
DOKUZ EYLÜL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES 
 

 

 

 

 

 

 

MODELING AND SOLVING MIXED-MODEL 

ASSEMBLY LINE BALANCING PROBLEM 

WITH SETUPS 
 

 

 

 

 

by 

Şener AKPINAR 
 

 

 

 

 

 

 

January, 2013 

İZMİR



MODELING AND SOLVING MIXED-MODEL 

ASSEMBLY LINE BALANCING PROBLEM 

WITH SETUPS 

 

 
 

 

 

 

A Thesis Submitted to the 

Graduate School of Natural and Applied Sciences of Dokuz Eylül University 

In Partial Fulfillment of the Requirements for the Degree of Doctor of 

Philosophy in Industrial Engineering, Industrial Engineering Program 

 

 

 

 

 

 

 

 

by 

Şener AKPINAR 
 

 

 

 

January, 2013 

İZMİR 



 



iii 

ACKNOWLEDGMENTS 

 

 

First, I would like to point out my gratitude to my advisor, Prof. Dr. Adil 

BAYKASOĞLU for his guidance, continuing support, encouragement and 

invaluable advice throughout the progress of this dissertation.  

 

 I am truly grateful to  my previous advisor, Prof. Dr.Günhan Miraç BAYHAN for 

her guidance at the first two years of this dissertation. 

 

 I would also like to thank to my committee members Prof. Dr. Can Cengiz 

ÇELİKOĞLU and Yard. Doç. Dr. Gökalp YILDIZ for their helpful comments and 

advice. 

 

 I would like to introduce my great thanks to my friend, Atabak ELMİ and all my 

friends, Neslihan AVCU, Hanefi Okan İŞGÜDER, Alper HAMZADAYI, and 

Abdurrahman TOSUN, for their support, whenever I need, and listening to my 

complaints during this period. I would also like to thank to my colleagues for their 

guidance during my studies at Dokuz Eylul University. 

 

 Last, but the most, I would like to emphasize my thankfulness to my parents, 

Muteber and Hasan Hüseyin AKPINAR, and my elder brothers, Zafer and Taner 

AKPINAR because of their love, confidence, encouragement and endless support in 

my whole life. 

 

 

Şener AKPINAR 

İzmir, January, 2013 

 

 

 

 



 
 

iv 
 

MODELING AND SOLVING MIXED-MODEL ASSEMBLY LINE 

BALANCING PROBLEM WITH SETUPS 

  

ABSTRACT 

 

 This dissertation concerns the type-I mixed-model assembly line balancing 

problem with setup times (MMALBPS-I). MMALBPS-I is an extension of classical 

MMALBP-I in which sequence-dependent setup times between tasks are taken into 

consideration. The main goal of this dissertation is developing the mathematical 

formulation of the problem and solving the problem with newly proposed parallel 

hybrid meta-heuristic approaches. 

 

 Within this context, a mixed-integer linear programming (MILP) model for the 

problem is developed and the capability of our MILP is tested through a set of 

computational experiments. Due to the complex nature of the problem, parallel 

hybrid algorithms are proposed in order to tackle the problem.   

 

 First, a new hybrid algorithm (ACO-GA), which executes ant colony optimization 

in combination with genetic algorithm, is developed. The proposed ACO-GA 

algorithm aims at enhancing the performance of ant colony optimization by 

incorporating genetic algorithm as a local search strategy for MMALBPS-I. In the 

proposed hybrid algorithm ACO is conducted to provide diversification, while GA is 

conducted to provide intensification.  

 

 Second, we tackled the problem with Bees Algorithm (BA), which is a relatively 

new member of swarm intelligence based meta-heuristics and tries to simulate the 

group behavior of real honey bees. However, the basic BA simulates the group 

behavior of real honey bees in a single colony; we aim at developing a new BA, 

which simulates the group behavior of honey bees in a single colony and between 

multiple colonies. The multiple colony type of BA is more realistic than the single 

colony type because of the multiple colony structure of the real honey bees. 



 
 

v 
 

 The performances of the proposed algorithms are tested through a set of 

computational experiments and computational results indicate that both algorithms 

have satisfactory performances.  

 

Keywords: Mixed-model assembly line balancing problem, sequence-dependent 

setup times, mixed-integer linear programming, hybrid meta-heuristics, ant colony 

optimization, genetic algorithm, bees algorithm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vi 
 

KARMA MODELLİ MONTAJ HATTI DENGELEME PROBLEMİNİN 

HAZIRLIK ZAMANLARI İLE MODELLENMESİ VE ÇÖZÜLMESİ 

 

ÖZ 

 

  Bu tez I. tip karma modelli montaj hattı dengeleme problemini ele almaktadır. Bu 

problemin kapsamı, işler arasındaki sıra bağımlı hazırlık zamanları da dikkate 

alınarak genişletilmiştir. Bu tezin temel amacı, problemin matematiksel 

formülasyonunu geliştirmek ve problemi yeni önerilen paralel hibrit meta-sezgisel 

algoritmalarla çözmektir. 

 

 Bu kapsamda, problem için bir karma tamsayılı doğrusal programlama modeli 

geliştirilmiş ve modelin performansı bir deney seti üzerinde test edilmiştir. 

Problemin karmaşık yapısı nedeniyle, problemin çözümü için paralel hibrid 

algoritmalar önerilmiştir. 

 

 İlk olarak, problemin çözümü için karınca kolonisi optimizasyonu ve genetik 

algoritmanın birlikte çalıştığı yeni bir paralel hibrit algoritma geliştirilmiştir. 

Önerilen algoritma, genetik algoritmayı lokal arama strateji olarak kullanmayı ve bu 

şekilde karınca kolonisi optimizasyonunun performansını arttırmayı 

amaçlamaktadır.Önerilan hibrit algoritmada, genetik algoritma kuvvetlendirme 

(intensification) sağlarken karınca kolonisi algoritması çeşitlendirme (diversfication) 

sağlar. 

 

 İkinci sırada, sürü zekası tabanlı meta-sezgisel algoritmaların yeni bir üyesi olan 

ve gerçek bal arılarının grup içi davranışlarının benzetimi ile oluşturulan arılar 

algoritması ile problem çözülmüştür. Temel arılar algoritmasının tek bir koloni 

içindeki bal arılarının davranışlarının benzetimi üzerine kurulmuş olmasına rağmen, 

biz bu çalışma kapsamına bal arılarının tek bir koloni içinde ve çoklu koloniler 

arasındaki  davranışlarının benzetimiyle yeni bir algoritma geliştirmeyi amaçlıyoruz. 

Çoklu koloni yapısına sahip arı algoritması, tek bir koloniden oluşan arı 



 
 

vii 
 

algoritmasına göre gerçek bal arılarının çoklu kolonili bir yapıda olmalarından dolayı 

daha gerçekçidir.  

 

 Önerilen algoritmaların performansları bir dizi deneysel çalışma ile test edilmiş ve 

her iki algoritmanın da tatmin edici performansa sahip oldukları sonucuna 

varılmıştır. 

 

Anahtar sözcükler: Karma modelli montaj hattı dengeleme problemi, sıra bağımlı 

hazırlık zamanları, karma tamsayılı doğrusal programlama, hibrit meta sezgiseler, 

karınca kolonisi optimizasyonu, genetik algoritma, arılar algoritması 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

viii 
 

CONTENTS 

 

Page  

 

Ph.D. THESIS EXAMINATION RESULT FORM .................................................... ii 

ACKNOWLEDGMENTS .......................................................................................... iii 

ABSTRACT ................................................................................................................ iv 

ÖZ ............................................................................................................................... vi 

 

CHAPTER ONE - INTRODUCTION ..................................................................... 1 

 

1.1 Importance of the Problem ................................................................................. 1 

1.2 Framework of the Dissertation ........................................................................... 3 

1.3 Outline of the Thesis .......................................................................................... 4 

 

CHAPTER TWO - PROBLEM DEFINITION AND LITERATURE SURVEY 

ON MMALBP-I .......................................................................................................... 5 

 

2.1 Chapter Introduction .......................................................................................... 5 

2.2 Assembly Lines .................................................................................................. 6 

2.3 Mixed-Model Assembly Lines ........................................................................... 7 

2.3.1 Mixed-Model Assembly Line Balancing Problem ..................................... 7 

2.3.2 Mixed-Model Assembly Line Balancing Problem with Setups .................. 9 

2.3.2.1 Sequence Dependent Setup Times between Tasks ............................ 10 

2.4 Literature Survey .............................................................................................. 15 

 

CHAPTER THREE - A MIXED INTEGER LINEAR PROGRAMMING 

MODEL FOR MMALBPS-I ................................................................................... 19 



 
 

ix 
 

3.1 Chapter Introduction ........................................................................................ 19 

3.2 The Mixed Integer Linear Programming Model .............................................. 22 

3.2.1 Assignment Constraints ............................................................................ 24 

3.2.2 Precedence Constraints ............................................................................. 24 

3.2.3 Zoning Constraints .................................................................................... 24 

3.2.4 Workstation Parallelization Constraints .................................................... 25 

3.2.5 Sequence Dependency Constraints ........................................................... 26 

3.2.5.1 Constraints Sets for the Sequences of Tasks ...................................... 26 

3.2.5.2 Constraints Sets for the Setup Operations .......................................... 29 

3.2.6 Capacity Constraints ................................................................................. 34 

3.2.7 Stations Constraints ................................................................................... 35 

3.2.8 Objective Function .................................................................................... 35 

3.3 An Illustrative Example ................................................................................... 36 

3.4 Computational Experiments ............................................................................. 38 

3.5 Chapter Conclusions ........................................................................................ 40 

 
CHAPTER FOUR - HYBRID ANT COLONY OPTIMIZATION-GENETIC 

ALGORITHM FOR MMALBPS-I ........................................................................ 41 

 
4.1 Chapter Introduction ........................................................................................ 41 

4.2 The proposed Hybrid ACO-GA Algorithm ..................................................... 42 

4.2.1 Task Selection Strategy ............................................................................. 44 

4.2.2 Solution Quality Measure ......................................................................... 45 

4.2.3 Genetic Algorithm ..................................................................................... 46 

4.2.3.1 Roulette Wheel Selection ................................................................... 46 

4.2.3.2 Two Point Crossover .......................................................................... 46 

4.2.3.3 Scramble Mutation ............................................................................. 48 



 
 

x 
 

4.2.3.4 Fitness Evaluation .............................................................................. 49 

4.2.3.5 New Generation ................................................................................. 50 

4.2.4 Pheromone Release Strategy ..................................................................... 50 

4.3 Computational Experience ............................................................................... 51 

4.3.1 A Lower Bound for the Number of Workstations with Setup Times ....... 52 

4.3.2 Computational Results .............................................................................. 55 

4.4 Chapter Conclusions ........................................................................................ 63 

 
CHAPTER FIVE - A MULTIPLE COLONY HYBRID BEES ALGORITHM 

FOR MMALBPS-I ................................................................................................... 64 

 
5.1 Chapter Introduction ........................................................................................ 64 

5.2 Multiple Colony Hybrid Bees Algorithm ......................................................... 66 

5.2.1 Behaviors of the Bees in their own Colonies ............................................ 68 

5.2.2 Initial Colonies .......................................................................................... 70 

5.2.3 Fitness Evaluation ..................................................................................... 72 

5.2.4 Neighborhood Structure ............................................................................ 73 

5.3 Computational Experience ............................................................................... 75 

5.3.1 Computational Results .............................................................................. 77 

5.4 Chapter Conclusions ........................................................................................ 84 

 
CHAPTER SIX - CONCLUSIONS ........................................................................ 85 

 
6.1 Summary .......................................................................................................... 85 

6.2 Contributions of the Dissertation ..................................................................... 86 

6.3 Future Research Directions .............................................................................. 87 

 
REFERENCES ......................................................................................................... 88 



 
 

1 
 

CHAPTER ONE 

INTRODUCTION 

 

1.1 Importance of the Problem 

 

 In 1913, Henry Ford changed the type of manufacturing system by introducing a 

moving belt in a factory for the first time. Before the moving belt, workers were able 

to build one piece of an item at a time instead of an item at a time. This changed type 

of manufacturing system named as assembly line and reduced the cost of production. 

Over the years a new problem type, design of efficient assembly lines, increased in 

importance. Assembly line balancing problem (ALBP) is a well-known assembly 

design problem, which consist of partitioning the assembly work among the 

workstations so as to optimize some objective.  

 

 Assembly lines are flow-oriented production systems where some operations are 

performed by some productive units referred to as workstations. The work-pieces 

(jobs) are moved along the line usually by a conveyor belt so as to successively visit 

all workstations, so work-pieces are moved from one workstation to another. Certain 

operations are repeatedly performed regarding the cycle time at each workstation. 

  

 Manufacturing a product on an assembly line requires partitioning the total 

amount of work into a set of elementary operations named tasks. Performing a task j 

takes a task time tj and requires certain equipment of machines and/or skills of 

workers. Due to technological and organizational conditions precedence constraints 

between the tasks have to be observed. These elements are visualized by a 

precedence graph. It contains a node for each task, node weights for the task times 

and arcs for the precedence constraints. Any type of ALBP consists in finding a 

feasible line balance, i.e., an assignment of each task to exactly one workstation such 

that the precedence constraints and possibly further restrictions are fulfilled. 

  

 Assembly lines were firstly created to produce one single homogeneous product 

in high volumes. The balancing problem of this type of lines named as simple



2 
 

 
 

assembly balancing problem (SALBP). Single-model assembly lines are the least 

suited production system for high variety demand scenarios. Current consumer-

centric market conditions require high flexibility in manufacturing systems. Hence, 

assembly lines must be designed so as to satisfy high-mix/low volume manufacturing 

strategies. Due to high cost to build and maintain an assembly line, the manufacturers 

produce one model with different features or several models on a single assembly 

line. This changed type of assembly lines lead to arise the mixed-model assembly 

line balancing problem, which was handled by Thomopoulos (1967) for the first time 

in the literature. 

 

 Mixed-model assembly lines have mainly two types of balancing problems like 

traditional single-model assembly lines: design of a new assembly line for which the 

demand can be easily forecasted (type-I) and redesign of an existing assembly line 

(type-II) when changes in the assembly process or in the product range occurs. In this 

study we deal with the type-I mixed-model assembly line balancing problem 

(MMALBP-I), which has some particular features of the real-world assembly line 

balancing problems such as parallel workstations, zoning constraints, and sequence 

dependent setup times between tasks. 

 

 The assembly line balancing literature usually assumes that the setups are 

negligible because of their low times in comparison with operation times for most of 

the industrial assembly lines. Moreover, setups are considered independently as they 

are executed just before or after the tasks, hence, their times are added to task times 

Andrés et al. (2008). In such a situation, it is not an essential issue to determine task 

performing sequences in a workstation, however, task performing sequences are vital 

for minimizing the workstation global time, in case of sequence dependent setup 

times. Furthermore, determining the optimum task performing sequence provides 

more effectively balanced assembly lines. In other words, the maximum line 

efficiency, which is one of the most important performance criteria of the assembly 

lines, can be obtained if the optimum task performing sequences are achieved. Also, 

considering sequence dependent setup times between tasks becomes more important 

when cycle time is low, since setup times may represent a high percentage of it. 



3 
 

 
 

 The main endeavor of this study is to introduce the type-I mixed-model assembly 

line balancing problem with setups (MMALBPS-I), which is an extension of 

classical MMALBP-I and takes into consideration the sequence dependent setup 

times between tasks.  

 

1.2 Framework of the Dissertation 

  

 The concept of sequence dependent setup times is an actual framework in 

assembly line balancing problems (ALBP). Most of the studies on assembly line 

balancing problem with sequence dependent setup times have focused extensively on 

single-model lines. Nevertheless, single-model assembly lines are not able to respond 

the demand for higher product variability, which is an outcome of the current 

consumer-centric market conditions. Thus, high-mix/low-volume manufacturing 

strategies substitute for low-mix/high-volume manufacturing strategies. That is to 

say, mixed-model assembly lines substitute for single-model assembly lines. At this 

point, the lack of studies dealing with the consideration of setups for mixed-model 

assembly lines stands out in the existing literature.   

 

 The main goal of this study is to introduce the MMALBPS-I, by formally 

describing the problem and developing solution procedures in order to tackle the 

problem, since MMALBP-I is NP-hard (Bukchin & Rabinowitch, 2006) then 

MMALBPS-I is also NP-hard. 

 

 Firstly, we developed a mixed integer linear programming (MILP) model, which 

considers the phenomena of sequence dependent setup times for mixed-model 

assembly lines for the first time, in order to formally describe the problem.  

However, due to the NP-Hard nature of the problem the proposed MILP model is not 

able to solve large scale problems. Therefore, we developed meta-heuristics based 

hybrid algorithms in order to tackle the problem, since hybrids are believed to benefit 

from synergy (Blum et al., 2011). Among the meta-heuristics, we selected genetic 

algorithm (GA), ant colony optimization (ACO), and bess algorithm (BA) and we 

developed new hybrid algorithms based on these three meta-heuristics.  



4 
 

 
 

1.3 Outline of the Thesis  

 

 Rest of the study involves five chapters.  The following chapter contains the 

problem definition, and a literature survey about the mixed-model assembly line 

balancing problem, and the concept of sequence-dependent setup times in assembly 

line balancing. 

 

Chapter three gives the developed MILP model for the type-I mixed-model 

assembly line balancing problem with sequence dependent setup times, zoning 

constraints, and parallel workstations. 

 

The fourth and fifth chapters mainly focus on solving MMALBPS-I with parallel 

workstations and zoning constraints using the proposed hybrid algorithms. Chapter 

fourth presents a new hybrid algorithm, which executes ant colony optimization in 

combination with genetic algorithm (ACO-GA), while chapter five presents a new 

multiple colony hybrid bess algorithm (MCHBA), which simulates the group 

behavior of honey bees in a single colony and between multiple colonies in a more 

realistic way than the single colony types. 

 

 Finally, the conclusions and the contributions of this study are discussed in 

chapter six. 



 
 

5 
 

CHAPTER TWO 

PROBLEM DEFINITION AND LITERATURE SURVEY ON MMALBP-I 

 

2.1 Chapter Introduction 

 

 The role of assembly lines in manufacturing systems has been changing through 

time due to the customer expectations. At the beginning, assembly lines provided 

manufacturers to produce low variety of products in high volumes. By the way, they 

gained low production costs, reduced cycle times and accurate quality levels, which 

are essential advantages for companies in order to remain being competitive in 

market. The initial designs of assembly lines enabled to produce a single 

homogenous product. Such assembly lines are the least suited manufacturing systems 

for the cases of high variety demand scenarios and named as single-model assembly 

lines. Due to the current competitive and consumer-centric market conditions, a 

requirement of rearrangement of the single-model assembly lines arises. The newly 

designed assembly lines must be able to produce different models with different 

number of features, because customers may prefer a model with regard to their 

desires and financial capabilities. Hence, manufacturers must produce one model 

with different features or several models on a single assembly line within the scope 

of being productive. Under these circumstances, the mixed-model assembly line 

balancing problem arises to smooth the production and decrease the cost. 

 

 The main goal of this chapter is to provide a general understanding about the 

mixed-model assembly line balancing problem and the consideration of the 

sequences dependent setup times in assembly line balancing. The rest of this chapter 

is organized as follows. Following section gives a brief classification of assembly 

lines. Section 2.3 gives information about mixed-model assembly lines, introduces 

mixed-model assembly line balancing problem with the consideration of sequence 

dependent setup times between tasks. In section 2.4, first, a review concerning the 

existing literature about the assembly line balancing problems with sequence 

dependent setup times is given. A summarized literature survey on MMALBP-I is 

also given in Section 2.4. 



6 
 

 
 

2.2 Assembly Lines 

 

 An assembly line (AL) is a manufacturing process consisting of various 

workstations connected by a material handling system in which particular tasks are 

executed in order to produce a final product. Assembly lines are the most suitable 

manufacturing system in a mass production environment, because they allow the 

assembly of complex products by workers with limited training, by dedicated 

machines and/or by robots. 

 

 Assembly lines can be categorized by taking into account the number of products 

to be assembled and the way they are processed (Scholl, 1999). An assembly line can 

be designed so as to assemble one product or several products with identical 

production process. These types of assembly lines are named as single-model lines. 

An assembly line is named as multi-model lines if several products are assembled in 

batches or named as mixed-model lines if different models of the same base product 

are assembled simultaneously in the same line in an arbitrarily intermixed sequence 

not in batches. All these types of assembly lines are illustrated in Figure 2.1, where 

different models symbolized with different geometrical shapes. For further 

information about assembly lines, the reader can refer to (Scholl, 1999). 

 

 

 

 

 

 

 

 

 

 
 

 

 

      Figure 2.1 Types of assembly lines 

Mixed-model assembly line 

Multi-model assembly line 

Single-model assembly line 

setup setup 



7 
 

 
 

 In this study, we deal with the mixed-model assembly lines with some particular 

features of real world problems such as parallel workstations, zoning constraints, and 

sequences dependent setup times. 

 

2.3 Mixed-Model Assembly Lines 

 

Current markets are characterized as consumer-centric resulted in a growing trend 

for higher product variability. Hence, it is required to produce several products or 

different models of the same base product in the same assembly line. Nevertheless, 

single-model assembly lines, which are the most suited production systems for low 

variety demand scenarios, are not able to respond the requirements of this new type 

of manufacturing strategies anymore.  Therefore, manufacturers prefer producing one 

model with different features or several models on a single assembly line in order to 

avoid the high cost to build and maintain an assembly line for each model. At this 

point mixed-model assembly lines preferred to multi-model assembly lines, since 

they provide higher flexibility then multi-model lines. 

 

Zhoa et al. (2004) stated that two points must be considered for mixed-model 

assembly lines; first at the "design" level and the second at the "operational" level. 

The entire tasks for the assembly operation have to be assigned to workstations at the 

design level in order to optimize a given "design measure" and the sequence defines 

the release order of the models into the line must also be determined at the 

operational level in order to optimize a given "operational performance measure". 

The first one refers to the balancing problem while the second refers to the 

sequencing problem of the mixed-model assembly lines. This study deals with the 

balancing problem of mixed-model assembly lines, which is defined in the following 

sub-section in details. 

 

2.3.1 Mixed-Model Assembly Line Balancing Problem 

 

The main goal of an assembly line balancing problem is to partition the entire 

tasks of the assembly operation among workstations so as to optimize a pre-defined 



8 
 

 
 

performance measure. The assembly line balancing problems have been classified by 

the existing literature in various ways (Erel & Sarin, 1998; Becker & Scholl, 2006; 

Boysen et al., 2007; Boysen et al., 2008). Unlike the single-model lines, different 

models of a product are assembled on mixed-model assembly lines. The models are 

launched to the line one after another and moved from workstation to workstation in 

ordered sequence. Since we deal with the mixed-model assembly line balancing 

problem within the scope of this study, only the main characteristics of MMALBP 

which results from the joint assembly of several products are mentioned as below. 

 

 The line is used to produce more than one type of product simultaneously in an 

intermixed sequence not in batches. 

 The assembly of each model requires performing a set of tasks which are 

connected by precedence relations (precedence graph for each model). 

 A subset of tasks is common to all models; the precedence graphs of all models 

can be combined to a non-cyclical joint precedence graph. 

 Tasks which are common to several models are performed by the same station 

but may have different operation times; zero operation times indicate that a 

task is not required for a model. 

 Fixed total time available for the production during the planning period is 

known. 

 Expected demands for all models (expected model mix) during the planning 

period are known. 

  

 Mixed-model assembly lines have mainly two types of balancing problems like 

traditional single-model assembly lines: design of a new assembly line for which the 

demand can be easily forecasted (Type-I) and redesign of an existing assembly line 

(Type-II) when changes in the assembly process or in the product range occurs. In 

this study we deal with MMALBP-I, which has some particular features of the real-

world assembly line balancing problems such as parallel workstations, zoning 

constraints, and sequence dependent setup times between tasks. 



9 
 

 
 

2.3.2 Mixed-Model Assembly Line Balancing Problem with Setups 

 

The type-I mixed-model assembly line balancing problem which is considered in 

this study, has the following characteristics in addition to aforementioned 

characteristics: 

 

 The precedence relationships among tasks for each model are known and the 

precedence diagrams for all the models can be combined such that the resulting 

diagram contains the N tasks. 

 Workstations along the line can be replicated to create parallel workstations, 

when the demand is such that some tasks have processing times higher than the 

cycle time. 

 Assignment of tasks to a specific workstation can be forced or forbidden 

through the definition of zoning constraints. 

 

Taking into account these features three types of constraints, precedence, zoning, 

and capacity constraints, are arisen for the assembly line balancing problem on hand.  

 

Precedence constraints determine the sequence according to which the tasks can 

be processed. Precedence constraints are usually depicted in a precedence diagram. A 

task can only be assigned to a workstation if it has no predecessors or if all of its 

predecessors have already been assigned to a workstation.  

 

Zoning constraints can be positive or negative. Positive zoning constraints force 

the assignment of certain tasks to a specific workstation. Negative zoning constraints 

forbid the assignment of tasks to the same workstation. 

 

 Capacity constraints provide that the workload of a workstation does not exceed 

the cycle time. Under some demand conditions, the assembly line may need to be 

operated with a cycle time such that some of the tasks in the assembly process have 

processing times higher than cycle time. In this case, the replication of the 



10 
 

 
 

workstation to which the tasks with processing time higher than the cycle time are 

assigned is required, in order for demand to be met. 

  

The mixed-model nature of the problem on hand requires the cycle time (C) to be 

defined by taking into account the different models’ demand over the planning 

horizon. Thus, if a line is required to assemble M models each with a demand of 𝐷𝑚 

units over the planning horizon (P), the cycle time of the line is computed as follows: 

 

𝐶 = 𝑃 ÷ � 𝐷𝑚                                    𝑚 ∈ {1, … ,𝑀}                                                   (2.1)
𝑀

𝑚=1

 

 

On the other hand, 𝑞𝑚 is the overall proportion of the number of units of model m 

being assembled and calculated by using Equation 2.2. 

 

𝑞𝑚 = 𝐷𝑚 � 𝐷𝑚

𝑀

𝑚=1

�                                𝑚 ∈ {1, … ,𝑀}                                                   (2.2) 

 

In this study, balancing of mixed-model assembly line balancing problem with 

setups (MMALBPS-I) is studied. MMALBPS-I is an extension of classical 

MMALBP-I in which sequence-dependent setup times between tasks are taken into 

consideration. 

 

 2.3.2.1 Sequence Dependent Setup Times between Tasks 

 

 The concept of the sequence-dependent setup times had been considered 

negligible until the importance of setup times were investigated for the scheduling 

problems (Allahverdi et al., 1999). Furthermore, setup times were generally 

considered in low production systems like job shops (Allahverdi et al., 2008). On the 

other hand, most of the studies about assembly lines also assumed that setup times 

are negligible, because of their low proportion in comparison with task processing 

times. The phenomenon of sequence dependent setup times has been a challenging 



11 
 

 
 

field in ALBPs, since Andrés et al. (2008) (see the corrigendum to this paper 

provided by Pastor et al., 2010) dealt with the setup times for the first time for the 

SALBP.  

 

 For the assembly line balancing applications setups were considered 

independently as they executed just before or after the tasks. Thus, their times were 

added to task times (Andrés et al., 2008). In such situations, it is not required to 

determine intra-stations schedules; however, they have considerable effect on the 

workload of a workstation in case of sequence dependent setup times between tasks. 

In other words, different intra-station schedules mean different workloads for a 

workstation. Since the aim of assembly line studies is achieving effectively balanced 

lines, determining optimum intra-station schedules become much more important.  

That is to say, determining the optimum task performing sequences provides the 

maximum line efficiency, which is one of the most important performance criteria of 

the assembly lines. Besides, if the cycle time is low, considering sequence dependent 

setup times between tasks becomes more important, because setup times may 

represent a high percentage of cycle time. 

 

Scholl et al. (2011) modified the consideration of the sequence dependent setup 

times for assembly line balancing problems by introducing the phenomena of 

backward and forward setups in addition to (Andrés et al., 2008). 

 

 "....The term forward setup refers to a situation where task j is executed directly 

after task i in the same cycle, i.e., at the same workpiece, observing a (forward) setup 

time 𝜏𝑖𝑗 ≥ 0. A backward setup occurs if task i is the last one executed at the 

workpiece of a cycle p and the worker has to move to the next workpiece which is to 

be assembled in cycle p+1. This transfer causes a (backward) setup time 𝜇𝑖𝑗 ≥ 0 

which must be finished by the end of cycle p in order to start execution of task j just 

when cycle p + 1 begins. Note that since stations are supposed to be independent and 

exclusively operated by a single (team of) worker(s), forward and backward setups 

are only considered among tasks at the same station, not between adjacent stations" 

(Scholl et al. 2011). 



12 
 

 
 

MMALBPS adds sequence-dependent setup time considerations to the classical 

mixed-model assembly line balancing problem as follows: whenever a task j is 

assigned immediately after another task i for model m at the same workstation, a 

forward setup time (𝐹𝑆𝑇𝑖𝑗𝑚) must be added due to forward setup operation (𝐹𝑆𝑖𝑗𝑚) to 

compute the global workstation time for model m, thereby providing the task 

sequence inside each workstation. Furthermore, if a task i is the last one assigned to 

the workstation in which task j was the first task assigned for model m, then a 

backward setup time (𝐵𝑆𝑇𝑖𝑗𝑚) must also be considered due to backward setup 

operation (𝐵𝑆𝑖𝑗𝑚). This is because the tasks are repeated cyclically; the last task in one 

cycle of the workstation is performed just before the first task in the next cycle. 

Hence, MMALBPS consists of assigning a set of tasks for a set of models to an 

ordered sequence of workstations, such that the precedence constraints between tasks 

are maintained, the setup times between tasks for all models are considered and a 

given efficiency measure is optimized. Within the context of this study, we deal with 

the MMALBPS-I, which aims at minimizing the number of workstations for a given 

cycle time and a given set of M models with sequence dependent setup times 

between tasks for all models. 

 

As an example, we can take a case in which there are two models (A and B) 

assembled at the same line over a planning horizon of 480 time units. The demands 

for each model A and B are deterministically known; 20 and 28 units, respectively. 

Hence, the cycle time (C) is equal to 480 ÷ (20 + 28) = 10 time units. On the other 

hand, 𝑞𝐴 is equal to 20 ÷ 48 = 0.42 and 𝑞𝐵 is equal to 28 ÷ 48 = 0.58. Combined 

precedence diagram originally used by Gokcen & Erel (1998), for these two models 

is depicted in Figure 2.2.  

 

 

 

 

 

 
      Figure 2.2 Combined precedence diagram 

1 
 

3 
 

4 
 

2 
 

5 
 

8 
 

7 
 

6 
 

9 
 

11 
 

10 
 



13 
 

 
 

The processing times of tasks, forward and backward setup times between tasks 

for the models A and B are shown in Tables 2.1 and 2.2, respectively.  

 
Table 2.1 Task, forward and backward setup time matrixes for model A 

Setup Task 1 2 3 4 5 6 7 8 9 10 11 

Fo
rw

ar
d 

Se
tu

ps
 T

im
es

 

1 0.62 0.14 0.33 0.11 0.54 0.46 0.46 0.41 0.39 0.27 0.74 
2 0.59 0.39 0.11 0.56 0.59 0.19 0.11 0.48 0.19 0.24 0.44 
3 0.22 0.44 0.41 0.38 0.39 0.32 0.47 0.18 0.13 0.21 0.38 
4 0.18 0.50 0.13 0.45 0.13 0.64 0.46 0.49 0.44 0.28 0.19 
5 0.42 0.31 0.26 0.44 0.44 0.53 0.16 0.49 0.52 0.24 0.30 
6 0.36 0.46 0.13 0.55 0.25 0.42 0.49 0.53 0.18 0.23 0.47 
7 0.24 0.40 0.26 0.13 0.34 0.47 0.28 0.21 0.48 0.53 0.25 
8 0.20 0.57 0.11 0.59 0.27 0.60 0.57 0.33 0.48 0.16 0.51 
9 0.41 0.36 0.21 0.31 0.58 0.36 0.23 0.31 0.32 0.18 0.12 

10 0.18 0.54 0.17 0.23 0.12 0.60 0.20 0.37 0.18 0.57 0.49 
11 0.43 0.52 0.27 0.58 0.29 0.26 0.26 0.54 0.39 0.14 0.60 

B
ac

kw
ar

d 
Se

tu
ps

 T
im

es
 1 0.45 0.53 0.66 0.30 0.74 0.27 0.49 0.15 0.46 0.61 0.58 

2 0.74 0.83 0.40 0.45 0.52 0.46 0.36 0.57 0.46 0.37 0.34 
3 0.14 0.42 0.70 0.30 0.40 0.41 0.49 0.56 0.63 0.45 0.35 
4 0.46 0.51 0.44 0.53 0.68 0.58 0.61 0.65 0.57 0.65 0.18 
5 0.44 0.67 0.51 0.48 0.70 0.51 0.40 0.71 0.62 0.57 0.37 
6 0.50 0.34 0.38 0.58 0.73 0.60 0.73 0.71 0.39 0.70 0.65 
7 0.49 0.51 0.61 0.59 0.33 0.37 0.15 0.51 0.42 0.77 0.53 
8 0.36 0.39 0.39 0.47 0.60 0.37 0.77 0.53 0.47 0.45 0.76 
9 0.36 0.50 0.56 0.66 0.68 0.61 0.53 0.33 0.46 0.40 0.46 

10 0.46 0.47 0.17 0.48 0.35 0.71 0.69 0.60 0.56 0.71 0.73 
11 0.57 0.59 0.40 0.70 0.63 0.51 0.51 0.20 0.53 0.70 0.44 

Task time (TA) 2.75 1.25 3.00 3.00 2.25 1.80 2.10 2.30 2.10 2.00 2.00 
  

 
Table 2.2 Task, forward and backward setup time matrixes for model B 

Setup Task 1 2 3 4 5 6 7 8 9 10 11 

Fo
rw

ar
d 

Se
tu

ps
 T

im
es

 

1 0.42 0.47 0.38 0.17 0.33 0.12 0.33 0.31 0.37 0.54 0.41 
2 0.22 0.28 0.26 0.32 0.42 0.56 0.31 0.35 0.19 0.25 0.44 
3 0.12 0.21 0.53 0.26 0.46 0.41 0.43 0.21 0.21 0.30 0.32 
4 0.31 0.49 0.11 0.21 0.15 0.36 0.29 0.51 0.51 0.22 0.27 
5 0.42 0.11 0.25 0.31 0.20 0.43 0.19 0.25 0.52 0.41 0.25 
6 0.27 0.39 0.37 0.48 0.18 0.33 0.27 0.19 0.02 0.28 0.46 
7 0.35 0.26 0.18 0.36 0.35 0.38 0.36 0.17 0.43 0.39 0.36 
8 0.42 0.37 0.41 0.13 0.12 0.46 0.41 0.17 0.47 0.33 0.54 
9 0.29 0.30 0.15 0.46 0.13 0.43 0.38 0.42 0.49 0.19 0.45 
10 0.37 0.49 0.21 0.33 0.28 0.41 0.29 0.21 0.37 0.31 0.17 
11 0.48 0.45 0.20 0.48 0.23 0.54 0.36 0.23 0.31 0.40 0.40 

B
ac

kw
ar

d 
Se

tu
ps

 T
im

es
 1 0.47 0.45 0.43 0.68 0.38 0.57 0.46 0.67 0.57 0.46 0.64 

2 0.39 0.54 0.38 0.61 0.61 0.62 0.47 0.71 0.50 0.51 0.15 
3 0.20 0.47 0.45 0.60 0.70 0.72 0.34 0.70 0.20 0.44 0.15 
4 0.46 0.33 0.45 0.80 0.61 0.70 0.48 0.51 0.39 0.53 0.53 
5 0.55 0.61 0.40 0.53 0.61 0.51 0.35 0.67 0.45 0.68 0.49 
6 0.40 0.46 0.33 0.69 0.45 0.40 0.71 0.21 0.60 0.58 0.49 
7 0.14 0.56 0.39 0.71 0.19 0.45 0.69 0.58 0.55 0.61 0.51 
8 0.60 0.68 0.46 0.70 0.63 0.58 0.60 0.53 0.61 0.65 0.53 
9 0.58 0.18 0.44 0.42 0.59 0.50 0.56 0.17 0.74 0.57 0.58 
10 0.65 0.51 0.50 0.53 0.61 0.61 0.71 0.48 0.46 0.65 0.75 
11 0.20 0.61 0.47 0.56 0.50 0.19 0.73 0.40 0.47 0.62 0.63 

Task time (TB) 2.75 1.50 3.00 3.15 2.50 2.00 2.30 2.50 2.00 2.10 2.00 



14 
 

 
 

 Figure 2.3 represents two different solutions with a unique assignment of tasks to 

3 different workstations. That is, the number of workstations is equal to 3 and the 

assignment of task to workstations in both solutions are the same, and two different 

intra-station schedules of tasks caused two different solutions. The intra-station 

schedules of tasks are displayed with discontinuous lines. As pointed out in Figure 

2.3, different intra-station schedules lead to different work-loads (WL) for the 

workstations (WS). This situation indicates the importance of considering sequence 

dependent setup times between tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.3 Station work-loads for different intra-station schedules 

b. Station workloads for intra-stations schedule 2  
 

𝑊𝐿3
𝐵 = 9.97 

𝑊𝐿3
𝐴 = 9.94  

𝑊𝐿2
𝐵 = 9.82 

𝑊𝐿2
𝐴 = 9.96  

𝑊𝐿1
𝐵 = 10.00 

𝑊𝐿1
𝐴 = 9.92  

𝑊𝑆2 

𝑊𝑆3 
𝑊𝑆1 

1 

3 

4 

8 

9 

6 

11 

10 
𝑭𝑺𝟑𝟒 

𝑩𝑺𝟒𝟏 

𝑭𝑺𝟔𝟕 𝑩𝑺𝟏𝟏𝟏𝟎 

𝑭𝑺𝟏𝟎𝟔 

𝑭𝑺𝟕𝟏𝟏 
7 

𝑭𝑺𝟓𝟖 
𝑭𝑺𝟖𝟗 

𝑭𝑺𝟐𝟓 𝑩𝑺𝟗𝟐 

2 

 𝑭𝑺𝟏𝟑 

5 

a. Station workloads for intra-stations schedule 1  
 

𝑊𝐿3
𝐵 = 9.42 

𝑊𝐿3
𝐴 = 9.92  

𝑊𝐿2
𝐵 = 9.09 

𝑊𝐿2
𝐴 = 9.00  

𝑊𝐿1
𝐵 = 9.38 

𝑊𝐿1
𝐴 = 9.13  

𝑊𝑆2 

𝑊𝑆3 
𝑊𝑆1 3 

8 

9 

6 

10 

11 
𝑭𝑺𝟒𝟑 

𝑭𝑺𝟏𝟒 

𝑭𝑺𝟔𝟕 𝑭𝑺𝟏𝟎𝟏𝟏 

𝑩𝑺𝟏𝟏𝟔 

𝑭𝑺𝟕𝟏𝟏 
7 

𝑭𝑺𝟖𝟓 𝑩𝑺𝟗𝟖 

𝑭𝑺𝟓𝟐 𝑭𝑺𝟐𝟗 

𝑩𝑺𝟑𝟏 

4 

1 

2 

5 



15 
 

 
 

The reader must also be noted the following assumptions, which are directly 

related to the MMALBPS-I. 

 

 Task processing times and setup times between tasks are known 

deterministically. 

 Processing and setup times are independent on the workstation in which tasks 

are processed.   

 

2.4 Literature Survey 

 
 The existing literature about the assembly line balancing problems with sequence 

dependent setup times has extensively dealt with single-model lines. Andrés et al. 

(2008) extended the simple version of the ALBPs by considering the sequence 

dependent setup times between tasks for the first time and they referred to as general 

assembly line balancing problem with setups (GALBPS). The authors developed the 

mathematical programming model of the problem. Due to the high combinatorial 

nature of the problem they provided some heuristics and a GRASP algorithm to 

tackle the innovative problem. Moreover, Martino & Pastor (2010) developed 

heuristic procedures based on priority rules in order to solve the same problem; 

however the performance of their procedures were not effective in high-size tests. A 

similar problem was introduced by Scholl et al. (2008) and they formulated several 

versions of a mixed-integer program for the problem. As a result of their 

experiments, the authors stated that it is not effective enough modeling and solving 

the problem with MIP standard software. Scholl et al. (2011) modified the problem 

by introducing the phenomena of backward and forward setups and the triangle 

inequality for the setup times.  They formulated the modified problem as a mixed-

binary linear model and developed effective solution procedures for the problem. 

Yolmeh & Kianfar (2012) dealt also with single-model lines with sequence 

dependent setup times between tasks. They proposed a hybrid genetic algorithm for 

solving the problem. Hamta et al. (2012) enriched the SALBP by adding some 

realistic relevant aspects such as sequence dependent setup times.  They developed a 

mathematical model for the problem and the problem was tackled by a combination 



16 
 

 
 

of particle swarm optimization (PSO) algorithm with variable neighborhood search 

(VNS).  Seyed-Alagheband et al. (2011) addressed type-II SALBP, which was 

enriched by considering sequence-dependent setup times between tasks (GALBPS-

II). They proposed a mathematical model based on Andres et al.’s (2008) model and 

the authors developed a novel simulated annealing (SA) algorithm to tackle the 

problem. Özcan & Toklu (2010) handled the two-sided assembly line balancing 

problem with setups (TALBPS). The authors proposed a mixed integer program in 

order to solve and model the problem. The proposed model minimizes the number of 

mated-stations as a primary objective and minimizes the number of stations as a 

secondary objective. A heuristic approach was also presented.  

 

 This study concerns the type-I mixed-model assembly line balancing problem 

with sequences dependent setup times between tasks (MMALBPS-I). MMALBPS-I 

is an extension of classical MMALBP-I in which sequence-dependent setup times are 

taken into consideration and handled by Akpınar et al. (2013) for the first time to the 

best of our knowledge.  MMALBPS-I aims at assigning a set of tasks for a set of 

models to an ordered sequence of workstations and determining the intra-stations 

schedules.  The problem seeks the optimum value of the number of workstations so 

as to maintain the precedence constraints and to consider sequence dependent setup 

times between tasks for a predefined cycle time. 

 

 The relevant literature about the solution procedures of the mixed-model assembly 

lines was initiated by the approaches of Thomopoulos (1970) and can be divided into 

three groups: mathematical programming, heuristics and meta-heuristics, and hybrid 

approaches. Heuristic and meta-heuristic approaches were widely used in order to 

cope with the problem. The field of hybrid approaches has become very popular 

among researchers because of the insufficient performance of heuristics and pure 

meta-heuristics while exploring the solution space effectively as problems get larger 

and more complex as in real life. Mathematical programming approaches are used to 

formally describe the problem. We summarized the published papers by taking into 

account the line configuration, the methodology, and the employed data to test the 

performance of the proposed approach and the summary is presented in Table 2.3. 



17 
 

 
 

Table 2.3 An overview of the approaches in the literature on MMALBP-I 

Publications Line Configuration Methodology Test Problem 

Askin & Zhou (1997) Straight line, Parallel stations 
Nonlinear Integer Programming, 

Heuristic 
Randomly generated 

McMullen & Frazier 
(1997) 

Straight line, Parallel stations Heuristic, Simulation Randomly generated 

Gokcen & Erel (1997) Straight line Binary Goal Programming More than one 
McMullen & Fraizer 

(1998) 
Straight line, Parallel stations Simulated Annealing Randomly generated 

Gokcen & Erel (1998) Straight line Binary Integer Programming More than one 

Sparling & 
Miltenburg (1998) 

U-line 
Approximate Solution Algorithm, 

Mathematical Model 
Only one problem 

Erel & Gokcen (1999) Straight line Network Programming Only one problem 

Merengo et al. (1999) Paced and unpaced lines Heuristic Randomly generated 
Vilarinho & Simaria 

(2002) 
Straight line, Parallel stations 

Mathematical Model, Simulated 
Annealing 

Randomly generated 

Buckhin et al. (2002) Straight line Mathematical Model, Heuristic Only one problem 

Miltenburg (2002) U-line Genetic Algorithm Randomly generated 
McMullen & 

Tarasewich (2003) 
Straight line, Parallel stations Ant Colony Optimization, Simulation Benchmark problems 

Zhao et al. (2004) Paced line Heuristic Randomly generated 

Mendes et al. (2005) Straight line, Parallel stations Heuristic, Simulation Case study 

Hop (2006) Straight line 
Fuzzy Binary Linear Programming, 

Heuristic 
Randomly generated 

Bock (2006) Straight line Distributed Search Procedures More than one 
Buckhin & 

Rabinowitch (2006) 
Straight line 

Branch and Bound Algorithm based 
Heuristic, Mathematical Model 

Randomly generated 

Noorul Haq et al. 
(2006) 

Straight line Hybrid Genetic Algorithm More than one 

Vilarinho & Simaria 
(2006) 

Straight line, Parallel stations Ant Colony Optimization Benchmark problems 

Kara et al. (2007) U-line 
Simulated Annealing, Mathematical 

Model 
Randomly generated 

Bock (2008) Straight line Tabu Search Randomly generated 
Simaria and Vilarinho 

(2009) 
Two-sided line 

Ant Colony Optimization, 
Mathematical Model 

Benchmark problems 

Özcan & Toklu 
(2009) 

Two-sided line 
Mathematical Model, Simulated 

Annealing 
Benchmark problems 

Hwang & Katamaya 
(2009) 

U-line Genetic Approach Benchmark problems 

Özcan et al. (2010) Parallel lines Simulated Annealing Benchmark problems 

Hwang & Katamaya 
(2010) 

Straight and U-line Evolutionary Approach Case study 

Yagmahan (2011) Straight line Ant Colony Optimization Randomly generated 

Kazemi et al. (2011) U-line 
Genetic Algorithm, Mathematical 

Model 
Benchmark problems 

Akpınar & Bayhan 
(2011) 

Straight line, Parallel stations Hybrid Genetic Algorithm Benchmark set 

Kara et al. (2011) Straight line 
Integer Goal and Fuzzy Goal 

Programming 
Randomly generated 

Hamzadayi & Yildiz 
(2012) 

U-line 
Genetic Algorithm, Simulated 

Annealing 
Benchmark set 

Akpınar et al. (2013) Straight line Hybrid Ant Colony Optimization-
Genetic Algorithm 

Randomly generated 



18 
 

 
 

 This summarized review reveals there is only one paper (Akpınar et al., 2013) 

handled MMALBP-I with the sequence dependent setup times between tasks. On the 

other hand, there are only three hybrid approaches (Noorul Haq et al., 2006; Akpınar 

& Bayhan, 2011; Akpınar et al, 2013) dealing with MMALBP-I between the years 

1997 and 2013. Noorul Haq et al. (2006) combined GA with only modified version 

of ranked positional weight technique (RPWT), while Akpınar & Bayhan (2011) 

presented a new hybrid GA in which the RPWT, Kilbridge & Wester Heuristic and 

Phase-I of Moodie & Young Method are sequentially hybridized with GA. Both of 

the hybrid approaches belong to the class of sequential hybrid algorithms, and are 

based on hybridizing problem specific heuristics with meta-heuristics. The study of 

Akpınar et al. (2013), developed a new hybrid algorithm belongs to the class of 

parallel hybrid algorithms and combines two well known meta-heuristics, ant colony 

optimization and genetic algorithm. From this review, it can be noticed that there is 

lack of mathematical models about mixed-model assembly line balancing problem 

with sequence dependent setups between tasks in the existing literature. The 

following chapter of this study aims at removing this lack of the existing literature by 

developing a mixed integer linear mathematical programming model for mixed-

model assembly line balancing problem with setups. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

19 
 

CHAPTER THREE 

A MIXED INTEGER LINEAR PROGRAMMING MODEL FOR MMALBPS-I 

 

3.1 Chapter Introduction 

 

 Assembly lines were firstly created to produce one single homogeneous product 

in high volumes. The balancing problem of this type of lines named as simple 

assembly balancing problem (SALBP), which was first mathematically formulated 

by Salveson (1955). Single-model assembly lines are the least suited production 

system for high variety demand scenarios.  

 

 Current consumer-centric market conditions require high flexibility in 

manufacturing systems. Hence, assembly lines must be designed so as to satisfy 

high-mix/low volume manufacturing strategies. Due to high cost to build and 

maintain an assembly line, the manufacturers produce one model with different 

features or several models on a single assembly line. This changed type of assembly 

lines lead to arise the mixed-model assembly line balancing problem, which was 

handled by Thomopoulos (1967) for the first time in the literature.  

 

 The relevant literature about the solution procedures of the mixed-model assembly 

lines was initiated by the approaches of Thomopoulos (1970) and can be divided into 

three groups: mathematical programming, heuristics and meta-heuristics, and hybrid 

approaches. For more detailed information, the reader can refer to Battaïa & Dolgui's 

(2012b) recent survey.  

 

 Heuristic and meta-heuristic approaches were widely used in order to cope with 

the problem. The field of hybrid approaches has become very popular among 

researchers because of the insufficient performance of heuristics and pure meta-

heuristics while exploring the solution space effectively as problems get larger and 

more complex as in the real life. On the other hand, mathematical programming 

approaches are used to formally describe the problem. In this study we proposed a 

new mathematical programming model for type-I mixed-model assembly line



20 
 

 
 

balancing with sequence dependent setup times between tasks (MMALBPS-I). To 

the best of our knowledge, this is the first attempt to model type-I mixed-model 

assembly line balancing problem while considering the sequence dependent setup 

times in the literature. 

 

 Akpınar et al. (2013) summarized the published papers related to type-I mixed-

model assembly line balancing problem (MMALBP-I) between the years 1997 and 

2011 by taking into account the line configuration, the methodology, and the 

employed data to test the  performance of the proposed approach. From their 

summary, it is observed that few papers dealt with mathematically modeling of the 

MMALBP-I and none of these studies handled the sequence dependent setup times 

between tasks.  

 

 Askin & Zhou (1997) proposed a non-linear integer mathematical model for 

MMALBP-I. Their model allows using parallel workstations if required. By the way, 

the authors relaxed the splitting restriction for the first time.  

 

 Gokcen & Erel (1997) modeled the MMALBP-I as a binary goal program. They 

considered several conflicting goals and their model provides flexibility to the 

decision maker. Their model also allow to the use of zoning constraints. Moreover, 

Gokcen & Erel (1998) developed a binary integer programming model for the 

MMALBP-I. The authors stated that their model may be used as a validation tool for 

the heuristic procedures for the MMALBP-I. On the hand, Erel & Gokcen (1999) 

proposed a shortest-route formulation of the MMALBP-I. 

 

 Vilarinho & Simaria (2002) combined the concepts of parallel workstations 

assignment and zoning constraints in their mathematical programming model. Their 

model aims at minimizing the number of workstations as a primary goal, and 

balancing the workloads between and within workstations as a secondary goal. 

 

 The literature about the mixed-model assembly line balancing problem 

(MMALBP) use a restriction ensures that assigning common tasks of different 



21 
 

 
 

models to the same workstation. This restriction has been relaxed by Bukchin et al. 

(2002), and Bukchin & Rabinowitch (2006) and they allow the assignment of a 

common task for multiple products to different workstations. The same relaxation 

was also used by Kara et al. (2011). They proposed a new binary mathematical 

programming model based on the Bukchin & Rabinowitch's (2006) model and have 

also developed two goal programming approaches, one with precise and the other 

with fuzzy goals. Hop (2006) dealt also with fuzzy concept and handled the 

MMALBP with fuzzy processing times and formulated the problem as a fuzzy binary 

linear programming model, which was transformed to a mixed zero-one program. 

 

 Simaria & Vilarinho (2009) dealt with the MMALBP-I with a different line 

configuration, two-sided assembly line and developed a mathematical programming 

model covers the parallel workstations assignment and zoning constraints. The 

phenomenon of two-sided assembly lines was also handled by Ozcan & Toklu 

(2009). They also proposed a mathematical programming model for the two-sided 

MMALBP-I.  

 

 On the other hand, Sparling & Miltenburg (1998), and Kazemi at al. (2011) 

handled the U-line MMALBP-I. They all developed mathematical programming 

models for the problem. 

 

 In this study, we deal with the MMALBP-I with some particular features of the 

real world problems such as parallel workstations and zoning constraints. 

Furthermore, we extend the problem by adding sequence dependent setup times 

between tasks, which is a new concept for assembly line balancing problem. We 

developed a mixed integer linear programming (MILP) model for formally 

describing the extended problem.  

 

 The rest of this chapter is organized as follows. The proposed MILP model is 

given in Section 3.2.  An illustrative example is solved in Section 3.3. Computational 

experiments are given in Section 3.4. Finally, the discussions and conclusions are 

presented in Section 3.5. 



22 
 

 
 

3.2 The Mixed Integer Linear Programming Model 

 

 To the best of our knowledge, the proposed MILP considers the phenomena of 

sequence dependent setup times for mixed-model assembly lines for the first time. 

Our MILP is a general model when considered some characteristics of assembly 

lines. Table 3.1 contains a comparison of our model with some recent publications. 

Some of them proposed mathematical models for MMALBP-I and some others 

attempted to formulate the SALBP by considering sequence dependent setup times. 

Moreover, this comparison covers some particular features of real world problems 

such as parallel workstations and zoning constraints. Since SALBP is special case of 

MMALBP, the proposed MILP model is able to solve SALBP as well as other 

mathematical models around MMALBP. 

 
Table 3.1 Model characteristics considered in different researches 

Research 
Characteristics Line 

Configuration MM SM SDST ZC PW 
Proposed Model      Straight 
Askin & Zhou (1997)      Straight 
Gokcen & Erel (1997)      Straight 
Gokcen & Erel (1998)      Straight 
Sparling & Miltenburg (1998)      U-line 
Erel & Gokcen (1999)      Straight 
Vilarinho & Simaria (2002)      Straight 
Bukchin et al. (2002)      Straight 
Bukchin & Rabinowitch (2006)      Straight 
Hop (2006)      Straight 
Simaria & Vilarinho (2009)      Two-sided 
Ozcan & Toklu (2009)      Two-sided 
Kazemi at al. (2011)      U-line 
Kara et al. (2011)      Straight 
Andrés et al. (2008)      Straight 
Scholl et al. (2008)      Straight 
Özcan & Toklu (2010)      Straight 
Scholl et al. (2011)      Straight 
Seyed-Alagheband et al. (2011)      Straight 
Hamta et al. (2012)      Straight 

MM: Mixed-model; SM; Single-model; SDST; Sequence dependent setup times;  
ZC: Zoning constraints; PW; Parallel Workstations 

 

 In order to describe the proposed model more clearly, the stated assumptions and 

defined notations (Table 3.2) are mentioned in the following. 

Assumptions: 

 A set of similar models of a product assembled on a straight line.  



23 
 

 
 

 The combined precedence diagram, which is a combination of all the 

precedence diagrams for all the models, contains the N tasks. 

 It is allowed to create parallel workstations along the line, if there are tasks 

having processing times higher than cycle time due to demand. 

 Zoning constraints can force/forbid the assignment of tasks to a specific 

workstation. 

 A task can be assigned to only one workstation. 

 Common tasks to several models must be performed on the same workstations. 

 Processing time of a common task may be different among the models. 

 Task processing times and sequence-dependent setup times between tasks are 

known deterministically. 

 Processing and setup times are not dependent on the workstations. 

 

Table 3.2 Model Notations 

 Notation Definition 

In
di

ce
s 

N Total number of tasks, 
M Total number of models simultaneously assembled at the line, 
WS Maximum number of workstations, 
i Set of tasks 𝑖 ∈ {1,2, … ,𝑁}, 
s Set of stations 𝑠 ∈ {1,2, … ,𝑊𝑆}, 
m Set of models 𝑚 ∈ {1,2, … ,𝑀}, 

Pa
ra

m
et

er
s 

C Cycle time, 
maxp Maximum number of replicas for a workstation (Set as 2), 
α A pre-defined proportion (%α) of the cycle time, 
bigM A very large number, 
𝑇𝑖  Processing time of task i on model m, 

𝑇𝑇𝑖𝑚 ∈ {0,1} Equals to 1 if processing time of task i is greater than zero for model m and 0 
otherwise, 

𝐹𝑆𝑇𝑖𝑗𝑚 Forward set-up time between task i and j on model m, 
𝐵𝑆𝑇𝑖𝑗𝑚 Backward set-up time between task i and j on model m, 
𝑃𝑅𝑖𝑗 ∈ {0,1} Equals to 1 if task i must precede task j and 0 otherwise,  
𝑍𝑃𝑖𝑗 ∈ {0,1} Equals to 1 if tasks i and j must be assigned to the same workstation, 0 otherwise, 
𝑍𝑁𝑖𝑗 ∈ {0,1} Equals to 1 if tasks i and j must be assigned to different workstations, 0 otherwise, 

D
ec

is
io

n 
Va

ri
ab

le
s 

𝑌𝑖𝑠 ∈ {0,1} Equals to 1 if task i is assigned to workstation s and 0 otherwise, 
𝐴𝑠 ∈ {0,1} Equals to 1 if station s is active, 0 otherwise, 
𝑅𝑠𝑚 ∈ {0,1} Equals to 1 if workstation s is duplicated due to model m and 0 otherwise, 
𝑅𝑠 ∈ {0,1} Equals to 1 if workstation s is duplicated, 0 otherwise, 
𝑤𝑖𝑗𝑠 ∈ {0,1} Equals to 1 if task i precede task j at workstation s and 0 otherwise, 

𝐹𝑆𝑖𝑗𝑚𝑠 ∈ {0,1} Equals to 1 if task j directly follows task i on model m in the forward direction in 
workstation s and 0 otherwise, 

𝐵𝑆𝑖𝑗𝑚𝑠 ∈ {0,1} Equals to 1 if i is the last and j is the first tasks of model m in workstation s and 0 
otherwise, 

𝑁𝑊𝑆 Total number of workstations including replicas. 



24 
 

 
 

 The constraints of the model can be grouped into seven sets: assignment, 

precedence, zoning, workstation parallelization, sequence dependency, capacity, and 

stations. All these sets of constraints are explained in details in the following 

subsections. 

 

3.2.1 Assignment Constraints 

  

 This set of constraints ensures the assignment of each task to exactly one 

workstation and can be written as follows: 

 

�𝑌𝑖𝑠 = 1                                                    𝑖 ∈ {1, … ,𝑁}                                                 (3.1)
𝑊𝑆

𝑠=1

 

 

3.2.2 Precedence Constraints 

  

 A task can only be assigned if all its predecessors were assigned to an earlier 

station or to the current station. This assignment restriction ensures processing a task 

after the completion of all its predecessors, and this set of constraints can be 

expressed as below: 

 

𝑏𝑖𝑔𝑀 × �1 − 𝑌𝑖𝑠 × 𝑃𝑅𝑖𝑗� + � 𝑌𝑗𝑡 ≥ 1        𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}    (3.2)
𝑊𝑆

𝑡|(𝑡≥𝑠)

 

 

3.2.3 Zoning Constraints 

  

 Zoning constraints are used to force or forbid the assignment of different tasks 

into the same station. The forcing set is called as positive (compatible) zoning 

constraints and verified by the set of constraints (3.3), while the forbidding set is 

called as negative (incompatible) zoning constraints and guaranteed by the set of 

constraints (3.4). 

 



25 
 

 
 

𝑌𝑗𝑠 + 𝑏𝑖𝑔𝑀 × �1 − �𝑌𝑖𝑠 × 𝑍𝑃𝑖𝑗�� ≥ 1        𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}           (3.3) 

 

𝑌𝑗𝑠 − 𝑏𝑖𝑔𝑀 × �1 − �𝑌𝑖𝑠 × 𝑍𝑁𝑖𝑗�� ≤ 0       𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}           (3.4) 

 

3.2.4 Workstation Parallelization Constraints 

  

 Total processing time of tasks assigned to a workstation defines the workload of 

the relevant workstation and it is not allowed to exceed the workstation's capacity 

defined by the cycle time. Some demand scenarios may cause to have some tasks 

greater processing times than a certain proportion (α %) of the cycle time. In such 

situations the workload restriction must be relaxed in such a way that two or more 

identical replicas of a workstation can perform the same set of tasks. Our proposed 

model allows paralleling a workstation if it performs a task with processing time 

larger than a certain proportion (α %) of the cycle time for at least one of the models.  

The set of constraints (3.5) determines which model requires parallelization (due to 

the assigned tasks processing times) and so the set of constraints (3.6) creates the 

parallel workstation for this model. 

 

𝑅𝑠𝑚 − 𝑏𝑖𝑔𝑀 × � 𝑌𝑖𝑠 ≤ 0
𝑁

𝑖|(𝑇𝑖𝑚>∝∗𝐶)

           𝑠 ∈ {1, … ,𝑊𝑆};  𝑚 ∈ {1, … ,𝑀}              (3.5) 

 

𝑅𝑠𝑚 ≥ 𝑌𝑖𝑠            𝑖 ∈ {1, … ,𝑁}|𝑇𝑖𝑚 >∝∗ 𝐶;  𝑠 ∈ {1, … ,𝑊𝑆};  𝑚 ∈ {1, … ,𝑀}         (3.6) 

  

 In the same way, the set of constraints (3.7) ensures the parallelization of a 

workstation if parallelization required for at least one of the models in any 

workstation. So, the set of constraints (3.8) creates parallel one of this workstation in 

general. 

 

𝑅𝑠 − 𝑏𝑖𝑔𝑀 × � 𝑅𝑠𝑚 ≤ 0                                 𝑠 ∈ {1, … ,𝑊𝑆}
𝑀

𝑚=1

                                  (3.7) 

 



26 
 

 
 

𝑅𝑠 ≥ 𝑅𝑠𝑚                                             𝑠 ∈ {1, … ,𝑊𝑆};  𝑚 ∈ {1, … ,𝑀}                        (3.8) 

 

3.2.5 Sequence Dependency Constraints 

  

 Sequence dependency constraints were based on three decision variables; wijs, 
FSijms, BSijms. The variable of wijs is used to determine the performing order of tasks 

(sequence of tasks) in a workstation. As we have considered sequence dependent 

setup times we need to determine immediate follower of each task in a workstation.  

Therefore, extra decision variables have been defined for determining the immediate 

followers of tasks whiles, FSijms and BSijms are used for the immediately following 

tasks in forward direction and for backward direction (transition from the last to the 

first tasks) in any workstation s.  As a result of these types of decision variables, 

sequence dependency constraints may be classified into two groups: constraints (3.9-

3.14) and correlations (a-i) determining the sequences of tasks, constraints (3.15-

3.26) and correlations (j-u) determining the setup operations tasks. 

 

 3.2.5.1 Constraints Sets for the Sequences of Tasks 

  

 Considering a workstation s, the tasks i, j, k, and l are executed on a work-piece in 

this workstation. From the sequence dependent point of view it is necessary to 

determine the sequence of tasks in this workstation. As pointed out in Figure 3.1, it is 

possible to derive the sequence of these tasks due to the variable wijs. In other words, 

the variable wijs provides us the positions of tasks in a workstation. 

 

 The following correlations ensure that two tasks would be ordered if both of them 

have been assigned to the same workstation. These sets of correlations prevent 

ordering tasks in two situations for a workstation; only one of them assigned to the 

related workstation (the correlations a, and b), none of them assigned to the related 

workstation (correlations c). 

 

𝑤𝑖𝑗𝑠 + 𝑤𝑗𝑖𝑠 − 𝑏𝑖𝑔𝑀 × �1 − 𝑌𝑖𝑠 + 𝑌𝑗𝑠� ≤ 0       𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}       (𝑎) 

 



27 
 

 
 

𝑤𝑖𝑗𝑠 + 𝑤𝑗𝑖𝑠 − 𝑏𝑖𝑔𝑀 × �1 + 𝑌𝑖𝑠 − 𝑌𝑗𝑠� ≤ 0       𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}       (𝑏) 

 

𝑤𝑖𝑗𝑠 + 𝑤𝑗𝑖𝑠 − 𝑏𝑖𝑔𝑀 × �𝑌𝑖𝑠 + 𝑌𝑗𝑠� ≤ 0               𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}       (𝑐) 

 

𝑤𝑖𝑖𝑠 = 0                                               𝑖 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}                             (3.9) 

 
 
 
 
 
 
 
 
 
  
  
 
 
 
  
 
 
 
 
  Figure 3.1 Sequence of tasks in a workstation 

  

Remark 1: Considering F number of assigned tasks for any workstation s, to 

guarantee the ordering of tasks in a right way the variable wijs should be provided to 

take a value 1 in necessary situations. In what follows, we provide the sufficient and 

necessary conditions to tasks orders constraints by two cases in constraint sets (3.10-

3.13) and constraints (3.14). The constraint sets (3.12) and (3.13) ensure that any two 

tasks would be ordered if both of them have been assigned to the same workstation. 

 

𝑤𝑖𝑗𝑠 + 𝑤𝑗𝑖𝑠 + 𝑏𝑖𝑔𝑀 × �2 − 𝑌𝑖𝑠 − 𝑌𝑗𝑠� ≥ 1        

 𝑖 = 1, … ,𝑁; 𝑗 ∈ {1, … ,𝑁}|𝑗 ≠ 𝑖; 𝑠 ∈ {1, … ,𝑊𝑆}          (3.10) 
 

𝑤𝑖𝑗𝑠 + 𝑤𝑗𝑖𝑠 − 𝑏𝑖𝑔𝑀 × �2 − 𝑌𝑖𝑠 − 𝑌𝑗𝑠� ≤ 1         

𝑖 = 1, … ,𝑁; 𝑗 ∈ {1, … ,𝑁}|𝑗 ≠ 𝑖; 𝑠 ∈ {1, … ,𝑊𝑆}          (3.11) 

Workstation-s 

l i j k wijs 

wiks 

wils 

wjks 

wjls 

wkls 

Conveyor 
Movement Workpiece 



28 
 

 
 

 It must be noted that any two tasks have to be ordered due to their precedence 

relations.  The set of constraints (3.12) guarantees the mentioned precedence 

relations between tasks in any workstation.  

 

𝑤𝑖𝑗𝑠 + 𝑏𝑖𝑔𝑀 × �3 − 𝑌𝑖𝑠 − 𝑌𝑗𝑠 − 𝑃𝑅𝑖𝑗� ≥ 1     𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}  (3.12) 

 

 The aforementioned constraints determine the performing order of tasks in any 

workstation. As realized by constraint set (3.13), if task i has been performed before 

task k and task k has been performed before task j, then task i would be performed 

before task j too. 

 

𝑤𝑖𝑗𝑠 + 𝑏𝑖𝑔𝑀 × �2 −𝑤𝑖𝑘𝑠 − 𝑤𝑘𝑗𝑠� ≥ 1      𝑖, 𝑗,𝑘 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}    (3.13) 

 

Lemma 1: If task i is in position f of the tasks order of the workstation s where F 

number of tasks are assigned to workstation s then: 

 

�𝑤𝑖𝑗𝑠 = 𝐹 − 𝑓     𝑓 ∈ {1, … ,𝐹}
𝑁

𝑗=1

; 𝑖 ∈ {1, … ,𝑁}                                                             (𝑑) 

 

Proof: Considering F number of tasks in a workstation, if any task is in position f: 

 

𝑓 = 1                    →             ∑ 𝑤𝑖𝑗𝑠 = 𝐹 − 1𝑁
𝑗=1                                                                  (𝑒)  

 

𝑓 = 2                    →             ∑ 𝑤𝑖𝑗𝑠 = 𝐹 − 2𝑁
𝑗=1                                                                 (𝑓)  

. 

. 

. 

𝑓 = 𝐹 − 1            →             ∑ 𝑤𝑖𝑗𝑠 = 𝐹 − (𝐹 − 1)𝑁
𝑗=1                                                     (𝑔)  

 

𝑓 = 𝐹                    →             ∑ 𝑤𝑖𝑗𝑠 = 𝐹 − 𝐹𝑁
𝑗=1                                                                (ℎ)  

 



29 
 

 
 

 Due to the aforementioned lemma we can also derive correlation (i). 

 

��𝑤𝑖𝑗𝑠

𝑁

𝑗=1

= � 𝑖
𝑁

𝑖|(𝑖≤𝐹−1)

𝑁

𝑖=1

               𝑠 = 1, … ,𝑊𝑆                                                                 (𝑖) 

 

 The total number of the tasks in any workstation (∑ 𝑌𝑘𝑠𝑁
𝑘=1 ) must be considered to 

provide assigning necessary performing orders between tasks. Within this context, 

the set of constraints (3.14) provides necessary number of assigned orders between 

tasks in any workstation. Due to the correlation (i), and substituting 𝐹 ← ∑ 𝑌𝑘𝑠𝑁
𝑘=1  we 

can provide the set of constraints (3.14) for the sth workstation: 

 

��𝑤𝑖𝑗𝑠

𝑁

𝑗=1

= � 𝑖
𝑁

𝑖|�𝑖<∑ 𝑌𝑘𝑠𝑁
𝑘=1 �

𝑁

𝑖=1

                            𝑠 ∈ {1, … ,𝑊𝑆}                                   (3.14) 

 

 3.2.5.2 Constraints Sets for the Setup Operations 

  

 The variable wijs is not sufficient enough while determining the setup operations in 

a workstation.  As pointed out in Figure 3.2, two types of setup operations exist in a 

workstation, forward and backward setup operations (Scholl et al., 2011). A forward 

setup operation occurs when a task j is performed directly after task i in the same 

cycle at the same workstation. A backward setup operation occurs between the last 

task and the first task of a workstation. Whenever the last task at the work-piece of 

cycle p is completed in a workstation, the employee has to move to the next work-

piece of cycle p+1. For that reason, the variables of FSijms (for forward setups) and 

BSijms (for backward setups) are defined in order to determine the setup operations. 

 

Remark 2: Considering F number of assigned tasks for any workstation s to 

determine the sequence of required setup operations we define a variable Sijs which 

would be provided to take a value 1 if task j would be performed immediately after 

task i in the sth workstation. Whiles, the mentioned setup operations are cyclic in any 

workstation. 



30 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 3.2 Forward and backward setup operations in a workstation 

  

Lemma 2: In any workstation the total number of setup operations is equal to the 

total number of assigned tasks (F) to the related workstation (s) as: 

 

��𝑆𝑖𝑗𝑠

𝑁

𝑗=1

𝑁

𝑖=1

= 𝐹                                                𝑠 ∈ {1, … ,𝑊𝑆}                                             (𝑗) 

 

Proof: 

 

𝐹 = 1                    →             ∑ 𝑆1𝑗𝑠 = 1𝑁
𝑗=1      ⇒   ∑ ∑ 𝑆𝑖𝑗𝑠𝑁

𝑗=1
1
𝑖=1 = 1                          (𝑘)  

 

𝐹 = 2                    →             �
∑ 𝑆1𝑗𝑠 = 1𝑁
𝑗=1

∑ 𝑆2𝑗𝑠 = 1𝑁
𝑗=1

�   ⇒   ∑ ∑ 𝑆𝑖𝑗𝑠𝑁
𝑗=1

2
𝑖=1 = 2                           (𝑙)  

 

𝐹 = 3                    →             �
∑ 𝑆1𝑗𝑠 = 1𝑁
𝑗=1

∑ 𝑆2𝑗𝑠 = 1𝑁
𝑗=1

∑ 𝑆3𝑗𝑠 = 1𝑁
𝑗=1

�   ⇒   ∑ ∑ 𝑆𝑖𝑗𝑠𝑁
𝑗=1

3
𝑖=1 = 3                        (𝑚)  

Workpiece Workpiece 

Cycle p+1 Cycle p 

Workstation-s Workstation-s 
 

l i j k i j k l FSijs 

BSlis BSlis 

BSlis BSlis 

FSjks FSkls FSijs FSjks FSkls 

Conveyor Movement 



31 
 

 
 

𝐹 = 𝑁                    →        �

∑ 𝑆1𝑗𝑠 = 1𝑁
𝑗=1

∑ 𝑆2𝑗𝑠 = 1𝑁
𝑗=1

⋮
∑ 𝑆(𝑁−1)𝑗𝑠 = 1𝑁
𝑗=1

∑ 𝑆𝑁𝑗𝑠 = 1𝑁
𝑗=1 ⎭

⎪
⎬

⎪
⎫

  ⇒   ∑ ∑ 𝑆𝑖𝑗𝑠𝑁
𝑗=1

𝑁
𝑖=1 = N                     (𝑛)  

  

 On the other hand, if a task is not performed, then there would not be any setup 

operation in any workstation related to this task. The set of constraints (3.15) ensure 

the mentioned conditions in the model.   

 

𝐹𝑆𝑖𝑗𝑚𝑠 + 𝐵𝑆𝑖𝑗𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �𝑇𝑇𝑖𝑚 × 𝑇𝑇𝑗𝑚� ≤ 0 

𝑖, 𝑗 ∈ {1, … ,𝑁};𝑚 ∈ {1, … ,𝑀}; 𝑠 ∈ {1, … ,𝑊𝑆}             (3.15) 

  

 If a backward setup operation has been assigned between any tasks there would 

not be any forward setup operation. The set of constraints (3.16) ensures this 

restriction.  

 

𝐹𝑆𝑖𝑗𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �1 − 𝐵𝑆𝑖𝑗𝑚𝑠� ≤ 0               

𝑖, 𝑗 ∈ {1, … ,𝑁};𝑚 ∈ {1, … ,𝑀}; 𝑠 ∈ {1, … ,𝑊𝑆}           (3.16) 

 

 As mentioned previously a forward setup operation occurs when a task executed 

directly after another task in the same cycle of a workstation. Similar to correlations 

(a, b, and c) the following correlations ensure that two tasks would be ordered if both 

of them have been assigned to the same workstation.  

 

𝐹𝑆𝑖𝑗𝑚𝑠 + 𝐹𝑆𝑗𝑖𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �1 − 𝑌𝑖𝑠 + 𝑌𝑗𝑠� ≤ 0    

𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}                (𝑜) 

 

𝐹𝑆𝑖𝑗𝑚𝑠 + 𝐹𝑆𝑗𝑖𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �1 + 𝑌𝑖𝑠 − 𝑌𝑗𝑠� ≤ 0    

𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}                (𝑝) 

 

 



32 
 

 
 

𝐹𝑆𝑖𝑗𝑚𝑠 + 𝐹𝑆𝑗𝑖𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �𝑌𝑖𝑠 + 𝑌𝑗𝑠� ≤ 0            

𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}                (𝑟) 

  

 It must be noted that each task in any workstation would have at most one 

immediate follower. Set of constraints (3.17) ensures this situation for all tasks for all 

workstations.  
 

��𝐹𝑆𝑖𝑗𝑚𝑠 ≤ 1                         𝑖 ∈ {1, . . . ,𝑁};𝑚 ∈ {1, … ,𝑀}                              (3.17)
𝑊𝑆

𝑠=1

𝑁

𝑗=1

 

  

 If a forward setup operation was done between tasks i(j) and j(i) then any forward 

setup operation between task j(i) and i(j) must be prohibited. That is to say it is 

possible to do only one forward setup operation between any pair of tasks. The 

mentioned restriction was provided by the constraints set of (3.18). 

 

𝐹𝑆𝑖𝑗𝑚𝑠 + 𝐹𝑆𝑗𝑖𝑚𝑠 ≤ 1         𝑖, 𝑗 ∈ {1, … ,𝑁};𝑚 ∈ {1, … ,𝑀};  𝑠 = {1, … ,𝑊𝑆}       (3.18) 

 

 Set of constraints (3.19) prevents assigning any forward setup operation between a 

task and itself.  Forward setup operations may be executed between any different two 

tasks in the same workstation. 
 

�𝐹𝑆𝑖𝑖𝑚𝑠

𝑊𝑆

𝑠=1

= 0                                 𝑖 ∈ {1, … ,𝑁};𝑚 ∈ {1, … ,𝑀}                              (3.19) 

  

 Considering Lemma 1 we can determine adjacent tasks in any workstation 

through the variable 𝑤𝑖𝑗𝑠. Set of constraints (3.20) provides us adjacent tasks in any 

workstation, so provides us the required forward setup operations. 
 

𝐹𝑆𝑖𝑗𝑚𝑠 + 𝑏𝑖𝑔𝑀 × �4 − 𝑌𝑖𝑠 − 𝑌𝑗𝑠 − 𝑇𝑇𝑖𝑚 − 𝑇𝑇𝑗𝑚� + 

𝑏𝑖𝑔𝑀 × ��(𝑤𝑖𝑘𝑠 × 𝑇𝑇𝑘𝑚) −��𝑤𝑗𝑙𝑠 × 𝑇𝑇𝑙𝑚�
𝑁

𝑙=1

− 1
𝑁

𝑘=1

� ≥ 1 

𝑖, 𝑗 ∈ {1, … ,𝑁};𝑚 ∈ {1, … ,𝑀}; 𝑠 ∈ {1, … ,𝑊𝑆}        (3.20) 



33 
 

 
 

 Backward setup operations occur between the last and the first tasks of any 

workstation as mentioned previously. Similar to correlations (a, b, and c) and (o, p, 

and r) the following correlations ensure that there may be a backward setup operation 

between any two tasks if both of them have been assigned to the same workstation.  

 

𝐵𝑆𝑖𝑗𝑚𝑠 + 𝐵𝑆𝑗𝑖𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �1 − 𝑌𝑖𝑠 + 𝑌𝑗𝑠� ≤ 0   

𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}                (𝑠) 

 

𝐵𝑆𝑖𝑗𝑚𝑠 + 𝐵𝑆𝑗𝑖𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �1 + 𝑌𝑖𝑠 − 𝑌𝑗𝑠� ≤ 0   

 𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}                (𝑡) 

 

𝐵𝑆𝑖𝑗𝑚𝑠 + 𝐵𝑆𝑗𝑖𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �𝑌𝑖𝑠 + 𝑌𝑗𝑠� ≤ 0        

𝑖, 𝑗 ∈ {1, … ,𝑁}; 𝑠 ∈ {1, … ,𝑊𝑆}               (𝑢) 

 

 Due to the similarities between correlations (a, b, and c), (o, p, and r), and (s, t, 

and u) the sets of constraints (3.21), (3.22) and (3.23) have been generated as 

follows. 

 

𝑤𝑖𝑗𝑠 + 𝑤𝑗𝑖𝑠 + 𝐹𝑆𝑖𝑗𝑚𝑠 + 𝐹𝑆𝑗𝑖𝑚𝑠 + 𝐵𝑆𝑖𝑗𝑚𝑠 + 𝐵𝑆𝑗𝑖𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �1 − 𝑌𝑖𝑠 + 𝑌𝑗𝑠� ≤ 0 

𝑖, 𝑗 ∈ {1, … ,𝑁};𝑚 ∈ {1, … ,𝑀}; 𝑠 ∈ {1, … ,𝑊𝑆}        (3.21) 

 

𝑤𝑖𝑗𝑠 + 𝑤𝑗𝑖𝑠 + 𝐹𝑆𝑖𝑗𝑚𝑠 + 𝐹𝑆𝑗𝑖𝑚𝑠 + 𝐵𝑆𝑖𝑗𝑚𝑠 + 𝐵𝑆𝑗𝑖𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �1 + 𝑌𝑖𝑠 − 𝑌𝑗𝑠� ≤ 0 

𝑖, 𝑗 ∈ {1, … ,𝑁};𝑚 ∈ {1, … ,𝑀}; 𝑠 ∈ {1, … ,𝑊𝑆}        (3.22) 

 

𝑤𝑖𝑗𝑠 + 𝑤𝑗𝑖𝑠 + 𝐹𝑆𝑖𝑗𝑚𝑠 + 𝐹𝑆𝑗𝑖𝑚𝑠 + 𝐵𝑆𝑖𝑗𝑚𝑠 + 𝐵𝑆𝑗𝑖𝑚𝑠 − 𝑏𝑖𝑔𝑀 × �𝑌𝑖𝑠 + 𝑌𝑗𝑠� ≤ 0 

𝑖, 𝑗 ∈ {1, … ,𝑁};𝑚 ∈ {1, … ,𝑀}; 𝑠 ∈ {1, … ,𝑊𝑆}        (3.23) 

  

 As mentioned previously, backward setup operations occur between the last task 

and the first task assigned to the same workstation. After performing the last task, the 

worker has to move to the first task assembled in the same workstation. Therefore, 



34 
 

 
 

each workstation would have just one backward setup operation. This restriction is 

realized by the sets of constraints (3.24).  

 

��𝐵𝑆𝑖𝑗𝑚𝑠 ≤ 1
𝑁

𝑗=1

𝑁

𝑖=1

                         𝑚 ∈ {1, … ,𝑀}; 𝑠 ∈ {1, … ,𝑊𝑆}                          (3.24) 

  

 Considering Lemma 1 we can determine the first and the last tasks in any 

workstation thanks to the variable 𝑤𝑖𝑗𝑠. So, the third and fourth terms in the left side 

of constraint set (3.25) provide us to determine the backward setup operation 

between the last and the first tasks in any workstation. 

 

𝐵𝑆𝑖𝑗𝑚𝑠 + 𝑏𝑖𝑔𝑀 × �4 − 𝑌𝑖𝑠 − 𝑌𝑗𝑠 − 𝑇𝑇𝑖𝑚 − 𝑇𝑇𝑗𝑚� + 𝑏𝑖𝑔𝑀 × ��𝑤𝑖𝑘𝑠

𝑁

𝑘=1

× 𝑇𝑇𝑘𝑚� + 

𝑏𝑖𝑔𝑀 × ��(𝑌𝑙𝑠 × 𝑇𝑇𝑙𝑠)
𝑁

𝑙=1

−��𝑤𝑗𝑛𝑠 × 𝑇𝑇𝑛𝑠�
𝑁

𝑛=1

− 1� ≥ 1 

𝑖, 𝑗 ∈ {1, … ,𝑁};𝑚 ∈ {1, … ,𝑀}; 𝑠 ∈ {1, … ,𝑊𝑆}                          (3.25) 

  

3.2.6 Capacity Constraints 

  

 Capacity constraints ensure that the workload of a workstation does not exceed 

the pre-defined cycle time for all the models being assembled. The workload of a 

workstation consists of the summation of the tasks processing times, forward and 

backward setup operations times within a workstation. The set of constraints (3.26) 

ensures this capacity restriction if a workstation has more than one task. 

 

��𝑌𝑖𝑠 × 𝑇𝑖𝑚 + ��𝐹𝑆𝑖𝑗𝑚𝑠 × 𝐹𝑆𝑇𝑖𝑗𝑚 + 𝐵𝑆𝑖𝑗𝑚𝑠 × 𝐵𝑆𝑇𝑖𝑗𝑚�
𝑁

𝑗=1

� ≤
𝑁

𝑖=1

 

𝐶 × �1 + 𝑅𝑠 × (𝑚𝑎𝑥𝑝 − 1)� 

𝑠 ∈ {1, … ,𝑊𝑆};  𝑚 ∈ {1, … ,𝑀}             (3.26) 

  



35 
 

 
 

3.2.7 Stations Constraints 

  

 It is necessary to utilize the same number of workstations for all models. That is to 

say, if any workstation has any task from any model it would be considered as an 

active workstation for the other models too. Constraint sets (3.27) and (3.28) provide 

us to determine the active workstations due to their number of assigned tasks. 

 

𝐴𝑠 + 𝑏𝑖𝑔𝑀 × (1 − 𝑌𝑖𝑠) ≥ 1                   𝑖 ∈ {1, … ,𝑁};   𝑠 ∈ {1, … ,𝑊𝑆}                 (3.27) 

 

𝐴𝑠 − 𝑏𝑖𝑔𝑀 × �𝑌𝑖𝑠 ≤ 0
𝑁

𝑖=1

                          𝑠 ∈ {1, … ,𝑊𝑆}                                          (3.28) 

 

 Set of constraints (3.29) provides the active workstations to be in an ordered 

sequence. So, if a workstation has been activated its preceding workstations should 

have been activated already.  

  

���𝐴𝑠

𝑡

𝑠=1

� − 𝑡� − 𝑏𝑖𝑔𝑀 × (1 − 𝐴𝑡) ≤ 0                    𝑡 ∈ {1, … ,𝑊𝑆 }                     (3.29) 

 

3.2.8 Objective Function 

  

 The aim of our proposed MILP model is to minimize the total number of 

workstations (NWS). Where, NWS determines the total number of active workstations 

as well as their parallels.  

 

𝑁𝑊𝑆 = � � 𝑅𝑠

∑ 𝐴𝑡𝑊𝑆
𝑡=1

𝑠=1

+ 𝐴𝑠�                                                                                                (3.30) 

 

 

 



36 
 

 
 

3.3 An Illustrative Example 

  

 In this section, a numerical example with the following characteristics has been 

used to illustrate the proposed MILP model.  

 

 A line is used to simultaneously assemble two models A and B over a planning 

horizon of 480 time units where, the demands for each model are 20 and 28 

units, respectively. Thus, the cycle time (C) is equal to 480 ÷ (20 + 28) = 10. 

 Precedence diagram for 11 numbers of tasks is the same as Figure 2.2 (see 

Section 2.3.2.1). 

 The task processing times for the models A and B are given in Table 3.3.  

 Tasks 7 and 8 cannot be executed on the same workstation.  

 A workstation can be replicated if it performs a task with a processing time 

greater than cycle time.  

 

Table 3.3 Task processing times of the numerical example 

Task 1 2 3 4 5 6 7 8 9 10 11 

TA 3.0 3.1 1.9 8.4 3.1 11.2 8.8 8.7 2.5 5.2 4.4 

TB 0.0 3.1 1.9 8.4 3.1 9.9 0.0 8.7 2.5 0.0 4.4 

TA: Task time for model A; TB: Task time for model B 

 

 As it can be seen from Table 3.3, all tasks would be performed for model A 

whiles, tasks 1, 7, and 10 are not required for model B. Since, tasks are assigned 

according to combined precedence diagram; this situation has no effect on the 

decision variables of Yis and wijs, however, it directly influences the decision 

variables of FSijms and BSijms. Thus, this situation must be taken into consideration in 

order to determine the correct values of FSijms and BSijms regarding to the required 

setup operations.  The sets of constraints (3.20) and (3.26) have been developed 

within this context in order to properly determine the required setup operations for all 

models in any workstation according to the task assignments. Table 3.4 represents 

the tasks assignments for the numerical example. Since, processing times of tasks 1, 



37 
 

 
 

7, and 10 have been considered as zero for model B. There are some conditions that 

the setup operations and their sequences differ due to the model type in any 

workstations. Hence, tasks have been assigned to the workstations by considering 

both model types.  Moreover, tasks are performed according to the given sequences 

in Table 3.4, where, these sequences have been outlined from the decision variable 

wijs. 

 
Table 3.4 Task assignments of the numerical example 

Workstation Tasks 
Task Sequence 

Model A Model B 

1 1, 2 1, 2 2 

2 8 8 8 

3 4 4 4 

4 5, 3, 9 5, 3, 9 5, 3, 9 

5 10, 6 10, 6 6 

6 7 7 - 

7 11 11 11 

 

 Also, considering the task performing sequences in Table 3.4, the setup operations 

have been derived for all models in all workstation as illustrated in Table 3.5. 

 
Table 3.5 Setup operations of the numerical example 

Workstation 

Forward Setup Operations Backward Setup Operations 

Model A Model B Model A Model B 

Tasks Tasks Tasks  Tasks  

From To From To From To From To 

1 1 2 - 2 1 2 2 

2 - - 8 8 8 8 

3 - - 4 4 4 4 

4 
5 3 5 3 

9 5 9 5 
3 9 3 9 

5 10 6 - 6 10 6 6 

6 - - 7 7 - 

7 - - 11 11 11 11 

 



38 
 

 
 

 As pointed out in Table 3.5, each workstation contains exactly one backward 

setup operation for each model if a workstation contains at least one task for each 

model.  

 

3.4 Computational Experiments 

  

 In order to evaluate the performance of the proposed MILP model a set of 

benchmark problems have been used. Some of the problems (problems 1-4) have 

been taken from the literature and some of them (problems 5-10) have been 

generated randomly. Problems 1-4 were used originally by Vilarinho & Simaria 

(2002) and Akpınar & Bayhan (2011). For the other 6 problems, precedence relations 

were taken from the existing literature as presented in Table 3.6, and task processing 

times and setup times were generated randomly. The main characteristics of the test 

problems are given in Table 3.6 where, N, M, and C denote the number of tasks of 

the combined precedence diagram, the number of models, and the cycle time of the 

assembly line, respectively. All problems were enriched by adding sequences 

dependent setup times between tasks.  

 
Table 3.6 Main characteristics of the test problems 

Problem 
No 

N M C Precedence Relations 
Problem 

No 
N M C Precedence Relations 

1 8 2 10 Bowman 6 12 3 10 
Ponnambalam et al. 

(1999) 

2 8 3 10 Bowman 7 14 2 10 
Simaria & Vilarinho 

(2009) 

3 11 2 10 Gokcen & Erel 8 14 3 10 
Simaria & Vilarinho 

(2009) 
4 11 3 10 Gokcen & Erel 9 15 2 10 Buckhin et al. (2002) 

5 12 2 10 
Ponnambalam et al. 

(1999) 
10 15 3 10 Buckhin et al. (2002) 

N: Number of tasks; M: number of models; C: Cycle time 

 

As mentioned in Scholl et al. (2011), setup times have been generated in two 

types: forward and backward setups.  Where, both forward and backward setup times 

have been generated according to a uniform discrete distribution 𝑈[0, 0.5 ×

(min𝑇𝑖)] (Andrés et al., 2008). Moreover, to fulfill the triangle inequality mentioned 



39 
 

 
 

by Scholl et al. (2011) Equation 3.31 have been considered in setup times 

generations. 

 

𝐹𝑆𝑇𝑖ℎ + 𝑇ℎ + 𝐹𝑆𝑇ℎ𝑗 ≥ 𝐹𝑆𝑇𝑖𝑗             𝑎𝑛𝑑             𝐹𝑆𝑇𝑖ℎ + 𝑇ℎ + 𝐵𝑆𝑇ℎ𝑗 ≥ 𝐵𝑆𝑇𝑖𝑗 

𝑖, 𝑗, ℎ ∈  {1, … ,𝑁}         (3.31) 

  

 Moreover, considering any task may be a single element of a workstation, the 

following pre-condition have to be satisfied for all tasks.  

 

𝑇𝑖 + 𝐵𝑆𝑇𝑖𝑖 ≤ 𝐶                                                       𝑖 ∈ {1, … ,𝑁}                                    (3.32) 

 

 The proposed MILP model has been coded in IBM ILOG CPLEX 12.1.0. We 

have attempted to solve the test problems on Core(TM) i7-3820 CPU 3.60GHz 

personal computer and the run time has been limited up to 5 hours for each problem. 

The computational results are given in Table 3.7. 

 
Table 3.7 Summary of the computational results on test problems 

Problem 

No 

Objective Value 
NV NBV NC CPU 

Optimum Feasible 

1 5 - 6930 2656 17576 46.49 

2 9 - 9882 3688 22640 1.73 

3 8 - 17778 6820 49478 114.36 

4 7 - 25533 9493 62634 643.17 

5 9 - 23018 8832 65928 266.20 

6 10 - 33110 12300 83004 240.96 

7 10 - 36402 13972 110096 5622.37 

8 11 - 52488 19474 137256 4810.45 

9 No feasible solution 44702 17160 138735 - 

10 No feasible solution 64517 23925 172110 - 

NV: Number of Variables; NBV: Number of Binary Variables; NC: Number of Constraints; CPU: Computational Time 

  

 As it can be seen from Table 3.7, the proposed MILP model found optimal 

solutions for problems 1-8, however it was not able to solve problems 9 and 10 to 

optimality. From these computational results we can conclude that our MILP is able 



40 
 

 
 

to solve up to 14 tasks instances to optimality. Furthermore, the computational times 

of finding the optimal solutions depend on the number of variables and the number 

of constraints as well as the problem data (Table 3.7). 

  

3.5 Chapter Conclusions 

  

 In this chapter we aimed at developing a mixed-integer linear programming model 

for type-I mixed-model assembly line balancing problem enriched with the 

sequences dependent setup times between tasks for the first time. The MILP provides 

us the formally formulation of MMALBPS-I. Moreover, our MILP can solve the 

problem with and without sequence dependent setup times, parallel workstation 

assignments, and zoning constraints. Since, the SALBP-I is a special case of 

MMALBP-I, our MILP is able to solve SALBP-I with and without the 

aforementioned characteristics. Thus, we can conclude that our MILP is a general 

model for some of the assembly line balancing problems. 

 

 Due to the complex nature of the model, it is not able to solve optimality as the 

problem size increased. For that reason, meta-heuristic approaches were developed in 

order to tackle the problem and the developed algorithms are explained in the 

following chapters in details. 

 

  

 

 

 

 

 

 

 

 

 



 
 

41 
 

CHAPTER FOUR 

HYBRID ANT COLONY OPTIMIZATION-GENETIC ALGORITHM FOR 

MMALBPS-I 

 

4.1 Chapter Introduction 

 

Current markets are characterized as consumer-centric resulted in a growing trend 

for higher product variability. As a result of this, high-mix/low-volume 

manufacturing strategies substitute for low-mix/high-volume manufacturing 

strategies. Single-model assembly lines, which are the most suited production 

systems for low variety demand scenarios, are not able to respond the requirements 

of this new type of manufacturing strategies anymore.  Therefore,  manufacturers 

prefer producing one model with different features or several models on a single 

assembly line (mixed-model assembly line, which was handled by Thomopoulos 

(1967) for the first time in the literature) in order to avoid the high cost to build and 

maintain an assembly line for each model. In the relevant literature several 

approaches have been presented to cope with MMALBP-I. These approaches can be 

divided into three groups: mathematical programming, heuristics/meta-heuristics and 

hybrid approaches. Besides assembly line balancing problems,  hybrid algorithms 

were used for solving several combinatorial optimization problems and usually 

developed by integrating meta-heuristics with problem specific heuristic algorithms 

or meta-heuristics with meta-heuristics. On the other hand, hybrid algorithms have 

showed their ability to provide local optima of high quality. For more comprehensive 

reviews on hybrid meta-heuristics the reader can refer to the papers of Preux & Talbi 

(1999), Talbi (2002), Raidl (2006)  and Blum et al. (2011). In this study, we attempt 

to hybridize ACO (Dorigo et al., 1991; Dorigo et al., 1996; Dorigo & Gambardella, 

1996; Dorigo & Gambardella, 1997; Dorigo et al., 1999; Stützle & Dorigo, 1999) 

with GA (Holland, 1975; Goldberg, 1989) in parallel (operation parallelization), 

which belongs to the class of parallel hybrid meta-heuristics (Crainic & Toulouse, 

2003). These algorithms are sufficiently complex to provide powerful adaptive 

search approaches, and usually can be embedded with other approaches to speed up 

the search performance (Lee et al., 2008). The rationale why we attempt to hybridize



42 
 

 
 

ACO with GA is to exploit the complementary character of different optimization 

strategies, that is, hybrids are believed to benefit from synergy (Blum et al., 2011). 

Viz, our proposed hybrid algorithm integrates the positive feedback mechanism and 

the satisfactory performance of ACO with the faster speed of GA. Thus, the proposed 

hybrid ACO-GA algorithm attempt to overcome the slower speed of ACO and the 

poor searching capability of GA, especially for large sized problems, by embedding 

GA into ACO as a local search.  Furthermore, ACO-GA utilizes the synergy of GA 

as an improvement procedure and ACO as a constructive procedure.  

 

 The rest of this chapter*

 

 is organized as follows. The proposed hybrid ACO-GA 

algorithm is defined in Section 4.2. Comparative study is given in Section 4.3. 

Finally, the discussions and conclusions are presented in Section 4.4. 

4.2 The proposed Hybrid ACO-GA Algorithm 

 

The procedure of the proposed ACO-GA algorithm applies selection procedure, 

measurement of solution qualities, genetic algorithm, and pheromone evaporation 

and release strategies respectively for MMALBPS-I. The proposed hybrid ACO-GA 

algorithm is depicted in Figure 4.1. The algorithm starts by generating a pre-defined 

number of solutions by the task selection strategy and each solution turned as a 

chromosome.  After that, the solution quality measures are determined. At this point, 

the obtained set of chromosomes is set as the initial population of GA and the 

solution qualities are set as their fitness values. Selection, crossover and mutation 

operators are applied to produce new chromosomes (offspring chromosomes). 

According to their fitness values, a strategy called elitism survives the best fit 

chromosomes to next generation.  After a predefined termination criterion is met, the 

final generation releases a certain amount of pheromone. The hybrid ACO-GA 

algorithm repeats itself until a pre-specified number of iterations reached. All the 

operators used in the proposed ACO-GA algorithm are introduced in the following 

sub-sections in detailed.     

                                                 
* The work presented in this chapter is published in Akpınar et al.(2013) 



43 
 

 
 

 
  Figure 4.1 Flow diagram of the proposed hybrid ACO-GA 



44 
 

 
 

4.2.1 Task Selection Strategy 

 

The probability of a task being selected, from the set of available tasks, is a 

function of: (1) the pheromone trail intensity between the previously selected task 

and each available task and (2) the information provided by the heuristic for each 

available task. This information is a priority rule that is assigned to each ant when the 

respective sub-colony is generated. The procedure uses some common static priority 

rules for the ALBP: 

  

 ‘Maximum positional weight’,  

 ‘Maximum processing time’ (for all models),  

 ‘Maximum average processing time’,  

 ‘Maximum number of direct successors’ and  

 ‘Maximum number of successor’.  

In the current study the maximum weighted average processing time is used as the 

heuristic information due to the mixed-model nature of the problem. 

 

The executed task selection rule (Vilarinho & Simaria, 2006) uses a random 

number r between 0 and 1 and three user defined parameters 𝑟1, 𝑟2 and 𝑟3 such that 

0 ≤ 𝑟1, 𝑟2, 𝑟3 ≤ 1 and 𝑟1 + 𝑟2 + 𝑟3 = 1. The rule is given by: 

 

𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧𝐽1 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈𝐴𝑖
𝑛

��𝜏(𝑖,𝑗)�
𝛼 × �𝜂𝑗�

𝛽�                    𝑖𝑓 𝑟 ≤ 𝑟1  (𝑒𝑥𝑝𝑙𝑜. )                

𝐽2:𝑝(𝑖,𝐽2) =
�𝜏(𝑖,𝐽2)�

𝛼 × �𝜂𝐽2�
𝛽

∑ ��𝜏(𝑖,𝑗)�
𝛼 × �𝜂𝑗�

𝛽�𝑗∈𝐴𝑖
𝑛

   𝑖𝑓 𝑟1 < 𝑟 ≤ 𝑟1 + 𝑟2  (𝑏𝑖𝑎.  𝑒𝑥𝑝. )

𝐽3: 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗 ∈ 𝐴                 𝑖𝑓 𝑟1 + 𝑟2 < 𝑟 ≤ 𝑟1 + 𝑟2 + 𝑟3 

�    (4.1) 

 

where 𝜏(𝑖,𝑗)is the pheromone trail intensity in the path ‘selecting task j after selecting 

task i, 𝜂𝑗 is the heuristic information of task j (e.g. the priority rule value for task j), 

𝐴𝑖𝑛 is the set of available tasks for ant n after the selection of task i, and α and β are 

parameters that determine the relative importance of pheromone intensity versus 

heuristic information.  



45 
 

 
 

The selection of a task from the set of available tasks is performed by one of three 

strategies:  

 

 Exploitation selects the best task according to the values of �𝜏(𝑖,𝑗)�
𝛼 × �𝜂𝑗�

𝛽
.  

 Biased exploration selects a task according to a probability of 𝑝(𝑖,𝑗) as given by 

J2.  

 Random selection selects one task at random from the set of available tasks.  

 

4.2.2 Solution Quality Measure 

 

Finding the fittest solution after a predefined number of generations is the main 

purpose of the proposed hybrid ACO-GA. Therefore, the algorithm has to use an 

objective function which measures each solution’s quality. The objective function 

(Vilarinho & Simaria, 2002) (Equation 4.2) is used by ACO-GA consists of three 

terms. The first term aims at minimizing the total number of workstations by 

minimizing the index of the workstation to which the last task is assigned, while, the 

second term balances the workload between the workstations, and the third term 

balances the workload within each workstation. 

 

𝑚𝑖𝑛 𝑍 = �𝑘.𝑋𝑁𝑘

𝑆

𝑘=1

+
𝑆′

𝑆′ − 1
� 𝑞𝑚

𝑀

𝑚=1

��
𝑠𝑘𝑚

∑ 𝑠𝑙𝑚𝑆′
𝑙=1

�
2𝑆′

𝑘=1

+ 

𝑀
𝑆′(𝑀 − 1)� � �

𝑞𝑚𝑠𝑘𝑚
𝑆𝑘

−
1
𝑀�

2𝑀

𝑚=1

𝑆′

𝑘=1

                                                                (4.2) 

 

where S is the work station index that the last task is assigned, S’ is the total number 

of workstations including replicas, 𝑋𝑖𝑘 is 1 if task i assigned to workstation k is 0 

otherwise, M is the number of models assembled in the line, 𝑠𝑘𝑚 is the idle time of 

workstation k due to model m, 𝑞𝑚 is the overall proportion of the number of units of 

model m being assembled and 𝑆𝑘 is the total proportional idle time of workstation k. 

 



46 
 

 
 

4.2.3 Genetic Algorithm 

 

In this study, we use GA (similar to Akpınar & Bayhan, 2011) embedded into 

ACO as local search, by which we aim at improving the search capability of the 

proposed algorithm. GA is executed before pheromone release phase; hence obtained 

solutions release a certain amount of pheromone after GA refinement. For that reason 

we used an elitist strategy in GA while forming the next generations.  

 

 4.2.3.1 Roulette Wheel Selection 

 

The proposed algorithm selects individuals for mating by using the best known 

selection strategy Roulette wheel (Holland, 1975), also known as fitness 

proportionate selection. Roulette wheel scales the fitness values of the members 

within the population as the total rescaled fitness values equals to 1. First, a uniform 

random number within the interval (0, 1) is generated (wheel is spun), and then the 

individual whose cumulative rescaled fitness value is greater than the generated 

number is selected as parent. The steps of the used roulette wheel selection strategy 

can be summarized in below:  

 

I. Sum the fitness values of all the population members. Call this Fsum.  

II. Divide the fitness values of all population members by Fsum in order to 

calculate expected values of each individual in the population.  

III. Generate a uniform random number, Rs, between 0 and 1.  

IV. Loop through the individuals in the population, summing the expected values, 

until the sum is greater than or equal to Rs. The individual whose expected 

value puts the sum over this limit is the one selected. 

 

 4.2.3.2 Two Point Crossover 

 

In this study a two point crossover (Leu et al., 1994) which is particular to 

assembly line balancing problem is used. The classical two point crossover cuts 



47 
 

 
 

mated parents into three parts (head (H), middle (M) and tail (T)), by determining the 

cut points randomly. Offspring are created by swapping the middle parts of the 

parent chromosomes, i.e., parent-1, represented by H1M1T1, recombines with parent-

2, represented by H2M2T2, in order to form the new children HlM2T1 and H2MlT2.  In 

the assembly line balancing problem the situation is not so simple because of the 

precedence relations between tasks, which may result in feasibility problem. For that 

reason recombination must guarantee feasibility. The special two point crossover is 

applied as shown in Figure 4 which guarantees generating feasible individuals 

according to the precedence relations. Thus, the resulting offspring are always 

feasible. 

 

 

 

 

 

 

 

 

 

 

 
    

  Figure 4.2 Recombination: Two point crossover 

 

The first offspring keeps the head and the tail parts of the first parent.  The middle 

part of the first offspring is filled in by adding the all missing tasks in the order in 

which they are contained in the second parent. The other offspring is built 

analogously based on the head and the tail parts of the second parent and its middle 

part is filled in by adding the missing tasks in the order in which they are contained 

in the first parent. Both of the generated offsprings become feasible as their middle 

part is also filled according to the precedence feasible order. The purpose of the two-

point crossover is to conduct a neighborhood search; this is done by keeping the head 

Parent1: 1 2 4 5 3 8 9 6 7 10 11 

Head P1 Middle P1 Tail P1 

Parent2: 1 4 5 2 3 6 7 9 8 10 11 

Head P2 Middle P2 Tail P2 

Offspring1: 1 2 4 5 3 6 9 8 7 10 11 

Head O1 Middle O1 Tail O1 

Offspring2: 1 4 2 5 3 9 6 7 8 10 11 

Head O2 Middle O2 Tail O2 



48 
 

 
 

and tail of each child the same as its parent. The child should be “close” in fitness to 

its parents because only its middle genes have changed (Leu et al., 1994).  

 

 4.2.3.3 Scramble Mutation 

 

Similar to recombination, mutation must also guarantee the feasibility because of 

the precedence relations. In this study, we also used a special mutation operator 

named as scramble mutation (Leu et al., 1994). First, a random point is selected for 

determining where the mutation will occur. After that, the head of the chosen parent 

is set as the head of the mutated offspring. Then, the mutation operator reconstructs 

the tail of the new child by using the procedure explained below. This procedure uses 

prohibit table (see Figure 4.3), and also guarantees the feasibility.  

 

 

Task Can Not Precede Task 
Can Not 

Precede 

11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 3 1, 2 

10 1, 2, 3, 4, 5, 6, 7, 8, 9 2 1 

6 1, 2, 3 5 4 

7 1, 2, 3 1 - 

8 4, 5 4 - 

9 4, 5   

a. Original prohibit table 

 

Task Can Not Precede Task 
Can Not 

Precede 

11 6, 7, 8, 9, 10 7 - 

10 6, 7, 8, 9 8 - 

6 - 9 - 

b. Modified prohibit table 

 

Task Can Not Precede 

11 10 

10 - 

c. Final prohibit table 

Figure 4.3 Steps of the prohibit table 

 

This procedure is performed by removing all references to head tasks in the 

prohibit table, and then randomly choosing a task from those in the table with no 

predecessor requirements. This new task is then added to the next locus in the 

chromosome and is removed from the prohibit table. The process continues until all 

tasks are assigned. 



49 
 

 
 

For example, consider parent (1-2-4-5-3-6-7-8-9-10-11) in Figure 4.4 and assume 

the mutation point is chosen to be after task 3. Then the head of the child will be 1-2-

4-5-3. The rest of the child will consist of tasks 6, 7, 8, 9, 10, and 11, placed in 

random order, but in such a manner as not to violate precedence constraints. If the 

original prohibit table is as shown in Figure 4.3-a, then the prohibit table with all 

references to tasks in the head of the child will be as shown in Figure 4.3-b. Only 

tasks 6, 7, 8, and 9 can be selected to follow task 3 since they alone have no “cannot 

precede” tasks in the modified prohibit table; assume they are chosen randomly in 

the order 9, 7, 8, 6. Then the final prohibit table (with these deleted tasks) becomes 

as in Figure 4.3-c. Therefore, task 10 must be selected next, and 11 must be chosen 

last. The new child chosen with scramble mutation is 1-2-4-5-3-9-7-8-6-10-11 (see 

Figure 4.4). 

 
 

 

 

 

 

 

 

 Figure 4.4 Scramble mutation 

 

The purpose of mutation, unlike that of recombination (crossover), is to get out of 

a local search neighborhood and thus avoid the possibility of being trapped in a local 

optimum. Therefore, the goal of mutation is to change dramatically the order of the 

genes on the chromosome; scramble mutation does this. With scramble mutation 

only the head of the parent is maintained and the tail is reconstructed randomly in a 

manner that ensures feasibility (Leu et al., 1994). 

 

 4.2.3.4 Fitness Evaluation 

 

The objective function as given by Equation 4.2 (see Section 4.2.2) is used also in 

the GA as fitness function. 

Parent: 1 2 4 5 3 6 7 8 9 10 11 

Parent’s Head Parent’s Tail 

Offspring: 1 2 4 5 3 9 7 8 6 10 11 

Offspring’s Head  Offspring’s Tail 



50 
 

 
 

 4.2.3.5 New Generation 

 

After each generation GA must decide with a replacement strategy which 

individuals are survived to next generation and which are not. The replacement 

strategy takes into account the fitness value of the individuals while selecting the 

survived individuals, who may be individuals from the current generation, offspring 

products of crossover or individuals who underwent mutation. In this study, the best 

fit individual is always survived to next generation and the other individuals are 

selected from the best fit offspring products of crossover and mutation. Until a 

predefined termination criterion met GA repeats itself and dispatches the last 

generation to ACO. 

 

4.2.4 Pheromone Release Strategy 

 

The pheromone release strategy is based on the one used by Dorigo et al. (1996). 

At the end of each sub-colony’s iteration, all balancing solutions provided by the ants 

have their objective function values computed. It is at this point that the pheromone 

trail intensity is updated. First, a portion of the existing pheromone value is 

evaporated in all paths, according to: 

 

𝜏(𝑖,𝑗) ⟵ (1 − 𝜌)𝜏(𝑖,𝑗)                                                                                                          (4.3)  

                                                                                       

where 𝜌 is the evaporation coefficient (0 ≤ 𝜌 < 1). Then, each ant 𝑛 releases an 

amount of pheromone in the paths used to build the task sequence, according to the 

corresponding balancing solution quality. This amount of pheromone is given by: 

 

∆𝜏(𝑖,𝑗)
𝑛 = �

1
𝑍� , 𝑖𝑓 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑏𝑢𝑖𝑙𝑡 𝑏𝑦 𝑎𝑛𝑡 𝑛 𝑡𝑎𝑠𝑘 𝑗 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑙𝑦 𝑎𝑓𝑡𝑒𝑟 𝑡𝑎𝑠𝑘 𝑖                                             

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                       

�         (4.4) 

 

where 𝑍 is the objective function value for the obtained solution. The overall 

pheromone update effect of all ants in each path (𝑖, 𝑗) is then: 



51 
 

 
 

𝜏(𝑖,𝑗) ⟵ (1 − 𝜌)𝜏(𝑖,𝑗) + �∆𝜏(𝑖,𝑗)
𝑛

𝑁

𝑛=1

                                                                                  (4.5) 

 

At the beginning of the procedure, an initial amount of pheromone (𝜏0) is released in 

every path. 

 

4.3 Computational Experience 

 

 The concept of sequence dependent setup times is an actual framework in 

assembly line balancing problems (ALBP). For that reason, there is no standard set 

of benchmark instances with setup times available for testing in assembly line 

balancing literature except the Andrés et al.’s (2008) benchmark set, which covers 

simple version of ALBP, however, we deal with mixed-model version of ALBP in 

this study. For doing the comparison we construct a set of test problems based on 

type-I MMALB problems used by Akpınar & Bayhan (2011). The main 

characteristics of the test problems are exhibited in Table 4.1 where N, M, and C 

denote the number of tasks of the combined precedence diagram, the number of 

models, and cycle time of the assembly line, respectively. As in the study of Akpınar 

& Bayhan (2011), we also classified the test problems as small-size (problems 1-4), 

medium-size (problems 5-14), and large-size (problems 15-20) according to the 

number of tasks they include. 

 
Table 4.1 Main characteristics of the test problems 

Problem No N M C Problem Name Problem No N M C Problem Name 

Sm
al

l-S
iz

e 

1 8 2 10 
Bowman 

M
ed

iu
m

-S
iz

e 11 30 2 10 
Sawyer 

2 8 3 10 12 30 3 10 
3 11 2 10 

Gokcen & Erel 
13 32 2 10 

Lutz 1 
4 11 3 10 14 32 3 10 

M
ed

iu
m

-S
iz

e 

5 21 2 10 
Mitchel 

La
rg

e-
Si

ze
 

15 35 2 10 
Gunther 

6 21 3 10 16 35 3 10 
7 25 2 10 Vilarinho & 

Simaria 
17 45 2 10 

Kilbridge & Wester 
8 25 3 10 18 45 3 10 
9 28 2 10 

Heskiaoff 
19 70 2 10 

Tonge 
10 28 3 10 20 70 3 10 

N: Number of tasks; M: number of models; C: Cycle time 



52 
 

 
 

For each test problem, the original precedence network and operation times 

remained the same and the following levels of setup time variability were also 

considered: 

 For low variability, the matrix of setup times was generated randomly 

according to a uniform discrete distribution U[0, 0.25*(min Ti)]. 

 For medium variability, the matrix of setup times was generated randomly 

according to a uniform discrete distribution U[0, 0.5*(min Ti)]. 

 For high variability, the matrix of setup times was generated randomly 

according to a uniform discrete distribution U[0, 0.75*(min Ti)]. 

 

As a result the constructed benchmark set contains 60 instances in three 

categories, low, medium and high variability of setup times, each contains 20 

problems having the same number of tasks, precedence diagrams and task times. 

 

In order to evaluate the performance of the proposed hybrid ACO-GA algorithm it 

is required a lower for the number of workstations with sequence dependent setup 

times between tasks. The fallowing sub-section explains the proposed lower bound, 

which is a combination of Vilarinho & Simaria’s (2002) and Andrés et al.’s (2008) 

(see the corrigendum to this paper provided by Pastor et al.(2010)) lower bounds. 

 

4.3.1 A Lower Bound for the Number of Workstations with Setup Times 

 

 The problem on hand has the characteristics of workstation parallelization and 

sequence dependent setup times between tasks. Vilarinho & Simaria (2002) proposed 

a lower bound in case of workstation parallelization for mixed-model lines and 

Andrés et al.’s (2008) proposed another lower bound for single-model lines in case 

of sequence dependent setup times between tasks. Both procedures aimed at finding 

a lower bound value for the number of workstations. Due to the mixed-model nature 

of the problem on hand, we modified Andrés et al.’s (2008) procedure and combined 

with Vilarinho & Simaria’s (2002) procedure in order to handle the problem 

characteristics on hand.   



53 
 

 
 

  The proposed procedure for the lower bound, LBpmix, was derived by using the 

following set of assumptions. 

 

 The maximum number of replicas of per workstation is set as 2. 

 A workstation can be duplicated only if the task time of one of the tasks 

assigned to it exceeds the cycle time for at least one of the models. 

 The task time of the longest task does not exceed twice the cycle time (C). 

 Setup times between the tasks vary from one model to another. 

 

The steps required to compute LBpmix are described as follows. 

 

Step-1  For each model, classify the tasks according to the corresponding task time, 

as shown in Table 4.2 and go to Step 2. 

Step-2 For each model, compute 𝐿𝐵′(𝑚) and go to Step 3. 

 

𝐿𝐵′(𝑚) = ��
2(𝑛𝐴 + 𝑛𝐵 + 𝑛𝐶) + 𝑦(𝑛𝐷 − 𝑛𝐶) +

1
2
𝑤(𝑛𝐸 − 𝑛𝐵) +

5
3
𝑛𝐹 +

4
3
𝑛𝐺 +

2
3
𝑛𝐻 +

1
3
𝑛𝐼

��                    (4.6) 

 

 where y equals 1 if 𝑛𝐷 − 𝑛𝐶 > 0 or zero otherwise and w equals 1 if 

𝑛𝐸 − 𝑛𝐵 > 0 or zero otherwise. 

 
Table 4.2 Classification of the tasks to compute LBpmix 

Task Type Task Time Task Type Task Time 

A 5
3
𝐶 < 𝑇𝐴 ≤ 2𝐶 F 𝑇𝐹 =

5
3
𝐶 

B 4
3
𝐶 < 𝑇𝐵 ≤

5
3
𝐶 G 𝑇𝐺 =

4
3
𝐶 

C 𝐶 < 𝑇𝐶 ≤
4
3
𝐶 H 𝑇𝐻 =

2
3
𝐶 

D 2
3
𝐶 < 𝑇𝐷 ≤ 𝐶 I 𝑇𝐼 =

1
3
𝐶 

E 1
3
𝐶 < 𝑇𝐸 ≤

2
3
𝐶 J 𝑇𝐽 <

1
3
𝐶 



54 
 

 
 

Step-3  For each model, compute 𝑍(𝑚) and go to Step 4. 

 

𝑍(𝑚) = ���𝑇𝑖
𝑖=𝐽

− �𝐿𝐵′(𝑚)𝐶 −�𝑇𝑖
𝑖≠𝐽

�� 𝐶� �                                                              (4.7) 

 

Step-4  For each model, compute 𝐿𝐵𝑝𝑚𝑖𝑥
0 (𝑚) = 𝐿𝐵′ + 𝑍(𝑚) and go to Step 5. 

Step-5  /* M is the number of different models, 𝑆𝑈𝑇(𝑚) is the sum of the k lowest setup times 

between the N tasks due to model m */ 

 

 for (m=1 to M) do    

Set 𝑘𝑜𝑛𝑡𝑟𝑜𝑙(𝑚) = 0 and,  

  𝑘(𝑚) = 1,  

while (𝑘𝑜𝑛𝑡𝑟𝑜𝑙(𝑚) == 0) do 

Set 𝐿𝐵𝑝𝑚𝑖𝑥
𝑘 (𝑚) = 𝐿𝐵𝑝𝑚𝑖𝑥

0 (𝑚) + 𝑆𝑈𝑇(𝑚)
𝐶

 and,           

   𝑞𝑚 = 𝑁 − 𝐿𝐵𝑝𝑚𝑖𝑥
𝑘 (𝑚) + 1, 

if (𝑘(𝑚) ≥ 𝑞(𝑚))  

Set 𝑘𝑜𝑛𝑡𝑟𝑜𝑙(𝑚) = 1 and,  

      𝐿𝐵𝑝𝑚𝑖𝑥(𝑚) = (𝑐𝑒𝑖𝑙)𝐿𝐵𝑝𝑚𝑖𝑥
𝑘 (𝑚), 

         else  

                                                         𝑘(𝑚) = 𝑘(𝑚) + 1 

         endif 

    endwhile 

   endfor. Then go to Step 6. 

Step-6 Select 𝐿𝐵𝑝𝑚𝑖𝑥 for the problem. 𝐿𝐵𝑝𝑚𝑖𝑥 = 𝑚𝑎𝑥𝑚�𝐿𝐵𝑝𝑚𝑖𝑥(𝑚)�. 

 

Table 4.3 indicates the lower bound values for the number of workstations 

determined by the proposed procedure for all the test problems with low, medium 

and high variability of setup times between tasks. On the other hand this lower bound 

computation is also important for the determination of initial pheromone level 𝜏0. 

For small, medium and large sized problem classes the initial pheromone levels are 

calculated by using the related lower bound values.  



55 
 

 
 

Table 4.3 Lower bound values for the test problems 

Prob. 
No 

Lower Bound (LBpmix) Prob. 
No 

Lower Bound (LBpmix) 
Low 

Variability 
Medium 

Variability 
High 

Variability 
Low 

Variability 
Medium 

Variability 
High 

Variability 
1 5 5 5 11 14 14 14 
2 6 6 6 12 16 16 16 
3 8 8 8 13 17 17 17 
4 7 7 7 14 18 18 18 
5 15 15 15 15 20 20 20 
6 14 14 14 16 21 21 21 
7 15 15 15 17 23 23 23 
8 14 14 14 18 24 24 24 
9 19 19 19 19 39 39 39 

10 18 18 18 20 40 40 40 

 

4.3.2 Computational Results 

 

All the algorithms GA, hGA (Akpınar & Bayhan, 2011), ACO and hybrid ACO-

GA were coded in C++, and the solutions of the test problems were obtained by 

running the algorithms on Intel (R) Core 2 Duo CPU T7300 (2.0 GHz). The 

parameter sets used for GA, hGA and ACO are given in Table 4.4 and the parameter 

set used for proposed hybrid ACO-GA algorithm presented in Table 4.5. These 

parameters were chosen experimentally for getting a satisfactory performance in an 

acceptable time span. 

 
Table 4.4 Parameter sets for ACO, GA and hGA 

Problem 
Ant Colony Optimization Genetic Algorithm, hGA 

τ0 ρ α β r1 r2 r3 NSC NAA PS RC RM NI 
1-4(Small) 7 0.15 0.25 1.25 0.6 0.3 0.1 200 20 20 0.5 0.15 200 

5-14(Medium) 16 0.15 0.25 1.25 0.6 0.3 0.1 200 50 50 0.5 0.15 200 
15-20(Large) 28 0.15 0.25 1.25 0.6 0.3 0.1 200 100 100 0.5 0.15 200 

τ0: Initial pheromone level; ρ: evaporation coefficient;  α and β: determine the relative importance of 
pheromone intensity versus heuristic information; r1, r2 and r3: user defined parameters for task selection 
strategy; NSC: Number of sub-colonies; NAA: Number of artificial ants in each sub-colony; PS: Size of the 

population; RC: Crossover rate; RM: Mutation Rate; NI: Number of iterations 
 

According to Dorigo & Gambardella (1997), a rough approximation of the 

optimal value of the objective function is a reasonable value for τ0. In the current 

study, since the average lower bound values for cycle times are approximately equal 

to 7, 16 and 28 for small, medium and large sized problem classes, we set the initial 

pheromone levels (τ0) to 7, 16 and 28 for small, medium and large sized problems, 

respectively. The other parameters, except the number of ants (NAA) in each sub 



56 
 

 
 

colony, have the same values for all test problems. NAA indicates the number of 

different solutions which must be evaluated at each iteration by ACO, thus it have to 

be well proportioned to the solution space size in order to satisfy algorithm’s 

diversification. The higher values of NAA may the algorithm cause redundant 

computational effort while the lower values may the algorithm cause insufficient 

diversification. Hence, NAA should have different values for the different sized 

problems. Since NAA is a parameter related with the search space size of a problem, 

we set NAA as 10, 25 and 50 for small sized, medium sized and large sized problems, 

respectively. 

 
Table 4.5 Parameter set for hybrid ACO-GA 

Problem 
Ant Colony Optimization Genetic Algorithm, hGA 

τ0 ρ α β r1 r2 r3 NSC NAA PS RC RM NI 
1-4(Small) 7 0.15 0.25 1.25 0.6 0.3 0.1 100 20 20 0.5 0.15 50 

5-14(Medium) 16 0.15 0.25 1.25 0.6 0.3 0.1 100 50 50 0.5 0.15 50 
15-20(Large) 28 0.15 0.25 1.25 0.6 0.3 0.1 100 100 100 0.5 0.15 50 

 

The test problems were solved using GA, hGA, ACO and the proposed hybrid 

ACO-GA and the minimum, maximum and average values of the solutions, for each 

of the test problems shown in Tables 4.5 and 4.6, results from ten runs of each 

instance of the problem. We conduct a comparison between GA, hGA, ACO and 

ACO-GA in terms of determined number of workstations (NWS) and computational 

time (CPU). As it can be seen from Tables 4.5 and 4.6, ACO outperforms both hGA 

and GA for medium and large sized problems in case of low, medium and high 

variability of setups, while hGA outperforms pure GA. On the other hand ACO-GA 

outperforms ACO, GA and hGA for medium and large sized problems. It must be 

noted that as the problem size get larger the performance of ACO increase 

significantly in comparison with GA and hGA.  From the observations of Tables 4.5 

and 4.6, it is found that the performance of  hGA is superior to GA in 18.33% (11 of 

60 problems), the performance of ACO superior to GA in 41.67% (25 of 60 

problems) and hGA in 36.67% (22 of 60 problems), and the performance of ACO-

GA superior to  ACO in 21.67% (13 of 60 problems), GA in 46.67% (28 of 60 

problems) and hGA in 41.67% (25 of 60 problems) of the test problems. However, it 

is clear that ACO has slower speed in comparison of GA, hGA and ACO-GA.



 
 

 

57 

Table 4.5 Computational results of GA versus ACO 

Problem 
No 

Low Variability of Setup Times Medium Variability of Setup Times High Variability of Setup Times 

GA ACO GA ACO GA ACO 

NWS 
CPU 

NWS 
CPU 

NWS 
CPU 

NWS 
CPU 

NWS 
CPU 

NWS 
CPU 

Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max 

Sm
al

l S
iz

e 1 5 5 5 0.12 5 5 5 0.19 5 5 5 0.12 5 5 5 0.16 5 5 5 0.13 5 5 5 0.15 
2 9 9 9 0.14 9 9 9 0.21 10 10 10 0.14 10 10 10 0.21 10 10 10 0.14 10 10 10 0.20 
3 8 8 8 0.14 8 8 8 0.22 8 8 8 0.15 8 8 8 0.25 8 8 8 0.16 8 8 8 0.23 
4 7 7 7 0.14 7 7 7 0.23 7 7 7 0.14 7 7 7 0.26 7 7 7 0.15 7 7 7 0.24 

M
ed

iu
m

 S
iz

e 

5 17 17 17 0.44 17 17 17 1.00 17 17 17 0.44 17 17 17 0.96 19.7 19 20 0.58 19 19 19 1.07 
6 16 16 16 0.44 16 16 16 0.90 17.8 17 18 0.24 17 17 17 0.98 18.2 18 19 0.52 18 18 18 0.99 
7 17 17 17 0.43 17 17 17 1.41 18 18 18 0.52 18 18 18 1.28 19 19 19 0.55 18.8 18 19 1.35 
8 16 16 16 0.56 16 16 16 1.31 16 16 16 0.55 16 16 16 1.29 19 19 19 0.55 19 19 19 1.37 
9 22.9 22 23 0.70 22 22 22 2.95 23.9 23 24 0.70 23 23 23 3.00 24.1 24 25 0.71 24 24 24 3.03 

10 21.2 21 22 0.80 20.5 20 21 2.96 22.4 22 23 0.83 21 21 21 3.07 23 23 23 0.81 21 21 21 3.27 
11 18 18 18 0.56 17 17 17 1.40 19.5 19 20 0.60 18 18 18 1.48 20.5 20 21 0.62 19 19 19 1.49 
12 21.5 21 22 0.60 21 21 21 1.42 23 23 23 0.65 22.7 22 23 1.42 24.3 24 25 0.65 24 24 24 1.43 
13 21 21 21 0.62 21 21 21 1.75 22 22 22 0.62 22 22 22 1.73 23 23 23 0.64 23 23 23 1.74 
14 21.4 21 22 0.65 21 21 21 1.75 23 23 23 0.66 23 23 23 1.83 26 26 26 0.77 26 26 26 1.88 

La
rg

e 
Si

ze
 

15 26.3 26 27 1.44 25.1 25 26 4.35 28.2 28 29 1.44 27.5 27 28 4.55 29.1 29 30 1.52 28 28 28 4.83 
16 26 26 26 1.40 26 26 26 4.59 28 28 28 1.44 27.6 27 28 4.73 29 29 29 1.65 28 28 28 4.82 
17 28.2 28 29 1.90 26 26 26 9.10 30.1 29 31 2.01 28 28 28 9.13 31.5 31 32 2.30 30 30 30 9.64 
18 31.2 31 32 2.16 29 29 29 9.42 32.9 32 33 2.17 31 31 31 9.98 34.2 34 35 2.22 33 33 33 10.12 
19 52.2 51 53 3.89 47 47 47 21.25 56 55 57 3.76 51.1 51 52 22.50 57.3 57 58 3.88 51 51 51 24.55 
20 52.8 52 53 3.89 48 48 48 21.67 56.4 56 57 3.93 52 52 52 22.17 58.8 58 59 4.00 56 56 56 23.48 

NWS: Number of workstations; CPU: Computational time 



 
 

 

58 

Table 4.6 Computational results of hGA versus hybrid ACO-GA 

Problem 
No 

Low Variability of Setup Times Medium Variability of Setup Times High Variability of Setup Times 

hGA ACO-GA hGA ACO-GA hGA ACO-GA 

NWS 
CPU 

NWS 
CPU 

NWS 
CPU 

NWS 
CPU 

NWS 
CPU 

NWS 
CPU 

Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max 

Sm
al

l S
iz

e 1 5 5 5 0.32 5 5 5 0.05 5 5 5 0.33 5 5 5 0.06 5 5 5 0.33 5 5 5 0.04 
2 9 9 9 0.34 9 9 9 0.07 10 10 10 0.35 10 10 10 0.07 10 10 10 0.34 10 10 10 0.06 
3 8 8 8 0.35 8 8 8 0.08 8 8 8 0.37 8 8 8 0.08 8 8 8 0.36 8 8 8 0.08 
4 7 7 7 0.36 7 7 7 0.09 7 7 7 0.34 7 7 7 0.09 7 7 7 0.35 7 7 7 0.09 

M
ed

iu
m

 S
iz

e 

5 17 17 17 0.74 17 17 17 0.52 17 17 17 0.72 17 17 17 0.54 19.4 19 20 0.78 19 19 19 0.57 
6 16 16 16 0.76 16 16 16 0.54 17.2 17 18 0.74 17 17 17 0.54 18 18 18 0.72 18 18 18 0.55 
7 17 17 17 0.73 17 17 17 0.68 18 18 18 0.82 18 18 18 0.73 18.7 18 19 0.85 18.4 18 19 0.76 
8 16 16 16 0.78 16 16 16 0.75 16 16 16 0.85 16 16 16 0.81 19 19 19 0.85 18.6 18 19 0.81 
9 22.4 22 23 0.92 22 22 22 1.66 23.5 23 24 1.03 23 23 23 1.70 24 24 24 1.01 23.8 23 24 1.77 
10 21 21 21 1.02 20.1 20 21 1.69 22.2 22 23 1.13 21 21 21 1.85 22 22 22 1.14 21 21 21 1.79 
11 18 18 18 0.76 17 17 17 0.78 19 19 19 0.92 18 18 18 0.80 20 20 20 0.93 19 19 19 0.78 
12 21.2 21 22 0.80 21 21 21 0.83 23 23 23 0.95 22.1 22 23 0.85 24.2 24 25 0.97 24 24 24 0.86 
13 21 21 21 0.92 21 21 21 0.90 22 22 22 0.97 22 22 22 1.06 23 23 23 1.00 23 23 23 0.98 
14 21.3 21 22 0.95 21 21 21 1.00 23 23 23 0.96 23 23 23 1.10 26 26 26 1.03 26 26 26 1.07 

La
rg

e 
Si

ze
 

15 26 26 26 1.74 25 25 25 2.73 28 28 28 1.75 27 27 27 2.95 29 29 29 1.82 28 28 28 2.92 
16 26 26 26 1.80 25.7 25 26 2.94 28 28 28 1.81 27 27 27 3.02 29 29 29 1.88 28 28 28 3.02 
17 28 28 28 2.15 26 26 26 5.13 29.8 29 30 2.21 28 28 28 5.45 30.5 30 31 2.50 29.6 29 30 5.83 
18 31 30 32 2.27 28.6 28 29 5.65 32.3 32 33 2.27 30.3 30 31 5.64 33.2 33 34 2.52 32.3 32 33 5.77 
19 52 50 53 4.89 46.7 46 47 12.17 55 54 56 4.73 50.8 50 51 12.65 55.3 55 56 4.83 50.7 50 51 12.98 
20 52 50 53 4.91 47.7 47 48 12.65 55 54 56 4.92 51.5 51 52 13.22 57.8 57 58 4.94 55 55 55 13.76 

NWS: Number of workstations; CPU: Computational time 

 



59 
 

 
 

As a summary of Tables 4.5 and 4.6, we formed Table 4.7 in order to make the 

comparison for ACO, GA, hGA and hybrid ACO-GA more clearly in terms of gaps 

for the obtained minimum number of workstations. The criterion of gap is 

meaningful, if we consider the high cost to build and maintain an assembly line. Less 

workstation means less equipment to purchase, payoff and maintain. This cost affect 

also indicates the superior performance of ACO-GA to ACO GA and hGA. 

 
Table 4.7 Comparison of GA, ACO, hGA and hybrid ACO-GA 

Problem No 
Small Size Medium Size Large Size 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

G
A

Ps
 

Lo
w

 V
ar

ia
bi

lit
y 

ACO 
GA - - - - - - - - - 1 1 - - - 1 - 2 2 4 4 

ACO-GA 
GA - - - - - - - - - 1 1 - - - 1 1 2 3 5 5 

ACO-GA 
ACO - - - - - - - - - - - - - - - 1 - 1 1 1 

GA 
hGA - - - - - - - - - - - - - - - - - 1 1 2 

ACO 
hGA - - - - - - - - - 1 1 - - - 1 - 2 1 3 2 

ACO-GA 
hGA - - - - - - - - - 1 1 - - - 1 1 2 2 4 3 

M
ed

iu
m

 V
ar

ia
bi

lit
y 

ACO 
GA - - - - - - - - - 1 1 1 - - 1 1 1 1 4 4 

ACO-GA 
GA - - - - - - - - - 1 1 1 - - 1 1 1 2 5 5 

ACO-GA 
ACO - - - - - - - - - - - - - - - - - 1 1 1 

GA 
hGA - - - - - - - - - - - - - - - - - - 1 2 

ACO 
hGA - - - - - - - - - 1 1 1 - - 1 1 1 1 3 2 

ACO-GA 
hGA - - - - - - - - - 1 1 1 - - 1 1 1 2 4 3 

H
ig

h 
V

ar
ia

bi
lit

y 

ACO 
GA - - - - - - 1 - - 2 1 - - - 1 1 1 1 6 2 

ACO-GA 
GA - - - - - - 1 1 1 2 1 - - - 1 1 2 2 7 3 

ACO-GA 
ACO - - - - - - - 1 1 - - - - - - - 1 1 1 1 

GA 
hGA - - - - - - 1 - - 1 - - - - - - 1 1 2 1 

ACO 
hGA - - - - - - - - - 1 1 - - - 1 1 - - 4 1 

ACO-GA 
hGA - - - - - - - 1 1 1 1 - - - 1 1 1 1 5 2 

 

From the above experimental results, we can claim that ACO and ACO-GA has 

significantly good performance in comparison to GA and hGA. Hence, we analyzed 



60 
 

 
 

the results obtained from ACO and ACO-GA in more detailed in Table 4.8, which 

exhibits the results of the proposed hybrid ACO-GA and ACO for the 20 test 

problems with low, medium and high variability of setup times in terms of minimum 

number of workstations (𝑁𝑊𝑆), the weighted line efficiency (𝑊𝐸), percentage 

difference (𝐷%) between the obtained number of workstations obtained by the 

proposed hybrid algorithm and the LB values (𝐿𝐵𝑝𝑚𝑖𝑥). Percentage difference 

between the minimum number of workstations and the LB value for a problem is 

computed by Equation 4.8. 

 

𝐷𝑖(%) =
𝑁𝑤𝑠𝑖 − 𝐿𝐵𝑝𝑚𝑖𝑥𝑖

𝐿𝐵𝑝𝑚𝑖𝑥𝑖
× 100                            𝑖 ∈ {1,2, … ,20}                              (4.8) 

 

As pointed out in 6th, 9th, 12th, 15th, 18th, and 21th columns of Table 4.8,where the 

values of 𝐷% equal to zero for the problems 1, 3 and 4, thus, an optimal solution is 

found for these three problems with low, medium and high variability of setup times 

by both ACO and ACO. On the other hand, the worst performance is for problem 2, 

where the difference between the solutions obtained and the lower bound is 50%, 

67% and 67% for low, medium and high variability of setup times, respectively. 

 

The formula of the weighted line efficiency is given by Equation 4.9, which takes 

into account not only the task times but only the sequence dependent setup times 

between tasks. Hence, the weighted line efficiency is computed by considering idle 

times of the workstations instead of considering the tasks times. It is noted that 

maximizing line efficiency is equivalent to minimizing the number of workstations 

(𝑁𝑊𝑆) for a given cycle time (C). 

 

𝑊𝐸 = � �𝑞𝑚
𝑁𝑤𝑠𝐶 − ∑ 𝐼𝑑𝑙𝑒𝑠𝑚𝑆

𝑠=1

𝑁𝑤𝑠𝐶
�

𝑀

𝑚=1

                                                                           (4.9) 

 

where 𝑞𝑚 is the overall proportion of the number of units of model m being 

assembled, 𝐼𝑑𝑙𝑒𝑠𝑚 is the idle time of workstation S due to model m, 𝑁𝑊𝑆  is the 

minimum value for the number of workstations obtained by the solution procedure.



 
 

 

61 

Table 4.8 Performance evaluation of ACO and the hybrid ACO-GA 

Problem 

No 

Low Variability of Setup Times Medium Variability of Setup Times High Variability of Setup Times 

LBpmix 
ACO ACO-GA 

LBpmix 
ACO ACO-GA 

LBpmix 
ACO ACO-GA 

NWS WE D % NWS WE D % NWS WE D % NWS WE D % NWS WE D % NWS WE D % 

Sm
al

l S
iz

e 

1 5 5 71.9 0 5 71.9 0 5 5 75.9 0 5 75.9 0 5 5 77.8 0 5 77.8 0 

2 6 9 49.6 50 9 49.6 50 6 10 43.9 67 10 43.9 67 6 10 43.9 67 10 43.9 67 

3 8 8 64.2 0 8 64.2 0 8 8 65.2 0 8 65.2 0 8 8 66.0 0 8 66.0 0 

4 7 7 78.6 0 7 78.6 0 7 7 80.2 0 7 80.2 0 7 7 83.4 0 7 83.4 0 

M
ed

iu
m

 S
iz

e 

5 15 17 69.4 13 17 69.4 13 15 17 70.3 13 17 70.3 13 15 19 63.6 27 19 63.6 27 

6 14 16 77.0 14 16 77.0 14 14 17 73.9 21 17 73.9 21 14 18 70.3 29 18 70.3 29 

7 15 17 73.9 13 17 73.9 13 15 18 70.9 20 18 70.9 20 15 18 71.1 20 18 71.1 20 

8 14 16 81.5 14 16 81.5 14 14 16 83.8 14 16 83.8 14 14 19 69.9 36 18 74.4 29 

9 19 22 85.1 16 22 85.1 16 19 23 82.7 21 23 82.7 21 19 24 80.7 26 23 85.3 21 

10 18 20 85.1 11 20 85.1 11 18 21 83.5 17 21 83.5 17 18 21 84.7 17 21 84.7 17 

11 14 17 86.2 21 17 86.2 21 14 18 84.1 29 18 84.1 29 14 19 80.1 36 19 80.1 36 

12 16 21 81.0 31 21 81.0 31 16 22 77.2 38 22 77.2 38 16 24 71.4 50 24 71.4 50 

13 17 21 73.2 24 21 73.2 24 17 22 70.8 29 22 70.8 29 17 23 68.8 35 23 68.8 35 

14 18 21 76.8 17 21 76.8 17 18 23 71.1 28 23 71.1 28 18 26 62.7 44 26 62.7 44 

La
rg

e 
Si

ze
 

15 20 25 79.6 25 25 79.6 25 20 27 75.1 35 27 75.1 35 20 28 73.9 40 28 73.9 40 

16 21 26 81.3 24 25 84.9 19 21 27 81.2 29 27 81.2 29 21 28 78.8 33 28 78.8 33 

17 23 26 86.3 13 26 86.3 13 23 28 82.8 22 28 82.8 22 23 30 76.7 30 29 79.6 26 

18 24 29 82.1 21 28 85.1 17 24 31 79.1 29 30 82.4 25 24 33 74.3 38 32 77.4 33 

19 39 47 84.2 21 46 86.2 18 39 51 78.7 31 50 80.6 28 39 51 79.3 31 50 81.4 28 

20 40 48 82.0 20 47 83.9 18 40 52 77.6 30 51 79.2 28 40 56 70.2 40 55 73.9 38 

 



62 
 

 
 

The precedence and zoning constraints are not taken into account by the 

calculation procedure of the lower bound. Therefore, the obtained results from the 

proposed hybrid ACO-GA algorithm are fairly satisfactory. This conclusion is 

reinforced by the values for the weighted line efficiency shown in 8th, 15th and 22th 

columns of Table 4.8. 

 

In order to understand whether the differences in the obtained results are due to 

the random chance or not, a paired t-test is executed on Minitab 15.  After paired t-

test it is figured out that outputs (average values for 10 independent replications 

represented in Tables 4.5 and 4.6) derived from GA, hGA, ACO and ACO-GA are 

meaningfully different from each other.  The results of paired t-test are presented in 

Table 4.9. Based on the values from Table 4.9, it can be concluded that hybrid ACO-

GA produced better results than GA, hGA and ACO, and ACO produced better 

results than both GA and hGA, and hGA produced better results than GA in general.  

 
Table 4.9 p values obtained from the comparison of algorithms using paired t-test (α=0.05) 

 
p Value 

Low Variability Medium Variability High Variability 
ACO 

- 
GA 

0.013 0.007 0.011 

hGA 
- 

GA 
0.007 0.007 0.005 

ACO 
- 

hGA 
0.018 0.009 0.023 

ACO-GA 
- 

GA 
0.010 0.004 0.006 

ACO-GA 
- 

ACO 
0.016 0.011 0.015 

ACO-GA 
- 

hGA 
0.014 0.004 0.009 

 

Considering the average computational (CPU) times, GA algorithm is faster than 

hGA, ACO and hybrid ACO-GA, while the proposed hybrid ACO-GA is faster than 

ACO.  This situation may be explained by the fact that solution generation effort of 



63 
 

 
 

the ACO in each iteration is much higher that GA, hGA and hybrid ACO-GA. On the 

other hand, it must be noted that the computational time is also related to the used 

parameter set.   

 

 This set of computational experiments shows that the overall performance of 

ACO-GA is superior to ACO, GA and hGA, the overall performance of ACO is 

superior to GA and hGA, and the overall performance of hGA is superior to GA. 

 

4.4 Chapter Conclusions 

 

 In this chapter, we aimed at hybridizing ACO with GA in order to improve search 

ability of ACO for solving mixed-model assembly line balancing problem with 

sequence dependent setup times between tasks. In the proposed hybrid ACO-GA 

algorithm, GA embedded into ACO. In order to evaluate the real performance of the 

proposed hybrid ACO-GA algorithm, a set of 20 mixed-model assembly line 

balancing problems with parallel workstations and zoning constraints was tested. As 

to the scope of this study, this set of benchmark problems was differentiated by 

adding sequence dependent setup times between tasks with low, medium and high 

variability. Due to the lack of optimal solutions for the benchmark set with setups, a 

procedure for determining lower bounds for the problem on hand was derived, for 

evaluating the proposed hybrid ACO-GA algorithm in terms of number of 

workstations. The performance of the proposed hybrid ACO-GA algorithm was also 

compared with the performances of pure ACO, pure GA and hGA. Computational 

results indicate that ACO-GA can improve search performance and outperforms 

ACO, GA and hGA. 

 

 

 

 

 



 
 

64 
 

CHAPTER FIVE 

A MULTIPLE COLONY HYBRID BEES ALGORITHM FOR MMALBPS-I 

 

5.1 Chapter Introduction 

 

 The MMALBP-I is NP-hard (Bukchin & Rabinowitch, 2006), complex, and CPU 

time-consuming (Battaïa & Dolgui, 2012a). Thus, exhaustive search methods can not 

to solve MMALBP-I within polynomially bounded computation times. The reader 

can refer to Battaïa & Dolgui (2012b) for a recent survey on solution approaches of 

assembly line balancing problems. 

 

 Design issues of the meta-heuristic approaches are generally depending on nature 

just because offering much broader wealth of inspiration. Social insects seem to be 

more interesting than the other sources of inspiration in nature, since their 

communication systems provides developing efficient solution procedures for 

combinatorial optimization (Özbakır et al., 2010). In fact, their behavior is attractive 

not only individually but also in a population from the optimization point of view, 

such that, some meta-heuristics approaches based on the simulation of this group 

behavior. This class of meta-heuristic approaches is named as population-based or 

swarm-based optimization algorithms and includes Ant Colony Optimization (ACO) 

(Dorigo et al., 1991), Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 

1995), Bee Colony Optimization (BCO) (Karaboga, 2005) and Bees Algorithm (BA) 

(Pham et al., 2006). Additionally, Genetic Algorithm (GA) (Holland, 1975) must be 

mentioned when population-based optimization algorithms are discussed, however, 

GA simulates the genetic evolutional process not the group behaviors of social 

insects. In this study, we are interested in BA for solving type I mixed-model 

assembly line balancing problem with setups (MMALBPS-I) because of the multi 

population structure of the honey bees; each population represents the honey bees 

living in a different hive. 

 

 Baykasoglu et al. (2007) surveyed the application areas and algorithms on 

behavioral characteristics of the honey bees and the authors presented a 

http://en.wikipedia.org/wiki/Exhaustive_search�


65 
 

 
 

classification, while, Ozbakır & Tapkan (2011) gave a brief literature review about 

the “foraging behavior” based optimization algorithms. Moreover, another survey of 

the algorithms based on the intelligence in bee swarms and applications has been 

presented by Karaboga & Akay (2009). For more detailed information about the 

applications of bee swarm intelligence, the readers can refer to one of these three 

papers, especially to (Baykasoglu et al., 2007) or (Karaboga & Akay, 2009). In this 

study, we only deal with the application of bee swarm intelligence to the assembly 

line balancing problems. The literature about the applications of bee swarm 

intelligence to assembly lines is scarce.  To the best of our knowledge, there are only 

two papers which dealt with ALBPs. Ozbakır & Tapkan (2011) and Tapkan & 

Ozbakır (2012) used BA for solving Two-sided Assembly Line Balancing Problem 

(TSALBP).  Both of the papers were adopted BA to TSALBP by generating random 

solutions according to different heuristic rules by using shift and swap movements as 

neighborhood generators.  

 

 The basic version of the BA is a combination of random search and neighborhood 

search, which may have different structures according to the features of the problem 

on hand. Most of the existing literature about the applications of BA to combinatorial 

optimization tries to evolve only a single population, with an exception of Akbari & 

Ziarati’s (2011) work as they developed a cooperative bee swarm optimization 

algorithm for functional optimization. Furthermore, the implementations of BA for 

the assembly line balancing problems (ALBPs) could be classified into improvement 

type of search algorithms because of the employed neighborhood structures (shift 

and swap movements), however, the constructive type of search algorithms like ACO 

are much more effective if the problem has an inherently network structure 

(Baykasoglu et al., 2006) as ALBPs. The existing literature (McMullen & 

Tarasewich, 2003; Simaria & Vilarinho, 2009; Vilarinho & Simaria, 2006; 

Yagmahan, 2011) addressing the solution of mixed-model ALBPs using ACO also 

introduced the encouraging performance of ACO.  

 

In the present study, we have proposed a multiple colony hybrid Bees algorithm 

(MCHBA) for MMALBPS-I. Our proposed approach is based on the multiple 



66 
 

 
 

colonies (similar to Özbakır et al.(2011)); each colony is formed according to a 

different heuristic information, with the purpose of improving the diversification of 

the algorithm. Diversification generally refers to the ability to visit many and 

different regions of the search space (Lozano & García-Martínez, 2010). Moreover, 

we used a new neighborhood structure which ensures the algorithm to be a 

constructive type. This neighborhood structure also enables the proposed approach to 

utilize the positive feedback mechanism as ACO does. Due to the multiple colonies, 

the proposed algorithm needs a communication strategy to be realized by the new 

neighborhood structure for sharing the information. Information sharing is an 

essential issue from the optimization point of view. However, we should mention 

here that there is not much information about the information sharing mechanisms 

between different colonies in real honey bees. We have adopted a mechanism which 

is similar to Ozbakir et al.’s (2011) study.    

 

The remainder of this chapter is organized as follows. The proposed Multiple 

Colony Hybrid Bees Algorithm is defined in Section 5.2. Comparative computational 

study is given in Section 5.3. Finally, the conclusions are presented in Section 5.4. 

 

5.2 Multiple Colony Hybrid Bees Algorithm 

 

In this section the proposed MCHBA is presented in detail. The pseudo code of 

MCHBA is given in Figure 5.1 and the notations are given in Table 5.1. 

 
 Table 5.1 Notations for the pseudo code and their corresponding definitions 

Notation Definition Notation Definition 

M Number of colonies (m=1,…,M) MaxIter Iteration number (Stopping criteria) 

S Number of scout bees (s=1,…,S) σbest Best solution 

P Number of employed bees 

(p=1,…,P) 
mpσbest Best solution of pth population of the mth 

colony  

e Number of best employed bees mσbest
 Best solution of the the mth colony 

nep Number of onlooker bees for each 

e employed bees 
mσs Solution of the sth scout bee of the mth 

colony 

nsp Number of onlooker bees for each 

P–e employed bees (nsp < nep) 

f(mσs) Fitness function value of the sth scout bee of 

the mth colony 

 



67 
 

 
 

1-  Determine M different heuristic rules for M different colonies 
2-  Parameter initialization and forming global pheromone matrix 
3-  Initialize each colony (consist of S scout bees) by using its own heuristic rule 
4-   for (m=1 to M) do 

for (s=1 to S) do 
Evaluate scout bee’s fitness function (f(mσs)) 

endfor 
endfor 

5-  k=0 
  while (k<MaxIter) 

for (m=1 to M) do   
Sort scout bees (mσs) according to their fitness (f(mσs)) in increasing order  
Determine best P solutions as employed bees and select best e employed bees from P 
Release a certain amount of pheromone for each employed bee 
Form each employed bee’s initial pheromone matrix. 
Assign nep onlooker bees to each best employed bees in order to form e different  
populations each one has nep individuals 
Assign nsp onlooker bees to each remaining P-e employed bees in order to form P-e 
different populations each one has nsp individuals 

for (p=1 to P) do 
       Apply neighborhood structure to population p  

Record pth population’s best bee (mpσbest) 
Update mth colony’s best bee (mσbest) 

if f(mpσbest) ≤f(mσbest)  
mσbest=mpσbest 

endif 
endfor 

endfor 
Update best solution 

for (m=1 to M) do 
if f(mσbest)≤ f(σbest) 

σbest= σp 

endif 
endfor 

Release a certain amount of pheromone for best bee and update global pheromone  
matrix 

k=k+1 
if (k< MaxIter) 

for (m=1 to M) do 
Initialize S-P scout bees with heuristic rule 

for (s=1 to S-P) do 
Evaluate scout bee’s fitness function (f(mσs)) 

endfor 
endfor 

endif 
 endwhile 

Figure 5.1 Pseudo code of the proposed multiple colony hybrid bees algorithm 

 

The proposed MCHBA starts by determining the heuristic rules and matching 

them to exactly one colony. After that, the algorithm continues by initializing the 

parameters and forming the initial global pheromone matrix, which is used for 

information sharing between colonies. The information sharing mechanism (Section 

5.2.1) is an important issue in the way of the behaviors of the bees in their own 

colonies. Initial colonies are generated by their own heuristic rules which are 

explained in Section 5.2.2. For each colony, the following steps are executed until a 



68 
 

 
 

predefined number of iteration is reached. P number of fittest bees within the set of 

generated solutions is determined as employed bees. From this set of employed bees 

e numbers of bees are selected as the best bees. nep numbers of onlooker bees are 

assigned to these best bees and nsp number of onlooker bees are assigned to the 

remaining P–e bees in order to generate different populations. The neighborhood 

mechanism is applied to each population for improving the algorithm’s 

intensification. The best onlooker bee of each population is compared with the 

original employed bee and, if it is better, the employed bee is substituted for the best 

onlooker bee. Moreover, each best onlooker bee is compared with the best bee, if it is 

better than the previous best bee, the best bee is updated. For global search, S–P 

number of scout bees is generated by using heuristic rules.  

 

Real honey bees use a mechanism named as waggle dance for sharing the 

information. Waggle dance is performed by the employed forager bees in order to 

share with the other bees of the colony information about the direction and distance 

of the food sources. If an unemployed recruit bee decides to start searching, the bee 

attends to a waggle dance done by some other bee for getting information and uses 

this information throughout its search. These behavioral properties of the real honey 

bees are so similar to the pheromone laying and following behaviors of ants. This 

similarity constitutes the basis of our proposed multiple colony hybrid bees 

algorithm, whose steps are explained in details in the following sub-sections.  

 

5.2.1 Behaviors of the Bees in their own Colonies 

 

The proposed MCHBA is trying to discipline each bee to approach the best bee of 

its own colony and the best bee of all colonies. In order to attain such behavior we 

need to realize an information sharing mechanism between the colonies, however, as 

we have mentioned previously there is not much information about this issue in the 

literature on real honey bees. Furthermore, such an information sharing mechanism is 

a vital issue from the optimization point of view. The global pheromone matrix 

(Özbakır et al., 2011), explained in Section 5.2.4, provides us to share the 

information between colonies.  



69 
 

 
 

 The behaviors of the bees in their own colonies that we envisaged before 

constructing the algorithm can be seen in Figure 5.2. The bees of the initial colonies 

are scattered due to the effect of randomness, as can be seen in Figure 5.2-a. After a 

predetermined number of iterations, we aim at making the algorithm to localize the 

bees near to their own colony’s best bee. We also envisaged that the bees are 

localized by the algorithm at the closer side of their colony to the global best bee, as 

it can be seen in Figure 5.2-b. So, each bee wants to fallow not only its own colony’s 

best bee, but also the global best bee. Additionally, we want to test if the bees have 

these two behavioral properties or not, however, we are not able to do this test on the 

assembly line balancing problem because of its complex structure. Such a test can be 

done on a function in continuous domain more easily. For that reason we select one 

of the well known non-convex functions named as Rastrigin (RF) and this test 

carried out on Matlab 7.9.0. The alignments of the bees in initial colonies (Fig. 5.3-a) 

and in final colonies (Fig. 5.3-b) verify the behaviors of the bees in Figure 5.2 on RF.  

 

 
Figure 5.2 Envisaged behaviors of BEEs in their own colonies 



70 
 

 
 

 
a. Initial colonies           b. Final colonies 

Figure 5.3 Behaviors of BEEs in their own colonies on RF 

 

Above mentioned two behavioral properties of the bees are important because of 

the effectiveness of the algorithm. Following colony’s best bee provides the 

algorithm convergence in each colony while following the best bee provides the 

algorithm convergence between colonies. Hence, the algorithm achieves the ability 

of approaching to the global optimum rapidly. 

 

5.2.2 Initial Colonies 

 

In the proposed MCHBA two types of bees exist, one represents a coding of a 

solution when the other constructs step by step a feasible balancing solution. The 

first type of bees is used to generate initial colonies when the other used by the 

proposed neighborhood structure. For coding, we used task based representation 

(Leu et al., 1994; Sabuncuoglu et al., 2000), which is the most appropriate 

representation scheme for type-1 balancing problems of assembly lines.  The length 

of the representation scheme is defined by the number of tasks and each value of this 

scheme represents a task. In this study, the phenomenon of the multiple colonies and 

randomly generated solutions are considered. That is to say, each colony used a 

different heuristic rule and each colony consists of a predefined number of solutions 

generated by selecting randomly a task at a time according to the heuristic rule. 

Heuristic rules based procedures developed and examined for different types of 

balancing problems by (Andrés et al., 2008; Martino & Pastor, 2010; Baykasoglu, 

2006; Bautista & Pereira, 2002; Wilhelm, 1999). 



71 
 

 
 

The heuristic rules assigned to colonies are: (i)-Maximum Processing Time of all 

Models (MPTM): Selects the task having maximum processing time for all models. 

(ii)-Maximum Average Processing Time (MAPT): Selects the task having maximum 

average processing time. The average processing time of a task is the sum of the 

processing times of that task for each model weighted by the respective production 

share. (iii)-Maximum Average Ranked Positional Weight (MARPW): Selects the task 

having maximum average ranked positional weight. In a mixed-model assembly line, 

the positional weight of a task is the cumulative average task processing time 

associated with itself and its successors. (iv)-Maximum Number of Direct Successors 

(MNDS): Selects the task having maximum total number of direct followers 

according to combined precedence diagram. (v)-Maximum Total Number of 

Successors (MTNS): Selects the task having maximum total number of followers 

according to combined precedence diagram. 

 

Work assignment within the proposed approach is made by the following 

procedure. Tasks are assigned to the workstations according to the task sequence in 

the representation scheme, as long as the predetermined cycle time is not exceeded. 

Once the cycle time is exceeded at least for a model or the zoning constraints are not 

satisfied, a new workstation is opened for assignment, and the procedure is repeated. 

Figure 5.4 illustrates assignment of tasks to workstations according to a 

representation scheme. 

 

 
Figure 5.4 Assignment procedure according to a representation scheme (Akpınar & Bayhan, 2011) 



72 
 

 
 

In the proposed MCHBA, it is required to use for each bee in each colony a 

solution encoding mechanism, as shown in Figure 5.5, for building feasible 

balancing solutions belonging to initial colonies. Each bee begins by determining the 

available tasks for forming a feasible task assignment sequence according to the 

precedence constraints. Then, each bee selects randomly one task at a time among 

the set of available tasks according to heuristic rule assigned to its colony.  After a 

sequence containing all tasks was generated, the artificial bee starts the procedure 

(see Fig. 5.4) for turning the sequence into a feasible balancing solution.  

 

 
Figure 5.5 Solution encoding mechanism used while generating initial colonies  

 

5.2.3 Fitness Evaluation 

 

As it can be seen from the literature, the main purpose of type-I problems of 

assembly line balancing is minimizing the number of workstations according to a 



73 
 

 
 

predetermined cycle time. Besides workstation minimization, it is required additional 

goals to be optimized due to the complex nature of the mixed-model assembly lines. 

The objective function used in the current study for evaluating the solutions is given 

by Equation 4.2 (Vilarinho & Simaria, 2002) (see Section 4.2.2). The first term in the 

objective function minimizes the index of the workstation to which the last task is 

assigned, thus minimizing the number of workstations. The second term balances the 

workload between the workstations. The third term balances the workload within 

each workstation. Workload balancing provides the sense of equity among workers, 

and, contributes to increasing the output (Kim et al., 1998).    

 

5.2.4 Neighborhood Structure 

 

The neighborhood structure used in this study is based on the task selection 

strategy which was used by Vilarinho & Simaria (2006) and makes the algorithm to 

be a constructive type. Each bee generates a solution by selecting one task for 

assignment at a time instead of trying to improve an existing solution by using the 

proposed neighborhood structure. In the original task selection strategy, the 

probability of a task being selected, from the set of available tasks, is a function of: 

(i) the pheromone trail intensity between the previously selected task and each 

available task and (ii) the information provided by the heuristic rule for each 

available task. This information is a priority rule (one of the rules mentioned in 

Section 5.2.2) that is assigned to each task when the respective solution is generated.  

 

Due to multiple colonies the proposed algorithm uses two types of pheromone 

matrixes, local and global pheromone matrixes. Local matrixes keep the information 

for each colony, while the global matrix keeps the information for all colonies and is 

only updated by the best solution. Moreover, the global pheromone matrix provides 

the communication between colonies. It is to say, global pheromone matrix is used as 

the information sharing mechanism.  

 

The proposed neighborhood structure is based on the information sharing 

mechanism. As the original task selection strategy does, the proposed neighborhood 



74 
 

 
 

structure uses a random number r between 0 and 1 and three user defined parameters 

r1, r2 and r3 such that 0≤r1,r2,r3≤1 and r1+r2+r3=1. The rule is given by: 

 

𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧𝐽1 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗∈𝐴𝑖
𝑛

��𝜑. 𝜏(𝑖,𝑗)
𝑔 + 𝛾. 𝜏(𝑖,𝑗)

𝑙 �
𝛼

. �𝜂𝑗�
𝛽�                 𝑖𝑓 𝑟 ≤ 𝑟1                  

𝐽2:𝑝(𝑖,𝐽2) =
�𝜑. 𝜏(𝑖,𝑗2)

𝑔 + 𝛾. 𝜏(𝑖,𝑗2)
𝑙 �

𝛼
. �𝜂𝐽2�

𝛽

∑ ��𝜑. 𝜏(𝑖,𝑗)
𝑔 + 𝛾. 𝜏(𝑖,𝑗)

𝑙 �
𝛼

. �𝜂𝑗�
𝛽�𝑗∈𝐴𝑖

𝑛

      𝑖𝑓 𝑟1 < 𝑟 ≤ 𝑟1 + 𝑟2  

𝐽3: 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗 ∈ 𝐴               𝑖𝑓 𝑟1 + 𝑟2 < 𝑟 ≤ 𝑟1 + 𝑟2 + 𝑟3     

  � (5.1) 

 

where 𝜏(𝑖,𝑗)
𝑔 and 𝜏(𝑖,𝑗)

𝑙   are the pheromone trail intensities kept by global and local 

pheromone matrixes respectively in the path ‘selecting task j after selecting task i’, ηj 

is the heuristic information of task j (e.g. the priority rule value for task j), 𝐴𝑖𝑛 is the 

set of available tasks for bee n after the selection of task i, φ and γ are parameters that 

determine the relative importance of global pheromone intensity versus local 

pheromone intensity, and α and β are parameters that determine the relative 

importance of pheromone intensity versus heuristic information.  

 

Figure 5.6 shows the solution encoding mechanism used by the proposed 

neighborhood structure for building a feasible balancing solution. Each artificial bee 

starts the mechanism by determining the available tasks for assignment to the current 

workstation, according to the precedence, zoning and capacity constraints. After that 

the bee selects one task from the set of available tasks and assigns it to the current 

workstation. The artificial bee opens a new workstation, if there is no task available 

for assignment to the current workstation. Until all tasks have been assigned to a 

workstation the bee repeats the procedure. 

 

As can be seen from Equation 5.1, each bee uses two types of pheromone 

intensities by generating a balancing solution. The local pheromone intensity 

provides bees approaching to its colony’s best bee while the global pheromone 

intensity provides bees approaching to the best bee of all colonies.  This feature 

ensures that the bees have the behavioral properties as mentioned in Section 5.2.1. 

 



75 
 

 
 

 
Figure 5.6 Solution encoding mechanism used by the neighborhood structure  

 

5.3 Computational Experience 

 

The concept of sequence dependent setup times is an actual framework in 

assembly line balancing problems (ALBP). For that reason, there is no standard set 

of benchmark instances with setup times available for testing in assembly line 

balancing literature except the Andrés et al.’s (2008) benchmark set, which covers 

simple version of ALBP, however, we deal with mixed-model version of ALBP in 

this study. For doing the comparison we construct a set of test problems based on 

type-I MMALB problems, some them (problems1-18 and 23-24) were used by 

Akpınar & Bayhan (2011) and some them (problems 19-22 and 25-36)  were 

generated randomly. The main characteristics of the test problems are exhibited in 

Table 5.2 where N, M, and C denote the number of tasks of the combined precedence 

diagram, the number of models, and cycle time of the assembly line, respectively. 

We also classified the test problems as small-size (problems 1-4), medium-size 

(problems 5-22), and large-size (problems 23-36) according to the number of tasks 

they include. 



76 
 

 
 

Table 5.2 Main characteristics of the test problems 

 Problem 
No 

N M C Problem Name 
 Problem 

No 
N M C Problem Name 

Sm
al

l-S
iz

e 1 8 2 10 Bowman 

M
ed

iu
m

-
Si

ze
 

19 53 2 10 Hahn 
2 8 3 10 Bowman 20 53 3 10 Hahn 
3 11 2 10 Gokcen & Erel 21 58 2 10 Warnecke 
4 11 3 10 Gokcen & Erel 22 58 3 10 Warnecke 

M
ed

iu
m

-S
iz

e 

5 21 2 10 Mitchel 

La
rg

e-
Si

ze
 

23 70 2 10 Tonge 
6 21 3 10 Mitchel 24 70 3 10 Tonge 
7 25 2 10 Vilarinho & Simaria 25 75 2 10 Wee-Mag 
8 25 3 10 Vilarinho & Simaria 26 75 3 10 Wee-Mag 
9 28 2 10 Heskiaoff 27 83 2 10 Arcus 1 

10 28 3 10 Heskiaoff 28 83 3 10 Arcus 1 
11 30 2 10 Sawyer 29 89 2 10 Lutz 2 
12 30 3 10 Sawyer 30 89 3 10 Lutz 2 
13 32 2 10 Lutz 1 31 94 2 10 Mukherje 
14 32 3 10 Lutz 1 32 94 3 10 Mukherje 
15 35 2 10 Gunther 33 111 2 10 Arcus 2 
16 35 3 10 Gunther 34 111 3 10 Arcus 2 
17 45 2 10 Kilbridge & Wester 35 148 2 10 Barthold 
18 45 3 10 Kilbridge & Wester 36 148 3 10 Barthold 

N: Number of tasks; M: number of models; C: Cycle time 

 

For the problems 1-18 and 23-24 the original precedence networks and operation 

times remained the same and for the problems 19-22 and 25-36 the precedence 

networks taken from http://alb.mansci.de/ and operation times were generated 

randomly. While generating setup times two types of setups (forward and backward 

setups) were considered as mentioned by Scholl et al. (2011). Thus, we defined two 

types of setup matrixes (forward and backward setup matrixes) as result of forward 

and backward setups between the tasks. All the setup times were generated according 

to the levels of setup time variability (Andrés et al., 2008) as mentioned in Section 

4.3, and so as to fulfill the triangle inequality (Scholl et al., 2011) given by Equation 

3.31(see Sec. 3.4). Moreover, considering any task may be a single element of a 

workstation, the pre-condition given by Equation 3.32 (see Sec. 3.3) have to be 

satisfied for all tasks. 

 

As a result the constructed a benchmark set contains 108 instances in three 

categories, low, medium and high variability of setup times, each category contains 

36 problems having the same number of tasks, precedence diagrams, and task times 

with different setup times. 

http://alb.mansci.de/�


77 
 

 
 

5.3.1 Computational Results 

 

In this study the performance of the proposed MCHBA is compared with single 

colony bees algorithms. Each single colony algorithm is based on one of the heuristic 

rules as mentioned in Section 5.2.2. We aim at determining the advantages of using 

multiple colonies instead of just using a single colony through such a comparison. 

All of the algorithms were coded in C++, and the solutions of the test problems were 

obtained by running the algorithms on Intel (R) Core 2 Duo CPU T7300 (2.0 GHz). 

The parameter sets used for single colony algorithms are given in Table 5.3 and the 

parameter set used for proposed MCHBA presented in Table 5.4. These parameters 

were chosen experimentally for getting a satisfactory performance in an acceptable 

time span. 

 
Table 5.3 Parameter set for single colony algorithms 

Problem τ0 ρ α β φ γ r1 r2 r3 S P e nep nsp NI 

1-4 
(Small Sized) 7 0.15 0.25 1.25 0.4 0.6 0.6 0.3 0.1 25 10 5 3 2 200 

5-22 
(Medium Sized) 20 0.15 0.25 1.25 0.4 0.6 0.6 0.3 0.1 50 25 10 5 3 200 

23-36 
(Large Sized) 47 0.15 0.25 1.25 0.4 0.6 0.6 0.3 0.1 100 50 20 10 5 200 

τ0: Initial pheromone level; ρ: evaporation coefficient; α and β: determine the relative importance of 
pheromone intensity versus heuristic information; φ and γ: determine the relative importance of global 
pheromone intensity versus local pheromone intensity; r1, r2 and r3: user defined parameters for task 

selection strategy; S: Number of scout bees; P: number of employed bees; e: number of best employed bees; 
nep: The number of onlooker bees for each e employed bees; nsp: The number of onlooker bees for each P − 

e employed bees (nsp<nep); NI: Number of iterations (MaxIter) 
 

According to Dorigo & Gambardella (1997), a rough approximation of the 

optimal value of the objective function is a reasonable value for τ0. In the current 

study, since the average lower bound values (LBpmix) (Akpınar et al., 2013) for cycle 

times are approximately equal to 7, 20 and 47 for small, medium and large sized 

problem classes, we set the initial pheromone levels (τ0) to 7, 20 and 47 for small, 

medium and large sized problems, respectively. The other parameters, except the 

number of scout bees (S) the number of employed bees (P) and the number of best 

employed bees (e), have the same values for all test problems. S indicates the number 

of different solutions which must be evaluated in each iteration, thus it has to be well 

proportioned to the solution space size in order to satisfy algorithm’s diversification. 

The higher values of S may the algorithm lead to redundant computational effort 



78 
 

 
 

while the lower values may the algorithm cause insufficient diversification. Hence, S 

is a parameter related with the search space size of a problem and should have 

different values for the different sized problems. Since P and e are parameters related 

to S, they should also have different values for the different sized problems. 

 
Table 5.4 Parameter set for MCHBA 

Problem τ0 ρ α β φ γ r1 r2 r3 S P e nep nsp NI 

1-4 
(Small Sized) 7 0.15 0.25 1.25 0.4 0.6 0.6 0.3 0.1 5 2 1 3 2 200 

5-22 
(Medium Sized) 20 0.15 0.25 1.25 0.4 0.6 0.6 0.3 0.1 10 5 2 5 3 200 

23-36 
(Large Sized) 47 0.15 0.25 1.25 0.4 0.6 0.6 0.3 0.1 20 10 4 10 5 200 

 

As pointed out in Tables 5.3 and 5.4, the parameters S, P and e have different 

values for the proposed MCHBA and single colony algorithms. Since MCHBA has 

five different colonies and each colony has a number of scout bees, MCHBA 

evaluates all the scout bees for all colonies in each iteration. So, a single colony 

algorithm must be evaluating the same number of scout bees in each iteration.  In 

such a way, it is possible to do a consistent comparison between the proposed 

MCHBA and the other single colony algorithms. As can be seen from Tables 5.3 and 

5.4, the parameters S, P and e used for a single colony algorithm are five times 

greater than used for MCHBA. 

 

The test problems were solved by using proposed MCHBA and other 5 heuristics 

(MPTM, MAPT, MARPW, MNDS, and MTNS) based single colony algorithms. The 

minimum, maximum and average values of the solutions, for each of the test 

problems shown in Tables 5.5, 5.6, and 5.7 results from ten runs of each instance of 

the problem set. Tables 5.5, 5.6, and 5.7 cover the results for the categories of low, 

medium, and high variability of setup times, respectively. The third and fourth 

columns of the Tables 5.5, 5.6, and 5.7 contain the values of LBpmix and optimal 

solutions for the test problems respectively. The values of LBpmix were provided by 

the procedure proposed by Akpınar et al. (2013), while the optimal solutions were 

provided by the MILP model developed within the scope of this study and explained 

in Chapter 3. 

 



 
 

 

79 

Table 5.5 Computational results for problems with low variability of setup times 

Problem 
No 

  MPTM MAPT MARPW MNDS MTNS MCHBA 
LBpmix Optimal 

Solution NWS CPU 
NWS CPU 

NWS CPU 
NWS CPU 

NWS CPU 
NWS CPU 

  Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max 

Sm
al

l 
Si

ze
 1 5 5 5 5 5 0.11 5 5 5 0.09 5 5 5 0.12 5 5 5 0.11 5 5 5 0.13 5 5 5 0.10 

2 6 9 9 9 9 0.18 9 9 9 0.16 9 9 9 0.19 9 9 9 0.17 9 9 9 0.18 9 9 9 0.16 
3 8 8 8 8 8 0.27 8 8 8 0.25 8 8 8 0.26 8 8 8 0.24 8 8 8 0.25 8 8 8 0.23 
4 7 7 7 7 7 0.26 7 7 7 0.28 7 7 7 0.30 7 7 7 0.26 7 7 7 0.29 7 7 7 0.27 

M
ed

iu
m

 S
iz

e 

5 15 - 17 17 17 1.93 17 17 17 1.81 17 17 17 1.97 17 17 17 1.88 17 17 17 1.96 17 17 17 1.76 
6 14 - 16 16 16 2.02 16 16 16 1.87 16 16 16 1.89 16 16 16 2.13 16 16 16 2.04 16 16 16 1.79 
7 15 - 17 17 17 2.56 17 17 17 2.42 17 17 17 2.65 17 17 17 2.59 17 17 17 2.65 17 17 17 2.48 
8 14 - 16.3 16 17 2.87 16.3 16 17 2.78 16 16 16 2.90 16.2 16 17 3.06 16 16 16 3.13 15 15 15 2.68 
9 19 - 22 22 22 6.99 22 22 22 6.35 22 22 22 7.11 22 22 22 7.30 22 22 22 7.61 22 22 22 6.69 
10 18 - 20 20 20 7.05 20 20 20 6.73 20 20 20 7.27 20 20 20 7.53 20 20 20 8.02 20 20 20 6.87 
11 15 - 17 17 17 2.87 17 17 17 2.79 17 17 17 3.04 17 17 17 2.96 17 17 17 3.27 17 17 17 2.87 
12 18 - 21.5 21 22 3.17 21.4 21 22 3.10 21.2 21 22 3.43 21 21 21 3.39 21 21 21 3.44 20 20 20 3.20 
13 17 - 21 21 21 3.46 21 21 21 3.45 21 21 21 3.59 21 21 21 3.39 21 21 21 3.75 21 21 21 3.37 
14 18 - 21 21 21 3.72 21 21 21 3.70 21 21 21 3.87 21 21 21 3.58 21 21 21 4.04 21 21 21 3.40 
15 20 - 25 25 25 5.87 25 25 25 5.77 25 25 25 5.33 26 26 26 6.96 25 25 25 6.45 25 25 25 5.64 
16 21 - 26.1 26 27 6.49 26.1 26 27 5.25 26.2 26 27 5.47 27 27 27 5.40 26.4 26 27 6.49 25 25 25 5.88 
17 23 - 27 27 27 12.77 27 27 27 11.77 27.4 27 28 13.36 27 27 27 13.91 28 28 28 13.93 26 26 26 12.12 
18 24 - 29 29 29 14.40 28.7 28 29 13.30 29.8 28 29 14.28 29.7 29 30 14.13 29 29 29 15.41 28 28 28 12.16 
19 26 - 34 34 34 14.07 34 34 34 14.17 33.1 33 34 14.17 34 34 34 14.11 33.9 33 34 14.17 33.1 33 34 13.46 
20 25 - 36 36 36 15.32 36 36 36 14.15 36 36 36 15.14 36 36 36 14.14 36 36 36 14.18 36 36 36 13.53 
21 31 - 34.6 34 35 16.31 34.9 34 35 15.37 34 34 34 15.47 34.4 34 35 14.48 34 34 34 14.49 34 34 34 14.64 
22 28 - 35.3 35 36 16.54 35.2 35 36 16.42 34.8 34 35 15.48 35.7 35 36 15.48 34.5 34 35 15.47 34.5 34 35 15.08 

La
rg

e 
Si

ze
 

23 39 - 47 47 47 84.13 46 46 46 81.39 46 46 46 89.15 46 46 46 96.93 46 46 46 94.30 46 46 46 84.55 
24 40 - 48.3 48 49 89.11 48.1 48 49 83.88 48 48 48 92.69 49 49 49 99.44 48.2 48 49 94.52 47 47 47 87.55 
25 39 - 43.1 43 44 109.63 43 43 43 107.94 42.8 42 43 107.05 43 43 43 108.50 42.9 42 43 109.27 42.3 42 43 108.73 
26 38 - 45 45 45 110.69 45.1 45 46 109.17 45 45 45 110.01 45 45 45 110.62 45.9 45 46 109.85 44.3 44 45 111.32 
27 44 - 54.3 54 55 113.25 54.9 54 55 114.64 53.1 53 54 113.98 55.7 55 56 113.66 53 53 53 113.11 52.6 52 53 112.68 
28 39 - 57.7 57 58 114.37 56.2 56 57 113.98 53 53 53 112.98 60 60 60 113.70 53 53 53 112.56 52.6 52 53 115.53 
29 48 - 61 61 61 128.73 60.7 60 61 129.17 59.6 59 60 127.98 60.5 60 61 128.14 59.8 59 60 128.28 59.5 59 60 126.53 
30 48 - 67.2 67 68 131.72 66.6 66 67 130.44 65 65 65 131.47 67.3 67 68 130.74 65.1 65 66 130.55 65 65 65 130.71 
31 54 - 62 62 62 148.04 62 62 62 149.03 62 62 62 147.40 63 63 63 147.75 62 62 62 147.61 61.6 61 62 148.28 
32 43 - 53 53 53 155.81 53.1 53 54 154.19 53 53 53 153.70 53.9 53 54 153.76 53.7 53 54 154.20 52.4 52 53 153.88 
33 49 - 56.4 56 57 242.59 54.5 54 55 241.74 53.2 53 54 240.63 56.3 56 57 240.41 53.6 53 54 241.03 53.2 53 54 240.34 
34 51 - 61.2 61 62 243.74 60.1 60 61 243.33 57.7 57 58 242.98 62.1 62 63 241.94 58.6 58 59 242.99 57.6 57 58 243.53 
35 69 - 79.8 79 80 306.06 79.1 79 80 305.61 78.3 78 79 305.95 79.6 79 80 306.90 78.3 78 79 309.92 78 78 78 306.14 
36 64 - 83.1 82 84 307.76 81.3 81 82 306.83 78 78 78 307.72 80.2 80 81 308.18 79.2 79 80 309.54 77.6 77 78 309.10 

  NWS: Number of workstations; CPU: Computational time 



 
 

 

80 

Table 5.6 Computational results for problems with medium variability of setup times 

Problem No 

  MPTM MAPT MARPW MNDS MTNS MCHBA 
LBpmix Optimal 

Solution NWS CPU 
NWS CPU 

NWS CPU 
NWS CPU 

NWS CPU 
NWS CPU 

  Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max 

Sm
al

l 
Si

ze
 1 5 5 5 5 5 0.12 5 5 5 0.13 5 5 5 0.11 5 5 5 0.11 5 5 5 0.10 5 5 5 0.12 

2 6 9 9 9 9 0.16 9 9 9 0.15 9 9 9 0.16 9 9 9 0.17 9 9 9 0.18 9 9 9 0.21 
3 8 8 8 8 8 0.25 8 8 8 0.24 8 8 8 0.26 8 8 8 0.26 8 8 8 0.27 8 8 8 0.22 
4 7 7 7 7 7 0.27 7 7 7 0.28 7 7 7 0.27 7 7 7 0.29 7 7 7 0.25 7 7 7 0.26 

M
ed

iu
m

 S
iz

e 

5 15 - 17 17 17 1.98 17 17 17 1.97 17 17 17 2.00 17 17 17 1.85 17 17 17 1.97 17 17 17 1.84 
6 14 - 17 17 17 2.10 17 17 17 1.97 17 17 17 1.87 17 17 17 1.94 17 17 17 1.94 17 17 17 1.78 
7 15 - 18 18 18 2.57 18 18 18 2.51 18 18 18 2.76 18 18 18 2.75 18 18 18 3.08 18 18 18 2.58 
8 14 - 16 16 16 3.02 16 16 16 2.70 16 16 16 2.89 16 16 16 3.34 16 16 16 3. 24 16 16 16 2.69 
9 19 - 22 22 22 7.29 22 22 22 6.49 22 22 22 7.60 22 22 22 7.26 22 22 22 7.90 22 22 22 6.93 
10 18 - 21 21 21 7.43 21 21 21 6.62 21 21 21 7.75 21 21 21 7.43 21 21 21 8.07 21 21 21 7.06 
11 15 - 18 18 18 3.32 18 18 18 2.89 18 18 18 3.06 18 18 18 3.02 18 18 18 3.29 18 18 18 3.14 
12 18 - 23 23 23 3.13 22.6 22 23 3.01 22.2 22 23 3.57 23 23 23 3.52 23 23 23 3.65 21 21 21 4.51 
13 17 - 21 21 21 3.64 21 21 21 3.29 21 21 21 3.56 21 21 21 3.40 21 21 21 3.74 21 21 21 3.68 
14 18 - 23 23 23 4.03 23 23 23 3.50 23 23 23 3.93 23 23 23 3.90 23 23 23 3.89 23 23 23 3.79 
15 20 - 26 26 26 6.52 26 26 26 5.80 26 26 26 6.48 27 27 27 6.20 26 26 26 7.06 26 26 26 6.67 
16 21 - 26 26 26 6.34 26 26 26 5.15 26 26 26 7.08 27 27 27 6.69 26 26 26 7.35 26 26 26 6.46 
17 23 - 27 27 27 14.05 27 27 27 12.85 27 27 27 14.62 27 27 27 13.88 27 27 27 14.62 26.4 26 27 13.10 
18 24 - 29 29 29 14.54 29 29 29 12.69 29 29 29 14.45 29 29 29 13.50 29 29 29 14.65 29 29 29 13.64 
19 26 - 36 36 36 13.14 36 36 36 13.17 36 36 36 14.23 37 37 37 14.13 35.8 35 36 14.19 35.5 35 36 14.78 
20 25 - 37 37 37 16.15 37 37 37 15.11 37 37 37 15.17 37 37 37 16.11 37 37 37 16.17 37 37 37 15.65 
21 31 - 35.8 35 36 17.37 36 36 36 16.33 35 35 35 16.53 35 35 35 17.40 35 35 35 17.53 35 35 35 17.20 
22 28 - 36.3 36 37 18.43 36.8 36 37 17.41 36.1 36 37 17.51 37.9 37 38 18.46 36.6 36 37 17.49 36 36 36 17.86 

La
rg

e 
Si

ze
 

23 39 - 48.2 48 49 93.64 48 48 48 84.22 48.3 48 49 90.43 48.1 48 49 97.14 48.3 48 49 98.35 47.5 47 48 89.20 
24 40 - 51.4 51 52 94.48 51 51 51 85.38 51 51 51 94.80 51 51 51 96.08 51 51 51 99.73 50 50 50 96.21 
25 39 - 44 44 44 109.62 44 44 44 109.46 44 44 44 110.54 44 44 44 110.92 44 44 44 111.42 43.4 43 44 110.21 
26 38 - 45.7 45 46 112.98 45.8 45 46 113.61 46 46 46 112.56 46 46 46 112.88 46.1 46 47 113.73 45.4 45 46 114.13 
27 44 - 55.1 55 56 117.49 55.7 55 56 118.65 54.7 54 55 117.12 56.7 56 57 117.36 54.9 54 55 117.26 54.6 54 55 117.41 
28 39 - 58.8 58 60 120.65 57 57 57 119.53 54 54 54 119.87 61 61 61 119.89 54.2 54 55 119.78 53.5 53 54 119.80 
29 48 - 62.9 62 63 130.89 63 63 63 130.60 61.3 61 62 130.35 62 62 62 129.32 61 61 61 130.40 60.4 60 61 129.18 
30 48 - 68.9 68 69 132.51 67.2 67 68 131.53 67 67 67 131.60 68.8 68 69 131.29 67.2 67 68 131.72 66.6 66 67 133.29 
31 54 - 64 64 64 149.42 63.8 63 64 150.82 64.1 64 65 150.78 65 65 65 150.45 65 65 65 151.45 63.6 63 64 151.13 
32 43 - 55 55 55 157.46 55 55 55 154.25 55 55 55 155.64 55.8 55 56 156.01 55 55 55 156.08 54.7 54 55 155.39 
33 49 - 57.7 57 58 239.03 56 56 56 238.38 54.8 54 55 237.18 58.1 58 59 237.73 54.6 54 55 237.99 54.4 54 55 238.14 
34 51 - 63 63 63 247.03 62.8 62 63 248.64 60 60 60 249.11 64.4 64 65 248.84 60.8 60 61 248.42 59.4 59 60 253.84 
35 69 - 83 83 83 311.49 82.2 82 83 312.83 80.6 80 81 312.52 81.5 81 82 311.03 80.9 80 81 312.48 80.3 80 81 313.24 
36 64 - 85.4 85 86 314.71 85.1 84 86 313.71 81 81 81 313.70 83 83 83 312.94 81.6 81 82 313.51 80.7 80 81 313.87 

NWS: Number of workstations; CPU: Computational time 



 
 

 

81 

Table 5.7 Computational results for problems with high variability of setup times 

Problem 
No 

  MPTM MAPT MARPW MNDS MTNS MCHBA 
LBpmix Optimal 

Solution NWS CPU 
NWS CPU 

NWS CPU 
NWS CPU 

NWS CPU 
NWS CPU 

  Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max 

Sm
al

l 
Si

ze
 1 5 5 5 5 5 0.11 5 5 5 0.12 5 5 5 0.10 5 5 5 0.11 5 5 5 0.09 5 5 5 0.11 

2 6 10 10 10 10 0.22 10 10 10 0.21 10 10 10 0.20 10 10 10 0.22 10 10 10 0.19 10 10 10 0.17 
3 8 8 8 8 8 0.29 8 8 8 0.30 8 8 8 0.27 8 8 8 0.30 8 8 8 0.23 8 8 8 0.22 
4 7 7 7 7 7 0.30 7 7 7 0.31 7 7 7 0.32 7 7 7 0.31 7 7 7 0.38 7 7 7 0.25 

M
ed

iu
m

 S
iz

e 

5 15 - 18 18 18 2.29 18 18 18 2.04 18 18 18 2.08 18 18 18 1.97 18 18 18 2.03 18 18 18 2.09 
6 14 - 18 18 18 2.12 18 18 18 1.97 18 18 18 2.03 18 18 18 2.01 18 18 18 2.11 18 18 18 1.97 
7 15 - 18 18 18 3.00 18 18 18 2.71 19 19 19 2.92 18.8 18 19 2.80 19 19 19 3.00 18 18 18 2.73 
8 14 - 18.2 18 19 3.23 18.3 18 19 3.02 18 18 18 3.17 18 18 18 3.34 18.1 18 19 3.31 17 17 17 2.84 
9 19 - 23.4 23 24 6.72 23.2 23 24 6.32 23 23 23 7.57 23 23 23 7.31 23.6 23 24 7.78 22 22 22 6.77 
10 18 - 21 21 21 7.02 21 21 21 6.76 21 21 21 7.71 21 21 21 7.57 21 21 21 7.95 21 21 21 7.06 
11 15 - 18 18 18 3.22 18 18 18 3.01 18 18 18 3.35 18 18 18 3.06 18 18 18 3.37 18 18 18 2.96 
12 18 - 23 23 23 3.46 23 23 23 3.04 23 23 23 3.77 23 23 23 3.56 23 23 23 3.55 23 23 23 3.36 
13 17 - 22 22 22 3.70 22 22 22 3.29 22 22 22 3.51 22 22 22 3.56 22 22 22 3.84 22 22 22 3.51 
14 18 - 25 25 25 4.09 25 25 25 3.73 25 25 25 4.12 25 25 25 3.81 25 25 25 4.22 25 25 25 3.67 
15 20 - 27 27 27 6.93 27 27 27 5.00 27 27 27 6.97 27 27 27 6.94 27 27 27 7.01 27 27 27 5.67 
16 21 - 27 27 27 6.08 27 27 27 5.25 27 27 27 7.38 27.4 27 28 5.79 27 27 27 6.42 26 26 26 5.77 
17 23 - 28 28 28 13.34 28 28 28 11.80 28 28 28 13.98 28 28 28 14.27 28 28 28 13.89 27 27 27 12.19 
18 24 - 30 30 30 14.77 30 30 30 12.99 30 30 30 14.77 30 30 30 15.26 30 30 30 14.77 30 30 30 13.88 
19 26 - 36.3 36 37 16.17 36 36 36 15.14 36.1 36 37 16.21 36.4 36 37 15.15 36.9 36 37 16.23 35.8 35 36 15.17 
20 25 - 37.3 37 38 15.21 37 37 37 16.12 37 37 37 16.16 38 38 38 15.15 37.2 37 38 16.19 37 37 37 16.35 
21 31 - 37.8 37 38 19.40 37 37 37 18.36 36 36 36 18.49 36.9 36 37 18.47 36.8 36 37 19.51 36 36 36 18.11 
22 28 - 37 37 37 20.34 36.9 36 37 19.37 36.7 36 37 19.49 38.1 38 39 19.54 36 36 36 20.52 36 36 36 19.34 

La
rg

e 
Si

ze
 

23 39 - 49 49 49 95.01 49.3 49 50 85.83 49 49 49 92.71 49 49 49 95.80 49.5 49 50 96.12 48 48 48 89.98 
24 40 - 52.2 52 53 99.39 52.1 52 53 87.61 52 52 52 97.23 52 52 52 99.18 52 52 52 98.63 51.5 51 52 97.97 
25 39 - 44.4 44 45 107.61 44 44 44 107.56 44.3 44 45 108.22 44.4 44 45 108.21 44.5 44 45 107.03 44 44 44 108.62 
26 38 - 46.1 46 47 113.78 46.2 46 47 112.77 46 46 46 113.18 47 47 47 112.15 46.9 46 47 113.09 45.7 45 46 112.36 
27 44 - 57.4 56 58 116.35 57.6 57 58 115.57 55.8 55 56 115.13 58.5 58 59 114.98 55.8 55 56 114.49 55.5 55 56 116.76 
28 39 - 59.5 59 60 118.68 58.1 58 59 117.64 54.3 54 55 118.06 61.5 61 62 118.14 54.7 54 55 117.32 54.1 54 55 118.88 
29 48 - 63.6 63 64 119.82 64 64 64 118.03 62.7 62 63 116.50 63.9 63 64 117.07 62.7 62 63 116.90 62.5 62 63 113.76 
30 48 - 72.8 72 73 120.74 71.2 71 72 118.76 69.1 69 70 117.64 71.5 71 72 116.68 69 69 69 116.47 68.5 68 69 115.42 
31 54 - 64.8 64 65 150.62 64.8 64 65 151.08 64.9 64 65 152.54 65.7 65 66 151.93 65 65 65 153.48 64.5 64 65 153.53 
32 43 - 55.7 55 56 155.11 55.5 55 56 155.30 55.5 55 56 154.88 57 57 57 155.46 55.8 55 56 154.26 54.6 54 55 156.01 
33 49 - 58.5 58 59 242.09 56.9 56 57 240.06 56 56 56 240.91 58.9 58 60 242.68 56.8 56 57 240.55 55.7 55 56 241.02 
34 51 - 64.6 64 65 258.43 63.3 63 64 257.55 61 61 61 256.95 64.9 64 65 256.86 61.6 61 62 256.88 60.6 60 61 257.52 
35 69 - 85 85 85 314.56 84 84 84 315.15 81 81 81 314.23 82.7 82 83 314.29 81.8 81 82 313.54 80.6 80 81 314.40 
36 64 - 87.6 87 88 315.43 86.4 85 87 314.31 81.8 81 82 316.09 84 83 85 315.44 82.9 82 83 315.98 81.6 81 82 316.17 

NWS: Number of workstations; CPU: Computational time 



82 
 

 
 

 As can be seen from the Tables 5.5, 5.6, and 5.7 the mixed integer linear 

programming model (see Chapter 3) cannot solve optimality as the problem size 

increased due to its complex nature. On the other hand, the proposed multiple colony 

hybrid bees algorithm is able to provide satisfactory solutions in reasonable running 

times. 

 

We conduct comparisons between the proposed multiple colony hybrid bees 

algorithm and the other single colony algorithms into three categories, low variability 

of setup times, medium variability of setup times, and high variability of setup times, 

in terms of determined number of workstations (NWS) and computational time (CPU). 

As can be seen from Tables 5.5, 5.6, and 5.7 multiple colony hybrid bees algorithm 

outperforms single colony algorithms for medium and large sized problems in case 

of low, medium and high variability of setups. It must be noted that as the problem 

size get larger the performance of multiple colony hybrid bees algorithm increase 

significantly in comparison with single colony algorithms. In order to make the 

comparisons more clearly in terms of gaps for the obtained minimum number of 

workstations we formed Table 5.8 as a summary of the Tables 5.5, 5.6, and 5.7.  

 

From the observation of Table 5.8, it is found that the performance of multiple 

colony hybrid bees algorithm is superior to MPTM, MAPT, MARPW, MNDS, and 

MTNS in 51.85% (56 of 108 problems), 49.07% (53 of 108 problems), 36.11% (39 

of 108 problems), 56.48% (61 of 108 problems),  and 38.89% (42 of 108 problems) 

of the test problems, respectively. 

 

In order to understand whether the differences in the obtained results are due to 

the random chance or not, a paired t-test is executed on Excel 2007.  After paired t-

test it is figured out that outputs (average values for 10 independent replications 

represented in Tables 5.5, 5.6, and 5.7) derived from multiple colony hybrid bees 

algorithm are meaningfully different from single colony algorithms.  The results of 

paired t-test are presented in Table 5.9. Based on the values from Table 5.9, it can be 

concluded that multiple colony hybrid bees algorithm produced better results than 

single colony algorithms in general. 



 
 

 

83 

Table 5.8 Comparisons MCHBA versus single colony algorithms 

Problem No 
Small Size Medium Size Large Size 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

G
A

Ps
 

Lo
w

 V
ar

ia
bi

lit
y 

MCHBA 
MPTM - - - - - - - 1 - - - 1 - - - 1 1 1 1 - - 1 1 1 1 1 2 5 2 2 1 1 3 4 1 5 

MCHBA 
MAPT - - - - - - - 1 - - - 1 - - - 1 1 - 1 - - 1 - 1 1 1 2 4 1 1 1 1 1 3 1 4 

MCHBA 
MARPW - - - - - - - 1 - - - 1 - - - 1 1 - - - - - - 1 - 1 1 1 - - 1 1 - - - 1 
MCHBA 
MNDS - - - - - - - 1 - - - 1 - - 1 2 1 1 1 - - 1 - 2 1 1 3 8 1 2 2 1 3 5 1 3 

MCHBA 
MTNS - - - - - - - 1 - - - 1 - - - 1 2 1 - - - - - 1 - 1 1 1 - - 1 1 - 1 - 2 

M
ed

iu
m

 V
ar

ia
bi

lit
y 

MCHBA 
MPTM - - - - - - - - - - - 2 - - - - 1 - 1 - - - 1 1 1 - 1 5 2 2 1 1 3 4 3 5 

MCHBA 
MAPT - - - - - - - - - - - 1 - - - - 1 - 1 - 1 - 1 1 1 - 1 4 3 1 - 1 2 3 2 4 

MCHBA 
MARPW - - - - - - - - - - - 1 - - - - 1 - 1 - - - 1 1 1 1 - 1 1 1 1 1 - 1 - 1 
MCHBA 
MNDS - - - - - - - - - - - 2 - - 1 1 1 - 2 - - 1 1 1 1 1 2 8 2 2 2 1 4 5 1 3 

MCHBA 
MTNS - - - - - - - - - - - 2 - - - - 1 - - - - - 1 1 1 1 - 1 1 1 2 1 - 1 - 1 

H
ig

h 
V

ar
ia

bi
lit

y 

MCHBA 
MPTM - - - - - - - 1 1 - - - - - - 1 1 - 1 - 1 1 1 1 - 1 1 5 1 4 - 1 3 4 5 6 

MCHBA 
MAPT - - - - - - - 1 1 - - - - - - 1 1 - 1 - 1 - 1 1 - 1 2 4 2 3 - 1 1 3 4 4 

MCHBA 
MARPW - - - - - - 1 1 1 - - - - - - 1 1 - 1 - - - 1 1 - 1 - - - 1 - 1 1 1 1 - 
MCHBA 
MNDS - - - - - - - 1 1 - - - - - - 1 1 - 1 1 - 2 1 1 - 2 3 7 1 3 1 3 3 4 2 2 

MCHBA 
MTNS - - - - - - 1 1 1 - - - - - - 1 1 - 1 - - - 1 1 - 1 - - - 1 1 1 1 1 1 1 

 
 



84 
 

 
 

Table 5.9 p values for the comparison of MCHBA and single colony algorithms (α=0.05) 

 
p Value 

Low Variability Medium Variability High Variability 
MCHBA  
MPTM 

0.000032 0.000263 0.000079 

MCHBA 
MAPT 

0.000009 0.000196 0.000052 

MCHBA 
MARPW 

0.000116 0.000018 0.000003 

MCHBA 
MNDS 

0.000029 0.000128 0.000021 

MCHBA 
MTNS 

0.000017 0.000031 0.0000004 

 

Considering the average computational times (CPUs), all the algorithms solve the 

problems in almost equally amount of times. This situation may be explained by the 

used parameter sets, hence, it must be noted that the computational time is related to 

the used parameter set. This set of computational experiments shows that the overall 

performance of MCHBA is superior to single colony algorithms. 

 

5.4 Chapter Conclusions 

 

In this chapter, we aimed at developing a new multiple colonies Bees Algorithm 

in order to improve the search ability of the basic Bees Algorithm for solving the 

mixed-model assembly line balancing problem with sequence dependent setup times 

between tasks. In the proposed MCHBA, a new neighborhood structure, which was 

based on the task selection strategy of Ant Colony Optimization, was used. In this 

manner, this new neighborhood structure ensures our developed algorithm to be a 

constructive type. In order to evaluate the real performance of the proposed 

MCHBA, a set of 36 mixed-model assembly line balancing problems with parallel 

workstations and zoning constraints was tested. As to the scope of this study, this set 

of benchmark problems was differentiated by adding sequence dependent setup times 

between tasks with low, medium and high variability. The performance of the 

proposed MCHBA was also compared with the performances of single colony 

algorithms. Computational results indicate that the new neighborhood structure and 

multiple colonies can improve search performance of the basic Bees Algorithm.



 
 

85 
 

CHAPTER SIX 

CONCLUSIONS 

 

6.1 Summary  

 

 This dissertation dealt with the balancing problem of assembly lines by taking into 

consideration the sequence dependent setup times, which is an actual framework in 

assembly line balancing problems. Most of the studies on assembly line balancing 

problems with sequence dependent setup times have focused extensively on single 

model lines; however, single model assembly lines are not able to respond the 

demand for higher product variability anymore because of the current consumer-

centric market conditions. Thus, mixed-model assembly lines substitute for single 

model assembly lines. That is to say, high-mix/low-volume manufacturing strategies 

substitute for low-mix/high-volume manufacturing strategies.  

 

 Since the existing literature on setups only covers the single model assembly 

lines, the lack of studies dealing with the consideration of setups for mixed-model 

assembly lines stands out. Under this conditions, the main goal of this dissertation 

was to introduce the type-I mixed-model assembly line balancing problem with 

setups (MMALBPS-I), which is an extension of classical MMALBP-I and takes into 

consideration the sequence dependent setup times between tasks.  

 

 Within this context, firstly, we have developed a mixed integer linear 

programming (MILP) model by considering the phenomena of sequence dependent 

setup times for mixed-model assembly, in order to formally describe the problem. 

However, due to the NP-Hard nature of the problem the proposed MILP model was 

not able to solve large scale problems. Therefore, we have developed meta-heuristics 

based hybrid algorithms in order to tackle the problem. Among the meta-heuristics, 

we have selected genetic algorithm, ant colony optimization, and bess algorithm and 

we have developed effective hybrid algorithms based on these three meta-heuristics. 

Computational experiments were carried out in order to determine the capability of 

the developed MILP and the performances of the proposed hybrid algorithms.



86 
 

 
 

6.2 Contributions of the Dissertation 

 

 In Chapter 3, we have developed a MILP model for MMALBPS-1. The MILP 

provides us to formally formulate the MMALBPS-I. Moreover, our MILP can solve 

the problem with and without sequence dependent setup times, parallel workstation 

assignments, and zoning constraints. Since, the SALBP-I is a special case of 

MMALBP-I, our MILP is able to solve SALBP-I with and without the 

aforementioned characteristics. Thus, we can conclude that our MILP is a general 

model for some of the assembly line balancing problems. 

 

 In Chapter 4, we have proposed a hybrid ACO-GA algorithm. In the proposed 

hybrid ACO-GA algorithm, GA was embedded into ACO. The proposed ACO-GA 

algorithm enhanced the performance of ACO by incorporating GA as a local search 

strategy for MMALBPS-I. In the proposed hybrid algorithm ACO was conducted to 

provide diversification, while GA was conducted to provide intensification. The 

rationale why we attempted to hybridize ACO with GA was to exploit the 

complementary character of different optimization strategies. Viz, our proposed 

hybrid algorithm integrated the positive feedback mechanism and the satisfactory 

performance of ACO with the faster speed of GA. Thus, the proposed hybrid ACO-

GA algorithm attempted to overcome the slower speed of ACO and the poor 

searching capability of GA, especially for large sized problems, by embedding GA 

into ACO as a local search.  Furthermore, ACO-GA utilized the synergy of GA as an 

improvement procedure and ACO as a constructive procedure.  

 

 In Chapter 5, we have proposed a multiple colony hybrid Bees algorithm for 

MMALBPS-I. Our proposed approach was based on the multiple colonies; however, 

most of the existing literature about the applications of BA to combinatorial 

optimization tries to evolve only a single population. The phenomena of multiple 

colonies were used with the purpose of improving the diversification of the 

algorithm, which refers to the ability to visit many and different regions of the search 

space. Moreover, we used a new neighbourhood structure which ensures the 

algorithm to be a constructive type, since the constructive type of search algorithms 



87 
 

 
 

like ACO are much more effective for the assembly line balancing problems. This 

neighbourhood structure also enables the proposed approach to utilize the positive 

feedback mechanism as ACO does. Due to the multiple colonies, we have adopted a 

mechanism provides the communication between different colonies in the proposed 

algorithm in order to share the information, since information sharing is an essential 

issue from the optimization point of view.  

 

6.3 Future Research Directions 

  

 During this dissertation some research areas have become clear that can influence 

the further research directions. Within the scope of this dissertation we can classify 

future researches into three groups as follows. 

 

 In Chapter 3, we have developed a general MILP model for some of the assembly 

line balancing problems with regard to some characteristics. In further researches, we 

might extend the proposed MILP so as to solve different assembly line balancing 

problems with different line configurations.  

 

In Chapters 4 and 5, we have developed two different hybrid algorithms; hybrid 

ACO-GA algorithm and multiple colony hybrid bees algorithm. Future researches 

will focus on applying both algorithms to different types of assembly line balancing 

problems. Moreover, both the algorithms may be arranged so as to solve different 

combinatorial optimization problems or so as to implement to continuous domains. 

 

Due to the multiple colony structure of the proposed hybrid bees algorithm, future 

researches will focus on the parallel/distributed applications of MCHBA to different 

combinatorial optimization problems. 

 

 

 

 

 



88 
 

 
 

REFERENCES 

 

Akbari, R, & Ziarati, K. (2011). A cooperative approach to bee swarm optimization. 

 Journal of Information Science and Engineering, 27, 799–818. 

 

Akpınar, S, & Bayhan, G. M. (2011). A hybrid genetic algorithm for mixed model 

 assembly line balancing problem with parallel workstations and zoning 

 constraints. Engineering Applications of Artificial Intelligence, 24(3), 449–457. 

 

Akpınar, S, Bayhan, G. M., & Baykasoglu, A. (2013). Hybridizing ant colony 

 optimization via genetic algorithm for mixedmodel assembly line balancing 

 problem with sequence dependent setup times between tasks. Applied Soft 

 Computing, 13(1), 574-589. 

  

Allahverdi,A.,  Gupta,  J. N. D., & Aldowaisan,T. (1999). A review of scheduling 

 research involving setup considerations. OMEGA the International Journal of 

 Management Sciences, 27, 219–239. 

 

Allahverdi, A., Ng, C. T., Cheng, T. C. E.,  & Kovalyov, M. Y. (2008). A survey of 

 scheduling problems with setup times or costs. European Journal of Operational 

 Research, 187(3), 985–1032. 

 

Andrés, C.,  Miralles, C., & Pastor, R. (2008). Balancing and scheduling tasks in 

 assembly lines with sequence-dependent setup times. European Journal of 

 Operational Research, 187(3), 1212–1223. 

 

Askin, R. G., & Zhou, M. (1997). A parallel station heuristic for the mixed-model 

 production line balancing problem. International Journal of Production Research, 

 35, 3095-3106. 

 

Battaïa, O., & Dolgui, A. (2012a). Reduction approaches for a generalized line 

 balancing problem. Computers and Operations Research, 39, 2337–2345. 



89 
 

 
 

Battaïa, O., & Dolgui, A. (2012b). A taxonomy of line balancing problems and their 

 solution approaches. International Journal of Production Economics, 

 http://dx.doi.org/10.1016/j.ijpe.2012.10.020. 

 

Bautista, J., & Pereira, J. (2002). Ant algorithms for assembly line balancing. Lecture 

 Notes in Computer Science, 24(63), 65–75. 

 

Baykasoğlu, A.,  Ozbakır, L., & Tapkan, P. (2007). Artificial bee colony algorithm 

 and its application to generalized assignment problem. In F. T. S., Chan, & M.K. 

 Tiwari (Ed.). Swarm intelligence: Focus on ant and particle swarm optimization 

 (113-144). Vienna–Austria: I–Tech Education and Publishing. 

 

Baykasoglu, A., Dereli, T., & Sabuncu, I. (2006). An ant colony based algorithm for 

 solving budget constrained and unconstrained dynamic facility layout problems. 

 Omega: International Journal of Management Science, 34, 385–396. 

 

Baykasoğlu, A. (2006). Multi-rule multi-objective simulated annealing algorithm for 

 straight and U type  assembly line balancing problems. Journal of Intelligent 

 Manufacturing, 17, 217-232. 

 

Becker, C. A., & Scholl, A. (2006) A survey on problems and methods in 

 generalized assembly line balancing. European Journal of Operational 

 Research, 168, 694- 715. 

 

Blum,C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in 

 combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135-4151. 

 

Bock, S. (2006). Using distributed search methods for balancing mixed-model 

 assembly lines in the automotive industry. OR Spectrum, 30(3), 551-578. 

 



90 
 

 
 

Bock, S. (2008). Supporting offshoring and nearshoring decisions for mass 

 customization manufacturing processes. European Journal of Operational 

 Research, 184, 490-508. 

 

Boysen, N., Fliedner, M. & Scholl, A. (2007). A classification of assembly line 

 balancing problems. European Journal of Operational Research, 183, 674-693. 

 

Boysen, N., Fliedner, M. & Scholl, A. (2008). Assembly line balancing: Which 

 model to use when? International Journal of Production Economics, 111, 509-

 528. 

 

Bukchin, Y., & Rabinowitch, I. (2006). A branch-and-bound based solution approach 

 for the mixed-model assembly line balancing problem for minimizing stations and 

 task duplication costs. European Journal of Operational Research, 174, 492-508. 

 

Bukchin, J., Dar-El, E. M., & Rubinovitz, J. (2002). Mixed model assembly line 

 design in a make-to-order environment. Computers and Industrial Engineering, 

 41, 405-421. 

 

Crainic, T. G., & Toulouse, M. (2003). Parallel strategies for meta-heuristics. In F. 

 Glover, & G. Kochenberger, (Ed.). Handbook of Metaheuristics (475-513). 

 Kluwer Academic Publishers, Dordrecht. 

 

Dorigo, M. A., & Gambardella, L. (1996). Ant colonies for the travelling salesman 

 problem. TR/IRIDIA/1996-3, Université Libre de Bruxelles, Belgium. 

 

Dorigo, M. A., & Gambardella, L. (1997). Ant colony system: a cooperative learning 

 approach to the traveling salesman problem. TR/IRIDIA/1996-5, Université 

 Libre de Bruxelles, Belgium. 

 

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search 

 strategy. Technical Report No: 91-016, Politecnico di Milano, Italy. 



91 
 

 
 

 

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: optimization by a 

 colony of cooperating agents. IEEE Transactions on Systems, Man, and 

 Cybernetics-Part B, 26(1), 1-13. 

 

Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete 

 optimization. Artificial Life, 5, 137-172. 

 

Erel, E. & Gokcen, H. (1999). Shortest-route formulation of mixed-model assembly 

 line balancing problem. Europen Journal of Operational Research, 116, 194-204. 

 

Erel, E & Sarin S. C. (1998). A survey of the assembly line balancing procedures. 

 Production Planning and Control, 9(5), 414-434. 

 

Gokcen, H. & Erel, E. (1997). A goal programming approach to mixed-model 

 assembly line balancing problem. International Journal of Production Economics, 

 48(2), 177-185. 

 

Gökçen, H. & Erel, E. (1998) Binary integer formulation for mixed-model 

 assembly line balancing problem. Computers and Industrial Engineering, 23, 451-

 461. 

 

Goldberg, D.E. (1989). GAs in search, optimization and machine learning. Reading, 

 Massachusetts: Addison-Wesley. 

 

Hamta, N.,  Fatemi Ghomi, S. M. T., Jolai, F., & Shirazi, M. A. (2012). A hybrid 

 PSO algorithm for a multi-objective assembly line balancing problem with 

 flexible operation times, sequence-dependent setup times and learning effect. 

 International Journal of Production Economics, 141(1), 99-111. 

 

 



92 
 

 
 

Hamzadayi,A., & Yildiz, G. (2012). A genetic algorithm based approach for 

 simultaneously balancing and sequencing of mixed-model U-lines with parallel 

 workstations and zoning constraints. Computers and Industrial Engineering, 

 62(1), 206-215 

 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University 

 of Michigan Press, Ann Arbor, Michigan. 

 

Hop, N. V. (2006). A heuristic solution for fuzzy mixed-model line balancing 

 problem. European Journal of Operational Research, 168, 798-810. 

 

Hwang, R. K., & Katamaya, H. (2009). A multi-decision genetic approach for 

 workload balancing of mixed-model U-shaped assembly line systems. 

 International Journal of Production Research, 47(14), 3797-3822. 

 

Hwang, R. K., & Katamaya, H. (2010).  Integrated procedure of balancing and 

 sequencing for mixed-model assembly lines: a multi-objective evolutionary 

 approach. International Journal of Production Research, 48(21), 6417-6441. 

 

Kara, Y., Özcan, U., & Peker, A. (2007). An approach for balancing and sequencing 

 mixed-model JIT U-lines. International Journal of Advanced Manufacturing 

 Technology, 32, 1218-1231. 

 

Kara,Y.,  Özgüven, C.  Seçme, N. Y., & Chang, C. T. (2011). Multi-objective 

 approaches to balance mixed-model assembly lines for model mixes having 

 precedence conflicts and duplicate common tasks. International Journal of 

 Advanced Manufacturing Technology, 52, 725-737. 

 

Karaboga, D., & Akay, B. (2009). A survey: algorithms simulating bee swarm 

 intelligence. Artificial Intelligence Review, 31, 61–85. 

 

http://www.springerlink.com/content/0269-2821/�


93 
 

 
 

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. 

 Technical Report TR06, Computer Engineering Department, Engineering Faculty, 

 Erciyes University, Turkey. 

 

Kazemi, S. M., Ghodsi, R., Rabbani, M., & Moghaddam, R. T. (2011). A novel two-

 stage genetic algorithm for a mixed-model U-line balancing problem with 

 duplicated tasks. International Journal of Advanced Manufacturing 

 Technology, 55, 1111–1122. 

 

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE 

 international conference on neural networks, Piscataway–NJ, 1942–1948. 

 

Kim, Y. J., Kim, Y. K. & Cho, Y. (1998) A heuristic-based genetic algorithm for 

 workload smoothing in assembly lines. Computers and Operations  Research, 25, 

 99-111. 

 

Lee, Z. J., Su, S. F., Chuang, C. C., & Liu, K. H. (2008). Genetic algorithm with ant 

 colony optimization (GA-ACO) for multiple sequence alignment. Applied Soft 

 Computing, 8, 55-78. 

 

Leu, Y. Y., Matheson, L. A., & Rees, L. P. (1994). Assembly line balancing using 

 genetic algorithms with heuristic generated initial populations and multiple 

 criteria.  Decision Sciences, 15, 581-606. 

 

Lozano, M., & García-Martínez, C. (2010). Hybrid metaheuristics with evolutionary 

 algorithms specializing in intensification and diversification: Overview and 

 progress report. Computers and Operations Research, 37, 481–497. 

 

Martino, L., & Pastor, R. (2010). Heuristic procedures for solving the general 

 assembly line balancing problem with setups. International Journal of Production 

 Research, 48(6), 1787–1804. 

 



94 
 

 
 

McMullen, P. R., & Frazier, G. V. (1998). Using simulated annealing to solve a 

 multiobjective line balancing problem with parallel workstations. International 

 Journal of Production Research, 36, 2717–2741. 

 

McMullen, P. R., & Frazier, G. V. (1997). A heuristic for solving mixed-model line 

 balancing problems with stochastic task durations and parallel stations. 

 International Journal of Production Economics, 51, 177-190. 

 

McMullen, P. R. & Tarasewich, P. (2003). Using ant techniques to solve the 

 assembly line balancing problem. IIE Transactions: Design and Manufacturing, 

 35(7), 605-617. 

 

Mendes, A. R., Ramos, A. L., Simaria, A. S., & Vilarinho, P. M. (2005). Combining 

 heuristic procedures and simulation models for balancing a PC camera assembly 

 line. Computers and Industrial Engineering, 49, 413-431. 

 

Merengo, C., Nava, F., & Pozzetti, A. (1999). Balancing and sequencing manual 

 mixed-model assembly lines. International Journal of Production Research, 37, 

 2835-2860. 

 

Miltenburg, J. (2002). Balancing and scheduling mixed-model U-shaped production 

 lines. International Journal of Flexible Manufacturing Systems, 14, 119-151. 

 

Noorul Haq, A., Jayaprakash, J., & Rengarajan, K. (2006). A hybrid genetic 

 algorithm approach to mixed-model assembly line balancing. International 

 Journal of Advanced Manufacturing Technology, 28, 337-341. 

 

Ozbakır, L., & Tapkan, P. (2011). Bee colony intelligence in zone constrained two–

 sided assembly line balancing problem. Expert System with Applications, 38, 

 11947–11957. 

 



95 
 

 
 

Ozbakir, L., Baykasoglu, A., Gorkemli, B., & Gorkemli, L. (2011). Multiple–colony 

 ant algorithm for parallel assembly line balancing problem. Applied Soft 

 Computing, 11, 3186–3198. 

 

Özbakır, L., Baykasoğlu, A., & Tapkan, P. (2010). Bees algorithm for generalized 

 assignment problem. Applied Mathematics and Computation, 215(11), 3782-

 3795. 

 

Özcan, U., & Toklu, B. (2009). Balancing of mixed-model two-sided assembly lines. 

 Computers and Industrial Engineering, 57(1), 217-227. 

 

Ozcan, U., & Toklu, B. (2010). Balancing two–sided assembly lines with sequence–

 dependent setup times. International Journal of Production Research, 48(18), 

 5363–5383. 

 

Özcan, U., Çerçioğlu, H., Gökçen, H., & Toklu, B. (2010). Balancing and 

 sequencing of parallel mixed-model assembly lines. International Journal of 

 Production Research, 48(17), 5089-5113. 

 

Pastor, R.,  Andrés, C.,  & Miralles, C. (2010). Corrigendum to ‘Balancing and 

 scheduling tasks in assembly lines with sequence-dependent setup’ [European 

 Journal of Operational Research 2008; 187: 1212–1223]. European Journal of 

 Operational Research, 201(1), 336. 

 

Pham, D. T., Koc, E., Ghanbarzadeh, A., Otri, S., Rahim, S., & Zaidi, M. (2006). 

 The bees algorithm – A novel tool for complex optimisation problems. In 

 Proceedings of IPROMS 2006 conference, 454–461. 

 

Ponnambalam, S. G., Aravindan, P. & Naidu G. M. (1999). A comparative 

 evaluation of assembly line balancing heuristics. International Journal of 

 Advanced Manufacturing  Technology, 15, 577-586. 

 



96 
 

 
 

Preux, P., & Talbi, E. G. (1999). Towards hybrid evolutionary algorithms. 

 International Transactions in Operational Research, 6(6), 557-570. 

 

Raidl, G. R. (2006). A unified view on hybrid metaheuristics. In Francisco Almeida 

 et al., editors, Lecture Notes in Computer Science, 4030, 1-12. 

 

Sabuncuoglu, I., Erel, E., & Tanyer, M. (2000). Assembly line balancing using 

 genetic algorithms. Journal of Intelligent Manufacturing, 11(3), 295-310. 

 

Salveson, M. E., 1955. The assembly line balancing problem. Journal of Industrial 

 Engineering, 6, 18-25. 

 

Scholl, A., Boysen, N., & Fliedner, M. (2008). The sequence–dependent assembly 

 line balancing problem. OR Spectrum, 30(3), 579–609. 

 

Scholl, A., Boysen, N., & Fliedner, M. (2011). The assembly line balancing and 

 scheduling problem with sequence-dependent setup times: problem extension, 

 model formulation and efficient heuristics. OR Spectrum,  doi 10.1007/s00291-

 011-0265-0. 

 

Scholl, A. (1999). Balancing and Sequencing of Assembly Lines. Physica-Verlag, 

 Heidelberg. 

 

Seyed-Alagheband, S. A., Fatemi Ghomi, S. M. T., & Zandieh, M. (2011). A 

 simulated annealing algorithm for balancing the assembly line type II problem 

 with sequence–dependent setup times between tasks. International Journal of 

 Production Research, 49(3), 805–825. 

 

Simaria, A. S., & Vilarinho, P. M. (2009). 2–ANTBAL: an ant colony optimisation 

 algorithm for balancing two–sided assembly lines. Computers and Industrial 

 Engineering, 56, 489–506. 

 



97 
 

 
 

Sparling, D., & Miltenburg, J. (1998). The mixed-model U-line balancing problem. 

 International Journal of Production Research, 36(2), 485–501. 

 

Stützle, T., & Dorigo, M. (1999). ACO algorithms for the travelling salesman 

 problem. T.R./IRIDIA/99-3, Université Libre de Bruxelles, Belgium. 

 

Talbi, E. G. (2002). A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics, 8, 

 541–564. 

 

Tapkan, P. , Ozbakır, L., & Baykasoğlu, A. (2012). Bees algorithm for constrained 

 fuzzy multi–objective two–sided assembly line balancing problem. Optimization 

 Letters, 6, 1039-1049. 

 

Thomopoulos, N. T. (1967). Line balancing–sequencing for mixed–model assembly. 

 Management Science, 14, B59–B75. 

 

Thomopoulos, N. T. (1970). Mixed-model line balancing with smoothed station 

 assignments. Management Science, 16, 593-603. 

 

Vilarinho, P. M. & Simaria S. A. (2002). A two-stage heuristic method for balancing 

 mixed-model assembly lines with parallel workstations. International Journal of 

 Production Research, 40(6), 1405–1420. 

 

Vilarinho, P. M. & Simaria, A. S. (2006). ANTBAL: an ant colony optimization 

 approach for balancing mixed model assembly lines with parallel workstations. 

 International Journal of Production Research, 44, 291-303. 

 

Wilhelm, W. (1999). A column-generation approach for the assembly system design 

 problem with tool changes. International Journal of Flexible Manufacturing  

 Systems, 11(2), 177–205. 

 



98 
 

 
 

Yagmahan, B. (2011). Mixed-model assembly line balancing using a multi-objective 

 ant colony optimization approach. Expert Systems with Applications, 38, 12453-

 12461. 

 

Yolmeh, A., & Kianfar, F. (2012). An efficient hybrid genetic algorithm to solve 

 assembly line balancing problem with sequence-dependent setup times. 

 Computers and Industrial Engineering, 62, 936-945. 

 

Zhao, X., Ohno, K. & Lau, H. S. (2004). A balancing problem for mixed-model 

 assembly lines with a paced moving conveyor. Naval Research Logistics, 51, 446- 

 464. 

 


