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ANALYSIS OF BISTABILITY BEHAVIOUR OF LAC OPERON BY USING 

SYSTEMS THEORY 

 

ABSTRACT 

 

This thesis presents the original results of theoretical and numerical studies on the 

analysis of bistable behavior of the most studied gene regulatory network “lac 

operon” in terms of the model parameters. In the study, two different lac operon 

models, one that ignores the transacetylase effect while the other takes it into 

account, are analyzed. The lac operon models assume methyl-1-thio-β-D-galactoside 

as the artificial inducer. The bistability regions in the parameter space for both of the 

models are thoroughly determined by newly introduced discriminant and root locus 

based methods. The developed methods not only identify the ranges of the physical 

parameters ensuring the bistable behavior of the lac operon models, but also provide 

a way of tackling the problem of model analysis for this gene regulatory network 

under parameter uncertainties. 

 

For the lac operon model with no transacetylase effect, the boundedness of the 

state variables are demonstrated, the parameter values providing the existence of the 

multiple equilibria, thus the bistable behavior, are determined by the discriminant 

and root locus based analyses and a local stability analysis of the equilibria is 

performed.  All these studies for the lac operon model with no transacetylase effect 

are performed in algebraic, graphical and numerical ways all supporting to each 

other. It is observed along the studies that, as in the lac operon model considering the 

transacetylase effect, the algebraic and graphical methods may get stuck for models 

yielding greater than third order polynomial equilibrium equations, and that the 

developed root locus based method provides an efficient numerical tool for any kind 

of gene regulatory and metabolic networks model given in a state equation form with 

rational right-hand side, derived based on enzyme kinetics employing Hill and 

Michaelis-Menten approaches. 
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SİSTEM KURAMI İLE LAK OPERONUN ÇİFT KARARLI ÇALIŞMASININ 

İNCELENMESİ 

 

ÖZ 

 

Bu tez, bilimsel yazında en çok incelenen gen düzenleyici ağ olan lak operonun 

çift kararlı çalışmasının model parametreleri cinsinden kuramsal ve sayısal analizi ile 

ilgili özgün sonuçlar sunmaktadır. Çalışmada, biri transasetilaz enziminin etkisini 

göz ardı eden diğeri bu etkiyi göz önüne alan temel olarak iki farklı model analiz 

edilmiştir. Lak operon modelleri yapay uyarıcı olarak metil-1-tio-β-D-galaktosid’i 

kabul etmektedir. Her iki model için parametre uzayındaki çift kararlı çalışma 

bölgeleri, yeni ortaya konan diskriminant ve köklerin geometrik yerine dayalı 

yöntemler ile tam olarak belirlenmiştir. Geliştirilen yöntemler, sadece lak operon 

modellerinin çift kararlı çalışmasını garanti eden parametre değerlerini tanılamada 

değil, en azından bu gen düzenleyici ağ için parametre belirsizliği altında model 

analizi problemine çözüm getirir. 

 

Transasetilaz etkisinin göz önüne alınmadığı lak operon modeli için, durum 

değişkenlerinin sınırlılığı gösterilmiş, çoklu denge noktalarının varlığı ve dolayısıyla 

çift kararlı çalışmayı sağlayan parametre değerleri diskriminant ve köklerin 

geometrik yerine dayalı incelemelerle belirlenmiş ve denge noktalarının yerel 

kararlılık incelemesi yapılmıştır. Transasetilaz etkisinin göz önüne alınmadığı lak 

operon modeli için yapılan incelemeler birbirini destekleyen cebrik, çizgesel ve 

sayısal yöntemlerle gerçekleştirilmiştir. Çalışmalarda, transasetilaz etkisini göz 

önüne alan lak operon modelinde olduğu gibi cebrik ve çizgesel yöntemlerin üçten 

büyük dereceli polinomsal denge denklemleri veren modeller için etkin olmadıkları 

gözlemlenmiştir. Köklerin geometrik yeri tabanlı yöntemin, Hill ve Michaelis-

Menten yaklaşımları uyarınca enzim kinetiğine dayalı olarak türetilen rasyonel sağ 

yanlı durum denklemleri ile verilen herhangi türden gen düzenleyici veya metabolik 

ağ modeli için etkin sayısal bir yöntem olduğu görülmüştür. 
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Anahtar sözcükler: Lak operon, çift kararlılık, köklerin geometrik yeri, 

diskriminant, gen düzenleyici ağlar, TMG, transasetilaz. 
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CHAPTER ONE 

INTRODUCTION 

 

The lactose operon, abbreviated as lac operon, of Escherichia coli (E. coli) which 

is responsible for controlling the lactose metabolism operates as a bi-stable hysteretic 

switch under glucose starvation. This bistable behavior of lac operon has been 

investigated by many researchers in the literature (Novick &Weiner, 1957; Cohn & 

Horibata,1959; Yıldırım & Mackey, 2003; van Hoek & Hogeweg, 2006; Özbudak, 

Thattai, Lim, Shraiman & Van Oudenaarden, 2009; Danchin, 2009). The main aim in 

this research field aims to explain and then control the behaviors of other more 

complex biological switches which are assumed to play key roles in the regulatory 

mechanisms of gene networks (Fell, 1992; de Jong, 2002; de Jong, Geiselmann, 

Hernandez & Page, 2003). This thesis is another step in this direction: It introduces 

new methods for identifying exact parameter ranges ensuring the bistable behavior of 

two considered lac operon models. The results obtained in this thesis are expected to 

be useful to reveal the causes of variations in the presence of the bistable behavior of 

the lac operon. In other words, the determined bistability ranges can provide a 

quantitative explanation of the observed behavioral heterogeneity of biological lac 

operons across the population, across the species and also across the experiments (de 

Jong, Gouze, Hernandez, Page, Sari & Geiselmann, 2004; Batt, Belta & Weiss, 

2008).  

 

Lac operon is the gene region which is responsible for the synthesis of the 

enzymes to metabolize lactose as energy source under glucose starvation (Novick 

&Weiner, 1957; Özbudak et al., 2009). Lac operon consists of three structural genes; 

namely, LacZ, LacY, and LacA. LacZ, LacY, and LacA gene produces, respectively, 

permease, β-galactosidase and transacetylase enzyme. The first one, permease, 

provides the transportation of external lactose into the cell through the cell 

membrane. The second one, β-galactosidase, is responsible for the conversion of the 

internal lactose to the allolactose while the third one, transacetylase, is involved in 

the sugar metabolism and acetylation reaction. The regulatory gene LacI, controls the 

operation mode of the lac operon: The repressor protein LacI prevents the expression
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of gene products by binding to the promotor part of the lac operon when the glucose 

is present, so the lactose is not used as a carbon and energy source (Jacob, Perrin, 

Sanchez & Monod; 1960, Novick &Weiner, 1957).   

 

The small amounts of permease and β-galactosidase enzymes are always available 

at the cell because of the basal activity due to the life period of gene products. These 

two enzymes at the basal levels provide the transport of the lactose from medium 

into the cell and the conversion of the internal lactose to the allolactose in the 

absence of glucose and the existence of lactose in the intracellular medium. The 

allolactose binds to the LacI repressor protein and causes a conformational change in 

the repressor, inhibiting the repressor by dissociating it from the promoter region. 

Then, the RNA polymerase enzyme starts the transcription of mRNA for inducing 

the three structural genes. By the explained process, the permease and the β-

galactosidase concentrations increase rapidly from the basal levels to much higher 

levels, elevating the concentrations of the internal lactose and allolactose. This 

mutual amplification of the allolactose and mRNA concentration implies a positive 

feedback in the lactose metabolism. The positive feedback is known to be a source of 

unstable dynamics in general. Indeed, the mRNA concentration is bounded from 

below and above respectively by the basal and saturation activities, preventing 

unstable dynamics and yielding bounded trajectories settling down to one of two 

stable equilibria if not started at the third equilibrium which is unstable. One of the 

stable equilibrium is at a low level concentration corresponding to the uninduced 

state for lac operon and the other is at a high level concentration corresponding to the 

induced state. The coexistence of these induced and uninduced stable states which 

has been observed in the experimental studies provides a bistable behavior for lac 

operon (Jacob et al., 1960). 

 

In experimental studies, it is generally preferred to use lactose analogs such as 

methyl-1-thio-β-D-galactoside (TMG) and isopropyl β-D-1-thiogalactopyranoside 

(IPTG) instead of natural inducer lactose (van Hoek & Hogeweg, 2006; Özbudak et 

al., 2004). These artificial inducers are not metabolized and do not interact with β-

galactosidase enzyme. Therefore, the β-galactosidase enzyme concentration becomes 
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an irrelevant variable in the response of lac operon to artificial inducers. However, 

similar to the allolactose, the artificial inducers inhibit the LacI repressor, leading to 

the transcription of the mRNA and consequently to the production of permease at 

higher levels of concentrations. These features make the artificial inducers efficient 

means for experimental studies on the bistable dynamics of lac operon. In this thesis, 

lac operon models which assume TMG as the artificial inducer are studied only due 

to the availability of the related literature reporting the real measurement values of 

the physical parameters such as reaction and degradation rates (Özbudak et al., 2004; 

Yagil & Yagil, 1971).  

Lac operon is the most studied gene regulatory mechanism in E. coli since its 

discovery by Novick & Weiner (1957). Discovery of the lactose regulation system of 

the E. coli has not only provided the understanding of gene regulation at glucose 

starvation in the existence of lactose but also has become a milestone for other gene 

regulatory mechanisms in other organisms. In other words, understanding of the 

behavior of lac operon as a biological switch is important as much to understand 

further complicated gene regulatory networks in higher organisms and also some 

metabolic disorders such as cancer (Murray, 2002; Kitano, 2004; Kitano, 2007). 

Therefore, many efforts have been attempted to analyze the bistable behavior of lac 

operon models. Wong et al. (1997) constructed a general mathematical model 

including the catabolite repression and inducer exclusion on the lac operon 

mechanism. The results of this study confirm the effect of the changes of the external 

glucose level on the lactose transport and cyclic AMP level. By parameter sensitivity 

analysis, the transformation process by β-galactosidase and the glucose concentration 

level that have effect on catabolite repression and inducer exclusion are defined as 

key parameters in lac operon. Yıldırım & Mackey (2003) developed a mathematical 

model based on ordinary differential equations (ODEs) to explain the bi-directional 

transport of lactose through cell membrane via permease, conversion of lactose to 

glucose and galactose by β- galactosidase, inhibition of lac repressor by allolactose 

and synthesis of mRNA to produce gene products of lac operon. In contrast to the 

estimation of the model parameter from the results of three different experiments, the 

mathematical model shows the bistable behavior for realistic values of the external 

lactose and the bacterial growth rate. This model was simplified in another study by 
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Yıldırım et al. (2004) by assuming the permease concentration as constant. The 

authors investigated whether the β-galactosidase regulatory pathway is the most 

important component for the bistable behavior or not. Santillan & Mackey (2004) 

proposed a mathematical model which includes catabolite repression, inducer 

exclusion, and time delays associated to transcription and translation. The special 

attention was paid in this model to the effect of external glucose and inducer 

exclusion mechanisms on the bistability dynamics. van Hoek & Hogeweg (2006) 

studied the bistability of the lac operon induced with lactose and also with an 

artificial inducer in another case. According to the theoretical and also numerical 

results of van Hoek & Hogeweg (2006), although the bistability could be observed 

for artificial inducers, it was not easily observed in the case of lactose in their model. 

Santillan et al. (2007) presented a mathematical model for the utilization of lactose 

versus external glucose. In their study, bistability was demonstrated as an important 

factor in consumption of lactose and glucose efficiently by the cell. In another study 

of Santillan & Mackey (2008), cooperative interaction between Catabolite Activator 

Protein (CAP) molecule and operator 3 was added to their previously developed 

model (Santillan et al., 2007). Effect of growth rate was also studied in the new 

version of the model. Özbudak et al. (2004) presented the phase diagram of the 

bistability observed in lac operon dependent on sugar uptake and transcriptional 

regulation. They argued that this phase diagram could be used as a sensitive probe of 

molecular interactions. Moreover, they used green fluorescent proteins to show the 

bistability behavior of the lac operon for the first time in vivo.  

 

In the literature, the behavior of the lac operon is generally modeled by using 

ordinary differential equations, ODEs, derived from enzyme kinetics (Özbudak et al., 

2004; Yıldırım et al., 2004; van Hoek & Hogeweg, 2006). Besides, the delay-time 

ODE systems and stochastic models are also presented in the literature (Julius, 

Halasz, Sakar, Harvey & Pappas, 2008). In the deterministic models, the reaction 

rates are expressed as the time derivatives of molecule concentrations. The resulting 

systems of ordinary differential equations defining the lac operon become nonlinear, 

more precisely rational functions of molecule concentrations when Michealis-

Menten and/or Hill approaches are used to model enzyme kinetics (Özbudak et al., 



5 
 

 
 

2004; Yıldırım et al., 2004; van Hoek& Hogeweg, 2006). Although they are 

nonlinear, ODE models are more efficient for numerical and also theoretical 

analyses. The stochastic models which are introduced for low molecule 

concentrations, are derived usually either by choosing reaction rates as random 

variables in terms of the numbers of molecules or by introducing a noise term to the 

ODE models (Julius et al., 2008). The stochastic models suffer from high 

computational cost however they can be preferred especially for modeling the 

spontaneous transitions between the induced and uninduced states. 

 

Although many efforts have been attempted to analyze the bistability behavior of 

lac operon, the ranges of the parameters originated from enzyme kinetics ensuring 

the bistability are not completely determined yet and the reasons for the variations in 

the appearance of bistability across different inducer, i.e. lactose, TMG, IPTG etc., 

across the population of E. coli and across different experimental settings (Batt, 

Ropers, de Jong, Geiselmann, Mateescu, Page & Schneider, 2005; Ropers,  de Jong, 

Page, Schneider & Geiselmann, 2006; Batt, Belta & Weiss, 2008; Avcu, Demir, 

Pekergin, Alyürük, Çavaş & Güzeliş, 2012). 

 

The main aim of this thesis is to derive the parameter ranges ensuring the 

bistability for lac operon. Two different lac operon models derived from enzyme 

kinetics, one takes into account the transacetylase enzyme effect and the other does 

not, are considered in the thesis. The bistability analysis is performed by two newly 

introduced methods, one is based on discriminant and the other is based on the root 

locus which is a well-known tool of control theory. The obtained parametric 

conditions on the bistability of the TMG induced lac operon model confirm and 

further extend the results available in the literature. For the sake of establishing a 

thorough bistability analysis in the thesis, equilibrium analysis realized by applying 

discriminant and root locus based methods on the polynomial equilibrium equations 

are supported by a complementary study on the boundedness of the state variables 

together with the local stability of the equilibrium points.  
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Chapter 2 of the thesis presents biological and mathematical lac operon models 

considered. The analysis results on the boundedness of the trajectories and local 

stability of the equilibrium points of the lac operon model with no transacetylase 

effect are given in Chapter 3. The discriminant based analysis method and the 

obtained results for determining parameter regions for the bistability of the lac 

operon model with no transacetylase effect are presented in Chapter 4.The root locus 

based method and the related results for determining the bistability regions are given 

in Chapter 5 and, respectively, in Chapter 6 for the lac operon model with 

transacetylase effect. The summary of all these analyses are compiled in Chapter 7. 
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CHAPTER TWO 

BIOLOGICAL AND MATHEMATICAL LAC OPERON MODELS  

 

This chapter presents a biological lac operon model and a mathematical model 

derived based on enzyme kinetics. There is no unique biological lac operon model in 

the literature. Depending on the used inducer such as lactose, TMG, or IPTG, and 

depending on the included biochemical interactions such as the efflux of TMG across 

the membrane, there correspond different biological and so mathematical models. 

For the sake of simplicity, a minimal set of biochemical interactions known to be 

involved in the lactose metabolism are considered in the biological model and its 

associated mathematical model given in this chapter. For the same reason, the 

acetylation effect of β-thiogalactoside transacetylase (GAT) is not considered in this 

chapter but it will be studied in Chapter 6 for demonstrating the capability of the root 

locus based analysis in revealing possible effects of a specific interaction, herein the 

acetylation.   

  

2.1 A Biological Lac Operon Model 

 

The lac operon is a genetic switching mechanism by which E. coli utilizes the 

lactose as a nutrient source under glucose starvation. Lac operon has three structural 

genes; namely, LacZ, LacY, and LacA genes. LacZ, LacY, and LacA produces, 

respectively, β-galactosidase, permease, and transacetylase enzyme. The permease 

enzyme is responsible for transporting the external lactose into the cell. The β-

galactosidase enzyme provides the cleavage of the internal lactose to the allolactose 

and also the cleavage of the allolactose and internal lactose to the glucose and 

galactose. The transacetylase enzyme, usually ignored in the lactose utilization 

mechanism, is involved with the sugar metabolism and acetylation reaction. The 

main carbon source of E. coli is the glucose. In the absence of glucose, the existence 

of lactose leads the lac operon to be induced for catabolizing the lactose. The lac 

operon is induced through the following process: First, the lactose enters the cell by 

means of the permease which is always available as a consequence of the basal 

activity providing a small amount of mRNA. Second, the lactose entered to the cell is 



8 
 

 
 

converted to the allolactose by the basal β-galactosidase concentration. Third, the 

allolactose binds to the LacI repressor protein and causes a conformational change in 

the repressor, so inhibiting the repressor by dissociating it from the promoter region. 

Then, the RNA polymerase enzyme starts the transcription of mRNA for inducing 

the three structural genes. By the explained process, the permease and the β-

galactosidase concentrations increase rapidly from the basal levels to much higher 

levels, so elevating the concentrations of the internal lactose and allolactose. The 

mutual amplification of the allolactose and mRNA concentration implies a positive 

feedback in the lactose metabolism. The positive feedback is known to be a source of 

unstable dynamics. Indeed, the mRNA concentration is bounded below and above, 

respectively, by the basal and saturation activities which provide two stable 

equilibria: One at a low level concentration corresponding to the uninduced state for 

lac operon and the other at a high level concentration corresponding to the induced 

state. The coexistence of these induced and uninduced stable states which has been 

observed in the experimental studies provides a bistable behavior for lac operon. 

 

Figure 2.1 Lac operon gene regulatory network 

 

The glucose when it exists suppresses the operation of the lac operon via two 

different pathways. By one of the pathways, called inducer exclusion as path (II) in 



9 
 

 
 

Figure 2.1, the glucose inhibits the transport of the external lactose into the cell by 

interfering with the permease activity leading to the exclusion of the inducer, i.e. 

lactose. In the second pathway, called catabolite repression as path (I) in Figure 2.1, 

the presence of glucose yields to decrease cAMP concentration. The decrease in 

cAMP concentration lacks of binding cAMP to CRP, i.e. cAMP receptor protein, to 

form CAP complex. Hence, mRNA transcription can not be induced due to the lack 

of CAP complex. This means the glucose leads the lac operon to the uninduced state. 

 

2.2 A Mathematical Lac Operon Model 

 

The thesis considers a simple yet sufficient ODE model in which an artificial 

inducer, TMG, is used. The mathematical model consists of three ordinary 

differential equations with the mRNA, permease and TMG concentration as state 

variables. The considered model includes i) the catabolite repression and inducer 

exclusion of the extracellular glucose, ii) the transcription of mRNA by TMG, iii) 

the production of permease, iV) the transportation of TMG via permease and v) the 

degradations of TMG, mRNA and permease as shown in Figure 2.1. It is assumed 

that there are no translational and transcriptional delays in the lac operon 

mechanism. As will be seen in the sequel, this model is very suitable for analyzing 

the hysteretic bistable behavior of lac operon. 

 

The mathematical model is described by the following state model which is 

composed of three first order differential equations representing the reaction rates in 

terms of the mRNA, permease and internal TMG concentrations: 
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where, state variable  ,   and   stands for the mRNA, permease and internal TMG 

concentration, respectively. The input    and    is, respectively, external TMG and 

external glucose concentration. The parameters      with           represent the 

loss constants for   ,  , and   . The      is indeed the composition of the active 

degradation,      , and the dilution due to growth rate,   . The parameters    with 

          denote the production constants of the gene products.         and 

           expresses the positive effect of the internal TMG and the negative effect 

of the external glucose on the synthesis of mRNA, respectively. Similarly, 

          and           express the positive effect of external TMG and negative 

effect of external glucose on the TMG uptake into the cell. Here,           and 

          are decreasing functions of external glucose, the former describes the 

catabolite repression while the latter describes the inducer exclusion. 

 

In the model, the temporal change of the mRNA concentration is defined in (1) as 

the difference between the production depending on the internal TMG concentration 

under the catabolite repression effect of external glucose and the losses due to active 

degradation and growth. The equation (2) gives the change of the permease 

concentration in terms of the synthesized permease and the losses. Similarly, the 

change of the internal TMG concentration is expressed in (3) where the increase is 

due to the import of the external TMG under the reduction effect of inducer 

exclusion and the decrease is due to the degradation and dilution.  

 

Assuming the production of mRNA under TMG as an allosteric interaction 

similar to the allolactose case,          can be chosen as the following modified Hill 

function (Yagil & Yagil, 1971). 

 

         
     

 

      
                                                                                                                

                                                                                                     

where,   is the number of TMG required to inactivate a repressor protein,    is the 

equilibrium constant of TMG-repressor protein interaction, and     is the basal level 
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of mRNA transcription in E. coli. For the inhibition of repressor protein, at least two 

TMG molecules have to bind the repressor.   is taken as 2 in our analysis throughout 

the study.  

 

The transport of    into the cell by the permease can be modeled via Michaelis-

Menten kinetics as follows: 

 

     
      

  

   
   

                                                                                                                 

                                                             

where,     
is the Michaelis constant.  The monotonically decreasing functions of Ge 

for describing the catabolite repression and inducer exclusion are chosen as follows: 

 

     
     

          
 

                 
                                                                                          

                                                          

                 

     
            

  

     
   

                                                                                            

 

Where,        ,        ,        , and   are catabolite repression parameters and 

     
  is inducer exclusion parameter (Santillan et al., 2007). 
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CHAPTER THREE 

BOUNDEDNESS OF THE STATE VARIABLES AND A LOCAL  

STABILITY ANALYSIS OF THE LAC OPERON MODEL 

 

The previous models (Wong et al., 1997; Özbudak et al., 2004; Yıldırım et al., 

2004) confirm the bistable behavior of lac operon observed in experimental studies. 

A bistable dynamics for a system is defined by the existence of two (locally) 

asymptotically stable equilibria such that any trajectory of the system tends to one of 

these equilibria depending on the initial condition if not starting at a possible 

unstable equilibrium. This implies the boundedness of the state variables of the 

system dynamics and also excludes the other kinds of dynamics such as limit cycle 

and chaos.  

 

This chapter describes that the considered model in (1)-(3) has bounded dynamics, 

multiple equilibria, and presents a local stability analysis of the equilibria of the 

model (1)-(3). 

 

3.1 Boundedness of the State Variables 

 

The loss terms in (1)-(3) are linear. So, considering the (nonlinear) production 

terms as inputs for first order linear differential equations, one can obtain an 

analytical expression for each of the state variables of the model (1)-(3): 

 

                               

 

  

                 
                                  

                               

 

  

                                                                     

                               

 

  

       
         

                                      

As expressed in (4) and (6), the production function of the mRNA and the catabolite 

repression effect of the    are bounded above.  
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Note that     is always true as observed from the experimental studies. Then, an 

upper bound for the mRNA concentration is obtained as follows: 

 

                       
  

  

       

       
                                                            

                                         

The following upper bound for the permease concentration is found in a similar way.  

 

                       
  

  

                                                                       
 

              

                              

Considering the following bounds for           and            

 

      
       

  

   
   

                                                                                                     

        

 

      
              

  

     
   

                                                                                

 

an upper bound for the internal TMG concentration is derived as: 

 

                       
  

  

                                                                        
 

                                         

 

The expressions given in (13), (14), and (17) show the boundedness of the state 

variables     ,     , and     . As can be seen from the limits of the upper bounds 

given in (18), (19), and (20), the model (1)-(3) is indeed eventually uniformly 

bounded (Vidyasagar, 1972).  
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Since the functions in (12), (15) and (16) are continuous functions of the lac 

operon inputs (i.e external glucose and external TMG) so are the upper bounds of the 

states. Then, the lac operon defined by (1)-(3) is concluded to be Bounded Input 

Bounded State (BIBS) stable (Vidyasagar, 1972). 

 

3.2 Existence of Multiple Equilibria 

 

In this subsection, it will be shown that the considered model has either one or 

three equilibrium points depending on the model parameters. Setting the state 

variables  ,  , and   constant and then eliminating the equilibrium concentrations 

  and    the equilibrium equation for   can be obtained as: 

 

             
     

 

      
                                                                                    

 

                        

 

where 

  
  

   

  

   

  

   
     

         
         

                                                                            
 

                                                              

 

As illustrated in Figure 3.1, the production function         of mRNA starts at 

    and tends asymptotically to   irrespective of the parameters   and   .       

and the continuity of         together with the saturation characteristic imply that 

the graph of          intersects the unity slope line corresponding to the second term 
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  in (21). This proves the existence of at least one equilibrium point. Further, 

        is a monotically increasing function since its derivative,  

 

 

  
         

 

  
 
     

 

      
  

         

         
                                                               

                                                                   

is positive for     that is always true. However, the derivative of           is not 

monotonic and is less than   for sufficiently small and large   values and greater 

than   for intermediate   values. Depending on the value of the parameter  , the 

graphs of the first and second terms in (21) may have three intersection points as 

shown in Figure 3.1 which means there are three equilibria for the considered model. 

 

 

        Figure 3.1 Geometric Analysis of the Equilibria 

 

The above graphical analysis provides an insight on the appearance of bistability 

which requires the existence of three equilibria, two of them are stable. However, 

determining the ranges of the parameters ensuring the existence of multiple equilibria 

needs a rigorous analysis. Considering the availability of well established methods 
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for the parametric studies of the roots of polynomial equations, it is convenient to 

rearrange the equilibrium equation (21) into the following polynomial form. 

 

   
      

                                                                                                       
 

                                                    
                             

It is obvious that, irrespective of the values of the parameters, there is always a 

real root of (24), indicating the existence of at least one equilibrium point. The 

remaining two roots of (24) are either complex conjugate pair or real. In the case of 

three real roots, there are three different possibilities: A triple root, two roots such 

that one of them is double, and three different roots. The bistable behaviour occurs 

when there exist three equilibria corresponding to the three different real roots of 

(24). Then, to determine the ranges of the parameters ensuring the existence of three 

real roots, the parameter values at which the complex roots turn to the real ones 

could be identified. These turning points in the parameter space can be found by 

obtaining the conditions for the presence of repeated roots. 

 

As also exploited in the literature for different lac operon models the conditions 

for a triple root of the polynomial equation in (24) can be derived by considering the 

fact that the polynomial itself, its first and second derivatives simultaneously vanish 

at a triple root (Özbudak et al., 2004; van Hoek & Hogeweg , 2006): 

 

   
      

                                                                                                        

                                                                                 

    
                                                                                                                  

 

                                                    
                                    

                                                                                                                                 
 

                                          
                                                             

The above equations show that a triple root appears at        when     

and           It is interesting to note that     is derived in the literature as the 

bistability condition for different lac operon models (Özbudak et al., 2004; van Hoek 

& Hogeweg, 2006). By this derivation, one can conclude that     is a boundary of 

the bistability interval for   when only the parameters    and   satisfy         . 
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As will be seen in the discriminant and root locus analyses employed in Chapter 4 

and Chapter 5, a bistability condition other than     becomes valid when 

        . For these cases, the boundary for the bistability region is derived by 

considering the two real roots such that one of them is double. This derivation will 

be performed in Chapter 4 by calculating the discriminant of the polynomial in (24) 

and also in Chapter 5 by applying the root locus method. 

 

3.3 Local Stability Analysis 

 

Local stability analysis of the state model (1)-(3) for constant    and    inputs can 

be realized by determining the location of the eigenvalues of the Jacobian matrix in 

the framework of Lyapunov's first method (Vidyasagar, 1972). For the sake of 

simplicity, one can transform (1)-(3) into the following form: 

 

 

  

  

  
 

  

  
                                                                                                     

 

                                              
                                 

 

  

  

  
 

  

  
                                                                                                                       

                                                                                                  

 

  

  

  
 

  

  
                                                                                                      

 

                     

                                                     

By this transformation, the locations of the eigenvalues of the Jacobian matrix 

remain in the same half-plane of the complex plane. This fact can be seen from (31), 

showing that the eigenvalues   of the Jacobian matrix related to the transformed 

model in (28)-(30) are just the scaled versions of the eigenvalues    for the original 

model (1)-(3), namely   
  

  
 with     . 
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where,    and   is the Jacobian matrix at a certain equilibrium point    for the original 

and the transformed model, respectively. The eigenvalues of the transformed model 

are determined by finding the roots of the characteristic equation given in (32). 

 

          
 

 
     

  

  
     

    
 

  
        

 
  

  
    

  
  

  
     

         
       

 

 
  

                      
 

  
                                                                   

                                                

 

To apply the Routh-Hurwitz test for deciding if there exists any eigenvalue in the 

right-halfplane for the equilibrium point   , the Routh array is constructed in Table 

3.1. Since         is monotonically increasing, then the third term in the first column 

is always strictly positive. Therefore, the sign change in the first column can occur 

only when   
 

  
          . It can be seen from the equilibrium equation 

             together with the positiveness of the initial value 1/K of the 

monotonically increasing function         that, for the three different equilibria case, 

the smallest and also the largest equilibrium point arise when  
 

  
           and 

the middle equilibrium point arises when  
 

  
          . Therefore, the middle 

equilibrium point is seen to be unstable while the other two ones stable. It can be 

concluded that the parameter region ensuring the existence of three different 

equilibria is indeed the bistability region of the lac operon model in (1)-(3). This 

bistability region in the p-K-K_1 parameter space will be characterized by two 

different methods in Chapter 4 and Chapter 5. 
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Table 3.1 Routh array for the characteristic equation of the 

transformed model 
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CHAPTER FOUR 

DISCRIMINANT BASED BISTABILITY ANALYSIS OF THE LAC OPERON 

MODEL WITHOUT TRANSACETYLASE EFFECT  

 

The discriminant   of (24) is given by: 

 

      
         

       
    

          
                                                     

                                          

Since the discriminant of a polynomial is proportional to the product of the 

squares of pairwise differences between its roots, then   becomes zero when there 

exists a double or triple root. Positive values of   correspond to the case of three 

different real roots of the equilibrium equation in (24). To obtain the conditions on 

the parameters, the discriminant equation, i.e.    , can be solved in terms of one of 

the parameters while holding the others fixed. In order to determine the range of  , 

one can find the   values satisfying     as follows: 

 

        
    

   
                                                                                                                      

                                                                                                        

         
    

   
                                                                                                                  

                                                                                            

where, 

 

                                                                                                                                                                                                                           

 

                                                                                                  

                                                             

To identify the interval of p where    , one can first find the real   roots of     . 

When the inequality in (38) is not satisfied,     has 4 complex roots, hence there is 
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no any   value yielding     since      which is the greatest power of   in (33) is 

always negative due to the positiveness of the biological parameter   .  

 

                                                                       
 

                           
 

Therefore, it can be concluded that   values with       does not provide 

bistability. One can observe the following relation. 

 

                                            

                                                                                                                                       

                                                                                             

The relation (39) implies that   is, in magnitude, greater than    Then,    

  becomes a necessary condition for the bistability since its violation leads all of 

    's roots in (34)-(35) to be complex, so there is no any p value yielding    . 

Observing     for   values with         all     's  in (34)-(35) become real 

only when    . In the case of real     ,     ,      and     ,     is obtained for   

values lying in the intervals of             and             . The latter interval is not 

valid due to the positiveness of the biological parameter  . Hence, the above analysis 

considering the discriminant           as a function of   provides            , 

   , and      constraints as necessary conditions defining the following 

region    
 

. 

 

   
                                                                                     

                               

Repeating the above derivations now for considering the dependence of           

on    and  , the whole set of bistability conditions are obtained in the sequel. The 

roots of             in terms of     which are obtained as   
   

   and   
     

 

    

    define the region     
   where      and     are required for having real 

  
     

 roots. 
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Similarly, the roots of             by taking   as the variable are obtained as: 

     
   

  
 

 

   
 

 

  
                                                                                                       

                               

       
 

  
     

  
        

 
                                                                   

                                                        

where,   and   are given below. 

 

     
         

                                                                                                             

                                                                                          

          
         

        
                             

   

  

                              

 

Note that     ,     , and      are functions of    
  and their highly nonlinear 

dependency on    
  can be visualized as follows. 

 

 Figure 4.1 The          values for different     . 
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Then, the region     
  is defined with the positive and real roots      and      

under the condition of    
     since     is always a negative real number 

independent from    and  . 

 

   
                                    

                                                   

                                    

The above discriminant based analysis is concluded by defining the bistability 

region      in the        parameter space as the intersection of the derived     
 

, 

    
  and     

   

 

                                                 
   

      
   

  

                                                                                  
                           

                    

Note that     is reported as the bistability condition in the literature (Özbudak 

et al., 2004; van Hoek & Hogeweg, 2006). However, the above analysis shows that 

not all    values greater than   imply the existence of triple equilibria but for 

  values larger than    there is always a   value in the interval of 

            ensuring the existence of triple equilibria. Further note that the 

             interval actually depends on   and    parameters such that small    and 

large   values result in large              interval shifted to the right hand side, on 

the contrary large    and small   values result in small              interval shifted 

to the left-hand side. As will also be shown in Chapter 5 by employing the root locus 

method, each of   ,  , and    parameters ensuring bistability should lie in finite 

intervals whose upper and lower bounds and also lengths depend on the other two 

parameters. 
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CHAPTER FIVE 

ROOT LOCUS BASED BISTABILITY ANALYSIS OF THE LAC OPERON 

MODEL WITHOUT TRANSACETYLASE EFFECT  

 

It is seen in Chapter 4, the discriminant of a polynomial equation, herein the 

equilibrium equation, can be used for studying the change of the number of real roots 

depending on the parameters defining the coefficients of the polynomial. Such a 

discriminant based method requires employment of a symbolic analysis for deriving 

parametric representations of the roots of high order discriminant equations. That 

method may get stuck even when the equilibrium equation is of order 4 or when an 

interdependency exists among the coefficients of an equilibrium equation of order 3. 

The root locus method which is a well-known method used for controller design in 

electrical engineering to determine the changes in the location of closed-loop system 

poles as a function of the controller parameter is proposed in this paper to overcome 

the above mentioned drawbacks of the discriminant based method. It will be cleared 

in the sequel that the root locus method is an efficient method for studying the 

changes in the number of equilibria of the lac operon model which is defined by state 

equations with rational right-hand sides derived from enzyme kinetics. The root 

locus based approach allows the use of root locus tools of numerical software 

packages in specifying the boundary of the bistability region and it provides a 

graphical representation for understanding the qualitative changes depending on the 

model parameters. 

 

The main concern in control applications employing root locus is to identify the 

controller parameters ensuring desired locations for the closed-loop poles such as the 

open left complex half plane to meet asymptotic stability. However, the concern of 

root locus based approach in the identification of the bistability region for lac operon 

is to determine the model parameters yielding the existence of multiple (positive) 

equilibria. The root locus is applied in this paper to the equilibrium equation which is 

a rational function of TMG concentration whereas in the control area it is applied to 

the (rational) characteristic equation in the Laplace domain. 
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To determine the bistability region the root locus method will be applied in the 

following steps: 

 

1. For each parameter, the equilibrium equation (21) will be written in the usual 

characteristic equation form of    
       

       
   where            is the 

parameter under consideration,    represents the rest of the parameters, the 

numerator   and denominator   are polynomial functions of   and   . 

 

2. Determine the roots of           and           for specific choices of   . 

Then, draw the root-locus originating from the roots of           and ending 

at the roots of          . 

 

3. In order to identify the boundaries of the bistability region, compute the break-in 

and break-away points where a pair of complex conjugate roots turn into a 

double real root and vice versa. 

 

5.1 Root Locus for   Parameter 

 

For   parameter, the equilibrium equation in (21) can be written in the 

characteristic equation form as: 

 

   
     

 

         
                                                                                                            

                                                                                                

The positive feedback in the above equation should be taken into account when 

drawing the root locus. 

 

The general expression for the roots   
     

 of the numerator and the roots   
       

 

of the denominator can be obtained as follows. 
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By finding the extrema of   with respect to   from 

 

 

  
 
       

  

      
  

              
    

         
                                                        

 

the break-in and break-away points are obtained in terms of   and    as 

 

             
                 

   
                                                                     

 

It should be noted that only real ones of            correspond to the break-in and 

breakaway points. Hence,     and      are obtained as necessary conditions for 

the existence of bistability which coincide with the result of discriminant based 

analysis given in (40). 

 

When considering         and        values reported in some 

experimental studies on E. coli (Özbudak et al., 2004), the root locus diagram for the 

  parameter is drawn in Figure 5.1 by using Matlab numerical software. It is seen 

from the diagram that there is only one real root for small and large   values and 

three real roots exist for a bounded interval of   . By computing the break-in and 

break-away points, the bistability interval is determined as             for the 

considered   and    values. 
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Figure 5.1 The root locus for   parameter when         

and          

 

The above bistability interval is derived for particular values of   and   . The 

lower and upper limits and furthermore the existence of the bistability interval for   

do indeed depend on   and    values. The expression (53) of break-in and break-

away points shows that the (positive)    acts only as a scaling factor causing a 

quantitative change but not a qualitative change on the root locus drawn for  . To see 

the qualitative changes in the root locus and hence in the bistability interval for  , it 

is sufficient to consider different values of only   parameter. 

 

 A gallery of root locus diagrams obtained for different   values is given in 

Figure 5.2 where    is held constant as     . 

 

Figure 5.2.a shows the case of only one real root for all   values, in other words, 

the case of the complex roots loci which never cross the real axis. Herein,   is taken 

equal to 2 as an example for   values less than 9 lacking the existence of break-in 

and break-away points. Figure 5.2.b corresponds to the limit case of     in which 

the break-in and break-away points coincide such that there is a triple real root for a 

specific   value but no other   value providing multiple real roots. In Figure 5.2.c-f 

obtained for four different   values greater than 9, three real roots exist for   values 

in non-empty and bounded intervals.  
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Figure 5.2 The root locus for   parameter with different   values when holding    fixed as     . 

 

The lower    and the upper    limits of the bistability intervals for   parameter 

change with the   parameter such that the bigger the  , the larger the interval. The 

variations of    and     values with   can be expressed by determining the p values 

corresponding to the break-away and break-in points already found in (53) using the 

rewritten equlibrium equation   
         

      . 
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Note that the real and positive   values used above in finding    and    are the 

only break-away and break-in points under the condition of     and      since 

  representing TMG concentration can take non-negative values only. 

 

5.2 Root Locus for   Parameter 

 

The equilibrium equation in Equation (24) can be rewritten into the following 

characteristic equation form to repeat the analysis of Chapter 5.1 for the   parameter. 

 

   
 

            
                                                                                                 

 

Both of the discriminant based analysis of Chapter 4 and the root locus with 

respect to   parameter in Chapter 5.1 shows that     seems to be the only 
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condition necessary for the bistability. However, as given in Figure 5.3 the root locus 

with respect to the   parameter by considering         and       reveals that, 

to have the bistablility,   must not be bounded below only, but also bounded above. 

The lower and upper limits are actually the break-in and respectively break-away 

points. 

 
Figure 5.3 The root locus for   parameter. 

 

The bistability conditions on   parameter are studied in the sequel by deriving the 

structural features of the root locus for   such as the break-in and break-away points 

in terms of   and   .  

 

The numerator   has a unique root at the origin. The roots of the denominator 

   
      

    can be obtained as in Equation (58)-(60) by using Cardano 

formula. 
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where,   and   variables are defined below. 

 

       
                                                                                                                   

 

          
                                                                                                            

   

The break-in and break-away points are the roots of     
      

      

since 
  

  
   can be obtained as: 

 

  

  
 

 

  
  

   
      

   

 
   

    
      

   

  
                                   

 

The         values in Equation (64)-(66) which are the roots of the numerator 

polynomial     
      

       of Equation (63) are the break-in and break-

away points of the root locus. 
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where,   and   variables are defined below. 

 

       
                                                                                                                     

 

           
                                                                                                           

   

Note that break-in and break-away points     ,     , and       are functions of    
  

and also   and    parameters. To understand the highly nonlinear dependency of 

    ,     , and       on    
 , instead of     ,     , and       it would be better to 

draw the real and imaginary parts of the functions       
       

      ,       
        

       and 

      
        

       as illustrated in Figure 5.4. 

 

It is observed from Figure 5.4,         is obtained as necessary condition for 

the existence of bistability since only real and positive     ,     , and      values 

define break-in and break-away points. The condition         can be seen to 

coincide with the one obtained in the discriminant based analysis of Chapter 4. 
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Figure 5.4 The real and imaginary parts of the scaled break-in and 

break-away points,      
),      and      , for different      parameter. 

 

The analytical expressions of the upper and lower limits of  ,   and    

respectively, derived by a similar procedure in Chapter 5.1 are given in Equation 

(69)-(70). 

 

    
    

    
 
      

    
 
  

    
                                                                                  

 

    
    

    
 
      

    
 
  

    
                                                                                  

 

where     and     are defined in Equations (65)-(66).  

 

A gallery of root locus diagrams obtained by Matlab for different    and   values 

yielding the existence or non-existence of the break-in and break-away points are 

given in Figure 5.5. Figure 5.5.a-c correspond to the case of a constant         

and three different   values with        ,        , and        . Figure 

5.5.d-f correspond the the case of a constant       and three different    values 
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again with        ,        ,  and        . Note that Figure 5.5.c and f 

only have an interval of   providing the bistability. 

 

 

 

  
Figure 5.5 The root locus for   parameter with different      values 
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5.3 Root Locus for    Parameter 

 

Chapter 5.3 provides the root locus analysis now for    parameter. For this 

purpose, the equilibrium equation in (24) is rewritten in the characteristic equation 

form with respect to    in Equation (71): 

 

    

      

    
                                                                                                                 

 

The numerator has a double root at     and a real root at    . However, the 

denominator has only one real root which is at   
 

 
  whereas the numerator has 

three real roots. 

 

  
     

                                                                                                                                       

 

  
   

                                                                                                                                         

 

  
   

 
 

 
                                                                                                                                      

 

The break-in and break-away points which are the extrama of    with respect to   

can be calculated in terms   and   parameters as follows. 

 

 

  
 

    

      
  

                   

         
                                                       

 

The first break-in / break-away point in Equation (76) is equal to zero. The other 

two break-in / break-away points in Equation (77) are the roots of the second order 

numerator polynomial equation                   . 
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To have real       defining the break-in / break-away points and the bistability 

interval of                should be strictly positive. Hence,     is obtained 

again as a necessary condition for bistability. The second possibility       does 

not belong to the bistability region for    since such   values yield negative    

values in Equations (78)-(79) at the break-in / break-away points. Hence,   
  and   

  

represent the upper and lower limits of the bistability interval for    parameter.   
  

and   
  are obtained by substituting      and      in the equation    

    

      
 as 

given below. 

 

  
  

   
                   

  

 
                   

   

 

 
                   

     

 

 

 
    

  

               

                 
 
                  

            

 

  
  

   
                   

  

 
                   

   

 

 
                   

     

 

 

 
    

  

               

                 
 
                  

           

 

Choosing         and       which are known to ensure the bistability at 

least for some specific    value, for instance        , the root locus diagram for 
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the    is drawn by using Matlab as in Figure 5.6. For these considered values of   

and   parameters, the bistability region is determined as                    from 

the root locus and also from Equations (78)-(79). 

 
Figure 5.6 a. The root locus for    parameter when         and 

     , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 

 

A selection of root locus diagrams for    obtained by Matlab with a fixed   and 

different   values yielding the existence or non-existence of the break-in and break-

away points are given in Figure 5.7. 
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Figure 5.7 a., c., e., g. The root locus for    with a fixed       and 

different   values b., d., f., h., Zoomed in versions of the root locus 

diagrams in a., c., e., and g. 
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5.4 Integration of One-Parameter Root Locus Analysis Results 

 

The bistability conditions derived by root locus in Chapter 5.1-5.3, are obtained 

for one-parameter only, i.e. for            . Each of these conditions defines 

actually a one-dimensional bistability region by considering one of the parameters as 

free and holding the other two fixed. The upper and lower limits of the bistability 

interval for a specific parameter are functions of the other two parameters. 

Considering the dependency of the limits of the bistability intervals associated with 

specific   parameters on the rest    of the parameters and combining all of the 

obtained conditions, three-dimensional bistability region in       space and 

also its two-dimensional intersections with certain planes determined by holding a 

parameter in    as fixed can be constructed. With the integration of all bistability 

conditions, the complete bistability region is given algebraically as in Equation (80) 

and graphically as shown in Figure 5.8. 

 

                             
       

           

                                             

 

 
Figure 5.8 Bistability region in        space. 

 

Some two-dimensional intersections of the bistability region     with certain 

planes defined by keeping one of  ,  , or    are constant given in Figure 5.9 and 

Figure 5.10. 
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Figure 5.9 2D intersection of bistability region in        space. 

 

 

Figure 5.10 2D intersection of bistability region in        space. 

 

Using the expression of    and    given in (54)-(55), the bistability range of   

parameter can be depicted as a function of   and    parameters. For three specific 

values of    such as      ,     , and     , the corresponding bistability regions in 

the two dimensional parameter space of     are then shown as in Figure 5.11. 

Note that the larger the     value, the smaller the upper limit   , the smaller the 

lower limit    and also the narrower the         interval of   parameter are obtained. 
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Figure 5.11 The bistability region in     space 

for different    values 

Using the upper and lower limits of    in (78)-(79), the bistability regions in 

     plane for some   values such as   ,    , and     are drawn in Figure 5.12. 

Note that the apex of the bistability region takes place at    . 
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Figure 5.12 The bistability region in      

space for different   values 
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5.5 Interpretation of the Bistability Interval for   in Terms of Physical Model 

Parameters 

 

The analyses in previous chapters confirm the same bistability conditions. It is 

interesting to note that     is derived in the literature (Özbudak et al., 2004; van 

Hoek & Hogeweg, 2006) as the bistability condition for different lac operon models.  

As a result of both the discriminant and root-locus analysis employed, a bistability 

condition other than K > 9 becomes valid when only        . For these cases, the 

boundary for the bistability region is derived by considering the two real roots such 

that one of them is double. This derivation is performed in Chapter 4  by calculating 

the discriminant of the polynomial in (24) and also in Chapter 5 by applying the root 

locus method. 

 

In the literature, the bistability region is given commonly in       space, 

namely in terms of external glucose and TMG concentrations, not in the        

parameter space. Since   parameter is a function of    and    as expressed in 

Equation (81), then the bistability region in the       space can be identified by 

determining the limits   
  and   

  corresponding to the    and    limits. Exploiting 

the invertibility of      
     

  

      
 for   , the   

  and   
  limits are derived as a 

function of    as in Equations (82)-(83). 

 

  
  

   

  

   

  

   
     

         
         

                                                                             

 

  
     

     

     

       

     
 

        

           
         

            
  

                        

 

  
     

     

     

       

     
     

        

           
         

             
                        

 

Herein, the        plot obtained by using Equations (82)-(83) is drawn in Figure 

5.13 (Özbudak et al., 2004; Yıldırım et al., 2004). 
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Figure 5.13 The bistability region in        space  
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CHAPTER SIX 

ROOT LOCUS BASED BISTABILITY ANALYSIS OF THE LAC OPERON 

MODEL WITH TRANSACETYLASE EFFECT 

 

The lac operon of E. coli is a well-studied transcriptional regulatory network in 

the systems biology. In the last decade, much attentions has been given to the 

bistability behavior of the lac operon. Despite the fact that the operon consists of 

three structural genes, the mechanism of the lac operon is generally analyzed through 

only two of them. The gene product of lacA, GAT, has not been taken into 

consideration in the bistability studies. In the previous chapters, the effects of the 

GAT on the bistability behavior of lac operon is ignored. In Chapter 6, the effect of 

GAT on the bistability range of lac operon is examined by employing root locus 

analysis method to the higher order equilibrium equation. In the model with 

transacetylase effect, bi-bi ordered kinetics and also Michaelis-Menten kinetics were 

used for acetylation of the artificial inducer, (TMG), by GAT. The range of the 

unified parameters ensuring the bistable behavior of the lac operon was found to be 

slightly affected by the transacetylase. 

 

6.1 A Mathematical Model with Transacetylase Effect 

 

The mathematical model describing the regulation mechanism of the lac operon is 

developed in the presence of both glucose and TMG and in the absence of lactose to 

determine the effect of transacetylase to the bistability dynamics. The model in 

Chapter 6 consists of the terms related with the synthesis of the gene products, 

uptake of TMG into the cell, degradation / dilution of gene products. This model also 

includes the acetylation of TMG by  β-galactosidase to determine the effect of the 

third enzyme of the lac operon. The catabolite repression and inducer exclusion 

effects of the external glucose, respectively, to the synthesis of mRNA and uptake of 

TMG by permease also are defined in the models. The model is composed of four 

differential equations that respectively account for the temporal changes on the 

concentration of mRNA    , permease    , transacetylase    , and TMG    . 
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where        ,      
    ,      

    ,      
     are the same as in (1)-(3). Similar to 

the  model in (1)-(3), the      is the composition of the active degradation,     , and the 

dilution due to growth rate,   . The parameters    with           denote the 

production constants of the gene products.  

 

        is the acetylation of the artificial inducer TMG by GAT and bi-bi ordered 

kinetic is used to model this reaction as given below (Musso & Zabin, 1973). 

 

        
      

      
                                                                                                                  

 

At the steady-state which means the temporal changes on the concentration of  , 

 ,  , and   are constant, it is known that                          . 

The equilibrium equations for three state variables of the lac operon model,  ,  ,  

and  ,  are derived in Equations (90), (92), and (94). 
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Again, after setting the state variables  ,   ,   and   constant, the equilibrium 

equation of T can be obtained as given in Equation (96) by eliminating the 

equilibrium concentrations  ,    and  .  

                                                         

  

  
        

         
                                                                             

 

 

    
  

     

  

   

  

   
     

            
     

     

 
   

   

   

   

   

   

  

   
     

         
         

             

 
  

  

  

   

   

   

  

   
     

         
         

           

 
  

     

  

   

  

   
     

                                                                     

 

When the state variables are constant, the equilibrium points characteristic 

equation is obtained to determine the equilibrium states of the system. In Equation 

(96), derived from Equations (84)-(87) at steady-state, some problems came up about 

the values of the unknown parameters. It is very difficult to define the exact 

parameter values due to the same reasons like the extensive experiment conditions 

and measurement inaccuracies. Because of these difficulties, the parameters are 

generally given in a range. To avoid the problems resulting from parameter 

uncertainty and simplify the equilibrium points characteristic equation, a new 

parameter,    is defined in Equation (98) using the property that all the parameters in 

(96) are multipliers of each other. The   parameter includes the new    parameter. 
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The characteristic equilibrium equation is rewritten to obtain the simplest form as 

given below: 

 

        
  

  
       

  

  
  

  

  
       

  

  
                                                       

 

where the function of mRNA transcription is given as         
      

      . This 

function is substituted in (99). 

 

     
 

      
 
  

  
       

  

  
  

  

  
       

  

  
                                                 

 

As a result, the fourth order equilibrium equation is defined in Equation (101). 

 

   
   

  

  
     

        

  
       

        

  
     

  
  

  
  

        

  
   

        

  
                                             

      

To compare two different enzyme kinetics, the acetylation of the artificial inducer, 

(TMG), by GAT is rewritten in the form of Michaelis - Menten. The parameters are 

arranged as dual form in (102) and (103). 
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The parameters of two different acetylation reactions are derived as     , 

    
  

  
, and     

  

  
 . According to these equalities, 

 

   
   

  

   
   

    
  

   
   

               
  

   
   

  
  

   
 

         

  
  

   
   

  
  

   
   

        
  

   
   

  
  

   
 

                                    

 

When the acetylation of the artificial inducer, TMG, by GAT is defined as 

Michaelis - Menten form, the fourth order equilibrium points characteristic equation 

is defined in Equation (105). 

 

   
                   

              
                 

                                                                                                                                      

                                    

The model is also simplified as follows to determine the parameters for root locus 

analysis with Equation (106)-(110). 
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where,   
  

  

  
,   

  
  

  
 and   

  
  

  
. These parameter values are assumed as 

  
      ,   

        , and   
       (Musso & Zabin, 1973). The    is defined 

as equal to   . It is chosen smaller than   parameter. 

 

In the lac operon model with transacetylase effect, the parameters are defined 

as   ,  ,   
 ,   

 ,   
 ,   ,    , and     to define the bistability ranges by using root 

locus method. For the fourth order characteristic equilibrium equation, the 

discriminant analysis is not sufficient because the discriminant of the fourth order 

polynomial is the sixth order. There is no analytical formula for the roots of the sixth 

order polynomial. However, the root locus based bistability analysis method 

determines the bistability region of the parameter in a numarical way by using the 

break-in and break-away points.  

 

6.2 Root Locus Analysis 

 

In root locus analysis to determine the bistability ranges of parameter for the 

model with transacetylase effect, the characteristic eqaution is derived for bi-bi 

ordered reaction and Michaelis-Menten kinetics, respectively from Equation (110) 

and Equation (105).  To define the differences on the bistability ranges for  ,   and 

   parameters, the bistability region are determined from the root locus plots for five 

different multiples of each new coefficients (between one percent to centuple). The 

changes are given in a tabular format for each parameter.  

 

6.2.1 Root Locus for K Parameter 

 

The root locus for  parameter is drawn for both of the acetylation kinetics to 

determine the effect of the tansacetylase in lac operon model.  
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In the root locus based bistability analysis, the characteristic equation of   

parameter is defined as below for Michaelis-Menten kinetics. 

 

  
          

                                                
   

      

 

The root locus of   parameter for the model without transacetylase effect is 

drawn in Figure 6.1 when       and        . Note that this   value is in the 

bistability region. To compare the bistability region of two models, the root locus of 

  parameter for the model with transacetylase effect is drawn when      , 

     ,         ,            , and         in Figure 6.2. The third root 

locus plot of   parameter is drawn in Figure 6.3 for      ,      ,        
 , 

      
 , and         to identify the changes on the bistability margins with 

respect to two different acetylation kinetics. 

 

 

Figure 6.1 The root locus of   parameter for the model 

without transacetylase effect. 
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Figure 6.2 a. The root locus for   parameter when       and        for Michaelis-Menten 

kinetics, b. Zoomed in root locus visualizing the portion of the diagram around the break-away 

point. 

 

 

Figure 6.3 a. The root locus for   parameter when      ,        ,      ,        
  and 

      
 , b. Zoomed in root locus visualizing the portion of the diagram around the break-away 

point. 

 

The bistability range for   parameter in the model without transacetylase effect 

when       and         is determined as              while this range is 

respectively              and              when        ,     

        and       
 ,       

 . 

 

The root locus for bi-bi ordered kinetics, the characteristic equation is defined in 

Equation (112). The root locus of   parameter in the model without transacetylase 

effect for bi-bi ordered acetylation kinetic is also drawn. In Figure 6.4, the 
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parameters have nominal values and in Figure 6.5,   
  and   

  have their nominal values 

but   
    to compare the two different acetylation kinetics. 

 

  
       

   

   
       

        
           

      
           

          
      

  

                                                                                                                                                              

 

 

 

Figure 6.4 a. The root locus for   parameter when      ,        ,      ,    
       , 

  
         and   

      , b. Zoomed in root locus visualizing the portion of the diagram 

around the break-away point. 

 

 

Figure 6.4 a. The root locus for   parameter when      ,        ,      ,    
       , 

  
    and   

      , b. Zoomed in root locus visualizing the portion of the diagram around the 

break-away point. 
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The bistability ranges for   parameter in model with bi-bi ordered kinetic are 

determined as the same              when   
         and   

   .    

 

The root locus plots for five different multiples of each   
 ,   

 ,   
 ,    ,     and    

parameter are drawn and the    and    are determined as given below. 

 

 

Figure 6.5 a. The root locus for   parameter when      ,        ,      ,    
        , 

  
   .7874 and   

      , b. Zoomed in root locus visualizing the portion of the diagram 

around the break-away point. 

 

 

Figure 6.6 a. The root locus for   parameter when      ,        ,      ,    
       , 

  
   .7874 and   

      , b. Zoomed in root locus visualizing the portion of the diagram 

around the break-away point. 
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Figure 6.7 a. The root locus for   parameter when      ,        , 

     ,    
       ,   

   .7874 and   
      , b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.8 a. The root locus for   parameter when      ,        ,      ,  

  
      ,   

   .7874 and   
      , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.9 a. The root locus for   parameter when      ,        ,      ,  

  
       ,   

   .7874 and   
      , b. Zoomed in root locus visualizing 

the portion of the diagram around the break-away point. 
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Table 6.1 The upper and lower limits of   parameter for different     values 

  
         

0.315 69.7 313 

3.15 69.6 304 

31.5 68.9 233 

315 61.7 74.4 

3150 No No 

 

While the upper limit of the   parameter is changing, the lower limit is almost 

constant. 

 

 

Figure 6.10 a. The root locus for K parameter when   
   .007874 the others are equal to 

nominal values , b. Zoomed in root locus visualizing the portion of the diagram around the 

break-away point. 

 

 

Figure 6.11 a. The root locus for   parameter when      ,        ,      ,    
  

    ,   
   .07874 and   

      , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 
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Figure 6.12 a. The root locus for   parameter when      ,        ,      ,  

  
      ,   

   .7874 and   
      , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.13 a. The root locus for   parameter when      ,        ,      ,  

  
       ,   

  7.874 and   
      , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.14 a. The root locus for   parameter when      ,        ,      ,  

  
       ,   

  78.74 and   
      , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 
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Table 6.2 The upper and lower limits of   parameter for different     values 

  
         

0.007874 68.9 233 

0.07874 68.9 233 

0.7874 68.9 233 

7.874 69 233 

78.74 69.2 235 

 

While the upper limit of the   parameter almost constant, the lower limit changes 

a small amount for different   
  values. 

 

 

Figure 6.15 a. The root locus for   parameter when      ,        ,      ,  

  
       ,   

  0.7874 and   
       , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.16 a. The root locus for   parameter when      ,        ,      ,  

  
       ,   

  0.7874 and   
       , b. Zoomed in root locus visualizing the portion 

of the diagram around the break-away point. 
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Figure 6.17 a. The root locus for   parameter when      ,        ,      ,  

  
       ,   

  0.7874 and   
      , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.18 a. The root locus for   parameter when      ,        ,      ,  

  
       ,   

  0.7874 and   
       , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.19 a. The root locus for   parameter when      ,        ,      ,  

  
       ,   

  0.7874 and   
        , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 
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Table 6.3 The upper and lower limits of   parameter for different     values 

  
        

70.47 No No 

704.7 61.9 76.1 

7047 68.9 233 

70470 69.5 304 

704700 69.7 313 

 

In similar   
  case, the upper limit changes in a large amount while lower one is 

almost constant.  

 

 

Figure 6.20 a. The root locus for   parameter when      ,        ,      ,  

        and          , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 

 

 

Figure 6.21 a. The root locus for   parameter when      ,        ,      ,  

        and           , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 
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Figure 6.22 a. The root locus for   parameter when      ,        ,      ,  

        and            , b. Zoomed in root locus visualizing the portion of 

the diagram around the break-away point. 

 

 

Figure 6.23 a. The root locus for   parameter when      ,        ,      ,  

        and             , b. Zoomed in root locus visualizing the portion of 

the diagram around the break-away point. 

 

 

Figure 6.24 a. The root locus for   parameter when      ,        ,      ,  

        and              , b. Zoomed in root locus visualizing the portion 

of the diagram around the break-away point. 
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Table 6.4 The upper and lower limits of   parameter for different     values 

          

13000 68.2 183 

130000 69.5 293 

1300000 69.7 312 

13000000 69.7 314 

130000000 69.7 314 

 

The upper limit of the bistability range increases when     increases however 

lower limit is almost constant. 

 

 

Figure 6.25 a. The root locus for   parameter when      ,        ,      ,  

        and            , b. Zoomed in root locus visualizing the portion of 

the diagram around the break-away point. 

 

 

Figure 6.26 a. The root locus for   parameter when      ,        ,      ,  

       and            , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 
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Figure 6.27 a. The root locus for   parameter when      ,        ,      ,  

        and            , b. Zoomed in root locus visualizing the portion of 

the diagram around the break-away point. 

 

 

Figure 6.28 a. The root locus for   parameter when      ,        ,      ,  

         and            , b. Zoomed in root locus visualizing the portion 

of the diagram around the break-away point. 

 

 

Figure 6.29 a. The root locus for   parameter when      ,        ,      ,  

          and            , b. Zoomed in root locus visualizing the portion 

of the diagram around the break-away point. 
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Table 6.5 The upper and lower limits of   parameter for different     values 

          

1.2 69.8 314 

12 69.7 314 

120 69.7 312 

1200 69.5 293 

12000 68.2 183 

 

Opposite to     parameter, the upper limit of bistability region of   parameter 

decreases when     gets larger values. But again, the lower limit is almost constant.  

 

 

Figure 6.30 a. The root locus of   parameter when      ,        ,        and 

the nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root 

locus visualizing the portion of the diagram around the break-away point. 

 

 

 

Figure 6.31 a. The root locus of   parameter when      ,        ,      and the 

nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 
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Figure 6.32 a. The root locus of   parameter when      ,        ,       and 

the nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root 

locus visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.33 a. The root locus of   parameter when      ,        ,        and 

the nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root 

locus visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.34 a. The root locus of   parameter when      ,        ,         and 

the nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root 

locus visualizing the portion of the diagram around the break-away point. 
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Figure 6.35 a. The root locus of   parameter when      ,        ,        and 

the nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.36 a. The root locus of   parameter when      ,        ,      and the 

nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.37 a. The root locus of   parameter when      ,        ,       and 

the nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 
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Figure 6.38 a. The root locus of   parameter when      ,        ,        and the 

nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.39 a. The root locus of   parameter when      ,        ,         and the 

nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

Table 6.6 The upper and lower limits of   parameter for different    values 

   
Michaelis-Menten Bi-bi ordered 

            

0.8 69.7 314 69.7 313 

8 69.7 314 69.7 304 

80 69.7 312 68.9 233 

800 69.5 293 61.8 74.4 

8000 68.1 183 No No 
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The upper limits of the   parameter in Michaelis-Menten kinetics decreases 

slower than in bi-bi ordered kinetics. The lower limits in both kinetic are almost 

constant. 

 

6.2.2 Root Locus for   Parameter 

 

The root locus for   parameter is drawn for both of the acetylation kinetics to 

determine the effect of the tansacetylase in lac operon model. For Michaelis-Menten 

kinetics, the characteristic equation is defined for   parameter in Equation (113). 

 

  
     

                

                                      
                                

 

Again, similar to the bistability analysis of   parameter, the root locus of   

parameter is drawn for mathematical model without transacetylase effect to 

determine the changes in bistability region when         and         in Figure 

6.40.  

 

Figure 6.40 The root locus for   parameter 

when         and          

 

The root locus of   parameter for the mathematical model with transacetylase effect 

defined in Michealis-Menten kinetics is also drawn with the nominal values of     

and     in Figure 6.41.  The lower and upper limits of the bistability regions for   

parameter in both mathematical model are the same as            . However, 
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Michealis-Menten kinetics when parameter values are chosen as         and 

       , construct new lower and upper limits as             in Figure 6.42. 

 

 

Figure 6.41 a. The root locus for   parameter when         and         for Michaelis-

Menten kinetics with nominal parameter values, b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.42 a. The root locus for   parameter when        ,        ,      ,        
  

and       
 , b. Zoomed in root locus visualizing the portion of the diagram around the 

break-away point. 

 

The root locus for bi-bi ordered kinetics, the characteristic equation of   parameter is 

defined in Equation (114).  
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The root locus of   parameter for bi-bi ordered kinetics with nominal paremeter 

values is given in Figure 6.43. The limits of the bistability regions for   parameter 

when   
         and   

    are equal to each other as            . The 

bistability region is also the same for Michaelis-Menten kinetics when kinetics 

parameters are given as         and        . 

 

 

Figure 6.43 a. The root locus for   parameter when        ,        ,      ,    
      , 

  
         and   

      , b. Zoomed in root locus visualizing the portion of the diagram 

around the break-away point. 

 

 

Figure 6.44 a. The root locus for   parameter when        ,        ,      ,    
      , 

  
    and   

      , b. Zoomed in root locus visualizing the portion of the diagram around 

the break-away point. 
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The root locus plots for five different multiples of each   
 ,   

 ,   
 ,    ,     and    

parameter are drawn and the bistability region of   parameter         is determined 

as given below. 

 

 

Figure 6.45 a. The root locus for   parameter when        ,         ,      ,    
        , 

  
   .7874 and   

      , b. Zoomed in root locus visualizing the portion of the diagram 

around the break-away point. 

 

 

Figure 6.46 a. The root locus for   parameter when        ,         ,      ,    
       , 

  
   .7874 and   

      , b. Zoomed in root locus visualizing the portion of the diagram 

around the break-away point. 
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Figure 6.47 a. The root locus for   parameter when        ,         , 

     ,    
       ,   

   .7874 and   
      , b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.48 a. The root locus for   parameter when        ,         ,      ,  

  
      ,   

   .7874 and   
      , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.49 a. The root locus for   parameter when        ,         ,      ,  

  
       ,   

   .7874 and   
      , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 
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Table 6.7 The upper and lower limits of   parameter for different   
  values 

  
        

0.315 182 594 

3.15 185 595 

31.5 211 597 

315 383 621 

3150 No No 

 

While the lower limit of the   parameter is changing, the upper limit is almost 

constant. 

 

 

Figure 6.50 a. The root locus for   parameter when   
   .007874 the others are 

equal to nominal values , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 

 

 

Figure 6.51 a. The root locus for   parameter when                ,      ,  

  
      ,   

   .07874 and   
      , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 
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Figure 6.52 a. The root locus for   parameter when                ,      ,  

  
      ,   

   .7874 and   
      , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

Figure 6.53 a. The root locus for   parameter when        ,        ,      ,    
  

    ,   
  7.874 and   

      , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 

 

 

Figure 6.54 a. The root locus for   parameter when        ,        ,      ,    
  

    ,   
  78.74 and   

      , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 
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Table 6.8 The upper and lower limits of   parameter for different   
  values 

          

0.007874 211 597 

0.07874 211 597 

0.7874 211 597 

7.874 211 597 

78.74 210 596 

 

Both the lower and upper limits of the bistability region are constant for different 

  
  values. 

 

Figure 6.55 a. The root locus for   parameter when        ,        ,      ,  

  
       ,   

  0.7874 and   
       , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.56 a. The root locus for   parameter when        ,        ,      ,  

  
       ,   

  0.7874 and   
       , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 



76 
 

 
 

 

Figure 6.57 a. The root locus for   parameter when        ,        , 

     ,    
       ,   

  0.7874 and   
      , b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.58 a. The root locus for   parameter when        ,        ,      ,  

  
       ,   

  0.7874 and   
       , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 

 

 

Figure 6.59 a. The root locus for p parameter when        ,        ,      ,  

  
       ,   

  0.7874 and   
        , b. Zoomed in root locus visualizing the 

portion of the diagram around the break-away point. 
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Table 6.9 The upper and lower limits of   parameter for different   
 values 

  
        

70.47 No No 

704.7 376 620 

7047 211 597 

70470 185 595 

704700 182 594 

 

Similar to   
  case, the lower limit changes in a large amount while the upper one 

is almost constant. But in this case, the increase of   
  values causesa decrese in the 

lower limit of   parameter. 

 

 

Figure 6.60 a. The root locus for   parameter when        ,        ,      ,  

        and          , b. Zoomed in root locus visualizing the portion of 

the diagram around the break-away point. 

 

 

Figure 6.61 a. The root locus for   parameter when        ,        ,      ,  

        and           , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 
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Figure 6.62 a. The root locus for   parameter when        ,        ,      ,  

        and            , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 

 

 

Figure 6.63 a. The root locus for   parameter when        ,        ,      ,  

        and             , b. Zoomed in root locus visualizing the portion of 

the diagram around the break-away point. 

 

 

Figure 6.64 a. The root locus for   parameter when        ,        ,      ,  

        and              , b. Zoomed in root locus visualizing the portion of 

the diagram around the break-away point. 
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Table 6.10 The upper and lower limits of   parameter for different     values 

          

13000 239 600 

130000 188 595 

1300000 182 594 

13000000 182 594 

130000000 182 594 

 

The lower limit of the bistability range decreases when     increases however the 

upper limit is almost constant. 

 

 

Figure 6.65 a. The root locus for   parameter when        ,        ,      ,  

        and            , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 

 

 

Figure 6.66 a. The root locus for   parameter when        ,        ,      ,  

       and            , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 
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Figure 6.7 a. The root locus for   parameter when        ,        ,      ,  

        and            , b. Zoomed in root locus visualizing the portion of the 

diagram around the break-away point. 

 

 

Figure 6.68 a. The root locus for   parameter when        ,        ,      ,  

         and            , b. Zoomed in root locus visualizing the portion of 

the diagram around the break-away point. 

 

 

Figure 6.69 a. The root locus for   parameter when        ,        ,      ,  

          and            , b. Zoomed in root locus visualizing the portion of 

the diagram around the break-away point. 
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Table 6.11 The upper and lower limits of   parameter for different     values 

          

1.2 182 594 

12 182 594 

120 182 594 

1200 188 595 

12000 239 600 

 

The lower limit of bistability region of   parameter increases when     gets 

larger values. But again, the upper limit is almost constant.  

 

 

Figure 6.70 a. The root locus of   parameter when         ,        ,        and the 

nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.71 a. The root locus of   parameter when         ,        ,      and the 

nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 
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Figure 6.72 a. The root locus of   parameter when         ,        ,       and 

the nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root 

locus visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.73 a. The root locus of   parameter when         ,        ,        

and the nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root 

locus visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.74 a. The root locus of   parameter when         ,        ,         

and the nominal values of     and     in Michaelis-Menten kinetics, b. Zoomed in root 

locus visualizing the portion of the diagram around the break-away point. 
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Figure 6.75 a. The root locus of   parameter when         ,        ,        and 

the nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.76 a. The root locus of   parameter when         ,        ,      and 

the nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 

 

 

Figure 6.77 a. The root locus of   parameter when         ,        ,       and 

the nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus 

visualizing the portion of the diagram around the break-away point. 
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Figure 6.77 a. The root locus of   parameter when         ,        ,        and the 

nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus visualizing 

the portion of the diagram around the break-away point. 

 

 

Figure 6.78 a. The root locus of   parameter when        ,        ,         and the 

nominal values of   
  ,   

  and   
  in bi-bi ordered kinetics, b. Zoomed in root locus visualizing 

the portion of the diagram around the break-away point. 

 

Table 6.12 The upper and lower limits of   parameter for different    values 

   
Michaelis-Menten Bi-Bi ordered 

            

0.8 182 594 182 594 

8 182 594 185 595 

80 182 594 211 597 

800 188 595 383 620 

8000 239 600 No No 
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The lower limit of the   parameter in bi-bi ordered kinetic increases faster than in 

Michaelis-Menten kinetics. The upper limits in both kinetic, are almost constant. 

 

6.2.3 Root locus for    Parameter 

 

The root locus for    parameter is drawn for both of the acetylation kinetics to 

determine the effect of the tansacetylase in lac operon model to compare the 

bistability region with the mathematical model without transacetylase. Like   and   

parameters, to determine the bistability region of    parameter, the root locus of    

is drawn for mathematical model without transacetylase effect       and    

      in Figure 6.79. The lower and upper limits of the bistability region is 

determined as                   from the root locus graph. 

 

 

Figure 6.79 a. The root locus of    parameter for the model without transacetylase effect when 

        and       b. Zoomed in root locus visualizing the portion of the diagram around 

the break-away point. 

 

The root locus for Michaelis-Menten kinetic, the characteristic equation is defined 

for    parameter in the equation below. 
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The root locus for    parameter is drawn with default values of the other 

parameters in Figure 6.80. Similarly, to identify the effects of the acatylation kinetics 

in the bistability region, another root locus for    parameter when      ,      ,  

      
 ,       

  and         is given in Figure 6.81. The bistability region 

for Michaelis-Menten kinetics with the nominal parameter values is determined as 

                  similar to the mathematical model without tranacetylase 

effect. For Michaelis-Menten kinetics with       
 ,       

 , the  bistability 

region gets narrow and it is obtained from root locus graph as                  . 

 

 

Figure 6.80 a. The root locus for    parameter when       and         for Michaelis-

Menten kinetics with nominal parameter values, b.-c. Zoomed in root locus visualizing the 

portion of the diagram around the break-in/away point. 
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Figure 6.81 a. The root locus for    parameter when      ,         ,      ,        
  and 

      
 , b.-c. Zoomed in root locus visualizing the portion of the diagram around the break-

in/away point. 

 

The root locus for bi-bi ordered kinetics, the characteristic equation according to 

   parameter is defined in Equation (116). 

 

  
    

     
        

        
      

     

        
        

        
      

  
                                                   

                                  

The root locus for    parameter is drawn with nominal parameter values in bi-bi 

ordered kinetics in Figure 6.82. The root locus for the condition   
    is given in 

Figure 6.83 to determine the effect of   
  parameter in the bistability region. The 

lower and upper limits are again equal to each other as                  .   
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Figure 6.82 a. The root locus for    parameter when      ,        , 

     ,    
      ,   

         and   
      , b.-c. Zoomed in root locus 

visualizing the portion of the diagram around the break-in/away point. 

 

 

 

Figure 6.83 a. The root locus for    parameter when      ,        , 

     ,    
       ,   

    and   
      , b.-c. Zoomed in root locus 

visualizing the portion of the diagram around the break-in/away point. 
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The root locus plots for five different multiples of each as   
 ,   

 ,   
 ,    ,     

and    parameter are drawn and the   
  and   

  are determined given below. 

 

 

 

Figure 6.84 a. The root locus for    parameter when      ,        ,      ,    
        , 

  
   .7874 and   

      , b.-c. Zoomed in root locus visualizing the portion of the diagram 

around the break-in/away point. 
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Figure 6.85 a. The root locus for    parameter when      ,        , 

     ,    
       ,   

   .7874 and   
      , b.-c. Zoomed in root 

locus visualizing the portion of the diagram around the break-in/away point. 

 

 

Figure 6.86 a. The root locus for    parameter when        ,      ,  

  
       ,   

   .7874 and   
      , b.-c. Zoomed in root locus 

visualizing the portion of the diagram around the break-in/away point. 

 



91 
 

 
 

 

 

Figure 6.87 a. The root locus for    parameter when        ,      ,  

  
      ,   

   .7874 and   
      , b.-c. Zoomed in root locus 

visualizing the portion of the diagram around the break-in/away point. 

 

 

 

Figure 6.88 a. The root locus for    parameter when        ,      ,  

  
       ,   

   .7874 and   
      , b.-c. Zoomed in root locus 

visualizing the portion of the diagram around the break-in/away point. 
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Table 6.13 The upper and lower limits of    parameter for different   
   values 

      
    

  

0.315 0.0106 0.113 

3.15 0.0109 0.113 

31.5 0.0143 0.114 

315 0.0471 0.123 

3150 No No 

 

While the upper limit of the    parameter changes slowly, the lower limit changes 

more rapidly. 

 

 

Figure 6.89 a. The root locus for    parameter when   
   .007874 and the others are equal to 

nominal values , b.-c. Zoomed in root locus visualizing the portion of the diagram around the 

break-in/away point. 
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Figure 6.90 a. The root locus for    parameter when   
   .07874 and the 

others are fixed, b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 

 

 

Figure 6.91 a. The root locus for    parameter when   
   .7874 and the others 

are fixed, b.-c. Zoomed in root locus visualizing the portion of the diagram 

around the break-in/away point. 
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Figure 6.92 a. The root locus for   parameter when   
  7.874 and the 

others are fixed, b.-c. Zoomed in root locus visualizing the portion of 

the diagram around the break-in/away point. 

 

 

Figure 6.93 a. The root locus for   parameter when    
  78.74 and the others are 

fixed, b.-c. Zoomed in root locus visualizing the portion of the diagram around the 

break-in/away point. 
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Table 6.14 The upper and lower limits of    parameter for different   
   values 

  
    

    
  

0.007874 0.0143 0.114 

0.07874 0.0143 0.114 

0.7874 0.0143 0.114 

7.874 0.0143 0.114 

78.74 0.0142 0.0113 

 

While the upper limit of the    parameter is almost constant, the lower limit 

changes a small amount for different   
  values. 

 

 

 

Figure 6.94 a. The root locus for    parameter when   
        and the others are fixed, 

b.-c. Zoomed in root locus visualizing the portion of the diagram around the break-in/away 

point. 
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Figure 6.95 a. The root locus for    parameter when   
        and the 

others are fixed, b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 

 

 

Figure 6.96 a. The root locus for    parameter when    
       and the 

others are fixed, b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 
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Figure 6.97 a. The root locus for    parameter when   
        and the 

others are fixed, b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 

 

 

Figure 6.98 a. The root locus for    parameter when   
         and the 

others are fixed, b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 
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Table 6.15 The upper and lower limits of    parameter for different    
  values 

   
    

    
  

70.47 No No 

704.7 0.0459 0.123 

7047 0.0143 0.114 

70470 0.0109 0.113 

704700 0.0106 0.113 

 

Similar to   
  case, the upper limit changes in a small amount while the lower one 

is decreasing.  

 

 

 

Figure 6.99 a. The root locus for    parameter when          , b.-c. Zoomed in root 

locus visualizing the portion of the diagram around the break-in/away point. 

 



99 
 

 
 

 

 

Figure 6.100 a. The root locus for    parameter when           , b.-

c. Zoomed in root locus visualizing the portion of the diagram around the 

break-in/away point. 

 

 

Figure 6.101 a. The root locus for    parameter when            , b.-c. 

Zoomed in root locus visualizing the portion of the diagram around the 

break-in/away point. 
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Figure 6.102 a. The root locus for    parameter when     

        , b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 

 

 

 

Figure 6.103 a. The root locus for    parameter when              , b.-c. 

Zoomed in root locus visualizing the portion of the diagram around the break-

in/away point. 



101 
 

 
 

 

Table 6.16 The upper and lower limits of    parameter for different     values 

      
    

  

13000 0.0182 0.115 

130000 0.0113 0.113 

1300000 0.0106 0.113 

13000000 0.0106 0.113 

130000000 0.0106 0.113 

 

The lower limit of the bistability range decreases when     increases, however 

the upper limit is almost constant. 

 

 

 

Figure 6.104 a. The root locus for    parameter when        , b.-c. Zoomed in root locus 

visualizing the portion of the diagram around the break-in/away point. 
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Figure 6.105 a. The root locus for    parameter when       , b.-c. 

Zoomed in root locus visualizing the portion of the diagram around the 

break-in/away point. 

 

 

Figure 6.106 a. The root locus for    parameter when        , b.-c. 

Zoomed in root locus visualizing the portion of the diagram around the 

break-in/away point. 
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Figure 6.107 a. The root locus for    parameter when         , b.-c. Zoomed in 

root locus visualizing the portion of the diagram around the break-in/away point. 

 

 

 

Figure 6.108 a. The root locus for    parameter when          , b.-c. Zoomed 

in root locus visualizing the portion of the diagram around the break-in/away 

point. 
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Table 6.17 The upper and lower limits of    parameter for different     values 

      
    

  

1.2 0.0106 0.113 

12 0.0106 0.113 

120 0.0106 0.113 

1200 0.0113 0.113 

12000 0.0183 0.115 

 

Similar to     parameter, the upper limit of bistability region of   parameter 

changes in a small amount when     gets larger values. But this time, the lower limit 

increases.  

 

 

Figure 6.109 a. The root locus of    parameter when        in Michaelis-Menten kinetics, b.-

c. Zoomed in root locus visualizing the portion of the diagram around the break-in/away point. 
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Figure 6.110 a. The root locus of    parameter when      in Michaelis-

Menten kinetics, b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 

 

 

 

Figure 6.111 a. The root locus of    parameter when       in 

Michaelis-Menten kinetics, b.-c. Zoomed in root locus visualizing the 

portion of the diagram around the break-in/away point. 
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Figure 6.112 a. The root locus of    parameter when        in Michaelis-

Menten kinetics, b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 

 

 

 

Figure 6.113 a. The root locus of    parameter when         in 

Michaelis-Menten kinetics, b.-c. Zoomed in root locus visualizing the 

portion of the diagram around the break-in/away point. 
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Figure 6.114 a. The root locus of    parameter when        in bi-bi ordered 

kinetics, b.-c. Zoomed in root locus visualizing the portion of the diagram 

around the break-in/away point. 

 

 

 

Figure 6.115 a. The root locus of    parameter when      in bi-bi ordered 

kinetics, b.-c. Zoomed in root locus visualizing the portion of the diagram 

around the break-in/away point. 
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Figure 6.116 a. The root locus of    parameter when       in bi-bi ordered 

kinetics, b.-c. Zoomed in root locus visualizing the portion of the diagram 

around the break-in/away point. 

 

 

 

Figure 6.117 a. The root locus of    parameter when        in bi-bi 

ordered kinetics, b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 
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Figure 6.118 a. The root locus of    parameter when         bi-bi 

ordered kinetics, b.-c. Zoomed in root locus visualizing the portion of the 

diagram around the break-in/away point. 

 

Table 6.18 The upper and lower limits of    parameter for different    values 

   
Michaelis-Menten Bi-Bi ordered 

  
    

    
    

  

0.8 0.0106 0.113 0.0106 0.113 

8 0.0106 0.113 0.109 0.113 

80 0.0106 0.113 0.0143 0.114 

800 0.0113 0.113 0.0471 0.123 

8000 0.0183 0.115 No No 

 

Both the upper and lower limits of the   parameter in Michaelis-Menten kinetics 

increase slower than in bi-bi ordered kinetics.  

 

The result for         parameters are given in Table 6.19. 
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Table 6.19 The bistability region changes of         parameters 

New 

model 

Parameters 

(increase) 

       

              
    

  

  
  

Small 

decrease 
Decrease Increase Increase Increase 

Small 

increase 

  
  

 
Constant 

 

Constant Constant Constant Constant Constant 

  
  

Small 

increase 
Increase Decrease Decrease Decrease 

Small 

Decrease 

    
 

Constant 
Increase Decrease Constant Decrease Constant 

    
 

Constant 
Decrease Increase Constant Increase Constant 

   
Constant 

 
Decrease 

 

Increase Constant Increase Constant 

Small 

Decrease 

Decrease 

 
Increase Increase Increase Increase 

 

The new parameters cause the same type of changes on the lower and upper limits 

of the bistability region of   and    parameters and these new parameters have 

adverse effects on   parameter.   

 

6.3 Interpretation of the Bistability Interval for   with Transacetylase Effect 

 

The evaluations of the change in the bistability range of parameters are made in 

root locus based bistability analysis parts. The bistability region in the       space 

is identified by determining the limits   
  and   

  corresponding to the    and    

limits to determine the changes in the bistability region given in       space. The 

upper and lower limits of   parameter are calculated for five different multiples of   . 

The  calculated values of   parameter are shown in Table 6.20. 
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Table 6.20 The bistability region for   parameter with different    parameter values. 

   

Bi-bi ordered 

Kinetics 

Michaelis- Menten 

Kinetics 

            

0.01 182 594 182 594 

0.1 182 594 182 594 

1 182 594 182 594 

10 186 595 182 594 

100 218 598 183 594 

1000 418 627 190 595 

 

 

Again, the        plot obtained by using Eqautions (82)-(83) is drawn in Figure 

6.119 and Figure 6.120  (Özbudak et al., 2004; Yıldırım et al., 2004). 

 

 

Figure 6.119 The bistability region in        space for bi-bi ordered kinetics. 
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Figure 6.120 The bistability region in        space for Michaelis-Menten kinetics. 
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CHAPTER SEVEN 

CONCLUSION 

 

This thesis presents theoretical and numerical results on the analysis of bistable 

behavior of TMG induced lac operon with ignoring and also with taking into account 

the transacetylase effect. Two methods, one is based on discriminant and the other is 

based on a well known control theoretical tool, i.e. the root locus, are introduced in 

the thesis for determining the bistability regions in the space of model parameters.  

 

In addition to the bistability analysis, the boundedness of the state variables and 

local stability of the equilibria are studied in the thesis only for the lac operon model 

with no GAT effect. These two analyses can be said to be valid also for the second 

model considering transacetylase effect since the second model is also derived based 

on the enzyme kinetics by employing Hill and Micheales-Menten approaches and the 

application of the analyses are straightforward.  

 

The discriminant and root locus based bistability analyses for the lac operon 

model with no transacetylase effect are performed in algebraic, graphical, and 

numerical ways all supporting to each other. It is observed along the studies that the 

algebraic and graphical methods may get stuck for models possessing high order 

polynomial equilibrium equations. It is also concluded that the developed root locus 

based method provides an efficient numerical tool for any kind and arbitrary order of 

gene regulatory and metabolic networks model when it is defined in a state equation 

form with rational right hand sides as in the models derived based on enzyme 

kinetics employing Hill and Michealis-Menten approaches. 

 

The developed discriminant and root locus based methods for the parametric 

equilibrium analysis of the lac operon models provide also a solution to the problem 

of analysis of the gene regulatory network models under parameter uncertainties. The 

determined bistability ranges for the lac operon model parameters may be helpful for 

understanding the variations in the appearance of the bistable behavior of the 

biological lac operon which is observed to show differences from one species to 
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another and even from one experiment to another. The determined bistability ranges 

may also lead to derive new efficient feedback and/or optimal control methods for 

the regulation of the behavior of lac operon while optimizing some performance 

measure. 
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