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MODELING AND SOLVING MIXED-MODEL ASSEMBLY LINE
BALANCING PROBLEM WITH SETUPS

ABSTRACT

This dissertation concerns the type-lI mixed-model assembly line balancing
problem with setup times (MMALBPS-1). MMALBPS-I is an extension of classical
MMALBP-I in which sequence-dependent setup times between tasks are taken into
consideration. The main goal of this dissertation is developing the mathematical
formulation of the problem and solving the problem with newly proposed parallel

hybrid meta-heuristic approaches.

Within this context, a mixed-integer linear programming (MILP) model for the
problem is developed and the capability of our MILP is tested through a set of
computational experiments. Due to the complex nature of the problem, parallel

hybrid algorithms are proposed in order to tackle the problem.

First, a new hybrid algorithm (ACO-GA), which executes ant colony optimization
in combination with genetic algorithm, is developed. The proposed ACO-GA
algorithm aims at enhancing the performance of ant colony optimization by
incorporating genetic algorithm as a local search strategy for MMALBPS-I. In the
proposed hybrid algorithm ACO is conducted to provide diversification, while GA is

conducted to provide intensification.

Second, we tackled the problem with Bees Algorithm (BA), which is a relatively
new member of swarm intelligence based meta-heuristics and tries to simulate the
group behavior of real honey bees. However, the basic BA simulates the group
behavior of real honey bees in a single colony; we aim at developing a new BA,
which simulates the group behavior of honey bees in a single colony and between
multiple colonies. The multiple colony type of BA is more realistic than the single

colony type because of the multiple colony structure of the real honey bees.



The performances of the proposed algorithms are tested through a set of
computational experiments and computational results indicate that both algorithms

have satisfactory performances.

Keywords: Mixed-model assembly line balancing problem, sequence-dependent
setup times, mixed-integer linear programming, hybrid meta-heuristics, ant colony

optimization, genetic algorithm, bees algorithm



KARMA MODELLiIi MONTAJ HATTI DENGELEME PROBLEMININ
HAZIRLIK ZAMANLARI iILE MODELLENMESI VE COZULMESI

0z

Bu tez I. tip karma modelli montaj hatt1 dengeleme problemini ele almaktadir. Bu
problemin kapsami, isler arasindaki sira bagimli hazirlik zamanlar1 da dikkate
alimarak genisletilmistir. Bu tezin temel amaci, problemin matematiksel
formiilasyonunu gelistirmek ve problemi yeni Onerilen paralel hibrit meta-sezgisel

algoritmalarla ¢cozmektir.

Bu kapsamda, problem i¢in bir karma tamsayili dogrusal programlama modeli
gelistirilmis ve modelin performanst bir deney seti lizerinde test edilmistir.
Problemin karmasik yapisi nedeniyle, problemin ¢ézim( icin paralel hibrid

algoritmalar 6nerilmistir.

Ik olarak, problemin ¢6zUmi icin karinca kolonisi optimizasyonu ve genetik
algoritmanin birlikte c¢alistigt yeni bir paralel hibrit algoritma gelistirilmistir.
Onerilen algoritma, genetik algoritmay1 lokal arama strateji olarak kullanmay1 ve bu
sekilde = karinca  kolonisi ~ optimizasyonunun  performansini  arttirmay1
amaglamaktadir.Onerilan hibrit algoritmada, genetik algoritma kuvvetlendirme
(intensification) saglarken karinca kolonisi algoritmasi ¢esitlendirme (diversfication)

saglar.

Ikinci sirada, siirli zekas tabanli meta-sezgisel algoritmalarin yeni bir Gyesi olan
ve gercek bal arilarinin grup i¢i davranislarinin benzetimi ile olusturulan arilar
algoritmasi ile problem ¢ozilmistiir. Temel arilar algoritmasinin tek bir koloni
icindeki bal arilarinin davraniglarinin benzetimi iizerine kurulmus olmasina ragmen,
biz bu ¢alisma kapsamina bal arilarinin tek bir koloni i¢inde ve ¢oklu koloniler
arasindaki davraniglarinin benzetimiyle yeni bir algoritma gelistirmeyi amacliyoruz.

Coklu koloni yapisina sahip ar1 algoritmasi, tek bir koloniden olusan ari

Vi



algoritmasina gore gergek bal arilarinin ¢oklu kolonili bir yapida olmalarindan dolay1

daha gercekgidir.

Onerilen algoritmalarin performanslari bir dizi deneysel ¢aligma ile test edilmis ve
her iki algoritmanin da tatmin edici performansa sahip olduklari sonucuna

varilmstir.
Anahtar sozcikler: Karma modelli montaj hatt1 dengeleme problemi, Sira bagimli

hazirlik zamanlari, karma tamsayili dogrusal programlama, hibrit meta sezgiseler,

karinca kolonisi optimizasyonu, genetik algoritma, arilar algoritmasi
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CHAPTER ONE
INTRODUCTION

1.1 Importance of the Problem

In 1913, Henry Ford changed the type of manufacturing system by introducing a
moving belt in a factory for the first time. Before the moving belt, workers were able
to build one piece of an item at a time instead of an item at a time. This changed type
of manufacturing system named as assembly line and reduced the cost of production.
Over the years a new problem type, design of efficient assembly lines, increased in
importance. Assembly line balancing problem (ALBP) is a well-known assembly
design problem, which consist of partitioning the assembly work among the

workstations so as to optimize some objective.

Assembly lines are flow-oriented production systems where some operations are
performed by some productive units referred to as workstations. The work-pieces
(jobs) are moved along the line usually by a conveyor belt so as to successively visit
all workstations, so work-pieces are moved from one workstation to another. Certain

operations are repeatedly performed regarding the cycle time at each workstation.

Manufacturing a product on an assembly line requires partitioning the total
amount of work into a set of elementary operations named tasks. Performing a task j
takes a task time t; and requires certain equipment of machines and/or skills of
workers. Due to technological and organizational conditions precedence constraints
between the tasks have to be observed. These elements are visualized by a
precedence graph. It contains a node for each task, node weights for the task times
and arcs for the precedence constraints. Any type of ALBP consists in finding a
feasible line balance, i.e., an assignment of each task to exactly one workstation such
that the precedence constraints and possibly further restrictions are fulfilled.

Assembly lines were firstly created to produce one single homogeneous product

in high volumes. The balancing problem of this type of lines named as simple



assembly balancing problem (SALBP). Single-model assembly lines are the least
suited production system for high variety demand scenarios. Current consumer-
centric market conditions require high flexibility in manufacturing systems. Hence,
assembly lines must be designed so as to satisfy high-mix/low volume manufacturing
strategies. Due to high cost to build and maintain an assembly line, the manufacturers
produce one model with different features or several models on a single assembly
line. This changed type of assembly lines lead to arise the mixed-model assembly
line balancing problem, which was handled by Thomopoulos (1967) for the first time
in the literature.

Mixed-model assembly lines have mainly two types of balancing problems like
traditional single-model assembly lines: design of a new assembly line for which the
demand can be easily forecasted (type-1) and redesign of an existing assembly line
(type-11) when changes in the assembly process or in the product range occurs. In this
study we deal with the type-l mixed-model assembly line balancing problem
(MMALBP-I), which has some particular features of the real-world assembly line
balancing problems such as parallel workstations, zoning constraints, and sequence

dependent setup times between tasks.

The assembly line balancing literature usually assumes that the setups are
negligible because of their low times in comparison with operation times for most of
the industrial assembly lines. Moreover, setups are considered independently as they
are executed just before or after the tasks, hence, their times are added to task times
Andrés et al. (2008). In such a situation, it is not an essential issue to determine task
performing sequences in a workstation, however, task performing sequences are vital
for minimizing the workstation global time, in case of sequence dependent setup
times. Furthermore, determining the optimum task performing sequence provides
more effectively balanced assembly lines. In other words, the maximum line
efficiency, which is one of the most important performance criteria of the assembly
lines, can be obtained if the optimum task performing sequences are achieved. Also,
considering sequence dependent setup times between tasks becomes more important

when cycle time is low, since setup times may represent a high percentage of it.



The main endeavor of this study is to introduce the type-1 mixed-model assembly
line balancing problem with setups (MMALBPS-1), which is an extension of
classical MMALBP-I and takes into consideration the sequence dependent setup

times between tasks.

1.2 Framework of the Dissertation

The concept of sequence dependent setup times is an actual framework in
assembly line balancing problems (ALBP). Most of the studies on assembly line
balancing problem with sequence dependent setup times have focused extensively on
single-model lines. Nevertheless, single-model assembly lines are not able to respond
the demand for higher product variability, which is an outcome of the current
consumer-centric market conditions. Thus, high-mix/low-volume manufacturing
strategies substitute for low-mix/high-volume manufacturing strategies. That is to
say, mixed-model assembly lines substitute for single-model assembly lines. At this
point, the lack of studies dealing with the consideration of setups for mixed-model
assembly lines stands out in the existing literature.

The main goal of this study is to introduce the MMALBPS-I, by formally
describing the problem and developing solution procedures in order to tackle the
problem, since MMALBP-1 is NP-hard (Bukchin & Rabinowitch, 2006) then
MMALBPS-I is also NP-hard.

Firstly, we developed a mixed integer linear programming (MILP) model, which
considers the phenomena of sequence dependent setup times for mixed-model
assembly lines for the first time, in order to formally describe the problem.
However, due to the NP-Hard nature of the problem the proposed MILP model is not
able to solve large scale problems. Therefore, we developed meta-heuristics based
hybrid algorithms in order to tackle the problem, since hybrids are believed to benefit
from synergy (Blum et al., 2011). Among the meta-heuristics, we selected genetic
algorithm (GA), ant colony optimization (ACO), and bess algorithm (BA) and we
developed new hybrid algorithms based on these three meta-heuristics.



1.3 Outline of the Thesis

Rest of the study involves five chapters. The following chapter contains the
problem definition, and a literature survey about the mixed-model assembly line
balancing problem, and the concept of sequence-dependent setup times in assembly

line balancing.

Chapter three gives the developed MILP model for the type-1 mixed-model
assembly line balancing problem with sequence dependent setup times, zoning

constraints, and parallel workstations.

The fourth and fifth chapters mainly focus on solving MMALBPS-I with parallel
workstations and zoning constraints using the proposed hybrid algorithms. Chapter
fourth presents a new hybrid algorithm, which executes ant colony optimization in
combination with genetic algorithm (ACO-GA), while chapter five presents a new
multiple colony hybrid bess algorithm (MCHBA), which simulates the group
behavior of honey bees in a single colony and between multiple colonies in a more

realistic way than the single colony types.

Finally, the conclusions and the contributions of this study are discussed in
chapter six.



CHAPTER TWO
PROBLEM DEFINITION AND LITERATURE SURVEY ON MMALBP-I

2.1 Chapter Introduction

The role of assembly lines in manufacturing systems has been changing through
time due to the customer expectations. At the beginning, assembly lines provided
manufacturers to produce low variety of products in high volumes. By the way, they
gained low production costs, reduced cycle times and accurate quality levels, which
are essential advantages for companies in order to remain being competitive in
market. The initial designs of assembly lines enabled to produce a single
homogenous product. Such assembly lines are the least suited manufacturing systems
for the cases of high variety demand scenarios and named as single-model assembly
lines. Due to the current competitive and consumer-centric market conditions, a
requirement of rearrangement of the single-model assembly lines arises. The newly
designed assembly lines must be able to produce different models with different
number of features, because customers may prefer a model with regard to their
desires and financial capabilities. Hence, manufacturers must produce one model
with different features or several models on a single assembly line within the scope
of being productive. Under these circumstances, the mixed-model assembly line
balancing problem arises to smooth the production and decrease the cost.

The main goal of this chapter is to provide a general understanding about the
mixed-model assembly line balancing problem and the consideration of the
sequences dependent setup times in assembly line balancing. The rest of this chapter
is organized as follows. Following section gives a brief classification of assembly
lines. Section 2.3 gives information about mixed-model assembly lines, introduces
mixed-model assembly line balancing problem with the consideration of sequence
dependent setup times between tasks. In section 2.4, first, a review concerning the
existing literature about the assembly line balancing problems with sequence
dependent setup times is given. A summarized literature survey on MMALBP-I is

also given in Section 2.4.



2.2 Assembly Lines

An assembly line (AL) is a manufacturing process consisting of various
workstations connected by a material handling system in which particular tasks are
executed in order to produce a final product. Assembly lines are the most suitable
manufacturing system in a mass production environment, because they allow the
assembly of complex products by workers with limited training, by dedicated

machines and/or by robots.

Assembly lines can be categorized by taking into account the number of products
to be assembled and the way they are processed (Scholl, 1999). An assembly line can
be designed so as to assemble one product or several products with identical
production process. These types of assembly lines are named as single-model lines.
An assembly line is named as multi-model lines if several products are assembled in
batches or named as mixed-model lines if different models of the same base product
are assembled simultaneously in the same line in an arbitrarily intermixed sequence
not in batches. All these types of assembly lines are illustrated in Figure 2.1, where
different models symbolized with different geometrical shapes. For further

information about assembly lines, the reader can refer to (Scholl, 1999).

Single-model assembly line

AACIIOS S
AN

1 Multi-model assembly line

ABNA

Mixed-model assembly line

Figure 2.1 Types of assembly lines



In this study, we deal with the mixed-model assembly lines with some particular
features of real world problems such as parallel workstations, zoning constraints, and

sequences dependent setup times.

2.3 Mixed-Model Assembly Lines

Current markets are characterized as consumer-centric resulted in a growing trend
for higher product variability. Hence, it is required to produce several products or
different models of the same base product in the same assembly line. Nevertheless,
single-model assembly lines, which are the most suited production systems for low
variety demand scenarios, are not able to respond the requirements of this new type
of manufacturing strategies anymore. Therefore, manufacturers prefer producing one
model with different features or several models on a single assembly line in order to
avoid the high cost to build and maintain an assembly line for each model. At this
point mixed-model assembly lines preferred to multi-model assembly lines, since

they provide higher flexibility then multi-model lines.

Zhoa et al. (2004) stated that two points must be considered for mixed-model
assembly lines; first at the "design™ level and the second at the "operational” level.
The entire tasks for the assembly operation have to be assigned to workstations at the
design level in order to optimize a given "design measure” and the sequence defines
the release order of the models into the line must also be determined at the
operational level in order to optimize a given "operational performance measure".
The first one refers to the balancing problem while the second refers to the
sequencing problem of the mixed-model assembly lines. This study deals with the
balancing problem of mixed-model assembly lines, which is defined in the following

sub-section in details.

2.3.1 Mixed-Model Assembly Line Balancing Problem

The main goal of an assembly line balancing problem is to partition the entire

tasks of the assembly operation among workstations so as to optimize a pre-defined



performance measure. The assembly line balancing problems have been classified by
the existing literature in various ways (Erel & Sarin, 1998; Becker & Scholl, 2006;
Boysen et al., 2007; Boysen et al., 2008). Unlike the single-model lines, different
models of a product are assembled on mixed-model assembly lines. The models are
launched to the line one after another and moved from workstation to workstation in
ordered sequence. Since we deal with the mixed-model assembly line balancing
problem within the scope of this study, only the main characteristics of MMALBP

which results from the joint assembly of several products are mentioned as below.

> The line is used to produce more than one type of product simultaneously in an

intermixed sequence not in batches.

» The assembly of each model requires performing a set of tasks which are
connected by precedence relations (precedence graph for each model).

> A subset of tasks is common to all models; the precedence graphs of all models

can be combined to a non-cyclical joint precedence graph.

» Tasks which are common to several models are performed by the same station
but may have different operation times; zero operation times indicate that a

task is not required for a model.

» Fixed total time available for the production during the planning period is

known.

> Expected demands for all models (expected model mix) during the planning

period are known.

Mixed-model assembly lines have mainly two types of balancing problems like
traditional single-model assembly lines: design of a new assembly line for which the
demand can be easily forecasted (Type-1) and redesign of an existing assembly line
(Type-1l) when changes in the assembly process or in the product range occurs. In
this study we deal with MMALBP-I, which has some particular features of the real-
world assembly line balancing problems such as parallel workstations, zoning

constraints, and sequence dependent setup times between tasks.



2.3.2 Mixed-Model Assembly Line Balancing Problem with Setups

The type-1 mixed-model assembly line balancing problem which is considered in
this study, has the following characteristics in addition to aforementioned

characteristics:

» The precedence relationships among tasks for each model are known and the
precedence diagrams for all the models can be combined such that the resulting
diagram contains the N tasks.

» Workstations along the line can be replicated to create parallel workstations,
when the demand is such that some tasks have processing times higher than the

cycle time.

» Assignment of tasks to a specific workstation can be forced or forbidden

through the definition of zoning constraints.

Taking into account these features three types of constraints, precedence, zoning,
and capacity constraints, are arisen for the assembly line balancing problem on hand.

Precedence constraints determine the sequence according to which the tasks can
be processed. Precedence constraints are usually depicted in a precedence diagram. A
task can only be assigned to a workstation if it has no predecessors or if all of its

predecessors have already been assigned to a workstation.

Zoning constraints can be positive or negative. Positive zoning constraints force
the assignment of certain tasks to a specific workstation. Negative zoning constraints

forbid the assignment of tasks to the same workstation.

Capacity constraints provide that the workload of a workstation does not exceed
the cycle time. Under some demand conditions, the assembly line may need to be
operated with a cycle time such that some of the tasks in the assembly process have

processing times higher than cycle time. In this case, the replication of the
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workstation to which the tasks with processing time higher than the cycle time are

assigned is required, in order for demand to be met.

The mixed-model nature of the problem on hand requires the cycle time (C) to be
defined by taking into account the different models’ demand over the planning
horizon. Thus, if a line is required to assemble M models each with a demand of D,,,

units over the planning horizon (P), the cycle time of the line is computed as follows:

c=p- sz mefl,.. M 2.1

On the other hand, g,, is the overall proportion of the number of units of model m

being assembled and calculated by using Equation 2.2.

G = Dm/z D,, me{1,..., M} (2.2)

In this study, balancing of mixed-model assembly line balancing problem with
setups (MMALBPS-1) is studied. MMALBPS-I is an extension of classical
MMALBP-I in which sequence-dependent setup times between tasks are taken into

consideration.
2.3.2.1 Sequence Dependent Setup Times between Tasks

The concept of the sequence-dependent setup times had been considered
negligible until the importance of setup times were investigated for the scheduling
problems (Allahverdi et al., 1999). Furthermore, setup times were generally
considered in low production systems like job shops (Allahverdi et al., 2008). On the
other hand, most of the studies about assembly lines also assumed that setup times
are negligible, because of their low proportion in comparison with task processing

times. The phenomenon of sequence dependent setup times has been a challenging
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field in ALBPs, since Andrés et al. (2008) (see the corrigendum to this paper
provided by Pastor et al., 2010) dealt with the setup times for the first time for the
SALBP.

For the assembly line balancing applications setups were considered
independently as they executed just before or after the tasks. Thus, their times were
added to task times (Andrés et al., 2008). In such situations, it is not required to
determine intra-stations schedules; however, they have considerable effect on the
workload of a workstation in case of sequence dependent setup times between tasks.
In other words, different intra-station schedules mean different workloads for a
workstation. Since the aim of assembly line studies is achieving effectively balanced
lines, determining optimum intra-station schedules become much more important.
That is to say, determining the optimum task performing sequences provides the
maximum line efficiency, which is one of the most important performance criteria of
the assembly lines. Besides, if the cycle time is low, considering sequence dependent
setup times between tasks becomes more important, because setup times may

represent a high percentage of cycle time.

Scholl et al. (2011) modified the consideration of the sequence dependent setup
times for assembly line balancing problems by introducing the phenomena of
backward and forward setups in addition to (Andrés et al., 2008).

"....The term forward setup refers to a situation where task j is executed directly
after task i in the same cycle, i.e., at the same workpiece, observing a (forward) setup
time 7;; = 0. A backward setup occurs if task i is the last one executed at the
workpiece of a cycle p and the worker has to move to the next workpiece which is to
be assembled in cycle p+1. This transfer causes a (backward) setup time u;; = 0
which must be finished by the end of cycle p in order to start execution of task j just
when cycle p + 1 begins. Note that since stations are supposed to be independent and
exclusively operated by a single (team of) worker(s), forward and backward setups
are only considered among tasks at the same station, not between adjacent stations"
(Scholl et al. 2011).
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MMALBPS adds sequence-dependent setup time considerations to the classical
mixed-model assembly line balancing problem as follows: whenever a task j is
assigned immediately after another task i for model m at the same workstation, a

forward setup time (FST;}") must be added due to forward setup operation (FS;}) to

compute the global workstation time for model m, thereby providing the task
sequence inside each workstation. Furthermore, if a task i is the last one assigned to
the workstation in which task j was the first task assigned for model m, then a

backward setup time (BST;;") must also be considered due to backward setup
operation (BS;7'). This is because the tasks are repeated cyclically; the last task in one

cycle of the workstation is performed just before the first task in the next cycle.
Hence, MMALBPS consists of assigning a set of tasks for a set of models to an
ordered sequence of workstations, such that the precedence constraints between tasks
are maintained, the setup times between tasks for all models are considered and a
given efficiency measure is optimized. Within the context of this study, we deal with
the MMALBPS-I, which aims at minimizing the number of workstations for a given
cycle time and a given set of M models with sequence dependent setup times

between tasks for all models.

As an example, we can take a case in which there are two models (A and B)
assembled at the same line over a planning horizon of 480 time units. The demands
for each model A and B are deterministically known; 20 and 28 units, respectively.
Hence, the cycle time (C) is equal to 480 + (20 + 28) = 10 time units. On the other
hand, g4 is equal to 20 +- 48 = 0.42 and g5 is equal to 28 + 48 = 0.58. Combined
precedence diagram originally used by Gokcen & Erel (1998), for these two models

is depicted in Figure 2.2.

Figure 2.2 Combined precedence diagram



The processing times of tasks, forward and backward setup times between tasks

for the models A and B are shown in Tables 2.1 and 2.2, respectively.

Table 2.1 Task, forward and backward setup time matrixes for model A

Setup Task

1

2

3

4

5

6

7

8

9

10

11

Forward Setups Times

0.62
0.59
0.22
0.18
0.42
0.36
0.24
0.20
0.41
0.18
0.43

0.14
0.39
0.44
0.50
0.31
0.46
0.40
0.57
0.36
0.54
0.52

0.33
0.11
0.41
0.13
0.26
0.13
0.26
0.11
0.21
0.17
0.27

0.11
0.56
0.38
0.45
0.44
0.55
0.13
0.59
0.31
0.23
0.58

0.54
0.59
0.39
0.13
0.44
0.25
0.34
0.27
0.58
0.12
0.29

0.46
0.19
0.32
0.64
0.53
0.42
0.47
0.60
0.36
0.60
0.26

0.46
0.11
0.47
0.46
0.16
0.49
0.28
0.57
0.23
0.20
0.26

0.41
0.48
0.18
0.49
0.49
0.53
0.21
0.33
0.31
0.37
0.54

0.39
0.19
0.13
0.44
0.52
0.18
0.48
0.48
0.32
0.18
0.39

0.27
0.24
0.21
0.28
0.24
0.23
0.53
0.16
0.18
0.57
0.14

0.74
0.44
0.38
0.19
0.30
0.47
0.25
0.51
0.12
0.49
0.60

co~vouhrwnr|lESocovounkrwn R

Backward Setups Times

10
11

0.45
0.74
0.14
0.46
0.44
0.50
0.49
0.36
0.36
0.46
0.57

0.53
0.83
0.42
0.51
0.67
0.34
0.51
0.39
0.50
0.47
0.59

0.66
0.40
0.70
0.44
0.51
0.38
0.61
0.39
0.56
0.17
0.40

0.30
0.45
0.30
0.53
0.48
0.58
0.59
0.47
0.66
0.48
0.70

0.74
0.52
0.40
0.68
0.70
0.73
0.33
0.60
0.68
0.35
0.63

0.27
0.46
0.41
0.58
0.51
0.60
0.37
0.37
0.61
0.71
0.51

0.49
0.36
0.49
0.61
0.40
0.73
0.15
0.77
0.53
0.69
0.51

0.15
0.57
0.56
0.65
0.71
0.71
0.51
0.53
0.33
0.60
0.20

0.46
0.46
0.63
0.57
0.62
0.39
0.42
0.47
0.46
0.56
0.53

0.61
0.37
0.45
0.65
0.57
0.70
0.77
0.45
0.40
0.71
0.70

0.58
0.34
0.35
0.18
0.37
0.65
0.53
0.76
0.46
0.73
0.44

Task time (Tx)

2.75

1.25

3.00

3.00

2.25

1.80

2.10

2.30

2.10

2.00

2.00

Table 2.2 Task, forward and backward setup time matrixes for model B

Setup  Task

1

2

3

4

5

6

7

8

10

11

Forward Setups Times

0.42
0.22
0.12
0.31
0.42
0.27
0.35
0.42
0.29
0.37
0.48

0.47
0.28
0.21
0.49
0.11
0.39
0.26
0.37
0.30
0.49
0.45

0.38
0.26
0.53
0.11
0.25
0.37
0.18
0.41
0.15
0.21
0.20

0.17
0.32
0.26
0.21
0.31
0.48
0.36
0.13
0.46
0.33
0.48

0.33
0.42
0.46
0.15
0.20
0.18
0.35
0.12
0.13
0.28
0.23

0.12
0.56
0.41
0.36
0.43
0.33
0.38
0.46
0.43
0.41
0.54

0.33
0.31
0.43
0.29
0.19
0.27
0.36
0.41
0.38
0.29
0.36

0.31
0.35
0.21
0.51
0.25
0.19
0.17
0.17
0.42
0.21
0.23

0.37
0.19
0.21
0.51
0.52
0.02
0.43
0.47
0.49
0.37
0.31

0.54
0.25
0.30
0.22
0.41
0.28
0.39
0.33
0.19
0.31
0.40

0.41
0.44
0.32
0.27
0.25
0.46
0.36
0.54
0.45
0.17
0.40

Cco~N~NouhrwNhRIESoovoorwN R

Backward Setups Times
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0.47
0.39
0.20
0.46
0.55
0.40
0.14
0.60
0.58
0.65
0.20

0.45
0.54
0.47
0.33
0.61
0.46
0.56
0.68
0.18
0.51
0.61

0.43
0.38
0.45
0.45
0.40
0.33
0.39
0.46
0.44
0.50
0.47

0.68
0.61
0.60
0.80
0.53
0.69
0.71
0.70
0.42
0.53
0.56

0.38
0.61
0.70
0.61
0.61
0.45
0.19
0.63
0.59
0.61
0.50

0.57
0.62
0.72
0.70
0.51
0.40
0.45
0.58
0.50
0.61
0.19

0.46
0.47
0.34
0.48
0.35
0.71
0.69
0.60
0.56
0.71
0.73

0.67
0.71
0.70
0.51
0.67
0.21
0.58
0.53
0.17
0.48
0.40

0.57
0.50
0.20
0.39
0.45
0.60
0.55
0.61
0.74
0.46
0.47

0.46
0.51
0.44
0.53
0.68
0.58
0.61
0.65
0.57
0.65
0.62

0.64
0.15
0.15
0.53
0.49
0.49
0.51
0.53
0.58
0.75
0.63

Task time (Tg)

2.75

1.50

3.00

3.15

2.50

2.00

2.30

2.50

2.00

2.10

2.00

13
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Figure 2.3 represents two different solutions with a unique assignment of tasks to
3 different workstations. That is, the number of workstations is equal to 3 and the
assignment of task to workstations in both solutions are the same, and two different
intra-station schedules of tasks caused two different solutions. The intra-station
schedules of tasks are displayed with discontinuous lines. As pointed out in Figure
2.3, different intra-station schedules lead to different work-loads (WL) for the
workstations (WS). This situation indicates the importance of considering sequence

dependent setup times between tasks.

a. Station workloads for intra-stations schedule 1
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b. Station workloads for intra-stations schedule 2
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Figure 2.3 Station work-loads for different intra-station schedules
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The reader must also be noted the following assumptions, which are directly
related to the MMALBPS-I.

» Task processing times and setup times between tasks are known
deterministically.

> Processing and setup times are independent on the workstation in which tasks

are processed.

2.4 Literature Survey

The existing literature about the assembly line balancing problems with sequence
dependent setup times has extensively dealt with single-model lines. Andrés et al.
(2008) extended the simple version of the ALBPs by considering the sequence
dependent setup times between tasks for the first time and they referred to as general
assembly line balancing problem with setups (GALBPS). The authors developed the
mathematical programming model of the problem. Due to the high combinatorial
nature of the problem they provided some heuristics and a GRASP algorithm to
tackle the innovative problem. Moreover, Martino & Pastor (2010) developed
heuristic procedures based on priority rules in order to solve the same problem;
however the performance of their procedures were not effective in high-size tests. A
similar problem was introduced by Scholl et al. (2008) and they formulated several
versions of a mixed-integer program for the problem. As a result of their
experiments, the authors stated that it is not effective enough modeling and solving
the problem with MIP standard software. Scholl et al. (2011) modified the problem
by introducing the phenomena of backward and forward setups and the triangle
inequality for the setup times. They formulated the modified problem as a mixed-
binary linear model and developed effective solution procedures for the problem.
Yolmeh & Kianfar (2012) dealt also with single-model lines with sequence
dependent setup times between tasks. They proposed a hybrid genetic algorithm for
solving the problem. Hamta et al. (2012) enriched the SALBP by adding some
realistic relevant aspects such as sequence dependent setup times. They developed a
mathematical model for the problem and the problem was tackled by a combination
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of particle swarm optimization (PSO) algorithm with variable neighborhood search
(VNS). Seyed-Alagheband et al. (2011) addressed type-1l SALBP, which was
enriched by considering sequence-dependent setup times between tasks (GALBPS-
I1). They proposed a mathematical model based on Andres et al.’s (2008) model and
the authors developed a novel simulated annealing (SA) algorithm to tackle the
problem. Ozcan & Toklu (2010) handled the two-sided assembly line balancing
problem with setups (TALBPS). The authors proposed a mixed integer program in
order to solve and model the problem. The proposed model minimizes the number of
mated-stations as a primary objective and minimizes the number of stations as a

secondary objective. A heuristic approach was also presented.

This study concerns the type-1 mixed-model assembly line balancing problem
with sequences dependent setup times between tasks (MMALBPS-1). MMALBPS-I
is an extension of classical MMALBP-I in which sequence-dependent setup times are
taken into consideration and handled by Akpinar et al. (2013) for the first time to the
best of our knowledge. MMALBPS-I aims at assigning a set of tasks for a set of
models to an ordered sequence of workstations and determining the intra-stations
schedules. The problem seeks the optimum value of the number of workstations so
as to maintain the precedence constraints and to consider sequence dependent setup

times between tasks for a predefined cycle time.

The relevant literature about the solution procedures of the mixed-model assembly
lines was initiated by the approaches of Thomopoulos (1970) and can be divided into
three groups: mathematical programming, heuristics and meta-heuristics, and hybrid
approaches. Heuristic and meta-heuristic approaches were widely used in order to
cope with the problem. The field of hybrid approaches has become very popular
among researchers because of the insufficient performance of heuristics and pure
meta-heuristics while exploring the solution space effectively as problems get larger
and more complex as in real life. Mathematical programming approaches are used to
formally describe the problem. We summarized the published papers by taking into
account the line configuration, the methodology, and the employed data to test the

performance of the proposed approach and the summary is presented in Table 2.3.



Table 2.3 An overview of the approaches in the literature on MMALBP-I

Publications

Line Configuration

Methodology

Test Problem

Askin & Zhou (1997)
McMullen & Frazier
(1997)
Gokcen & Erel (1997)

McMullen & Fraizer
(1998)

Gokcen & Erel (1998)
Sparling &
Miltenburg (1998)
Erel & Gokcen (1999)

Merengo et al. (1999)

Vilarinho & Simaria
(2002)

Buckhin et al. (2002)

Miltenburg (2002)

McMullen &
Tarasewich (2003)

Zhao et al. (2004)
Mendes et al. (2005)

Hop (2006)

Bock (2006)

Buckhin &
Rabinowitch (2006)
Noorul Hagq et al.
(2006)
Vilarinho & Simaria
(2006)

Kara et al. (2007)

Bock (2008)

Simaria and Vilarinho
(2009)
Ozcan & Toklu
(2009)
Hwang & Katamaya
(2009)

Ozcan et al. (2010)

Hwang & Katamaya
(2010)

Yagmahan (2011)
Kazemi et al. (2011)

Akpmar & Bayhan
(2011)

Kara et al. (2011)

Hamzadayi & Yildiz
(2012)

Akpinar et al. (2013)

Straight line, Parallel stations

Straight line, Parallel stations
Straight line
Straight line, Parallel stations
Straight line
U-line
Straight line

Paced and unpaced lines
Straight line, Parallel stations

Straight line
U-line
Straight line, Parallel stations

Paced line

Straight line, Parallel stations
Straight line
Straight line

Straight line
Straight line
Straight line, Parallel stations
U-line
Straight line

Two-sided line
Two-sided line
U-line
Parallel lines
Straight and U-line
Straight line
U-line
Straight line, Parallel stations
Straight line
U-line

Straight line

Nonlinear Integer Programming,
Heuristic

Heuristic, Simulation
Binary Goal Programming
Simulated Annealing

Binary Integer Programming

Approximate Solution Algorithm,
Mathematical Model

Network Programming

Heuristic

Mathematical Model, Simulated
Annealing

Mathematical Model, Heuristic

Genetic Algorithm
Ant Colony Optimization, Simulation

Heuristic

Heuristic, Simulation

Fuzzy Binary Linear Programming,
Heuristic

Distributed Search Procedures
Branch and Bound Algorithm based
Heuristic, Mathematical Model

Hybrid Genetic Algorithm

Ant Colony Optimization
Simulated Annealing, Mathematical
Model
Tabu Search

Ant Colony Optimization,
Mathematical Model
Mathematical Model, Simulated
Annealing

Genetic Approach
Simulated Annealing
Evolutionary Approach

Ant Colony Optimization

Genetic Algorithm, Mathematical
Model

Hybrid Genetic Algorithm

Integer Goal and Fuzzy Goal
Programming
Genetic Algorithm, Simulated
Annealing
Hybrid Ant Colony Optimization-
Genetic Algorithm

Randomly generated

Randomly generated
More than one
Randomly generated
More than one
Only one problem

Only one problem

Randomly generated
Randomly generated

Only one problem

Randomly generated
Benchmark problems

Randomly generated

Case study
Randomly generated
More than one

Randomly generated
More than one
Benchmark problems

Randomly generated
Randomly generated

Benchmark problems
Benchmark problems

Benchmark problems
Benchmark problems
Case study
Randomly generated

Benchmark problems
Benchmark set
Randomly generated
Benchmark set

Randomly generated
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This summarized review reveals there is only one paper (Akpinar et al., 2013)
handled MMALBP-I with the sequence dependent setup times between tasks. On the
other hand, there are only three hybrid approaches (Noorul Hagq et al., 2006; Akpinar
& Bayhan, 2011; Akpinar et al, 2013) dealing with MMALBP-1 between the years
1997 and 2013. Noorul Hag et al. (2006) combined GA with only modified version
of ranked positional weight technique (RPWT), while Akpmar & Bayhan (2011)
presented a new hybrid GA in which the RPWT, Kilbridge & Wester Heuristic and
Phase-1 of Moodie & Young Method are sequentially hybridized with GA. Both of
the hybrid approaches belong to the class of sequential hybrid algorithms, and are
based on hybridizing problem specific heuristics with meta-heuristics. The study of
Akpinar et al. (2013), developed a new hybrid algorithm belongs to the class of
parallel hybrid algorithms and combines two well known meta-heuristics, ant colony
optimization and genetic algorithm. From this review, it can be noticed that there is
lack of mathematical models about mixed-model assembly line balancing problem
with sequence dependent setups between tasks in the existing literature. The
following chapter of this study aims at removing this lack of the existing literature by
developing a mixed integer linear mathematical programming model for mixed-

model assembly line balancing problem with setups.



CHAPTER THREE
A MIXED INTEGER LINEAR PROGRAMMING MODEL FOR MMALBPS-I

3.1 Chapter Introduction

Assembly lines were firstly created to produce one single homogeneous product
in high volumes. The balancing problem of this type of lines named as simple
assembly balancing problem (SALBP), which was first mathematically formulated
by Salveson (1955). Single-model assembly lines are the least suited production

system for high variety demand scenarios.

Current consumer-centric market conditions require high flexibility in
manufacturing systems. Hence, assembly lines must be designed so as to satisfy
high-mix/low volume manufacturing strategies. Due to high cost to build and
maintain an assembly line, the manufacturers produce one model with different
features or several models on a single assembly line. This changed type of assembly
lines lead to arise the mixed-model assembly line balancing problem, which was

handled by Thomopoulos (1967) for the first time in the literature.

The relevant literature about the solution procedures of the mixed-model assembly
lines was initiated by the approaches of Thomopoulos (1970) and can be divided into
three groups: mathematical programming, heuristics and meta-heuristics, and hybrid
approaches. For more detailed information, the reader can refer to Battaia & Dolgui's

(2012b) recent survey.

Heuristic and meta-heuristic approaches were widely used in order to cope with
the problem. The field of hybrid approaches has become very popular among
researchers because of the insufficient performance of heuristics and pure meta-
heuristics while exploring the solution space effectively as problems get larger and
more complex as in the real life. On the other hand, mathematical programming
approaches are used to formally describe the problem. In this study we proposed a

new mathematical programming model for type-I mixed-model assembly line

19
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balancing with sequence dependent setup times between tasks (MMALBPS-I). To
the best of our knowledge, this is the first attempt to model type-l1 mixed-model
assembly line balancing problem while considering the sequence dependent setup

times in the literature.

Akpinar et al. (2013) summarized the published papers related to type-I mixed-
model assembly line balancing problem (MMALBP-I) between the years 1997 and
2011 by taking into account the line configuration, the methodology, and the
employed data to test the performance of the proposed approach. From their
summary, it is observed that few papers dealt with mathematically modeling of the
MMALBP-I and none of these studies handled the sequence dependent setup times

between tasks.

Askin & Zhou (1997) proposed a non-linear integer mathematical model for
MMALBP-I. Their model allows using parallel workstations if required. By the way,

the authors relaxed the splitting restriction for the first time.

Gokcen & Erel (1997) modeled the MMALBP-I as a binary goal program. They
considered several conflicting goals and their model provides flexibility to the
decision maker. Their model also allow to the use of zoning constraints. Moreover,
Gokcen & Erel (1998) developed a binary integer programming model for the
MMALBP-I. The authors stated that their model may be used as a validation tool for
the heuristic procedures for the MMALBP-I. On the hand, Erel & Gokcen (1999)
proposed a shortest-route formulation of the MMALBP-I.

Vilarinho & Simaria (2002) combined the concepts of parallel workstations
assignment and zoning constraints in their mathematical programming model. Their
model aims at minimizing the number of workstations as a primary goal, and

balancing the workloads between and within workstations as a secondary goal.

The literature about the mixed-model assembly line balancing problem

(MMALBP) use a restriction ensures that assigning common tasks of different
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models to the same workstation. This restriction has been relaxed by Bukchin et al.
(2002), and Bukchin & Rabinowitch (2006) and they allow the assignment of a
common task for multiple products to different workstations. The same relaxation
was also used by Kara et al. (2011). They proposed a new binary mathematical
programming model based on the Bukchin & Rabinowitch's (2006) model and have
also developed two goal programming approaches, one with precise and the other
with fuzzy goals. Hop (2006) dealt also with fuzzy concept and handled the
MMALBP with fuzzy processing times and formulated the problem as a fuzzy binary

linear programming model, which was transformed to a mixed zero-one program.

Simaria & Vilarinho (2009) dealt with the MMALBP-1 with a different line
configuration, two-sided assembly line and developed a mathematical programming
model covers the parallel workstations assignment and zoning constraints. The
phenomenon of two-sided assembly lines was also handled by Ozcan & Toklu
(2009). They also proposed a mathematical programming model for the two-sided
MMALBP-I.

On the other hand, Sparling & Miltenburg (1998), and Kazemi at al. (2011)
handled the U-line MMALBP-I. They all developed mathematical programming

models for the problem.

In this study, we deal with the MMALBP-I with some particular features of the
real world problems such as parallel workstations and zoning constraints.
Furthermore, we extend the problem by adding sequence dependent setup times
between tasks, which is a new concept for assembly line balancing problem. We
developed a mixed integer linear programming (MILP) model for formally

describing the extended problem.

The rest of this chapter is organized as follows. The proposed MILP model is
given in Section 3.2. An illustrative example is solved in Section 3.3. Computational
experiments are given in Section 3.4. Finally, the discussions and conclusions are

presented in Section 3.5.
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To the best of our knowledge, the proposed MILP considers the phenomena of

sequence dependent setup times for mixed-model assembly lines for the first time.

Our MILP is a general model when considered some characteristics of assembly

lines. Table 3.1 contains a comparison of our model with some recent publications.

Some of them proposed mathematical models for MMALBP-I and some others

attempted to formulate the SALBP by considering sequence dependent setup times.

Moreover, this comparison covers some particular features of real world problems

such as parallel workstations and zoning constraints. Since SALBP is special case of
MMALBP, the proposed MILP model is able to solve SALBP as well as other
mathematical models around MMALBP.

Table 3.1 Model characteristics considered in different researches

R h Characteristics Line
esearc MM SM SDST ZC PW Configuration

Proposed Model v v v v v Straight
Askin & Zhou (1997) v v v Straight
Gokcen & Erel (1997) 4 4 4 Straight
Gokcen & Erel (1998) v v Straight
Sparling & Miltenburg (1998) v v U-line
Erel & Gokcen (1999) v v Straight
Vilarinho & Simaria (2002) v 4 v 4 Straight
Bukchin et al. (2002) v v Straight
Bukchin & Rabinowitch (2006) v v Straight
Hop (2006) v 4 Straight
Simaria & Vilarinho (2009) v v v Two-sided
Ozcan & Toklu (2009) v v v Two-sided
Kazemi at al. (2011) v v U-line
Kara et al. (2011) v v Straight
Andrés et al. (2008) v v Straight
Scholl et al. (2008) 4 4 Straight
Ozcan & Toklu (2010) 4 v Straight
Scholl et al. (2011) v 4 Straight
Seyed-Alagheband et al. (2011) 4 4 Straight
Hamta et al. (2012) v v Straight

MM: Mixed-model; SM; Single-model; SDST; Sequence dependent setup times;

ZC: Zoning constraints; PW; Parallel Workstations

In order to describe the proposed model more clearly, the stated assumptions and

defined notations (Table 3.2) are mentioned in the following.

Assumptions:

» A set of similar models of a product assembled on a straight line.
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» The combined precedence diagram, which is a combination of all the

precedence diagrams for all the models, contains the N tasks.

» It is allowed to create parallel workstations along the line, if there are tasks

having processing times higher than cycle time due to demand.

» Zoning constraints can force/forbid the assignment of tasks to a specific

workstation.
» A task can be assigned to only one workstation.
» Common tasks to several models must be performed on the same workstations.
» Processing time of a common task may be different among the models.

» Task processing times and sequence-dependent setup times between tasks are

known deterministically.

» Processing and setup times are not dependent on the workstations.

Table 3.2 Model Notations

BS;jms € {0,1}

Nys

Notation Definition
N Total number of tasks,
" M Total number of models simultaneously assembled at the line,
8 WS Maximum number of workstations,
'g i Set of tasks i € {1,2, ..., N},
S Set of stations s € {1,2, ..., WS},
m Set of models m € {1,2, ..., M},
C Cycle time,
maxp Maximum number of replicas for a workstation (Set as 2),
o A pre-defined proportion (%a) of the cycle time,
bigM A very large number,
g T; Processing time of task i on model m,
@ Equals to 1 if processing time of task i is greater than zero for model m and 0
E TTim € {01} ot%erwise, P ’ ’
§ FSTijm Forward set-up time between task i and j on model m,
BST;jm Backward set-up time between task i and j on model m,
PR;; € {0,1} Equals to 1 if task i must precede task j and 0 otherwise,
ZP;j € {0,1} Equals to 1 if tasks i and j must be assigned to the same workstation, 0 otherwise,
ZN;; € {0,1} Equals to 1 if tasks i and j must be assigned to different workstations, 0 otherwise,
Y;s € {0,1} Equals to 1 if task i is assigned to workstation s and 0 otherwise,
» As€{0,1} Equals to 1 if station s is active, O otherwise,
= R €{01} Equals to 1 if workstation s is duplicated due to model m and 0 otherwise,
€ R,€{0,1} Equals to 1 if workstation s is duplicated, O otherwise,
S w;js € {0,1} Equals to 1 if task i precede task j at workstation s and 0 otherwise,
é FSims € (0,1} Equals tq liftask j dlrectly follows task i on model m in the forward direction in
2 workstation s and 0 otherwise,
A Equals to 1 if i is the last and j is the first tasks of model m in workstation s and 0

otherwise,
Total number of workstations including replicas.
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The constraints of the model can be grouped into seven sets: assignment,
precedence, zoning, workstation parallelization, sequence dependency, capacity, and
stations. All these sets of constraints are explained in details in the following

subsections.
3.2.1 Assignment Constraints

This set of constraints ensures the assignment of each task to exactly one

workstation and can be written as follows:

Z V=1 i€{1,..,N} 3.1)

3.2.2 Precedence Constraints

A task can only be assigned if all its predecessors were assigned to an earlier
station or to the current station. This assignment restriction ensures processing a task
after the completion of all its predecessors, and this set of constraints can be

expressed as below:

ws

big x (1 - Y, x PRy;) + Z Ye>1 ijefl,..,Nhise{l,.,WS} (32)

t|(t=s)
3.2.3 Zoning Constraints

Zoning constraints are used to force or forbid the assignment of different tasks
into the same station. The forcing set is called as positive (compatible) zoning
constraints and verified by the set of constraints (3.3), while the forbidding set is
called as negative (incompatible) zoning constraints and guaranteed by the set of

constraints (3.4).
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Vi +bigh x (1= (Y x ZP;)) 21 ij€{l,..,Nis€{1,..,WS}  (3.3)

Vi = bigh x (1= (Yis x ZN;;)) <0 ij€{L,...Nhs€{l,..,WS}  (34)

3.2.4 Workstation Parallelization Constraints

Total processing time of tasks assigned to a workstation defines the workload of
the relevant workstation and it is not allowed to exceed the workstation's capacity
defined by the cycle time. Some demand scenarios may cause to have some tasks
greater processing times than a certain proportion (a %) of the cycle time. In such
situations the workload restriction must be relaxed in such a way that two or more
identical replicas of a workstation can perform the same set of tasks. Our proposed
model allows paralleling a workstation if it performs a task with processing time
larger than a certain proportion (o %) of the cycle time for at least one of the models.
The set of constraints (3.5) determines which model requires parallelization (due to
the assigned tasks processing times) and so the set of constraints (3.6) creates the

parallel workstation for this model.

N
R.,, — bigM X Z V<0  se{l,..WSkme(l, .., M (3.5)
i|(Tim>x*C)
Rom = Y, i €1, N}|Ty, >xxC; s € (1,.., WS} m€{1,..,M} (3.6

In the same way, the set of constraints (3.7) ensures the parallelization of a
workstation if parallelization required for at least one of the models in any
workstation. So, the set of constraints (3.8) creates parallel one of this workstation in
general.

M
R, — bigM x Z Ryn < 0 s€e{l,.. WS} (3.7)

m=1
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R; = Ry, se{l,.., WS}, me{l,.., M} (3.8)
3.2.5 Sequence Dependency Constraints

Sequence dependency constraints were based on three decision variables; wis,
FSijms, BSijms. The variable of wjjs is used to determine the performing order of tasks
(sequence of tasks) in a workstation. As we have considered sequence dependent
setup times we need to determine immediate follower of each task in a workstation.
Therefore, extra decision variables have been defined for determining the immediate
followers of tasks whiles, FSjjns and BSjms are used for the immediately following
tasks in forward direction and for backward direction (transition from the last to the
first tasks) in any workstation s. As a result of these types of decision variables,
sequence dependency constraints may be classified into two groups: constraints (3.9-
3.14) and correlations (a-i) determining the sequences of tasks, constraints (3.15-

3.26) and correlations (j-u) determining the setup operations tasks.
3.2.5.1 Constraints Sets for the Sequences of Tasks

Considering a workstation s, the tasks i, j, k, and | are executed on a work-piece in
this workstation. From the sequence dependent point of view it is necessary to
determine the sequence of tasks in this workstation. As pointed out in Figure 3.1, it is
possible to derive the sequence of these tasks due to the variable wijs. In other words,

the variable wjjs provides us the positions of tasks in a workstation.

The following correlations ensure that two tasks would be ordered if both of them
have been assigned to the same workstation. These sets of correlations prevent
ordering tasks in two situations for a workstation; only one of them assigned to the
related workstation (the correlations a, and b), none of them assigned to the related

workstation (correlations c).

Wijs + Wjis —bigM X (1 =Y +Y) <0 i,je{l, .., N;se{l,.., WS} (a)
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Wijs + Wjis —bigM x (14 Y5 —Y) <0 i,je{l,..,Nss€{l,.., WS} (b)
Wijs + Wjis — bigM X (Yis + Yj5) < 0 i,je{l,..,N;se{l,.., WS} (¢

Wis =0 i€{l,..,N;s€e{l,.., WS} (3.9)

Workstation-s

Figure 3.1 Sequence of tasks in a workstation

Remark 1: Considering F number of assigned tasks for any workstation s, to
guarantee the ordering of tasks in a right way the variable wijs should be provided to
take a value 1 in necessary situations. In what follows, we provide the sufficient and
necessary conditions to tasks orders constraints by two cases in constraint sets (3.10-
3.13) and constraints (3.14). The constraint sets (3.12) and (3.13) ensure that any two
tasks would be ordered if both of them have been assigned to the same workstation.

WijS + WjiS + blgM X (2 - YiS - YIS) >1
i=1,..,N;je{l,.. N}|j#i;s€{l,.., WS} (3.10)

WijS +Wji$ - blgM X (2 - Yl - YIS) < 1
i=1..,N;je{l,..,N}|j#is€e{l.., WS} (311
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It must be noted that any two tasks have to be ordered due to their precedence
relations. The set of constraints (3.12) guarantees the mentioned precedence

relations between tasks in any workstation.

wijs + bigM x (3 =Y —Y;s—PR;) =1 ij€{l,..,N;s€e{l, .. WS} (3.12)
The aforementioned constraints determine the performing order of tasks in any

workstation. As realized by constraint set (3.13), if task i has been performed before

task k and task k has been performed before task j, then task i would be performed

before task j too.

Wijs + bigM X (2 —wys —wyjs) =1 i,j,k€{l,..,N;s€{l,.., WS} (3.13)

Lemma 1: If task i is in position f of the tasks order of the workstation s where F

number of tasks are assigned to workstation s then:

N

ZWys:F—f fell,..Fyie{l,.., N} ()
Jj=1

Proof: Considering F number of tasks in a workstation, if any task is in position f:

f=1 - Nawys=F—1 (e)
f=2 - Yl wys =F =2 ()
f=F-1 - Yiawys=F—(F—1) (9)

f=F - Y iwys=F—F (h)
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Due to the aforementioned lemma we can also derive correlation (i).

N N N
zzwijs: z i S = 1,,WS (l)
i=1j=1 i|(isF-1)

The total number of the tasks in any workstation (X¥-, Yxs) must be considered to
provide assigning necessary performing orders between tasks. Within this context,
the set of constraints (3.14) provides necessary number of assigned orders between
tasks in any workstation. Due to the correlation (i), and substituting F « Y¥_, Y, We

can provide the set of constraints (3.14) for the s™ workstation:

N N N
Z Wijs = Z I se{l,.. WS} (3.14)
i=1j=1 i1(i<¥R=1Yks)

3.2.5.2 Constraints Sets for the Setup Operations

The variable wijs is not sufficient enough while determining the setup operations in
a workstation. As pointed out in Figure 3.2, two types of setup operations exist in a
workstation, forward and backward setup operations (Scholl et al., 2011). A forward
setup operation occurs when a task j is performed directly after task i in the same
cycle at the same workstation. A backward setup operation occurs between the last
task and the first task of a workstation. Whenever the last task at the work-piece of
cycle p is completed in a workstation, the employee has to move to the next work-
piece of cycle p+1. For that reason, the variables of FS;us (for forward setups) and
BSijms (for backward setups) are defined in order to determine the setup operations.

Remark 2: Considering F number of assigned tasks for any workstation s to
determine the sequence of required setup operations we define a variable Sjs which
would be provided to take a value 1 if task j would be performed immediately after
task i in the s™ workstation. Whiles, the mentioned setup operations are cyclic in any

workstation.
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Figure 3.2 Forward and backward setup operations in a workstation

Lemma 2: In any workstation the total number of setup operations is equal to the

total number of assigned tasks (F) to the related workstation (s) as:

N N
D Sys=F s€{l,..,ws) 0

i=1 j=1

Proof:

F=1 - YVaSis=1 = X ¥V, Ss=1 (k)

F=2 - 22,,: j,:z z 1} = Y2 Sijs =2 0
9’:1 S1js =1

F=3 - Z?Ll Ss=1p = Zi3=1 Z?’=1Si]'s =3 (m)

Z?Ll S3js =1
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Z?Izlsljs =1
27=152js =1
F=N - : = YL, Z?’=1 Sijs =N (n)
Zﬁyﬂ 5(1v—1)js =1
Zy=1Sst =1 J

On the other hand, if a task is not performed, then there would not be any setup
operation in any workstation related to this task. The set of constraints (3.15) ensure
the mentioned conditions in the model.

FSijms + BSijms — bigM X (TTip X TTjp,) < 0
i,jef{l,..,.N;me{l, .. M};se{l,.. WS} (3.15)

If a backward setup operation has been assigned between any tasks there would
not be any forward setup operation. The set of constraints (3.16) ensures this

restriction.

FSijms — bigM x (1 — BS;jms) <0
i,je{1,...Nyme{1,.., M};s€e{l,.., WS} (3.16)

As mentioned previously a forward setup operation occurs when a task executed
directly after another task in the same cycle of a workstation. Similar to correlations
(a, b, and c) the following correlations ensure that two tasks would be ordered if both
of them have been assigned to the same workstation.

i,jef{l,..,N;se{l,.., WS} (0)

FSijms + FSjims — bigM X (1 + Y3 = Yj5) <0
i,jef{l,..,N};se{l,.. WS} (p)
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FSijms + FSjims — bigM x (Yis + Y;s) <0
i,j€{1,..,N};s€e{l,.., WS} (r)

It must be noted that each task in any workstation would have at most one
immediate follower. Set of constraints (3.17) ensures this situation for all tasks for all

workstations.

ZZFSUmS <1 i€{l,...,N};me{l,.., M) (3.17)

If a forward setup operation was done between tasks i(j) and j(i) then any forward
setup operation between task j(i) and i(j) must be prohibited. That is to say it is
possible to do only one forward setup operation between any pair of tasks. The
mentioned restriction was provided by the constraints set of (3.18).

FSi]'mS + FSjims <1 l,] € {1, ...,N};m € {1, ...,M}; S = {1, ,WS} (318)

Set of constraints (3.19) prevents assigning any forward setup operation between a
task and itself. Forward setup operations may be executed between any different two
tasks in the same workstation.

ws
2 FSime = 0 i €{l,..,Nhme{l,.. M (3.19)
s=1

Considering Lemma 1 we can determine adjacent tasks in any workstation

through the variable w; ;. Set of constraints (3.20) provides us adjacent tasks in any

workstation, so provides us the required forward setup operations.
FSijms + bigM X (4 = Yig = Yjs — TTipy — TTj) +

bigM x >1

N N
D Wies X TTigm) = > (Wisg X TTiyr) = 1
k=1 =1

i,j €{1,..,N;me{l,.. M};se{l,.. WS} (3.20)
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Backward setup operations occur between the last and the first tasks of any
workstation as mentioned previously. Similar to correlations (a, b, and c) and (o, p,
and r) the following correlations ensure that there may be a backward setup operation

between any two tasks if both of them have been assigned to the same workstation.

BSijms + BSjims — bigM X (1 —Y;s + Yj5) <0

i,jef{l,..,N};se{l,.. WS} (s)

BSijms + BSjims — bigh X (1 + Y3 = Y;5) < 0
i,jef{l,..,N;se{l,.., WS} )

BSijms + BSjims — bigM X (Yis + Y;5) < 0
i,jef{l,..,N;se{l,.., WS} (w)

Due to the similarities between correlations (a, b, and c), (o, p, and r), and (s, t,
and u) the sets of constraints (3.21), (3.22) and (3.23) have been generated as
follows.

WijS + WjiS + FSl'ij + FSjimS + BSiij + BSjimS - blgM X (1 - YiS + Y/S) < 0
i,jef{l,..,.N;me{l, .. M};se{l,.. WS} (3.21)

Wijs + Wijis + FSiij + FSjimS + BSiij + BSjimS - blgM X (1 + Y — Y]S) <0
LjE{l, .., Nime{l, .., Mys€ (1., WS} (3.22)

Wijs + Wjis + FSiij + FSji‘mS + BSiij + BSjimS — blgM X (Yls + Y]S) <0
ijEfL, .., Nyme(l, .., MEs€el,..,WS} (3.23)

As mentioned previously, backward setup operations occur between the last task
and the first task assigned to the same workstation. After performing the last task, the

worker has to move to the first task assembled in the same workstation. Therefore,
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each workstation would have just one backward setup operation. This restriction is

realized by the sets of constraints (3.24).

N N
ZZ BSijms < 1 me{l,..,M}s€{l,.., WS} (3.24)

Considering Lemma 1 we can determine the first and the last tasks in any
workstation thanks to the variable w;;,. So, the third and fourth terms in the left side
of constraint set (3.25) provide us to determine the backward setup operation

between the last and the first tasks in any workstation.

N
BSijms + bigM x (4 — Y;s — Y5 — TTyp — TTjn) + bigM X ( Wiks X TTkm> +
k=1

bigM x >1

N N
Z(Yls X TTls) - Z(ans X TTns) -1
=1 n=1

i,jef{l,..,.N;me{l, .. M};se{l,.. WS} (3.25)

3.2.6 Capacity Constraints

Capacity constraints ensure that the workload of a workstation does not exceed
the pre-defined cycle time for all the models being assembled. The workload of a
workstation consists of the summation of the tasks processing times, forward and
backward setup operations times within a workstation. The set of constraints (3.26)

ensures this capacity restriction if a workstation has more than one task.

N N
Z Vi X Ty + Z(FSl- ims X FSTijm + BSyjms X BST;j) | <

i=1 j=1
C % (1 + Ry X (maxp — 1))
se{l,.. WS}, me{1,.. M} (3.26)
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3.2.7 Stations Constraints

It is necessary to utilize the same number of workstations for all models. That is to
say, if any workstation has any task from any model it would be considered as an
active workstation for the other models too. Constraint sets (3.27) and (3.28) provide

us to determine the active workstations due to their number of assigned tasks.

A+ bigM x (1—Y) =1 i€{1,..,N}; se€{l,.., WS} (3.27)
N

A — bigM x Z Y <0 se{l,.., WS} (3.28)
i=1

Set of constraints (3.29) provides the active workstations to be in an ordered
sequence. So, if a workstation has been activated its preceding workstations should
have been activated already.

Sa)-

s=1

—bigM x (1 —A4,) <0 tef{l,.., WS} (3.29)

3.2.8 Objective Function
The aim of our proposed MILP model is to minimize the total number of

workstations (Nws). Where, Nws determines the total number of active workstations

as well as their parallels.

Nyys = Z R, + A, (3.30)



36

3.3 An lllustrative Example

In this section, a numerical example with the following characteristics has been

used to illustrate the proposed MILP model.

> A line is used to simultaneously assemble two models A and B over a planning
horizon of 480 time units where, the demands for each model are 20 and 28

units, respectively. Thus, the cycle time (C) is equal to 480 + (20 + 28) = 10.

» Precedence diagram for 11 numbers of tasks is the same as Figure 2.2 (see
Section 2.3.2.1).

> The task processing times for the models A and B are given in Table 3.3.
» Tasks 7 and 8 cannot be executed on the same workstation.

» A workstation can be replicated if it performs a task with a processing time

greater than cycle time.

Table 3.3 Task processing times of the numerical example
Task 1 2 3 4 5 6 7 8 9 10 11

Ta 3.0 3.1 1.9 8.4 3.1 11.2 8.8 8.7 25 5.2 4.4
Ts 0.0 3.1 1.9 8.4 3.1 9.9 0.0 8.7 25 0.0 4.4

Ta: Task time for model A; Tg: Task time for model B

As it can be seen from Table 3.3, all tasks would be performed for model A
whiles, tasks 1, 7, and 10 are not required for model B. Since, tasks are assigned
according to combined precedence diagram; this situation has no effect on the
decision variables of Yis and wjs, however, it directly influences the decision
variables of FSijms and BSjjms. Thus, this situation must be taken into consideration in
order to determine the correct values of FSjns and BSjjms regarding to the required
setup operations. The sets of constraints (3.20) and (3.26) have been developed
within this context in order to properly determine the required setup operations for all
models in any workstation according to the task assignments. Table 3.4 represents

the tasks assignments for the numerical example. Since, processing times of tasks 1,
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7, and 10 have been considered as zero for model B. There are some conditions that
the setup operations and their sequences differ due to the model type in any
workstations. Hence, tasks have been assigned to the workstations by considering
both model types. Moreover, tasks are performed according to the given sequences
in Table 3.4, where, these sequences have been outlined from the decision variable

Wijs-

Table 3.4 Task assignments of the numerical example

Task Sequence
Workstation Tasks

Model A Model B
1 1,2 1,2 2
2 8 8 8
3 4 4 4
4 539 53,9 53,9
5 10,6 10,6 6
6 7 7 -
7 11 11 11

Also, considering the task performing sequences in Table 3.4, the setup operations
have been derived for all models in all workstation as illustrated in Table 3.5.

Table 3.5 Setup operations of the numerical example

Forward Setup Operations Backward Setup Operations
Model A Model B Model A Model B
Workstation
Tasks Tasks Tasks Tasks
From To From To From To From To
1 1 2 - 2 1 2 2
2 - - 8 8
3 - - 4 4 4 4
5 3 5 3
4 9 5 9 5
3 9 3 9
5 10 6 - 6 10 6 6
6 - - 7 7 -
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As pointed out in Table 3.5, each workstation contains exactly one backward
setup operation for each model if a workstation contains at least one task for each

model.

3.4 Computational Experiments

In order to evaluate the performance of the proposed MILP model a set of
benchmark problems have been used. Some of the problems (problems 1-4) have
been taken from the literature and some of them (problems 5-10) have been
generated randomly. Problems 1-4 were used originally by Vilarinho & Simaria
(2002) and Akpinar & Bayhan (2011). For the other 6 problems, precedence relations
were taken from the existing literature as presented in Table 3.6, and task processing
times and setup times were generated randomly. The main characteristics of the test
problems are given in Table 3.6 where, N, M, and C denote the number of tasks of
the combined precedence diagram, the number of models, and the cycle time of the
assembly line, respectively. All problems were enriched by adding sequences

dependent setup times between tasks.

Table 3.6 Main characteristics of the test problems

Pro’\kl)cl)em N M C Precedence Relations Pr(:\llocl)em N M C Precedence Relations
Ponnambalam et al.
1 8 2 10 B 6 12 3 10
owman (1999)
Simaria & Vilarinho
2 1 B 7 14 2 1
8 3 10 owman 0 (2009)
Simaria & Vilarinho
3 11 2 10 Gokcen & Erel 8 14 3 10 (2009)
4 11 3 10 Gokcen & Erel 9 15 2 10 Buckhinetal. (2002)
5 12 2 10 Ponnaragg;" etal. 10 15 3 10 Buckhinetal. (2002)

N: Number of tasks; M: number of models; C: Cycle time

As mentioned in Scholl et al. (2011), setup times have been generated in two
types: forward and backward setups. Where, both forward and backward setup times
have been generated according to a uniform discrete distribution UJ[0,0.5 X

(min T;)] (Andrés et al., 2008). Moreover, to fulfill the triangle inequality mentioned
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by Scholl et al. (2011) Equation 3.31 have been considered in setup times

generations.

ijh € {1,..,N}  (331)

Moreover, considering any task may be a single element of a workstation, the

following pre-condition have to be satisfied for all tasks.

T, + BST; < C i€f{l,.., N} (3.32)

The proposed MILP model has been coded in IBM ILOG CPLEX 12.1.0. We
have attempted to solve the test problems on Core(TM) i7-3820 CPU 3.60GHz
personal computer and the run time has been limited up to 5 hours for each problem.

The computational results are given in Table 3.7.

Table 3.7 Summary of the computational results on test problems

Problem Obijective Value

No Optimum Feasible NV NBY NC Py

1 5 - 6930 2656 17576 46.49
2 9 - 9882 3688 22640 1.73

3 8 - 17778 6820 49478 114.36
4 7 - 25533 9493 62634 643.17
5 9 - 23018 8832 65928 266.20
6 10 - 33110 12300 83004 240.96
7 10 - 36402 13972 110096 5622.37
8 11 - 52488 19474 137256 4810.45
9 No feasible solution 44702 17160 138735 -

10 No feasible solution 64517 23925 172110 -

NV: Number of Variables; NBV: Number of Binary Variables; NC: Number of Constraints; CPU: Computational Time

As it can be seen from Table 3.7, the proposed MILP model found optimal
solutions for problems 1-8, however it was not able to solve problems 9 and 10 to

optimality. From these computational results we can conclude that our MILP is able
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to solve up to 14 tasks instances to optimality. Furthermore, the computational times
of finding the optimal solutions depend on the number of variables and the number

of constraints as well as the problem data (Table 3.7).

3.5 Chapter Conclusions

In this chapter we aimed at developing a mixed-integer linear programming model
for type-l mixed-model assembly line balancing problem enriched with the
sequences dependent setup times between tasks for the first time. The MILP provides
us the formally formulation of MMALBPS-I. Moreover, our MILP can solve the
problem with and without sequence dependent setup times, parallel workstation
assignments, and zoning constraints. Since, the SALBP-I is a special case of
MMALBP-I, our MILP is able to solve SALBP-1 with and without the
aforementioned characteristics. Thus, we can conclude that our MILP is a general

model for some of the assembly line balancing problems.

Due to the complex nature of the model, it is not able to solve optimality as the
problem size increased. For that reason, meta-heuristic approaches were developed in
order to tackle the problem and the developed algorithms are explained in the

following chapters in details.



CHAPTER FOUR
HYBRID ANT COLONY OPTIMIZATION-GENETIC ALGORITHM FOR
MMALBPS-I

4.1 Chapter Introduction

Current markets are characterized as consumer-centric resulted in a growing trend
for higher product variability. As a result of this, high-mix/low-volume
manufacturing strategies substitute for low-mix/high-volume manufacturing
strategies. Single-model assembly lines, which are the most suited production
systems for low variety demand scenarios, are not able to respond the requirements
of this new type of manufacturing strategies anymore. Therefore, manufacturers
prefer producing one model with different features or several models on a single
assembly line (mixed-model assembly line, which was handled by Thomopoulos
(1967) for the first time in the literature) in order to avoid the high cost to build and
maintain an assembly line for each model. In the relevant literature several
approaches have been presented to cope with MMALBP-I. These approaches can be
divided into three groups: mathematical programming, heuristics/meta-heuristics and
hybrid approaches. Besides assembly line balancing problems, hybrid algorithms
were used for solving several combinatorial optimization problems and usually
developed by integrating meta-heuristics with problem specific heuristic algorithms
or meta-heuristics with meta-heuristics. On the other hand, hybrid algorithms have
showed their ability to provide local optima of high quality. For more comprehensive
reviews on hybrid meta-heuristics the reader can refer to the papers of Preux & Talbi
(1999), Talbi (2002), Raidl (2006) and Blum et al. (2011). In this study, we attempt
to hybridize ACO (Dorigo et al., 1991; Dorigo et al., 1996; Dorigo & Gambardella,
1996; Dorigo & Gambardella, 1997; Dorigo et al., 1999; Stitzle & Dorigo, 1999)
with GA (Holland, 1975; Goldberg, 1989) in parallel (operation parallelization),
which belongs to the class of parallel hybrid meta-heuristics (Crainic & Toulouse,
2003). These algorithms are sufficiently complex to provide powerful adaptive
search approaches, and usually can be embedded with other approaches to speed up

the search performance (Lee et al., 2008). The rationale why we attempt to hybridize

41



42

ACO with GA is to exploit the complementary character of different optimization
strategies, that is, hybrids are believed to benefit from synergy (Blum et al., 2011).
Viz, our proposed hybrid algorithm integrates the positive feedback mechanism and
the satisfactory performance of ACO with the faster speed of GA. Thus, the proposed
hybrid ACO-GA algorithm attempt to overcome the slower speed of ACO and the
poor searching capability of GA, especially for large sized problems, by embedding
GA into ACO as a local search. Furthermore, ACO-GA utilizes the synergy of GA

as an improvement procedure and ACO as a constructive procedure.

The rest of this chapter  is organized as follows. The proposed hybrid ACO-GA
algorithm is defined in Section 4.2. Comparative study is given in Section 4.3.

Finally, the discussions and conclusions are presented in Section 4.4.

4.2 The proposed Hybrid ACO-GA Algorithm

The procedure of the proposed ACO-GA algorithm applies selection procedure,
measurement of solution qualities, genetic algorithm, and pheromone evaporation
and release strategies respectively for MMALBPS-I. The proposed hybrid ACO-GA
algorithm is depicted in Figure 4.1. The algorithm starts by generating a pre-defined
number of solutions by the task selection strategy and each solution turned as a
chromosome. After that, the solution quality measures are determined. At this point,
the obtained set of chromosomes is set as the initial population of GA and the
solution qualities are set as their fitness values. Selection, crossover and mutation
operators are applied to produce new chromosomes (offspring chromosomes).
According to their fitness values, a strategy called elitism survives the best fit
chromosomes to next generation. After a predefined termination criterion is met, the
final generation releases a certain amount of pheromone. The hybrid ACO-GA
algorithm repeats itself until a pre-specified number of iterations reached. All the
operators used in the proposed ACO-GA algorithm are introduced in the following

sub-sections in detailed.

“ The work presented in this chapter is published in Akpmar et al.(2013)
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4.2.1 Task Selection Strategy

The probability of a task being selected, from the set of available tasks, is a
function of: (1) the pheromone trail intensity between the previously selected task
and each available task and (2) the information provided by the heuristic for each
available task. This information is a priority rule that is assigned to each ant when the
respective sub-colony is generated. The procedure uses some common static priority
rules for the ALBP:

‘Maximum positional weight’,
‘Maximum processing time’ (for all models),

‘Maximum average processing time’,

YV V VYV V

‘Maximum number of direct successors’ and

> ‘Maximum number of successor’.

In the current study the maximum weighted average processing time is used as the

heuristic information due to the mixed-model nature of the problem.

The executed task selection rule (Vilarinho & Simaria, 2006) uses a random
number r between 0 and 1 and three user defined parameters r, , and r3 such that

0<mn,mnrs<landr +r, +r; = 1. Therule is given by:

(], = arg%ax{[r(i,j)]a X [nj]ﬁ} if r<r (explo.)
JEA;
a B
J <]2:p(i,]2) = [ ("]2)] a[nh] 7 if n<r<mr+r, (bia. exp.) (41
Sjear ([ran]” x [nj] )
\J5: random selection of j € A ifrn+n<r<rn+n+nrn

where 7(; jyis the pheromone trail intensity in the path ‘selecting task j after selecting
task i, n; is the heuristic information of task j (e.g. the priority rule value for task j),
A7 is the set of available tasks for ant n after the selection of task i, and « and f are
parameters that determine the relative importance of pheromone intensity versus

heuristic information.
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The selection of a task from the set of available tasks is performed by one of three

strategies:

> Exploitation selects the best task according to the values of [z, 5] x [n;]°

> Biased exploration selects a task according to a probability of p; ;) as given by

Jo.

» Random selection selects one task at random from the set of available tasks.

4.2.2 Solution Quality Measure

Finding the fittest solution after a predefined number of generations is the main
purpose of the proposed hybrid ACO-GA. Therefore, the algorithm has to use an
objective function which measures each solution’s quality. The objective function
(Vilarinho & Simaria, 2002) (Equation 4.2) is used by ACO-GA consists of three
terms. The first term aims at minimizing the total number of workstations by
minimizing the index of the workstation to which the last task is assigned, while, the
second term balances the workload between the workstations, and the third term
balances the workload within each workstation.

S , M s’ 2
s
minZ = ket 5ot ) dn Y () +
k=1 S _1m=1 k=1 Zl—lslm
M S s 1\?
eI G ) “+2)
S,(M - 1) Sk M
k=1m=1

where S is the work station index that the last task is assigned, S’ is the total number
of workstations including replicas, X;; is 1 if task i assigned to workstation k is O
otherwise, M is the number of models assembled in the line, s;,, is the idle time of
workstation k due to model m, q,,, is the overall proportion of the number of units of

model m being assembled and S is the total proportional idle time of workstation k.
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4.2.3 Genetic Algorithm

In this study, we use GA (similar to Akpinar & Bayhan, 2011) embedded into
ACO as local search, by which we aim at improving the search capability of the
proposed algorithm. GA is executed before pheromone release phase; hence obtained
solutions release a certain amount of pheromone after GA refinement. For that reason

we used an elitist strategy in GA while forming the next generations.

4.2.3.1 Roulette Wheel Selection

The proposed algorithm selects individuals for mating by using the best known
selection strategy Roulette wheel (Holland, 1975), also known as fitness
proportionate selection. Roulette wheel scales the fitness values of the members
within the population as the total rescaled fitness values equals to 1. First, a uniform
random number within the interval (0, 1) is generated (wheel is spun), and then the
individual whose cumulative rescaled fitness value is greater than the generated
number is selected as parent. The steps of the used roulette wheel selection strategy

can be summarized in below:

I.  Sum the fitness values of all the population members. Call this Fsyn.

Il. Divide the fitness values of all population members by Fgmn in order to

calculate expected values of each individual in the population.
1. Generate a uniform random number, Rs, between 0 and 1.

IV. Loop through the individuals in the population, summing the expected values,
until the sum is greater than or equal to Rs. The individual whose expected

value puts the sum over this limit is the one selected.

4.2.3.2 Two Point Crossover

In this study a two point crossover (Leu et al., 1994) which is particular to

assembly line balancing problem is used. The classical two point crossover cuts
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mated parents into three parts (head (H), middle (M) and tail (T)), by determining the
cut points randomly. Offspring are created by swapping the middle parts of the
parent chromosomes, i.e., parent-1, represented by H;M;T;, recombines with parent-
2, represented by H,M,T», in order to form the new children HM,T; and HoMT». In
the assembly line balancing problem the situation is not so simple because of the
precedence relations between tasks, which may result in feasibility problem. For that
reason recombination must guarantee feasibility. The special two point crossover is
applied as shown in Figure 4 which guarantees generating feasible individuals
according to the precedence relations. Thus, the resulting offspring are always

feasible.
Head P1 Middle P1 Tail P1
Parentl: 1 2 4 5 3 8 9 6 7 | 10 | 11
Head P2 Middle P2 Tail P2
Parent2: 1| 4 6 9 | s | 10] 1
Head O1 Middle O1 Tail O1
Offspringl: 1|2 B4 odRolkall 7 | 10| 11
Head O2 Middle O2 Tail 02

Figure 4.2 Recombination: Two point crossover

The first offspring keeps the head and the tail parts of the first parent. The middle
part of the first offspring is filled in by adding the all missing tasks in the order in
which they are contained in the second parent. The other offspring is built
analogously based on the head and the tail parts of the second parent and its middle
part is filled in by adding the missing tasks in the order in which they are contained
in the first parent. Both of the generated offsprings become feasible as their middle
part is also filled according to the precedence feasible order. The purpose of the two-
point crossover is to conduct a neighborhood search; this is done by keeping the head
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and tail of each child the same as its parent. The child should be “close” in fitness to

its parents because only its middle genes have changed (Leu et al., 1994).

4.2.3.3 Scramble Mutation

Similar to recombination, mutation must also guarantee the feasibility because of
the precedence relations. In this study, we also used a special mutation operator
named as scramble mutation (Leu et al., 1994). First, a random point is selected for
determining where the mutation will occur. After that, the head of the chosen parent
is set as the head of the mutated offspring. Then, the mutation operator reconstructs
the tail of the new child by using the procedure explained below. This procedure uses

prohibit table (see Figure 4.3), and also guarantees the feasibility.

Can Not
Task Can Not Precede Task
Precede Can Not
Task  Can Not Precede  Task
11  1,2,3,4,56,7,8,9,10 3 1,2 Precede
10 1,2,3,4,56,7,8,9 2 1 11 6,7,8,9, 10 7
6 1,23 5 4 10 6,7,8,9 8
7 1,2,3 1 6 - 9
8 4,5 4 b. Modified prohibit table
9 4,5
a. Original prohibit table
Task Can Not Precede
11 10
10
c. Final prohibit table

Figure 4.3 Steps of the prohibit table

This procedure is performed by removing all references to head tasks in the
prohibit table, and then randomly choosing a task from those in the table with no
predecessor requirements. This new task is then added to the next locus in the
chromosome and is removed from the prohibit table. The process continues until all

tasks are assigned.
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For example, consider parent (1-2-4-5-3-6-7-8-9-10-11) in Figure 4.4 and assume
the mutation point is chosen to be after task 3. Then the head of the child will be 1-2-
4-5-3. The rest of the child will consist of tasks 6, 7, 8, 9, 10, and 11, placed in
random order, but in such a manner as not to violate precedence constraints. If the
original prohibit table is as shown in Figure 4.3-a, then the prohibit table with all
references to tasks in the head of the child will be as shown in Figure 4.3-b. Only
tasks 6, 7, 8, and 9 can be selected to follow task 3 since they alone have no “cannot
precede” tasks in the modified prohibit table; assume they are chosen randomly in
the order 9, 7, 8, 6. Then the final prohibit table (with these deleted tasks) becomes
as in Figure 4.3-c. Therefore, task 10 must be selected next, and 11 must be chosen
last. The new child chosen with scramble mutation is 1-2-4-5-3-9-7-8-6-10-11 (see
Figure 4.4).

Parent’s Head Parent’s Tail

Parent: 1 12|45 |3 67" BB RBIOEIL

Offspring’s Head Offspring’s Tail

Offspring: | 1 [ 2 |4 | 5| 3 FolR7 83 ¥6 B0g11

Figure 4.4 Scramble mutation

The purpose of mutation, unlike that of recombination (crossover), is to get out of
a local search neighborhood and thus avoid the possibility of being trapped in a local
optimum. Therefore, the goal of mutation is to change dramatically the order of the
genes on the chromosome; scramble mutation does this. With scramble mutation
only the head of the parent is maintained and the tail is reconstructed randomly in a

manner that ensures feasibility (Leu et al., 1994).

4.2.3.4 Fitness Evaluation

The objective function as given by Equation 4.2 (see Section 4.2.2) is used also in

the GA as fitness function.
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4.2.3.5 New Generation

After each generation GA must decide with a replacement strategy which
individuals are survived to next generation and which are not. The replacement
strategy takes into account the fitness value of the individuals while selecting the
survived individuals, who may be individuals from the current generation, offspring
products of crossover or individuals who underwent mutation. In this study, the best
fit individual is always survived to next generation and the other individuals are
selected from the best fit offspring products of crossover and mutation. Until a
predefined termination criterion met GA repeats itself and dispatches the last

generation to ACO.
4.2.4 Pheromone Release Strategy

The pheromone release strategy is based on the one used by Dorigo et al. (1996).
At the end of each sub-colony’s iteration, all balancing solutions provided by the ants
have their objective function values computed. It is at this point that the pheromone
trail intensity is updated. First, a portion of the existing pheromone value is

evaporated in all paths, according to:
T — (L= p)1e ) (4.3)

where p is the evaporation coefficient (0 < p < 1). Then, each ant n releases an
amount of pheromone in the paths used to build the task sequence, according to the

corresponding balancing solution quality. This amount of pheromone is given by:

1/Z' if in the solution built by ant n task j is performed
At(j) = immediately after task i (4.4)
0, otherwise

where Z is the objective function value for the obtained solution. The overall

pheromone update effect of all ants in each path (i, j) is then:
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N
i < =PIz + Z ATy ) (4.5)
n=1

At the beginning of the procedure, an initial amount of pheromone (z,) is released in

every path.
4.3 Computational Experience

The concept of sequence dependent setup times is an actual framework in
assembly line balancing problems (ALBP). For that reason, there is no standard set
of benchmark instances with setup times available for testing in assembly line
balancing literature except the Andrés et al.’s (2008) benchmark set, which covers
simple version of ALBP, however, we deal with mixed-model version of ALBP in
this study. For doing the comparison we construct a set of test problems based on
type-I MMALB problems used by Akpmar & Bayhan (2011). The main
characteristics of the test problems are exhibited in Table 4.1 where N, M, and C
denote the number of tasks of the combined precedence diagram, the number of
models, and cycle time of the assembly line, respectively. As in the study of Akpinar
& Bayhan (2011), we also classified the test problems as small-size (problems 1-4),
medium-size (problems 5-14), and large-size (problems 15-20) according to the

number of tasks they include.

Table 4.1 Main characteristics of the test problems

ProblemNo N M C Problem Name ProblemNo N M C Problem Name

1 8 2 10 o 11 30 2 10
g Bowman N Sawyer
& 2 8 3 10 2 12 30 3 10
E 3 1 2 10 & 13 32 2 10
& Gokeen & Erel S Lutz1

4 11 3 10 14 32 3 10

5 21 2 10 : 15 35 2 10
. 6 =1 INao Mitchel ) 16 35 3 10 Gunther
@ 7 25 2 10 Vilarinho & & 17 45 2 10
€ o b Kilbri W
S 8 25 3 10 Simaria & 18 45 3 10 NilPridge & Wester
> 9 28 2 10 - 19 70 2 10

Heskiaoff T
10 28 3 10 ESK180 20 70 3 10 onge

N: Number of tasks; M: number of models; C: Cycle time
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For each test problem, the original precedence network and operation times
remained the same and the following levels of setup time variability were also
considered:

» For low variability, the matrix of setup times was generated randomly

according to a uniform discrete distribution U[0, 0.25*(min T;)].

» For medium variability, the matrix of setup times was generated randomly

according to a uniform discrete distribution U[0, 0.5*(min T;)].

» For high variability, the matrix of setup times was generated randomly
according to a uniform discrete distribution U[0, 0.75*(min T;)].

As a result the constructed benchmark set contains 60 instances in three
categories, low, medium and high variability of setup times, each contains 20
problems having the same number of tasks, precedence diagrams and task times.

In order to evaluate the performance of the proposed hybrid ACO-GA algorithm it
is required a lower for the number of workstations with sequence dependent setup
times between tasks. The fallowing sub-section explains the proposed lower bound,
which is a combination of Vilarinho & Simaria’s (2002) and Andrés et al.’s (2008)

(see the corrigendum to this paper provided by Pastor et al.(2010)) lower bounds.

4.3.1 A Lower Bound for the Number of Workstations with Setup Times

The problem on hand has the characteristics of workstation parallelization and
sequence dependent setup times between tasks. Vilarinho & Simaria (2002) proposed
a lower bound in case of workstation parallelization for mixed-model lines and
Andreés et al.’s (2008) proposed another lower bound for single-model lines in case
of sequence dependent setup times between tasks. Both procedures aimed at finding
a lower bound value for the number of workstations. Due to the mixed-model nature
of the problem on hand, we modified Andrés et al.’s (2008) procedure and combined
with Vilarinho & Simaria’s (2002) procedure in order to handle the problem

characteristics on hand.



53

The proposed procedure for the lower bound, LBymix, Was derived by using the

following set of assumptions.

» The maximum number of replicas of per workstation is set as 2.

» A workstation can be duplicated only if the task time of one of the tasks

assigned to it exceeds the cycle time for at least one of the models.
» The task time of the longest task does not exceed twice the cycle time (C).

» Setup times between the tasks vary from one model to another.

The steps required to compute LBpmix are described as follows.

Step-1 For each model, classify the tasks according to the corresponding task time,
as shown in Table 4.2 and go to Step 2.
Step-2 For each model, compute LB'(m) and go to Step 3.

1
2(ng +ng +n¢) +y(np —n¢) +§W(n5 —ng) +

5 4 2 1
§Tlp +§nG +§TlH +§n,

LB'(m) = (4.6)

where y equals 1 if n, —n, > 0 or zero otherwise and w equals 1 if

ng —ng > 0 or zero otherwise.

Table 4.2 Classification of the tasks to compute LBpmix

Task Type Task Time Task Type Task Time
5 5

A §C<TAS2C F TF=§C
4 5 4

B - Ty < — G T.-==C
3¢ <Ts=3C 673
4 2

C C<T,<=C H Ty ==C
Sle=3 H™3
2 1
1 2 1

3 3




Step-3

Z(m) =

Step-4 For each model, compute LBgmix(m) = LB' + Z(m) and go to Step 5.

For each model, compute Z(m) and go to Step 4.

;Ti — (LB’(m)C — Z Ti>]/C]

i#]
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(4.7)

Step-5 /* M is the number of different models, SUT(m) is the sum of the k lowest setup times

Step-6

between the N tasks due to model m */

for (m=1to M) do
Set kontrol(m) = 0 and,
k(m) =1,
while (kontrol(m) == 0) do
Set LB i (M) = LBy (m) + ™ and,
qm = N — LB, (m) + 1,
if (k(m) = q(m))
Set kontrol(m) = 1 and,
LBpmix(m) = (ceil)LB{,‘mix(m),
else
k(m)=k(m) +1
endif
endwhile

endfor. Then go to Step 6.

Select LB,y for the problem. LBy, = max,, [LBymix(M)].

Table 4.3 indicates the lower bound values for the number of workstations

determined by the proposed procedure for all the test problems with low, medium

and high variability of setup times between tasks. On the other hand this lower bound

computation is also important for the determination of initial pheromone level t,.

For small, medium and large sized problem classes the initial pheromone levels are

calculated by using the related lower bound values.
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Table 4.3 Lower bound values for the test problems

Lower Bound (LBpmix) Lower Bound (LBpmix)

Prob.

Prob.

=

No Low Medium High No Low Medium High
Variability ~ Variability  Variability Variability  Variability  Variability

1 5 5 5 11 14 14 14
2 6 6 6 12 16 16 16
3 8 8 8 13 17 17 17
4 7 7 7 14 18 18 18
5 15 15 15 15 20 20 20
6 14 14 14 16 21 21 21
7 15 15 15 17 23 23 23
8 14 14 14 18 24 24 24
9 19 19 19 19 39 39 39
10 18 18 18 20 40 40 40

4.3.2 Computational Results

All the algorithms GA, hGA (Akpinar & Bayhan, 2011), ACO and hybrid ACO-
GA were coded in C++, and the solutions of the test problems were obtained by
running the algorithms on Intel (R) Core 2 Duo CPU T7300 (2.0 GHz). The
parameter sets used for GA, hGA and ACO are given in Table 4.4 and the parameter
set used for proposed hybrid ACO-GA algorithm presented in Table 4.5. These
parameters were chosen experimentally for getting a satisfactory performance in an

acceptable time span.

Table 4.4 Parameter sets for ACO, GA and hGA

Ant Colony Optimization Genetic Algorithm, hGA
7o 4 o )i 5 I I3 Nsc Nan | Ps Rc R N,
1-4(Small) 7 015 025 125 06 03 01 200 20 20 05 0.15 200

5-14(Medium) 16 015 025 125 06 03 01 200 50 50 0.5 0.15 200
15-20(Large) 28 015 025 125 06 03 01 200 100 100 05 0.15 200

7o: Initial pheromone level; p: evaporation coefficient; a and #: determine the relative importance of
pheromone intensity versus heuristic information; r, r, and r3: user defined parameters for task selection
strategy; Nsc: Number of sub-colonies; Naa: Number of artificial ants in each sub-colony; Ps: Size of the

population; R¢: Crossover rate; Ry: Mutation Rate; N;: Number of iterations

Problem

According to Dorigo & Gambardella (1997), a rough approximation of the
optimal value of the objective function is a reasonable value for z. In the current
study, since the average lower bound values for cycle times are approximately equal
to 7, 16 and 28 for small, medium and large sized problem classes, we set the initial
pheromone levels (zp) to 7, 16 and 28 for small, medium and large sized problems,

respectively. The other parameters, except the number of ants (Naa) in each sub
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colony, have the same values for all test problems. Naa indicates the number of
different solutions which must be evaluated at each iteration by ACO, thus it have to
be well proportioned to the solution space size in order to satisfy algorithm’s
diversification. The higher values of Naa may the algorithm cause redundant
computational effort while the lower values may the algorithm cause insufficient
diversification. Hence, Naa should have different values for the different sized
problems. Since Naa is a parameter related with the search space size of a problem,
we set Naa as 10, 25 and 50 for small sized, medium sized and large sized problems,
respectively.

Table 4.5 Parameter set for hybrid ACO-GA

Ant Colony Optimization Genetic Algorithm, hGA
T P a B r r fr3. Nsc  Naa Ps Re Ru N
1-4(Small) 7 015 025 125 06 03 01 100 20 20 05 015 50

5-14(Medium) 16 015 025 125 06 03 01 100 50 50 05 015 50
15-20(Large) 28 015 025 125 06 03 01 100 100 | 100 05 0.15 50

Problem

The test problems were solved using GA, hGA, ACO and the proposed hybrid
ACO-GA and the minimum, maximum and average values of the solutions, for each
of the test problems shown in Tables 4.5 and 4.6, results from ten runs of each
instance of the problem. We conduct a comparison between GA, hGA, ACO and
ACO-GA in terms of determined number of workstations (Nws) and computational
time (CPU). As it can be seen from Tables 4.5 and 4.6, ACO outperforms both hGA
and GA for medium and large sized problems in case of low, medium and high
variability of setups, while hGA outperforms pure GA. On the other hand ACO-GA
outperforms ACO, GA and hGA for medium and large sized problems. It must be
noted that as the problem size get larger the performance of ACO increase
significantly in comparison with GA and hGA. From the observations of Tables 4.5
and 4.6, it is found that the performance of hGA is superior to GA in 18.33% (11 of
60 problems), the performance of ACO superior to GA in 41.67% (25 of 60
problems) and hGA in 36.67% (22 of 60 problems), and the performance of ACO-
GA superior to ACO in 21.67% (13 of 60 problems), GA in 46.67% (28 of 60
problems) and hGA in 41.67% (25 of 60 problems) of the test problems. However, it
is clear that ACO has slower speed in comparison of GA, hGA and ACO-GA.



Table 4.5 Computational results of GA versus ACO

Low Variability of Setup Times

Medium Variability of Setup Times

High Variability of Setup Times

Problem GA ACO GA ACO GA ACO
No Nws Nws Nws Nws Nus Nws
- CPU - CPU - CPU - CPU : CPU - CPU
Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max
o 1 5 5 5 012 5 5 5 019 5 5 5 012 5 5 5 016 5 5 5 013 5 5 5 0.15
& 2 9 9 9 014 9 9 9 021 10 10 10 014 10 10 10 021 10 10 10 014 10 10 10 0.20
(=§ 3 8 8 8 014 8 8 8 0.22 8 0.15 025 8 8 8 0.16 0.23
P g 7 7 7 014 7 7 7 0.23 0.14 026 7 7 0.15 0.24
5 17 17 17 044 17 17 17 100 17 17 17 044 17 17 17 096 19.7 19 20 058 19 19 19 1.07
6 16 16 16 044 16 16 16 090 178 17 18 024 17 17 17 0.98 182 18 19 052 18 18 18 0.99
7 17 17 17 043 17 17 17 141 18 18 18 052 18 18 18 128 19 19 19 055 188 18 19 1.35
5 8 16 16 16 056 16 16 16 131 16 16 16 055 16 16 16 129 19 19 19 055 19 19 19 1.37
UE’ 9 229 22 23 070 22 22 22 29 239 23 24 070 23 23 23 300 241 24 25 071 24 24 24 3.03
S 10 212 21 22 080 205 20 21 296 224 22 23 083 21 21 21 307 23 23 23 081 21 21 21 3.27
§ 11 18 18 18 056 17 17 17 140 195 19 20 0.60 18 18 18 148 205 20 21 062 19 19 19 1.49
12 215 21 22 060 21 21 21 142 23 23 23 065 227 22 23 142 243 24 25 065 24 24 24 1.43
13 21 21 21 062 21 21 21 175 22 22 22 062 22 22 22 173 23 23 23 064 23 23 23 1.74
14 214 21 22 065 21 21 21 175 23 23 23 066 23 23 23 183 26 26 26 077 26 26 26 1.88
15 263 26 27 144 251 25 26 435 282 28 29 144 215 21 28 455 291 29 30 152 28 28 28 483
» 16 26 26 26 140 26 26 26 459 28 28 28 144 2716 27 28 473 29 29 29 165 28 28 28 4.82
.UE) 17 282 28 29 190 26 26 26 910 301 29 31 201 28 28 28 913 315 31 32 230 30 30 30 9.64
;‘j’ 18 312 31 32 216 29 29 29 942 329 32 33 217 31 31 31 998 342 34 3B 222 33 33 33 1012
- 19 52 51 53 389 47 47 47 2125 56 55 57 376 511 51 52 2250 57.3 57 58 388 51 51 51 2455
20 528 52 53 389 48 48 48 21.67 56.4 56 57 393 52 52 52 22.17 58.8 58 59 400 56 56 56 2348

Nws: Number of workstations; CPU: Computational time

LS



Table 4.6 Computational results of hGA versus hybrid ACO-GA

Low Variability of Setup Times

Medium Variability of Setup Times

High Variability of Setup Times

Problem hGA ACO-GA hGA ACO-GA hGA ACO-GA
No Nus Nws Nws Nws Nws Nws

- CPU - CPU - CPU - CPU - CPU - CPU

Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max
w 1 5 5 5 032 5 5 5 0.05 5 5 5 033 5 5 5 0.06 5 5 5 033 5 5 5 0.04
@ 2 9 9 9 034 9 9 9 0.07 10 10 10 035 10 10 10 007 10 10 10 034 10 10 10 0.06
‘=§ 3 8 8 8 035 8 8 8 0.08 8 0.37 0.08 8 8 0.36 0.08
Py 7 7 7 036 7 7 7 0.09 7 0.34 0.09 7 7 0.35 0.09
5 17 17 17 074 17 17 17 052 17 17 17 072 17 17 17 054 194 19 20 078 19 19 19 057
6 16 16 16 076 16 16 16 054 172 17 18 074 17 17 17 054 18 18 18 072 18 18 18 0.55
7 17 17 17 073 17 17 17 068 18 18 18 082 18 18 18 0.73 187 18 19 085 184 18 19 0.76
g 8 16 16 16 078 16 16 16 075 16 16 16 085 16 16 16 081 19 19 19 085 186 18 19 0.81
2 9 224 22 23 092 22 22 22 166 235 23 24 103 23 23 23 170 24 24 24 101 238 23 24 177
é 10 21 21 21 102 201 20 21 169 222 22 23 113 21 21 21 18 22 22 22 114 212 21 21 179
= 11 18 18 18 076 17 17 17 078 19 19 19 092 18 18 18 080 20 20 20 093 19 19 19 0.78
12 212 21 22 080 21 21 21 083 23 23 23 09 221 22 23 08 242 24 25 097 24 24 24 0.86
13 21 21 21 092 21 21 21 090 22 22 22 097 22 22 22 106 23 23 23 100 23 23 23 098
14 213 21 22 09 21 21 21 100 23 23 23 09% 23 23 23 110 26 26 26 103 26 26 26 107
15 26 26 26 174 25 25 25 273 28 28 28 175 27 21 27 295 29 29 29 182 28 28 28 292
o 16 26 26 26 180 257 25 26 294 28 28 28 181 27 27 27 302 29 29 29 183 28 28 28 3.02
5> 17 28 28 28 215 26 26 26 513 298 29 30 221 28 28 28 545 305 30 31 250 296 29 30 583
;‘j’ 18 31 30 32 227 286 28 29 565 323 32 33 227 303 30 31 564 332 33 34 252 323 32 33 577
- 19 52 50 53 489 467 46 47 1217 55 54 56 473 508 50 51 1265 553 55 56 483 507 50 51 1298
20 52 50 53 491 477 47 48 1265 55 54 56 492 515 51 52 1322 57.8 57 58 494 55 55 55 1376

Nws: Number of workstations; CPU: Computational time

89
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As a summary of Tables 4.5 and 4.6, we formed Table 4.7 in order to make the
comparison for ACO, GA, hGA and hybrid ACO-GA more clearly in terms of gaps
for the obtained minimum number of workstations. The criterion of gap is
meaningful, if we consider the high cost to build and maintain an assembly line. Less
workstation means less equipment to purchase, payoff and maintain. This cost affect
also indicates the superior performance of ACO-GA to ACO GA and hGA.

Table 4.7 Comparison of GA, ACO, hGA and hybrid ACO-GA

Small Size Medium Size Large Size
Problem No
123 456 7 89 10 11 12 13 14 15 16 17 18 19 20
ACO
GA - - - - - - - -1 1 - - - 1 - 2 2 4 4
ACO-GA
bGA---------ll---112355
= ACO-GA
.-‘EACO---------------l-lll
S GA ... . 00
2 hGA
- ACO
A - - T - - -1 1 - - -1 - 2 1 32
ACO-GA
eA . T Tttt - - -1 1 - - - 1 1 2 2 43
ACO
GA - - T ot - - -1 1.1 - - 1 1 1 1 4 4
ACO-GA
EGA""""'lll"111255
S T ACO-GA
L B ACO =~ -~ - - - o osos s s s - - - T
< >
(DE GA __________________12
= hGA
8Aco
HGA i 4| 4 1 1 1 1 3 2
ACO-GA
A T Tttt o- - -1 1.1 - - 111 2 43
ACO
GA - - T - - -1--2 1 - - - 1111 6 2
ACO-GA
> oA - - - - - -111 2 1 - - - 1 1 2 2 7 3
S ACO-GA
§ ACO T T Tt - - - - - - 1111
> GA
ghGA------l--l------112l
ACO
A T T T Tt 11 - - - 11 - - 41
ACO-GA
HGA - - - --1711 1 - - - 1 1 1 1 5 2

From the above experimental results, we can claim that ACO and ACO-GA has

significantly good performance in comparison to GA and hGA. Hence, we analyzed
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the results obtained from ACO and ACO-GA in more detailed in Table 4.8, which
exhibits the results of the proposed hybrid ACO-GA and ACO for the 20 test
problems with low, medium and high variability of setup times in terms of minimum
number of workstations (Ny), the weighted line efficiency (WE), percentage
difference (D%) between the obtained number of workstations obtained by the
proposed hybrid algorithm and the LB values (LB,n;,). Percentage difference
between the minimum number of workstations and the LB value for a problem is

computed by Equation 4.8.

Nwsi - LBpmixi

LBpmixl-

D;(%) = x 100 i€{12,..,20} (4.8)

As pointed out in 6™, 9™ 12" 15" 18" and 21" columns of Table 4.8,where the
values of D% equal to zero for the problems 1, 3 and 4, thus, an optimal solution is
found for these three problems with low, medium and high variability of setup times
by both ACO and ACO. On the other hand, the worst performance is for problem 2,
where the difference between the solutions obtained and the lower bound is 50%,

67% and 67% for low, medium and high variability of setup times, respectively.

The formula of the weighted line efficiency is given by Equation 4.9, which takes
into account not only the task times but only the sequence dependent setup times
between tasks. Hence, the weighted line efficiency is computed by considering idle
times of the workstations instead of considering the tasks times. It is noted that
maximizing line efficiency is equivalent to minimizing the number of workstations

(Nys) for a given cycle time (C).

S NyoC— 35, Idle

WE = Z I ws s=1 sm (4.9)

N,,C
m=1

where q,, is the overall proportion of the number of units of model m being

assembled, Idle,, is the idle time of workstation S due to model m, Ny, is the

minimum value for the number of workstations obtained by the solution procedure.



Table 4.8 Performance evaluation of ACO and the hybrid ACO-GA

Low Variability of Setup Times Medium Variability of Setup Times High Variability of Setup Times
Problem ACO ACO-GA ACO ACO-GA ACO ACO-GA
No LBpmix LBpmix LBpmix
Nws WE D% Nws WE D% Nws WE D% Nws WE D% Nws WE D% Nws WE D%
1 5 5 71.9 0 5 71.9 0 5 5 75.9 0 5 75.9 0 5 5 77.8 0 5 77.8 0
-% 2 6 9 49.6 50 9 496 50 6 10 439 67 10 439 67 6 10 439 67 10 439 67
<=E6 3 8 8 64.2 0 8 64.2 0 8 8 65.2 0 8 65.2 0 8 8 66.0 0 8 66.0 0
@ g 7 7 78.6 0 7 786 0 7 7 8.2 0 7 8.2 0 7 7 84 0 7 84 0
5 15 17 69.4 13 17 69.4 13 15 17 70.3 13 17 703 13 15 19 636 27 19 636 27
6 14 16 77.0 14 16 770 14 14 17 73.9 21 17 739 21 14 18 703 29 18 703 29
7 15 17 73.9 13 17 73.9 13 15 18 709 20 18 709 20 15 18 711 20 18 711 20
@ 8 14 16 815 14 16 815 14 14 16 838 14 16 8338 14 14 19 699 36 18 744 29
§ 9 19 22 85.1 16 22 85.1 16 19 23 827 21 23 827 21 19 24 80.7 26 23 853 21
-_g 10 18 20 85.1 11 20 851 11 18 21 83.5 17 21 835 17 18 21 847 17 21 847 17
S u 14 17 862 21 17 862 21 14 18 841 29 18 841 29 14 19 801 36 19 801 36
12 16 21 81.0 31 21 81.0 31 16 22 772 38 22 772 38 16 24 714 50 24 714 50
13 17 21 73.2 24 21 73.2 24 17 22 708 29 22 708 29 17 23 688 35 23 688 35
14 18 21 768 17 21 768 17 18 23 711 28 23 711 28 18 26 627 44 26 627 44
15 20 25 796 25 25 796 25 20 27 751 35 27 751 35 20 28 739 40 28 739 40
16 21 26 81.3 24 25 849 19 21 27 81.2 29 27 812 29 21 28 788 33 28 788 33
-E 17 23 26 86.3 13 26  86.3 13 23 28 828 22 28 828 22 23 30 767 30 29 796 26
% 18 24 29 821 21 28 851 17 24 31 791 29 30 824 25 24 33 743 38 32 774 33
- 19 39 47 842 21 46 862 18 39 51 787 31 50 806 28 39 51 793 31 50 814 28
20 40 48 82.0 20 47 83.9 18 40 52 776 30 51 792 28 40 56 702 40 55 739 38

19
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The precedence and zoning constraints are not taken into account by the
calculation procedure of the lower bound. Therefore, the obtained results from the
proposed hybrid ACO-GA algorithm are fairly satisfactory. This conclusion is
reinforced by the values for the weighted line efficiency shown in 8" 15" and 22"
columns of Table 4.8.

In order to understand whether the differences in the obtained results are due to
the random chance or not, a paired t-test is executed on Minitab 15. After paired t-
test it is figured out that outputs (average values for 10 independent replications
represented in Tables 4.5 and 4.6) derived from GA, hGA, ACO and ACO-GA are
meaningfully different from each other. The results of paired t-test are presented in
Table 4.9. Based on the values from Table 4.9, it can be concluded that hybrid ACO-
GA produced better results than GA, hGA and ACO, and ACO produced better
results than both GA and hGA, and hGA produced better results than GA in general.

Table 4.9 p values obtained from the comparison of algorithms using paired t-test (a=0.05)

p Value
Low Variability Medium Variability High Variability
ACO
- 0.013 0.007 0.011
GA
hGA
- 0.007 0.007 0.005
GA
ACO
- 0.018 0.009 0.023
hGA
ACO-GA
- 0.010 0.004 0.006
GA
ACO-GA
- 0.016 0.011 0.015
ACO
ACO-GA
- 0.014 0.004 0.009
hGA

Considering the average computational (CPU) times, GA algorithm is faster than
hGA, ACO and hybrid ACO-GA, while the proposed hybrid ACO-GA is faster than
ACO. This situation may be explained by the fact that solution generation effort of
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the ACO in each iteration is much higher that GA, hGA and hybrid ACO-GA. On the
other hand, it must be noted that the computational time is also related to the used

parameter set.

This set of computational experiments shows that the overall performance of
ACO-GA is superior to ACO, GA and hGA, the overall performance of ACO is

superior to GA and hGA, and the overall performance of hGA is superior to GA.

4.4 Chapter Conclusions

In this chapter, we aimed at hybridizing ACO with GA in order to improve search
ability of ACO for solving mixed-model assembly line balancing problem with
sequence dependent setup times between tasks. In the proposed hybrid ACO-GA
algorithm, GA embedded into ACO. In order to evaluate the real performance of the
proposed hybrid ACO-GA algorithm, a set of 20 mixed-model assembly line
balancing problems with parallel workstations and zoning constraints was tested. As
to the scope of this study, this set of benchmark problems was differentiated by
adding sequence dependent setup times between tasks with low, medium and high
variability. Due to the lack of optimal solutions for the benchmark set with setups, a
procedure for determining lower bounds for the problem on hand was derived, for
evaluating the proposed hybrid ACO-GA algorithm in terms of number of
workstations. The performance of the proposed hybrid ACO-GA algorithm was also
compared with the performances of pure ACO, pure GA and hGA. Computational
results indicate that ACO-GA can improve search performance and outperforms
ACO, GA and hGA.



CHAPTER FIVE
A MULTIPLE COLONY HYBRID BEES ALGORITHM FOR MMALBPS-I

5.1 Chapter Introduction

The MMALBP-I is NP-hard (Bukchin & Rabinowitch, 2006), complex, and CPU
time-consuming (Battaia & Dolgui, 2012a). Thus, exhaustive search methods can not
to solve MMALBP-I within polynomially bounded computation times. The reader
can refer to Battaia & Dolgui (2012b) for a recent survey on solution approaches of

assembly line balancing problems.

Design issues of the meta-heuristic approaches are generally depending on nature
just because offering much broader wealth of inspiration. Social insects seem to be
more interesting than the other sources of inspiration in nature, since their
communication systems provides developing efficient solution procedures for
combinatorial optimization (Ozbakir et al., 2010). In fact, their behavior is attractive
not only individually but also in a population from the optimization point of view,
such that, some meta-heuristics approaches based on the simulation of this group
behavior. This class of meta-heuristic approaches is named as population-based or
swarm-based optimization algorithms and includes Ant Colony Optimization (ACO)
(Dorigo et al., 1991), Particle Swarm Optimization (PSO) (Kennedy & Eberhart,
1995), Bee Colony Optimization (BCO) (Karaboga, 2005) and Bees Algorithm (BA)
(Pham et al., 2006). Additionally, Genetic Algorithm (GA) (Holland, 1975) must be
mentioned when population-based optimization algorithms are discussed, however,
GA simulates the genetic evolutional process not the group behaviors of social
insects. In this study, we are interested in BA for solving type | mixed-model
assembly line balancing problem with setups (MMALBPS-I) because of the multi
population structure of the honey bees; each population represents the honey bees
living in a different hive.

Baykasoglu et al. (2007) surveyed the application areas and algorithms on

behavioral characteristics of the honey bees and the authors presented a
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classification, while, Ozbakir & Tapkan (2011) gave a brief literature review about
the “foraging behavior” based optimization algorithms. Moreover, another survey of
the algorithms based on the intelligence in bee swarms and applications has been
presented by Karaboga & Akay (2009). For more detailed information about the
applications of bee swarm intelligence, the readers can refer to one of these three
papers, especially to (Baykasoglu et al., 2007) or (Karaboga & Akay, 2009). In this
study, we only deal with the application of bee swarm intelligence to the assembly
line balancing problems. The literature about the applications of bee swarm
intelligence to assembly lines is scarce. To the best of our knowledge, there are only
two papers which dealt with ALBPs. Ozbakir & Tapkan (2011) and Tapkan &
Ozbakir (2012) used BA for solving Two-sided Assembly Line Balancing Problem
(TSALBP). Both of the papers were adopted BA to TSALBP by generating random
solutions according to different heuristic rules by using shift and swap movements as

neighborhood generators.

The basic version of the BA is a combination of random search and neighborhood
search, which may have different structures according to the features of the problem
on hand. Most of the existing literature about the applications of BA to combinatorial
optimization tries to evolve only a single population, with an exception of Akbari &
Ziarati’s (2011) work as they developed a cooperative bee swarm optimization
algorithm for functional optimization. Furthermore, the implementations of BA for
the assembly line balancing problems (ALBPs) could be classified into improvement
type of search algorithms because of the employed neighborhood structures (shift
and swap movements), however, the constructive type of search algorithms like ACO
are much more effective if the problem has an inherently network structure
(Baykasoglu et al., 2006) as ALBPs. The existing literature (McMullen &
Tarasewich, 2003; Simaria & Vilarinho, 2009; Vilarinho & Simaria, 2006;
Yagmahan, 2011) addressing the solution of mixed-model ALBPs using ACO also
introduced the encouraging performance of ACO.

In the present study, we have proposed a multiple colony hybrid Bees algorithm
(MCHBA) for MMALBPS-I. Our proposed approach is based on the multiple
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colonies (similar to Ozbakir et al.(2011)); each colony is formed according to a
different heuristic information, with the purpose of improving the diversification of
the algorithm. Diversification generally refers to the ability to visit many and
different regions of the search space (Lozano & Garcia-Martinez, 2010). Moreover,
we used a new neighborhood structure which ensures the algorithm to be a
constructive type. This neighborhood structure also enables the proposed approach to
utilize the positive feedback mechanism as ACO does. Due to the multiple colonies,
the proposed algorithm needs a communication strategy to be realized by the new
neighborhood structure for sharing the information. Information sharing is an
essential issue from the optimization point of view. However, we should mention
here that there is not much information about the information sharing mechanisms
between different colonies in real honey bees. We have adopted a mechanism which
is similar to Ozbakir et al.’s (2011) study.

The remainder of this chapter is organized as follows. The proposed Multiple
Colony Hybrid Bees Algorithm is defined in Section 5.2. Comparative computational
study is given in Section 5.3. Finally, the conclusions are presented in Section 5.4.

5.2 Multiple Colony Hybrid Bees Algorithm

In this section the proposed MCHBA is presented in detail. The pseudo code of
MCHBA is given in Figure 5.1 and the notations are given in Table 5.1.

Table 5.1 Notations for the pseudo code and their corresponding definitions

Notation  Definition Notation Definition

M Number of colonies (m=1,...,M) MaxIter Iteration number (Stopping criteria)

S Number of scout bees (s=1,...,S) ot Best solution

P Number of employed bees mpa Best solution of p™ population of the m™
(p=1,...,P) colony

e Number of best employed bees ot Best solution of the the m™ colony

nep Number of onlooker bees for each .6 Solution of the s scout bee of the m"
e employed bees colony

nsp Number of onlooker bees for each  f(;,0°%) Fitness function value of the s™ scout bee of

P—e employed bees (nsp < nep) the m™" colony
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1-
2-
3-
4-

Determine M different heuristic rules for M different colonies
Parameter initialization and forming global pheromone matrix
Initialize each colony (consist of S scout bees) by using its own heuristic rule
for (m=1to M) do
for (s=1to S) do
Evaluate scout bee’s fitness function (f(,6%))
endfor
endfor
k=0
while (k<Maxlter)
for (m=1to M) do
Sort scout bees (%) according to their fitness (f(,,0%)) in increasing order
Determine best P solutions as employed bees and select best e employed bees from P
Release a certain amount of pheromone for each employed bee
Form each employed bee’s initial pheromone matrix.
Assign nep onlooker bees to each best employed bees in order to form e different
populations each one has nep individuals
Assign nsp onlooker bees to each remaining P-e employed bees in order to form P-e
different populations each one has nsp individuals
for (p=1to P) do
Apply neighborhood structure to population p
Record p™ population’s best bee (myo™)
Update m™ colony’s best bee (mabesg)
if f(mpo_best) Sf(mobest)
O_best:mpa_best
endif
endfor
endfor
Update best solution
for (m=1to M) do
|f f(mo_best)SJ((Ubest)
O_bestz o_p
endif
endfor
Release a certain amount of pheromone for best bee and update global pheromone
matrix
k=k+1
if (k< Maxlter)
for (m=1to M) do
Initialize S-P scout bees with heuristic rule
for (s=1to S-P) do
Evaluate scout bee’s fitness function (f(,,6%))
endfor
endfor
endif
endwhile

Figure 5.1 Pseudo code of the proposed multiple colony hybrid bees algorithm

The proposed MCHBA starts by determining the heuristic rules and matching

them to exactly one colony. After that, the algorithm continues by initializing the

parameters and forming the initial global pheromone matrix, which is used for

information sharing between colonies. The information sharing mechanism (Section

5.2.1) is an important issue in the way of the behaviors of the bees in their own

colonies. Initial colonies are generated by their own heuristic rules which are

explained in Section 5.2.2. For each colony, the following steps are executed until a
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predefined number of iteration is reached. P number of fittest bees within the set of
generated solutions is determined as employed bees. From this set of employed bees
e numbers of bees are selected as the best bees. nep numbers of onlooker bees are
assigned to these best bees and nsp number of onlooker bees are assigned to the
remaining P—e bees in order to generate different populations. The neighborhood
mechanism is applied to each population for improving the algorithm’s
intensification. The best onlooker bee of each population is compared with the
original employed bee and, if it is better, the employed bee is substituted for the best
onlooker bee. Moreover, each best onlooker bee is compared with the best bee, if it is
better than the previous best bee, the best bee is updated. For global search, S—-P

number of scout bees is generated by using heuristic rules.

Real honey bees use a mechanism named as waggle dance for sharing the
information. Waggle dance is performed by the employed forager bees in order to
share with the other bees of the colony information about the direction and distance
of the food sources. If an unemployed recruit bee decides to start searching, the bee
attends to a waggle dance done by some other bee for getting information and uses
this information throughout its search. These behavioral properties of the real honey
bees are so similar to the pheromone laying and following behaviors of ants. This
similarity constitutes the basis of our proposed multiple colony hybrid bees
algorithm, whose steps are explained in details in the following sub-sections.

5.2.1 Behaviors of the Bees in their own Colonies

The proposed MCHBA is trying to discipline each bee to approach the best bee of
its own colony and the best bee of all colonies. In order to attain such behavior we
need to realize an information sharing mechanism between the colonies, however, as
we have mentioned previously there is not much information about this issue in the
literature on real honey bees. Furthermore, such an information sharing mechanism is
a vital issue from the optimization point of view. The global pheromone matrix
(Ozbakir et al., 2011), explained in Section 5.2.4, provides us to share the

information between colonies.
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The behaviors of the bees in their own colonies that we envisaged before
constructing the algorithm can be seen in Figure 5.2. The bees of the initial colonies
are scattered due to the effect of randomness, as can be seen in Figure 5.2-a. After a
predetermined number of iterations, we aim at making the algorithm to localize the
bees near to their own colony’s best bee. We also envisaged that the bees are
localized by the algorithm at the closer side of their colony to the global best bee, as
it can be seen in Figure 5.2-b. So, each bee wants to fallow not only its own colony’s
best bee, but also the global best bee. Additionally, we want to test if the bees have
these two behavioral properties or not, however, we are not able to do this test on the
assembly line balancing problem because of its complex structure. Such a test can be
done on a function in continuous domain more easily. For that reason we select one
of the well known non-convex functions named as Rastrigin (RF) and this test
carried out on Matlab 7.9.0. The alignments of the bees in initial colonies (Fig. 5.3-a)

and in final colonies (Fig. 5.3-b) verify the behaviors of the bees in Figure 5.2 on RF.

Colony 4

Best BEE of
Colony 4

Colony 5

Best BEE o
Colony 5
Best BEE of

Caolony 3 and

Best BEE of

all Colomies

a. Initial Colomes

Colony 4 Colony 1

= Colony 3

Best BEE of
Colony 1

Best BEE of

Calony 4

Colony 2
Colony 5 Best BEE of
Colony 2

Best BEE of

Colany §
Best BEE of
Colony 2 and
Best BEE of
all Colonies

L. Final Colonies

Figure 5.2 Envisaged behaviors of BEEs in their own colonies
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Figure 5.3 Behaviors of BEEs in their own colonies on RF

Above mentioned two behavioral properties of the bees are important because of
the effectiveness of the algorithm. Following colony’s best bee provides the
algorithm convergence in each colony while following the best bee provides the
algorithm convergence between colonies. Hence, the algorithm achieves the ability
of approaching to the global optimum rapidly.

5.2.2 Initial Colonies

In the proposed MCHBA two types of bees exist, one represents a coding of a
solution when the other constructs step by step a feasible balancing solution. The
first type of bees is used to generate initial colonies when the other used by the
proposed neighborhood structure. For coding, we used task based representation
(Leu et al., 1994; Sabuncuoglu et al., 2000), which is the most appropriate
representation scheme for type-1 balancing problems of assembly lines. The length
of the representation scheme is defined by the number of tasks and each value of this
scheme represents a task. In this study, the phenomenon of the multiple colonies and
randomly generated solutions are considered. That is to say, each colony used a
different heuristic rule and each colony consists of a predefined number of solutions
generated by selecting randomly a task at a time according to the heuristic rule.
Heuristic rules based procedures developed and examined for different types of
balancing problems by (Andrés et al., 2008; Martino & Pastor, 2010; Baykasoglu,
2006; Bautista & Pereira, 2002; Wilhelm, 1999).
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The heuristic rules assigned to colonies are: (i)-Maximum Processing Time of all
Models (MPTM): Selects the task having maximum processing time for all models.
(if)-Maximum Average Processing Time (MAPT): Selects the task having maximum
average processing time. The average processing time of a task is the sum of the
processing times of that task for each model weighted by the respective production
share. (iii)-Maximum Average Ranked Positional Weight (MARPW): Selects the task
having maximum average ranked positional weight. In a mixed-model assembly line,
the positional weight of a task is the cumulative average task processing time
associated with itself and its successors. (iv)-Maximum Number of Direct Successors
(MNDS): Selects the task having maximum total number of direct followers
according to combined precedence diagram. (v)-Maximum Total Number of
Successors (MTNS): Selects the task having maximum total number of followers
according to combined precedence diagram.

Work assignment within the proposed approach is made by the following
procedure. Tasks are assigned to the workstations according to the task sequence in
the representation scheme, as long as the predetermined cycle time is not exceeded.
Once the cycle time is exceeded at least for a model or the zoning constraints are not
satisfied, a new workstation is opened for assignment, and the procedure is repeated.
Figure 5.4 illustrates assignment of tasks to workstations according to a

representation scheme.

Solution _for C=10 and WS=06

Task based representation scheme

Figure 5.4 Assignment procedure according to a representation scheme (Akpiar & Bayhan, 2011)
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In the proposed MCHBA, it is required to use for each bee in each colony a

solution encoding mechanism, as shown in Figure 5.5, for building feasible

balancing solutions belonging to initial colonies. Each bee begins by determining the

available tasks for forming a feasible task assignment sequence according to the

precedence constraints. Then, each bee selects randomly one task at a time among

the set of available tasks according to heuristic rule assigned to its colony. After a

sequence containing all tasks was generated, the artificial bee starts the procedure

(see Fig. 5.4) for turning the sequence into a feasible balancing solution.

Select one of the available tasks

Determine available tasks according to

for assignment

¥

Has a sequence of tasks

precedence constraints

~

No

been obtained?

Hold the first task according to

Open a new workstation

the obtained sequence

Hold the next task according
to the obtained sequence

Have all tasks been
assigned?

Is the task available for
assignment according to
capacity and zoning
constraints?

Assign the task to the
current workstation

Figure 5.5 Solution encoding mechanism used while generating initial colonies

5.2.3 Fitness Evaluation

As it can be seen from the literature, the main purpose of type-l problems of

assembly line balancing is minimizing the number of workstations according to a
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predetermined cycle time. Besides workstation minimization, it is required additional
goals to be optimized due to the complex nature of the mixed-model assembly lines.
The objective function used in the current study for evaluating the solutions is given
by Equation 4.2 (Vilarinho & Simaria, 2002) (see Section 4.2.2). The first term in the
objective function minimizes the index of the workstation to which the last task is
assigned, thus minimizing the number of workstations. The second term balances the
workload between the workstations. The third term balances the workload within
each workstation. Workload balancing provides the sense of equity among workers,
and, contributes to increasing the output (Kim et al., 1998).

5.2.4 Neighborhood Structure

The neighborhood structure used in this study is based on the task selection
strategy which was used by Vilarinho & Simaria (2006) and makes the algorithm to
be a constructive type. Each bee generates a solution by selecting one task for
assignment at a time instead of trying to improve an existing solution by using the
proposed neighborhood structure. In the original task selection strategy, the
probability of a task being selected, from the set of available tasks, is a function of:
(i) the pheromone trail intensity between the previously selected task and each
available task and (ii) the information provided by the heuristic rule for each
available task. This information is a priority rule (one of the rules mentioned in

Section 5.2.2) that is assigned to each task when the respective solution is generated.

Due to multiple colonies the proposed algorithm uses two types of pheromone
matrixes, local and global pheromone matrixes. Local matrixes keep the information
for each colony, while the global matrix keeps the information for all colonies and is
only updated by the best solution. Moreover, the global pheromone matrix provides
the communication between colonies. It is to say, global pheromone matrix is used as

the information sharing mechanism.

The proposed neighborhood structure is based on the information sharing

mechanism. As the original task selection strategy does, the proposed neighborhood
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structure uses a random number r between 0 and 1 and three user defined parameters

r1, rz and rz such that 0<r,r,,r3</ and ri+r,+rz=1. The rule is given by:

a
B )
(]1 = argmax{[fp.rg’j) + y.réi,j)] .[nj] } ifr<n
jeA}
a

, g l B
j=: [‘P-T(i,jz) + V-T(i.jz)] ] . (5.1

]2:p(i.]2): g : o B lfT1<TST‘1+T‘2

Ljeay ([‘p'T(i,j) ty. T(i,f)] ] )
\/5: random selection of j € A frn+n<r<n+n+nrn

where rg.,j)and rfi_j) are the pheromone trail intensities kept by global and local

pheromone matrixes respectively in the path ‘selecting task j after selecting task i’, #;
is the heuristic information of task j (e.g. the priority rule value for task j), A} is the
set of available tasks for bee n after the selection of task i, ¢ and yare parameters that
determine the relative importance of global pheromone intensity versus local
pheromone intensity, and o and g are parameters that determine the relative

importance of pheromone intensity versus heuristic information.

Figure 5.6 shows the solution encoding mechanism used by the proposed
neighborhood structure for building a feasible balancing solution. Each artificial bee
starts the mechanism by determining the available tasks for assignment to the current
workstation, according to the precedence, zoning and capacity constraints. After that
the bee selects one task from the set of available tasks and assigns it to the current
workstation. The artificial bee opens a new workstation, if there is no task available
for assignment to the current workstation. Until all tasks have been assigned to a

workstation the bee repeats the procedure.

As can be seen from Equation 5.1, each bee uses two types of pheromone
intensities by generating a balancing solution. The local pheromone intensity
provides bees approaching to its colony’s best bee while the global pheromone
intensity provides bees approaching to the best bee of all colonies. This feature
ensures that the bees have the behavioral properties as mentioned in Section 5.2.1.
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Figure 5.6 Solution encoding mechanism used by the neighborhood structure

5.3 Computational Experience

The concept of sequence dependent setup times is an actual framework in
assembly line balancing problems (ALBP). For that reason, there is no standard set
of benchmark instances with setup times available for testing in assembly line
balancing literature except the Andrés et al.’s (2008) benchmark set, which covers
simple version of ALBP, however, we deal with mixed-model version of ALBP in
this study. For doing the comparison we construct a set of test problems based on
type-l MMALB problems, some them (problemsl-18 and 23-24) were used by
Akpmar & Bayhan (2011) and some them (problems 19-22 and 25-36) were
generated randomly. The main characteristics of the test problems are exhibited in
Table 5.2 where N, M, and C denote the number of tasks of the combined precedence
diagram, the number of models, and cycle time of the assembly line, respectively.
We also classified the test problems as small-size (problems 1-4), medium-size
(problems 5-22), and large-size (problems 23-36) according to the number of tasks

they include.
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Table 5.2 Main characteristics of the test problems

Problem N M C Problem Name Problem M C Problem Name
No No
g 1 8 2 10 Bowman . 19 53 2 10 Hahn
7 2 8 3 10 Bowman Eg 20 5 3 10 Hahn
g 3 11 2 10 Gokcen & Erel g 2 21 58 2 10 Warnecke
n 4 11 3 10 Gokcen & Erel 22 58 3 10 Warnecke
5 21 2 10 Mitchel 23 70 2 10 Tonge
6 21 3 10 Mitchel 24 70 3 10 Tonge
7 25 2 10 Vilarinho & Simaria 25 75 2 10 Wee-Mag
8 25 3 10 Vilarinho & Simaria 26 75 3 10 Wee-Mag
9 28 2 10 Heskiaoff 27 83 2 10 Arcus 1
I 10 28 3 10 Heskiaoff @ 28 83 3 10 Arcus 1
2 1 3 2 10 Sawyer @ 20 8 2 10 Lutz 2
2 12 3 3 10 Sawyer S 30 & 3 10 Lutz 2
S 13 32 2 10 Lutz 1 - 31 94 2 10 Mukherije
14 32 3 10 Lutz 1 32 94 3 10 Mukherije
15 35 2 10 Gunther 33 111 2 10 Arcus 2
16 35 3 10 Gunther 34 111 3 10 Arcus 2
17 45 2 10 Kilbridge & Wester 35 148 2 10 Barthold
18 45 3 10 Kilbridge & Wester 36 148 3 10 Barthold

N: Number of tasks; M: number of models; C: Cycle time

For the problems 1-18 and 23-24 the original precedence networks and operation
times remained the same and for the problems 19-22 and 25-36 the precedence

networks taken from http://alb.mansci.de/ and operation times were generated

randomly. While generating setup times two types of setups (forward and backward
setups) were considered as mentioned by Scholl et al. (2011). Thus, we defined two
types of setup matrixes (forward and backward setup matrixes) as result of forward
and backward setups between the tasks. All the setup times were generated according
to the levels of setup time variability (Andrés et al., 2008) as mentioned in Section
4.3, and so as to fulfill the triangle inequality (Scholl et al., 2011) given by Equation
3.31(see Sec. 3.4). Moreover, considering any task may be a single element of a
workstation, the pre-condition given by Equation 3.32 (see Sec. 3.3) have to be

satisfied for all tasks.

As a result the constructed a benchmark set contains 108 instances in three
categories, low, medium and high variability of setup times, each category contains
36 problems having the same number of tasks, precedence diagrams, and task times

with different setup times.
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5.3.1 Computational Results

In this study the performance of the proposed MCHBA is compared with single
colony bees algorithms. Each single colony algorithm is based on one of the heuristic
rules as mentioned in Section 5.2.2. We aim at determining the advantages of using
multiple colonies instead of just using a single colony through such a comparison.
All of the algorithms were coded in C++, and the solutions of the test problems were
obtained by running the algorithms on Intel (R) Core 2 Duo CPU T7300 (2.0 GHz).
The parameter sets used for single colony algorithms are given in Table 5.3 and the
parameter set used for proposed MCHBA presented in Table 5.4. These parameters
were chosen experimentally for getting a satisfactory performance in an acceptable

time span.

Table 5.3 Parameter set for single colony algorithms

Problem 70 p a p 0 y r ro rs S P e nep nsp N,

1-4 7 015 025 125 04 06 06 03 01 25 10 5 3 2 200
(Small Sized)

522 20 015 025 125 04 06 06 03 01 50 25 10 5 3 200
(Medium Sized)

23-36 47 015 025 125 04 06 06 03 01 100 50 20 10 5 200
(Large Sized)

7o: Initial pheromone level; p: evaporation coefficient; a and g: determine the relative importance of
pheromone intensity versus heuristic information; ¢ and y: determine the relative importance of global
pheromone intensity versus local pheromone intensity; ry, r, and rs: user defined parameters for task
selection strategy; S: Number of scout bees; P: number of employed bees; e: number of best employed bees;
nep: The number of onlooker bees for each e employed bees; nsp: The number of onlooker bees for each P —
e employed bees (nsp<nep); N,: Number of iterations (MaxIter)

According to Dorigo & Gambardella (1997), a rough approximation of the
optimal value of the objective function is a reasonable value for z. In the current
study, since the average lower bound values (LBymix) (Akpinar et al., 2013) for cycle
times are approximately equal to 7, 20 and 47 for small, medium and large sized
problem classes, we set the initial pheromone levels (zp) to 7, 20 and 47 for small,
medium and large sized problems, respectively. The other parameters, except the
number of scout bees (S) the number of employed bees (P) and the number of best
employed bees (e), have the same values for all test problems. S indicates the number
of different solutions which must be evaluated in each iteration, thus it has to be well
proportioned to the solution space size in order to satisfy algorithm’s diversification.

The higher values of S may the algorithm lead to redundant computational effort
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while the lower values may the algorithm cause insufficient diversification. Hence, S
is a parameter related with the search space size of a problem and should have
different values for the different sized problems. Since P and e are parameters related

to S, they should also have different values for the different sized problems.

Table 5.4 Parameter set for MCHBA

Problem 70 p a p 0 y r r rs S P e nep nsp N,

1-4 7 015 025 125 04 06 06 03 01 5 2 1 3 2 200
(Small Sized)

5-22 20 015 025 125 04 06 06 03 01 10 5 2 5 3 200
(Medium Sized)

23-36

; 47 015 025 125 04 06 06 03 01 20 10 4 10 5 200
(Large Sized)

As pointed out in Tables 5.3 and 5.4, the parameters S, P and e have different
values for the proposed MCHBA and single colony algorithms. Since MCHBA has
five different colonies and each colony has a number of scout bees, MCHBA
evaluates all the scout bees for all colonies in each iteration. So, a single colony
algorithm must be evaluating the same number of scout bees in each iteration. In
such a way, it is possible to do a consistent comparison between the proposed
MCHBA and the other single colony algorithms. As can be seen from Tables 5.3 and
5.4, the parameters S, P and e used for a single colony algorithm are five times
greater than used for MCHBA.

The test problems were solved by using proposed MCHBA and other 5 heuristics
(MPTM, MAPT, MARPW, MNDS, and MTNS) based single colony algorithms. The
minimum, maximum and average values of the solutions, for each of the test
problems shown in Tables 5.5, 5.6, and 5.7 results from ten runs of each instance of
the problem set. Tables 5.5, 5.6, and 5.7 cover the results for the categories of low,
medium, and high variability of setup times, respectively. The third and fourth
columns of the Tables 5.5, 5.6, and 5.7 contain the values of LBynix and optimal
solutions for the test problems respectively. The values of LBymix were provided by
the procedure proposed by Akpnar et al. (2013), while the optimal solutions were
provided by the MILP model developed within the scope of this study and explained
in Chapter 3.



Table 5.5 Computational results for problems with low variability of setup times

MPTM MAPT MARPW MNDS MTNS MCHBA
Problem LBpmix Optimal
No Solution N CcPU s CPU Ao CPU Nws CPU Nws CcPU Nws CPU
Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max
1 5 5 5 5 5 0.11 5 5 5 0.09 5 5 5 0.12 5) 5) 5) 0.11 5 5 5 0.13 5 5 5 0.10
T 2 6 9 9 9 9 0.18 9 9 9 0.16 9 9 9 0.19 9 9 9 0.17 9 9 9 0.18 9 9 9 0.16
(%u‘) 3 8 8 8 8 8 0.27 8 8 8 0.25 8 8 8 0.26 8 8 8 0.24 8 8 8 0.25 8 8 8 0.23
4 7 7 7 7 7 0.26 7 7 7 0.28 7 7 7 0.30 7 7 7 0.26 7 7 7 0.29 7 7 7 0.27
5 15 - 17 17 17 1.93 17 17 17 1.81 17 17 17 1.97 17 17 17 1.88 17 17 17 1.96 17 17 17 1.76
6 14 - 16 16 16 2.02 16 16 16 1.87 16 16 16 1.89 16 16 16 2.13 16 16 16 2.04 16 16 16 1.79
7 15 - 17 17 17 2.56 17 17 17 2.42 17 17 17 2.65 17 17 17 2.59 17 17 17 2.65 17 17 17 2.48
8 14 - 163 16 17 287 163 16 17 2.78 16 16 16 290 162 16 17 3.06 16 16 16 3.13 15 15 15 2.68
9 19 - 22 22 22 6.99 22 22 22 6.35 22 22 22 7.11 22 22 22 7.30 22 22 22 7.61 22 22 22 6.69
10 18 - 20 20 20 7.05 20 20 20 6.73 20 20 20 7.27 20 20 20 7.53 20 20 20 8.02 20 20 20 6.87
o 1 15 - 17 17 17 2.87 17 17 17 2.79 17 17 17 3.04 17 17 17 2.96 17 17 17 3.27 17 17 17 2.87
-3 12 18 - 215 21 22 317 214 21 22 310 212 21 22 3.43 21 21 21 3.39 21 21 21 3.44 20 20 20 3.20
e 13 17 - 21 21 21 3.46 21 21 21 3.45 21 21 21 3.59 21 21 21 3.39 21 21 21 3.75 21 21 21 3.37
2 14 18 - 21 21 21 3.72 21 21 21 3.70 21 21 21 3.87 21 21 21 3.58 21 21 21 4.04 21 21 21 3.40
§ 15 20 - 25 25 25 5.87 25 25 25 5.77 25 25 25 5.33 26 26 26 6.96 25 25 25 6.45 25 25 25 5.64
16 21 - 26.1 26 27 6.49 26.1 26 27 525 262 26 27 5.47 27 27 27 540 264 26 27 6.49 25 25 25 5.88
17 23 - 27 271 27 1277 27 27 27 1177 274 27 28 1336 27 27 27 1391 28 28 28 1393 26 26 26 1212
18 24 - 29 29 29 1440 287 28 29 1330 298 28 29 1428 297 29 30 1413 29 29 29 1541 28 28 28 12.16
19 26 - 34 34 34 14.07 34 34 34 1417 33.1 33 34 1417 34 34 34 1411 339 33 34 1417 331 33 34 13.46
20 25 - 36 36 36 1532 36 36 36 1415 36 36 36 1514 36 36 36 1414 36 36 36 1418 36 36 36 1353
21 31 - 346 34 35 16.31 349 34 35 1537 34 34 34 1547 344 34 35 1448 34 34 34 1449 34 34 34 14.64
22 28 - 353 35 36 1654 352 35 36 16.42 348 34 35 1548 35.7 35 36 1548 345 34 35 1547 345 34 85 15.08
23 39 - 47 47 47 84.13 46 46 46 8139 46 46 46 89.15 46 46 46 96.93 46 46 46 9430 46 46 46  84.55
24 40 - 48.3 48 49 89.11 48.1 48 49 8383 48 48 48 92,69 49 49 49 99.44 482 48 49 9452 47 47 47 87.55
25 39 - 431 43 44 109.63 43 43 43 107.94 428 42 43 107.05 43 43 43 10850 429 42 43 109.27 423 42 43 108.73
26 38 - 45 45 45 110.69 45.1 45 46 109.17 45 45 45 11001 45 45 45 110.62 45.9 45 46 109.85 443 44 45 11132
27 44 - 543 54 55 11325 549 54 55 11464 531 53 54 11398 55.7 55 56 113.66 53 53 53 11311 526 52 53 112.68
& 28 39 - 577 57 58 11437 562 56 57 11398 53 53 53 11298 60 60 60 11370 53 53 53 11256 526 52 53 115.53
ﬁ 29 48 - 61 61 61 128.73 60.7 60 61 129.17 59.6 59 60 12798 60.5 60 61 128.14 59.8 59 60 128.28 59.5 59 60 126.53
2 30 48 - 67.2 67 68 131.72 66.6 66 67 130.44 65 65 65 13147 673 67 68 130.74 65.1 65 66 130.55 65 65 65 130.71
5 3 54 - 62 62 62 148.04 62 62 62 149.03 62 62 62 147.40 63 63 63 147.75 62 62 62 14761 616 61 62 148.28
32 43 - 53 53 53 15581 53.1 53 54 15419 53 53 53 153.70 53.9 53 54 153.76 53.7 53 54 15420 524 52 53 153.88
33 49 - 56.4 56 57 24259 545 54 55 241.74 532 53 54 240.63 56.3 56 57 24041 53.6 53 54 241.03 532 53 54  240.34
34 51 - 61.2 61 62 243.74 60.1 60 61 24333 57.7 57 58 24298 621 62 63 24194 58.6 58 59 24299 57.6 57 58 243.53
35 69 - 798 79 80 306.06 791 79 80 30561 783 78 79 30595 796 79 80 30690 783 78 79 30992 78 78 78 306.14
36 64 - 83.1 82 84 307.76 813 81 82 306.83 78 78 78 307.72 80.2 80 81 308.18 79.2 79 80 30954 776 77 78 309.10

Nws: Number of workstations; CPU: Computational time
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Table 5.6 Computational results for problems with medium variability of setup times

MPTM MAPT MARPW MNDS MTNS MCHBA
LBpmix Optimal
Problem No Solution Nws CcPU Nuws CcPU Nws cPU Nus CPU Nws CcPU Nuws CcPU
Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max
1 5 5 5 5 5 0.12 5 5 5 0.13 5 5 5 0.11 5 5 5 0.11 5 5 5 0.10 5 5 5 0.12
39 2 6 9 9 9 9 0.16 9 9 9 0.15 9 9 9 0.16 9 9 9 0.17 9 9 9 0.18 9 9 9 0.21
(,E, (73} 3 8 8 8 8 8 0.25 8 8 8 0.24 8 8 8 0.26 8 8 8 0.26 8 8 8 0.27 8 8 8 0.22
4 7 7 7 7 7 0.27 7 7 7 0.28 7 7 7 0.27 7 7 7 0.29 7 7 7 0.25 7 7 7 0.26
5 15 - 17 17 17 1.98 17 17 17 1.97 17 17 17 200 17 17 17 18 17 17 17 1.97 17 17 17 1.84
6 14 - 17 17 17 2.10 17 17 17 1.97 17 17 17 1.87 17 17 17 1.94 17 17 17 1.94 17 17 17 1.78
7 15 - 18 18 18 2.57 18 18 18 251 18 18 18 2.76 18 18 18 2.75 18 18 18 3.08 18 18 18 2.58
8 14 - 16 16 16 3.02 16 16 16 2.70 16 16 16 289 16 16 16 334 16 16 16 3.24 16 16 16 2.69
9 19 - 22 22 22 729 22 22 22 649 22 22 22 760 22 22 22 726 22 22 22 790 22 22 22 6.93
10 18 - 21 21 21 7.43 21 21 21 6.62 21 21 21 7.75 21 21 21 7.43 21 21 21 8.07 21 21 21 7.06
° 11 15 - 18 18 18 3.32 18 18 18 2.89 18 18 18 306 18 18 18 302 18 18 18 329 18 18 18 3.14
-% 12 18 - 23 23 23 313 226 22 23 301 222 22 23 357 23 23 23 352 23 23 23 365 21 21 21 451
IS 13 17 - 21 21 21 3.64 21 21 21 3.29 21 21 21 3.56 21 21 21 3.40 21 21 21 3.74 21 21 21 3.68
2 14 18 - 23 23 23 403 23 23 23 350 23 23 23 393 23 23 23 390 23 23 23 389 23 23 23 3.79
§ 15 20 - 26 26 26 652 26 26 26 580 26 26 26 6.48 27 21 27 620 26 26 26 706 26 26 26 6.67
16 21 - 26 26 26 6.34 26 26 26 5.15 26 26 26 7.08 27 27 27 6.69 26 26 26 7.35 26 26 26 6.46
17 23 - 27 27 27 1405 27 27 27 1285 27 27 27 1462 27 27 27 1388 27 27 27 1462 264 26 27 1310
18 24 - 29 29 29 1454 29 29 29 1269 29 29 29 1445 29 29 29 1350 29 29 29 1465 29 29 29 1364
19 26 - 36 36 36 1314 36 36 36 1317 36 36 36 1423 37 37 37 1413 358 35 36 1419 355 35 36 14.78
20 25 - 37 37 37 1615 37 37 37 1511 37 37 37 1517 37 37 37 1611 37 37 37 1617 37 37 37 1565
21 31 - 358 35 36 1737 36 36 36 1633 35 35 35 16,53 35 35 35 1740 35 35 35 1753 35 35 35 17.20
22 28 - 36.3 36 37 1843 36.8 36 37 1741 36.1 36 37 1751 379 37 38 1846 36.6 36 37 1749 36 36 36 17.86
23 39 - 48.2 48 49 9364 48 48 48 8422 483 48 49 9043 48.1 48 49 97.14 483 48 49 9835 475 47 48 89.20
24 40 - 514 51 52 9448 51 51 51 8538 51 51 51 9480 51 51 51 96.08 51 51 51 9973 50 50 S50 96.21
25 39 - 44 44 44 109.62 44 44 44 10946 44 44 44 11054 44 44 44 11092 44 44 44 11142 434 43 44 11021
26 38 - 457 45 46 11298 458 45 46 113.61 46 46 46 11256 46 46 46 112.88 46.1 46 47 11373 454 45 46 114.13
27 44 - 55.1 55 56 117.49 55.7 55 56 118.65 54.7 54 55 117.12 56.7 56 57 117.36 549 54 55 117.26 54.6 54 55 117.41
& 28 39 - 588 58 60 12065 57 57 57 11953 54 54 54 11987 61 61 61 11989 542 54 55 119.78 535 53 54 119.80
Q 29 48 - 629 62 63 13089 63 63 63 13060 613 61 62 13035 62 62 62 12932 61 61 61 13040 604 60 61 129.18
= 30 48 - 68.9 68 69 13251 67.2 67 68 131.53 67 67 67 131.60 68.8 68 69 131.29 67.2 67 68 131.72 66.6 66 67 133.29
S 31 54 - 64 64 64 14942 638 63 64 15082 641 64 65 15078 65 65 65 15045 65 65 65 15145 636 63 64 151.13
32 43 - 55 55 55 15746 55 55 55 15425 55 55 55 155.64 55.8 55 56 156.01 55 55 55 156.08 54.7 54 55 155.39
33 49 - 57.7 57 58 239.03 56 56 56 238.38 54.8 54 55 237.18 58.1 58 59 237.73 546 54 55 237.99 544 54 55 238.14
34 51 - 63 63 63 247.03 628 62 63 24864 60 60 60 24911 644 64 65 24884 608 60 61 24842 594 59 60 253.84
35 69 - 83 83 83 31149 822 82 83 31283 806 80 81 31252 815 81 82 31103 809 80 81 31248 803 80 81 313.24
36 64 - 854 85 86 314.71 85.1 84 86 313.71 81 81 81 313.70 83 83 83 31294 816 81 82 31351 80.7 80 81 313.87

Nws: Number of workstations; CPU: Computational time
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Table 5.7 Computational results for problems with high variability of setup times

MPTM MAPT MARPW MNDS MTNS MCHBA
Problem  LBymix Optimal
No Solution N CPU N CPU Mo CPU Nws CPU Nws CPU Nws CPU
Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max
1 5 5 5) 5) 5 0.11 5 5 5) 0.12 5 5 5) 0.10 5 5 5 0.11 5 5 5 0.09 5 5 5 0.11
= o 2 6 10 10 10 10 0.22 10 10 10 0.21 10 10 10 0.20 10 10 10 0.22 10 10 10 0.19 10 10 10 0.17
(,E,u‘) 3 8 8 8 8 8 0.29 8 8 8 0.30 8 8 8 0.27 8 8 8 0.30 8 8 8 0.23 8 8 8 0.22
4 7 7 7 7 7 0.30 7 7 7 0.31 7 7 7 0.32 7 7 7 0.31 7 7 7 0.38 7 7 7 0.25
5 15 18 18 18 2.29 18 18 18 204 18 18 18 2.08 18 18 18 1.97 18 18 18 2.03 18 18 18 2.09
6 14 - 18 18 18 2.12 18 18 18 1.97 18 18 18 2.03 18 18 18 2.01 18 18 18 211 18 18 18 197
7 15 - 18 18 18 3.00 18 18 18 2.71 19 19 19 292 188 18 19 2.80 19 19 19 3.00 18 18 18 2.73
8 14 - 182 18 19 323 183 18 19 302 18 18 18 3.17 18 18 18 334 181 18 19 3.31 17 17 17 2.84
9 19 - 234 23 24 6.72 232 23 24 632 23 23 23 757 23 23 23 731 236 23 24 778 22 22 22 6.77
10 18 - 21 21 21 7.02 21 21 21 6.76 21 21 21 7.71 21 21 21 7.57 21 21 21 7.95 21 21 21 7.06
® 11 15 - 18 18 18 3.22 18 18 18 301 18 18 18 3.35 18 18 18 3.06 18 18 18 3.37 18 18 18 2.96
g 12 18 - 23 23 23 346 23 23 23 304 23 23 23 377 23 23 23 356 23 23 23 355 23 23 23 3.36
IS 13 17 - 22 22 22 3.70 22 22 22 3.29 22 22 22 351 22 22 22 3.56 22 22 22 3.84 22 22 22 351
2 14 18 - 25 25 25 409 25 25 25 373 25 25 25 412 25 25 25 381 25 25 25 422 25 25 25 3.67
§ 15 20 - 27 27 27 6.93 27 27 27 5.00 27 27 27 6.97 27 27 27 6.94 27 27 27 7.01 27 27 27 5.67
16 21 - 27 27 27 6.08 27 27 27 5.25 27 27 27 738 274 27 28 5.79 27 27 27 6.42 26 26 26 5.77
17 23 - 28 28 28 1334 28 28 28 1180 28 28 28 1398 28 28 28 1427 28 28 28 1389 27 27 27 1219
18 24 - 30 30 30 1477 30 30 30 1299 30 30 30 1477 30 30 30 1526 30 30O 30 1477 30 30 30 1388
19 26 - 363 36 37 1617 36 36 36 1514 361 36 37 1621 364 36 37 1515 369 36 37 1623 358 35 36 1517
20 25 - 373 37 38 1521 37 37 37 1612 37 37 37 1616 38 38 38 1515 372 37 38 1619 37 37 37 16.35
21 31 - 378 37 38 1940 37 37 37 1836 36 36 36 1849 369 36 37 1847 368 36 37 1951 36 36 36 18.11
22 28 - 37 37 37 2034 369 36 37 1937 36.7 36 37 1949 381 38 39 1954 36 36 36 2052 36 36 36 19.34
23 39 - 49 49 49 95.01 493 49 50 85.83 49 49 49 9271 49 49 49 9580 495 49 50 96.12 48 48 48 89.98
24 40 - 52.2 52 53 99.39 521 52 53 87.61 52 52 52 9723 52 52 52 99.18 52 52 52 98.63 515 51 52  97.97
25 39 - 444 44 45 10761 44 44 44 10756 443 44 45 108.22 444 44 45 108.21 445 44 45 107.03 44 44 44 108.62
26 38 - 46.1 46 47 11378 46.2 46 47 11277 46 46 46 113.18 47 47 47 11215 469 46 47 113.09 457 45 46 112.36
27 44 - 57.4 56 58 116.35 57.6 57 58 115,57 55.8 55 56 115.13 585 58 59 11498 558 55 56 114.49 55,5 55 56 116.76
& 28 39 - 595 59 60 11868 58.1 58 59 11764 543 54 55 118.06 615 61 62 11814 547 54 55 117.32 541 54 55 118.88
g 29 48 - 63.6 63 64 11982 64 64 64 118.03 62.7 62 63 116,50 63.9 63 64 117.07 62.7 62 63 116.90 625 62 63 113.76
= 30 48 - 728 72 73 12074 712 71 72 11876 69.1 69 70 11764 715 71 72 116.68 69 69 69 116.47 685 68 69 115.42
S 31 54 - 648 64 65 15062 648 64 65 151.08 649 64 65 15254 657 65 66 15193 65 65 65 15348 645 64 65 15353
32 43 - 55.7 55 56 155.11 55,5 55 56 155.30 55,5 55 56 154.88 57 57 57 15546 55.8 55 56 154.26 54.6 54 55 156.01
33 49 - 58.5 58 59 242.09 56.9 56 57 240.06 56 56 56 24091 589 58 60 242.68 56.8 56 57 24055 55.7 55 56 241.02
34 51 - 646 64 65 25843 633 63 64 25755 61 61 61 256.95 649 64 65 256.86 61.6 61 62 256.88 606 60 61 257.52
35 69 - 85 85 85 31456 84 84 84 31515 381 81 81 31423 827 82 83 31429 818 81 82 31354 80.6 80 81 314.40
36 64 - 87.6 87 88 31543 86.4 85 87 31431 818 81 82 316.09 84 83 85 31544 829 82 83 31598 816 81 82 316.17

Nws: Number of workstations; CPU: Computational time
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As can be seen from the Tables 5.5, 5.6, and 5.7 the mixed integer linear
programming model (see Chapter 3) cannot solve optimality as the problem size
increased due to its complex nature. On the other hand, the proposed multiple colony
hybrid bees algorithm is able to provide satisfactory solutions in reasonable running

times.

We conduct comparisons between the proposed multiple colony hybrid bees
algorithm and the other single colony algorithms into three categories, low variability
of setup times, medium variability of setup times, and high variability of setup times,
in terms of determined number of workstations (Nws) and computational time (CPU).
As can be seen from Tables 5.5, 5.6, and 5.7 multiple colony hybrid bees algorithm
outperforms single colony algorithms for medium and large sized problems in case
of low, medium and high variability of setups. It must be noted that as the problem
size get larger the performance of multiple colony hybrid bees algorithm increase
significantly in comparison with single colony algorithms. In order to make the
comparisons more clearly in terms of gaps for the obtained minimum number of

workstations we formed Table 5.8 as a summary of the Tables 5.5, 5.6, and 5.7.

From the observation of Table 5.8, it is found that the performance of multiple
colony hybrid bees algorithm is superior to MPTM, MAPT, MARPW, MNDS, and
MTNS in 51.85% (56 of 108 problems), 49.07% (53 of 108 problems), 36.11% (39
of 108 problems), 56.48% (61 of 108 problems), and 38.89% (42 of 108 problems)

of the test problems, respectively.

In order to understand whether the differences in the obtained results are due to
the random chance or not, a paired t-test is executed on Excel 2007. After paired t-
test it is figured out that outputs (average values for 10 independent replications
represented in Tables 5.5, 5.6, and 5.7) derived from multiple colony hybrid bees
algorithm are meaningfully different from single colony algorithms. The results of
paired t-test are presented in Table 5.9. Based on the values from Table 5.9, it can be
concluded that multiple colony hybrid bees algorithm produced better results than

single colony algorithms in general.



Table 5.8 Comparisons MCHBA versus single colony algorithms

Problem N Small Size Medium Size Large Size
DM >3 7 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3l
MCHBA
MPIM - - - - - - - 1 - - - 1 - - - 1 1 11 1 - - 1 1 1 1 1 2 5 2 2 1
.. MCHBA
%MAPT———————1———1———11—1——1—11124111
€ MCHBA
€ MARPW - - - - - - - 1 - - - 1 - - - 1 1 - - - - - - 1 - 1 1 1 - - 1
2 MCHBA
- MNDS - - - - - - - 1 - - - 1 - - 1 2 1 1 1 - - 1 - 2 1 1 3 8 1 2 2
MCHBA
MINS - - - - - - - 1 - - - 1 - - - 1 2 1 - - - - -1 -1 1 1 - - 1
MCHBA
MPTM - - - - - - - - - - - 2 - - - -1 - 1 - - -1 1 1 - 1 5 2 2 1
£ MCHBA
5 mAPT - - - - - - - - - - -1 - - - - 1 - 1 - 1 - 1 1 1 - 1 4 3 1 -
& & MCHBA
g;MARPW-----------1----1-1---1111-1111
= MCHBA
£ MNDS - - - - - - - - - - - 2 - -1 1 1 - 2 - - 1 1 1 1 1 2 8 2 2 2
MCHBA
MTNS - - - - - - - - - - - 2 - - - -1 - - - - -1 1 1 1 - 1 1 1 2
MCHBA
mMPIM - - - - - - - 11 - - - - - -1 1 - 1 - 1 1 1 1 - 1 1 5 1 4 -
2 MCHBA
5 MAPT - - - - - - - 11 - - - - - -1 1 - 1 - 1 - 1 1 - 1 2 4 2 3 -
£ MCHBA
2 MARPW - - - - -1 14 .- . . -1 e - 1. . . 1 1 - 1 - - -1 -
2 MCHBA
MNDS - - - - - - - 11 - - - - - -1 1 - 1 1 - 2 1 1 - 2 3 7 1 3 1
MCHBA
MINS - - - - - - 1 1 1 - - - - - - 1 1 - 1 - - -1 1 - 1 - - - 1 1
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Table 5.9 p values for the comparison of MCHBA and single colony algorithms («=0.05)

p Value
Low Variability Medium Variability High Variability
I\I/l\/ICPHI'?/IA 0.000032 0.000263 0.000079
MNCl: :fTA 0.000009 0.000196 0.000052
II\\/I/I,CA:\EFI?VA\\/ 0.000116 0.000018 0.000003
MMCI\||-| DB SA 0.000029 0.000128 0.000021
MNC'::NBSA 0.000017 0.000031 0.0000004

Considering the average computational times (CPUSs), all the algorithms solve the
problems in almost equally amount of times. This situation may be explained by the
used parameter sets, hence, it must be noted that the computational time is related to
the used parameter set. This set of computational experiments shows that the overall

performance of MCHBA is superior to single colony algorithms.

5.4 Chapter Conclusions

In this chapter, we aimed at developing a new multiple colonies Bees Algorithm
in order to improve the search ability of the basic Bees Algorithm for solving the
mixed-model assembly line balancing problem with sequence dependent setup times
between tasks. In the proposed MCHBA, a new neighborhood structure, which was
based on the task selection strategy of Ant Colony Optimization, was used. In this
manner, this new neighborhood structure ensures our developed algorithm to be a
constructive type. In order to evaluate the real performance of the proposed
MCHBA, a set of 36 mixed-model assembly line balancing problems with parallel
workstations and zoning constraints was tested. As to the scope of this study, this set
of benchmark problems was differentiated by adding sequence dependent setup times
between tasks with low, medium and high variability. The performance of the
proposed MCHBA was also compared with the performances of single colony
algorithms. Computational results indicate that the new neighborhood structure and

multiple colonies can improve search performance of the basic Bees Algorithm.



CHAPTER SIX
CONCLUSIONS

6.1 Summary

This dissertation dealt with the balancing problem of assembly lines by taking into
consideration the sequence dependent setup times, which is an actual framework in
assembly line balancing problems. Most of the studies on assembly line balancing
problems with sequence dependent setup times have focused extensively on single
model lines; however, single model assembly lines are not able to respond the
demand for higher product variability anymore because of the current consumer-
centric market conditions. Thus, mixed-model assembly lines substitute for single
model assembly lines. That is to say, high-mix/low-volume manufacturing strategies

substitute for low-mix/high-volume manufacturing strategies.

Since the existing literature on setups only covers the single model assembly
lines, the lack of studies dealing with the consideration of setups for mixed-model
assembly lines stands out. Under this conditions, the main goal of this dissertation
was to introduce the type-1 mixed-model assembly line balancing problem with
setups (MMALBPS-1), which is an extension of classical MMALBP-I and takes into
consideration the sequence dependent setup times between tasks.

Within this context, firstly, we have developed a mixed integer linear
programming (MILP) model by considering the phenomena of sequence dependent
setup times for mixed-model assembly, in order to formally describe the problem.
However, due to the NP-Hard nature of the problem the proposed MILP model was
not able to solve large scale problems. Therefore, we have developed meta-heuristics
based hybrid algorithms in order to tackle the problem. Among the meta-heuristics,
we have selected genetic algorithm, ant colony optimization, and bess algorithm and
we have developed effective hybrid algorithms based on these three meta-heuristics.
Computational experiments were carried out in order to determine the capability of

the developed MILP and the performances of the proposed hybrid algorithms.
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6.2 Contributions of the Dissertation

In Chapter 3, we have developed a MILP model for MMALBPS-1. The MILP
provides us to formally formulate the MMALBPS-I. Moreover, our MILP can solve
the problem with and without sequence dependent setup times, parallel workstation
assignments, and zoning constraints. Since, the SALBP-1 is a special case of
MMALBP-I, our MILP is able to solve SALBP-I with and without the
aforementioned characteristics. Thus, we can conclude that our MILP is a general
model for some of the assembly line balancing problems.

In Chapter 4, we have proposed a hybrid ACO-GA algorithm. In the proposed
hybrid ACO-GA algorithm, GA was embedded into ACO. The proposed ACO-GA
algorithm enhanced the performance of ACO by incorporating GA as a local search
strategy for MMALBPS-I. In the proposed hybrid algorithm ACO was conducted to
provide diversification, while GA was conducted to provide intensification. The
rationale why we attempted to hybridize ACO with GA was to exploit the
complementary character of different optimization strategies. Viz, our proposed
hybrid algorithm integrated the positive feedback mechanism and the satisfactory
performance of ACO with the faster speed of GA. Thus, the proposed hybrid ACO-
GA algorithm attempted to overcome the slower speed of ACO and the poor
searching capability of GA, especially for large sized problems, by embedding GA
into ACO as a local search. Furthermore, ACO-GA utilized the synergy of GA as an

improvement procedure and ACO as a constructive procedure.

In Chapter 5, we have proposed a multiple colony hybrid Bees algorithm for
MMALBPS-I. Our proposed approach was based on the multiple colonies; however,
most of the existing literature about the applications of BA to combinatorial
optimization tries to evolve only a single population. The phenomena of multiple
colonies were used with the purpose of improving the diversification of the
algorithm, which refers to the ability to visit many and different regions of the search
space. Moreover, we used a new neighbourhood structure which ensures the

algorithm to be a constructive type, since the constructive type of search algorithms
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like ACO are much more effective for the assembly line balancing problems. This
neighbourhood structure also enables the proposed approach to utilize the positive
feedback mechanism as ACO does. Due to the multiple colonies, we have adopted a
mechanism provides the communication between different colonies in the proposed
algorithm in order to share the information, since information sharing is an essential

issue from the optimization point of view.

6.3 Future Research Directions

During this dissertation some research areas have become clear that can influence
the further research directions. Within the scope of this dissertation we can classify

future researches into three groups as follows.

In Chapter 3, we have developed a general MILP model for some of the assembly
line balancing problems with regard to some characteristics. In further researches, we
might extend the proposed MILP so as to solve different assembly line balancing
problems with different line configurations.

In Chapters 4 and 5, we have developed two different hybrid algorithms; hybrid
ACO-GA algorithm and multiple colony hybrid bees algorithm. Future researches
will focus on applying both algorithms to different types of assembly line balancing
problems. Moreover, both the algorithms may be arranged so as to solve different

combinatorial optimization problems or so as to implement to continuous domains.

Due to the multiple colony structure of the proposed hybrid bees algorithm, future
researches will focus on the parallel/distributed applications of MCHBA to different

combinatorial optimization problems.
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