN biquad filter was proposed by Ölmez and Çam in 2009.  

s
0ω−

s
0ω−

 
    Figure 4. 40 Block diagram of KHN biquad filter 

 
 The block diagram of KHN biquad filter is shown in Figure 4.40 (Lopez & 

Vredad, 1997). To make compatible the block diagram to design in square root 

domain, it is modified as in Figure 4.41 (Ölmez & Çam, 2009). 
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    Figure 4. 41 Modified KHN biquad filter block diagram 

 
 The transfer functions of highpass, bandpass, and lowpass are obtained by using 

nodal analysis as; 
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In the block diagram, there are two lossless integrator blocks and a circuit that 

takes the differences between node voltages. By combining lossless integrators 

presented in Chapter 3 and a transconductor circuit that takes voltage differences in 

chapter 2, square root domain KHN biquad filter is obtained as indicated in Figure 

4.42.    
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Figure 4. 42 The schematic of square root domain KHN biquad filter 
 
 

In Figure 4.42, Ibias1 and Ibias2 currents are 
Q

UC
VC

Q TH
0

0
1 ωω −  and 

UQCVQC TH 00 ωω − , respectively. Simulations of KHN biquad filter and lossless 

integrator were performed in SPICE simulation program with TSMC 0.25µm 

CMOS Level 3 model parameters (Appendix) and values of parameters given in 

Table 4.6. Under these conditions the theoretical cut off frequency of the filter was 

1.585 MHz, while the simulation result was 1.5495MHz. 
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Table 4. 6 The parameters of the KHN biquad  filter 
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                    Figure 4. 43 Gain responses of the KHN biquad   for   the   fundamental filter  

                    functions  

 

 Figure 4.44 shows the simulated and theoretical gain responses of the lowpass 

filter, while the bias current I0 was changed from 20µA to 80µA. For different 

quality factor from 0.1 to 10, while the bias current was 30µA, bandpass filter 

Parameter values 

Q  1 

VDD  2.5V 

V IN (D.C. voltage) 2.1V 

C 7pF 

I0 50µA 

Ibias1,  Ibias2 22.5µA 

Aspect ratio of transistor M1 ,  M4 7µm/7µm 

Aspect ratios of transistors M2, M3 , and M5– M10  1µm/7µm 
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response is demonstrated in Figure 4.45. For performing the Monte Carlo analysis, 

W and L  dimensions of the all transistors in the filter have uniform distribution with 

10% tolerances and two capacitors in the filter circuit have uniform deviation with 

10% tolerances. The gain response of the highpass filter with Monte Carlo analysis 

for 50 runs is shown in Figure 4.46 when the center frequency of filter was 

1.737MHz at 60µA bias current. The center frequency was obtained between 

1.614MHz and 1.85 MHz.  
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                      Figure 4. 44 Gain response of the lowpass filter, while is changed from 20µA 

                       to 80µA 
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                      Figure 4. 45 The quality factor tuning for bandpass filter for Q is 0.1, 0.5, 1, 

                      2, 5, and 10 
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                      Figure 4. 46 Gain response of the highpass filter with Monte Carlo analysis 
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4.7 Tow-Thomas Biquad Filter 

 

Tow-Thomas biquad that was introduced by Tow in 1969 and independently 

Thomas in 1971 provides lowpass and bandpass filter output. Square root domain 

Tow-Thomas biquad filter was firstly introduced by Ölmez and Çam in 2010. Tow-

Thomas biquad filter consists of a lossless integrator, a lossy integrator, and a 

summation block as shown in Figure 4.47. This block diagram is modified as shown 

in Figure 4.48, to realize the biquad in square root domain. 
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             Figure 4. 47 Block diagram  of Tow-Thomas biquad filter 
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                Figure 4. 48 Modified block diagram of Tow-Thomas biquad filter 

 
 The transfer functions of bandpass and lowpass are; 
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 Similarly to KHN biquad filter, by combining of a lossless integrator, a lossy 

integrator form Chapter 3, and a transconductor circuit that takes voltage difference 

form Chapter 2, Tow- Thomas biquad filter is obtained as shown in Figure 4.49. 
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Figure 4. 49 Square root domain Tow-Thomas biquad filter 

 

Table 4. 7 The parameters of the Tow-Thomas biquad  filter 

 Parameter values 

Q  1 

VDD  2.5V 

V IN (D.C. voltage) 1.66V 

C 15pF 

I0 100µA 

Ibias1,  Ibias2 22.5µA 

Aspect ratio of transistors M1 , M4, and  M9 7µm/7µm 

Aspect ratios of transistors M2, M3 , M5– M8,  M10,  M11  0.7µm/3.5µm 

Aspect ratio of transistors M12 and  M13 0.7µm/7µm 
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                      Figure 4. 50 Gain responses of the Tow-Thomas biquad   for  the fundamental  

                      filter functions 

 

Simulations of the filter were performed in SPICE simulation program with 

TSMC 0.25µm CMOS model parameters and and values of parameters given in 

Table 4.7. Under these conditions the theoretical cut off frequency of the filter was 

1.01 MHz, while the simulation result was 979.3 KHz. 

 

Figure 4.51 shows the simulated and theoretical gain responses of the bandpass 

filter, while the bias current 0I  was changed from 40µA to 120µA. For different 

quality factor from 0.1 to 10, while the bias current was 60µA, bandpass filter 

response is demonstrated in Figure 4.45.  
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                       Figure 4. 51 Gain response of the bandpass filter, while I0 was changed from 

                      40µA to 120 µA. 
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     Figure 4. 52 The quality factor tuning for bandpass filter while the bias current  

                     is 60 µA. 
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CHAPTER FIVE 

APPLICATION EXAMPLES OF THE PROPOSED SQUARE ROOT 

DOMAIN CIRCUITS  

 

 Filters are widely used in electronic system applications as; electronics, 

telecommunications, radar, consumer electronics, instrumentation systems to 

remove the frequencies in certain parts and to improve the magnitude, phase delay in 

some parts of the spectrum of a signal (Su, 2002) (Shenoi, 2006).In this chapter, 5th 

order Butterworth lowpass filter is proposed. This filter is appropriate to 

Bluetooth/Wi-Fi receivers. Also in this chapter, square root domain quadrature 

oscillator is proposed  for the first time in the literature. Besides, a square root 

domain oscillator designed by using state space synthesis method is presented.  

 

5.1  5th Order Butterworth Lowpass Filter For Bluetooth/Wi- Fi Receiver   
 

Analog filters place in analog interface circuits in digital systems as it can be seen 

in many applications. One of them is Bluetooth/Wi-Fi (Wireless Fidelity) receiver. 

Literature survey shows that 5th order Butterworth filter is appropriate for 

Bluetooth/Wi-Fi receiver (Emira and others, 2004; Emira and others, 2006; 

Mohieldin and Sinenco, 2004).  

 

 

 
      Figure 5. 1 Dual-mode Wi-Fi/BT receiver. 
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In square root domain, high order filters are designed by cascading first and 

second order ones (Yu, 2005). To design the 5th order Butterworth lowpass filter, its 

transfer function is decomposed to first an second order lowpass filters. The transfer 

function of normalized 5th order Butterworth lowpass filter is written as;  

 

)1618.1)(1618.0)(1(

1
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22 +++++
=

sssss
sH                       (5.1) 

 

 
 According to Equation (5.1), the filter can be designed by cascading one first 

order lowpass filter and two second order lowpass filters. The transfer functions of 

each part are defined as; 
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where ω0 is cut-off frequency. Figure 5.2 shows square root domain  5th order 

Butterworth lowpass filter. The presented second order allpass filter was simulated 

by using TSMC 0.25µm CMOS mode parameters with values of parameters given in 

Table 5.1. Lowpass filter cut-off frequency is 6MHz and 600k.Hz for Wi-Fi, 

Bluetooth, respectively. 
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 Figure 5. 2 Square root domain 5th order Butterworth lowpass filter 

 

 

 Gain responses of the filter in two mode are illustrated in Figure 5.2 and Figure 

5.3 with the theoretical responses. To change the mode of the filter it is needed to 

change only bias current with same structure. Table 5.2 summarized the simulation 

results for both Wi-Fi and Bluetooth mode.  
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Table 5. 1 The parameters of the 5th order Butterworth lowpass filter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. 2 Simulation results of 5th order Butterworth lowpass filter 

 Wi-Fi Bluetooth 

Power consumption 1.55mW 0.741mW 

IM3 -51.55dBm -29.66dBm 

Dynamic Range 88.24dBm 59.1dBm 

Output Noise 4.18x10-14 HzV /  1.97x10-13 HzV /  

Parameter values 

VDD  2.5V 

U (D.C. voltage) 0.5V 

C 1.5pF 

I0 32.194µA (for Wi-Fi) 

0.32194 µA (for Bluetooth) 

Aspect ratio of transistor  M1 - M12 , M16, 

M17,  M21 - M23 

7µm/7µm 

Aspect ratios of transistors M14,M18 7µm/14µm 

Aspect ratios of transistor M13 7µm/11.326µm 

Aspect ratios of transistors M15,M19 7µm/8.652µm 

Aspect ratios of transistors  M20 7µm/22.652µm 

Aspect ratios of transistor  M24, M28,  M29 0.7µm/7µm 

Aspect ratios of transistors M25, M32 0.7µm/8.652µm 

Aspect ratios of transistors M16, M20 0.7µm/14µm 

Aspect ratios of transistors M27, M30 0.7µm/22.652µm 
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                   Figure 5. 3 Gain response of the    5th      order    Butterworth   lowpass filter in  

                   Bluetooth mode 
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                   Figure 5. 4 Gain response of the 5th order Butterworth lowpass filter in Wi-Fi  

                   mode 
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5.2 Oscillators   
 
5.2.1 A square root domain oscillator 
 
 Square root domain oscillators were presented by Thanachayanont and others in 

1996, Mulder and others in 1998, Ragheb and Soliman in 2006. In this dissertation, 

a square root domain oscillator that was designed by using state space synthesis 

method and has different structure from others was presented. A simple oscillator 

transfer function can be written as follows;  

2
00

2
0

)(
)(

ωω
ω

+−+
=

sabs
sH                                                (5.5) 

where ω0 is oscillation frequency, b and a are coefficients. This transfer function 

allows to oscillate in three cases that; 

(1) when b=a; oscillation maintained, 

(2) when b-a>0, oscillation dies out, 

(3) when b-a<0, waveform blows up. 

  

 The state space representation obtained by using observable canonical form is 

expressed as  

                                            ux 2
02

2
01x ωω +−=&                                                 (5.6) 

2012 )(x xabx ω−−=&                                                                                                                            

2xy =  

To realize the filter, state variable x1 is multiplied with ω0. So the final state 

equations are obtained;  

ux 0201x ωω +−=&                                                       (5.7) 

                                           20102 )(x xabx ωω −−=&  

                                                    2xy =  

 

If b is equal to a, oscillation is occurred. Under this condition second state equation 

is rearranged that; 

       102x xω=&                                                              (5.8) 

If the node voltage V1 , V2 and voltage signal U are assumed the state variables x1, 
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x2, and u, state and output equations in (5.7) and (5.8) are rewritten as  

                     UV 0201VC ωω +−=&                                                  (5.9) 

                                                   102VC Vω=&  

                                                       2Vy =  

where C is a capacitor value seemed as multiplying factor. 
1

VC &  and 
2

VC &  are 

accepted a current flows through a grounded capacitor C  whose voltage across its 

terminals in order given V1  and V2 and by assuming that U, V2,  and V1 are gate-

source voltages of MOS transistors operating in saturation region with their drain 

currents are defined as Iu, I2, and I1, respectively. So capacitor current equations in 

(5.9) are arranged as 
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where I1=β(V1-VTH)2 , I2=β(V2-VTH)2 , Iu=β(U-VTH)2 , 
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&= , and 
22

VCI
C

&= . 

Hence, the state equations in (5.10) are transformed into  

uC IIIII 0201 +−=                                         (5.11) 

    THC IIII += 102  

where the bias current βω /)( 22
00 CI =  and threshold voltage compensation current 

ITH=ω0CVTH. So, the square root domain oscillator circuit composed of  three 

geometric mean circuits, current mirror circuits, and a D.C. current source is shown 

in Figure 5.4 

 

U0 II 10 II
20 II

Figure 5. 5 Square root domain oscillator  
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It is known that D.C. operating point is very important to start to oscillate 

(Kundert, 1995). When it is considered that V2 is equal to U and also V1, state 

equations are rearranged that; 

UV 0201VC ωω +−=&                                                  (5.12) 

                                                   102VC Vω=&  

To provide the D.C. operating conditions, D.C. current sources are added to 

second  state equation 

DCIV += 102VC ω&                                            (5.13) 

                                           

where IDC=-Cω0U. By substituting IDC current source in the second state equation  

biasC IIII += 102                                              (5.14) 

where  Ibias=-Cω0(U-VTH) . By changing the Ibias  current source value, the oscillation 

cases can be realized.   

 

Simulations of oscillator were performed in SPICE simulation program with 

TSMC 0.25µm CMOS Level 3 model parameters (Appendix) and values of 

parameters given in table 5.3. Under these conditions the theoretical oscillation 

frequency of the filter was 193KHz, while the simulation result was 191KHz as 

shown in Figure 5.6.  

 

Table 5. 3  The parameters of the oscillator 

 

 

 

 

 

 

 

 

 

Parameter values 

VDD  2.5V 

C 50pF 

I0 20µA 

Ibias 21.22µA 

Aspect ratio of transistor M1 - M3 3.5µm/7µm 

Aspect ratios of transistors M4– M11  0.7µm/7µm 
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When Ibias  current source is 41µA and -20µA, the output waveforms are 

illustrated in Figure  5.7 and 5.8, respectively. Figure 5.7  shows that oscillator 

operates in unstable region and Figure 5.8 shows that oscilation dies out.   
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                    Figure 5. 6 Simulated output waveform of the oscillator 
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                    Figure 5. 7 Simulated output waveform of the oscillator under unstable 

                    condition 
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                    Figure 5. 8 Simulated output waveform of the oscillator when it dies out  
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5.2.2 Square root domain quadrature oscillator 

 

 Quadrature oscillator is obtained by combining first order allpass filter and a 

lossless integrator blocks as shown in Figure 5.9 (Kılınç & Çam, 2004) 
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                             Figure 5. 9 Block diagram for quadrature oscillator 

 
 
 

First order allpass and lossless integrator construction with adding a current 

mirror to obtain negative gain in Chapter 2 are used to be composed of the 

quadrature oscillator. The schematic of square root domain quadrature oscillator is 

illustrated in Figure 5.10. 

 

Table 5. 4 The parameters of quadrature oscillator 

 

 

Parameter values 

VDD  2.5V 

C 30pF 

I0 20µA 

ITH 18.94 µA 

Ibias 14.2 µA 

Aspect ratio of transistor M1, M2 and  M11 7µm/7µm 

Aspect ratios of transistors M3-M5 , M7-M10 , and   M12-M15 0.7µm/7µm 

Aspect ratios of transistor M6 0.7µm /14µm 
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Figure 5. 10 Square root domain quadrature oscillator 
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 By using TSMC 0.25µm CMOS Level 3 model parameters (Appendix), the 

quadrature was simulated with values of parameters given in table 5.4.  Under these 

conditions, oscillation frequency is 234KHz while simulated is 243KHz. 
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                    Figure 5. 11 Simulated waveforms of quadrature oscillator 
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CHAPTER SIX 

CONCLUSION 

 

6.1 Conclusion 

 

 In recent years, there is a growing research interest in the area of companding in 

the literature to being compatible with CMOS VLSI technology. In this dissertation 

study, novel square root domain filters and oscillators that is a subclass of 

companding circuits were proposed.  All circuits are features of electronically 

tuneable by changing bias current and capacitors value. It is valid for all of them that 

consist of only capacitors and MOS transistors. Because of their structure, they have 

advantages as tunability due to applied bias current, high linearity, low-voltage-low 

power consumption, and large dynamic range. Also all square root domain circuits 

were designed by using state space synthesis method that is very powerful in 

companding circuit design. 

  

 In this thesis, lossless integrator, first order highpass, first order allpass, second 

order highpass, second order allpass, second order notch filter designed by using 

state space synthesis method in square root domain were proposed for the first time 

in the literature. By combining the proposed structures, KHN biquad, Tow-Thomas 

biquad filters were also proposed as novel. Besides the novel circuits, first order 

lowpass, second order lowpass, and second order bandpass filters were presented in 

different structures than the literatures’. 

  

 It is known that filters have wide usage area in electronic system applications. 5th 

order Butterworth lowpass filter for Bluetooth/Wi-Fi receiver was designed by 

cascading first and second order lowpass filters. Additionally, a square root domain 

oscillator designed by using state space synthesis method was presented and 

quadrature oscillator created by cascading first order allpass filter and lossless 

integrator was proposed for the first time in the literature. All proposed circuits are 

electronically tuneable, suitable for low voltage/low power applications. The cut-off 

frequency of filters and oscillation frequency of oscillators can be adjustable by 
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changing external current sources. The quality factor of filter is also tunable. All 

simulations in the thesis were done by using PSpice simulation program. Due to 

consisting MOS transistors operating in saturation region and grounded capacitor; 

low power consumption, large dynamic range, and low THD value, the proposed 

circuits are compatible with CMOS VLSI technology.  

 

6.2 Future Work 

 

 During the design procedures, MOS transistors are assumed to be ideal, second 

order effects like the body effect, mobility reduction, and channel length modulation 

are not noticed. In this dissertation, it is aimed to synthesis the structures, not 

optimization. So, the difference occurs between simulation and theoretical results as 

shown in simulation results. Designs can be considered with second order effects, 

operation of geometric mean circuit can be improved to obtain better results.  
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APPENDIX  

 

TSMC 0.25 µm CMOS Process Model Parameters 
 

.MODEL CMOSN NMOS (LEVEL=3 TOX=5.7E-9 NSUB=1E17 

+GAMMA=0.4317311 PHI=0.7 VTO=0.4238252 DELTA=0 UO=425.6466519 

+ETA=0 THETA=0.1754054 KP=2.501048E-4 VMAX=8.287851E4 

+KAPPA=0.1686779 RSH=4.062439E-3 NFS=1E12 TPG=1 XJ=3E-7 

+LD=3.162278E-11 WD=1.232881E-8 CGDO=6.2E-10 CGSO=6.2E-10 

+CGBO=1E-10 CJ=1.81211E-3 PB=0.5 MJ=0.3282553 CJSW=5.341337E-10 

+MJSW=0.5) 

 

.MODEL CMOSP PMOS (LEVEL=3 TOX=5.7E-9 NSUB=1E17 

+GAMMA=0.6348369 PHI=0.7 VTO=-0.5536085 DELTA=0 UO=250 ETA=0 

THETA=0.1573195 KP=5.194153E-5 VMAX=2.295325E5 KAPPA=0.7448494 

+RSH=30.0776952 NFS=1E12 TPG=-1 XJ=2E-7 LD=9.968346E-13 

+WD=5.475113E-9 CGDO=6.66E-10 CGSO=6.66E-10 CGBO=1E-10 

+CJ=1.893569E-3 PB=0.9906013 MJ=0.4664287 CJSW=3.625544E-10 

+MJSW=0.5) 


