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İZMİR



IMPROVED EFFECTIVE FIELD THEORY

ANALYSIS OF CRITICAL PHENOMENA IN ISING

MODEL WITH QUENCHED DISORDER EFFECTS

A Thesis Submitted to the

Graduate School of Natural And Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Physics

by

Yusuf YÜKSEL

March, 2013

İZMİR
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IMPROVED EFFECTIVE FIELD THEORY ANALYSIS OF CRITICAL

PHENOMENA IN ISING MODEL WITH QUENCHED DISORDER EFFECTS

ABSTRACT

This thesis report is essentially based on the results of recent series of papers

concerning the critical phenomena and order-disorder phase transition characteristics

of Ising model and its various generalizations in the presence of several kinds

of quenched disorder effects. In order to investigate the magnetic properties of

aforementioned models, we have proposed a formalism based on the effective-field

theory (EFT) which improves the results provided by conventional EFT approximations

in the literature by systematically including the multi-site, as well as single-site spin

correlation functions in the calculations within a heuristic manner.

Numerical computations are performed and the results are analyzed for the cases of

spin-1 Blume-Capel model in the presence of longitudinal and transverse magnetic

fields (Yüksel & Polat, 2010), site diluted Ising ferromagnets (Akinci, Yuksel, &

Polat, 2011c), bond diluted spin-1 Blume-Capel model with transverse and crystal

field interactions (Akinci, Yuksel, & Polat, 2011b), spin-1 Blume-Capel model with

random crystal field interactions (Yüksel, Akinci, & Polat, 2012a), and Ising model in

the presence of random magnetic fields (Akinci, Yuksel, & Polat, 2011a).

Keywords: Ferromagnetism, Dilute ferromagnets, Bond dilution, Effective-field

theory, Random-field Ising model
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DONMUŞ DÜZENSİZLİK ETKİLERİ İÇEREN ISING MODELİNDE

KRİTİK OLAYLARIN GELİŞTİRİLMİŞ ETKİN ALAN TEORİSİ İLE

ANALİZİ

ÖZ

Bu tez çalışması temel olarak, çeşitli türlerdeki donmuş düzensizlik etkilerinin

varlığında, Ising modelinin ve bu modelin çeşitli genelleştirilmiş hallerinin kritik

özellikleri ve faz geçiş karakteristiklerine ilişkin sonuçların detaylı analizini

içermektedir. Elde edilen sonuçlar, yazarın da yer aldığı çalışma grubu tarafından

üretilen makalelerden derlenmiştir. Söz konusu modellerin manyetik özelliklerini

incelemek için etkin-alan teorisi (EFT) temelli bir formülasyon önerilmiştir. Önerilen

formülasyonun, hesaplamalarda karşılaşılan çoklu ve tekli spin korelasyon

fonksiyonlarını sezgisel, ancak sistematik bir biçimde hesaba katarak, sıradan EFT

yaklaşımlarının aynı modeller için ürettiği sonuçları geliştirdiği gözlenmiştir.

Çalışmada yer alan nümerik hesaplamalar ve elde edilen sonuçlar sırasıyla boyuna

ve enine alanlı spin-1 Blume-Capel modeli (Yüksel & Polat, 2010), örgü noktaları

seyreltilmiş ferromanyetik Ising sistemleri (Akinci, Yuksel, & Polat, 2011c), enine

alanlı ve kristal alan etkileşimli bağ seyreltik spin-1 Blume-Capel modeli (Akinci,

Yuksel, & Polat, 2011b), rastgele kristal alanlı spin-1 Blume-Capel modeli (Yüksel,

Akinci, & Polat, 2012a) ve rastgele manyetik alanlı Ising modeli (Akinci, Yuksel, &

Polat, 2011a) için uygulanmıştır.

Anahtar sözcükler: Ferromanyetizma, Seyreltik ferromanyetik sistemler, Bağ

seyreltme, Etkin-alan teorisi, Rastgele alanlı Ising modeli
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CHAPTER ONE

INTRODUCTION

1.1 Prologue

Magnetism is probably one of the most fascinating phenomena of nature which can

be observed in several shapes such as a significant property of a permanent magnet or

in forms of captivating magnetic storms (i.e. northern lights or polar aurora) due to the

fluctuations of the magnetic fields in earth’s magnetosphere. The interest of mankind

in magnetism has been a very long journey dating back to ancient Greek and Chinese

cultures and in the course of time, owing to the pioneering and cornerstone efforts

by Hans Christian Oersted, Andre-Marie Ampere, Michael Faraday, James Clerk

Maxwell and of many other scholars, it is now well established that the essential source

of microscopic origin of magnetism is moving electric charges which in quantum

mechanical manner leads to the concept of magnetic moment and spin angular

momentum. In a macroscopic perspective, manifestation of magnetism appears

in different characteristics including diamagnetism, paramagnetism, ferromagnetism,

antiferromagnetism and ferrimagnetism. Diamagnetism which is associated with a

negative magnetic susceptibility is completely a quantum mechanical phenomena

and it can be observed in all materials, although it is generally a weak effect.

Paramagnetism is characterized by a positive susceptibility and materials exhibiting

paramagnetic behavior can only be magnetized in the presence of external magnetic

field whereas ferromagnetic materials such as iron, cobalt and nickel can exhibit a

spontaneous magnetization even in the absence of external field. This spontaneous

magnetization basically originates as a consequence of parallel alignment of magnetic

moments. Antiferromagnetism is similar to ferromagnetism, but it is usually related

with antiparallel alignment of magnetic moments with zero net magnetization. On the

other hand, in ferrimagnetism, although the magnetic moments are aligned antiparallel

to each other as in the anti-ferromagnetic order, ferrimagnetic materials may have non-

zero net magnetization.
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1.2 Manifestation of Ferromagnetism

The different types of magnetic characteristics mentioned above represent the

magnetic order of the system. Physics of magnetic phase transitions particularly

deals with the transitions between these different magnetic order types. These phase

transitions essentially originate as a result of a macroscopic change in the system due

to a small variation in a tunable parameter such as temperature. In the present thesis

report, we particularly focus our attention on the models exhibiting ferromagnetic-

paramagnetic transitions in the presence of quenched disorder. Ferromagnetism is

basically the manifestation of long range order among the magnetic moments of

material. A ferromagnetic material undergoes a continuous phase transition at a

particular temperature known as the Curie temperature and its value extends from a

few to thousands of Kelvin degrees depending on the material. Transition temperature

values of some certain ferromagnets are depicted in Table 1.1.

Table 1.1 Properties of some common ferromagnets, (Blundell, 2001).

Material Fe Co Ni Gd MnSb EuO EuS

Curie Point (K) 1043 1394 631 289 587 70 16.5

There are several kinds of magnetic interactions between magnetic moments leading

to the concept of long range order in ferromagnetism. Magnetic dipolar interaction

between two magnetic dipoles µ⃗1 and µ⃗2 is one of them and it is given by

E =
µ0

4πr3

[
µ⃗1.µ⃗2−

3
r2 (µ⃗1 .⃗r)(µ⃗2 .⃗r)

]
, (1.2.1)

where µ0 = 4π × 10−7N/A2 is the magnetic permeability of free space and r is the

relative distance between dipole moments. However, for µ≈ µB and r ≈ 1 Å, magnitude

of this energy will be approximately obtained as ∼ 10−23 J which is equivalent to

1K temperature. By comparing this result with the transition temperature values

shown in Table 1.1, we see that magnetic dipolar interaction energy is not generally

responsible for the occurrence of long range magnetic order in real systems, except the

materials which order at milliKelvin temperatures (Blundell, 2001). However, as will

be discussed in the following chapters, the long range magnetic order in real systems
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actually originates due to the presence of exchange interactions. Exchange energy is

an electrostatic energy and purely a quantum mechanical phenomena.

1.3 A Brief Note on Models of Interacting Many Body Systems

The most simple model representing an interacting many body system is the spin-

1/2 Ising model (Ising, 1925) where the particles are interacting with their nearest-

neighbors via discrete local spin variables S i

H = −J
∑
<i j>

S iS j, (1.3.1)

where S i = ±1, the summation is carried over nearest neighbor spins, and J is the

strength of the spin-spin interaction (i.e. exchange interaction). During the last 40

years more than 16000 publications have appeared using this model (Kobe, 2000). The

model Hamiltonian defined in Eq. (1.3.1) successfully explains the magnetic behavior

of highly anisotropic materials.

As an extension of the model, in order to explain the first order magnetic phase

transitions observed in a variety of systems, Blume-Capel model (Blume, 1966, Capel,

1966)

H = −J
∑
<i j>

S iS j−D
∑

i

(S i)2, (1.3.2)

is often used in the literature where D is the single-ion anisotropy. The model can be

briefly explained with the help of energy-level diagram of a magnetic ion shown in Fig.

1.1 (Blume, 1966).

According to Fig. 1.1, we consider a magnetic ion with singlet (non-magnetic)

and triplet (magnetic) states which are energetically separated by a crystal-field energy

D. As shown in Fig. 1.1a, in the presence of a magnetic field, singlet state is not

affected whereas triplet state splits into three non-degenerate energy levels. However,

at T = 0K, the state with lowest energy is the singlet state, hence at the ground state,

the system which is an ensemble of magnetic ions prefers to be in the singlet state. In

this case the net magnetization is zero.
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Figure 1.1 Energy-level diagram (a) for magnetic-field splitting smaller than the singlet-

triplet separation D, and (b) for magnetic- field splitting larger than D, (Blume, 1966).

On the other hand, if the magnetic field is sufficiently large then the lowest energy

level of triplet state may be lower than that of singlet state. In this case the system is

magnetically ordered and exhibit a non-zero magnetization. Assuming the magnetic

field to be due to the exchange interaction between neighboring ions, the magnetization

which is determined from the populations of magnetic triplet and non-magnetic singlet

states may exhibit a discontinuous jump with a slight increment in the temperature

which yields a first order phase transition (Blume, 1966).

Apart from this, inclusion of a biquadratic exchange interaction in Eq. (1.3.2) yields

H = −J
∑
<i j>

S iS j−K
∑
<i j>

S 2
i S 2

j −D
∑

i

(S i)2, (1.3.3)

known as Blume-Emergy-Griffiths (BEG) model (Blume, Emery, & Griffiths, 1971)

which was introduced to explain the λ transition and phase separation in He3 −He4

mixtures within the framework of an Ising-like model. It is important to note that the

local spin in Eq. (1.3.3) must be regarded as a fictitious variable which can take values

0 and ±1. According to model, a He3 fermion particle at site i is represented by S i = 0

whereas S i = ±1 corresponds to He4 boson.

The number of He3 and He4 atoms are given by

N3 =

N∑
i

(1−S 2
i ), (1.3.4)

N4 =

N∑
i

S 2
i , (1.3.5)
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where N = N3+N4 is the total number of particles. The Hamiltonian of model consists

of two parts. The first one is

H = −J
∑
<i j>

S iS j, (1.3.6)

which is responsible for the superfluid ordering in He3-He4 mixture. If the He3

concentration is zero then Eq. (1.3.6) resembles the Hamiltonian of Ising ferromagnet.

Hence, in the presence of He3 atoms, we have S 2
i = 0 for some certain lattice sites

which is similar to the problem of Ising ferromagnet with non-magnetic impurities.

In this case, we expect that transition temperature Tc decreases with increasing He3

concentration.

Based on the experimental facts, it is known that below a certain temperature, pairs

of He3 fermions act as a composite boson and phase diagrams in T (K)−He3 fraction

plane exhibit a superfluid order by separating into two phases one He4 rich and one

He3 rich. Theoretically, it order to take into account this fact we should introduce an

additional term in the Hamiltonian of the system

HI = −K33

∑
<i j>

(1−S 2
i )(1−S 2

j )−K44

∑
<i j>

S 2
i S 2

j −K34

∑
<i j>

[S 2
i (1−S 2

j )+S 2
j (1−S 2

i )],

(1.3.7)

where the summations are taken over nearest-neighbor sites and Kαβ is the effective

interaction energy between Heα-Heβ atoms. Since S 2
i = 0 for He3 and S 2

i = 1 for He4

we can rearrange Eq. (1.3.7) as

HI = −(K33+K44−2K34)
∑

i j

S 2
i S 2

j −2q(K34−K33)
N∑
i

S 2
i −qNK33, (1.3.8)

where q is the coordination number of the lattice. Finally, in order to control the

number of He3 and He4 atoms, it is necessary to include the chemical potentials in

total Hamiltonian

H = Hs+HI −µ3N3−µ4N4, (1.3.9)

which can be written in a more compact from

H = −J
∑
<i j>

S iS j−K
∑
<i j>

S 2
i S 2

j −D
∑

i

S 2
i −N(qK33+µ3) (1.3.10)
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where

K = K33+K44−2K34, (1.3.11)

and

D = −µ3+µ4−2q(K33−K44). (1.3.12)

The model Hamiltonian in Eq. (1.3.12) represents spin-1 Ising model with bilinear

and biquadratic exchange interactions with crystal field strength D, and the constant

term on the right-hand side of Eq. (1.3.12) can be neglected (Blume et al., 1971).

Moreover, it is possible to extend these models by including a transverse field term

which is called the spin-1 Blume-Capel model in the presence of transverse fields

which can be represented by the following Hamiltonian (c.f. see Chapter 4)

H = −J
∑
<i j>

S z
i S

z
j−D

∑
i

(S 2
i )2−Ω

∑
i

S x
i . (1.3.13)

As will be discussed in Chapter 3, there is not any rigorously exact calculation

method for the aforementioned models regarding their critical properties except the

one dimensional Ising chain in the presence of external magnetic field and its two

dimensional counterpart with zero magnetic field. Hence, in this thesis report, we

propose an approximation method which yields almost the best approximate results to

the results of some powerful techniques such as Monte Carlo (MC) simulations and

series expansion (SE) methods among the other techniques. Our results which will

be presented in Chapter 5 are essentially based on our recent publications. A detailed

description of our formulation and its relevant variants in the presence of quenched

randomness within the framework of our method will be discussed in the following

chapters.

For this aim, present thesis report has been organized as follows: In Chapter 2, we

discuss some basic and important concepts of magnetism. Chapter 3 concerns with the

exact and approximation techniques regarding a variety of spin models. We present

a detailed description of our formulation in Chapter 4. Chapter 5 is devoted to our

numerical results on the applications of the proposed formalism for the models with

quenched disorder effects and related discussions. Finally Chapter 6 contains our final

remarks and conclusions.



CHAPTER TWO

SOME BASIC CONCEPTS OF MAGNETISM

This chapter is devoted to the discussion of some basic concepts of magnetism.

A widely detailed description of the ideas introduced in this chapter can be found in

(Blundell, 2001).

Solid materials may have magnetic moments which exhibit a cooperative behavior.

This cooperative behavior completely differs from the case in which all the magnetic

moments do not interact with each other. This situation leads to a wide variety of

magnetic phenomena in real magnetic materials. In this chapter, we want to depict

this picture step by step, and we will describe some properties of magnetic moments

based on some elementary tools of classical and quantum physics. First of all, we will

focus our attention on the question of how the magnetic moments of a solid behave

when large number of them are considered in a solid when they are isolated from

each other, as well as from their environment (i.e. from temperature or some other

external effects). Next, we will discuss the possibility of magnetic interactions between

magnetic moments, as well as their environment, and we will be able to investigate the

occurrence of long range magnetic order in the system.

2.1 Magnetic Moments

The fundamental quantity of magnetism is the magnetic moment. According to the

principles of electromagnetism, we can imagine a magnetic moment as a current loop.

If one considers a current I circulating around an elementary (i.e. vanishingly small)

oriented loop with area |dS⃗ | (see Fig. 2.1a) then the magnetic moment dµ⃗ is defined by

dµ⃗ = IdS⃗ , (2.1.1)

and the unit of magnetic moment is Am2. The length of the vector dS⃗ is equal to the

area of the loop. The direction of the vector is normal to the loop and it is determined

by the direction of the current around the elementary loop.

7
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Figure 2.1 (a) An elementary representation of a magnetic moment. dµ = IdS , due to

an elementary current loop. (b) A magnetic moment µ = I
∫

dS (in perpendicular to

the plane of the current loop) associated with a loop of current I can be considered by

summing up the magnetic moments with large number of infinitesimal current loops,

(Blundell, 2001).

This quantity can also be treated as identical to a magnetic dipole. Hence, we can

imagine a magnetic dipole as an object which consists of two magnetic monopoles of

opposite magnetic charge separated by a small distance in the same direction as the

vector dS⃗ .

The magnetic moment dµ⃗ is pointed to the plane of the loop of current and it

can align parallel or antiparallel to the angular momentum vector associated with the

charge which orbits around the loop. For a loop with finite size, it is possible to

calculate the magnetic moment µ⃗ by summing up the magnetic moments of various

infinitesimal current loops located through the area of the loop (see Fig. 2.1b). All

the currents from neighboring infinitesimal loops cancel each other, and only a current

running round the perimeter of the loop remains. Hence,

µ⃗ =

∫
dµ⃗ = I

∫
d⃗S . (2.1.2)

2.2 Magnetic Moments and Angular Momentum

A current loop originates as a consequence of the motion of at least one electrical

charged particle. These charged particles are also associated with a mass. Hence, there

is also an orbital motion due to the mass, in addition to the motion due to the charge.

Consequently, a magnetic moment is always connected with an angular momentum. In
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atoms, the magnetic moment µ⃗ associated with an orbiting electron is directed along

the same direction with that of the angular momentum L⃗ of that electron. Thus, we can

write

µ⃗ = γL⃗, (2.2.1)

where γ is a constant known as the gyromagnetic ratio.

2.2.1 Precession

Now, let us see what happens if a magnetic moment µ⃗ is placed in a homogenous

magnetic field B⃗. If we apply a magnetic field on a loop of finite size (e.g. see Fig.

2.1a) then the magnetic moment µ⃗ tends to align parallel with the external field due to

the existence of torque

G⃗ = µ⃗× B⃗. (2.2.2)

On the other hand, the energy E of the magnetic moment is given by

E = −µ⃗.B⃗. (2.2.3)

We see from Eq. (2.2.3) that the energy becomes minimized if the magnetic moment

aligns parallel with the magnetic field. However, if the magnetic moment were not

associated with any angular momentum then the torque defined in Eq. (2.2.2) would

just tend to turn the magnetic moment towards the magnetic field. If we take into

account the second law of motion (i.e. Newton’s second law), the torque acting on a

rotating object can be written as

G⃗ = Θ⃗̇ω, (2.2.4)

where Θ is the moment of inertia and ⃗̇ω is the angular velocity of the moving object.

From the definition of the angular momentum

L⃗ = Θω⃗, (2.2.5)

and using Eqs. (2.1.2) and (2.2.1) we get

dµ⃗
dt
= γµ⃗× B⃗. (2.2.6)
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From Eq. (2.2.6) we can conclude that the change in µ⃗ is directed perpendicularly to

µ⃗ and B⃗. The magnetic field does not only turns µ⃗ towards B⃗ but also it causes the

alignment of µ⃗ to precess around B⃗.

2.2.2 The Bohr Magneton

In order to estimate the size of the magnetic moment and the gyromagnetic ratio of

an atom, let us consider an electron with charge −e and mass me orbiting a circular

trajectory around the nucleus of a hydrogen atom, as shown in Fig. 2.2. The current I

around the atom is I = −e/τ where τ = 2πr/v is the orbital period, v = |⃗v| is the speed

and r is the radius of the circular orbit.

Figure 2.2 An electron in a hydrogen

atom orbiting with velocity v around

the nucleus which consists of a single

proton, (Blundell, 2001).

The magnitude of the angular momentum of the electron is mevr which must equal

h̄ in the ground state. Hence, the magnetic moment of the electron is

µ = πr2I = − eh̄
2me
= −µB, (2.2.7)

where µB is the Bohr magneton given by

µB =
eh̄

2me
. (2.2.8)

Eq. (2.2.8) represents the unit of the size of an atomic magnetic moment and it is

numerically equal to the value 9.274× 10−24Am2. At this point we should note that
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the sign of the magnetic moment in Eq. (2.2.7) is negative. This is due to the fact that

electron is a negatively charged particle, hence its magnetic moment lies antiparallel

to its angular momentum. As a result, the gyromagnetic ratio for the electron is γ =

−e/2me.

2.2.3 Magnetization and Field

In a typical magnetic solid, there exists a great number of atoms with magnetic

moments. The number of magnetic moments per unit volume is defined as the

magnetization M⃗ of the sample. The magnetization M⃗ is a smooth vector field which

is continuous throughout the sample except at the edges of the magnetic solid. In

free space (or vacuum) we can not observe any magnetization. In this case, we can

represent the magnetic field by the vector fields B⃗ and H⃗, and there is a linear relation

between them

B⃗ = µ0H⃗, (2.2.9)

where µ0 = 4π×10−7 Hm−1 is the permeability of free space. The two magnetic fields

B⃗ and H⃗ are just scaled versions of each other. The former is measured in Tesla

(abbreviated to T) and the latter is measured in Am−1.

However, the relation between B⃗ and H⃗ in a medium may become somewhat

complicated and these vector fields may differ in both magnitude and direction. The

general relation is given as

B⃗ = µ0(H⃗+ M⃗). (2.2.10)

In a special case where the magnetization M⃗ linearly depends on the magnetic field H⃗,

the solid is a linear material, and we can write

M⃗ = χH⃗, (2.2.11)

where χ is a dimensionless parameter called the magnetic susceptibility. In this special

case there is still a linear relationship between B⃗ and H⃗, namely

B⃗ = µ0(1+χ)H⃗ = µ0µrH⃗, (2.2.12)

where µr = 1+χ is the relative permeability of the material.
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2.3 Classical Mechanics and Magnetic Moments

In this section, we formulate the momentum and kinetic energy expressions of a

charged particle in the presence of a magnetic field, and we treat the system within the

framework of classical mechanics. In the following two subsections, we deal with a

single particle, and then we benefit from this result to evaluate the magnetization of a

system of charged particles.

2.3.1 Canonical momentum

According to classical mechanics, if a charged particle with a charge q moves in an

electrical field E⃗ and magnetic field B⃗ with a velocity v⃗ then the force acting on the

particle is given by Lorentz force

F⃗ = q(E⃗+ v⃗× B⃗). (2.3.1)

Using F⃗ = mdv⃗/dt, B⃗ = ∇⃗× A⃗, and E = −∇⃗V −∂A⃗/∂t where V is the electric potential,

A⃗ is the magnetic vector potential and m is the mass of the particle, Eq. (2.3.1) can be

written as

m
dv⃗
dt
= −q∇⃗V −q

∂A⃗
∂t
+qv⃗× (∇⃗× A⃗). (2.3.2)

If we apply the vector identity v⃗× (∇⃗× A⃗) in Eq. (2.3.2) then we get

m
dv⃗
dt
+q

∂A⃗
∂t
+ (⃗v.∇)A⃗

 = −q∇⃗(V − v⃗.A⃗). (2.3.3)

Since
dA⃗
dt
=
∂A⃗
∂t
+ (⃗v.∇⃗)A⃗, (2.3.4)

which measures the rate of change of A⃗ at the location of the moving particle, we

obtain
d
dt

(mv⃗+qA⃗) = −q∇⃗(V − v⃗.A⃗). (2.3.5)

Eq. (2.3.3) can be regarded as the form of Newton’s second law in the presence of

an external magnetic field. In this case, the momentum of the particle is defined as

canonical momentum

p⃗ = mv⃗+qA⃗, (2.3.6)



13

with a velocity dependent effective potential q(V − v⃗.A⃗) experienced by the charged

particle. Kinetic energy of the system is also K = 1
2mv2, and in terms of canonical

momentum it is given by (p⃗−qA⃗)2/2m.

2.3.2 The Bohr-van Leeuwen theorem

Now, we are able to calculate the average magnetic moment (i.e. magnetization

induced by the magnetic field) for a system of electrons in a solid. By keeping in mind

the Lorentz force given by Eq. (2.3.1), it is clear that the work done by the magnetic

force acting on the charged particles is zero according to

W = F⃗.d⃗s = q(⃗v× B⃗)d⃗s = 0, (⃗v× B⃗) ⊥ d⃗s. (2.3.7)

From Eq. (2.3.7), total energy of the system is independent of magnetic field since

there is no work due to the magnetic force acting on the charged particle. Therefore,

we expect the system to have zero magnetization.

According to Bohr-van Leeuwen theorem, the partition function of a system

composed of N particles, each of them having charge qi is given by

Z ∝
∫ ∫

...

∫
exp(−βEr⃗i, p⃗i)d⃗r1d⃗r2... ⃗drN ⃗dp1 ⃗dp2... ⃗dpN , i = 1, ...,N. (2.3.8)

Eq. (2.3.8) is a 6N dimensional integral. In the presence of magnetic field (A⃗ , 0)

momentum of each particle is ( p⃗i − qA⃗). For instance, Eq. (2.3.8) reads for a single

particle ∫ ∞

−∞
exp(−β(p−qA)2/2m)dp = 2m

∫ ∞

−∞
exp(−βx2/2m)dx, (2.3.9)

which is independent of magnetic field. Since the partition function (2.3.9) is

independent of magnetic field then we have

M = −
(
∂F
∂B

)
T,V
= 0. (2.3.10)

However, real magnetic materials do have a net magnetization. Thus we can

conclude that classical mechanical treatment of magnetism fails to explain magnetism

phenomena in real magnetic systems.
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2.4 Quantum Mechanics of Spin

The angular momentum discussed in the preceding sections is associated with the

orbital motion of electron around the nucleus. Therefore it is called orbital angular

momentum. The z− component of magnetic dipole moment is

µz = γLz = −
e

2m
mlh̄, (2.4.1)

whereas the magnitude of the total magnetic dipole moment is
√

l(l+1)µB.

In addition to orbital angular momentum, an electron has an intrinsic magnetic

moment which is associated with an intrinsic angular momentum. This intrinsic

angular momentum is called "spin" which is characterized by a spin quantum number

s, and it takes the value 1/2 for electron. The spin angular momentum is associated

with a magnetic moment which have a component −gµBms on a given axis, and a

magnitude equal to
√

s(s+1)gµB. Here, g is a constant known as g− factor which

has a value approximately 2. Therefore, the energy for an electron in the presence of

magnetic field is given by

E = gµBmsB. (2.4.2)

In general, magnetic moment vector corresponding to spin angular momentum is then

given by

µ⃗ = gS γS⃗ , gS ≈ 2. (2.4.3)

2.4.1 Spin-Spin Interaction of Two Spin-1/2 Particles

Now consider two spin-1/2 particles in a magnetic solid such as two electrons of

neighboring atoms with one electron in each with spin operators S⃗ a and S⃗ b interacting

with each other via spin-spin interaction

H = S⃗ a.S⃗ b. (2.4.4)

The total spin angular momentum operator of the system is defined as

S⃗ tot = S⃗ a+ S⃗ b. (2.4.5)
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From Eq. (2.4.5), we get

(S⃗ tot)2 = (S⃗ a)2+ (S⃗ b)2+2S⃗ a.S⃗ b. (2.4.6)

Our aim is to find the eigenvalues of the Hamiltonian operator given in Eq. (2.4.4).

Hence we rearrange Eq. (2.4.6) as

S⃗ a.S⃗ b =
1
2

[
(S⃗ tot)2− (S⃗ a)2− (S⃗ b)2

]
. (2.4.7)

Eigenvalue of an operator (S⃗ i)2 can be determined from

(S⃗ i)2ψi =
[
(S⃗ x

i )2+ (S⃗ y
i )2+ (S⃗ z

i )
2
]
, i = a or b. (2.4.8)

Since the eigenvalues of operators (S⃗ x
i )2, (S⃗ y

i )2, (S⃗ z
i )

2 are always 1
4 = (±1/2)2, we have

(S⃗ i)2ψi =
3
4
ψi. (2.4.9)

On the other hand, for the joint system we have

(S⃗ tot)2ψ = s(s+1)ψ, (2.4.10)

where s it the total spin angular momentum quantum number which can be either 0 or

1. Accordingly, using Eqs. (2.4.9) and (2.4.10) we obtain the result

S⃗ a.S⃗ bψ =
1
2

[
s(s+1)− 3

2

]
ψ,

=

 −
3
4 , s = 0 (singlet)

1
4 , s = 1 (triplet)

(2.4.11)

Each state has a degeneracy of 2s+ 1. Therefore, s = 0 state is a singlet whereas the

state with s = 1 is a triplet.

In a singlet state, the spin vectors of two electrons align antiparallel with each other.

Hence, the spin wave function is antisymmetric:

χ1 = α(sa)β(sb)−α(sb)β(sa). (2.4.12)

The triplet state is three-fold degenerate. The possible symmetric forms of the total

spin wave function are:

χ2 = α(sa)α(sb),

χ3 = α(sa)β(sb)+α(sb)β(sa),

χ4 = β(sa)β(sb). (2.4.13)
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In Eqs. (2.4.12) and (2.4.13), α and β represent spin-↑ and spin-↓ states of two

electrons, respectively.

2.5 Exchange Interaction

At this stage, we are in a position of considering the situation where the magnetic

moments are interacting with each other, as well as their environment (i.e. temperature

and magnetic field). The magnetic phenomena observed in systems where the

individual magnetic moments do not interact with each other completely differs

in the presence of interacting magnetic dipole moments leading to a behavior

called "cooperative phenomena". The long range order observed in real magnetic

systems mainly originates from some kind of communication between magnetic dipole

moments of material. This electrostatic interaction is called "exchange interaction",

and it is completely a quantum mechanical phenomenon. Although there are several

other interactions such as magnetic dipolar interactions in real materials, the most

dominant factor is the exchange interaction. In order to discover the origin of exchange

interaction, we should introduce the concept of the symmetry properties of identical

particles.

Let us consider two electrons with spatial coordinates r⃗1 and r⃗2. If one of the

electrons is in a state ψa(⃗r1) whereas the other is in ψb(⃗r2) then the total spatial wave

function can be written as

ψ(⃗r1, r⃗2) = ψa(⃗r1).ψb(⃗r2). (2.5.1)

When we swap the electrons, the system should remain unchanged. In other words,

the probability distribution must be conserved

|ψ(⃗r1, r⃗2)|2 = |ψ(⃗r2, r⃗1)|2. (2.5.2)

As a consequence of Eq. (2.5.2), the spatial wave function has the following property

ψ(⃗r1, r⃗2) = +ψ(⃗r2, r⃗1) (symmetric),

ψ(⃗r1, r⃗2) = −ψ(⃗r2, r⃗1) (antisymmetric). (2.5.3)
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Since the electron is a fermion, the overall wave function including the spatial and

spin parts of the two electron system must be antisymmetric. Recall from preceding

section that the singlet spin state has an antisymmetric spin wave function whereas the

triplet state has three symmetric spin wave functions. Accordingly, the overall wave

functions of singlet and triplet states are given by the following equations

ΨS =
1
√

2

[
ψa(⃗r1)ψb(⃗r2)+ψa(⃗r2)ψb(⃗r1)

]
χS , (2.5.4)

ΨT =
1
√

2

[
ψa(⃗r1)ψb(⃗r2)−ψa(⃗r2)ψb(⃗r1)

]
χT , (2.5.5)

where the spin wave functions χS and χT are given by Eqs. (2.4.12) and (2.4.13),

respectively. Energy eigenvalues corresponding to Eqs. (2.5.4) and (2.5.5) can be

calculated from

ES =

∫
Ψ∗SHΨS dr⃗1r⃗2,

ET =

∫
Ψ∗THΨT dr⃗1r⃗2. (2.5.6)

By assuming that the spin wave functions are normalized (i.e., χ∗SχS = 1 and χ∗TχT = 1)

we can calculate the energy difference between singlet and triplet states which is given

as follows

ES −ET = 2
∫
ψ∗a(⃗r1)ψ∗b(⃗r2)Hψa(⃗r2)ψb(⃗r1)dr⃗1dr⃗2. (2.5.7)

Now, let us generalize Eq. (2.4.4) as

H = A+BS⃗ a.S⃗ b, (2.5.8)

where the terms A and B are the constants to be determined. According to Eq. (2.4.11),

singlet and triplet energies corresponding to Eq. (2.5.8) are

ES = A− 3B
4
,

ET = A+
B
4
, (2.5.9)

which yields

A =
ES +3ET

4
, B = −(ES −ET ), (2.5.10)

from which we can define an effective spin Hamiltonian as follows

H = 1
4

(ES +3ET )− (ES −ET )S⃗ a.S⃗ b. (2.5.11)
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Consequently, it follows from Eqs. (2.5.7) and (2.5.11) that the exchange integral J of

the system is defined as

J =
ES −ET

2
=

∫
ψ∗a(⃗r1)ψ∗b(⃗r2)Hψa(⃗r2)ψb(⃗r1)dr⃗1dr⃗2. (2.5.12)

Therefore we obtain a spin Hamiltonian which can be written as

H spin = −2JS⃗ a.S⃗ b. (2.5.13)

Eq. (2.5.13) is responsible for the occurrence of magnetism. According to this compact

equation, if J > 0 then in order to minimize the energy eigenvalue of Eq. (2.5.13),

the triplet state with an energy 1/4 is favored whereas if J < 0 then Eq. (2.5.13)

becomes minimized if the singlet state with energy Es = −3/4 is preferred. Value of J

depends on the material in question and evaluation of it can be possible using certain

numerical methods such as density functional theory (DFT), as well as experimental

techniques. Moreover, based on Eq. (2.5.13), we can define different types of magnetic

order. Namely, J > 0 case represents a ferromagnetic order where the spins are aligned

parallel with each other, and for J < 0 we have an antiferromagnetic order where the

spins tend to align antiparallel. Throughout the present report, we will particularly

focus our attention on the models characterizing the manifestation of ferromagnetism.

We also note that the result given in Eq. (2.5.13) has been derived for a system of

two identical particles. However, it can be generalized to all neighboring atoms in a

magnetic solid, and this is known as the Heisenberg model (Heisenberg, 1928):

H = −
∑
<i j>

Ji jS⃗ i.S⃗ j, (2.5.14)

where the factor 2 is omitted for avoiding the double counting of each pair of spins in

the sum. From the experimental point of view, the term S⃗ i in Eq. (2.5.14) can be the

spin of a single electron localized on a particular atom in a crystal or the combined

spin of several d electrons in a transition-metal ion, or the combined spin and orbital

moment of a rare-earth ion. However, in a theoretical manner, the magnetic properties

of the system do not exhibit variations as long as the Hamiltonian has the same form,

hence the origin of the spins is not an important factor. As we shall see in the following

parts of this work, the model characterized by Eq. (2.5.14) and its various variants will

play a vital role in the foundation of this thesis report.
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2.6 Heisenberg and Ising Models

It is possible to determine the magnetic properties of a solid material with the help of

microscopic spin Hamiltonian defined in Eq. (2.5.14). If we consider only the nearest

neighbor interactions between localized spins with a constant interaction parameter J

then we obtain from Eq. (2.5.14)

H = −J
∑
<i j>

S⃗ i.S⃗ j, (2.6.1)

where J is the exchange interaction constant, and < i j > denotes that the sum is

taken over only the nearest neighbors. The spins S⃗ i in Eq. (2.6.1) are considered

as three dimensional unit vectors in three dimensional space. Hence, it is important

to notice that we should distinguish between dimensionality D of spin vector S⃗ i and

dimensionality d of lattice. For D = 1,2, and 3, we have Ising, XY, and Heisenberg

Hamiltonian, respectively. The situation can also be understood by considering

anisotropic counterpart of Eq. (2.6.1),

H = −Jx

∑
<i j>

S x
i S x

j − Jy

∑
<i j>

S y
i S y

j − Jz

∑
<i j>

S z
i S

z
j, (2.6.2)

with

|S⃗ i| =
[
(S x

i )2+ (S y
i )2+ (S z

i )
2
]1/2
= 1. (2.6.3)

For Jz = 0 in Eq. (2.6.2), we get XY model whereas for Jx = Jy = 0, the model reduces

to Ising model (Ising, 1925).

The most fundamental theoretical difference between Heisenberg, XY and Ising

models it that spin operators do not commute with each other in the two former models.

Therefore, Ising model is considered as a classical spin model whereas the former two

have quantum mechanical origin in some sense. On the other hand, the restriction of

the Ising model is that only the z− component of spin operator is taken into account

which means that magnetic moments can only align parallel or antiparallel with each

other and external magnetic field. Therefore the model is useful in describing a magnet

which is highly anisotropic in spin space such as Manganese(II) fluoride (MnF2). On

the other hand, Heisenberg model is capable of describing the magnetic properties
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of some magnetic insulators, such as Europium (II) sulfide (EuS). The XY and

Heisenberg models have a conventional phase transition at finite temperatures for d > 2

whereas we can observe a second order phase transition at a certain finite temperature

for d ≥ 2 in Ising model (Yeomans, 2000).



CHAPTER THREE

EXACT AND APPROXIMATE METHODS

In this chapter, we will discuss the ideas of some certain exact and approximate

techniques to treat a spin Hamiltonian. Particular emphasis will be devoted to Ising

model and its various generalizations. For this purpose, we will introduce the transfer

matrix method as an exact calculation technique. Not so surprisingly, the exact

calculations are restricted to a few number of examples, including the linear chain

Ising model in the presence of magnetic field, and the two dimensional counterpart

of the model in the absence of external magnetic field. Particularly, we have no

exact solution of three dimensional Ising model. Hence, it is very convenient to

handle more sophisticated models such as spin-S (S ≥ 1) Ising and Heisenberg

models or the systems with next-nearest neighbor interactions, ferrimagnetic systems,

nanoparticles etc. by attempting to make reasonable approximations. Series expansion

method and Monte Carlo (MC) simulations are among the foremost approximations

in theoretical literature. Nevertheless, even those powerful numerical approaches have

some deficiencies. For instance, in MC simulations one needs fairly large amount of

computer facilities due to the long calculation times originating from the exhausting

sampling averaging procedures. On the other hand, the results of series expansions

agree well with high accuracy MC simulations, and with exact results for soluble

models where these are available (Yeomans, 2000). However, as the order of the

expansion is increased then the number and complexity of contributing terms also

increases rapidly, hence the method becomes an unfit technique as the complexity of

the model increases.

Nonetheless, increasing complexity in problems means that we should make more

approximations. In most of the cases, it is possible to overcome the obstacles by

considering simple methods. One of the most widely used of these is mean field theory

(MFT). However, as it will be shown soon, MFT ignores fluctuations. Namely, each

spin is assumed to interact only with the mean field of all the other spins in the system.

As a consequence, the results of mean field theory can only be valid when fluctuations

21
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are unimportant. However, it can be used as a starting point for more sophisticated

calculations (Yeomans, 2000). On the other hand, despite its mathematical simplicity,

effective field theory (EFT) is considered to be quite superior to conventional MFT

since the former method exactly takes into account the single-site correlations and

neglects the multi-site correlations whereas the latter technique ignores the whole

correlations in the calculations. Therefore the results obtained by EFT are expected

to be both qualitatively and quantitatively more precise than those obtained by MFT.

Here, the crucial point is the consideration of multi-site correlations and it plays a vital

role on the qualitative and quantitative features of the model under consideration. The

main purpose of this thesis report is to introduce an EFT approximation in a heuristic

manner which systematically takes into account the thermal fluctuations, i.e. multi-site

as well as the single site correlations which appear when expanding the spin identities.

Details of the calculation method and its applications on selected model systems will

be the subject of the next two chapters.

3.1 The Transfer Matrix Method

The simplest way of understanding how this technique can be applied on a classical

spin model is to consider a model characterized by a one dimensional Ising spin chain.

The Hamiltonian of the system is given by

H = −J
N−1∑
i=0

sisi+1−H
N−1∑
i=0

si, (3.1.1)

where si is the z− component of spin angular momentum which can take values si =±1.

We consider periodic boundary conditions which can be identified by sN = s0.

The first step is to calculate the partition function of the system,

Z =
∑
{s}

exp

−β
−J

N−1∑
i=0

sisi+1−H
N−1∑
i=0

si


. (3.1.2)
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After a straightforward calculation process we get

Z =
∑
{s}

exp
[
βJ(s0s1+ s1s2+ s2s3+ ...)

]
exp

[
βH(s0+ s1+ s2+ ...)

]
,

=
∑
{s}

eβ(Js0s1)+βH(s0+s1)/2eβ(Js1s2)+βH(s1+s2)/2...

...eβ(JsN−1sN )+βH(sN−1+sN )/2,

=
∑
{s}
⟨s0|T |s1⟩⟨s1|T |s2⟩...⟨sN−1|T |s0⟩ =

∑
{s}

T0,1T1,2...TN−1,0, (3.1.3)

where

Ti,i+1 = eβJsisi+1+βH(si+si+1)/2. (3.1.4)

are the elements of a matrix T with rows labeled by the values of si and columns by

the values of si+1. Hence, the explicit form of the matrix T is given by

si = +1

si = −1

 eβ(J+H) e−βJ

e−βJ eβ(J−H)

︸                    ︷︷                    ︸
S i+1=1 S i+1=−1

(3.1.5)

The transfer matrix T can be obtained by matrix product of Ti,i+1 which is given by

Eq. (3.1.5). Hence we get the following equation for the partition function

ZN =
∑

s0=±1

(T N)0,0. (3.1.6)

In order to proceed further, we must diagonalize Eq. (3.1.6) by calculating the trace of

the matrix T as follows

ZN =
∑

i

λN
i , (3.1.7)

where λi is the ith eigenvalue of matrix T . Here, the size of the transfer matrix depends

on the number of spin states and on the range of the interactions.

Now let us investigate the free energy of the system. For a transfer matrix T with

size n, the possible eigenvalues in decreasing order can be sorted as λ0, λ1, λ2,...,λn. In

the thermodynamic limit we can write free energy of the system in the form

f = −kBT lim
N→∞

1
N

lnZN . (3.1.8)
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Therefore, with the help of Eq. (3.1.7) we have

f = −kBT lim
N→∞

1
N

ln
[
(λi)N

]
= −kBT lim

N→∞
1
N

ln

λN
0 +

n−1∑
i=1

λN
i

 ,
= −kBT lim

N→∞
1
N

ln

λN
0

1+ n−1∑
i=1

λN
i

λN
0


 . (3.1.9)

Since λ0 >> λi (i = 1,n−1), it is clear that (λi/λ0)N → 0, and accordingly Eq. (3.1.9)

reduces to

f = −kBT lnλ0. (3.1.10)

Eigenvalue λ0 in Eq. (3.1.10) just corresponds to the highest eigenvalue of determinant∣∣∣∣∣∣∣∣ eβ(J+H)−λ e−βJ

e−βJ eβ(J−H)−λ

∣∣∣∣∣∣∣∣ = 0. (3.1.11)

After some manipulations, we obtain the eigenvalues calculated from Eq. (3.1.11) as

follows

λ± = eβJ cosh(βH)±
√

e2βJ sinh2(βH)+ e−2βJ , λ0 = λ+. (3.1.12)

By inserting Eq. (3.1.12) in Eq. (3.1.10) we finally obtain the free energy expression

of one dimensional Ising model (Ising, 1925) as follows

f = −kBT ln
[
eβJ cosh(βH)+

√
e2βJ sinh2(βH)+ e−2βJ

]
. (3.1.13)

In the limit T → 0 we have e−2βJ → 0, and Eq. (3.1.13) reduces to

f = −J−H. (3.1.14)

This is an expected result. At the ground state of the system entropy reduces to zero

and the free energy is equal to the average internal energy per spin.

It is also possible to obtain the magnetization of Ising chain from Eq. (3.1.13),

m = −
(
∂ f
∂H

)
T
=

eβJ sinh(βH)[
e2βJ sinh2(βH)+ e−2βJ

]1/2 . (3.1.15)

We see from Eq. (3.1.15) that in the absence of magnetic field (H = 0), magnetization

vanishes. This means that the system can not exhibit a long range magnetic order
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at any temperature. On the other hand, for J = 0 or T → ∞ we get m = tanh(βH),

and it corresponds to paramagnetic phase. This problem was solved by Ernst Ising

himself (Ising, 1925). In two dimensions, the problem becomes mathematically harder

to solve and analytical calculations in two dimensions were originally completed by

Lars Onsager (Onsager, 1944), and the calculation details can be found in (Huang,

1987). Based on these exact calculations, lower critical dimension of Ising model at

which the system can not exhibit a long range ferromagnetic order is found to be dc = 1.

3.2 Series Expansion Method

As we have stated before, exact power series expansion of free energy is one of

the most remarkable techniques for treating the spin Hamiltonians. This approach

was introduced by (Domb, 1949). It has led to remarkably precise estimates of the

critical properties for both two- and three-dimensional Ising models and has also

been applied successfully to the Heisenberg and other model systems (Fisher, 1967).

In this approach, T > Tc behavior (i.e. paramagnetic properties) of the model are

considered by a method called "high temperature series expansion method" whereas

T < Tc region of the temperature spectrum (i.e. ferromagnetic spectrum) is treated

by "low temperature series expansion" of free energy. These two approaches will be

analyzed in the following two subsections (Yeomans, 2000).

3.2.1 High Temperature Series Expansions

Let us apply the method for a two dimensional zero field Ising model on a square

lattice defined by the Hamiltonian

H = −J
∑
<i j>

sis j. (3.2.1)

For Ising model we have sis j = ±1, therefore we may write

eβJsis j = cosh(βJ)+ sis j sinh(βJ) = cosh(βJ)[1+ sis jv], (3.2.2)
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where v = tanh(βJ) is the expansion parameter which will be used for the limit v→ 0

as T →∞ as required. The partition function of the system is defined by

Z =
∑
{si}

eβJ
∑
<i j> sis j =

∑
{si}

∏
<i j>

eβJsis j =
∑
{si}

∏
<i j>

cosh(βJ)(1+ sis jv),

= cosh(βJ)Nb
∑
{si}

∏
<i j>

(1+ sis jv),

= cosh(βJ)Nb
∑
{si}

1+ v
∑
<i j>

sis j+ v2
∑

<i j>,<kl>

sis jsksl+ ...

 . (3.2.3)

Our aim is to count the number of contributions to Z which are of order vn up

to as large values of n as possible. One should notice that the terms in Eq. (3.2.3)

correspond to the graphs plotted on a square lattice. Each product of pair of spins sis j

can be associated with a bond which connects the lattice sites i and j. Each term of

order v can be represented by a single bond. The terms of order v2 correspond to two

bonds which may or may not touch, and so on. Therefore each term of order vn is in

one-to-one correspondence with a graph with n edges on a square lattice (see Fig. 3.1).

Now assume that the number of occupied bonds originating from site i is denoted

by pi. For each lattice site i, we can define a parameter spi
i where si = ±1. Hence,

summing over two possible values of si, we get two values for spi
i which can be either

0 if pi is odd, or 2 if pi is even. Thus, the only graphs that survive the sum in Eq.

(3.2.3) have an even number of lines passing through each site. Consequently, for N

spins we get ∑
si

(spi
i sp j

j spk
k ...) = 2N (all pi even),

= 0 (otherwise). (3.2.4)

Hence, only products in which every spin operator appears an even number of times

contribute. Graphically, these terms correspond to closed loops; no free ends are

allowed, and each contributes the same weight, 2N , (Yeomans, 2000).

So finding the contribution to the partition function of order n is reduced to the

problem of counting the number of closed loops of n bonds that can be put on the
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l m

(a) kj

l m

(b)

i

l m

(c) ji

l m

(d)

o

n

kji

l m

(e)

p q

n

ji

l m

(f)

Figure 3.1 Graphs on the square lattice, each of which corresponds to a product

of spins in the sum in Eq. (3.2.3): (a) slsm, (b) slsms jsk, (c) sis2
l sm, (d) s2

i s2
j s2

l s2
m,

(e) s2
i s3

j s2
k s3

l s3
ms2

nso, (f) s2
i s2

j s
2
l s4

ms2
ns2

ps2
q. Only (d) and (f), where the number

of bonds at each vertex is even, give a nonzero contribution to the partition

function, (Yeomans, 2000).
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square lattice. Every position and orientation of the loops gives a contribution to the

partition function. The closed loop with n = 4 edges (or bonds) just corresponds to a

square. In our two dimensional problem, the square may be located with a specified

(say, lower-left-hand) corner at any lattice site, therefore its contribution is given as

N. Another closed loop with n = 6 is a 2× 1 rectangle (e.g. see Fig. 3.2(a)) which

can be located at any of the N lattice sites and oriented in two possible ways, hence

its contribution is 2N. For n = 8, the closed loops do not need to be connected. A

disconnected loop, however, must consist of two disjoint squares. For instance, the

first square can be placed with its lower-left-hand corner at any of the N lattice sites,

while the same corner of the "second square" need only avoid nine lattice sites (see

Fig. 3.2(b)). Thus, there are N(N−9)/2 disconnected even loops with n = 8 edges. We

should also divide by 2 to eliminate the distinction between the "first" and "second"

squares. The connected paths of length 8 are shown in Fig. 3.2(c). We see from this

figure that there are four different types with a total of 9 orientations, giving, in all, 9N

connected loops with 8 edges (Cipra, 1987). Therefore we have

N(N −9)/2+9N = N(N +9)/2.

The terms up to v10 are given in (Yeomans, 2000). Accordingly, we have the partition

function as follows

Z = [cosh(βJ)]Nb2N
(
1+Nv4+2Nv6+

1
2

N(N +9)v8+2N(N +6)v10+O(v12)
)
.

(3.2.5)

For a square lattice we have Nb = 2N, therefore by taking the logarithm of Eq. (3.2.5)

we can obtain an expression for the free energy of the system

lnZ = ln
[
2cosh2(βJ)

]N
+ ln

[
1+Nv4+2Nv6+

N(N +9)
2

v8+2N(N +6)v10
]
,

= N ln2+2N lncosh(βJ)+ ln(1+ x), (3.2.6)

where

x = Nv4+2Nv6+
N(N +9)

2
v8+2N(N +6)v10. (3.2.7)

On the other hand, for T →∞ we have

ln
[
cosh(βJ)

]
= ln

(
1+

(βJ)2

2!
+

(βJ)4

4!
+ ...

)
≈ ln1 = 0. (3.2.8)
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(a) (b)

(c)

Figure 3.2 (a), (b): Examples of several bond configurations of graphs contributing to the

partition function given in Eq. (3.2.5) with n = 6,8. (c) Possible orientations of graphs

with n = 8 edges, (Cipra, 1987).

Similarly, it is also possible to expand the third term in Eq. (3.2.6) for small v as

follows

ln(1+ x) = x− x2

2
+

x3

3
+O(x4) ≈ x− x2

2
. (3.2.9)

By substituting Eq. (3.2.9) in Eq. (3.2.6) and taking the terms up to v10, the terms

proportional to N2 drop out and we obtain

F = −kBT lnZ = −NkBT
[
ln2+ v4+2v6+

9
2

v8+12v10
]
. (3.2.10)

Other thermodynamic quantities such as internal energy per spin, and specific heat at

constant magnetic field can be extracted from lnZ as follows

U/N = −∂ lnZ
∂β
= −Jsech2(βJ)(4v3+12v5+36v7+120v9),

C =
dU
dT

. (3.2.11)

3.2.2 Low Temperature Series Expansions

High temperature series expansion of free energy is not applicable for temperatures

below the transition temperature Tc. In order to make a complete treatment of the
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Figure 3.3 Schematic representation of (a) ground state configuration

of a two dimensional Ising model where all spins aligned in the same

direction, (b) the first excited state configuration, and (c) the second

excited state configuration.

problem it is necessary to expand the free energy for T < Tc which is called "low

temperature series expansion" method. We assume that for T < Tc, major contributions

to the partition function are from the states where few spins are flipped in comparison

with the ground state of the system.

Again we consider the conventional spin Hamiltonian

βH = −βJ
∑
<i j>

sis j. (3.2.12)

Ground state of the system defined by Eq. (3.2.12) is ferromagnetic with βJ > 0 where

all spins are aligned parallel with each other as shown in Fig. 3.3(a). Starting point

for determination of a series expansion for partition function is to include the energy

excitations around the ground state configuration. The excited state with a lowest

energy excitation is to flip a single spin corresponding to configuration depicted in

Fig. 3.3(b). Any of N lattice sites can be flipped in the system, and the energy cost is

△E = 8J with respect to the ground state energy in two dimensions. The configuration

with next lowest energy is the configuration depicted in Fig. 3.3(c) where the number

of flipped spins is 2. Now, the energy difference is △E = 8J + 4J = 12J. There are

two possible orientations for these two flipped spins (namely in horizontal or vertical

directions) leading to 2N possible orientations in total. In the next configuration, we

flip two disjoint spins. There are N possible selections for the first spin. For the

second one we have N − 1 possibilities. However, four neighboring sites of the first

lattice site are not allowed. Consequently, there exist N − 1− 4 = N − 5 remaining

possibilities. In order to avoid double counting we should divide the resultant value by

two, hence we get N(N−5)
2 possible configurations. The amount of energy cost is now



31

△E = 8J+8J = 16J. Consequently, we can order the terms relative to the ground state

energy as follows

Z = 2e2NβJ
(
1+Ne−8βJ +2Ne−12βJ +

N(N −5)
2

e−16βJ + ...

)
. (3.2.13)

The factor 2 on the left-hand side of Eq. (3.2.13) is due to the two fold degeneracy

of the configurations (for instance the energy of all spin-up configuration is the same

as that of all spin-down configuration) which is insignificant in N →∞ limit, and we

finally obtain

Z = e2NβJ
(
1+Ne−8βJ +2Ne−12βJ +

N(N −5)
2

e−16βJ + ...

)
. (3.2.14)

The free energy per site is obtained from the series,

F = −kBT lim
N→∞

1
N

lnZ,

= −kBT
1
N

ln
[
e2NβJ

(
1+Ne−8βJ +2Ne−12βJ +

N(N −5)
2

e−16βJ + ...

)]
,

(3.2.15)

from which we get

− F
kBT
= 2βJ+

1
N

ln
(
1+Nt4+2Nt6+

N(N −5)
2

t8+ ...
)
, t = e−2βJ . (3.2.16)

By applying Eq. (3.2.9) in Eq. (3.2.16) and taking the powers up to t8, we can see that

the terms proportional to N2 drop out which is a consequence of the extensivity of the

free energy and we get

− F
kBT
= 2βJ+ t4+2t6− 5

2
t8+O(t10). (3.2.17)

The energy per site and the heat capacity are then obtained from

U/N = − ∂
∂β

(
lnZ
N

)
= −2J+8Jt4+24Jt6−40Jt8,

C/NkB =
1

NkB

∂E
∂T
=

(
J

kBT

)2 [
64t4+288t6−640t8

]
. (3.2.18)

3.3 Monte Carlo Simulations

Until the recent past, the research on physical systems was carried out by completely

theoretical or experimental tools, and the validity of a theory could be confirmed
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only by an experimental investigation. On the other hand, the reliability, as well as

quality standard of an experimental research strictly depend on the preparation of a

perfect sample for study or to facilitate a good laboratory equipped with experts which

generally costs an expensive expenditure. Moreover, with the advent of computers

after the middle of twentieth century, the research on physical systems became possible

to carry out by completely numerical methods. As a result of these technological

developments, computer simulations or "computational experiments" are regarded as

another way of doing academical research at the present time. One of and maybe

the most powerful approach among these computational tools is Monte Carlo (MC)

simulation technique which was originally introduced in the literature by (Metropolis,

Rosenbluth, Rosenbluth, Teller, & Teller, 1953).

MC simulations have a very wide variety of applications in physics. However,

we will basically deal with the applications of the method in magnetism. Speaking

in a magnetic language, in a typical MC simulation process we actually monitor

the time dependence of some properties like magnetization and internal energy of a

model system which evolve according to a certain predefined rule (Landau & Binder,

2001). The power and the reliability of the method in applications of magnetic systems

originate from the complete consideration of thermal fluctuations and multi-site

correlations between neighboring lattice sites. There exist pretty precious references

concerning the applications of MC simulations in statistical physics (Landau & Binder,

2001, Newman & Barkema, 2001), and we refer the readers to these worthy studies for

further detailed information.

3.3.1 Importance Sampling Technique

In statistical mechanics, we generally need to calculate the average value of a certain

quantity such as magnetization and internal energy according to

⟨Â⟩ =
∑
{s} Âexp(−βH)∑
{s} exp(−βH)

, {s} : all accessable states. (3.3.1)
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For a regular lattice consisting of N lattice sites, the sums in Eq. (3.3.1) contains 2N

distinct contributions for s = ±1. Typically, it is almost impossible to calculate these

contributions for N ≥ 40. One possible way to overcome this problem is to create

an initial configuration set, and try to extract the desired configuration by following

a physically reasonable mechanism. However, some configurations may contribute to

the partition function with a major weight whereas the most of the configurations do

not make a significant contribution. Moreover, according to the Boltzmann weight

e−βĤ , the number of configurations contributing to the partition function is very small.

Therefore, taking the configurations with a weight e−βĤ , instead of taking the whole

configuration set will definitely make things easier and we call it "importance sampling

technique".

The first step in this procedure is to create a Markov chain. Namely, if the state

of a system at time t can be somehow obtained from the state at t − 1, the set of

n configurations produced in this manner is called Markov chain. According to the

ergodicity hypothesis, a particular configuration of the system must be obtained from

another arbitrary configuration in a finite time step.

3.3.2 Markov Chains and Master Equation

In a given process for a particular system, if the state at time t can be estimated from

previous states by using random elements this process is called a "stochastic process"

which can not be defined in a deterministic manner. Let us consider a stochastic

process defined by a finite set of possible states S 1,S 2,S 3, ... defined at discrete time

steps t1, t2, t3, ..., and denote the state of the system at time t as Xt. According to the

conditional probability Xtn = S in we have

P(Xtn = S in |Xtn−1 = S in−1 ,Xtn−2 = S in−2 , ...,Xt1 = S i1). (3.3.2)

Eq. (3.3.2) tells us that the previous system state Xtn−1 was the state S in−1 , etc. and the

state Xtn at time tn can be obtained from Xt1 at time t1 in successive stochastic iterations.

These kind of processes are called stochastic processes. If the conditional probability
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in Eq. (3.3.2) is independent of all states and if the probability of the system to be in a

state Xtn at time tn only depends on the previous state at time tn−1 then we can write

P = P(Xtn = S in |Xtn−1 = S in−1). (3.3.3)

In this case the set of the states {Xt} corresponding to Eq. (3.3.3) is a Markov chain, and

the conditional probability in Eq. (3.3.3) can be expressed as a transition probability

between the states i and j as follows

Wi j =W(S i→ S j) = P(Xtn = S j|Xtn−1 = S i), (3.3.4)

which must obey the following rule as the whole transition probabilities:

Wi j ≥ 0,
∑

j

Wi j = 1. (3.3.5)

Hence, the probability P(Xtn = S j) of the system to be in a state S j at time tn can be

defined as

P(Xtn = S j) = P(Xtn = S j|Xtn−1 = S i)P(Xtn−1 = S i) =Wi jP(Xtn−1 = S i). (3.3.6)

For P(Xtn = S j) = P(S j, t) time dependence of Eq. (3.3.6) is called "Master equation"

dP(S j, t)
dt

= −
∑

i

W jiP(S j, t)+
∑

i

Wi jP(S i, t). (3.3.7)

Moreover, Eq. (3.3.7) can be considered as a "continuity equation", expressing the fact

that the total probability is conserved
(∑

j P(S j, t) ≡ 1 at all times
)

and all probability

of a state i that is "lost" by transitions to state j is gained in the probability of that state,

and vice versa. Eq. (3.3.7) just describes the balance of gain and loss processes: since

the probabilities of the events S j → S i1 , S j → S i2 , S j → S i3 are mutually exclusive,

the total probability for a move away from the state j simply is the sum
∑

i Wi jP(S j, t)

(Landau & Binder, 2001).

3.3.3 Metropolis Algorithm

According to classical Metropolis algorithm (Metropolis et al., 1953), in order to

estimate the configuration of the system at time t from a previous configuration at
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time t− 1, we define a transition probability which depends on the energy difference

between initial and final states of the system. The set of produced configurations is

a time dependent and non-deterministic sequence, and the evolution of states can be

simulated according to the time dependent master equation

∂Pn(t)
∂t
= −

∑
n,m

[Pn(t)Wn→m−Pm(t)Wm→n] . (3.3.8)

In Eq. (3.3.8), Pn(t) is the probability of the system to be in a state n at time t, Wn→m is

the transition rate between states n→ m. In equilibrium we have ∂Pn(t)/∂t = 0, hence

we obtain

Pn(t)Wn→m = Pm(t)Wm→n, (3.3.9)

which is called "detailed balance condition". In a classical system, the occupation

probability of state n is given by

Pn(t) = e−En/kBT/Z. (3.3.10)

Due to the partition function Z in denominator, the exact calculation of Eq.(3.3.10)

is generally not possible. In order to overcome this problem, we generate a Markov

chain. In other words, a new configuration is generated directly from previous one. If

the state n is generated from the state m then according to Eq. (3.3.10), the relative

probability is

△E = En−Em. (3.3.11)

The transition rates satisfying the detailed balance condition in Eq. (3.3.9) are

acceptable according to (Metropolis et al., 1953)

Wn→m = τ−1
0 exp(−△E/kBT ), △E > 0

= τ−1
0 , △E < 0 (3.3.12)

where τ0 is the spin-flip rate per unit time, and is generally set equal to unity. The

implementation of Metropolis algorithm can be summarized as the following recipe:

1. Generate an initial configuration

2. Select the lattice site i
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3. Calculate the energy cost △E if the spin at site i overturns

4. If △E ≤ 0 then accept the new configuration

5. If △E > 0 then generate a random number r within the interval 0 < r < 1

6. If the condition r < exp(−△E/kBT ) is satisfied then accept the new configuration,

else keep the existing configuration

7. Go to the next site and follow the procedure from the step 3

In a typical MC simulation described above the unit of time is measured in terms of

MC steps. Namely, one complete sweep of lattice corresponds to a MC step (and also

to a step of a Markov chain). Steps 1− 7 define one step of a Markov chain, and in

each step we calculate the average values of thermodynamic quantities. In the first

few iterations (i.e. the first few steps of Markov chain) the system may not reach

to the equilibrium. Hence, once the number of states (i.e. the length of Markov

chain) is sufficiently large then the configurations produced in these iterations are

not added to statistical averaging. There is not any unique method for determining

the number of transient steps in MC simulations. However, we can estimate it

conventionally as follows: Perform a series of simulations starting from different

initial configurations and keeping the system parameters fixed, and monitor the time

dependence of magnetization. In most cases, N = L × L steps are sufficient for

thermalization where L is the linear dimension of the regular lattice.

3.3.4 Application to a Two Dimensional Ferromagnetic Ising Square Lattice

Now we are capable of calculating some of the thermal and magnetic properties of

model systems based on MC simulation technique implemented above. Let us start

with a spin-1/2 Ising model defined on a square lattice (see Fig. 3.4). The most simple

case can be described by the following Hamiltonian which includes only the nearest-

neighbor interactions

H = −J
∑
<i j>

sis j. (3.3.13)
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Figure 3.4 Schematic representation of

arrangement of spins on a two dimensional

square lattice.

In Eq. (3.3.13), si = ±1 represents a discrete spin variable and J > 0 is the

ferromagnetic exchange interaction parameter value of which has been fixed to unity

throughout the simulations. In order to simulate the system, we employ the Metropolis

MC simulation algorithm to Eq. (3.3.13) on a L × L square lattice with periodic

boundary conditions (PBCs). Configurations were generated by selecting the sites in

sequence through the lattice and making single-spin-flip attempts, which were accepted

or rejected according to the Metropolis algorithm, and L2 sites are visited at each time

step (a time step is defined as a MC step per site or simply MCS as explained before).

Data were generated over 50− 100 independent sample realizations by running most

of the simulations for 25000 Monte Carlo steps per site after discarding the first 5000

steps. This number of transient steps is found to be sufficient for thermalization for

almost the whole range of the parameter sets. Our program calculates the instantaneous

values of various quantities such as magnetization (M), magnetic susceptibility (χ),

internal energy (U) and the specific heat (C) which are defined as

• Magnetization:

M =
1
N

⟨∑
i

si

⟩
, (3.3.14)
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• Internal energy:

U = ⟨H⟩ , (3.3.15)

• Magnetic susceptibility:

χ =
1

kBT

(⟨
M2

⟩
−⟨M⟩2

)
, (3.3.16)

• Specific Heat:

C =
1

kBT 2

(⟨
U2

⟩
−⟨U⟩2

)
. (3.3.17)

 

Figure 3.5 Graphical output of several runs of the 2D-Ising model for temperatures T = 1.0, T = 2.0, T ≈

Tc, and T = 3.0, respectively. Each red (blue) square represents a s = 1 (−1) state for ferromagnetism,

J > 0.
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Figure 3.6 Time dependence of magnetization

calculated at temperatures T = 1.0, T = 2.0, T ≈ Tc,

and T = 3.0.

In Fig. 3.5 we represent the snapshots of a two dimensional square lattice simulated

by Metropolis algorithm in a single run according to Eq. (3.3.13) for temperatures

T = 1.0 (the leftmost), T = 2.0 (middle left), T ≈ Tc (middle right) and T = 3.0
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(the rightmost), respectively. The corresponding time series of magnetization curves

are also depicted in Fig. 3.6. It is clear from these figures that at sufficiently

low temperatures such as T = 1.0 where the thermal fluctuations are negligible

ferromagnetic exchange interactions are dominant hence the system is able to establish

a long range ferromagnetic order where almost all of the spins point parallel with each

other. As the temperature increases (e.g. T = 2.0) some of the spins flip their direction

due to the thermal agitations originating from increasing temperature. If we increase

the temperature further, we get closer to the transition regime. In this regime thermal

fluctuations are significantly dominant and the magnetization oscillates between ±1

states. Finally for T > Tc, temperature becomes sufficiently dominant against the

ferromagnetic exchange coupling J and the system exhibits a paramagnetic state with

zero net magnetization. This picture exposes a competition between ferromagnetic

coupling J which tends to keep the spins parallel with each other and temperature T

which has a tendency to destruct the ferromagnetic order in the system.

Variation of the order parameter M, internal energy U, as well as the response

functions C and χ with temperature for this model was investigated by (Landau,

1976a). In the following calculations, we will reproduce the data obtained in this work.

In Fig. 3.7 we depict the magnetization and internal energy data for a variety of lattice
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Figure 3.7 Temperature variation of the order parameter (left panel) and

internal energy (right panel). The dashed lines on the left represent the

exact result (Onsager, 1944).
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Figure 3.8 Left panel: Variation of specific heat curves as a function

of temperature. Right panel: Magnetization and susceptibility versus

temperature curves.

sizes L. Finite size effects can be clearly observed in this figure. Namely, as the system

size increases then the curves converge to the results of exact calculations (Onsager,

1944). The situation can also be observed in left panel of Fig. 3.8 where the specific

heat C curves are plotted as a function of temperature for various lattice sizes. As

we approach to the thermodynamic limit then the divergent behavior of specific heat

curves become apparent in the phase transition region. This divergent behavior can

also be observed in the variation of magnetic susceptibility versus temperature curves

(see the right panel in Fig. 3.8). An important deficiency of the method takes place

at this point: As the linear dimension of the lattice increases then a better agreement

with the exact results are obtained. However, this produces the need of a very large

requirement of CPU time.

Up to now, we have investigated the thermal and magnetic properties of the model

based on MC simulations. Now, let us discuss the critical properties of the system.

The transition temperature of the system can not be precisely estimated from above

discussion. In order to locate the transition temperature exactly, we can compute the

fourth order cumulant of magnetization VL with various lattice sizes. The fourth order

cumulant of the magnetization, i.e. the Binder cumulant (Binder, 1981) for a spin
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cluster is defined by

VL(L,T ) = 1− ⟨M
4⟩

3⟨M2⟩2
, (3.3.18)

where ⟨M2⟩ and ⟨M4⟩ denote the second and fourth moments of the magnetization in

that cluster, respectively. The cumulant approaches the value 2/3 in the thermodynamic

limit at temperatures T < Tc while it tends to zero, reflecting a Gaussian distribution of

the magnetization histogram, at T > Tc. At T = Tc VL(L,T ) acquires a nontrivial value,

the critical Binder cumulant V∗L.

Another method is to make use of the magnetization and correlation length critical

exponents which are respectively given by

M ∼ |T −Tc|β, (3.3.19)

ξ ∼ |T −Tc|ν. (3.3.20)

Combining these equations yields

M ∼ ξ−β/ν. (3.3.21)

In the thermodynamic limit, correlation length diverges at T = Tc. However, our system

is a finite square lattice with linear size L. Hence, at the transition point the maximum

correlation length equals to L. Therefore, for square lattices with linear sizes L1 and

L2 we have

M1 = C1L−β/ν1 ,

M2 = C2L−β/ν2 . (3.3.22)

From Eq. (3.3.22) we get

log
(

M1

M2

)
= log

(
C1

C2

)
− β
ν

log
(

L1

L2

)
. (3.3.23)

For T = Tc we can write C1 =C2, and we finally obtain the following function

f (M,L) =
log(M1/M2)
log(L1/L2)

= −β
ν
. (3.3.24)

If the left hand side of Eq. (3.3.24) is plotted for various L1 and L2 sets, these curves

intersect each other at T = Tc. The x− and y− coordinates of the intersection point

correspond to critical temperature Tc and critical exponent β/ν, respectively.
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Figure 3.9 Left panel: Binder cumulant versus temperature curves of

various lattice sizes. The projection of the intersection point of the curves

on the x axis corresponds to Tc. Right panel: Determination of transition

temperature Tc and the critical exponent β/ν according to Eq. (3.3.24).

The numerical data obtained from Eqs. (3.3.18) and (3.3.24) are depicted in Fig.

3.9. Variation of Binder cumulant VL(L,T ) as a function of temperature for various

lattice sizes is plotted in the left panel of Fig. 3.9 from which the transition temperature

is obtained as Tc = 2.27 which agrees quite well with the exact value Tc = 2/ log(1+
√

2) = 2.269 (Onsager, 1944). On the other hand, according to the data based on Eq.

(3.3.24) we have Tc = 2.27 and β/ν = 0.127 (see the right panel in Fig. 3.9). The

exact value of exponent is β/ν = 0.125 (Stanley, 1971). The numerical precision can

be improved by performing simulations for sufficiently narrow temperature intervals

with quite large number of sample realizations.

There is also another alternative way to estimate the critical exponents from the

computed data. Namely, at T = Tc we can write

M ∼ L−β/ν. (3.3.25)

Hence, at this temperature it is possible to extract the exponent β/ν from Eq. (3.3.25)

by computing the magnetization for various lattice sizes. Consequently, the slope of

log-log plot of Eq. (3.3.25) gives the desired value. The computed data is depicted

in Fig.3.10 and it has been found that β/ν = 0.127. As we noted before, the slight
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Figure 3.10 Left panel: Magnetization versus lattice size L at T = Tc

obtained from Eq. (3.3.25). Right panel: The same data but in a

logarithmic scale. The exponent value is obtained as β/ν = 0.127.

difference between the results of Eqs. (3.3.24) and (3.3.25) can be reduced by

increasing the realization number or by generating longer Markov chains which means

computing the statistical averages from longer time series of magnetization at a fixed

temperature.

3.3.5 Application to a Classical Vector Model

In contrast to Ising-type models which have variables with discrete degrees of

freedom, the models described by a Heisenberg Hamiltonian are characterized using

variables which vary continuously. As we noted in Eq. (2.6.1), classical Heisenberg

model and its various generalizations are commonly used to simulate the systems with

continuous degrees of freedom. The anisotropic Heisenberg model can be represented

by the following classical Hamiltonian

H = −J
∑
<i j>

S⃗ i.S⃗ j−D
∑

i

S⃗ 2
i , |S⃗ i| = 1. (3.3.26)

The model described by Eq. (3.3.26) is a classical model since the spin variables are

considered as three dimensional unit vectors with continuous degrees of freedom. The

first term in Eq. (3.3.26) is the Heisenberg exchange constant and the second term is
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the single ion anisotropy. Here anisotropy means that the three dimensional unitary

spin vector S⃗ i can favor a certain direction depending on the value of D. More clearly,

we can modify Eq. (3.3.26) as

H = −J
∑
<i j>

S⃗ i.S⃗ j−Dx

∑
i

(
S x

i

)2−Dy

∑
i

(
S y

i

)2−Dz

∑
i

(
S z

i

)2
, |S⃗ i| = 1. (3.3.27)

The model described by Eq. (3.3.27) corresponds to "anisotropic" Heisenberg model

where the contribution of the components S x, S y, S z to the length of the vector S⃗ i

depends on the anisotropy constants Dx, Dy, Dz.

Classical Heisenberg model is capable of verifying the experimental evidence of

magnetic behavior of many materials such as RbMnF3. MC simulation procedure of

the model is very similar to Ising model. However, it is not possible to simply flip

the spin variable since there are infinite number of trial states for the spin vector. The

method of tracking the information about components of spin vector S⃗ i constitutes a

significant importance. A three dimensional classical spin vector can be defined as

S⃗ = S x î+S y ĵ+S zk̂. (3.3.28)

This vector can be considered as a vector centered at origin of a unit sphere. The

components S x, S y and S z of vector S⃗ i then can be defined in either cartesian or

spherical coordinates. Now, the problem of generating an initial configuration with

randomly oriented unit vectors becomes the problem of choosing a point randomly

from the surface of a unit sphere. In spherical coordinates, the vector components are

S x = sinθcosϕ,

S y = sinθ sinϕ,

S z = cosθ, (3.3.29)

with 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and |S⃗ | =
√

(S x)2+ (S y)2+ (S z)2 = 1.

However, generating an initial configuration by using two random numbers θ

and ϕ within the intervals [0,π] and [0,2π] cannot be sampled from a homogenous

distribution, but the sample realizations may pile up around the northern and southern

poles of the unit sphere. This situation can be clearly seen from Figs. 3.11a-c.
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Figure 3.11 Distribution of randomly selected N = 100000 points corresponding to x−, y− and

z− components of a classical unitary spin vector S⃗ . Histograms (a)-(c) have been drawn from

Eq. (3.3.29) whereas (d)-(f) have been generated from Marsaglia’s method.

It is possible to overcome this problem by using a method known as Marsaglia

algorithm (Marsaglia, 1972) which can be summarized as follows

• Generate two random numbers from a homogenous distribution within the

interval [0,1]

• Define a two dimensional ξ vector using the numbers r1 and r2

ξ1 = 1−2r1, ξ2 = 1−2r2, ξ2 = ξ2
1 + ξ

2
2.

• If the condition ξ2 < 1 is satisfied then the components of the spin vector are
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obtained as follows

S x = 2S 0ξ1(1− ξ2)1/2, S y = 2S 0ξ2(1− ξ2)1/2, S z = S 0(1−2ξ2),

where S 0 = 1 is the radius of the unit vector. The set of spin vectors produced in

this way are part of a uniform distribution of directions. These conclusions have been

depicted in Figs. 3.11d-f.
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Figure 3.12 Simulation results for (a) magnetization components and (b) average energy

per spin of isotropic (Dx = Dy = Dz = 0) classical Heisenberg model defined on a simple

cubic lattice. Total magnetization and specific heat curves have also been depicted in (c).

The order parameter M of the classical Heisenberg model is determined by its

multi-components, and the nature of the Hamiltonian determines which components

are important. Namely, in the presence of single ion anisotropy (c.f. see Eq. (3.3.27))

ordering will occur only along the dominant directions depending on the values of

the single ion anisotropy parameters Dx, Dy and Dz. In the isotropic case where

Dx =Dy =Dz, all components are equivalent (Landau & Binder, 2001). In this context,

the order parameter has the form

M =
√

M2
x +M2

y +M2
z , where Mα =

1
N

∑
i

S iα, α = x,y,z. (3.3.30)

According to this detailed picture, we have performed MC simulations of classical

Heisenberg model on a three dimensional simple cubic lattice. In simulations, we

have generated Markov chains with 25000 steps and discarded the first 5000 of them

for thermalization and we considered N = 123 spins. The calculated data (c.f Fig.
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3.12) were compared with those of (Miyatake, Yamamoto, Kim, Toyonaga, & Nagai,

1986) for 50 different realizations and a good agreement have been found. Namely, the

specific heat of the Heisenberg model on a simple cubic lattice has been depicted in

Fig. 3.12c. We find that the critical temperature obtained from the maxima of specific

heat curve for the Heisenberg model is Tc � 1.45 whereas the high temperature series

expansion method predicts Tc � 1.445 (Ritchie & Fisher, 1972, Wood & Rushbrooke,

1966).

3.3.6 Other Applications

Apart from the models mentioned above, MC simulation technique was successfully

applied to many variants and generalizations of Ising and Heisenberg Hamiltonians.

These models have been briefly discussed below. For instance, behavior of kinetic

Ising model described by the following Hamiltonian by imposing the PBCs

H = −J
∑
<i j>

S iS j−h(t)
∑

i

S i, (3.3.31)

has been investigated by (Tomé & de Oliveira, 1990). The term h(t) in Eq. (3.3.31) is

a time-dependent external magnetic field which is defined as h(t) = h0 cos(ωt).

On the other hand, magnetization of thin films (Tucker, 2000, Zaim et al., 2008) by

applying PBCs in the x− and y− directions, and free boundary conditions (FBCs) in z−

direction which is of finite thickness has been clarified. Moreover, magnetic properties

of small particles have been simulated recently (Yüksel, Vatansever, & Polat, 2012b)

by using free boundary conditions.

As shown in the simulations concerning the spin models mentioned above, PBCs or

FBCs are often used. Implementation of the boundary conditions is very important in

MC simulations and it is always determined according to the geometric features of the

model.

MC simulations can also be easily adopted to investigate the effect of quenched

disorder in spin models which is the main motivation of present report. An example
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of this is the Ising model in the presence of random fields (or simply RFIM) which is

described by the following Hamiltonian

H = −J
∑
<i j>

S iS j−
∑

i

hiS i, (3.3.32)

where hi is the random magnetic field acting on the lattice site i. Generally, random

fields are distributed on the lattice sites according to a certain probability distribution

function (PDF). The most general form of probability distribution is the triple Gaussian

random magnetic field distribution which is defined as

P(hi) =
(1− p)

2

(
1

2πσ2

)1/2 {
exp

[
−(hi−h0)2

2σ2

]
+ exp

[
− (hi+h0)2

2σ2

]}
+p

(
1

2πσ2

)1/2

exp

− h2
i

2σ2

 , (3.3.33)

which is just the superposition of three Gaussian distributions each having the same

width σ and centered at h = 0 and h = ±h0 with probabilities p and (1 − p)/2,

respectively. In the limit σ → 0 trimodal PDF is recovered. MC simulation of

such a problem for determining the phase transition characteristics in the presence of

disorder is rather difficult to perform since in order to acquire statistically meaningful

data one must generate realizations over many disorder configurations in addition to

conventional configurational averaging. This is a rather time consuming process.

A detailed description of phase transition phenomena in magnetic systems in the

presence of quenched disorder will be treated in the following chapters of this thesis

report. However, as a final remark of this subsection let us explain the numerical

method for generating random fields according to Eq. (3.3.33). In order to generate

standard normal random numbers we often use the method called as polar form of the

Box-Muller transformation (i.e. Marsaglia polar method) (Box & Muller, 1958). The

algorithm can be briefly summarized as follows

1. Generate two random numbers r1 and r2 from a homogenous distribution within

the interval [0,1]

2. Define the random variables x1 = 2r1−1, x2 = 2r2−1 and w2 = x2
1+ x2

2
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3. If the condition w < 1 is satisfied then define the new variable (else goto step 1)

y1 = x1

√√
−2log(x2

1+ x2
2)

x2
1+ x2

2

4. Generate another random number r from uniform distribution within the interval

[0,1]

5. if r < (1− p)/2 then ξ = h0+σy1

6. else if r > (1− p)/2 and r < 1− p then ξ = −h0+σy1

7. else ξ = σy1

3.4 Mean Field and Effective Field Theories

We see from above discussions that there are very few systems characterized by a

spin Hamiltonian that can be exactly solvable. Even the most powerful methods such as

the transfer matrix technique, series expansion methods, and Monte Carlo simulations

may fail as the complexity of the model system increases. Main adversities arise from

mathematical difficulties or due to requirement of large amount of computational time.

On the other hand, because of its simplicity, the mean-field theory (MFT) has been

regarded as an important tool for the description of cooperative phenomena, however

the method has some deficiencies due to neglecting the correlations. Therefore

we need improved methods for further and reliable treatment of magnetism as a

cooperative phenomena. The reliability of an approximation should be consistent

with the experimental observations as much as possible or there should exist a good

agreement between the results of rigorous theoretical calculations and that of the

approximation method used. In this context, the key idea lies behind the consideration

of correlations between spins located on the lattice sites throughout the calculations.

In this subsection, we will refer on various methods for obtaining approximate

solutions in Ising systems and discuss the formulations in which the effects of
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correlations are systematically taken into account which can be easily adopted to pure

and disordered magnetic systems.

As noted by Kaneyoshi (Kaneyoshi, 1993), in the presence of extremely high

anisotropic case, we can treat a spin model by considering only the z− component

of a spin. Hence, the Ising model of ferromagnetism is represented by the following

Hamiltonian

H = −J
∑
<i j>

S z
i S

z
j−h

∑
i

S z
i , (3.4.1)

where S z
i = ±1 is the z− component of the spin operator Ŝ , J is the ferromagnetic

exchange interaction between the nearest neighbor spins and h is the externally

applied longitudinal magnetic field. Based on Eq. (2.4.3), the relation between the

z− component of spin operator (or spin angular momentum) S z
i and the magnetic

dipole moment µz
i associated with the ion localized at the site i can be established as

S z
i = (1/2)µz

i . The order parameter (i.e. magnetization) which measures the ordering

of the system is m = ⟨S z
i ⟩. In the ordered (ferromagnetic) phase m , 0 whereas in

disordered (paramagnetic) phase we have m = 0.

The expectation value ⟨S z
i ⟩ of the spin variable at the site i is given by

m = ⟨S z
i ⟩ =

TrS z
i e
−βH

Tre−βH . (3.4.2)

Now by noticing that the spin variables commute with each other, i.e.
[
S z

i ,S
z
j

]
= 0, let

us separate the Hamiltonian given by Eq. (3.4.1) into two parts as

H = Hi+H
′
, (3.4.3)

where Hi is associated with the contribution of site i to Eq. (3.4.1) and H
′

includes the

interactions which do not depend on the site i. Therefore, the expectation value in Eq.

(3.4.2) can be written as

m = ⟨S z
i ⟩ =

1
Z

{
Tre−βH

[ triS z
i exp(−βHi)

tri exp(−βHi)

]}
. (3.4.4)

By performing the partial trace operations in Eq. (3.4.4) with S z
i = ±1 we get

⟨S z
i ⟩ =

1
Z

Tr
[
e−βH tanh(βEi)

]
,

⟨S z
i ⟩ = ⟨tanh(βEi)⟩ , (3.4.5)
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where Ei = J
∑

j S z
j+h is the local field acting on the lattice site i. The result (3.4.5) is

known as the Callen identity in the literature (Callen, 1963).

At the mean field level, one ignores the whole correlations by considering the

approximated local field Ẽi = qJm + h. Hence the mean field equation of state is

obtained as follows

m = tanh
[
β(qJm+h)

]
, (3.4.6)

where q is the coordination number of the lattice. The solution of this transcendental

function can be obtained graphically by letting

y1 = m,

y2 = tanh
(
qm+h0

T

)
, (3.4.7)

where T = 1/βJ is the reduced temperature and h0 = h/J is the normalized field

amplitude.

The numerical solution of Eq. (3.4.6) can be obtained from the condition y1 =

y2. Possible solutions are graphically represented in Fig. 3.13. In Figs. 3.13a and

3.13b, the intersection point of y1 and y2 correspond to the solution of Eq. (3.4.6).

As seen from Fig. 3.13a, in the absence of magnetic field (h0 = 0.0), for temperatures

T < Tc, there are three formal solutions of m. The solution corresponding to m = 0 is

not physically meaningful since the net magnetization should be different from zero

for the temperatures less than Tc. Since the ground state is doubly degenerate, both

positive and negative valued solutions satisfy Eq. (3.4.6). For T > Tc, there is only

one intersection point which is located at m = 0 corresponding to the paramagnetic

phase. On the other hand, at T = Tc the intersection point simply shifts to the origin.

The situation is also depicted for h0 > 0.0 in Fig. 3.13b. For h0 > 0, the magnetic

moments tend to align in the external field direction. Therefore, the physical solution

of Eq. (3.4.6) which minimizes the free energy for h0 > 0.0 is the solution with m > 0

which decreases with increasing temperature due to the thermal effects. Finally, in Fig.

3.13c, we depict the magnetization spectrum for a wide range of reduced temperature

with some selected values of h0. We see from Fig. 3.13c that at low temperatures with

h0 = 0.0, all magnetic moments are aligned parallel with each other hence we have
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m = 1. As the temperature increases then the thermal effects become dominant and the

magnetization decreases continuously and reduces to zero at T = Tc. However, in the

presence of external field (h0 , 0), the system does not exhibit any phase transition.
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Figure 3.13 Graphical solution of Eq. (3.4.7) with q = 4 for (a) h0 = 0.0 and (b) h0 > 0.0. (c)

Temperature dependence of mean field magnetization for a square lattice (q = 4).

In the absence of magnetic fields, it is easy to locate the transition temperature

analytically by letting ξ = βqJm and expanding Eq. (3.4.6) in terms of ξ since m→ 0

in the vicinity of transition temperature

m =
eξ − e−ξ

eξ + e−ξ
�

1+ ξ− (1− ξ)
1+ ξ+1− ξ = ξ, (3.4.8)

from which we get
kBTc

J
= q. (3.4.9)

According to this result, critical temperature obtained by mean field formulation

depends only on the coordination number q of the lattice. Therefore, the theory

incorrectly predicts a phase transition even for a one dimensional lattice (Yeomans,

2000). This can be related to neglecting the entire correlations in calculations.
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3.4.1 Decoupling (Zernike) Approximation

As seen in the preceding calculations, mean field theory promises a very naive

picture concerning the phase transition characteristics of model systems represented

by spin Hamiltonians. In order to introduce a more sophisticated technique we refer to

a review paper written by Kaneyoshi (Kaneyoshi, 1993).

Now let us generalize the Callen identity (3.4.5) as

⟨{ fi}S z
i ⟩ = ⟨{ fi} tanh(βEi)⟩, (3.4.10)

where { fi} can be any function as long as it is not a function of the site i. At this

point the crucial step is to introduce the differential operator technique of Honmura

and Kaneyoshi (Honmura & Kaneyoshi, 1979):

tanh(βEi) = exp(Ei∇) tanh(βx)|x=0, (3.4.11)

where ∇ = ∂/∂x is a differential operator. For S z
i = ±1 we also have the following

identity

eαS z
i = cosh(α)+S z

i sinh(α) (3.4.12)

Using Eqs. (3.4.11) and (3.4.12) in Eq. (3.4.10) yields

⟨{ fi}S z
i ⟩ = ⟨{ fi}e

Ei∇ tanh(βx)⟩,

= ⟨{ fi}e
(
J
∑

j S z
j+h

)
∇ tanh(βx)⟩,

= ⟨{ fi}
∏

j

eJS z
j∇ tanh[β(x+h)]⟩, (3.4.13)

from which we finally obtain

⟨{ fi}S z
i ⟩ =

⟨
{ fi}

q∏
j=1

[
cos(J∇)+S z

i sinh(J∇)
]⟩

f (x)|x=0, (3.4.14)

where

f (x) = tanh[β(x+h)]. (3.4.15)

Eq.(3.4.14) contains thermal averages of multiple correlation functions. If we

attempt to treat all of the correlation functions which emerge when expanding the
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right-hand side of Eq. (3.4.14) then the problem becomes mathematically intractable

(as though !!). In order to overcome this problem one has to make an approximation.

The simplest approximation, and one of the most frequently adopted, is to decouple

these correlations according to⟨
S z

jS
z
k...S

z
l

⟩
≈

⟨
S z

j

⟩⟨
S z

k

⟩
...

⟨
S z

l

⟩
. (3.4.16)

Introducing the approximation (3.4.16) in Eq. (3.4.14) with { fi} = 1.0 we get

m = [cosh(J∇)+msinh(J∇)]q f (x)|x=0. (3.4.17)

Eq. (3.4.17) can be written in a compact polynomial form by using the Binomial

formula

m =
q∑

j=0

A jm j, (3.4.18)

where the coefficients A j are defined as

A j =

 z

j

coshq− j(J∇) sinh j(J∇) f (x)|x=0, (3.4.19)

which can be calculated numerically using the relation eα∇ f (x) = f (x+α) where α is

a constant variable. Following the same procedure and by using the exponential form

of hyperbolic functions in Eq. (3.4.19) we get

coshq− j(J∇) sinh j(J∇) =
q− j∑
k=0

j∑
s=0

(−1)s

2q

 q− j

j


 j

s

exp
[
(q−2k−2s) J∇] . (3.4.20)

With the help of Eqs. (3.4.19) and (3.4.20), magnetization of the system can be

easily evaluated as a function of temperature for any coordination number q from Eq.

(3.4.18). The numerical results are depicted in Fig. 3.14.

As seen in Fig. 3.14, magnetization of the system decreases with increasing

temperature and vanishes at the transition temperature. Moreover, the transition

temperature increases as the coordination number rises. Since the magnetization m

is very small in the vicinity of critical temperature, we can linearize Eq. (3.4.18) to

obtain the numerical value of the transition temperature. Hence, by expanding the

right-hand side of Eq. (3.4.18) and taking only the linear terms we get

1 = qcoshq−1(J∇) sinh(J∇) f (x)|x=0, (3.4.21)
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Figure 3.14 Magnetization versus temperature curves

for lattices with coordination numbers q = 3,4,6. The

numbers accompanying each curve denote the transition

temperatures.

for any coordination number q. The numerical values of transition temperatures for

various lattices obtained from Eq. (3.4.21) are also depicted in Fig. 3.14. These

values are identical to those obtained from Zernike approximation (Zernike, 1940).

We should also note that the inclusion of single-site correlations in the calculations

apparently improves the MFT results.

Historically, the differential operator technique proposed in this subsection is

also named as Matsudaira approximation (Matsudaira, 1973), functional integration

method (Kaneyoshi, 1980) and finite cluster approximation (Boccara & Saber, 1985).

Physical conclusions of all of these works are identical to that of the Zernike

approximation, however due to its mathematical simplicity and relative easiness of

the formulation for the extension to higher spin problems, the differential operator

technique has been more favored than the other formalisms (Kaneyoshi, 1993).

So far we have dealt with the formulation of the differential operator technique for

spin-1/2 Ising model. Now, in order to extend the formulation for higher spins, let us

concentrate on the spin-1 Blume-Capel model (Blume, 1966, Capel, 1966) which is

given by the following Hamiltonian

H = −J
∑
<i j>

S z
i S

z
j−D

∑
i

(S z
i )

2, (3.4.22)
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where the spin variable can take three possible values as S z
i = ±1,0 and term D in the

second summation is crystal field interaction (i.e. single ion anisotropy) which simply

corresponds to the energy difference between the magnetic (S = ±1) and non-magnetic

(S = 0) states.

Now by following the same procedure as in the spin-1/2 problem and using the

relation

eαS z
i = (S z

i )
2 cosh(α)+S z

i sinh(α)+1− (S z
i )

2, S z
i = ±1,0, (3.4.23)

we obtain the thermal average of the magnetization⟨
{ fi}S z

i

⟩
=

⟨
{ fi}

∏
j

[
(S z

j)
2 cosh(J∇)+S z

j sinh(J∇)+1− (S z
j)

2
]⟩

F(x)|x=0. (3.4.24)

If we expand the right-hand side of Eq. (3.4.24) then the multi-spin correlation

functions appear. At this point we use the decoupling approximation for the spin-1

system given by ⟨
S z

j(S
z
k)2...S z

l

⟩
�

⟨
S z

j

⟩⟨
(S z

k)2
⟩
...

⟨
S z

l

⟩
. (3.4.25)

Using the approximation (3.4.25) with { fi} = 1.0 yields⟨
S z

i

⟩
=

∏
j

[⟨
(S z

j)
2
⟩

cosh(J∇)+
⟨
S z

j

⟩
sinh(J∇)+1−

⟨
(S z

j)
2
⟩]

F(x)|x=0, (3.4.26)

where

F(x) =
2sinh(βx)

2cosh(βx)+ e−βD . (3.4.27)

By using the approximation (3.4.25) in Eq. (3.4.24) we neglect the correlations

between different sites, however the single-site correlations are exactly taken into

account. As seen from Eq. (3.4.26) the magnetization depends on another parameter⟨
(S z

i )
2
⟩
.

The parameter
⟨
(S z

i )
2
⟩

can be easily obtained from

⟨
(S z

i )
2
⟩
=

1
Z

Tre−βH
 tri(S z

i )
2e−βHi

trie−βHi


 , (3.4.28)

and it is found as⟨
(S z

i )
2
⟩
=

∏
j

[⟨
(S z

j)
2
⟩

cosh(J∇)+
⟨
S z

j

⟩
sinh(J∇)+1−

⟨
(S z

j)
2
⟩]

G(x)|x=0, (3.4.29)
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with

G(x) =
2cosh(βx)

2cosh(βx)+ e−βD . (3.4.30)

By assuming m =
⟨
S z

i

⟩
and y =

⟨
(S z

i )
2
⟩
, we obtain from Eqs. (3.4.26) and (3.4.29)

m =
[
ycosh(J∇)+msinh(J∇)+1− y

]q F(x)|x=0, (3.4.31)

and

y =
[
ycosh(J∇)+msinh(J∇)+1− y

]q G(x)|x=0. (3.4.32)

Magnetization m and quadrupolar moment y can be numerically evaluated by solving

these coupled nonlinear equations. In addition, it is also possible to discuss the critical

properties by expanding the right-hand sides of Eqs. (3.4.31) and (3.4.32) by assuming

m→ 0 in the vicinity of critical temperature. Hence, in general we obtain

m = am+bm3+ ..., (3.4.33)

y = a
′
+b

′
m2+ ..., (3.4.34)

where

a = q
[
ycosh(J∇)+1− y

]q−1 sinh(J∇)F(x)|x=0, (3.4.35)

b =
q!

3!(q−3)!
[
ycosh(J∇)+1− y

]q−3 sinh3(J∇)F(x)|x=0, (3.4.36)

a
′
=

[
ycosh(J∇)+1− y

]q G(x)|x=0, (3.4.37)

b
′
=

q!
2!(q−2)!

[
ycosh(J∇)+1− y

]q−2 sinh2(J∇)G(x)|x=0. (3.4.38)

The second order phase transition line is determined from the condition

a = 1 and b < 0. (3.4.39)

In the vicinity of the second-order transition temperature, the magnetization m is given

by

m2 =
1−a

b
. (3.4.40)

The right-hand side of Eq. (3.4.40) must be positive. If it is not then the transition is

of the first order. Hence the point at which

a = 1 and b = 0. (3.4.41)
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is the tricritical point (Kaneyoshi, 1993, 1986).

In this context, the phase diagrams in (kBTc/J −D/J) plane obtained within the

framework of differential operator technique based on decoupling approximation for

various coordination numbers are depicted in Fig. 3.15. In Fig. 3.15, the solid (dashed)

lines correspond to second (first) order phase transition lines and the tricritical points

are shown by hollow circles. In the highly anisotropic case (D→∞), we have y = 1 for

the whole range of temperature and the spin-1 Blume Capel model reduces to spin-1/2

Ising model.

-3 -2 -1 0 1 2
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Figure 3.15 Phase diagrams of spin-1 Blume-Capel

model obtained from differential operator technique

in a (kBTc/J − D/J) plane for lattices with q = 3,4

and 6. The solid (dashed) lines correspond to second

(first) order phase transition lines whereas hollow circles

denote the tricritical points.

Finally, we note that the structures of the functions F(x) and G(x) defined in Eqs.

(3.4.27) and (3.4.30) depend on the types of interactions defined in the Hamiltonian

but they are independent of the lattice geometry. In a simple and practical manner, it is

possible to determine these functions from the local Hamiltonian Hi of the site i. For

instance, let us consider the spin-1 Blume Capel model where the local Hamiltonian
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Hi is given by

Hi = −

J
∑

j

S z
j

S z
i −D(S z

i )
2 = −EiS z

i −D(S z
i )

2. (3.4.42)

By inserting the z− component of Pauli spin operator S z
i for spin-1 in Eq. (3.4.42), we

can get the matrix form of −Hi as follows

−Hi =


−Ei−D 0 0

0 0 0

0 0 Ei−D

 , (3.4.43)

then the functions F(x) and G(x) are defined as follows

F(x) =
1∑d

n=1 exp(βλn)

d∑
n=1

⟨
ϕn|S z

i |ϕn
⟩

exp(βλn), (3.4.44)

G(x) =
1∑d

n=1 exp(βλn)

d∑
n=1

⟨
ϕn|(S z

i )
2|ϕn

⟩
exp(βλn), (3.4.45)

where d is the dimensionality, λn represents the eigenvalues and ϕn denotes the

normalized eigenvectors corresponding to the eigenvalues λn of the matrix −Hi,

respectively. This formalism is also valid for a general spin-S model.

3.4.2 Correlated Effective Field (Bethe-Peierls) Approximation

In order to improve the formalism of decoupling approximation depicted above,

(Kaneyoshi et al., 1981) have attempted to describe a formulation for the consideration

of multi-site correlations in their calculations by introducing the concept of a correlated

effective field into the many-body correlation functions of neighboring spins of a

particular site instead of decoupling approximation. Their formalism can be briefly

described as follows:

For simplicity let us discuss the problem for a square lattice with q = 4 and define

a cluster of q+ 1 spins as shown in Fig. 3.16 where the spin variables located at the

central and perimeter lattice sites are denoted as S 0 and S j, ( j= 1, ...,4), respectively.

In the absence of magnetic field (h= 0), the Hamiltonian (3.4.1) which has been defined



60

S3 S1

S4

S0

S2

Figure 3.16 A cluster of q+1 spins defined on a square

lattice where the spin variables S i are located on each

lattice site.

for a spin-1/2 system yields

⟨{ fi}S 0⟩ =
⟨
{ fi}

q∏
j=1

[
cosh(J∇)+S j sinh(J∇)

]⟩
f (x)|x=0, (3.4.46)

where f (x) = tanh(βx) and the superscript z of the spin variable is omitted for

simplicity. By expanding the right-hand side of Eq. (3.4.46) for q = 4 with { fi} = 1.0

we get

⟨S 0⟩ = K1(S 1+S 2+S 3+S 4)+K2(S 1S 2S 3+S 2S 3S 4+S 1S 2S 4+S 1S 3S 4), (3.4.47)

where

K1 =
1
8

tanh(4βJ)+
1
4

tanh(2βJ),

K2 =
1
8

tanh(4βJ)− 1
4

tanh(2βJ). (3.4.48)

Now, instead of using decoupling approximation (3.4.16), let us introduce the concept

of correlated effective field for a particular perimeter site;

S j = ⟨S j⟩+λ(S 0−⟨S 0⟩), j = 1, ...,4

= m+λ(S 0−m), (3.4.49)

where λ is a temperature-dependent static correlation parameter (Kaneyoshi et al.,

1981).
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In order to treat the three-site correlations in Eq. (3.4.47) we use Eq. (3.4.49) by

taking into account the translational symmetry of the system as follows

S jS kS l = [m+λ(S 0−m)]3, j , k , l (3.4.50)

hence with ⟨S 2
0⟩ = 1 and ⟨S 3

0⟩ = ⟨S 0⟩ = m we get

⟨S 1S 2S 3⟩ = m3+λ2(3m−3m3)+λ3(−2m+2m3). (3.4.51)

By inserting Eqs. (3.4.49) and (3.4.51) in Eq. (3.4.47) we have

m = Am+Bm3, (3.4.52)

with

A = 4K1+12K2λ
2−8K2λ

3, (3.4.53)

and

B = 4K2(1−3λ2+3λ3), (3.4.54)

from which the magnetization m is given by

m =

√
1−A

B
. (3.4.55)

In order to get a numerical solution for m and λ concerning the critical properties of

the system we need another equation. Namely, for { fi} = S 1 in Eq. (3.4.46) and using

the relations ⟨S 2
i ⟩ = 1 and ⟨S 3

i ⟩ = ⟨S i⟩

⟨S 0S 1⟩ = K1+K1 [⟨S 1S 2⟩+ ⟨S 1S 3⟩+ ⟨S 2S 4⟩]

+K2 [⟨S 2S 3⟩+ ⟨S 2S 4⟩+ ⟨S 3S 4⟩]

+K2⟨S 1S 2S 3S 4⟩, (3.4.56)

where the two-site and four-site correlations can be obtained from Eq. (3.4.49) and

they are found as

⟨S 0S 1⟩ = m2+λ(1−m2),

⟨S 1S 2⟩ = m2+λ2−m2λ2,

⟨S 1S 2S 3S 4⟩ = λ4+ (6λ2−8λ3+2λ4)m2+ (1−6λ2+8λ3−3λ4)m4.

(3.4.57)
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As a result, combining Eqs. (3.4.56) and (3.4.57) yields

m2+λ(1−m2) = K1+3(K1+K2)m2+K2m4+3(K1+K2+2K2m2)(1−m2)λ2

−8K2m2(1−m2)λ3+K2(1+3m2)(1−m2)λ4. (3.4.58)

Thus, magnetization and the correlated-effective field parameter can be determined by

solving the coupled Eqs. (3.4.55) and (3.4.58). Moreover, the transition temperature

Tc and the correlated-effective field parameter λc at Tc can be numerically evaluated

by linearizing Eqs. (3.4.52) and (3.4.58).
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Figure 3.17 Temperature dependence of m and λ for a

square lattice, (Kaneyoshi et al., 1981).

Hence, in the vicinity of the transition point we have

4K1+12K2λ
2−8K2λ

3 = 1, (3.4.59)

and

λ = K1+3(K1+K2)λ2+K2λ
4. (3.4.60)

The numerical solution of Eqs. (3.4.59) and (3.4.60) yields

kBTc/J = 2.8854, λc = 1/3, (3.4.61)

which improves the result of decoupling approximation. Variation of m and λ is

depicted in Fig. 3.17. The results given in Eq. (3.4.61) can also be generalized for

an arbitrary coordination number q (Kaneyoshi et al., 1981)

kBTc/J =
2

ln[q/(q−2)]
, λc =

1
q−1

. (3.4.62)



CHAPTER FOUR

IMPROVED EFFECTIVE FIELD THEORY WITH MULTI-SITE

CORRELATIONS

It is clear from previous discussions that a formalism in which the multi-site

correlations are particularly considered certainly improves the results concerning the

critical properties of the model systems. However, there are several possible ways

of counting these multi-site correlation functions in the calculations and there exist

various approximation techniques in the literature. Hence, in this chapter, our purpose

is to present a detailed picture about the methods which have already been proposed

in the literature, and clarify the advantages and disadvantages of these methods in a

heuristic manner by comparing the qualitative and quantitative aspects of the numerical

results.

For this aim, firstly we will describe the formulation of a recently introduced

cluster theory (Kaneyoshi, 1999a,b) for spin-1/2 system and then treat the problem

by performing the possible modifications introduced by us. As we shall see in the

following discussions, our approximation scheme predicts very good results, especially

for the numerical values of transition temperatures, and can be applicable to a wide

variety of extensions of standard Ising model including the Blume-Capel model and

the systems in the presence of transverse fields, as well as quenched disordered models.

However, a detailed discussion of the applications of the method proposed by us will

be the subject of the further discussions.

4.1 The Cluster Theory in Ising Systems with Differential Operator Technique

4.1.1 Formulation for Spin-1/2 Ising System

The model system is represented by the conventional spin-1/2 Hamiltonian in the

presence of longitudinal magnetic field h with nearest-neighbor interactions

H = −J
∑
<i j>

S iS j−h
∑

i

S i. (4.1.1)

63
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Now, in order to proceed further, let us consider a regular lattice which has N identical

spins arranged. We define a cluster on the lattice which consists of a central spin

labeled S 0, and q perimeter spins being the nearest neighbors of the central spin. As

shown in Fig. 4.1, the cluster consists of q+ 1 spins being independent from the spin

operator Ŝ . The nearest-neighbor spins are in an effective field produced by the outer

spins, which can be determined by the condition that the thermal average of the central

spin is equal to that of its nearest-neighbor spins. The main superiority of this method

against the correlated effective-field theory is basically to approach the problem by

considering a larger cluster (i.e. compare Figs. 3.16 and 4.1).

S4

S3

S2

S0 J

J

J

J
(q-1)A

S1

Figure 4.1 Schematic representation of the cluster model

which consists of a central spin S 0 and q perimeter spins

as the nearest neighbors of S 0. The interactions remaining

out of the cluster are shown as dashed lines and they are

represented by an effective field γ = (q−1)A.

Now, recall from Eq. (3.4.4) that the thermal average of central spin ⟨S 0⟩ and a

perimeter spin ⟨S δ⟩ can be evaluated using the local fields θ0 and θδ as follows

⟨{ fi}S 0⟩ = ⟨{ fi} tanh(βθ0)⟩ , (4.1.2)

and

⟨{gi}S δ⟩ = ⟨{gi} tanh(βθδ)⟩ , (4.1.3)

where θ0 = J
∑
δ S δ+h and θδ = JS 0+h+ (q−1)A, and A is an unknown parameter to
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be determined self consistently. Applying differential operator technique (3.4.11) in

Eqs. (4.1.2) and (4.1.3) yields

⟨{ fi}S 0⟩ =
⟨
{ fi}

q∏
δ=1

cosh(J∇)+S δ sinh(J∇)
⟩

tanh[β(x+h)]|x=0, (4.1.4)

and

⟨{gi}S δ⟩ = [cosh(J∇)+S 0 sinh(J∇)] tanh[β(x+h+γ)], (4.1.5)

where γ = (q− 1)A is the effective field produced by the spins out of the cluster. Due

to the translational symmetry of the system, we have

⟨S 1⟩ = ⟨S 2⟩ = ... = ⟨S q⟩. (4.1.6)

By remembering this property we can easily obtain the thermal average of central and

perimeter spins by expanding the right-hand sides of Eqs. (4.1.4) and (4.1.5) with

{ fi} = {gi} = 1.0. For instance, for a square lattice (q = 4) we have

⟨S 0⟩ = K0+K1

q=4∑
δ=1

⟨S δ⟩+K2

∑
δ,δ′
⟨S δS δ

′ ⟩+K3

∑
δ,δ′,δ′′

⟨S δS δ
′S δ

′′ ⟩

+K4

∑
δ,δ′,δ′′,δ′′′

⟨S δS δ
′S δ

′′S δ
′′′ ⟩,

= K0+4K1⟨S 1⟩+6K2⟨S 1S 2⟩+4K3⟨S 1S 2S 3⟩+K4⟨S 1S 2S 3S 4⟩

⟨S 1⟩ = a1+a2⟨S 0⟩, (4.1.7)

where the coefficients are defined as

K0 =
3
8

tanh(βh)+
1

16
tanh[β(−4J+h)]+

1
4

tanh[β(−2J+h)]

+
1
4

tanh[β(2J+h)]+
1

16
tanh[β(4J+h)],

K1 = −
1

16
tanh[β(−4J+h)]− 1

8
tanh[β(−2J+h)]

+
1
8

tanh[β(2J+h)]+
1

16
tanh[β(4J+h)],

K2 = −
1
8

tanh[βh]+
1

16
tanh[β(−4J+h)]+

1
16

tanh[β(4J+h)],

K3 = −
1

16
tanh[β(−4J+h)]+

1
8

tanh[β(−2J+h)]

−1
8

tanh[β(2J+h)]+
1

16
tanh[β(4J+h)],

K4 =
3
8

tanh(βh)+
1

16
tanh[β(−4J+h)]− 1

4
tanh[β(−2J+h)]

−1
4

tanh[β(2J+h)]+
1

16
tanh[β(4J+h)], (4.1.8)
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and

a1 =
1
2

tanh[β(−J+h+γ)]+
1
2

tanh[β(J+h+γ)],

a2 = −
1
2

tanh[β(−J+h+γ)]+
1
2

tanh[β(J+h+γ)]. (4.1.9)

The single-site correlation functions ⟨S 0⟩ and ⟨S 1⟩ obtained in Eq. (4.1.7) are the

fundamental correlation functions of the system. In a recent work (Kaneyoshi, 1999a),

a method has been proposed which accounts the multi-site correlation functions

systematically. Namely, the two-site correlation functions ⟨S 0S 1⟩ and ⟨S 1S 2⟩ are

simply obtained from perimeter spin correlation ⟨S 1⟩ in Eq. (4.1.7) and they are found

as

⟨S 0S 1⟩ = a1⟨S 0⟩+a2, (4.1.10)

and

⟨S 1S 2⟩ = a1⟨S 1⟩+a2⟨S 0S 1⟩. (4.1.11)

Similarly, the three-site correlation functions ⟨S 0S 1S 2⟩ and ⟨S 1S 2S 3⟩ are obtained

from Eqs. (4.1.10) and (4.1.11), respectively and they are given as follows

⟨S 0S 1S 2⟩ = a1⟨S 0S 1⟩+a2⟨S 1⟩, (4.1.12)

and

⟨S 1S 2S 3⟩ = a1⟨S 1S 2⟩+a2⟨S 0S 1S 2⟩. (4.1.13)

One of the remaining two correlation functions, namely the four-site correlation

function ⟨S 1S 2S 3S 4⟩ can be obtained from Eq. (4.1.13);

⟨S 1S 2S 3S 4⟩ = a1⟨S 1S 2S 3⟩+a2⟨S 0S 1S 2S 3⟩. (4.1.14)

Finally, for ⟨S 0S 1S 2S 3⟩ we use Eq. (4.1.12) and we get

⟨S 0S 1S 2S 3⟩ = a1⟨S 0S 1S 2⟩+a2⟨S 1S 2⟩. (4.1.15)

In evaluating Eqs. (4.1.10)-(4.1.15), we use the fact ⟨S 2
i ⟩ = 1 which is due to the

property of the z component of spin operator Ŝ . At this stage, in order to determine the

numerical value of A, let us introduce the condition

⟨S 0⟩ = ⟨S 1⟩. (4.1.16)
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Eqs. (4.1.10)-(4.1.15) with (4.1.7) constitute a system of linear equations and can

be represented in a matrix form

M =



1 −4K1 0 0 0 −6K2 −4K3 −K4

−a2 1 0 0 0 0 0 0

−a1 0 1 0 0 0 0 0

0 −a2 −a1 1 0 0 0 0

0 0 0 −a1 1 −a2 0 0

0 −a1 −a2 0 0 1 0 0

0 0 0 −a2 0 −a1 1 0

0 0 0 0 −a2 0 −a1 1



,Y =



K0

a1

a2

0

0

0

0

0



, (4.1.17)

with unknowns

x1 = ⟨S 0⟩,

x2 = ⟨S 1⟩,

x3 = ⟨S 0S 1⟩,

x4 = ⟨S 0S 1S 2⟩,

x5 = ⟨S 0S 1S 2S 3⟩,

x6 = ⟨S 1S 2⟩,

x7 = ⟨S 1S 2S 3⟩,

x8 = ⟨S 1S 2S 3S 4⟩. (4.1.18)

By solving Eq. (4.1.17) with the help of Eq. (4.1.16) we can obtain the temperature

dependence of correlation functions listed in Eq. (4.1.18). In the absence of external

field, (h = 0) the transition temperature kBTc/J can be obtained by assuming γ→ 0 in

the vicinity of kBTc/J which leads to the result

kBTc/J = 2.8854, (4.1.19)

for a square lattice (q = 4). Surprisingly, this result is completely the same as that of

correlated effective field-theory (Kaneyoshi, Fittipaldi, Honmura, & Manabe, 1981),

although we consider a relatively larger cluster within the latter approach.
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However, there is not a unique process to obtain the correlation identities within the

present formulation, and this is the most vital point in the calculations. For instance,

the two site correlation function ⟨S 0S 1⟩ can also be obtained from ⟨S 0⟩, instead of ⟨S 1⟩

in Eq. (4.1.7). Consequently, the correlation functions x3, x4 and x5 in Eq. (4.1.18)

can be derived on the basis of x1, instead of x2. The most useful advantage of this

method can be clarified as follows: From Eqs. (4.1.7) and (4.1.10)-(4.1.15) we see

that the whole set of the correlation identities except x1 = ⟨S 0⟩ have been obtained as

a function of the coefficients a1 and a2 which contain the effect of the spins out of

the cluster as an approximated effective field. It possible to improve the method by

reducing the number of correlation identities containing the effective field parameter

γ which means that we should derive the correlation functions ⟨S 0S 1⟩, ⟨S 0S 1S 2⟩ and

⟨S 0S 1S 2S 3⟩ on the basis of ⟨S 0⟩. By following this procedure we get the following set

of the correlation functions

⟨S 0⟩ = K0+4K1⟨S 1⟩+6K2⟨S 1S 2⟩+4K3⟨S 1S 2S 3⟩+K4⟨S 1S 2S 3S 4⟩,

⟨S 1⟩ = a1+a2⟨S 0⟩,

⟨S 0S 1⟩ = 4K1+ (K0+6K2)⟨S 1⟩+4K3⟨S 1S 2⟩+K4⟨S 1S 2S 3⟩,

⟨S 0S 1S 2⟩ = (K0+6K2+K4)⟨S 1S 2⟩+4(K1+K3)⟨S 1⟩,

⟨S 0S 1S 2S 3⟩ = (K0+6K2+K4)⟨S 1S 2S 3⟩+4(K1+K3)⟨S 1S 2⟩,

⟨S 1S 2⟩ = a1⟨S 1⟩+a2⟨S 0S 1⟩,

⟨S 1S 2S 3⟩ = a1⟨S 1S 2⟩+a2⟨S 0S 1S 2⟩,

⟨S 1S 2S 3S 4⟩ = a1⟨S 1S 2S 3⟩+a2⟨S 0S 1S 2S 3⟩, (4.1.20)

Solution of Eq. (4.1.20) with the help of Eq. (4.1.16) yields

kBTc/J = 2.536, (4.1.21)

which certainly improves the numerical results based on decoupling approximation

(DA) (Kaneyoshi, 1993), as well the correlated effective field theory (CEFT) (Kaneyoshi

et al., 1981) and the cluster theory (EFT) of (Kaneyoshi, 1999a). Our formulation

has recently been extended to an arbitrary coordination number q (Akinci, 2011).

In Table 4.1, we compare the critical temperature kBTc/J of the system obtained
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within the present approach with those of the other methods in the literature for

various coordination numbers. As seen in Table 4.1, our formulation gives the

best approximated values for the numerical values of the critical temperatures when

compared with other methods. Note that the results obtained by series expansion

method (Fisher, 1967) are regarded as exact values. Moreover, the superiority of the

present approximation is also quite evident from Fig. 4.2 where the magnetization

versus reduced temperature curves are plotted for a square lattice within the framework

of several approximation schemes, as well as exact treatment.

Table 4.1 The critical temperatures of a spin-1/2 system obtained by several

approximations as well as exact results and the results of the present work.

Lattice MFA DA CEFT EFT Present Work Exact

3 3.0 2.104 1.821 1.821 1.504 1.519

4 4.0 3.090 2.885 2.885 2.536 2.269

6 6.0 5.073 4.933 4.933 4.527 4.511

8 8.0 7.061 6.952 6.952 6.516 6.353

12 12.0 11.045 10.970 10.970 10.499 9.795
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Figure 4.2 Variation of magnetization m = ⟨S 0⟩ of a square

lattice (q = 4) with temperature obtained by several methods

in comparison with the exact result and the present work.
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4.1.2 Formulation for Spin-1 Blume-Capel Model

Now, we are in a position of extending our formulation to more complicated models

by considering a spin-1 system with a single-ion anisotropy D, i.e. Blume-Capel

model (Blume, 1966, Capel, 1966). For simplicity, let us consider the problem on

a honeycomb lattice (q = 3). However, a generalized formulation for an arbitrary

coordination number can be found in (Akinci, 2012). As we mentioned in preceding

discussions, the Hamiltonian of a spin-1 Blume-Capel model is given by

H = −J
∑
<i j>

S z
i S

z
j−D

∑
i

(S z
i )

2, (4.1.22)

where the first summation is taken over the nearest-neighbor spins with S z
i = ±1,0.

Within the differential operator technique (Kaneyoshi, 1993), and using Eq. (3.4.23)

with { fi} = 1.0, the average value of the central spin S 0, namely the longitudinal

magnetization mz = ⟨S 0⟩ and quadrupolar moment qz = ⟨(S 0)2⟩ in the cluster of q+ 1

spins (c.f. see Fig. 4.1) can be obtained as follows

m = ⟨S 0⟩ =
⟨ 3∏

j=1

[
(S j)2 cosh(J∇)+S j sinh(J∇)+1− (S j)2

]⟩
F(x)|x=0, (4.1.23)

and

qz = ⟨(S 0)2⟩ =
⟨ 3∏

j=1

[
(S j)2 cosh(J∇)+S j sinh(J∇)+1− (S j)2

]⟩
G(x)|x=0, (4.1.24)

where the functions F(x) and G(x) can be easily obtained from Eqs. (3.4.44) and

(3.4.45). Note that the superscript z is omitted for simplicity.

Corresponding to Eqs. (4.1.23) and (4.1.24), magnetization and quadrupolar

moment of a perimeter spin are defined by

⟨S 1⟩ =
⟨
(S 0)2 cosh(J∇)+S 0 sinh(J∇)+1− (S 0)2

⟩
F(x+γ)|x=0, (4.1.25)

and

⟨(S 1)2⟩ =
⟨
(S 0)2 cosh(J∇)+S 0 sinh(J∇)+1− (S 0)2

⟩
G(x+γ)|x=0, (4.1.26)

where γ = (q−1)A is the effective field produced by the spins out of the cluster of q+1

spins.
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The next step is to expand the right-hand sides of Eqs. (4.1.23) and (4.1.24) which

yields

⟨S 0⟩ = 3k1⟨S 1⟩+6(k2− k1)⟨S 1S 2
2⟩+ k3⟨S 1S 2S 3⟩

+3(k1−2k2+ k4)⟨S 1S 2
2S 2

3⟩, (4.1.27)

and

⟨(S 0)2⟩ = r0+3(r1− r0)⟨S 2
1⟩+3r2⟨S 1S 2⟩

+3(r0−2r1+ r3)⟨S 2
1S 2

2⟩+3(r4− r2)⟨S 1S 2S 2
3⟩

+(−r0+3r1−3r3+ r5)⟨S 2
1S 2

2S 2
3⟩, (4.1.28)

where

r0 =G(0),

k1 = sinh(J∇)F(x)|x=0, r1 = cosh(J∇)G(x)|x=0,

k2 = cosh(J∇) sinh(J∇)F(x)|x=0, r2 = sinh2(J∇)G(x)|x=0,

k3 = sinh3(J∇)F(x)|x=0, r3 = cosh2(J∇)G(x)|x=0,

k4 = cosh2(J∇) sinh(J∇)F(x)|x=0, r4 = cosh(J∇)sinh2(J∇)G(x)|x=0,

r5 = cosh3(J∇)G(x)|x=0, (4.1.29)

by noticing that due to the symmetry properties of the functions F(x) and G(x), some

of the coefficients simply drop out in the absence of external magnetic field.

Similarly, corresponding to Eqs. (4.1.27) and (4.1.28), for the perimeter spin

correlation functions we have

⟨S 1⟩ = a1(1−⟨S 2
0⟩)+a2⟨S 0⟩+a3⟨S 2

0⟩, (4.1.30)

and

⟨(S 1)2⟩ = b1(1−⟨S 2
0⟩)+b2⟨S 0⟩+b3⟨S 2

0⟩, (4.1.31)

with

a1 = F(γ), b1 =G(γ),

a2 = sinh(J∇)F(x+γ)|x=0, b2 = sinh(J∇)G(x+γ)|x=0,

a3 = cosh(J∇)F(x+γ)|x=0, b3 = cosh(J∇)G(x+γ)|x=0. (4.1.32)
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The coefficients in Eqs. (4.1.29) and (4.1.32) can be numerically evaluated as a

function of system parameters from the relation eα∇ f (x) = f (x+ α)|x=0. Moreover,

if we apply decoupling approximation

⟨S 1S 2
2⟩ = ⟨S 1⟩⟨S 2

2⟩ = my,

⟨S 1S 2
2S 2

3⟩ = ⟨S 1⟩⟨S 2
2⟩⟨S

2
3⟩ = my2,

⟨S 1S 2S 3⟩ = ⟨S 1⟩⟨S 2⟩⟨S 3⟩ = m3, (4.1.33)

then Eqs. (4.1.27) and (4.1.28) reduce to Eqs. (3.4.31) and (3.4.32) with q = 3,

respectively. Hence, one advantage of the present approximation method proposed

within this thesis report is that no uncontrolled decoupling procedure is used for the

higher-order correlation functions.

Eqs. (4.1.27), (4.1.28), (4.1.30) and (4.1.31) are fundamental correlation functions

of the system. For spin-1 Ising system with q = 3, taking these equations as a basis

we derive a set of linear equations of the spin correlation functions which interact in

the system. Throughout the derivations (including the expansions of Eqs. (4.1.23)

and (4.1.24)), we use the properties (Ŝ δ)4 = (Ŝ δ)2 and (Ŝ δ)3 = Ŝ δ for z− component of

operator Ŝ for spin-1. In addition, by taking into account the translational symmetry

of the system, we make the following assumptions

⟨S n
1⟩ = ⟨S

n
δ⟩; n = 1,2 and δ = 2, ..,q

⟨S 1S n
2⟩ = ⟨S δS n

δ
′ ⟩; n = 1,2 and δ = 1, ..,q and δ , δ

′

⟨S 1S n
2S m

3 ⟩ = ⟨S δS n
δ
′S m

δ
′′ ⟩; n,m = 1,2 and δ = 1, ..,q and δ , δ

′
, δ

′′

⟨S 0S n
1⟩ = ⟨S 0S n

δ⟩; n = 1,2 and δ = 2, ..,q

⟨S 0S n
1S m

2 ⟩ = ⟨S 0S n
δS

m
δ
′ ⟩; n,m = 1,2 and δ = 1, ..,q and δ , δ

′

.

.

. (4.1.34)

Thus, the number of the set of linear equations obtained for the spin-1 Ising system

with q = 3 reduces to 21 and the complete set is given in Eq. (4.1.35).



73

⟨S 0⟩ = 3k1⟨S 1⟩+6(k2− k1)⟨S 1S 2
2⟩+ k3⟨S 1S 2S 3⟩

+3(k1−2k2+ k4)⟨S 1S 2
2S 2

3⟩

⟨S 1S 0⟩ = 3k1⟨S 2
1⟩+6(k2− k1)⟨S 2

1S 2
2⟩+ k3⟨S 1S 2S 2

3⟩

+3(k1−2k2+ k4)⟨S 2
1S 2

2S 2
3⟩

⟨S 1S 2S 0⟩ = (6k2−3k1)⟨S 1S 2
2⟩+ (3k1−6k2+ k3+3k4)⟨S 1S 2

2S 2
3⟩

⟨S 1⟩ = a1(1−⟨(S z
0)2⟩)+a2⟨S z

0⟩+a3⟨(S z
0)2⟩

⟨S 1S 2⟩ = a1⟨S 1⟩+a2⟨S 0S 1⟩+ (a3−a1)⟨S 1S 2
0⟩

⟨S 1S 2S 3⟩ = a1⟨S 1S 2⟩+a2⟨S 0S 1S 2⟩+ (a3−a1)⟨S 1S 2S 2
0⟩

⟨S 2
1⟩ = b1(1−⟨(S z

0)2⟩)+b2⟨S z
0⟩+b3⟨(S z

0)2⟩

⟨S 1S 2
2⟩ = b1⟨S 1⟩+b2⟨S 0S 1⟩+ (b3−b1)⟨S 1S 2

0⟩

⟨S 2
1S 2

2⟩ = b1⟨S 2
1⟩+b2⟨S 0S 2

1⟩+ (b3−b1)⟨S 2
1S 2

0⟩

⟨S 0S 2
1⟩ = b3⟨S 0⟩+b2⟨S 2

0⟩

⟨S 0S 1S 2
2⟩ = b3⟨S 0S 1⟩+b2⟨S 1S 2

0⟩

⟨S 0S 2
1S 2

2⟩ = b3⟨S 0S 2
1⟩+b2⟨S 2

1S 2
0⟩

⟨S 1S 2S 2
3⟩ = b1⟨S 1S 2⟩+b2⟨S 0S 1S 2⟩+ (b3−b1)⟨S 1S 2S 2

0⟩

⟨S 1S 2
2S 2

3⟩ = b1⟨S 1S 2
2⟩+b2⟨S 0S 1S 2

2⟩+ (b3−b1)⟨S 1S 2
2S 2

0⟩

⟨S 2
1S 2

2S 2
3⟩ = b1⟨S 2

1S 2
2⟩+b2⟨S 0S 2

1S 2
2⟩+ (b3−b1)⟨S 2

1S 2
2S 2

0⟩

⟨(S 0)2⟩ = r0+3(r1− r0)⟨S 2
1⟩+3r2⟨S 1S 2⟩+3(r0−2r1+ r3)⟨S 2

1S 2
2⟩

+3(r4− r2)⟨S 1S 2S 2
3⟩+ (−r0+3r1−3r3+ r5)⟨S 2

1S 2
2S 2

3⟩

⟨S 1S 2
0⟩ = (3r1−2r0)⟨S 1⟩+ (3r2+3r0−6r1+3r3)⟨S 1S 2

2⟩

+(−r0+3r1−3r2−3r3+3r4+ r5)⟨S 1S 2
2S 2

3⟩

⟨S 2
1S 2

0⟩ = (3r1−2r0)⟨S 2
1⟩+ (3r2+3r0−6r1+3r3)⟨S 2

1S 2
2⟩

+(−r0+3r1−3r2−3r3+3r4+ r5)⟨S 2
1S 2

2S 2
3⟩

⟨S 1S 2S 2
0⟩ = (r0−3r1+3r2+3r3)⟨S 1S 2⟩

(−r0+3r1−3r2−3r3+3r4+ r5)⟨S 1S 2S 2
3⟩

⟨S 1S 2
2S 2

0⟩ = (r0−3r1+3r2+3r3)⟨S 1S 2
2⟩

(−r0+3r1−3r2−3r3+3r4+ r5)⟨S 1S 2
2S 2

3⟩

⟨S 2
1S 2

2S 2
0⟩ = (r0−3r1+3r2+3r3)⟨S 2

1S 2
2⟩

+(−r0+3r1−3r2−3r3+3r4+ r5)⟨S 2
1S 2

2S 2
3⟩ (4.1.35)
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We can write Eq. (4.1.35) in the form of a 21× 21 matrix and solve in terms of

the variables xi [(i = 1,2, ...,21) (e.g., x1 = ⟨S 0⟩, x2 = ⟨S 1S 0⟩, ..., x21 = ⟨S 2
1S 2

2S 2
0⟩)] of

the linear equations. Consequently, all of the spin correlation functions can be easily

determined as functions of the temperature, effective field and crystal field. Since the

thermal average of the central spin is equal to that of its nearest-neighbor spins within

the present method then the unknown parameter A can be numerically determined by

the relation

⟨S 0⟩ = ⟨S 1⟩ or x1 = x4. (4.1.36)

By solving Eq. (4.1.36) numerically at a given fixed set of Hamiltonian parameters

we obtain the parameter A. Then we use the numerical values of A to obtain the spin

correlation functions given in Eq. (4.1.35). Note that A = 0 is always the root of Eq.

(4.1.36) corresponding to the disordered state of the system. The nonzero root of A in

Eq. (4.1.36) corresponds to the long-range ordered state of the system. The transition

temperature kBTc/J can also be numerically evaluated by letting γ→ 0 in the vicinity

of kBTc/J. The phase diagrams in a (kBTc/J −D/J) plane has been depicted in Fig.

4.3a for honeycomb (q = 3), square (q = 4) and triangular, as well as for simple cubic

(q = 6) lattices. Although the above formulation is performed for a honeycomb lattice,

calculation details for q = 4 and q = 6 can be found in (Yüksel, Akinci, & Polat, 2009,

Akinci, 2012).
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Figure 4.3 (a) Phase diagrams of honeycomb, square and simple cubic (or triangular) lattices in a

(kBTc/J −D/J) plane. (b) Magnetization, and (c) quadrupolar moment curves corresponding to Fig.

4.3a with D/J = 0.0.
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As seen from Fig. 4.3a, the phase diagrams exhibit both second and first order

phase transitions with a tricritical point. In the highly anisotropic limit (D/J → ∞)

the energy is minimized when the spins align parallel with each other in the z−

direction which means that a magnetic configuration with S z
i = ±1 is favored. In

this limit, the system reduces to spin-1/2 for any coordination number. In the

isotropic limit (D/J = 0), the second order transition temperature values kBTc/J =

1.302,1.952,3.265 obtained for q = 3,4 and 6 can be compared with those of DA

(Kaneyoshi, 1993) kBTc/J = 1.519,2.188,3.519 and EFT (Kaneyoshi, 1999b) which

yields kBTc/J = 1.428,2.114,3.466. We see from these results that the calculations are

more accurate than the traditional DA and EFT techniques. For instance, the reduced

transition temperature of isotropic spin-1 Blume-Capel model on a square lattice has

the value kBTc/J = 2.188 and 2.114 within the traditional DA and EFT whereas our

result kBTc/J = 1.952 can be compared with the result kBTc/J = 1.690 of accurate

Monte Carlo simulations (Silva, Caparica, & Plascak, 2006). On the other hand, if

D/J increases in negative direction then the ground state energy tends to increase.

As a result, the transition temperature decreases due to the manifestation of spins

aligned perpendicular to z− direction (i.e. S z
i = 0). In this case, nonmagnetic state

is favored. For sufficiently large negative values of D/J, population of nonmagnetic

lattice sites increases drastically against the magnetic sites. Consequently, critical

frontier in (kBTc/J − D/J) plane exhibits a double valued region which is called

reentrant phenomena where the system exhibits two successive phase transitions.

In Figs. 4.3b and 4.3c, we have depicted the variation of magnetization (⟨S 0⟩)

and quadrupolar moment (⟨(S 2
0)⟩) curves with reduced temperature for coordination

numbers q = 3,4 and 6 corresponding to the phase diagrams in Fig. 4.3a with D = 0.

It is clear from these figures that the magnetization of the system gradually decreases

and reduces to zero at the transition temperature whereas the longitudinal quadrupolar

moment qz decreases as the temperature increases and changes abruptly at the second-

order transition temperature. For the completeness and consistence of discussion,

temperature dependence of several multi-spin correlation functions are depicted in Fig.

4.4 in the isotropic limit (D/J = 0) for a honeycomb lattice (q = 3).
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Figure 4.4 Temperature dependence of several spin

correlation functions of a spin-1 isotropic (D/J = 0.0)

Blume-Capel model on a honeycomb lattice (q = 3).

We should stress that there is not a unique formalism to derive the set of

the correlation functions listed in Eq. (4.1.35). An alternative procedure has

recently been proposed by (Kaneyoshi, 1999b) within the framework of EFT, but

by using the approximated van der Waerden identity (i.e. approximated form of

Eq. (3.4.23)). Indeed, there may exist several treatment methods for the derivation

process. However, in a "heuristic" manner, by comparing the results obtained from

several alternative sets of linear equations corresponding to Eq. (4.1.35), we find that

the results obtained within the framework of the present formalism improve those of

the various approximation schemes (c.f. see the discussions concerning a previous

section). Although the method seems mathematically simple, it requires to do tedious

calculations. On the other hand, as wee shall see soon after, present formalism can

be easily adopted to much more complicated problems such as the models in the

presence of quenched disorder, and produces results which fit quite well with many

of the distinguished techniques.
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4.1.3 Spin-1 Blume Capel Model in the Presence of Longitudinal and Transverse

Magnetic Fields

As an application of the proposed formalism let us introduce the spin-1 Blume-

Capel model in the presence of both longitudinal and transverse fields which can be

represented by the following Hamiltonian

H = −J
∑
<i, j>

S z
i S

z
j−D

∑
i

(S z
i )

2−Ω
∑

i

S x
i −h

∑
i

S z
i , (4.1.37)

where S z
i and S x

i denote the z− and x− components of the spin operator, respectively.

The first summation in Eq. (4.1.37) is over the nearest-neighbor pairs of spins and the

operator S z
i takes the values S z

i = 0,±1. J, D, Ω and h terms stand for the exchange

interaction, single-ion anisotropy (i.e. crystal field) and transverse and longitudinal

magnetic fields, respectively.

Since there exist two kinds of external field sources, namely h and Ω, there are

two directions in which we can observe a spontaneous magnetization. In other words,

due to the presence of a longitudinal field h, a spontaneous magnetization mz will be

induced in the z− direction whereas in the presence of transverse component Ω, we

will also have a magnetization mx which will be induced along the x− direction.

Although the Hamiltonian in Eq. (4.1.37) is defined for a magnetic system, Ising

model in a transverse field was originally introduced by de Gennes (Gennes, 1963)

to describe the collective motions of hydrogen bonds in a ferroelectric crystal such as

potassium dihydrogen phosphate (KH2PO4) by assuming the Hamiltonian of the form

H = −J
∑
<i j>

S z
i S

z
j−Ω

∑
i

S x
i , (4.1.38)

where S z
i and S x

i denote the z− and x− components of proton spin operator,

respectively. The model represented by Eq. (4.1.38) can be briefly summarized as

follows: In a three dimensional lattice, the pair of oxygen ions on the lattice site i

produces a symmetric double well potential, and the hydrogen ion (i.e. proton) in

the O−H−O bond is under the influence of this potential. S z
i = ±1 states of proton

simply correspond to the two minima of the potential well. However, since the width
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and height of this double well potential is finite, a quantum tunneling of the proton

can take place with probability associated with the parameter Ω which is determined

by the mass of the proton and the well structure or lattice constant. In the absence

of transverse field Ω, the system exhibits an ordered ferroelectric phase whereas as Ω

increases then it becomes dominant against the proton-proton interactions between the

nearest-neighbor sites. If the value of Ω exceeds a threshold value then we observe

disordered para-electric phase (Dutta, Divakaran, Sen, Chakrabarti, Rosenbaum, &

Aeppli, 2012).

Ferroelectric system defined in Eq. (4.1.38) can also be written in magnetic

language by direct analogy. In this context, Eq. (4.1.37) can be regarded as an extended

and generalized form of transverse Ising model (TIM) for higher spins in magnitude.

This model has been widely examined in statistical mechanics and condensed matter

physics since the pioneering work of de Gennes (Gennes, 1963). The model in Eq.

(4.1.37) can be considered as a semi quantum mechanical model due to the non-

commuting transverse field. A detailed literature review concerning the theoretical

investigation of thermal and magnetic properties of TIM can be found in (Yüksel &

Polat, 2010).

Mathematical formulation of the model is simply based on the cluster defined in

Fig. 4.1, and as we have discussed in the previous section, our aim is to obtain a a

set of spin correlation functions which depend on the temperature and Hamiltonian

parameters. The procedure is the same as that introduced for spin-1 Blume-Capel

model, but this time the form of the functions F(x), G(x), etc. will be derived by

taking the Hamiltonian in Eq. (4.1.37) as a basis.

At first, we start constructing the mathematical background of our model by using

the approximated spin correlation identities introduced by Sá Barreto et al. (Barreto,

Fittipaldi, & Zeks, 1981, Kaneyoshi, 1993)

⟨{ fi}S α
i ⟩ =

⟨
{ fi}

TriS α
i exp(−βHi)

Tri exp(−βHi)

⟩
, (4.1.39)

⟨{ fi}(S α
i )2⟩ =

⟨
{ fi}

Tri(S α
i )2 exp(−βHi)

Tri exp(−βHi)

⟩
, (4.1.40)
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where β = 1/kBT and α = z or x.

In order to apply the differential operator technique (Kaneyoshi, 1993, Honmura

& Kaneyoshi, 1979), we should separate the Hamiltonian (4.1.37) into two parts as

H = Hi +H
′
. Here, one part denoted by Hi includes all contributions associated with

the site i, and the other part H
′

does not depend on the site i. At this point, one should

notice that the spin operators S z
i and S x

i do not commute with each other which reflects

the quantum mechanical origin of the model. Although this situation requires to handle

the problem in a fully quantum mechanical point of view, a classical treatment is also

capable of explaining various magnetic phenomena.

By following the standard procedure discussed in Chapter 3, we can write −Hi as

−Hi = EiS z
i +D

(
S z

i

)2
+ΩS x

i +hS z
i , (4.1.41)

where Ei = J
∑

j S z
j is the local field on the site i. If we use the matrix representations

of the operators S z
i and S x

i for the spin-1 system then we can obtain the matrix form of

Eq. (4.1.41)

−Hi =


Ei+D+h Ω/

√
2 0

Ω/
√

2 0 Ω/
√

2

0 Ω/
√

2 −Ei+D−h

 . (4.1.42)

In order to proceed further, we have to diagonalize −Hi matrix in Eq. (4.1.42). The

three eigenvalues are

λ1 =
2D
3
+

2p
3

cos
(
θ

3

)
,

λ2 =
2D
3
− 2p

3
cos

(
π− θ

3

)
, (4.1.43)

λ3 =
2D
3
− 2p

3
cos

(
π+ θ

3

)
,

where

θ = arccos
(
ζ

p3

)
,

ζ = D
(
9E2

i −
9
2
Ω2−D2+18Eih+9h2

)
,

p2 = 3E2
i +3Ω2+D2+6Eih+3h2,
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and the eigenvectors φk of −Hi corresponding to the eigenvalues in Eq. (4.1.43) are

calculated as follows

αk = ±
√

1−β2
k −γ

2
k ,

βk = −
[Ei+ (D+h−λk)]

Ω/
√

2
αk,

γk = −
[Ei+ (D+h−λk)]
[Ei− (D−h−λk)]

αk,

φk =


αk

βk

γk

 , k = 1,2,3. (4.1.44)

Hereafter, we apply the differential operator technique in Eqs. (4.1.39) and (4.1.40)

with { fi} = 1. From Eq. (4.1.39) we obtain the following spin correlations for the

thermal average of a central spin for honeycomb lattice (q = 3) as

⟨S z
0⟩ =

⟨q=3∏
j=1

[
1+S z

jsinh(J∇)+ (S z
j)

2{cosh(J∇)−1}
]⟩

F(x)|x=0, (4.1.45)

and

⟨S x
0⟩ =

⟨q=3∏
j=1

[
1+S z

jsinh(J∇)+ (S z
j)

2{cosh(J∇)−1}
]⟩

H(x)|x=0. (4.1.46)

By expanding the right-hand sides of Eqs. (4.1.46) and (4.1.47) we get the longitudinal

and transverse spin correlations as

mz = ⟨S z
0⟩ = l0+3k1⟨S 1⟩+3(l1− l0)⟨S 2

1⟩+3l2⟨S 1S 2⟩

+6(k2− k1)⟨S 1S 2
2⟩+3(l0−2l1+ l3)⟨S 2

1S 2
2⟩

+k3⟨S 1S 2S 3⟩+3(l4− l2)⟨S 1S 2S 2
3⟩

+3(k1−2k2+ k4)⟨S 1S 2
2S 2

3⟩

+(−l0+3l1−3l3+ l5)⟨S 2
1S 2

2S 2
3⟩, (4.1.47)

and

mx = ⟨S x
0⟩ = p0+3c1⟨S 1⟩+3(p1− p0)⟨S 2

1⟩+3p2⟨S 1S 2⟩

+6(c2− c1)⟨S 1S 2
2⟩+3(p0−2p1+ p3)⟨S 2

1S 2
2⟩

+c3⟨S 1S 2S 3⟩+3(p4− p2)⟨S 1S 2S 2
3⟩

+3(c1−2c2+ c4)⟨S 1S 2
2S 2

3⟩

+(−p0+3p1−3p3+ p5)⟨S 2
1S 2

2S 2
3⟩, (4.1.48)
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with the coefficients

l0 = F(0)

l1 = cosh(J∇)F(x)|x=0 k1 = sinh(J∇)F(x)|x=0

l2 = sinh2(J∇)F(x)|x=0 k2 = cosh(J∇)sinh(J∇)F(x)|x=0

l3 = cosh2(J∇)F(x)|x=0 k3 = sinh3(J∇)F(x)|x=0

l4 = cosh(J∇)sinh2(J∇)F(x)|x=0 k4 = cosh2(J∇)sinh(J∇)F(x)|x=0

l5 = cosh3(J∇)F(x)|x=0

and

p0 = H(0)

p1 = cosh(J∇)H(x)|x=0 c1 = sinh(J∇)H(x)|x=0

p2 = sinh2(J∇)H(x)|x=0 c2 = cosh(J∇)sinh(J∇)H(x)|x=0

p3 = cosh2(J∇)H(x)|x=0 c3 = sinh3(J∇)H(x)|x=0

p4 = cosh(J∇)sinh2(J∇)H(x)|x=0 c4 = cosh2(J∇)sinh(J∇)H(x)|x=0

p5 = cosh3(J∇)H(x)|x=0

Next, the average value of a perimeter spin in the system can be written as follows and

it is found as

m1 = ⟨S z
δ⟩ = ⟨1+S z

0sinh(J∇)+ (S z
0)2{cosh(J∇)−1}⟩F(x+γ)|x=0, (4.1.49)

⟨S 1⟩ = a1
(
1−⟨(S z

0)2⟩
)
+a2⟨S z

0⟩+a3⟨(S z
0)2⟩, (4.1.50)

where γ = (q− 1)A is the effective field produced by the (q− 1) spins outside of the

cluster depicted in Fig. 4.1 and A is an unknown parameter to be determined self-

consistently. The coefficients in Eq. (4.1.50) are then given by

a1 = F(γ),

a2 = sinh(J∇)F(x+γ)|x=0,

a3 = cosh(J∇)F(x+γ)|x=0.

As a result of the usage of van der Waerden identity (3.4.23) for spin-1 systems, we

have to introduce the additional parameters ⟨(S z
0)2⟩, ⟨(S x

0)2⟩ and ⟨(S z
δ)

2⟩ to obtain the
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quadrupolar moments. With the help of Eq. (4.1.40), we have

qz = ⟨(S z
0)2⟩ =

⟨ q∏
j=1

[
1+S z

jsinh(J∇)+ (S z
j)

2{cosh(J∇)−1}
]⟩

G(x)|x=0, (4.1.51)

qx = ⟨(S x
0)2⟩ =

⟨ q∏
j=1

[
1+S z

jsinh(J∇)+ (S z
j)

2{cosh(J∇)−1}
]⟩

K(x)|x=0. (4.1.52)

Hence, we get the longitudinal and transverse components of the quadrupolar moment

of central spin by expanding the right-hand sides of Eqs. (4.1.51) and (4.1.52)

⟨(S z
0)2⟩ = r0+3n1⟨S 1⟩+3(r1− r0)⟨S 2

1⟩+3r2⟨S 1S 2⟩

+6(n2−n1)⟨S 1S 2
2⟩+3(r0−2r1+ r3)⟨S 2

1S 2
2⟩+n3⟨S 1S 2S 3⟩

+3(r4− r2)⟨S 1S 2S 2
3⟩+3(n1−2n2+n4)⟨S 1S 2

2S 2
3⟩

+(−r0+3r1−3r3+ r5)⟨S 2
1S 2

2S 2
3⟩, (4.1.53)

and

⟨(S x
0)2⟩ = v0+3µ1⟨S 1⟩+3(v1− v0)⟨S 2

1⟩+3v2⟨S 1S 2⟩

+6(µ2−µ1)⟨S 1S 2
2⟩+3(v0−2v1+ v3)⟨S 2

1S 2
2⟩+µ3⟨S 1S 2S 3⟩

+3(v4− v2)⟨S 1S 2S 2
3⟩+3(µ1−2µ2+µ4)⟨S 1S 2

2S 2
3⟩

+(−v0+3v1−3v3+ v5)⟨S 2
1S 2

2S 2
3⟩. (4.1.54)

The coefficients in Eqs. (4.1.53) and (4.1.54) are respectively given by

r0 =G(0)

r1 = cosh(J∇)G(x)|x=0 n1 = sinh(J∇)G(x)|x=0

r2 = sinh2(J∇)G(x)|x=0 n2 = cosh(J∇)sinh(J∇)G(x)|x=0

r3 = cosh2(J∇)G(x)|x=0 n3 = sinh3(J∇)G(x)|x=0

r4 = cosh(J∇)sinh2(J∇)G(x)|x=0 n4 = cosh2(J∇)sinh(J∇)G(x)|x=0

r5 = cosh3(J∇)G(x)|x=0
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and

v0 = K(0)

v1 = cosh(J∇)K(x)|x=0 µ1 = sinh(J∇)K(x)|x=0

v2 = sinh2(J∇)K(x)|x=0 µ2 = cosh(J∇)sinh(J∇)K(x)|x=0

v3 = cosh2(J∇)K(x)|x=0 µ3 = sinh3(J∇)K(x)|x=0

v4 = cosh(J∇)sinh2(J∇)K(x)|x=0 µ4 = cosh2(J∇)sinh(J∇)K(x)|x=0

v5 = cosh3(J∇)K(x)|x=0

Corresponding to Eq. (4.1.49), quadrupolar moment of the perimeter spin can be

written as follows

⟨(S z
δ)

2⟩ = ⟨1+S z
0sinh(J∇)+ (S z

0)2{cosh(J∇)−1}⟩G(x+γ), (4.1.55)

⟨S 2
1⟩ = b1

(
1−⟨(S z

0)2⟩
)
+b2⟨S z

0⟩+b3⟨(S z
0)2⟩. (4.1.56)

with

b1 = G(γ)

b2 = sinh(J∇)G(x+γ)|x=0

b3 = cosh(J∇)G(x+γ)|x=0

With the help of Eqs. (4.1.43) and (4.1.44), the functions F(x), G(x), H(x) and K(x)

in Eqs. (4.1.45), (4.1.46), (4.1.51) and (4.1.52) can be calculated numerically from the

relations

F(x) =
1∑d

n=1 exp(βλn)

d∑
n=1

⟨φn|S z
i |φn⟩exp(βλn), (4.1.57)

H(x) =
1∑d

n=1 exp(βλn)

d∑
n=1

⟨φn|S x
i |φn⟩exp(βλn), (4.1.58)

G(x) =
1∑d

n=1 exp(βλn)

d∑
n=1

⟨φn|(S z
i )

2|φn⟩exp(βλn), (4.1.59)

K(x) =
1∑d

n=1 exp(βλn)

d∑
n=1

⟨φn|(S x
i )2|φn⟩exp(βλn), (4.1.60)

where d = 3 is the dimensionality of the matrix −Hi in Eq. (4.1.42).
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Eqs. (4.1.47), (4.1.48), (4.1.50), (4.1.53), (4.1.54) and (4.1.56) are fundamental

correlation functions of the system. When the right-hand sides of Eqs. (4.1.45),

(4.1.46), (4.1.51) and (4.1.52) are expanded, the multi-spin correlation functions can be

easily obtained. The simplest approximation, and one of the most frequently adopted

is to decouple these equations according to⟨
S z

j(S
z
k)2...S z

l

⟩
�

⟨
S z

j

⟩⟨
(S z

k)2
⟩
...

⟨
S z

l

⟩
, (4.1.61)

for i , j , ... , l (Kaneyoshi, 1993). The main difference of the method used in

this study from the other approximations in the literature emerges in comparison

with any decoupling approximation (DA) when expanding the right-hand sides of

equations (4.1.45), (4.1.46), (4.1.51) and (4.1.52). In other words, one advantage of

the approximation method proposed by this study is that no uncontrolled decoupling

procedure is used for the higher-order correlation functions.

For spin-1 Ising system with q = 3, taking equations (4.1.47), (4.1.48), (4.1.50) ,

(4.1.53), (4.1.54) and (4.1.56) as basis relations, we derive a set of linear equations

of the spin correlation functions which interact in the system. By taking into account

the translational symmetry properties (c.f. refer to Eq .(4.1.34)) of the system with

(Ŝ δ)4 = (Ŝ δ)2 and (Ŝ δ)3 = Ŝ δ for spin-1, we have 23 linear equations (i.e. correlation

functions) in total for spin-1 system on a honeycomb lattice (q = 3), and the complete

set can be found in (Yüksel & Polat, 2010). Since the thermal average of the central

spin is equal to that of its nearest-neighbor spins within the present method then the

unknown parameter A can be numerically determined by the relation

⟨S z
0⟩ = ⟨S 1⟩. (4.1.62)

Once the set of linear equations is numerically solved, all of the spin correlation

functions can be easily determined as functions of the temperature, effective field,

crystal field and longitudinal magnetic field as well as transverse magnetic field which

the other studies in the literature do not include. For instance, using the single-spin

and multi-spin correlation functions, the internal energy can be numerically evaluated

from

− U
NJ
=

q
2
⟨S 0S 1⟩+D⟨(S z

0)2⟩+Ω⟨S x
0⟩+h⟨S z

0⟩. (4.1.63)
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With the use of Eq. (4.1.63), the specific heat at constant magnetic field h of the system

can be numerically determined from the relation

Ch =

(
∂U
∂T

)
h
. (4.1.64)

Once the spin correlation functions have been evaluated then we can examine

the ferromagnetic properties of the spin-1 TIM with crystal field under an applied

longitudinal magnetic field on a honeycomb lattice using the proposed formulation.
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Figure 4.5 Phase diagrams of the spin-1 system with h/J = 0 in (a) (kBTc/J-Ω/J), (b) (kBTc/J-

D/J) planes. The numbers on the curves denote the values of the crystal field D/J and transverse

field Ω/J, respectively. (c) Transverse field dependencies of the tricritical temperature kBTt/J and

tricritical crystal field −Dt/J.

Let us focus our attention on the phase diagrams of the system in (kBTc/J −Ω/J)

and (kBTc/J −D/J) planes and investigate the whole phase diagrams by examining

the numerical results for the thermal and magnetic properties. In order to plot the
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phase diagrams, we assume ⟨S z
0⟩ = ⟨S 1⟩ and the effective field γ is very small in the

vicinity of kBTc/J and solve the set of linear equations in (Yüksel & Polat, 2010)

numerically using the self-consistent relation corresponding to equation (4.1.62). In

Figs. 4.5a and 4.5b, we plot the variation of the critical temperature with transverse

field Ω/J and crystal field D/J, respectively. Fig. 4.5a shows the phase diagram

in the (kBTc/J −Ω/J) plane with h/J = 0 and for selected values of D/J, namely

−1.0,−1.3,−1.381,−1.382 and −1.4. In this figure, we can call attention to the signs

of an interesting behavior known as reentrant phenomena. In other words, when

the crystal field strength is positive valued, the type of the transition in the system

is invariably second order which is independent from transverse field value. On the

other hand, if the crystal field value is sufficiently negative then we can expect to see

two successive phase transitions. Solid and dashed lines in Fig. 4.5a correspond to

the second and first order phase transition lines, respectively. Tricritical end points at

which first and second order transition points meet are shown as white circles. In our

calculations, we realized that one can observe reentrant behavior in the system for the

values of Ω/J < 0.861 and −1.453 < D/J < −1.02. For the values of D/J ≤ −1.382

the transition lines exhibit a bulge which gets smaller as the value of D/J approaches

the value of −1.453 which means that ferromagnetic phase region gets narrower. We

have also examined the phase diagram of the present system in (kBTc/J −D/J) plane

with h/J = 0 and for selected values of Ω/J such as 0,0.25,0.5,0.75,0.86,1.0 and 1.1.

The numerical results are shown in Fig. 4.5b. Solid and dashed lines in Fig. 4.5b

correspond to the second and first order phase transition lines, respectively. White

circles denote tricritical points. As we can see from this figure, as the value of

transverse field Ω/J increases starting from zero then the value of tricritical point

decreases gradually and disappears for Ω/J > 0.86. If the transverse field value is

greater than this value then we have only second order transitions in the system.

These results show that the reentrant phenomenon originates from the competition

between the crystal field D/J and transverse field Ω/J. Furthermore, the variation of

the coordinates of the tricritical points kBTt/J and Dt/J as a function of transverse

field Ω/J is illustrated in Fig. 4.5c. As seen in this figure, value of kBTt/J and the

absolute value of Dt/J decreases as the value of transverse field increases and the
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tricritical temperature disappears at the critical value of the transverse field Ωt/J. In

addition, this figure shows that the tricritical points exist for 1.278 < −Dt/J < 1.453

and Ω/J < Ωt/J = 0.861. These new results are not reported before. Hence, it would

be worthwhile to compare these results with the other works in literature. For instance

Jiang et al. (Jiang, Li, Zhong, & Yang, 1993) obtained 1.235 < −Dt/J < 1.427 and

Ωt/J = 0.934 while Miao et al. (Miao, Wei, Liu, & Geng, 2009) reported the values

1.229 < −Dt/J < 1.427 and Ωt/J = 0.945. We believe our results are physically

more reasonable and accurate in comparison with these works based on DA given

in Eq. (4.1.61), since it neglects the multi-spin correlations and introducing this

approximation affects the accuracy and reliability of numerical results. Furthermore,

we note that the reentrant behavior is not observed in (Miao, Wei, Liu, & Geng, 2009).

Consequently, all of the results mentioned above are qualitatively in a good agreement

with the other works (Bouziane & Saber, 2009, Jiang, Li, Zhong, & Yang, 1993,

Htoutou, Oubelkacem, Ainane, & Saber, 2005b, Jiang, 1994, Htoutou, Benaboud,

Ainane, & Saber, 2004, Htoutou, Ainane, Saber, & de Miguel, 2005a), but not with

(Miao, Wei, Liu, & Geng, 2009).

For the calculation details and further investigation of the effects of the single-ion

anisotropy and longitudinal as well as transverse components of the external field on

the temperature dependence of the order parameters mz, mx, qz, qx, Helmholtz free

energy F, the entropy S , and the specific heat C curves, we refer the reader to (Yüksel

& Polat, 2010).



CHAPTER FIVE

APPLICATIONS OF THE PROPOSED FORMALISM FOR THE MODELS

WITH QUENCHED DISORDER EFFECTS

So far, we have limited our discussion on the approximation techniques concerning

the study of the collective behavior of ideally pure magnetic systems such as prefect

crystals, and we have proposed an EFT formulation being inspired by a cluster of

Ising spins. We have presented the results obtained within the introduced method for

spin-1/2 Ising and spin-1 Blume-Capel models with longitudinal and transverse fields.

Based on the discussions of preceding sections, we have concluded that our method

which have been successfully applied to pure systems is superior to conventional MFT

and EFT methods.

On the other hand, until the recent past, effects of quenched disorder and random

impurities on the thermal and magnetic properties of magnetic materials were usually

considered as undesired ingredients in experimental studies. As stated by Fisher et

al. (Fisher, Grinsrein, & Khurana, 1988), "experimentalists were often driven to

elaborate lengths to reduce the randomness in their samples to negligible levels".

However, owing to the recent advances in experimental techniques, the research on

magnetism has mainly directed to the investigation of magnetic systems with quenched

randomness and competing interactions. Eventually, the phenomena has become one

of the most actively studied problems in statistical mechanics and condensed matter

physics.

In the theoretical investigation of phase transitions and critical phenomena in

magnetism, we basically consider two kinds of disorder in model systems. The first one

is called "annealed" disorder in which the configuration of disorder or impurities may

change in time which means that the disorder at a particular lattice site i is not localized

but may move around the sample medium. The other type is known as "quenched"

disorder in which the disorder is localized within a given configuration which can be

imagined as structurally frozen in (Feng, 1996). Theoretically, the former case can

be achieved by generating a new configuration of random variables uniformly at each

88
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time step whereas for the latter type, the random effects can be taken into account by

a given probability distribution function, and this is the main motivation of the present

thesis report.

On the basis of Ising model and its generalizations, a general Hamiltonian

containing the most frequently encountered disorder types can be written as

H = −
∑
<i j>

Ji jcic jS z
i S

z
j−

∑
i

Di(S z
i )

2−
∑

i

hiS z
i .

According to the first term in Hamiltonian given above, a disorder may originate as a

consequence of impurities in a perfect crystal. Namely, if the lattice site i is occupied

by a magnetic atom, we have ci = 1 otherwise ci = 0. Moreover, again from the first

summation we see that the nearest neighbor interactions may be ferromagnetic but vary

in strength (0 < Ji j < 1), or we can model a bond diluted system in which some of the

ferromagnetic couplings are broken. Another interesting behavior can be observed

when the distribution of the variables Ji j includes both positive (ferromagnetic)

and negative (antiferromagnetic) interactions (Fisher et al., 1988) which leads to a

phenomenon called "frustration", due to the competing interactions. Apart from these,

the second term in above Hamiltonian characterizes a disorder in single-ion anisotropy

for spin-S (S > 1/2) Ising systems. Finally, the last term represents the famous random

field Ising model where the magnetic fields hi are random variables sampled from a

particular distribution function with no correlations between their values at different

sites (Fisher et al., 1988).

In the following sections, we will apply our method introduced in Chapter 4 on a

wide variety of magnetic systems in the presence of several types of quenched disorder,

and we intent to discuss the obtained results in detail. For this purpose, at first we

will apply our formulation for diluted Ising ferromagnets. Next, we will discuss the

bond dilution problem, and we will also consider a model in the presence of random

crystal fields. Finally, we will give a detailed picture concerning the random field Ising

model, and discuss the results obtained in the present formalism in detail. We should

also note that the formulation of the aforementioned model systems will be briefly

discussed, however we will particularly focus our attention on the numerical results.
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For calculation details, we will refer the readers to our published papers when needed.

5.1 Site-Diluted Ising Ferromagnets

Site diluted ferromagnets constitute an example of magnetic systems with quenched

disorder such as a compound AxB1−xC where magnetic A atoms in a pure magnet AC

are replaced by non-magnetic B impurities. Formerly, Sato et al. (Sato, Arrott, &

Kikuchi, 1959) have shown that in a dilute lattice a Curie or a Néel temperature does

not appear until a finite concentration of magnetic atoms is obtained if the atomic

distribution is random. They have also found that this concentration depends on the

coordination number of the lattice. For a detailed literature review of problem, see

(Akinci, Yuksel, & Polat, 2011c).

Mean field theory (MFT) of site dilution problem predicts that the system always

has a finite critical temperature and stays in a ferromagnetic state at lower temperatures,

except that c = 0 where c denotes the magnetic atom concentration. Therefore, it is not

capable of locating a critical site concentration at which the transition temperature

reduces to zero. The reason is due to the fact that MFT neglects single-site and multi-

site correlations. On the other hand, decoupling approximation (DA) accounts all the

single site correlations, but it also neglects multi-site correlations between different

sites. Hence, DA provides results that are superior to those obtained within the

traditional MFT. Furthermore, CEFT which is an extension of DA partially takes into

account the effects of multi-spin correlations and improves the results of conventional

DA in many cases. Based on the physical aspects of the problem, whether in DA

or CEFT formalism, evaluation of configurational averages emerging in definition

of spin identities plays a critical role. However, as mentioned by Tucker (Tucker,

1991), the conventional configurational averaging technique applied in Refs. (Taggart,

1982, Kaneyoshi, Tamura, & Honmura, 1984, Boccara, 1983, Yang & Zhong, 1989,

Kaneyoshi & Jaščur, 1992, Kaneyoshi, 1995b,a) is based on a procedure that decouples

the site occupation variable from the thermal average of spin variables, even when

both quantities referred to the same site while in Refs. (Balcerzak, Bobák, Mielnicki,
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& Truong, 1985, Tucker, 1991, Saber & Tucker, 1991, Bobák & Jaščur, 1991,

Tucker, 1992, Sarmento & Kaneyoshi, 1993, Bobák, Mockovčiak, & Sivulka, 1993),

the authors used an improved configurational averaging method in which only the

correlations between quantities pertaining to different sites are neglected (decoupled).

However, it is possible to improve the accuracy of these methods by including multi-

site, as well as single site correlations with a new type of improved configurational

averaging technique.

As a site diluted spin-1/2 Ising model, we consider the following Hamiltonian

H = −J
∑
<i, j>

cic jS z
i S

z
j, (5.1.1)

where the summation is over the nearest-neighbor pairs of spins and the operator S z
i

takes the values S z
i = ±1. We assume that the lattice sites are randomly diluted and

ci denotes a site occupation variable which equals to 1 if the site is occupied by a

magnetic atom or to 0 if it is empty.

According to the Callen identity (Callen, 1963) for the spin-1/2 Ising system, the

thermal average of the identity ciS z
i at the site i is given by

ci
⟨
{ fi}S z

i

⟩
= ci

⟨
{ fi} tanh

βci

J
∑

j

c jS z
j



⟩
, (5.1.2)

where β = 1/kBT , j expresses the nearest-neighbor sites of the central spin and { fi}

can be any function of the Ising variables as long as it is not a function of the

site i. Applying the differential operator technique (Honmura & Kaneyoshi, 1979,

Kaneyoshi, 1993) in Eq. (5.1.2) and using the relation

exp(αci) = ci exp(α)+1− ci, (5.1.3)

with the fact that cn
i = ci, we get

ci
⟨
{ fi}S z

i

⟩
= ci

⟨
{ fi}

q∏
j=1

exp
(
Jc jS z

j∇
)⟩

tanh(βx)|x=0. (5.1.4)

By putting Eq. (5.1.3) into Eq. (5.1.4) we obtain

ci
⟨
{ fi}S z

i

⟩
= ci

⟨
{ fi}

q∏
j=1

{
c j cosh(J∇)+ c jS z

j sinh(J∇)+1− c j
}⟩

tanh(βx)|x=0, (5.1.5)
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where ∇ is a differential operator, q is the coordination number of the lattice, and

⟨...⟩ represents the thermal average. Eq. (5.1.5) is valid only for a given specific

magnetic atom configuration. Hence, if we consider configurational averages then

we may rewrite Eq. (5.1.5) as

⟨
ci

⟨
{ fi}S z

i

⟩⟩
r
=

⟨
ci

⟨
{ fi}

q∏
j=1

{
c j cosh(J∇)+ c jS z

j sinh(J∇)+1− c j
}⟩⟩

r

tanh(βx)|x=0,

(5.1.6)

where ⟨...⟩r represents random configurational averages. When the right-hand side

of Eq. (5.1.6) is expanded, the multi-site correlation functions appear. The simplest

approximation, and one of the most frequently adopted is to decouple these correlations

which is called decoupling approximation (DA). In conventional manner, eliminating

the term ci from both sides of Eq. (5.1.5) then performing the configurational average

with { fi} = 1 leads to the following equation,

⟨⟨
S z

i

⟩⟩
r
=

⟨⟨ q∏
j=1

{
c j cosh(J∇)+ c jS z

j sinh(J∇)+1− c j
}⟩⟩

r

tanh(βx)|x=0. (5.1.7)

In conventional DA one expands the right-hand side of Eq. (5.1.7) then decouples the

multi-site correlations according to⟨⟨
ci...c jckS z

kclS z
l ...cmS z

m

⟩⟩
r
� ⟨ci⟩r ...

⟨
c j

⟩
r
⟨ck⟩r

⟨⟨
S z

k

⟩⟩
r
×⟨cl⟩r

⟨⟨
S z

l

⟩⟩
r
... ⟨cm⟩r

⟨⟨
S z

m
⟩⟩

r

(5.1.8)

with

⟨cα⟩r = c and
⟨⟨

S z
α

⟩⟩
r = m α = i, ... j,k, l, ...,m.

However, this approximation decouples the site occupation variable from the thermal

and configurational averages of spin variable, even when both quantities referred to the

same site.

On the other hand, an improved version of decoupling approximation deals with the

quantity
⟨
ci

⟨
S z

i

⟩⟩
r
. In other words, in an improved decoupling procedure, one expands

the right-hand side of Eq. (5.1.6) instead of Eq. (5.1.7) and decouples the multi-site

correlations according to⟨⟨
ci...c jckS z

kclS z
l ...cmS z

m

⟩⟩
r
� ⟨ci⟩r...⟨c j⟩r

⟨
ck

⟨
S z

k

⟩⟩
r
×
⟨
cl

⟨
S z

l

⟩⟩
r
...

⟨
cm

⟨
S z

m
⟩⟩

r , (5.1.9)
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with

⟨ci⟩r =
⟨
c j

⟩
r
= c and

⟨
cα

⟨
S z
α

⟩⟩
r = m, α = k, l, ...,m.

In this approximation, only the correlations between quantities pertaining to different

sites are neglected. A detailed discussion about these configurational averaging

techniques is also given by (Tucker, 1991).

We state that hereafter, we will carry on the formulation of the dilute spin-1/2

system for a honeycomb lattice (q = 3), however a brief explanation of the method

for a square lattice (q = 4) can be found in (Akinci, Yuksel, & Polat, 2011c). Now, if

we expand the right-hand side of Eq. (5.1.6) for q = 3 without using DA, we get some

certain identities in the form

⟨⟨
ci...c jckS z

kclS z
l ...cmS z

m

⟩⟩
r
=

⟨
ci...c j

⟩
r
×

⟨⟨
ckS z

kclS z
l ...cmS z

m

⟩⟩
r
. (5.1.10)

In Eq. (5.1.10), we use the fact that occupation number ci of a given site i is

independent from the thermal average, as long as the correlation function does not

contain a spin variable S z
i , and the site occupation numbers pertaining to different sites

are assumed to be statistically independent from each other. Hence, we may rearrange

Eq. (5.1.10) as

⟨⟨
ci...c jckS z

kclS z
l ...cmS z

m

⟩⟩
r
= ⟨ci⟩r ...

⟨
c j

⟩
r
×

⟨⟨
ckS z

kclS z
l ...cmS z

m

⟩⟩
r
, (5.1.11)

where ⟨ci⟩r =
⟨
c j

⟩
r
= c. In the present formulation, it is clear that Eq. (5.1.11) improves

DA based on Eqs. (5.1.8) and (5.1.9) by taking into account the multi-site correlations.

With the help of Eq. (5.1.11), and by expanding the right-hand side of Eq. (5.1.6) for

the central site c0S z
0 with { fi} = 1 we have

m = ⟨⟨c0S 0⟩⟩r = x1 = (3c−6c2+3c3)x4K1+ (6c2−6c3)x4K2+3c3x4K3+ cx6K4,

(5.1.12)

where the terms xi in Eq. (5.1.12) are defined as

x1 = ⟨⟨c0S 0⟩⟩r, x4 = ⟨⟨c1S 1⟩⟩r, x6 = ⟨⟨c1S 1c2S 2c3S 3⟩⟩r.

In obtaining Eq. (5.1.12) we use the fact that tanh(βx) is an odd function. Hence, only
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the odd coefficients give non-zero contribution which can be given as follows:

K1 = sinh(J∇) tanh(βx)|x=0,

K2 = cosh(J∇) sinh(J∇) tanh(βx)|x=0,

K3 = cosh2(J∇) sinh(J∇) tanh(βx)|x=0,

K4 = sinh3(J∇) tanh(βx)|x=0. (5.1.13)

For comparison, if we apply the improved decoupling approximation given in Eq.

(5.1.9) then Eq. (5.1.12) reduces to

m = (3c−6c2+3c3)mK1+ (6c2−6c3)mK2+3c3mK3+ cm3K4, (5.1.14)

which is identical to those obtained in Refs. (Balcerzak, Bobák, Mielnicki, & Truong,

1985, Tucker, 1991, Bobák & Jaščur, 1991). Additionally, applying the conventional

method given in Eq. (5.1.8) gives the following result

m = (3c−6c2+3c3)mK1+ (6c2−6c3)mK2+3c3mK3+ c3m3K4. (5.1.15)

It seems like it is fortuitous that although, the equations of states of approximations

(5.1.8) and (5.1.9) are differ from each other in the last term, they give the same phase

diagram in (kBTc/J−c) plane. The reason comes from the fact that in Eqs. (5.1.14) and

(5.1.15) both approximations ignore the term m3 in the limit T → Tc. Hence, it should

be emphasized that the importance and distinction of our method becomes evident by

expansion of Eq. (5.1.6) without using any kind of DA.

The next step is to carry out the configurational and thermal averages of the

perimeter site in the system, and it is found as

⟨⟨{ fδ}cδS δ⟩⟩r = ⟨cδ ⟨{ fδ} (c0 cosh(J∇)+ c0S 0 sinh(J∇)+1− c0)⟩⟩r tanh(β(x+γ)).

(5.1.16)

From Eq. (5.1.16) with δ = { fδ} = 1 we get the following identity

⟨⟨c1S 1⟩⟩r = x4 = (c− c2)A1+ c2A2+ cx1A3. (5.1.17)

For the sake of simplicity, the superscript z is omitted from the left- and right-hand
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sides of Eqs. (5.1.12) and (5.1.17). The coefficients in Eq. (5.1.17) are given as

A1 = tanh(β(x+γ))|x=0,

A2 = cosh(J∇) tanh(β(x+γ))|x=0,

A3 = sinh(J∇) tanh(β(x+γ))|x=0. (5.1.18)

The coefficients in Eqs. (5.1.13) and (5.1.18) can be easily calculated by applying a

mathematical relation, eα∇ f (x) = f (x+α). In Eq. (5.1.18), γ = (q−1)A is the effective

field produced by the (q−1) spins outside of the cluster, and A is an unknown parameter

to be determined self-consistently (c.f. see Fig. 4.1).

Eqs. (5.1.12) and (5.1.17) are the fundamental correlation functions of the system.

On the other hand, for a honeycomb lattice, taking Eqs. (5.1.12) and (5.1.17) as basis,

we derive a set of linear equations of the site correlation functions in the system.

Recalling the rules given in Chapter 4, we get a system of linear equations with 6

unknowns for q = 3 (for a detailed explanation of derivation process of correlation

functions, see (Akinci, Yuksel, & Polat, 2011c)):

x1 = (3c−6c2+3c3)x4K1+ (6c2−6c3)x4K2+3c3x4K3+ cx6K4,

x2 = (3c2−6c3+3c4)K1+ (6c3−6c4)K2+3c4K3+ c2x5K4,

x3 = (−3c2+3c3)x4K1+ (6c2−6c3)x4K2+3c3x4K3+ c3x4K4,

x4 = (c− c2)A1+ c2A2+ cx1A3,

x5 = cA3x2+ (c− c2)A1x4+ c2A2x4,

x6 = cA3x3+ (c− c2)A1x5+ c2A2x5, (5.1.19)

where

x1 = ⟨⟨c0S 0⟩⟩r,

x2 = ⟨⟨c0S 0c1S 1⟩⟩r,

x3 = ⟨⟨c0S 0c1S 1c2S 2⟩⟩r,

x4 = ⟨⟨c1S 1⟩⟩r,

x5 = ⟨⟨c1S 1c2S 2⟩⟩r,

x6 = ⟨⟨c1S 1c2S 2c3S 3⟩⟩r. (5.1.20)
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Since the thermal and configurational average of the central site is equal to that of its

nearest-neighbor sites within the present method, the unknown parameter A can be

numerically determined by the relation

x1 = x4. (5.1.21)

Desired critical properties of the system can be obtained by numerical solution of Eqs.

(5.1.20) and Eq. (5.1.21). In the following, we will present the results for a spin-

1/2 dilute ferromagnetic system defined on honeycomb and square lattices. However,

the formulation and numerical results concerning a spin-1 model can also be found in

(Akinci, Yuksel, & Polat, 2011c).

In Fig. 5.1 we show the phase diagrams and magnetization, as well as specific heat

curves for honeycomb (q = 3) and square (q = 4) lattices which can be obtained by

solving Eqs. (5.1.19) and (5.1.21) numerically. In Fig. 5.1a variations of magnetization

curves are depicted as a function of temperature kBT/J with typical values of site

concentration c. As expected, we see in Fig. 5.1a that as the temperature increases

starting from zero, the magnetization of the system decreases continuously, and it

falls rapidly to zero at the critical temperature kBTc/J for selected c values. The

number of interacting sites on the lattice decreases as c decreases and hence, kBTc/J

value of the system and the saturation value of magnetization curves also decrease

as c decreases. In particular, the ground state saturation value of magnetization for

q = 3 linearly decreases with decreasing value of c up to c = 0.71. For c = 0.7,

the site concentration gets closer to its critical value (i.e. percolation threshold) c∗

and the magnetization saturates at m = 0.616 at low temperatures. In Fig. 5.1b we

examine the effect of site concentration c on the temperature dependence of specific

heat of the system. We see that as the temperature increases starting from zero,

then the specific heat curves exhibit a sharp peak at a second-order phase transition

temperature which decreases with decreasing c. As c approaches its critical value

c∗ at which critical temperature reduces to zero then an additional broad Schottky-

type maximum appears and below c∗ phase transition disappears. For c > c∗ the

system forms an infinite cluster of lattice sites. However, as c gets closer to c∗ then

isolated finite clusters appear and for c < c∗ the system cannot exhibit long range
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ferromagnetic order even at zero temperature which causes a broad round maximum

in specific heat vs temperature curves. These observations are qualitatively agree with

those of Refs. (Bobák & Jaščur, 1994, Bonfim & Fittipaldi, 1983, Balcerzak, Bobák,

Mielnicki, & Truong, 1985, Wiatrowski, Balcerzak, & Mielnicki, 1988) and show

the proper thermodynamic behavior over the whole range of temperatures, including

the ground-state behavior (C/NkB → 0 as kBT/J → 0) and the thermal stability

condition (C/NkB ≥ 0). Next, Fig. 5.1c represents the variation of the saturation

magnetization with site concentration. In this figure, we also compare our results

(blue line) with those of EFT based on conventional DA (C-DA, black line) and

improved DA (I-DA, red line) methods. It is clearly evident that site dilution lowers

down the saturation magnetization. According to C-DA saturation magnetization of

the system continuously decreases as c decreases then falls rapidly to zero at c∗. On

the other hand, I-DA predicts a linear decrease at high magnetic atom concentrations,

but as c decreases gradually then a monotonic decline is observed in the saturation

magnetization value. According to our results we observe a linear decrement trend

up to the vicinity of c∗ which originates as a result of consideration of the multi-site

correlations. We also observe that as the coordination number q of the lattice increases

then the critical site concentration value c∗ decreases which means that destructing

the ferromagnetic order of the system will be harder as more atoms interact with each

other, even at lower magnetic atom concentrations. Finally, we represent the phase

diagram of the system in (kBTc/J − c) plane which separates the ferromagnetic and

paramagnetic phases and we compare our results with those of the other methods in

the literature. According to this figure, critical temperature kBTc/J of system decreases

gradually, and ferromagnetic region gets narrower as c decreases, and kBTc/J value

depresses to zero at c = c∗. Such a behavior is an expected fact in dilution problems.

Numerical values of critical concentration c∗ for honeycomb (q = 3) and square (q = 4)

lattices are given in Table 5.1, and compared with the other works in the literature. It

is well known that the series expansion (SE) method gives the best approximate values

to the known exact results (Stauffer & Aharony, 1991). Therefore, we see in Table

5.1 that the present work improves the results of finite cluster approximation (OSCA

and TSCA), as well as the other works based on EFT with DA. The reason is due to
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the fact that, in contrast to the previously published works mentioned above, there is

no uncontrolled decoupling procedure used for the higher-order correlation functions

within the present approximation.

Table 5.1 Numerical values of critical site concentration c∗ for spin-1/2 system obtained within the

present work for q = 3,4 and comparison with various approximations in the literature: Average

coordination number approximation 2/q and Bethe approximation (q − 1)−1 (Sato et al., 1959),

renormalization group (RG) (Yeomans & Stinchcombe, 1978, 1979), CEFT (Taggart, 1982), DA

(Balcerzak et al., 1985, Li & Yang, 1985, Bobák & Jaščur, 1991, Saber, 1997), OSCA (Wiatrowski

et al., 1988, Bobák et al., 1993), TSCA (Bobák & Karaba, 1987, Bobák et al., 1993), CVM (Balcerzak,

2001), MC (Néda, 1994), SE (Sykes & Essam, 1964, Sykes et al., 1976).

q MFT 2/q (q−1)−1 RG CEFT DA,OSCA TSCA CVM MC SE Present Work

3 0 0.667 0.5 0.711 0.5575 0.5706 0.768 0.698 0.6727

4 0 0.5 0.333 0.602 0.558 0.4284 0.4303 0.640 0.413 0.593 0.4594
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Figure 5.1 Temperature dependence of (a) magnetization, (b) specific heat curves of dilute

ferromagnetic system for honeycomb (q = 3) and square (q = 4) lattices with some selected values

of site concentration c. (c) Ground state magnetizations as a function of temperature for q = 3, and

q = 4. (d) Phase diagrams of the system in (kBTc/J − c) plane obtained by MFT (dash-dotted), DA

(dotted), and present work (solid).
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5.2 Bond-Diluted Spin-1 Blume-Capel Model with Transverse and Crystal Field

Interactions

After the observation of reentrant magnetism by Maletta and Felsch (Maletta &

Felsch, 1979), the interest has also been directed to investigation of the disorder effects

on the thermal and magnetic properties of TIM where the type of the bond interactions

is chosen at random according to a given probability distribution. For a detailed

literature review of problem see (Akinci, Yuksel, & Polat, 2011b). The most simple

model concerning the quenched randomness in nearest-neighbor interactions can be

represented by the following Hamiltonian

H = −
∑
<i j>

Ji jS z
i S

z
j, (5.2.1)

where the type of the exchange interactions between the nearest-neighbor sites are

distributed according to a given probability distribution. For instance, the exchange

couplings between the neighboring spins can be generated according to distribution

P(Ji j) =
[
2π(∆Ji j)2

]−1/2
exp[−(Ji j− J)2/2∆J2

i j], (5.2.2)

which is called Edwards-Anderson model. On the other hand, a simplified form of the

model can also be written as

P(Ji j) = (1− p)δ(Ji j−αJ1)+ pδ(Ji j− J2), (5.2.3)

where J2 > 0, α = J1/J2 with |α| ≤ 1. For α > 0, we have the ordered ferromagnetic

phase but the strength of the ferromagnetic couplings may not be uniformly distributed.

For α = 0 we have a bond-diluted model, and for α < 0 there are competing

ferromagnetic and anti-ferromagnetic interactions and thus frustrations (Tóth &

Tóthová, 1994). Note that the model reduces to pure system for p = 1.

Now, let us introduce the bond diluted spin-1 system with both crystal and

transverse fields within the framework of our EFT formalism. The Hamiltonian

describing our model is

H = −
∑
<i, j>

Ji jS z
i S

z
j−D

∑
i

(S z
i )

2−Ω
∑

i

S x
i , (5.2.4)
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where S z
i and S x

i denote the z and x components of the spin operator, respectively.

The first summation in Eq. (5.2.4) is over the nearest-neighbor pairs of spins and the

operator S z
i takes the values S z

i = 0,±1. Ji j, D and Ω terms stand for the exchange

interaction, single-ion anisotropy (i.e. crystal field) and transverse field, respectively.

We assume that the nearest neighbor interactions are randomly distributed on the lattice

according to the probability distribution function

P(Ji j) = (1− p)δ(Ji j)+ pδ(Ji j− J), (5.2.5)

where 0 < p ≤ 1 and it denotes the concentration of closed bonds. We construct the

mathematical background of our model by using the approximated spin correlation

identities (Barreto et al., 1981) by taking into account random configurational averages

⟨⟨{ fi}S α
i ⟩⟩r =

⟨⟨
{ fi}

TriS α
i exp(−βHi)

Tri exp(−βHi)

⟩⟩
r
, (5.2.6)

⟨⟨{ fi}(S α
i )2⟩⟩r =

⟨⟨
{ fi}

Tri(S α
i )2 exp(−βHi)

Tri exp(−βHi)

⟩⟩
r
, (5.2.7)

where β = 1/kBT , α = z or x, { fi} is an arbitrary function which is independent of the

central spin S i and the inner ⟨...⟩ and the outer ⟨...⟩r products represents the thermal

and random configurational averages, respectively. Now, our aim is to derive the

fundamental correlation functions ⟨⟨S α
0 ⟩⟩r, ⟨⟨(S

α
0 )2⟩⟩r, ⟨⟨S z

1⟩⟩r and ⟨⟨(S z
1)2⟩⟩r. The z−

components of these correlation functions are the fundamental relations in determining

the complete set of correlation functions. Again we consider a honeycomb lattice

for simplicity, since the number of linear equations increases gradually for larger

coordination number q.

In the next step, we separate the Hamiltonian (5.2.4) into two parts asH = Hi+H
′
.

Here, the effective Hamiltonian Hi includes all the contributions associated with the

site i, and the other part H
′

does not depend on the site i. We can write −Hi as

−Hi = EiS z
i +D

(
S z

i

)2
+ΩS x

i , (5.2.8)

where Ei =
∑

j Ji jS z
j is the local field on the site i. As we noted before, in order to

proceed further we have to diagonalize −Hi matrix in Eq. (5.2.8). For a spin-1 system,

eigenvalues λn and corresponding eigenvectors φn of −Hi are given in Eqs. (4.1.43)

and (4.1.44), respectively.
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By applying the differential operator technique in Eqs. (5.2.6) and (5.2.7) with

{ fi} = 1, we obtain the following spin correlations for the thermal and configurational

averages of a central spin, as well as its perimeter spin for a honeycomb lattice (q = 3)

as follows

⟨⟨S z
0⟩⟩r =

⟨⟨q=3∏
j=1

[
1+S z

jsinh(Ji j∇)+ (S z
j)

2{cosh(Ji j∇)−1}
]⟩⟩

r

F(x)|x=0, (5.2.9)

⟨⟨S x
0⟩⟩r =

⟨⟨q=3∏
j=1

[
1+S z

jsinh(Ji j∇)+ (S z
j)

2{cosh(Ji j∇)−1}
]⟩⟩

r

H(x)|x=0. (5.2.10)

⟨⟨(S z
0)2⟩⟩r =

⟨⟨q=3∏
j=1

[
1+S z

jsinh(Ji j∇)+ (S z
j)

2{cosh(Ji j∇)−1}
]⟩⟩

r

G(x)|x=0, (5.2.11)

⟨⟨(S x
0)2⟩⟩r =

⟨⟨q=3∏
j=1

[
1+S z

jsinh(Ji j∇)+ (S z
j)

2{cosh(Ji j∇)−1}
]⟩⟩

r

K(x)|x=0, (5.2.12)

and

⟨⟨S z
δ⟩⟩r = ⟨⟨1+S z

0sinh(Ji j∇)+ (S z
0)2{cosh(Ji j∇)−1}⟩⟩rF(x+γ)|x=0, (5.2.13)

⟨⟨(S z
δ)

2⟩⟩r = ⟨⟨1+S z
0sinh(Ji j∇)+ (S z

0)2{cosh(Ji j∇)−1}⟩⟩rG(x+γ). (5.2.14)

Note that the functions F(x), H(x), G(x) and K(x) in above relations can be calculated

using Eqs. (4.1.57)-(4.1.60), respectively. By expanding the right-hand sides of Eqs.

(5.2.9)-(5.2.14) we can get the explicit forms of the longitudinal and transverse spin

correlations. Since we have already given a detailed formulation for a spin-1 system

(c.f. Sections 4.1.2 and 4.1.3), we will not deal with the tedious calculation details

for the present problem. However, in order to depict the configurational averaging

procedure explicitly, for instance, let us expand the right-hand side of Eq.(5.2.9) as

mz = ⟨⟨S z
0⟩⟩r = l0+3k1⟨⟨S 1⟩⟩r +3(l1− l0)⟨⟨S 2

1⟩⟩r +3l2⟨⟨S 1S 2⟩⟩r

+6(k2− k1)⟨⟨S 1S 2
2⟩⟩r +3(l0−2l1+ l3)⟨⟨S 2

1S 2
2⟩⟩r

+k3⟨⟨S 1S 2S 3⟩⟩r +3(l4− l2)⟨⟨S 1S 2S 2
3⟩⟩r

+3(k1−2k2+ k4)⟨⟨S 1S 2
2S 2

3⟩⟩r

+(−l0+3l1−3l3+ l5)⟨⟨S 2
1S 2

2S 2
3⟩⟩r, (5.2.15)
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where

l0 = F(0),

l1 =
⟨
cosh(Ji j∇)

⟩
r
F(x)|x=0, k1 =

⟨
sinh(Ji j∇)

⟩
r
F(x)|x=0,

l2 =
⟨
sinh(Ji j∇)

⟩2

r
F(x)|x=0, k2 =

⟨
cosh(Ji j∇)

⟩
r

⟨
sinh(Ji j∇)

⟩
r
F(x)|x=0,

l3 =
⟨
cosh(Ji j∇)

⟩2

r
F(x)|x=0, k3 =

⟨
sinh(Ji j∇)

⟩3

r
F(x)|x=0,

l4 =
⟨
cosh(Ji j∇)

⟩
r

⟨
sinh(Ji j∇)

⟩2

r
F(x)|x=0, k4 =

⟨
cosh(Ji j∇)

⟩2

r

⟨
sinh(Ji j∇)

⟩
r
F(x)|x=0,

l5 =
⟨
cosh(Ji j∇)

⟩3

r
F(x)|x=0. (5.2.16)

We note that, for the sake of simplicity, the superscript z is omitted from the correlation

functions on the right-hand side of Eq. (5.2.15). The random configurational averages

in Eq. (5.2.16) can be obtained by using the probability distribution in Eq. (5.2.3) and

they are found as ⟨
cosh(Ji j∇)

⟩
r
=

∫
dJi jP(Ji j)cosh(Ji j∇)

= (1− p)+ pcosh(J∇),⟨
sinh(Ji j∇)

⟩
r
=

∫
dJi jP(Ji j)sinh(Ji j∇)

= psinh(J∇). (5.2.17)

It is quite clear from above discussion that as long as the form of the probability

distribution of the quenched bond disorder is given, the present formulation can

be easily adopted to any disorder problem including the disordered systems with

competing ferromagnetic and anti-ferromagnetic interactions.

As in conventional process, we also expand the right-hand sides of Eqs. (5.2.10)-

(5.2.14) by following the above procedure and we obtain the explicit forms of basis

relations of a bond diluted spin-1 system (Akinci, Yuksel, & Polat, 2011b) from which

we derive a set of 21 linear equations for z− components, in addition to transverse

spin correlations ⟨⟨S x
0⟩⟩r and ⟨⟨(S x

0)2⟩⟩r which in total yields 23 linear equations. The

complete set can be found in (Akinci et al., 2011b).

Now, we are able to discuss the numerical results concerning the phase diagrams

of the system. In Fig. 5.2, we plot the dependence of the bond percolation threshold
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Table 5.2 Bond percolation threshold value pc for D/J = 0 and Ω/J = 0 obtained

by several methods including EFT with single site kinematic relations (Tucker,

1994), DA (Yan & Deng, 2002), finite cluster approximation FCA (Benayad,

Benyoussef, & Boccara, 1985, Kerouad & Saber, 1991), two-spin cluster

approximation TSCA (Tóth & Tóthová, 1994), MC simulations (Vyssotsky,

Gordon, Frisch, & Hammersley, 1961) and series expansions (SE) (Domb &

Sykes, 1961) and present work for a honeycomb lattice.

EFT DA FCA FCA TSCA MC SE Present Work

0.5158 0.5364 0.5158 0.5160 0.5449 0.64 0.66 0.5397

-1 0 1 2 3 4 5

0,2

0,4

0,6

0,8

1,0

1,2

D/J

/J

0,4040
0,4636
0,5232
0,5828
0,6424
0,7020
0,7616
0,8212
0,8808
0,9404
1,000

(b)

Figure 5.2 Variation of the bond percolation threshold pc with crystal field D/J and

transverse field Ω/J. (a) 3D contour plot surface, (b) projection on (Ω/J-D/J) plane.

surface with −1.0 < D/J < 5 and 0.1 < Ω < 1.2. As we can see from Fig. 5.2a, the

effect of the transverse field Ω/J on the percolation threshold value clearly depends

on the value of the crystal field D/J and vice versa. Namely, for the values of −1.0 <

D/J < 0.32, as Ω/J increases then the pc increases and reaches its maximum value.

On the other hand, for the other D/J values, pc decreases for a while and then tends to

increase with increasing Ω/J. If the value of D/J is sufficiently positive then pc value

remains more or less constant being independent from the value of Ω/J. We think that

the mechanism underlying this behavior completely originates from a collective effect

of bothΩ/J and D/J or strictly speaking, we can mention about a competition between

D/J and Ω/J on the system. One should notice that, for the values of D/J = −1.0 and

Ω/J = 1.2 the system can not exhibit a long range ordering since pc = 1.0. In the limit
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D/J→∞, single-ion anisotropy is dominant againstΩ/J, and pc = 0.7622 value below

which the system can not exhibit a long range ferromagnetic order is the percolation

threshold of corresponding spin-1/2 system (Akinci, 2011). Moreover, in the absence

of crystal and transverse field interactions, numerical value of percolation threshold pc

is given in Table 5.2 and it is compared with the other works in the literature. As seen

from Table 5.2, we improve the results of the other works based on EFT approximation

(Tucker, 1994, Yan & Deng, 2002, Benayad, Benyoussef, & Boccara, 1985, Kerouad

& Saber, 1991). For the further detailed discussions regarding the tricritical properties,

refer to (Akinci et al., 2011b).

5.3 Spin-1 Blume-Capel Model with Random Crystal Field Interactions

Ordinary spin-1 Blume-Capel (and also Blume-Emery-Griffiths) model has been

widely used over three decades in literature to give a theoretical explanation for a

wide variety of physical observations, including essentially superfluid transitions in
3He−4 He mixtures (Graf, Lee, & Reppy, 1967). The general Hamiltonian of a spin-1

Blume-Emery-Griffiths model (Blume, Emery, & Griffiths, 1971)

H = −J
∑
<i j>

S iS j−K
∑
<i j>

S 2
i S 2

j −D
∑

i

S 2
i , (5.3.1)

was introduced to describe the phase separation in 3He−4 He mixtures where S i =±1,0

and K = K33 +K44 − 2K34 with Kαβ being the interaction energy between αHe−β He

atoms (α,β = 3,4). Since Kαβ is almost independent of α and β, we generally have

K ≈ 0.

According to former experimental measurements (Graf, Lee, & Reppy, 1967) and

theoretical investigations (Blume, Emery, & Griffiths, 1971), phase diagrams depicted

in temperature versus 3He concentration was shown to exhibit a λ line with a tricritical

point which separates the normal and superfluid phases from a mixed phase where 4He

rich and 3He rich phases coexist. On the other hand, phase transition properties of

such a system can be drastically changed by introducing a disorder due to the presence

of a porous medium. From the experimental point of view, critical properties of
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3He−4 He mixtures in porous aerogel medium with various porosity values have been

investigated in detail and it was reported that as a consequence of presence of disorder

due to aerogel medium, the coexistence boundary is detached, the tricritical point is

removed and a superfluid 3He phase is originated at sufficiently low temperatures and

high concentration of 3He mixtures on the phase diagram (Mulders, Ma, Kim, Yoon,

& Chan, 1995, Kim, Ma, & Chan, 1993, Paetkau & Beamish, 1998).

On the theoretical side, in order to characterize the effect of quenched disorder

originating from the aerogel medium on the phase transition properties in superfluid

systems, a random anisotropy Blume-Capel model has been proposed (Buzano,

Maritan, & Pelizzola, 1994, Maritan, Cieplak, Swift, & Toigo, 1992). The presence of

aerogel was modeled as a random external field that selects which of the two types

of helium to have nearby (Buzano, Maritan, & Pelizzola, 1994) by the following

Hamiltonian

H = −J
∑
<i j>

S iS j+
∑

i

∆iS 2
i , (5.3.2)

where S i is a fictitious spin variable which can take the values S i = ±1,0 and ∆i is

a site-dependent random variable distributed according to a probability distribution

function P(∆i) on the lattice sites. The spin states S i = ±1 and S i = 0 denote 4He and
3He atoms located on a particular lattice site i, respectively. The probability density is

often chosen as

P(∆i) = pδ(∆i−∆0)+ (1− p)δ(∆i−∆1) (5.3.3)

in the literature (Buzano, Maritan, & Pelizzola, 1994, Maritan, Cieplak, Swift, &

Toigo, 1992). According to Eq. (5.3.3), fraction p of the lattice sites with ∆0 < 0

is occupied by 4He atoms since S i = ±1 minimizes the Hamiltonian (5.3.2) whereas

the remaining lattice sites with ∆1 > 0 are occupied by 3He atoms with S i = 0. Hence,

it can be deduced that the fully magnetized state of the system corresponds to pure 4He

superfluid. As the magnetization reduces towards zero then the number of 3He atoms

filling the aerogel pores increases.

However, there is not a unique form of distribution (5.3.3). Namely, different

probability distributions correspond to different physical systems and may lead to
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different phase transition characteristics. In this context, from the theoretical point

of view, the Blume-Capel (BC) model with a random crystal field (RCF) has been

studied by a variety of techniques (for a detailed literature review see (Yüksel, Akinci,

& Polat, 2012a)). Other than this, it is well known that magnetic systems with dilute

crystal fields exhibit qualitatively similar characteristics when compared to the site

dilution problem of magnetic atoms. From this point of view, for a BC model with

diluted crystal fields, MFT predicts that the phase transition temperature of the system

will remain at a finite value until zero concentration is reached which can be regarded

as a limitation of the mean field predictions. On the other hand, the results obtained

by conventional EFT based on DA are limited to second-order phase transitions and

tricritical points, and a detailed description of first-order transitions has not been

reported. In this context, we believe that the BC model with RCF still deserves

particular attention for investigating the proper phase diagrams, especially the first-

order transition lines that include reentrant phase transition regions. Therefore, taking

the multi-site correlations into consideration will improve the results of conventional

EFT approximations. Consequently, we intend to investigate the effects of RCF

distributions on the phase diagrams of spin-1 BC model on several 2D lattices with

various coordination numbers.

For this aim let us consider the following Hamiltonian equation

H = −J
∑
<i j>

S z
i S

z
j−

∑
i

Di(S z
i )

2, (5.3.4)

where the first term is a summation over the nearest-neighbor spins with S z
i = ±1,0

and the term Di on the second summation represents a random crystal field, distributed

according to a given probability distribution. In this work, we primarily deal with two

kinds of probability distributions, namely, a quenched diluted crystal field distribution

and a double peaked delta distribution which are given by Eqs. (5.3.5) and (5.3.6),

respectively as follows

P(Di) = pδ(Di−D)+ (1− p)δ(Di), (5.3.5)

P(Di) =
1
2
{δ[Di− (D−∆)]+δ[Di− (D+∆)]} , (5.3.6)
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where the parameter p in Eq. (5.3.5) denotes the concentration of the spins on the

lattice which are influenced by a crystal field D. Using the conventional form of

approximated spin correlation identities defined in Eqs. (5.2.6) and (5.2.7), we obtain

the following spin identity with thermal and configurational averages of a central spin

for a lattice with a coordination number q as

⟨⟨S z
0⟩⟩r =

⟨⟨ q∏
j=1

[
1+S z

jsinh(J∇)+ (S z
j)

2{cosh(J∇)−1}
]⟩⟩

r

F(x)|x=0. (5.3.7)

The function F(x) in Eq. (5.3.7) is defined by

F(x) =
∫

dDiP(Di) f (x,Di), (5.3.8)

where

f (x,Di) =
1∑3

n=1 exp(βλn)

3∑
n=1

⟨φn|S z
i |φn⟩exp(βλn), (5.3.9)

=
2sinh(βx)

2cosh(βx)+ e−βDi
.

In Eq. (5.3.9), λn denotes the eigenvalues of −Hi matrix, and φn represents the

eigenvectors corresponding to the eigenvalues λn of −Hi matrix. With the help of

Eq. (5.3.9), and by using the distribution functions defined in Eqs. (5.3.5) and (5.3.6),

the function F(x) in Eq. (5.3.8) can be easily calculated by numerical integration.

Hereafter, we will focus our attention on the construction of the correlation functions,

as well as magnetization and quadrupole moment identities of a honeycomb lattice

with q = 3. A brief formulation of the fundamental spin identities for a square lattice

with q = 4 can be found in (Yüksel et al., 2012a).

By expanding the right-hand side of Eq. (5.3.7) for a honeycomb lattice with q = 3,

we get the longitudinal magnetization as

mz = ⟨⟨S z
0⟩⟩r = l0+3k1⟨⟨S 1⟩⟩r +3(l1− l0)⟨⟨S 2

1⟩⟩r +3l2⟨⟨S 1S 2⟩⟩r

+6(k2− k1)⟨⟨S 1S 2
2⟩⟩r +3(l0−2l1+ l3)⟨⟨S 2

1S 2
2⟩⟩r

+k3⟨⟨S 1S 2S 3⟩⟩r +3(l4− l2)⟨⟨S 1S 2S 2
3⟩⟩r

+3(k1−2k2+ k4)⟨⟨S 1S 2
2S 2

3⟩⟩r

+(−l0+3l1−3l3+ l5)⟨⟨S 2
1S 2

2S 2
3⟩⟩r. (5.3.10)
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We note that, for the sake of simplicity, the superscript z is omitted from the correlation

functions on the right-hand side of Eq. (5.3.10). The coefficients in Eq. (5.3.10) are

defined as follows:

l0 = F(0),

l1 = cosh(J∇)F(x)|x=0, k1 = sinh(J∇)F(x)|x=0,

l2 = sinh2(J∇)F(x)|x=0, k2 = cosh(J∇)sinh(J∇)F(x)|x=0,

l3 = cosh2(J∇)F(x)|x=0, k3 = sinh3(J∇)F(x)|x=0,

l4 = cosh(J∇)sinh2(J∇)F(x)|x=0, k4 = cosh2(J∇)sinh(J∇)F(x)|x=0,

l5 = cosh3(J∇)F(x)|x=0. (5.3.11)

Next, the average value of the perimeter spin in the system can be written as follows,

and it is found as

m1 = ⟨⟨S z
δ⟩⟩r = ⟨⟨1+S z

0sinh(J∇)+ (S z
0)2{cosh(J∇)−1}⟩⟩rF(x+γ)|x=0, (5.3.12)

⟨⟨S 1⟩⟩r = a1
(
1−⟨⟨(S 0)2⟩⟩r

)
+a2⟨⟨S 0⟩⟩r +a3⟨⟨(S 0)2⟩⟩r, (5.3.13)

with the coefficients

a1 = F(γ),

a2 = sinh(J∇)F(x+γ)|x=0,

a3 = cosh(J∇)F(x+γ)|x=0, (5.3.14)

where γ = (q−1)A is the effective field produced by the (q−1) spins outside the system

(see Fig. 4.1) and A is an unknown parameter to be determined self-consistently. With

the help of Eq. (5.2.7), quadrupolar moment of the central spin can be obtained as

follows

⟨⟨(S z
0)2⟩⟩r =

⟨⟨ q∏
j=1

[
1+S z

jsinh(J∇)+ (S z
j)

2{cosh(J∇)−1}
]⟩⟩

r

G(x)|x=0, (5.3.15)

where the function G(x) is defined as

G(x) =
∫

dDiP(Di)g(x,Di). (5.3.16)
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Definition of the function g(x,Di) in Eq. (5.3.16) is given as follows and the

expression in Eq. (5.3.17) can be evaluated by using the eigenvalues and corresponding

eigenvectors of the effective Hamiltonian matrix −Hi.

g(x,Di) =
1∑3

n=1 exp(βλn)

3∑
n=1

⟨φn|
(
S z

i

)2 |φn⟩exp(βλn), (5.3.17)

=
2cosh(βx)

2cosh(βx)+ e−βDi
.

Hence, we get the quadrupolar moment by expanding the right-hand side of Eq.

(5.3.15)

⟨⟨(S z
0)2⟩⟩r = r0+3n1⟨⟨S 1⟩⟩r +3(r1− r0)⟨⟨S 2

1⟩⟩r +3r2⟨⟨S 1S 2⟩⟩r

+6(n2−n1)⟨⟨S 1S 2
2⟩⟩r +3(r0−2r1+ r3)⟨⟨S 2

1S 2
2⟩⟩r +n3⟨⟨S 1S 2S 3⟩⟩r

+3(r4− r2)⟨⟨S 1S 2S 2
3⟩⟩r +3(n1−2n2+n4)⟨⟨S 1S 2

2S 2
3⟩⟩r

+(−r0+3r1−3r3+ r5)⟨⟨S 2
1S 2

2S 2
3⟩⟩r, (5.3.18)

with

r0 =G(0),

r1 = cosh(J∇)G(x)|x=0, n1 = sinh(J∇)G(x)|x=0,

r2 = sinh2(J∇)G(x)|x=0, n2 = cosh(J∇)sinh(J∇)G(x)|x=0,

r3 = cosh2(J∇)G(x)|x=0, n3 = sinh3(J∇)G(x)|x=0,

r4 = cosh(J∇)sinh2(J∇)G(x)|x=0, n4 = cosh2(J∇)sinh(J∇)G(x)|x=0,

r5 = cosh3(J∇)G(x)|x=0. (5.3.19)

Corresponding to Eq. (5.3.12), thermal and configurational average of quadrupolar

moment of a perimeter spin is

⟨⟨(S z
δ)

2⟩⟩r = ⟨⟨1+S z
0sinh(J∇)+ (S z

0)2{cosh(J∇)−1}⟩⟩rG(x+γ), (5.3.20)

⟨⟨S 2
1⟩⟩r = b1

(
1−⟨⟨(S z

0)2⟩⟩r
)
+b2⟨⟨S z

0⟩⟩r +b3⟨⟨(S z
0)2⟩⟩r. (5.3.21)

where

b1 = G(γ),

b2 = sinh(J∇)G(x+γ)|x=0,

b3 = cosh(J∇)⟩G(x+γ)|x=0. (5.3.22)
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Eqs. (5.3.10), (5.3.13), (5.3.18) and (5.3.21) are the fundamental spin identities of

the system which can be regarded as basis relations to derive the remaining unknown

correlation functions composed of 21 linear equations for honeycomb lattice. The

complete set can be found in (Yüksel et al., 2012a). By solving the system of 21 linear

equations with the condition

⟨⟨S z
0⟩⟩r = ⟨⟨S 1⟩⟩r (5.3.23)

we can obtain the phase diagrams in various planes, as well as the variation of order

parameters as a function of system parameters. Since the effective field γ is very

small in the vicinity of kBTc/J, we can obtain the critical temperature for the fixed

set of Hamiltonian parameters by solving Eq. (5.3.23) in the limit of γ→ 0 then we

can construct the whole phase diagrams of the system. Depending on the values of

Hamiltonian and crystal field distribution parameters, there may be two solutions [i.e.,

two critical temperature values which satisfy Eq. (5.3.23)] corresponding to the first

(or second) and second-order phase-transition points, respectively. We determine the

type of the transition by looking at the temperature dependence of magnetization for

selected values of system parameters.

Now, we can discuss the effect of the crystal field distributions defined in Eqs.

(5.3.5) and (5.3.6) on the global phase diagrams of the system where the second and

first order transitions are shown by solid and dashed curves, respectively with tricritical

points (shown by hollow circles) for honeycomb (q = 3) and square (q = 4) lattices.

Also, in order to clarify the type of the transitions in the system, we will give the

temperature dependence of the order parameter.

5.3.1 Phase Diagrams of the System with Dilute Crystal Field

First, we illustrate the phase diagrams and magnetization curves of the system with a

dilute crystal field distribution defined in Eq. (5.3.5) where crystal field D is turned on,

or turned off with probabilities p and (1− p) on the lattice sites, respectively. In Figs.

5.3a and 5.3c, we plot the phase diagrams of the system in (kBTc/J −D/J) plane for

honeycomb and square lattices with coordination numbers q= 3 and q= 4, respectively.
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As seen in Figs. 5.3a and 5.3c, phase diagrams of the system can be divided into

three parts with different concentration values p. For the curves in the first group

with p < p∗, the system always exhibits a second order phase transition with a finite

critical temperature kBTc/J which extent to D/J→−∞. If the concentration p reaches

its critical value p∗ then the critical temperature depresses to zero. Physical reason

underlying this behavior can be explained as follows; when we select sufficiently large

negative crystal field values (i.e.D/J→−∞), all of the spins in the system tend to align

in S = 0 state. As p increases starting from zero, the ratio of spins which aligned in

S = 0 state increases, and therefore, magnetization weakens, and accordingly, critical

temperature of the system decreases. According to our numerical results, the critical

concentration value is obtained as p∗ = 0.3795 for q = 3 and p∗ = 0.5875 for q = 4.

In the second group of the phase diagrams in Figs. 5.3a and 5.3c, the system exhibits

a reentrant behavior of second order, whereas the curves in the third group, exhibit a

reentrant behavior of first order with a tricritical point at which a first order transition

line turns into a second order transition line. Besides, the curves which exhibit a

reentrant behavior of first (or second) order, depress to zero at three successive values

of crystal field D/J = −3.0,−2.0,−1.0. Moreover, in D/J → ∞ limit, the system

behaves like spin-1/2 for p = 1.0. In the case of p , 0, the ratio of spins that behave

like S =±1 increases as p increases. Therefore, for 0≤ p≤ 1.0, all transition lines have

finite critical temperatures which increase with increasing p values for D/J→∞. At

this point, we also note that if we select D/J = 0 in Eq. (5.3.5), all lattice sites expose

to a crystal field Di/J = 0 independent from p. Hence, all transition lines intersect each

other on the point (D/J,kBTc/J)= (0,1.3022) for q= 3, and (D/J,kBTc/J)= (0,1.9643)

for q = 4. Meanwhile, previous studies based on EFT are not capable of obtaining first

order transition lines of the system. From this point of view, we see that our method

improves the results of the other EFT works and we take the conventional EFT method

one step forward by investigating the global phase diagrams, especially the first-order

transition lines that include reentrant phase transition regions.

On the other hand, Figs. 5.3b and 5.3d show the phase boundary in (kBTc/J − p)

plane which separates the ferromagnetic and paramagnetic phases with D/J → −∞.
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Figure 5.3 (a) Phase diagrams of the system for q = 3 in a (kBTc/J −D/J) plane corresponding to

dilute crystal field distribution defined in Eq. (5.3.5). The solid and dashed lines correspond to

second- and first-order phase transitions, respectively. The open circles denote the tricritical points,

and the numbers on each curve represent the value of concentration p. (b) Phase diagrams of the

system for q = 3 in a (kBTc/J − p) plane with a selected value of the crystal field D/J = −10.0. (c)

Phase diagrams of the system for q = 4 in a (kBTc/J−D/J) plane corresponding to dilute crystal field

distribution defined in Eq. (5.3.5). The solid and dashed lines correspond to second- and first-order

phase transition, respectively. The open circles refer to the tricritical points, and the numbers on

each curve represent the value of concentration p. (d) Phase diagrams of the system for q = 4 in a

(kBTc/J− p) plane with a selected value of the crystal field D/J = −10.0.

According to this figure, critical temperature kBTc/J of system decreases gradually,

and ferromagnetic region gets narrower as p increases, and kBTc/J value depresses to

zero at p = p∗. Such a behavior is an expected fact in dilution problems (Salmon

& Tapia, 2010, Kaufman, Klunzinger, & Khurana, 1986, Salmon, Crokidakis, &

Nobre, 2009). Numerical value of critical concentration p∗ for honeycomb (q = 3)

and square (q = 4) lattices is given in Table 5.3, and compared with the other works

in the literature. As seen in Table 5.3, numerical values of p∗ for q = 3 and q = 4



113

are new results in literature. Furthermore, MFT (Benyoussef, Biaz, Saber, & Touzani,

1987, Carneiro, Henriques, & Salinas, 1989) predicts that the system always has a

finite critical temperature and exists in a ferromagnetic state at lower temperatures

in D/J → −∞ limit, except that p = 1.0. This artificial result can be regarded as a

limitation of the mean field predictions.

Table 5.3 Critical concentration p∗ obtained by several methods

including EFT based on DA (Kaneyoshi & Mielnicki, 1990,

Kaneyoshi, 1992, Yan & Deng, 2002), MFT (Benyoussef, Biaz,

Saber, & Touzani, 1987, Carneiro, Henriques, & Salinas, 1989), pair

approximation (PA) (Lara & Plascak, 1998) and the present work for

honeycomb (q = 3) and square (q = 4) lattices.

Lattice DA-I DA-II MFT PA Present Work

q = 3 0.484 0.492 1.0 0.5 0.3795

q = 4 0.604 0.610 1.0 0.667 0.5875

In Fig. 5.4, we plot the temperature dependencies of magnetization curves

corresponding to the phase diagrams depicted in Fig. 5.3 for q = 3. As seen in Fig. 5.4,

as p increases then critical temperature kBTc/J values decrease for D/J < 0, except the

reentrant phase transition temperatures which occur at low temperatures. On the other

hand, effect of increasing p values on the shape of magnetization curves depends on

value of D/J. Namely, in Figs. 5.4a and 5.4b we see that ground state saturation values

of magnetization curves decreases as p increases for D/J =−10.0 and −3.1. Moreover,

for D/J = −3.1, magnetization curves of the system exhibit a broad maximum at low

temperatures for p = 0.37, and a reentrant behavior of second order for p = 0.4. If we

select D/J = −2.5 as in Fig. 5.4c, saturation values of magnetization curves remain

unchanged for p = 0,0.2,0.3 and tend to decrease for p > 0.3. If p increases further, a

reentrant behavior of second order appears for p = 0.53, and we see a broad maximum

at low temperatures for p = 0.517 and 0.5 which tends to depress as p decreases. This

broad maximum behavior of magnetization curves originates from the increase in the

number of spins directed parallel to the z-direction with increasing temperature, due

to the thermal agitation. For D/J = −2.0 in Fig. 5.4d, magnetization curves saturate

at m = 1 at the ground state and reentrant behavior disappears. If we increase D/J
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further, for example for D/J = −1.5 (Fig. 5.4e), another type of reentrant behavior

occurs in the system in which a first order transition is followed by a second order

transition. Finally, for sufficiently large positive values of crystal field, magnetization

curves always saturate at m = 1 and the system always undergoes a second order

phase transition from a ferromagnetic phase to a paramagnetic phase with increasing

temperature, which can be seen in Fig. 5.4f with D/J = 10.0. As a common property

of the curves in Fig. 5.4, we see that effect of p on the saturation values, as well

as temperature dependence of magnetization curves strictly depend on the strength of

D/J. Hence, according to us, the presence of dilute crystal fields on the system should

produce a competition effect on the phase diagrams of the system. We also note that,

although it has not been shown in the present work, magnetization curves for q = 4

corresponding to the phase diagrams depicted in Fig. 5.3c exhibit qualitatively similar

behavior with those of Fig. 5.4 with q = 3.

As seen in Fig. 5.3, for a dilute crystal field distribution defined in Eq. (5.3.5), the

global phase diagrams which are plotted in (kBTc/J−D/J) plane, as well as the phase

boundaries in (kBTc/J − p) plane for q = 3 exhibit qualitatively similar characteristics

when compared with those for q = 4. Hence, in order to examine the phase diagrams

which are plotted in (kBTc/J −D/J) plane in Figs. 5.3a and 5.3c in detail, we plot

the evolution of the global phase diagrams in Fig. 5.5 only for q = 4. From this

point of view, Fig. 5.5a shows how the phase diagrams in Fig. 5.3c evolve when

the concentration p changes from 0.5 to 0.6. As seen in Fig. 5.5a, we observe a

second order phase transition line with a finite critical temperature kBTc/J which extent

to D/J → −∞ for p = 0.575. If p increases, namely for p = 0.580 and 0.583, we

see that a low temperature transition line arises between −4.0 < D/J < −3.0, as well

as a high temperature phase boundary which extents to D/J → −∞. If p increases

further, such as for p = 0.584, 0.585 and 0.587, high temperature phase boundary is

gradually connected to the transition line which arises between −4.0 < D/J < −3.0,

and the phase diagrams exhibit a bulge on the right hand side of (kBTc/J−D/J) plane,

whereas another transition line emerges within the range of −∞ < D/J < −4.0, which

disappears for p > 0.587. Similarly, evolution of the phase diagrams in Fig. 5.3c
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Figure 5.4 Temperature dependence of magnetization corresponding to

Fig. 5.3a with some selected values of crystal field. (a) D/J = −10.0,

(b) D/J = −3.1, (c) D/J = −2.5, (d) D/J = −2.0, (e) D/J = −1.5,

and (f) D/J = 10.0. The numbers on each curve denote the value of

concentration p. The solid and dashed lines correspond to second- and

first-order phase transitions, respectively.

when the concentration p changes from 0.6 to 0.7 can be seen in Fig. 5.5b. As seen

in this figure, the curves for p = 0.60, 0.62, 0.64, 0.66 exhibit a reentrant behavior

of second order, while for p = 0.68 reentrance disappears and for p = 0.70 and 0.71

double reentrance with three successive second order phase transitions occurs in a very
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Figure 5.5 Evolution of the phase diagrams corresponding to Fig. 5.3c. The numbers on each curve

denote the value of concentration p. The solid and dashed lines correspond to second- and first-order

phase transitions, respectively. The open circles indicate the tricritical points.

narrow region of D/J. On the other hand, increasing values of p generates first order

phase transitions with tricritical points, as well as reentrant behavior of first order.

This phenomena is illustrated in Fig. 5.5c. From Fig. 5.5c, we see that, the second

order transition temperatures decrease as absolute value of D/J increases, and turn into

first order transition lines at tricritical points. Evidently, the phase diagrams change

abruptly for p ≥ 0.7164. Hence, the behavior of the p = 0.7163 curve is completely

different from that of p = 0.7164. Namely, first order transition temperatures of the

system for p ≤ 0.7163 and p ≥ 0.7164 depress to zero at D/J = −3.0 and D/J = −2.0,

respectively. In order to investigate the phase transition features of the system further,

we should continue increasing the value of p. In Fig. 5.5d, we see that the curves for

p = 0.72, 0.74, 0.76 and 0.78 exhibit a reentrant behavior of first order, whereas the

curves with p = 0.80, 0.82, and 0.84 exhibit double reentrance with two first order and

a second order transition temperature.
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5.3.2 Phase Diagrams of the System with Random Crystal Field

Next, in order to investigate the effect of the random crystal fields defined in Eq.

(5.3.6) on the thermal and magnetic properties of the system, we represent the phase

diagrams and corresponding magnetization curves for honeycomb (q = 3) and square

lattices (q = 4) throughout Figs. 5.6-5.9.
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Figure 5.6 Phase diagrams of the system in a (kBTc/J−△/J)

plane for a bimodal crystal field distribution corresponding to

Eq. (5.3.6) with D/J = 0.0. Left and right-hand side panels

are plotted for q = 3 and q = 4, respectively.

We note that the random crystal field distribution given in Eq. (5.3.6) with D/J = 0

corresponds to a bimodal distribution function, while for ∆/J = 0, we obtain a pure

BC model with homogenous crystal field D/J. In Fig. 5.6, phase diagrams of the

system corresponding to the bimodal distribution function are shown in (kBTc/J−∆/J)

plane. For a bimodal distribution, the phase diagrams have a symmetric shape with

respect to ∆/J which comes from the fact that p = 1/2, and as seen in Fig. 5.6,

transition temperatures are second order, and it is clear that the system exhibits

different characteristic features depending on the coordination number q. Namely,

for q = 3, transition temperature decreases with increasing ∆/J and exhibits double

reentrance with three second order phase transition temperatures, then falls to zero at

∆/J = 3.0 (left panel in Fig. 5.6). On the other hand, as seen on the right panel in

Fig. 5.6, as ∆/J increases the transition temperature of the system for q = 4 decreases
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and remains at a finite value for ∆/J →∞ which means that ferromagnetic exchange

interactions for q = 3 are insufficient for the system to keep its ferromagnetic order

for ∆/J > 3.0, while for q = 4 these interactions are dominant in the system, and the

presence of a disorder in the crystal fields cannot destruct the ferromagnetic order. In

(Lara & Plascak, 1998), the authors reported similar characteristic behavior for q = 4

by using pair approximation (PA) with extra isolated multi-phase critical points.
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Figure 5.7 Phase diagrams of the system in a (kBTc/J −D/J) plane corresponding to random crystal

field distribution defined in Eq. (5.3.6) for (a) q = 3, (b) q = 4. The numbers on each curve denote

the value of △/J. The open circles represent the tricritical points, and the solid and dashed lines

correspond to second- and first-order phase transitions, respectively.

At the same time, in order to see the effect of the random crystal fields with

△/J,D/J , 0 on the phase diagrams and magnetization curves of the system for q = 3

and 4, we plot the phase diagrams in (kBTc/J −D/J) plane in Fig. 5.7 and variation

of the corresponding magnetization curves with temperature in Figs. 5.8 and 5.9,

respectively. At first sight, it is obvious that the phase diagrams in Fig. 5.7 represent

evident differences in qualitative manner with coordination number q. That is, as seen

in Fig. 5.7a, the curve corresponding to ∆/J = 0 represents the phase diagram of pure

BC model for a honeycomb lattice which exhibits a reentrant behavior of first order

with first and second order transition lines, as well as a tricritical point (Yüksel et al.,

2009). From Fig. 5.7a, we see that as ∆/J increases then the tricritical point and first

order transitions disappear, and the first order reentrance turns into double reentrance

with three transition temperatures of second order, and phase transition lines shift to

positive crystal field direction without changing their shapes. On the other hand, the
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situation is very different for a square lattice. Namely, as seen in Fig. 5.7a and 5.7b,

∆/J = 0 curves for q = 3 and q = 4 are qualitatively identical to each other. However,

as seen in Fig. 5.7b, for ∆/J , 0, first order transition lines and tricritical points do not

disappear from the system for q = 4, but shift to negative crystal field values. Besides,

the system does not exhibit double reentrance for q = 4. Furthermore, for ∆/J ≥ 1.5 in

Fig. 5.7a, all phase diagrams exhibit similar behavior as D/J varies. Strictly speaking,

if ∆/J ≥ 1.5 then we see that the system does not exhibit a tricritical point. In this case,

all the phase transitions are of second order and the qualitative properties of the curves

shown in Fig. 5.7a are identical to each other. On the other hand, for 0 ≤ ∆/J < 1.5 the

situation is different. Namely, the curves selected within this interval exhibit first order

phase transitions and tricritical points.

It is important to note that these observations are consistent with the results shown in

Figs. 5.3a and 5.3c. In other words, the distribution function given in Eq. (5.3.5) with

p = 0.5 and D/J = 2D0/J is identical to Eq. (5.3.6) for ∆/J = ±D0/J and D/J = D0/J.

For example, according to Eq. (5.3.5), if we select D0/J = 4.0 with p = 0.5, it means

that half of the spins on the lattice sites expose to a crystal field D/J = 0, while a

crystal field given by D/J = 8.0 acts on the other half of the spins. On the other hand,

if we select ∆/J = ±D0/J and D/J = D0/J by using Eq. (5.3.6), we generate the same

distribution again. Hence, we expect to get the same results in Figs. 5.3 and 5.7 for

these system parameters. For instance, for D0/J = 4.0 in Fig. 5.3a, we get D/J = 8.0,

and the system exhibits a ferromagnetic order in the ground state, which can also be

seen in Fig. 5.7a with a critical temperature kBTc/J = 1.4395. These conditions are

also valid for q = 4, and for the whole temperature region on the phase diagrams.

Therefore, the state (para-or ferro), as well as thermal and magnetic properties of a

selected (kBT/J −D/J) point with respect to p = 0.5 curves in Figs. 5.3a and 5.3c

is identical to the state of a point (kBT/J,D/2J) in Figs. 5.7a and 5.7b with respect

to the curve ∆/J = ±D/J, respectively. Moreover, the qualitative differences between

Figs. 5.7a and 5.7b mentioned above are strongly related to the percolation threshold

value of the lattice. Namely, distribution function Eq. (5.3.6) is valid only for p = 0.5.

However, as seen in Table 5.3, we obtain p∗ < 0.5 for q = 3, and p∗ > 0.5 for q = 4.
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Figure 5.8 Temperature dependence of magnetization curves corresponding to Fig. 5.7a for q = 3 (a)

with D/J = −1.0 and for some selected values of △/J, and (b) with △/J = 6.0 and for some selected

values of D/J.

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
0.0

0.2

0.4

0.6

0.8

1.0

m

kBT/J

D/J=2.0
q=4

(a)

/J=0

5.0

5.5

5.8

6.0
8.0

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

/J=3.8D/J=-4.0
q=4

m

kBT/J

(b)

3.7

4.0

7.0

6.0

5.0

 

 

Figure 5.9 Temperature dependence of magnetization curves for q = 4 corresponding to Fig. 5.7b for

(a) D/J = 2.0 and (b) D/J = −4.0 with some selected values of △/J.

In Fig. 5.8, we examine the temperature dependence of magnetization curves for

q = 3, corresponding to the phase diagrams shown in 5.7a with D/J = −1.0. Fig. 5.8a,

shows how the temperature dependence of magnetization curves evolve when ∆/J

changes. According to Fig. 5.8a, magnetization curves saturate at a partially ordered

state at low temperatures. Besides, for ∆/J = 1.68, 1.74 and 1.80, the system undergoes

three successive phase transitions of second order, which confirms the existence of

double reentrance. Similarly, Fig. 5.8b shows how the shape of the magnetization

curves change as D/J changes for constant ∆/J = 6.0. As seen in Fig. 5.8b,

magnetization curves exhibit a second order phase transition from a ferromagnetic

(fully ordered) to a paramagnetic phase at certain values of crystal field, namely at
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D/J = 4.0, 4.1 and 4.4, whereas for D/J = 3.3, 3.5, 3.7 and 3.9 the system can only

achieve a partially ordered phase. In addition, the curves corresponding to D/J = 3.5,

3.7 and 3.9 exhibit a broad maximum at low temperatures, and then decrease as the

temperature increases, whereas for D/J = 3.3, we observe double reentrance. Fig. 5.9

shows the magnetization curves for q = 4, corresponding to the phase diagrams shown

in Fig. 5.7b. In Fig. 5.9a, we see that magnetization curves exhibit a second order

phase transition from a paramagnetic phase to a fully ordered ferromagnetic phase

for ∆/J = 0 and 5.0. On the other hand, the curves corresponding to D/J = 5.5, 5.8

and 6.0, saturate at a partially ordered state at low temperatures, and exhibit a broad

maximum with increasing temperature which depresses gradually as ∆/J increases,

then fall rapidly at a second order phase transition temperature. The broad maximum

behavior observed in these curves disappears for ∆/J = 8.0. Additionally, Fig. 5.9b

represents the magnetization versus temperature curves for q = 4 with D/J = −4.0.

In Fig. 5.9b, it is clearly evident that, at low temperatures, the system saturates at a

partially ordered phase for ∆/J = 4.0, 5.0, 6.0 and 7.0, while for ∆/J = 3.7 and 3.8,

a reentrant behavior of first order occurs. Again we see that there is a competition

between ferromagnetic exchange interactions and disorder effects in crystal fields

which determines the saturation values and temperature dependence of magnetization

curves of the system.

5.4 Ising Model in the Presence of Random Magnetic Fields

Ising model in the presence of random magnetic fields, i.e. random field Ising

model (RFIM) is probably the most famous model among the other models exhibiting

quenched randomness. The model which is actually based on the local fields acting

on the lattice sites which are taken to be random according to a given probability

distribution was introduced for the first time by (Larkin, 1970) for superconductors

and later generalized by (Imry & Ma, 1975). In pure magnets, existence of an ordered

state depends on a competition between the energy and entropy. Below a certain critical

temperature, the exchange energy between neighboring spins is dominant against the
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entropy and the system can exhibit a long range ordered phase which can be easily

destroyed in lower dimensions due to the thermal fluctuations. This issue leads to the

concept of lower critical dimension dc above which the system can establish an ordered

phase at finite temperature. For pure Ising model, we have dc = 1 (Feng, 1996).

A lower critical dimension dc of the RFIM has remained an unsolved mystery for

many years and various theoretical methods have been introduced. For example, the

domain-wall argument of Imry and Ma (Imry & Ma, 1975) suggests that a transition

should exist in three and higher dimensions for finite temperature and randomness,

which means that dc = 2 (Grinstein & Ma, 1982, Fernandez, Grinstein, Imry, &

Kirkpatrick, 1983, Imbrie, 1984, Bricmont & Kupiainen, 1987). On the contrary,

dimensional reduction arguments (Parisi & Sourlas, 1979) conclude that the system

should not have a phase transition at finite temperature in three dimensions (3D) or

fewer, so dc = 3 (Binder, Imry, & Pytte, 1981, Pytte, Imry, & Mukamel, 1981, Mukamel

& Pytte, 1982, Niemi, 1982). On the other hand, Frontera and Vives (Frontera & Vives,

1999) showed that a two-dimensional ferromagnetic RFIM with a Gaussian random-

field distribution exhibits order at zero temperature. Although the argument of Imry

and Ma is regarded as intuitive and nonrigorous, the results obtained on the basis of

their theory are considered to be correct at the present (Shukla, 2004).

The Hamiltonian describing the model is defined by

H = −J
∑
<i j>

S iS j−
∑

i

hiS i, ⟨hi⟩ = 0 , ϵ =
√
⟨h2

i ⟩, (5.4.1)

where the random field parameter hi is drawn from a symmetric probability distribution.

In the presence of strong random fields (hi >> J), random field energy is the dominant

term in the Hamiltonian, and a particular spin S i at a site i can easily follow its local

field hi. Hence, it is reasonable to expect that the system can not exhibit a long range

ferromagnetic order even at a very low temperature. However, in case of weak random

fields (hi << J), the situation needs particular attention. The argument of Imry and Ma

clarifies the question whether a d dimensional system can exhibit a long range order

in the presence of weak randomness or not in a heuristic manner by considering the

possible formation of local domains with size L in which the spins tend to align in the
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net direction of random field (Belanger, 1991).

The basic idea of Imry and Ma can be briefly summarized as follows: In the absence

of random fields, the ground state configuration (i.e. T = 0 configuration) of the system

is doubly degenerate. Now, let us consider a finite domain of size L in an infinite system

which stays in the fully ordered state with all spins pointing up, i.e. S i = 1 for each

lattice site i. The volume of this finite domain is Ld which also defines the number of

lattice sites within the domain. The surface of the domain is formed by Ld−1 spins. If

all of the spins in the domain were flipped then the total bulk energy of domain does not

change due to the degeneracy condition. However, in this case, the domain of flipped

spins acts as a defect in the entire infinite system. Hence, formation of this domain

costs a positive exchange energy Eex ∼ JLd−1 due to the interaction of Ld−1 pairs of

anti-parallel spins along the border of the domain which is called domain wall. On

the other hand, in the presence of random fields, the energy of a spin S i in the domain

will be hiS i or simply hi, since S i = 1. Hence, depending on the sign of random field

variable hi this energy would be either positive or negative. Since, ⟨hi⟩ = 0 in the entire

system, in a statistical manner, random field energy of Ld spins in a particular domain

is given by E2
R ∼ ϵ2Ld where ϵ is the root mean square deviation of fields hi from their

average value (Shukla, 2004). Hence, the total energy cost of the formation of a finite

domain of size L in an infinite system is

Ed ∼ JLd−1− ϵLd/2. (5.4.2)

According to Eq. (5.4.3), order of the system (ferromagnetic or paramagnetic) is

governed by two fundamental factors. Namely, we can mention about a competition

between the exchange interactions which tend to align the spins in the ferromagnetic

order and the random field energy which has a tendency to destruct the long range

order. When d < 2, random field energy is dominant at large L even for small random

fields whereas for d > 2 the exchange energy always dominates against the random

field energy. On the other hand, for d = 2, both energies become linearly dependent on

L, and exchange energy is dominant for weak random fields. However, according to a

more sophisticated version of the domain wall argument of Imry and Ma which takes

into account the roughening phenomena of domain walls (Villain, Semeria, Lancon, &
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Billard, 1983, Imry, 1984, Grinstein, 1984), it is well established that the ferromagnetic

ground state is unstable in d = 2 (Imry & Ma, 1975).

At the same time, a great many theoretical and experimental works have paid

attention to the RFIM and quite noteworthy results have been obtained. Namely, it

has been shown that diluted antiferromagnets such as FexZn1−xF2 (Belanger, King,

& Jaccarino, 1985, King, Jaccarino, Belanger, & Rezende, 1985), Rb2CoxMg1−xF4

(Ferreira, King, Jaccarino, Cardy, & Guggenheim, 1983, Yoshizawa, Cowley, Shirane,

Birgeneau, Guggenheim, & Ikeda, 1982) and CoxZn1−xF2 (Yoshizawa, Cowley,

Shirane, Birgeneau, Guggenheim, & Ikeda, 1982) in a uniform magnetic field just

correspond to a ferromagnet in a random uniaxial magnetic field (Fishman & Aharony,

1979, Cardy, 1984). The following studies have been devoted to investigate the

phase diagrams of these systems in depth, and in the mean-field level it was found

that different random-field distributions lead to different phase diagrams for infinite

dimensional models. For example, using a Gaussian probability distribution, it has

been shown that (Schneider & Pytte, 1977) phase diagrams of the model exhibit

only second-order phase-transition properties. Following the same methodology,

(Andelman, 1983) discussed the order of the low-temperature transition in terms of

the maxima of the distribution function. On the other hand, (Aharony, 1978) and

(Mattis, 1985) have introduced bimodal and trimodal distributions, respectively, and

they have reported the observation of tricritical behavior. In a recent series of papers,

phase-transition properties of infinite dimensional RFIMs with symmetric double-

(Crokidakis & Nobre, 2008) and triple-(Salmon, Crokidakis, & Nobre, 2009) Gaussian

random fields have also been studied by means of a replica method and a rich variety

of phase diagrams have been presented. The situation has also been handled on 3D

lattices with nearest-neighbor interactions by a variety of theoretical works such as

effective-field theory (EFT) (Borges & Silva, 1987, Liang, Wei, Zhang, Xin, & Song,

2004, Sarmento & Kaneyoshi, 1989, Sebastianes & Figueiredo, 1992, Kaneyoshi,

1985), Monte Carlo (MC) simulations (Landau, Lee, & Kao, 1978, Machta, Newman,

& Chayes, 2000, Fytas, Malakis, & Eftaxias, 2008, Fytas & Malakis, 2008), pair

approximation (PA) (Albayrak & Canko, 2004), and the series expansion (SE) method
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(Gofman, Adler, Aharony, Harris, & Schwartz, 1996). By using EFT, (Borges &

Silva, 1987) studied the system for square (q = 4) and simple cubic (sc) (q = 6)

lattices, and they observed a tricritical point only for (q ≥ 6). Similarly, (Sarmento

& Kaneyoshi, 1989) investigated the phase diagrams of RFIMs by means of EFT

with correlations for a bimodal field distribution, and they concluded that reentrant

behavior of second order is possible for a system with (q ≥ 6). Recently, (Fytas,

Malakis, & Eftaxias, 2008) applied MC simulations on a sc lattice. They found that

the transition remains continuous for a bimodal field distribution, while (Hadjiagapiou,

2010) observed reentrant behavior and confirmed the existence of a tricritical point for

an asymmetric bimodal probability distribution within the mean-field approximation

based on a Landau expansion.

In the aforementioned works based on EFT, decoupling approximation have been

utilized which neglects the multi-site correlation functions. On the other hand, as

far as we know, EFT studies in the literature dealing with RFIMs are based only

on discrete probability distributions (bimodal or trimodal). Hence, in the following,

we intend to apply our formalism in RFIM problem and analyze the phase diagrams

with single-Gaussian, bimodal, and double-Gaussian random-field distributions on

isometric lattices.

As usual, let us consider a spin cluster as depicted in Fig. 4.1 with Hamiltonian

(5.4.1) where the first term is a summation over the nearest-neighbor spins with

S i =±1 and the second term represents the Zeeman interactions on the lattice. Random

magnetic fields are distributed according to a given probability distribution function.

The present study deals with three kinds of field distribution, namely, a normal

distribution which is defined as

P(hi) =
(

1
2πσ2

)1/2

exp

− h2
i

2σ2

 , (5.4.3)

with a width σ and zero mean, a bimodal discrete distribution

P(hi) =
1
2

[δ(hi−h0)+δ(hi+h0)] , (5.4.4)

where half of the lattice sites are subject to a magnetic field h0 and the remaining lattice
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sites have a field −h0, and a double peaked Gaussian distribution

P(hi) =
1
2

(
1

2πσ2

)1/2 {
exp

[
− (hi−h0)2

2σ2

]
+ exp

[
− (hi+h0)2

2σ2

]}
. (5.4.5)

In a double peaked distribution defined in Eq. (5.4.5), random fields ±h0 are distributed

with equal probability and the form of the distribution depends on the h0 and σ

parameters, where σ is the width of the distribution.

According to the Callen identity (Callen, 1963) for the spin-1/2 Ising ferromagnetic

system, the thermal average of the spin variables at the site i is given by

⟨{ fi}S i⟩ =
⟨
{ fi} tanh

β
J

∑
j

S j+hi



⟩
, (5.4.6)

where j expresses the nearest-neighbor sites of the central spin and { fi} can be any

function of the Ising variables as long as it is not a function of the site. From Eq.

(5.4.6) with { fi} = 1, the thermal and random-configurational averages of a central spin

can be represented on a sc lattice by introducing the differential operator technique

(Honmura & Kaneyoshi, 1979, Kaneyoshi, 1993)

m0 =
⟨⟨

S z
0

⟩⟩
r
=

⟨⟨q=6∏
j=1

[
cosh(J∇)+S j sinh(J∇)

]⟩⟩
r

F(x)|x=0, (5.4.7)

where ∇ is a differential operator, q is the coordination number of the lattice, and

the inner ⟨...⟩ and the outer ⟨...⟩r brackets represent the thermal and configurational

averages, respectively. The function F(x) in Eq. (5.4.7) is defined by

F(x) =
∫

dhiP(hi) tanh[β(x+hi)], (5.4.8)

and it has been calculated by numerical integration and by using the distribution

functions defined in Eqs. (5.4.3)-(5.4.5). By expanding the right-hand side of Eq.

(5.4.7) we get the longitudinal spin correlation as

⟨⟨S 0⟩⟩r = k0+6k1⟨⟨S 1⟩⟩r +15k2⟨⟨S 1S 2⟩⟩r +20k3⟨⟨S 1S 2S 3⟩⟩r +15k4⟨⟨S 1S 2S 3S 4⟩⟩r

+6k5⟨⟨S 1S 2S 3S 4S 5⟩⟩r + k6⟨⟨S 1S 2S 3S 4S 5S 6⟩⟩r. (5.4.9)
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The coefficients in Eq. (5.4.9) are defined as follows:

k0 = cosh6(J∇)F(x)|x=0,

k1 = cosh5(J∇) sinh(J∇)F(x)|x=0,

k2 = cosh4(J∇) sinh2(J∇)F(x)|x=0,

k3 = cosh3(J∇) sinh3(J∇)F(x)|x=0,

k4 = cosh2(J∇) sinh4(J∇)F(x)|x=0,

k5 = cosh(J∇) sinh5(J∇)F(x)|x=0,

k6 = sinh6(J∇)F(x)|x=0. (5.4.10)

Next, the average value of the perimeter spin in the system can be written as follows,

and it is found as

m1 = ⟨⟨S 1⟩⟩r = ⟨⟨cosh(J∇)+S 0 sinh(J∇)⟩⟩rF(x+γ),

= a1+a2⟨⟨S 0⟩⟩r. (5.4.11)

The coefficients in Eq. (5.4.11) are defined as

a1 = cosh(J∇)F(x+γ)|x=0,

a2 = sinh(J∇)F(x+γ)|x=0. (5.4.12)

In Eq. (5.4.12), γ = (q−1)A is the effective field produced by the (q−1) spins outside

of the system and A is an unknown parameter to be determined self-consistently. In

order to evaluate the multi-spin correlation functions in the system, we derive a set of

linear equations as usual by using the basis correlation functions in Eqs. (5.4.9) and

(5.4.11) with the rules presented in Eq. (4.1.34) and accordingly we obtain a system of

linear equations with 12 unknowns for q = 6 which can be solved using the condition

⟨⟨S 0⟩⟩r = ⟨⟨S 1⟩⟩r. (5.4.13)

The complete sets of linear equations corresponding to q = 6, 8 and 12 obtained in this

way can be found in (Akinci, Yuksel, & Polat, 2011a).

Now, we can discuss how the type of random-field distribution effects the phase

diagrams of the system. Also, in order to clarify the type of transitions in the system,

we will give the temperature dependence of the order parameter.
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5.4.1 Phase Diagrams of Single-Gaussian Distribution
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Figure 5.10 Phase diagrams of sc (q = 6), bcc (q = 8), and fcc

(q = 12) lattices in a (kBTc/J −σ) plane corresponding to a

single-Gaussian distribution of random fields. The numbers

on each curve denote the coordination numbers.

The form of single-Gaussian distribution which is defined in Eq. (5.4.3) is governed

by only one parameter σ which is the width of the distribution. In Fig. 5.10, we show

the phase diagram of the system for sc, bcc, and fcc lattices in a (kBTc/J −σ) plane.

We can clearly see that as σ increases, then the width of the distribution function

gets wider and the randomness effect of the magnetic-field distribution on the system

becomes significantly important. Therefore, increasing the σ value causes a decline

in the critical temperature kBTc/J of the system. We note that the critical temperature

of the system reaches zero at σ = 3.8501,5.450, and 8.601 for sc (q = 6), bcc (q = 8),

and fcc (q = 12) lattices, respectively. Besides, we have not observed any reentrant or

tricritical behavior for the single-Gaussian distribution, or, in other words, the system

undergoes only a second-order phase transition. The kBTc/J value in the absence

of any randomness, i.e., when σ = 0, is obtained as kBTc/J = 4.5274,6.5157, and

10.4986 for q = 6,8,12, respectively. These values can be compared with the other

works in the literature. Although, to the best of our knowledge, an exact solution for

the Ising model does not exist in 3D, it is well known that the SE method agrees well

with highly accurate MC simulations, which gives the best approximate values to the

known exact results. Therefore, we see in Table 5.4 that the present work improves
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Figure 5.11 Variation of magnetization with kBT/J and σ corresponding to the phase diagrams in Fig.

5.10 for (a) sc, (b) bcc, and (c) fcc lattices.

the results of the other works based on EFT. The reason is due to the fact that, in

contrast to the previously published works mentioned above, there is no uncontrolled

decoupling procedure used for the higher-order correlation functions within the present

approximation.

Projections of magnetization surfaces on the (kBT/J −σ) plane corresponding to

the phase diagrams shown in Fig. 5.10 are depicted in Fig. 5.11 with q = 6,8, and 12.

We see that as the temperature increases starting from zero, the magnetization of the

system decreases continuously, and it falls rapidly to zero at the critical temperature

for all σ values. Moreover, the critical temperature of the system decreases and the

saturation value of magnetization curves remains constant for a while then reduces
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as σ value increases. This is a reasonable result since, if the σ value increases, then

the randomness effects increasingly play an important role on the system, and random

fields have a tendency to destruct the long-range ferromagnetic order on the system,

and hence magnetization weakens. These observations are common properties of all

three lattices.

Table 5.4 Critical temperature kBTc/J at h0/J = 0 and σ = 0 obtained by several methods such

as EBPA (Du, Liu, & Yü, 2004), CEFT (Kaneyoshi, Fittipaldi, Honmura, & Manabe, 1981),

PA (Balcerzak, 2003), EFT (Kaneyoshi, 1988), BA (Kikuchi, 1951), EFRG (de Sousa & Araújo,

1999, Neto & de Sousa, 2004), MFRG (Reinerhr & Figueiredo, 1998), MC (Landau, 1977, 1976b,

Ferrenberg & Landau, 1991) and SE (Fisher, 1967) in comparison with the present work for q =

6,8,12.

Lattice EBPA CEFT PA EFT BA EFRG MFRG MC SE Present Work

SC 4.8108 4.9326 4.9328 5.0732 4.6097 4.85 4.93 4.51 4.5103 4.5274

BCC - 6.9521 - - - 6.88 6.95 6.36 6.3508 6.5157

FCC - 10.9696 - - - - - - 9.7944 10.4986

5.4.2 Phase Diagrams of Bimodal Distribution

Next, in order to investigate the effect of the bimodal random fields defined in Eq.

(5.4.4) on the phase diagrams of the system, we show the phase diagrams in a (kBT/J−

h0/J) plane and its corresponding magnetization profiles with coordination numbers

q = 6,8, and 12 in Figs. 5.12 and 5.13. In these figures the solid and dashed lines

correspond to second- and first-order phase-transition points, respectively, and the open

circles in Fig. 5.12 denote tricritical points. As seen in Fig. 5.12, increasing values of

h0/J causes the critical temperature to decrease for a while, then the reentrant behavior

of first order occurs at a specific range of h0/J. According to our calculations, the

reentrant phenomena and the first-order phase transitions can be observed within the

range of 2.0 < h0/J < 3.0 for q = 6, 3.565 < h0/J < 3.95 for q = 8, and 4.622 < h0/J <

5.81 for q = 12. If the h0/J value is greater than the upper limits of these field ranges,

the system exhibits no phase transition. The tricritical temperatures kBTt/J, which are

shown as open circles in Fig. 5.12, are found as kBTt/J = 1.5687,2.4751, and 4.3769

for q = 6,8, and 12, respectively.
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Figure 5.12 Phase diagrams of the system (q = 6,8,12) in a

(kBTc/J − h0/J) plane, corresponding to bimodal random field

distribution. The solid and dashed lines correspond to second

and first-order phase transitions, respectively. The open circles

denote the tricritical points.
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Figure 5.13 Temperature dependence of magnetization corresponding to Fig. 5.11 with σ = 0 and

h0/J = 1.0,2.5 for a sc lattice (left-hand panel), h0/J = 1.0 and 3.8 for a bcc lattice (middle panel),

and h0/J = 1.0 and 5.5 for a fcc lattice (right-hand panel). The solid and dashed lines correspond

to second- and first-order phase transitions, respectively.

In Fig. 5.13, we show two typical magnetization profiles of the system. Namely,

the system always undergoes a second-order phase transition for h0/J = 1.0. On the

other hand, two successive phase transitions (i.e., a first-order transition is followed

by a second-order phase transition) occur at the values of h0/J = 2.5,3.8, and 5.5 for

q= 6,8, and 12, respectively, which puts forward the existence of a first-order reentrant
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phenomena on the system. We observe that the increasing h0/J values do not effect

the saturation values of magnetization curves.

5.4.3 Phase Diagrams of Double-Gaussian Distribution

To the best of our knowledge, double-Gaussian distribution in Eq. (5.4.5) with

nearest-neighbor interactions have not yet been examined in the literature. Therefore, it

would be interesting to investigate the phase diagrams of the system with random fields

corresponding to Eq. (5.4.5). Now the shape of the random fields is governed by two

parameters h0/J and σ. As shown in the preceding results, increasing the σ value tends

to reduce the saturation value of the order parameter and destructs the second-order

phase transitions by decreasing the critical temperature of the system without exposing

any reentrant phenomena for h0/J = 0. Besides, as the h0/J value increases, then the

second-order phase-transition temperature decreases again and the system may exhibit

a reentrant behavior for σ = 0, while the saturation value of the magnetization curves

remains unchanged. Hence, the presence of both h0/J and σ on the system should

produce a competition effect on the phase diagrams of the system. Fig. 5.14 shows the

phase diagrams of the system in (kBTc/J−h0/J) and (kBTc/J−σ) planes for q = 6,8,

and 12. As we can see in the left-hand panels in Fig. 5.14, the system exhibits tricritical

points and reentrant phenomena for a narrow width of the random-field distribution,

and as the width σ of the distribution gets wider, then the reentrant phenomena and

tricritical behavior disappear. In other words, both the reentrant behavior and tricritical

points disappear as the σ parameter becomes significantly dominant on the system.

Our results predict that tricritical points depress to zero at σ = 1.421,2.238, and 3.985

for q = 6,8, and 12, respectively. For distribution widths greater than these values,

all transitions are of second order, and as we further increase the σ value, then the

ferromagnetic region gets narrower. Similarly, in the right-hand panels in Fig. 5.14,

we investigate the phase diagrams of the system in a (kBTc/J−σ) plane with selected

values of h0/J. We note that for the values of h0/J ≤ 2.0 (q = 6), h0/J ≤ 3.565

(q = 8), and h0/J ≤ 4.622 (q = 12), the system always undergoes a second-order phase

transition between the paramagnetic and ferromagnetic phases at a critical temperature
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which decreases with increasing values of h0/J as in Fig. 5.10, where h0/J = 0.

Moreover, for values of h0/J greater than these threshold values, the system exhibits

a reentrant behavior of first order and the transition lines exhibit a bulge which gets

smaller with increasing values of h0/J , which again means that the ferromagnetic

phase region gets narrower. Besides, for h0/J > 2.9952 (q = 6), h0/J > 3.9941 (q = 8),

and h0/J > 5.8085 (q = 12), tricritical points appear on the system.
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Figure 5.14 Phase diagrams of the system for a double-Gaussian random-

field distribution with q = 6,8, and 12 in (kBTc/J − h0/J) and (kBTc/J −σ)

planes.
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In Fig. 5.15, we show magnetization curves corresponding to the phase diagrams

shown in Fig. 5.14 for a sc lattice. Figure 5.15a shows the temperature dependence of

magnetization curves for q = 6 with h0/J = 0.5 (left-hand panel) and h0/J = 2.5 (right-

hand panel) with selected values of σ. As we can see in Fig. 5.15a, as σ increases,

then the critical temperature of the system decreases and first-order phase transitions

disappear [see the right-hand panel in Fig. 5.15a]. Moreover, the rate of decrease of the

saturation value of the magnetization curves increases as h0/J increases. On the other

hand, in Fig. 5.15b, the magnetization versus temperature curves have been plotted

withσ= 0.5 (left-hand panel) and σ= 2.5 (right-hand panel) with some selected values

of h0/J. In this figure, it is clear that saturation values of magnetization curves remain

unchanged for σ = 0.5 and tend to decrease rapidly to zero with increasing values of

h0/J when σ = 2.5. In addition, as h0/J increases when the value of σ is fixed, then

the critical temperature of the system decreases and the ferromagnetic phase region of

the system gets narrower. These observations show that there is a competition effect

originating from the presence of both h0/J and σ parameters on the phase diagrams

and magnetization curves of the system.
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Figure 5.15 Magnetization curves for a sc lattice corresponding to the phase diagrams in Fig. 5.14 for

a double-Gaussian distribution with some selected values of h0/J and σ.

Finally, Fig. 5.16 represents the variation of the tricritical point (kBTt/J,ht/J)

with σ for q = 6,8, and 12. As seen from Fig. 5.16, the kBTt/J value decreases

monotonically as σ increases and reaches zero at a critical value σt. According to our

calculations, the critical distribution width σt value can be given as σt = 1.421,2.238,

and 3.985 for q = 6,8, and 12, respectively. This implies that the σt value depends on
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the coordination number of the lattice. Besides, ht/J curves exhibit a relatively small

increment with an increasing σ value.
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Figure 5.16 Variations of tricritical temperature kBTt/J (i) and tricritical field ht/J (ii) as function

of distribution width (σ) for (a) sc, (b) bcc, and (c) fcc lattices.



CHAPTER SIX

CONCLUSIONS

In conclusion, concerning the critical phenomena in disordered magnetism, we have

introduced an effective-field theory formalism that takes into account the correlations

between different spins in the cluster of a considered lattice. The proposed formulation

is constructed in a heuristic manner. However, it produces physically quite reasonable

outcomes.

First of all, we have applied the method for a pure spin-1 transverse Ising model

on a honeycomb lattice (q = 3) with crystal field anisotropy in a longitudinal magnetic

field (Yüksel & Polat, 2010). We have given the proper phase diagrams, especially the

first-order transition lines that include reentrant phase transition regions. A number of

interesting phenomena such as reentrant phenomena have been found in the physical

quantities originating from the crystal field as well as the transverse and longitudinal

components of the magnetic field. We have found that one can observe reentrant

behavior in the system for the values ofΩ/J <Ωt/J = 0.861 and −1.453<D/J <−1.02

and the tricritical points exist for 1.278 < −Dt/J < 1.453 and Ω/J < 0.861. The results

show that the reentrant phenomenon originates from the competition between the

crystal field D/J and transverse field Ω/J. Besides, applying a transverse field Ω/J on

the system has the tendency to destruct the first-order transitions, while the longitudinal

counterpart h/J destructs both the first- and second-order phase transitions. Hence, we

believe that the effects of the transverse field Ω/J are very different from those of the

longitudinal counterpart h/J since the transverse field can produce quantum effects.

These interesting results are not reported in the literature.

In order to have an idea on the feasibility of the formalism in disordered systems,

we adopted the formulation for site and bond diluted ferromagnets (Akinci et al.,

2011c,b), random crystal field problem (Yüksel et al., 2012a) and for the Ising model

in the presence of random magnetic fields (Akinci et al., 2011a), respectively and the

outcomes can be briefly summarized as follows:

136
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For a site diluted spin-1/2 ferromagnet (Akinci et al., 2011c), we have found that

equations of state obtained within the present approximation can be reduced to those

obtained by conventional or improved decoupling approximation techniques which

exposes the superiority of the proposed formulation. We have also obtained results

that are superior to those estimated by conventional mean field theory (MFT) and

effective field theory (EFT) based on a decoupling approximation (DA), especially for

the critical site concentration (i.e. site percolation threshold) value c∗ for honeycomb

(q = 3) and square (q = 4) lattices. Our estimated values c∗ = 0.6727 and c∗ = 0.4594

for q = 3 and q = 4, respectively are the best approximate values to the results of MC

and SE methods among the other works based on MFT or EFT from which it is clearly

evident that our method improves the conventional EFT methods based on decoupling

approximation.

Moreover, we have studied the phase diagrams of a bond diluted spin-1 transverse

Ising model with crystal field interaction on a honeycomb lattice (Akinci et al., 2011b).

We have examined the variation of the bond percolation threshold pc with the crystal

and transverse field interactions which has not been reported in the literature before.

In the absence of crystal and transverse fields the percolation threshold value is

obtained as pc = 0.5397 which improves the results obtained by other EFT based

approximations. We have also given the proper phase diagrams, especially the first

order transition lines that include reentrant phase transition regions. A number of

interesting and unusual phenomena such as the reentrant behavior for positive valued

crystal fields and three successive phase transitions that arise for the specific range

of Hamiltonian parameters p,Ω/J and D/J have been found. As a new result, we

can conclude that three successive phase transition behaviors can be observed for the

systems with bond dilution in the presence of homogeneous crystal and transverse

fields, as well as the systems with random crystal fields. Hence, the results show that

the type of the transition (first or second order), the existence of reentrant magnetism

as well as three successive phase transitions originate from a complicated competition

between bond dilution and the strength of crystal and transverse field interactions on

the lattice.
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Furthermore, we have studied the phase diagrams of a spin-1 Blume-Capel model

with diluted and random crystal field interactions on two dimensional lattices (Yüksel

et al., 2012a) and examined the phase diagrams as well as magnetization curves of the

system for different types of crystal field distributions, namely, dilute crystal fields and

a double peaked delta distribution, respectively. For dilute crystal fields, we have given

a detailed exploration of the global phase diagrams of the system in (kBTc/J −D/J)

plane with the second and first order transitions, as well as tricritical points. We

have also shown that the system with dilute crystal fields exhibits a percolation

threshold value pc which can not be predicted by standard MFT. In addition, we have

observed multi-reentrant phase transitions for specific set of system parameters. On

the other hand, we have investigated the effect of the random crystal field distribution

characterized by two crystal field parameters D/J and ∆/J on the phase diagrams

of the system. As a limited case, we have also focused on a bimodal distribution

with D/J = 0. Particulary, we have reported the following observations for a bimodal

distribution: It has been found that the phase diagrams have symmetric shape with

respect to ∆/J which comes from the fact that p = 1/2. The transition temperatures are

of second order, and the system exhibits different characteristic features depending on

the coordination number q. Besides, we have realized that the system may exhibit clear

distinctions in a qualitative manner with coordination number q for random crystal

fields with ∆/J,D/J , 0. Moreover, we have discussed a competition effect which

arises from the presence of dilution, as well as random crystal fields, and we have

observed that saturation values of the magnetization curves are strongly related to

these effects. As a result, we can conclude that all of the points mentioned above

show that our method improves the conventional EFT methods based on decoupling

approximation and the formalism presented in this work can be easily extended to

the systems with continuous-field probability distributions, such as single or double

Gaussian field distributions.

Finally, we have studied the phase diagrams as well as magnetization curves

of a spin-1/2 Ising model in a random magnetic field on sc, bcc, and fcc lattices

for different types of random-field distributions, namely, single-Gaussian, bimodal,
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and double-Gaussian distributions (Akinci et al., 2011a). For a single-Gaussian

distribution, we have found that the system always undergoes a second-order phase

transition between the paramagnetic and ferromagnetic phases. For bimodal and

double-Gaussian distributions, we have given the proper phase diagrams, especially

the first-order transition lines that include reentrant phase-transition regions. Our

numerical analysis clearly indicates that such field distributions lead to a tricritical

behavior. Moreover, we have discussed a competition effect which arises from the

presence of both h0/J and σ parameters, and we have observed that saturation values

of the magnetization curves are strongly related to these effects. In addition, in the

absence of any randomness (i.e., h0/J = 0, σ = 0) our critical temperature values

corresponding to the coordination numbers q = 6,8, and 12 are the best approximate

values to the results of MC and SE methods, among the other works given in Table 5.3.

As a result, we can conclude that all of the points mentioned above show that our

method improves the conventional EFT methods based on decoupling approximation.

However, although we obtain certain improvements in qualitative and quantitative

features of the model systems within the present formalism, our method contains

some certain deficient points. Namely, we can not distinguish a two dimensional

triangular lattice from a three dimensional simple cubic lattice, both of which have

a coordination number q = 6. Hence, the dimensionality is factitious concept in the

present formalism. Moreover, the size of the system of linear equations derived for an

arbitrary model increases very fast for S ≥ 1 and q ≥ 4 which produces complicated

calculation procedures prone to erroneous analysis. On the other hand, calculation of

multi-site correlation functions for anti-ferromagnetic and ferrimagnetic systems may

be exhaustive and the formulation fails in applications for the systems with next-nearest

(and also further) neighbor interactions.

In general, we see that the proposed method has been successfully applied for the

investigation of disordered magnetic systems and we hope that the results obtained in

this thesis report may be beneficial from both theoretical and experimental points of

view.
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