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SOME MODEL MISSPECIFICATIONS IN  

LOGISTIC REGRESSION MODEL 

 

ABSTRACT 

 

Correct specification of the model is the most important assumption for the 

logistic regression model, as for all models. It means that the model has the correct 

functional form, does not include irrelevant variables and has all the relevant 

variables. Previous studies show that misspecification may cause undesirable results 

such as biased logistic regression coefficients, inefficient estimates, invalid statistical 

inferences and less efficient test statistics.  

 

In this thesis, the effects of misspecification on asymptotic relative efficiency of 

various coefficients of determination are investigated. Misspecification types include 

using wrong functional form of explanatory variable, categorizing continuous 

explanatory variable and omitting the covariate. Unlike linear regression model, 

there is not only one coefficient of determination in logistic regression, which makes 

the results of this thesis more important. Simulation studies using bootstrap method 

and an application on agricultural data about land consolidation have been carried 

out to examine the efficiencies of these measures.    

 

Keywords: Asymptotic relative efficiency, coefficients of determination, land 

consolidation, logistic regression, misspecification. 
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LOJİSTİK REGRESYON MODELİNDE BAZI YANLIŞ MODEL 

TANIMLAMALARI 

 

ÖZ 

 

Modelin doğru tanımlanması, diğer modeler için olduğu gibi, lojistik regresyon 

modeli için de en önemli varsayımdır. Bu, modelin doğru fonksiyonel fonksiyona 

sahip olması, gereksiz değişkenleri içermemesi ve tüm gerekli değişkenleri içermesi 

anlamına gelir. Önceki çalışmalar yanlış tanımlamanın yanlı lojistik regresyon 

katsayıları, etkin olmayan kestirimler, geçersiz istatistiksel çıkarsamalar ve daha az 

etkin test istatistikleri gibi istenmeyen sonuçlara neden olabildiğini göstermektedir.  

 

Bu tezde, yanlış tanımlamaların bazı belirtme katsayılarının asimtotik göreceli 

etkinliği üzerindeki etkileri araştırılmaktadır. Yanlış tanımlama türleri, açıklayıcı 

değişkenin yanlış fonksiyonel formunun kullanılmasını, sürekli açıklayıcı değişkenin 

kategorik hale getirilmesini ve eşdeğişken faktörün modele dahil edilmemesini 

içermektedir. Doğrusal regresyon modelinden farklı olarak, lojistik regresyonda 

sadece bir belirtme katsayısı yoktur. Bu durum, bu çalışmanın sonuçlarını daha 

önemli hale getirmektedir. Bootstrap yöntemi kullanılarak simulasyon çalışmaları ve 

arazi toplulaştırması ile ilgili tarımsal veri üzerine bir uygulama ölçülerin 

etkinliklerini incelemek için gerçekleştirilmiştir. 

 

Anahtar kelimeler: Asimtotik göreceli etkinlik, belirtme katsayıları, arazi 

toplulaştırma, lojistik regresyon, yanlış tanımlama 
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CHAPTER ONE 

INTRODUCTION 

 

Model specification is the first and the most crucial stage of regression analysis. 

However, misspecification is a general problem of estimation and interpretation in 

research studies, since it is not possible all the time to build the model perfectly with 

all the relevant variables and also with their correct functional form. The model is 

only assumed to be correct or at least as closer to the correct than the others. In many 

situations, the model is determined without complete confidence. All other 

regression assumptions follow from the requirement that the model is correctly 

specified. A good knowledge of theory, an accurate understanding of what the model 

implies can help to avoid the model misspecification.  

 

Misspecification has three aspects in general: (1) The omission of some variables 

that affect the dependent variable may cause an omitted variables bias. In linear 

regression models, if the omitted covariates are independent of the included 

variables, then model misspecification due to omission does not cause an omitted 

variable bias. However, as shown by Neuhaus (1998) in logistic regression models, 

omitting covariates associated with the dependent variable, even if they are 

independent of the included variables, causes seriously downward estimates of 

regression coefficients. (2) Functional form of an explanatory variable should be 

determined carefully as they affect the data analysis. Incorrect functional forms lead 

incorrect conclusions. Simple regression models do not always represent the complex 

structure of the data, sufficiently. Some transformations of the continuous 

explanatory variables may be required to improve the model’s fit to the data. 

Otherwise the results of poor fit and biased estimates become unavoidable. Kay and 

Little (1987) studied on the transformations based on the distribution of explanatory 

variable in logistic models. Box and Cox (1964) studied on the analysis of 

transformations in linear regression. (3) In especially medical researches, with the 

intention of simplifying the interpretation of models, categorization or grouping may 

be preferred, frequently. However this is the most encountered misspecification type
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causing some problems such as efficiency losses in test statistics. Therefore, before 

categorizing some issues should be remembered by the researcher. For example, the 

number of categories and the distribution of the explanatory variable have a big 

importance for removing or at least decreasing the efficiency losses. Various authors 

have paid attention on this subject in many years. Bofinger (1970) has recommended 

a method of maximizing the correlation of categorized observations to select the 

cutpoints. Jarque (1981) has studied on how to attain efficient estimates in regression 

analysis when an explanatory variable has been categorized. O’Brien (2004) has 

presented an approach based on a formula of an efficient nonparametric estimate of 

the regression function for cutpoint selection. Prais & Aitchison (1954) have noted 

that the estimators of a regression model become unbiased and also that there is an 

information loss because of categorization. Cox (1957) defined an information loss 

measure from categorizing for choosing cutpoints for different size of categories due 

to the concept of asymptotic relative efficiency (ARE). Connor (1972) and Lagakos 

(1988b) have investigated ARE of test statistics with categorized explanatory 

variable which has up to 6 optimal categories and which has the distributions of 

uniform, normal and exponential with parameter 1 . But, the explanatory variable 

may have an exponential distribution with parameter that differs from one. In this 

case, how to obtain the cutpoints and ARE values will be discussed in Chapter 2.  

 

The decision of the appropriate statistic is important for involving to the analysis. 

The concept of ARE is a useful and most frequently used technique for the 

comparison of related statistics evaluating their performances. It provides a previous 

knowledge about information loss. The association between reducing the information 

loss and maximizing ARE will be explained in Chapter 2 in more detail. ARE is 

based on the ratio of variances of two associated statistics. Pitman (1949) introduced 

the earliest approach to ARE. Stuart (1954) studied asymptotic relative efficiencies 

of distribution free tests of randomness using Pitman’s proposes. Amemiya & Powel 

(1983) and Efron (1975) compared logistic regression and discriminant analysis with 

ARE. Saikkonen (1989) examined the effect of the misspecification on the three 

classical test statistics that are likelihood ratio, Lagrange multiplier and Wald 

statistics in terms of ARE. Begg & Lagakos (1990, 1993), Lagakos (1988a) and 



 

 

3 

 

Tosteson & Tsiatis (1988) particularly studied on the ARE of tests of association 

when explanatory variables have been misspecified in logistic regression models. In 

this thesis, looking with different perspectives, we will investigate the effects of 

misspecification on the ARE of various coefficients of determination ( 2R ) in logistic 

regression model.   

 

In ordinary least squares (OLS), 2R  statistic represents the proportion of variance 

explained in the dependent variable. It is not the valid interpretation for logistic 

regression, since logistic regression concerns about the probability of a given 

dependent variable. For the logistic regression model, so many derived 2R  statistics 

in accordance with different perspectives have been proposed in recent years. In 

Chapter 3, some reasons of derivation of various 2R  statistics will be presented, in 

more detail. Kvalseth (1985) described eight criteria for a good statistic (Menard, 

2000). There are different 2R  statistics proposed in the literature satisfying some of 

these properties. There are at least ten different 2R  statistics (Mittlböck & 

Schemper, 1996). So analysts may face the difficulty of choosing the convenient 2R  

statistic among all. Hence, studying their performances becomes a very important 

issue especially under misspecification. It is well known that these statistics are 

utility to measure how well a model fits the data, however it should be remembered 

that to judge the usefulness of the model based solely on these values is dangerous. 

There are other analyses to be taken into consideration such as the values of 

goodness of fit statistics (likelihood ratio statistic, Pearson chi-square).    

 

Binary logistic regression models where dependent variable has only two different 

values have been applied on many fields. For example, agricultural data sets have 

been studied by Battaglin & Goolsby (1996), Cimpoieş (2007), Lerman & Cimpoieş 

(2006), Minetos & Polyzos (2009), Msoffe et.al. (2011), Mueller et. al. (2005), Raut, 

Sitaula, Vatn, & Paudel (2011), Schroeder et.al. (2001) and Zhang & Zhao (2013). In 

this thesis, for the purpose of demonstrating the effects of misspecification on the 

ARE of 2R  in logistic regression model, an application on land consolidation will be 

performed. Nowadays, consolidation activities have been carried out, extensively, in 

many countries around the world. In the beginning of the work, the opinions of the 
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peasants should be determined cautiously for planning parcels. To be able to predict 

willingness of peasants for consolidation will help the researcher to have an idea 

about the behaviors of peasants statistically. So that willingness of peasants will also 

be investigated using this method.  

 

The thesis proceeds as follows. In Chapter 2, after giving a general overview to 

logistic regression model, the concept of ARE will be presented and general formula 

for ARE for the case of categorizing the explanatory variable X which has 

exponential or Weibull distribution will be introduced. Chapter 2 will also include 

the types of misspecification. To compare the behaviors in terms of efficiency under 

misspecification, three well-known and favorite 2R  statistics will be explained in 

Chapter 3. These statistics are the ones already included in most logistic regression 

outputs in popular statistical software packages such as SPSS, SAS and STATA. The 

illustration of the effects of misspecification on the efficiency through simulation 

studies and the real data set of land consolidation will be given in Chapter 4. Finally, 

concluding remarks will be presented in Chapter 5.  
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CHAPTER TWO 

MISSPECIFICATION IN LOGISTIC REGRESSION 

 

For model building stage in logistic regression, the most important assumption is 

that the model is correctly specified. It means that the model has the correct 

functional form, does not include irrelevant variables and has all the relevant 

variables. Misspecification may cause undesirable results such as biased logistic 

regression coefficients, inefficient estimates, invalid statistical inferences and less 

efficient test statistics (Lagakos, 1988b; Menard, 2000). Nevertheless, misspecifying 

an explanatory variable is a common problem in logistic regression, particularly in 

research studies. Therefore, there are numerous studies in literature regarding this 

issue for both linear and logistic models such as Adewale & Wiens (2009), Schafer 

(1987), Stefanski and Carroll (1985), White (1982).  

 

After introducing the logistic regression model in the subsequent section, 

asymptotic relative efficiency will be explained in detail as an introduction to 

misspecification in Section 2.2. Then, in Section 2.3, the reasons and consequences 

of various misspecification types will be described. Categorizing a continuous 

independent variable, omission of an explanatory variable from a regression and 

finally consequences of using incorrectly specified model will be given in separate 

subsections. In this thesis, we are only interested in binary logistic regression where 

response takes only two different values. The term “logistic regression” will refer 

only to the binary case. 

 

2.1 Logistic Regression Model 

 

In simple linear regression analysis, we accept that variables are linearly related 

and it is possible to calculate the strength of the linear relationship between variables 

as  

 

iii XY   10
, ni ,,1                         (2.1) 
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where 
iY  and 

iX  are , respectively, the dependent and explanatory variable for ith 

observation. 
iX  is assumed to be fixed. 

0  and 
1  are parameters whose values are 

being estimated and   which is an independent random variable normally distributed 

with parameters 0 and 2  is called the error term. Since   0iE  ,  

 

         
  .10 ii XYE  

                                  
(2.2)

 

 

Considering 
iY  is binary taking on the values of only 0 or 1, the probability that 

1iY  is assumed to be  iX     ii XYP 1  and the probability that 0iY  is 

assumed to be  iX1      ii XYP  10 .   

 

In defining probabilities like  iX , 
iX  is used to emphasize that this probability 

is a function of the explanatory variables. For sake of simplicity, 
i  will be used 

instead of  iX , thereafter. For a binary random variable 
iY ,    

 

          iiiiYE   101 .              (2.3) 

 

Hence, from Equation (2.2) and Equation (2.3), the expected value of 
iY  is  

 

  iii XYE   10
.              (2.4) 

 

Therefore, the expected value of response always represents the probability that 

response is equal to 1 for all given levels of explanatory variables.  

 

When response 
iY  is binary, linear regression assumptions are violated and some 

important differences between linear and logistic regressions arise. First of all, for 

binary responses, the condition that the errors follow normal distribution is not 

satisfied, because the error   iiiii YXY   10
 takes on only two values. 

If 1iY , then 
ii  1  with probability 

i  and if 0iY , then 
ii    with 
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probability 
i1 . Therefore, it is clear that the error does not follow a normal 

distribution, but follows a distribution with zero mean and variance  ii  1  which 

is a sign of a violation of linear regression assumption which requires the constancy 

of the error variance. Since 
i  depends on 

iX  and i  depends on 
i ,   i 2  varies 

by different levels of explanatory variables and so is not a constant. The most 

important difference between linear and logistic regression models is the range for 

the response’s expected value. In linear regression, this expected value takes on any 

value within the range from   to  . On the other hand, since the response 

function represents the probabilities in logistic regression, its expected value should 

take on the values of only greater than or equal to zero or less than or equal to 1. 

However, using the linear function given in Equation (2.4) may give values outside 

of this range. To solve this problem, several transformations may be used. The most 

popular one among these is the logistic function. 

 

The logistic function has the following form: 

 

 
 
 i

i
ii

X

X
YE

10

10

exp1

exp









 , ni ,,1                   (2.5) 

 

which is a nonlinear model in parameters.  

  

Using Equation (2.5), the formula for the odds of the success  1iY  is obtained 

as below.  

 

    iii XX 1010 expexp1                  

 

So,  

 

     

    ii

iiii

X

XX









1exp

expexp

10

1010

             (2.6) 
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Therefore, the odds that 1iY  is expressed as 

 

 i

i

i X10exp
1








.              (2.7) 

 

Taking the logarithm of Equation (2.7), we obtain a model linear in parameters 

and may take any values within the range of   ,  and define as 

 

 

i

i

i

i

X10

1
loglogit
























               (2.8) 

 

where ni ,,1 . This expression is called as logit function. Thus, the logit 

transformation helps linearize the nature of the nonlinear relationship between 

explanatory variable and the probability of dependent variable.  

 

Maximum likelihood estimation is the mostly used technique to estimate the 

parameters for the logistic regression model. Since each 
iY  observation is an 

independent Bernoulli random variable, their joint distribution function equals  

 

     







n

i

Y
i

Y
i

n

i

iin
iiYfYYf

1

1

1

1 1,,  ,            (2.9) 

 

which is also the likelihood function of the parameters   represented as  L . It 

would be easier to work with the logarithm of the likelihood function.  
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         

     

      



















n

i

ie

n

ieiei

n

i

iei

n

i

ie

n

i

iei

n

i

iei

n

iei

n

i

Y

i

Y

iee

Y

YY

YYL ii

111

111

1111

1

1log1loglog

1log1loglog

1log1log1loglog







 

 

Finally, log-likelihood function is 

 

   

    




































n

i

ie

n

i

ii

n

i

ie

n

i i

i
eie

XXY

YL

1

10

1

10

11

exp1log

1log
1

loglog









         (2.10) 

 

To find the value of   that maximizes  L , we differentiate Equation (2.10) 

with respect to 0  and 
1  then set the resulting expressions equal to zero. But since 

the equations do not have closed form, iterative methods are used to obtain estimates. 

When we have more than one explanatory variable, the model in Equation (2.8) takes 

the following form.  

 

     kikiii XXX   22110logit            (2.11) 

 

The log-likelihood function for this multiple binary logistic regression model 

becomes as 

 

        
   












































n

i

k

j

ijje

n

i

k

j

ijjie XXYL
1 1

0

1 1

0 exp1loglog         (2.12) 
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2.2 Asymptotic Relative Efficiency 

 

“For two competing statistical procedures A and B, suppose that a desired 

performance criterion is specified and let 
1n  and 

2n  be the respective sample sizes at 

which the two procedures ‘perform’ equivalently with respect to the adopted 

criterion.” (Serfling, 1980, p. 50). The ratio of these sample sizes is called relative 

efficiency of procedures. If this ratio approaches to some limit, then this limit value 

is named as asymptotic relative efficiency (ARE).  

 

There are two fields that ARE is taken into consideration: ARE in estimation and 

ARE in testing. At the following subsections, these issues will be discussed.    

 

2.2.1 Asymptotic Relative Efficiency in Estimation 

 

Properties of estimators are considered for finite samples and infinite samples. For 

finite sample the estimator with a smaller variance is generally said to be efficient. 

However, qualifying an estimator as efficient only on the basis of variance is not 

reasonable. Not only dispersion but also expected value of an estimator should be 

calculated because of considering the property of unbiasedness, since both bias and 

variance are important and need to be as small as possible to achieve good estimation 

performance. In this sense, it will be more convenient to use mean square error 

(MSE) as a combination of variance and bias. Let T be an estimator of  .  

 

 

    22

2

TBiasT

TEMSE








             (2.13) 

 

where 2  represents the variance. It is clear that for an unbiased estimator   TE  

and so the mean square error equals the variance. In such case, a judgment can be 

made in accordance with variance and therefore it is said that unbiased estimators 

with the smallest variance are called efficient.    
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The asymptotic property of efficiency is considered when sample size becomes 

infinitely large. In such cases, since evaluations are much easier than the ones for 

finite-samples and often possible only asymptotically, the properties of an estimator 

are examined asymptotically. In this regard, it is said that a maximum likelihood 

estimate is asymptotically efficient, if its limiting distribution is asymptotically 

normal around the parameter value with a variance which achieves the Cramér-Rao 

lower bound. In this sense, under some general mild conditions, maximum likelihood 

estimates are asymptotically efficient. Let 
nXX ,,1   be a sample with probability 

density function  ;Xf  and let nT  based on this sample with size n be a sequence 

of estimators for a parameter   , then if      nn TNTn 2,0    and 

 

     
 

 



































2

2

2

;log 











XfE

d

d

Tn             (2.14) 

 

so the asymptotic variance of nT  achieves the Cramér-Rao lower bound, then it 

satisfies the conditions of being asymptotically efficient (Casella & Berger, 2002; 

Cox & Hinkley, 1974).  

 

An estimator is asymptotically unbiased if its asymptotic mean is equal to the true 

value that is   


n
n

TElim . However this is not true for asymptotic variance. Since 

when sample size increases an estimator often accumulate to only one point and so 

 nT2  approaches to zero, asymptotic variance cannot be calculated by limiting 

variance of estimator as n . Nevertheless, if it is required to calculate the limit 

of the variance, a constant 
nk  should be inserted to force it to a limit. In other words, 

if   


22lim  nn
n

Tk , then 2  is said to be the limiting variance of 
nT .  
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On the other hand, the asymptotic variance is defined as the variance of the limit 

distribution of the estimator. Therefore, if     2,0
nTnn NTk   , then 2

nT  is said 

to be the asymptotic variance or variance of the limit distribution of 
nT  and is defined 

by Hanushek & Jackson (1977) as  

 

         2
2 limlim

1
nn

n
T TETnE

nn












            (2.15) 

 

So it is obvious that the asymptotic variance is the expected squared deviation of 

nT  about its asymptotic mean. If 
nT  is asymptotically unbiased and asymptotically 

normal with mean   and variance 2

nT , then asymptotic efficiency of 
nT  is  

 

     

    

  
2

1

12

lim

lim

n

n

T
n

T
n

n

i

iTe



















            (2.16) 

 

where  
 












 




 ;

;log
2

2 yf
Ei  and is called the Fisher information about   

(Cox & Hinkley, 1974).   

 

“The efficiency of the MLE becomes important in calibrating what we are giving 

up if we use an alternative estimator” (Casella & Berger, 2002, p. 477). Because of 

simplicity and robustness, sometimes different alternative estimators are considered. 

It is important to find out which one is more convenient to use. In the sense that, for 

competing two estimators 
1T  and 

2T  with following limiting distributions 

 

    2

11 ,0  NTn n   

 

    2

22 ,0  NTn n    
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the asymptotic relative efficiency of 
2T  with respect to 

1T  is the ratio of their 

asymptotic efficiencies and denoted as  

 

       
 
  2

2

2

1

1

2
12 ,






Te

Te
TTARE             (2.17) 

 

ARE may take on the values between zero and infinity. The estimator 
1T  is 

preferred if this ratio is less than 1, on the other hand the ratio greater than 1 

indicates that 
2T  is more efficient than 

1T .  

 

To better understand the ARE of two estimators, the comparison of mean ( X ) 

and median ( X
~

) may be given as an example. Mean and median both tries to 

measure the central tendency so it is remarkable that these statistics are alternatives 

to each other. In this regard, ARE is a useful way of comparing performances in 

terms of efficiency. Central limit theorem states that the sample means of random 

samples from a population with mean   and finite standard deviation   have mean 

  and finite standard deviation n , furthermore with sufficiently large sample 

sizes, the sampling distribution of mean will approximately be normal with the same 

parameters, regardless of how the population values are distributed. By the way, for 

the same population, the median has approximately normal distribution with   

mean and 
  nf 2

1
 standard deviation, where  f  is continuous density function 

(Panik, 2005). Since  



2

1
f , the variance of median is equal to 

n2

2
. 

Hence, ARE of median versus to mean as the ratio of their variances from Equation 

(2.17) (Serfling, 2011) 

 

 
 

 
64.0

2

2

~
,

~
2

2

2

2










n

n

X

X
XXARE . 



 

 

14 

 

 

Since the value of ARE is less than 1, it is said that mean is more efficient than 

median. In other words, mean needs 64% as many observations as the median to 

estimate population mean with the same efficiency, according to the definition of 

relative efficiency given in Section 2.2.  

 

2.2.2 Asymptotic Relative Efficiency in Testing 

 

The concept of asymptotic relative efficiency is a useful technique for the 

comparison of test sequences and often called Pitman efficiency since calculations 

are based on his theorem. Pitman (1949) introduced the earliest approach to ARE in 

testing. Serfling (1980) mentioned Pitman approach is widely applicable since the 

only major requirement is the information about asymptotic distribution of the test 

statistic (Lachin, 2000).     

 

“Given two tests of the same size of the same statistical hypothesis, the relative 

efficiency of the second test with respect to the first is given by the ratio 
2

1

n
n  where 

2n  is the sample size of the second test required to achieve the same power for a 

given alternative as is achieved by the first test with respect to the same alternative 

when using a sample of size 
1n ” (Noether, 1955, p. 64). Therefore, relative 

efficiency requires identical alternatives but does not require a limited or a specific 

alternative, so this approach can be applied, in any case (Serfling, 1980). 

 

Consider a test for the null hypothesis 
00 :  H  against the alternatives 

01 :  H  based on n observations and based on the statistic  nn xxTT ,,1  . Let 

   nnTE   and     22
nnT  . Consider the sequence of alternatives is 

 nkH n  01 : , where k is an arbitrary positive finite constant and 0  

(Eeden, 1963, Noether, 1955). Alternative n   changes with the sample size n and 

0lim  


n
n

. Assume that the following conditions are satisfied: 
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A.      00

1

0    m

nn  ,    00  m

n
  

Suppose that the derivatives exist. 

 

B. 

  
 

0lim
0

0 



c

n

n

m

n

m

n 


 

 

C. 

  
  

1lim
0


 


m

n

n

m

n

n
 

 

D. 
 
 

1lim
0


 



n

nn

n
 

 

E. The distribution of      nnnT   tends to the standard normal 

distribution, uniform in  , with d 00   for some 0d . 

 

The condition E can be replaced by the following. 

 

  E'. The distribution of     nnnnnT   tends to the standard normal 

distribution, both under the alternative  nkH n  01 :  and the null hypothesis 

0 n
. 

 

Pitman’s Theorem: (Pitman, 1949) The asymptotic relative efficiency of two tests 

satisfying the above conditions with 
21    and 

21 mm   is equal to the limit of the 

ratio of the efficacies of the two tests. 

 

Pitman proved this theorem by following calculations. Let 
nT1
 and 

nT2
 be two test 

statistics of tests with the same alternative  nkH n  01 : , since we assume that 

  21
.  These two tests must have the same power with respect to the same 

alternatives, as mentioned in definition. So, the alternatives are the same if 
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
2

2

1

1

n

k

n

k
              (2.18) 

 

From Equation (2.18) the ratio of the sample sizes is 

 

1

2

1

2

1











k

k

n

n
             (2.19) 

 

Noether (1955) proved that the power of a test is asymptotically 

  









!m

ck
L

m

nn   where   













 dxx2

2

1
exp

2

1
 and      . So two 

tests have the same power if 

 

!! 2

22

1

11
21

m

ck

m

ck
mm

             (2.20) 

 

If mmm  21
, then from Equation (2.19) 

 

 m

c

c

k

k

n

n
1

1

2

1

2

1

2

1


















             (2.21) 

 

Substituting 
1c  and 

2c  with the one given in condition B with respect to two tests 
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Pitman called the quantity  0
1 m
inR  the efficacy of the ith test where 

 
  
 




in

m
in

inR  , so the limit of the ratio of the efficacies of the two tests is the 

asymptotic relative efficiency of these tests as 

 

  
 

 0
1
1

0
1
2

12 lim,








m
n

m
n

n R

R
TTARE


            (2.23) 

 

If 21m , for 1m  and 21 , then 
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          (2.24) 

 

This is the general definition of asymptotic relative Pitman efficiency. In this 

regard, only if  

 

  

   
1lim

01

02


 



m
n

m
n

n
            (2.25) 

 

then ARE reduces to 

 

 
2

2

2

1
12 lim,

n

n

n
TTARE






             (2.26) 

 

Therefore, if Equation (2.26) satisfies, ARE of two test statistics equals the limit 

of their variances. Some of authors addressed the relation between Pitman’s ARE of 
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a test versus another and the correlation coefficient of their test statistics, for example 

Hájek (1962) showed this relation for rank-orders tests (Eeden, 1963).  

 

Theorem: Assume that    is the asymptotic correlation coefficient between test 

sequences 
nT1
 and 

nT0
 satisfying all the Pitman’s conditions and    0 n

, so 

that   2

01, TTARE  (Eeden, 1963). 

 

Proof of this theorem starts with considering tests of the form as 

  nnn TTT 101    satisfy the Pitman’s conditions, where   is a constant and 

10    (Eeden, 1963). From this point, Eeden (1963) and Serfling (1980) 

continued to the proof through two different ways. Serfling (1980) assumed that 
T  

is a best test maximizing  TTARE ,0
 for 

  10

10

1 cc

cc









 . When both nominator 

and denominator are divided by 
1c , it is obtained that  

 

  

     21

10

21

10

,11

,

TTARE

TTARE









 , 

 

where   
1

021

10 ,
c

c
TTARE  .  

 

Since         nnn 101   so the first order derivative of this mean is 

 

          01
21

01000 1~1 ccnnnn     

 

and the variance of test is 
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 





121

121

22

10
2
1

22
0

22
nnnnn
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Therefore, from Pitman’s condition B, 
c  is  

 

 
  

     2
1

2221

01

21

121

1











n

ccn
c            (2.27) 

 

If   is replaced with   in Equation (2.27), then for the best test 

 

       
2

221

10

0
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,
1,











TTARE
TTARE            (2.28) 

 

If 
0T  is a best test, then   1, 10 TTARE , so we have   2

01, TTARE . 

 

Eeden (1963), with a different perspective, in order to proof the theorem, implied 

that if 
nT0
 is a best test, then so as to maximize  

2

0

0 , 














c

c
TTARE ,  

 

0cc 
 for every               (2.29) 

 

Substituting 
c  in (2.29) 

 

  

   
0

121

1 2

0
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2

01 

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c
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
.           (2.30) 

 

It follows that 

 

       01211 2

0

2

0

22

0
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10  ccccc  .          (2.31) 

 

After some mathematical calculations, 
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      022 2

0

2

1010

2

0

2

1010

2

0

2

1

2  cccccccccccc        (2.32) 

 

which is simplified with   0
2

01

2

0  ccc  , since 
0c  is positive, 

 

   21

01

0

1 ,TTARE
c

c
 .            (2.33) 

 

Begg and Lagakos (1990, 1993), Lagakos (1988a) and Tosteson and Tsiatis 

(1988) particularly have showed great interest in the asymptotic relative efficiency of 

tests of association when explanatory variables have been misspecified or omitted, in 

logistic regression models, using these findings. 

 

2.3 Misspecification  

 

Correct specification of the model is the most important assumption for the 

logistic regression model. The violation of this assumption can occur due to: 

omission of an important variable, using a wrong functional form, inclusion of 

irrelevant variables. Without correct specification we will have biased logistic 

regression coefficients and less efficient estimates as well as invalid statistical 

inferences. However, misspecification is not an uncommon problem in practice, 

since we never know what the correct model is in real and we only assume that the 

model is correctly specified.  

 

The types of misspecification including the discretizing a continuous explanatory 

variable, omission of a covariate, using wrong functional form of an explanatory 

variable will be presented, at the following subsections. 

 

2.3.1 Categorizing a Continuous Explanatory Variable 

 

In medical and agricultural economics researches, particularly, when multiple 

logistic regression models are built, categorizing seems useful for simplifying the 

interpretation of models or sometimes the only available information about the 
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explanatory variable is already categorized. The most common forms of 

categorization are dichotomization and trichotomization, such as categorizing general 

health as good and bad or categorizing blood pressure as low, medium and high. 

However, though its simplicity and preferableness, for whatever reason, categorizing 

causes some problems in the analysis, such as misspecification error and loss in 

efficiency for test statistics. Prais and Aitchison (1954) studied on grouping in 

regression analysis and mentioned that regression estimates based on the grouped 

data will be unbiased and their variances will always be larger than the ones based on 

the ungrouped observations and this is caused by manner of grouping. They noted 

that the correlation coefficient for categorized data is an “unsatisfactory estimator of 

the correlation in the population”. Cramer (1964) agreed with them and added that 

the correlation coefficient based on the categorized data have unreliable results since 

it leads larger values than the one based on the original observations. He also 

indicated that groups should be defined as the ones minimizing the “within group 

sum of squares” of the variable so the efficiency of the categorized estimator will be 

maximized. Jarque (1981) added that, as grouping, all information on the variables 

should be included to the regression analysis for efficient estimates. Consequently, it 

is clear that since categorizing causes some loss of information, it is worthwhile to 

determine categories in a way that reduces this loss.   

 

It is important to decide the number of categories (k) to choose and the place of 

the category cutpoints, when categorizing an explanatory variable X. The choice of a 

cutpoint may be based on expert’s knowledge about the issue or experience or the 

results of other similar studies. However, sometimes cutpoints are not readily 

available. In these cases, statistical methods should be used to determine them. An 

unduly broad or unduly narrow range of categories causes that individuals with 

different levels of risk are in the same category. Thereby, there is quite likely loss of 

information. So, the researcher should be careful so as to determine the cutpoints that 

make this loss as small as possible. Connor (1972), particularly, revealed some 

problems on defining the correct cutpoints and mentioned that the effect of 

increasing the number of categories, especially of more than four categories, is small 

and he also mentioned that the choosing optimal categories or classes depend on the 
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distribution of X. Begg and Lagakos (1990) and Lagakos (1988a) investigate 

categorizing for 6,,2 k  and also compared optimal intervals with equiprobable 

intervals. They concluded that if distribution of X is almost symmetric, then 

equiprobable intervals are allowed to use but if the distribution of X is quite skewed, 

then only optimal intervals should be used, instead of equiprobable intervals.   

 

As a preliminary study, Cox (1957) explained a measure of information loss from 

grouping for choosing cutpoints for different size of categories. He suggested that 

efficiency of test may be used as a criterion for cutpoint selection and proposed the 

average information loss as follows 
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where 
ip  is the probability of an observation appearing in the ith group. This 
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 where 
ix  for ki ,,2   are the class limits and the 

ith group is defined by ii xXx 1 .  iXE  is the mean of all observations in the ith 

group and   is the standard deviation of X and each group have the same standard 

deviation.  

 

In analysis of variance, as known, total sum of squares of all observations of the 

entire sample is equal to the sum of the sum of squares within groups and the sum of 

squares between groups as SSWGSSBGSSTO  . The following equation expresses 

in more detail.   
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where ijx  is the jth observation for ith variable.  
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Cramer (1964, p. 237) introduced the ratio 

 

SSTO

SSWG

SSTO

SSBG
1              (2.36) 

 

“as an indication of the relative efficiency of alternative methods of grouping a given 

set of observations”. If this ratio goes to unity, then the efficiency will be less 

reduced when grouping. Therefore, Cox’s formula in Equation (2.34) with respective 

to relative efficiency becomes 
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It seems that ARE has to be maximized so as to reduce the loss of information. 

Connor (1972) investigated ARE of tests of the association between independent and 

dependent variables for up to 6 optimal intervals and for explanatory variable having 

the uniform, normal and exponential ( 1 ) distributions. Lagakos (1988a) extended 

the results including the ARE values for equiprobable intervals that means intervals 

with equal frequencies of occurrence. He noted that ARE for equiprobable intervals 

can be much smaller, when the explanatory variable follows an exponential 

distribution. The results regarding test statistics from categorizing with optimal 

classes are reproduced in Table 2.1 by following Cox’s guidance. Related 

calculations are given below. Let *X  denotes misspecified version of X.  
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Table 2.1 ARE when categorizing an explanatory variable X into k intervals 

k Distribution of X Class Probabilities  XXARE ,*  

2 

Uniform 0.500, 0.500 0.75 

Normal 0.500, 0.500 0.65 

Exponential 0.797, 0.203 0.65 

3 

Uniform 0.333, 0.333, 0.333 0.89 

Normal 0.270, 0.459, 0.270 0.81 

Exponential 0.639, 0.288, 0.073 0.82 

4 

Uniform 0.250, 0.250, 0.250, 0.250 0.94 

Normal 0.164, 0.336, 0.336, 0.164 0.88 

Exponential 0.530, 0.300, 0.135, 0.035 0.89 

5 

Uniform 0.200, 0.200, 0.200, 0.200, 0.200 0.96 

Normal 0.109, 0.237, 0.307, 0.237, 0.109 0.92 

Exponential 0.451, 0.291, 0.165, 0.074, 0.019 0.93 

6 

Uniform 0.167, 0.167, 0.167, 0.167, 0.167, 0.167 0.97 

Normal 0.074, 0.181, 0.245, 0.245, 0.181, 0.074 0.94 

Exponential 0.393, 0.274, 0.176, 0.100, 0.045, 0.012 0.95 

 

The results in Table 2.1 implies that if the explanatory variable follows normal 

distribution, then categorizing this variable into  groups costs 35% loss in 

efficiency of test statistics, similarly, categorizing into  groups causes 19% 

efficiency loss and so on. It is clear that the increasing the number of categories gives 

less loss in efficiency, for all three distribution types, as expected.  

 

Suppose that X is standard normally distributed with the following probability 

density function  
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Let the size of categories be 2, k = 2, if so the cutpoint is taken as the mean of X, 

zero, by symmetry conditions and the percentages of individuals for in the two 

groups being 50.0 and 50.0. For k = 3, a value that maximizes ARE should be chosen 

so we have to choose y > 0 and the groups are       ,,,,, yyyy  by symmetry, 

again. The conditional mean of X given 
21 xXx   is 
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The probabilities that X falls into the three different intervals are 
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Therefore, since    ygyg   and    yGyG 1  from symmetry, the asymptotic 

relative efficiency is  
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After simplifying, it is obtained 
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          (2.39) 

 

In order to find the value of y, the derivative of ARE is found and set to zero. 

After calculations, it seems that ARE has a maximum value of 0.8098 attained at 

612.0y . Therefore, the optimal cutpoint for standard normal distribution is 0.612. 

Besides, for general normal distribution with different parameters and for 3k , the 

three groups should be in the intervals such as   612.0,  , 

  612.0,612.0  ,   ,612.0  . The probabilities of observations being 

in the three groups are as follows.  
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For example, if the normal distribution with parameters zero mean and 3 standard 

deviation is considered, then the intervals will be    836.1,836.1,836.1,  , 

 ,836.1  and the ARE will decrease the value of 0.0899.  
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The information loss formula, as seen from the Table 2.1, can be applied to other 

distributions such as exponential distribution. In literature, exponential distribution 

has been employed but only for the ones having parameter 1. We will extend the 

results for other values of parameter   and make a generalization. Suppose that X is 

exponentially distributed with parameter  . The conditional mean of X given 

21 xXx   is 
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When the number of categories k = 2, the probabilities that X falls into the first 

and second intervals are 
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Therefore, ARE equals 
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After simple calculations Equation (2.41) follows 
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Taking the derivative of ARE and setting it to zero as follows 
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Calculations show that after solving Equation (2.43) the result is 
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Therefore, the cutpoints that is the values maximizing ARE are calculated based 

on the parameter  . So the cutpoint choice for exponential distribution with 

different parameters may be generalized. If we assume that 1 , then 5936.1y  

and substituting it in ARE Equation (2.42) the following result given in Table 2.1 is 

found 
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The optimal probabilities due to y can be calculated as below. 
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Hence, consequently it is clear that ARE has a maximum value of 0.6476 attained 

at 5936.1y . The percentages of individuals in the two groups are 80.0 and 20.0. 
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Furthermore, for example, when 3  the new cutpoint value will be 

5312.0
3

5936.1
y  with the same class probabilities and ARE will reduce to 

0.072. 

 

When k = 3, the probabilities that X falls into the first, second and third intervals 

are as follows. 
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Using these probabilities, ARE is calculated as follows. 
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We may base our calculations on the exponential distribution with 1  and so 

Equation (2.45) follows,  

 

 

   
 

2

2

2

21

2

1

2

2

2

21

21

21

1

1

1

1
1







































































y

y
y

yy

yy
yy

y

y
y

e

ye
e

ee

yeye
ee

e

ye
eARE

     (2.46) 

 



 

 

30 

 

Setting derivative of the above ARE is equal to zero, the cut points are calculated 

as 0176.11 y , 6112.22 y  and 8203.0ARE . The percentages of individuals in 

the three groups are 63.9, 28.8 and 7.3 are found from following expressions,  
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As a generalization of unit exponential distribution, for different   parameters, 

the cutpoints may be calculated by 


0176.1
 and 



6112.2
. So, if we take 3 , the 

new values of cutpoints will be 3392.0
3

0176.1
1 y  and 8704.0

3

6112.2
2 y  

with the same class probabilities and ARE will reduce to 0.227. 

   

As an extension, the information loss formula can be applied to Weibull 

distribution with the following probability density function  
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where    is location parameter, 0  is scale parameter and 0  is the 

shape parameter. The corresponding distribution function is  
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Let 0 , 1  and 2 . The conditional mean of X given 
21 xXx   is 
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For k = 2, the probabilities that X falls into the first and second intervals are 
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Calculations show that the maximum ARE is 0.8847 and the value of y that gives 

this maximized value is 1.26, with the percentages of individuals in the two groups 

are 0.80 and 0.20.  

 

For k = 3, the probabilities that X falls into the first and second intervals are 
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Thereby, the cutpoints are 3278.01 y , 1692.12 y  with ARE = 0.9897. The 

percentages of individuals in the three groups are 0.10, 0.64 and 0.26, respectively.   
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2.3.2 Omission of a Covariate 

 

In observational studies, to attain an important explanatory variable is sometimes 

difficult or expensive and sometimes impossible to measure and therefore omitting it 

from the model may be preferred, easily. However, the omission of some variables 

that affect the dependent variable may cause an omitted variables bias. This bias 

depends on the correlation between the independent variables which are omitted and 

included in linear models. If the omitted variable is completely uncorrelated with the 

variables in the model, the coefficients may not be biased, but this is almost not 

possible in practice. The omitted variable bias has been widely studied for linear 

regression models as in Erees and Demirel (2012), Leightner and Inoue (2007). 

Besides, Gail, Wieand and Piantadosi (1984) have studied on the bias caused by 

omitted covariate in generalized linear models. Lagakos (1988a), Begg and Lagakos 

(1993) studied on omitted variables effect on the efficiency of test statistics used for 

significance of logistic regression parameters. Neuhaus (1998) and Neuhaus and 

Jewell (1993) have investigated the effects of omitting covariates on the parameter 

estimation in generalized linear models.  

 

In linear regression models, if the omitted covariates are independent of the 

included variables, then model misspecification due to omission does not cause an 

omitted variable bias. However, in generalized linear models, so that in logistic 

regression models, omitting covariates associated with the dependent variable, even 

if they are independent of the included variables, causes seriously downward 

estimates of regression coefficients (Neuhaus, 1998).   

   

Suppose that the true model has the following form with mean function given in 

Equation (2.51) 

    

  ZXZXY 210,1Prlogit                       (2.50) 

 

with 
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             (2.51) 

 

Suppose that the covariate Z is omitted and then the misspecified model will be as 
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with 
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When the effect of an omitted covariate is investigated in terms of efficiency, the 

asymptotic Pitman efficiency of tests may be used as a criterion. If Z is independent 

of X, the variances of the estimates of true and misspecified regression coefficients 

and test statistics based on these coefficients may be compared to calculate ARE 

(Gail et al., 1984, Neuhaus and Jewell, 1993). In addition, if X and Z are correlated, 

the variances of the estimates of true and misspecified regression coefficients may be 

compared when Z is a nonconfounding covariate which means that Z does not 

confound the association of X and Y and so 
1

*

1   . Therefore, the ARE with 

respect to omitted variable is  
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where *X  denotes a misspecified version of X and 0 indicates that Z has been 

omitted. 
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If the omitted covariate is independent from the included variables, then omitted 

covariate causes loss in efficiency and this loss increases depending on the 

association of the omitted covariate and the response. Nonetheless, omitting 

nonconfounding covariates provides a gain in efficiency and this gain in efficiency 

rises as the effect of the omitted covariate to dependent variable rises (Neuhaus, 

1998).  

 

2.3.3 Mismodelling a Continuous Explanatory Variable 

 

The aim of regression analysis is to determine the best specified model to explain 

the data of interest. When the explanatory variable is continuous, it must be decided 

for its functional form, since using some transformations relating continuous variable 

may cause some problems. In medical studies, in particular, because of the 

complexity of relationships between variables, simple regression models may not 

represent the true relationships between these variables, exactly. It may not even be 

possible to detect whether a model is incorrectly specified, since for the sample sizes 

available in many applications, diagnostics of model fit have good power to detect 

only a limited number of the potential ways that a model may fail to be correctly 

specified (Keele, 2008). Therefore, it is important to know how much loss will occur 

and what the consequences will be and whether the results are reliable, in such cases. 

In agricultural research, adding the logarithm of the amount of forage consumption to 

the model as an explanatory variable whereas it is supposed to be added without 

taking logarithm is an example of mismodelling. 

In linear regression, using wrong functional form and testing whether the model is 

linear are well established. Particularly, Ramsey RESET (Regression Specification 

Error Test) test is used as a general test so as to detect misspecification of functional 

form (Erees & Demirel, 2012). Its logic depends on the inclusion of the different 

powers of the fitted values to the original model. If the coefficients of associated with 

the added variables are significant, there is misspecification because of wrong 

functional form or omitting important variable (Brooks, 2008; Verbeek, 2004).  
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In literature, several transformations relating to explanatory variables are studied 

so as to find out how much efficiency may be lost when using the incorrect 

functional form of a continuous explanatory variable, in logistic regression. Lagakos 

(1988b) made a study about this kind of misspecification and found the results in 

Table 2.2. The uniform, two unimodal and symmetric beta distributions, a right-

skewed beta distribution, and a U-shaped beta distribution were selected, for the 

distribution of X . Two convex functions, 2X  and  Xexp , two concave functions, 

X  and  Xln  were examined as the functional forms of X. 

 

Table 2.2 ARE when mismodelling a continuous explanatory variable X  

Distribution of X  Shape of distribution 

ARE when X equals 

2X   Xexp  X   Xln  

Uniform (0, 1) Flat 0.94 0.98 0.96 0.75 

Beta (2, 2) Unimodal, symmetric 0.95 0.99 0.98 0.86 

Beta (5, 5) Unimodal, symmetric 0.97 1.00 1.00 0.93 

Beta (1, 3) Skewed right 0.90 0.99 0.95 0.69 

Beta(0.5, 0.5) U-shaped 0.95 0.97 0.93 0.68 

 

It is understood from the table that if the distribution of the explanatory variable is 

beta with parameters (2, 2), for example, and if we use the form of the squared root, 

by mistake, the asymptotic efficiency of true version relative to misspecified will be 

0.98. In other words, the loss in efficiency will be 2%.  

 

The results in Table 2.2 are reproduced keeping that the asymptotic relative 

efficiency is equal to the square of the correlation in mind as given in Equation 

(2.33). Let misspecified version of X denote *X . In this regards, since 

  2*
*,
XX

XXARE  , as given in Equation (2.33), some basic calculations are made 

using correlation formula. For example, suppose that the distribution of *X  is 

uniform (0, 1) and the relationship between *X  and X is  2*XX  , if so 

 XXARE ,*
 is calculated as 
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     
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Since           2**2**2** ,cov XEXEXXEXX  , we should calculate these 

expected values  
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Then the covariance 

 

  
12

1

3

1

2

1

4

1
,cov

2** XX  

 

and the variances are 
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Therefore, substituting values in the correlation formula 
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Then  XXARE ,*  is equal to    94,0
16

15
,

2**2 XX . Hence, the result of 

  94.0,* XXARE  is found using the fact given by Equation (2.33) and is 

consistent with the result in Table 2.2.  
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CHAPTER THREE 

COEFFICIENT OF DETERMINATION 

 

In logistic regression analysis, in contrast to linear regression, there is no standard 

definition of coefficient of determination ( 2R ). Different 2R  statistics in accordance 

with different perspectives have been proposed in recent years. After giving the 

multiple correlation coefficient for general linear models, previous works and 

recommendations of some authors, the most frequently used and suggested 2R  

statistics for logistic models will be discussed in more detail, in section 3.2. Each 2R  

statistic will be given in separate subsections and three well-known 2R  that are 

included in most logistic regression outputs in some underlying statistical software 

packages such as SPSS, SAS and STATA will be explained in last three subsections. 

 

3.1 2
R  Statistics 

 

Coefficient of determination, also called explained variance, is well established in 

classical linear regression models (Draper & Smith, 1998, Helland, 1987, Ohtani & 

Tanizaki, 2004). 2R  in linear regression is the square of multiple correlation which 

represents the total correlation between all the independent variables and the 

dependent variable. Since the square of a correlation is the same as a proportion of 

variance, 2R  is said to be the proportion of variance about the mean explained by 

the regression model and also called explained variance by the model (Miles & 

Shevlin, 2001). It measures how well the regression model performs as a predictor of 

dependent variable. It is well known that if the only available information are the 

values of the dependent variable and there is no knowledge about independent 

variables, then we use the mean of Y as the best predicted value of Y for all cases and 

minimize the sum of squared errors based on prediction using the mean of Y which 

equals to  2 YYi  which is called Total Sum of Squares (SSTO). On the other 

hand, if there is information about independent variables to predict Y, then we use the 

value of predicted Y from the regression equation Ŷ and minimize the sum of 
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squared errors based on this prediction. This quantity is called the Error Sum of 

Squares (SSE) and equals to  2ˆ  ii YY . Since this sum is expected to be smaller 

than the total sum of squares, the least squares method uses the minimization of SSE 

in order to find regression parameters. So as a proportion of variance, the idea of 2R  

is attributable to these sums of squares as 

 

SSTO

SSE

SSTO

SSR
R  12               (3.1) 

 

where SSR stands for Regression Sum of Squares. Since SSE is always less than or 

at most equal to SSTO and greater than 0, this ratio will be less than 1 or at least 

equal to 0 which means 10 2  R . 

 

Although in linear regression there is only one 2R  statistic, in logistic regression 

so many different measures of explained variation are reported on by different 

authors, throughout the years, because there is not one way to measure the strength 

of association between the dependent variable and all of the independent variables. 

As Efron (1978) indicated that linear regression models have only one error variation 

criterion for continuous dependent variables (SSE) while logistic regression models 

have several error variation criterion such as squared error, entropy etc. for binary 

dependent variable. Moreover, Menard (2000; p. 17) gives another reason for 

deriving so many 2R  statistics and failing to agree on one statistic as “the existence 

of numerous mathematical equivalents to 2R  in OLS, which are not necessarily 

mathematically (same formula) or conceptually (same meaning in the context of the 

model) equivalent to 2R  in logistic regression”. Hence, analysts may face the 

difficulty of choosing the convenient 2R  statistic among all of them and wonder 

which statistic is the most efficient and under what conditions the statistic should be 

included in the analysis.  
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Kvalseth (1985, p. 281) compared various 2R  statistics and described eight 

criteria that they should possess to make a recommendation about the most 

convenient, the “good” 2R  statistic. Some of them may be summarized as:  

 

(1) 2R  must be useful as a goodness of fit measure and interpretable 

reasonably. 

 

(2) 2R  should be generalized and applicable to any type of model, 

independent variable whatever their statistical properties are. 

 

(3) The potential limits of 2R  should be defined in cases of perfect fit and 

complete lack of fit which are preferable to be 0 and 1.  

 

(4) “ 2R  should be such that its values for different models fitted to the same 

data set are directly comparable.”  

 

(5) “Relative values of 2R  ought to be generally compatible with those 

derived from other acceptable measures of fit (e.g., standard error of 

prediction and root mean squared residual).”  

 

There are different 2R  statistics proposed in the literature satisfying some of 

these properties. However, Menard (2000) extended criterion 4 and 5. He suggested 

that “the coefficient of determination should be comparable across not only different 

predictors, but different dependent variables and different subsets of the dataset” as 

an extension of criterion 4. Moreover, he indicated that 2R  is comparable with 

alternative coefficient of determination statistics but “some of the usual ‘other’ 

acceptable measures of fit (standard error of prediction, root mean squared residual)” 

given in criterion 5 “may not be appropriate” for logistic regression models (Menard, 

2000, p. 18).  So they cannot be comparable generally. Furthermore, Menard (2002) 

studied on the properties of six different statistics including the ordinary least 

squared 2R  (
2
OLSR ), the likelihood ratio 2R  (

2
LR ), geometric mean squared 
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improvement based 2R  (
2
MR ), adjusted geometric mean squared improvement based 

2R  (
2
NR ), the contingency coefficient 2R  (

2
CR ) and McKelvey and Zavoina 2R  (

2
MZR ). He recommended, after investigations and comparisons, 

2
LR  as the most 

convenient statistic for logistic regression.    

 

Mittlböck and Schemper (1996) submitted four properties that R-squares should 

have and while reviewing twelve useful and suggested measures, checked whether 

they meet the requirements for being a “good” statistic. Two of these properties are 

the same with (1) and (3) proposed by Kvalseth. The other two include (a) 

consistency with the character of logistic regression that is there should be no 

underlying linear regression, no linearly transformation and (b) having consistent 

values with multiple correlation coefficient in OLS, numerically. After checking with 

simulation if the measures provide the conditions, they recommended the squared 

Pearson correlation coefficient ( 2r ), 
2
OLSR  and Gini’s concentration measure (

2
GR ). 

 

Hagle and Mitchell (1992) studied on four 2R  type which are 
2
LR , 

2
CR , 2

MZR  and 

Achen pseudo 2R . They proposed an adjustment to 
2
CR  (

2
CAR ) and after using 

simulation methods and calculating error statistics of measures made comparisons 

with 2R  in OLS and found that, 
2
CAR  and 

2
MZR  are more preferable for being good 

approximations for 2R  in linear regression. Veall and Zimmerman (1996) evaluated 

the performances of nine 2R  statistics consisting five above and as a result of Monte 

Carlo simulations they recommended 
2
MZR  as the most consistent measure for the 

OLS 2R  when the binary dependent variable represents underlying continuous 

variable.  

 

Hosmer & Lemeshow (2000) examined the performances of 2r  and 
2
LR , with an 

example and found that even if with good logistic models, they may have lower 

values than the generally experienced values of R-square in OLS with good linear 

relationship. However, although this is not unexceptional for logistic regression, 
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these low values do not sound very well when interpreting an analysis. So the authors 

suggested that it would be more helpful to include the statistics to the analysis during 

the model building process instead of after fitting the model.   

 

3.2 Alternative 2
R  Statistics 

 

It’s possible to examine the most frequently used statistics into two categories of 

likelihood (or entropy) based and variance based (Hu, Palta & Shao, 2006; Mittlböck 

& Schemper, 1996). In the following five subsections, we will discuss variance based 

measures of explained variation and in the other five subsections we will present 

measures based upon likelihood function.  

 

3.2.1 The Ordinary Least Squared 2
R    

 

In general linear models, we defined the error and total sum of squares in Section 

3.1 and now we will use them for logistic regression as  
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The ordinary least squared (OLS) 2R  which is also called sum of squares 2R  

statistic is   
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2
OLSR  corresponds to the coefficient of determination in linear regression when 

applied to a linear regression model (Hu, Palta and Shao, 2006). This statistic that 

has been studied by also Agresti (1990), Maddala (1983) varies from zero to one and 

so provides an advantage of being direct comparable between logistic models and 

OLS based models. But Menard (2000) mentioned that this is possible just 

technically and for illumination.    

 

Kvalseth asserted that 
2
OLSR  satisfies nearly all the criteria except the end point 

requirement corresponding to complete lack of fit in some cases. He recommended 

2
OLSR  statistic after comparing eight different types of statistics for linear and 

nonlinear models, since he noted that if 
2
OLSR  is appropriate for linear models and 

nonlinear models which are inherently linear, it may be used and advisable for 

models which are inherently nonlinear. Menard agrees with him about 
2
OLSR  may be 

used as an analog of 2R  in liner regression since they are equivalent mathematically. 

But he also noted that they are not “conceptually” equivalent to each other because 

of the difference of the quantity that is being minimized. In linear models this 

quantity that 2R  based on is a squared error measure of variation and in logistic 

regression an entropy measure of variation, and so based on likelihood measure. 

Therefore 
2
OLSR  does not satisfy completely the first criteria of Kvalseth which says 

being interpretable reasonably. Because, 
2
OLSR  in logistic regression concerns about 

the numerical values of binary dependent variable instead of the probability of it. So, 

it is true that it has an intuitively interpretation but not in that is really concerned 

about.     

 

While Mittlböck & Schemper (1996) preferred 
2
OLSR  since it provides all 

desirable properties that they determined, Cox & Wermuth (1992) showed and 

emphasized that with binary dependent variables 
2
OLSR  takes low values, in general 

0.10, even if the model fits the data very well and so this causes lack of clear 

interpretation.  
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3.2.2 Squared Pearson Correlation Coefficient  

 

Squared Pearson correlation coefficient is the squared correlation between 

observed dependent variable Y and its sample fitted value Ŷ  in linear regression as 

known. Similarly, in logistic regression, squared Pearson correlation coefficient ( 2r ) 

is the square of the sample correlation between the observed binary dependent 

variable iY  and corresponding prediction 
i̂  and is defined as 

 

  

  

    








































n

i

i

n

i

i

n

i

ii

YY

YY

Ycorrr

1

2

1

2

2

1

22

ˆ

ˆ

ˆ,







                       (3.5) 

 

Since  nY
i

i

i

i  ˆ , and Y , this formula may be written as 
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Kvalseth (1985) explained that since this statistic is linear correlation based, it 

would not be effective as a goodness of fit measure for nonlinear models. Moreover, 

even though iY  and 
i̂  are highly correlated which is an expected result, if their 

values have great deviations, then misleading results may be produced caused by 

using 2r . On the other hand, Mittlböck & Schemper (1996) revealed that 2r  meets 

all requirements that they gave and recommended this statistic as one of the “good” 

2R  statistics.     
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3.2.3 Gini’s Concentration Measure 

 

The concentration measure of Gini    21 C  was used as a measure of 

dispersion of a nominal random variable Y by Haberman (1982). When logistic 

regression is discussed, Gini’s concentration is used as measure of the expected 

variance of the binary dependent variable under the models with and without 

independent variables as   ˆ1ˆ   and  YY 1 , respectively. Then 
2
GR  takes the 

form of 
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It’s clear from the equation that this statistic unusually involves no observed 

values, but only predicted values, in fact, their expected variances and assumes that 

the model is correct. Mittlböck & Schemper (1996) as a result of their comparison 

with simulation study showed that 
2
GR  meets all four requirements that they gave 

such as giving numerically consistent values with 2R  in general linear models. Hu, 

Palta & Shao (2006) studied on the recommended statistics by Mittlböck & 

Schemper that are 
2
OLSR , 2r  and 

2
GR  and found the following close relationship 

between them  

 

  22222 4 GOLSG RrRR  . 
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3.2.4 The Wald 2
R  

 

Magee (1990) used the relation between the F, Wald and likelihood ratio 

statistics, all of which are used for testing the same hypothesis which states that at 

least one of the k - 1 
i ’s is equal to zero, in order to improve or select an 2R  

statistic from the existing statistics. Since F is equal to  
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and is a monotonic increasing function of 2R  in OLS in Equation (3.1)  as given in 

Johnston (1984, p:187), F can be written in terms of 2R  as 
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kR
F






2

2

1

1
 .                  (3.9) 

 

Besides, Vandaele (1981) shows that Wald statistic which is equal to 

  SSESSESSTOn   can be written in terms of F as 

 

  F
kn

k
kW 










 11 .            (3.10) 

 

If we combine Equation (3.9) and Equation (3.10) then Wald 2R  statistic is 

obtained as below. 

 

    
nW

W
RW


2              (3.11) 

 

The addition of sample size n to the denominator causes 
2
WR  cannot equal to one 

even if the model fit is perfect to data. 
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3.2.5 McKelvey and Zavoina’s Measure 

 

McKelvey & Zavoina (1975) proposed an 2R  measure that may be employed for 

both probit and logit models when the dependent variable is an underlying 

continuous variable. The statistic is the proportion of the explained and unexplained 

variance of predicted values for the latent dependent variable.  

 

 
3

ˆvar

)ˆvar(
2

2






i

i
MZ

Y

Y
R                  (3.12) 

 

where 32  is the standard deviation for logistic distribution. Veall and Zimmerman 

(1996) recommended 
2
MZR  since it is the most consistent measure and has a good 

approximation for the OLS 2R  in linear regression when the binary dependent 

variable represents underlying continuous variable. However, because of not being a 

likelihood based measure, it is not applicable to polytomous models as well as 

dichotomous models (Menard, 2000).      

 

3.2.6 The Contingency Coefficient 2
R   

 

Aldrich & Nelson (1985) proposed a measure named pseudo 2R  or contingency 

coefficient 2R . Contingency coefficient (C) is a chi square based measure of 

association for two nominal variables in contingency tables and equal to 

 

n
C




2

2




                         (3.13) 

 

where 2  is the Pearson chi squared statistic (Blaikie, 2003). Aldrich & Nelson 

(1985) employed the well-known likelihood ratio statistic MG  which equals to 
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    MLL lnln2 0   as 2  statistic with k degrees of freedom using this above 

equation and proposed 
2
CR  as 

  

 
    

     nG

G

LLn

LL
R

M

M

M

M

C








lnln2

lnln2

0

02 ,           (3.14) 

 

where 0L  is the likelihood function statistic for the model containing only the 

intercept and 
ML  is the likelihood function for the model containing all of the 

independent variables and the subscript C represents the dependency of the form of 

contingency coefficient. The values of contingency coefficient range between 0 and 

1, when there is no relationship between two variables, it takes the value of 0 but it 

can’t take the value of 1 even when two variables are perfectly related to each other. 

Similarly, 
2
CR  cannot have a maximum value of 1, since the sample size n is added 

to MG  in the denominator. Additionally, as a positive result of being based on MG  

which is a likelihood derived statistic, 
2
CR  can be calculated not only dichotomous 

variables but also polytomous variables, too (Menard, 2000). 

 

3.2.7 Adjusted Contingency Coefficient 2
R    

 

Hagle and Mitchell (1992) considered the case of model fit which is perfect with 

included independent variables, which is the case of 0ln ML . Then, they rewrote 

the Equation (3.14) as 

        

 

 0

02

ln2

ln2

Ln

L
RC




 .                                  (3.15) 

 

Hence, they revealed that 
2
CR  takes the maximum value of 0.5809 for 5.0Y  

from the following equation.  
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    
    YYYY

YYYY
R






1ln1ln21

1ln1ln22
max  

 

Hence, to make the statistic more reasonable by providing it to reach the value of 

one, they suggested a correction which remarks that 
2
CR  should be multiplied by 

5809.01 , in other words divided by its maximum, to eliminate the effect of sample 

of size. So the adjusted 
2
CR  is obtained as follows.  

 

       

 2

2
2

max C

C
CA

R

R
R               (3.16) 

 

As result, it is clear that 
2
CAR  varies from zero to one as preferred by most of 

authors.  

 

3.2.8 The Likelihood Ratio 2
R  

 

In linear regression, the total sum of squares (SSTO) measures the uncertainty in 

predicting the dependent variable and does not take into account the independent 

variables. The error sum of squares (SSE) is the measure of the variation in the 

dependent variable and the independent variables are taken into account. The 

difference between them indicates the reduction in variation due to the independent 

variables. In logistic regression, as known, inferences are based on the log likelihood 

function. -2 log likelihood ( 0L ) represents the likelihood for the model without any 

independent variables and corresponds to the total sum of squares in OLS. The 

model -2 log likelihood ( ML ) represents the likelihood for the model with 

independent variables and corresponds to the error sum of squares in linear 

regression. Therefore, the difference in the log likelihood models shows the 

improvement due to the independent variables, in logistic regression and already 

equals to the likelihood ratio statistic MG  (Pampel, 2000). Therefore, as 2R  in linear 

regression is used for defining the proportional reduction in error sum of squares; an 
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analogue statistic can be used for defining the proportional reduction in these log 

likelihoods in logistic regression. Consequently, McFadden (1974) defined the 

likelihood based 2R  statistic as       

 

    

  

     
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L
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R

MM

L








 .

          

(3.17) 

 

Since the zero deviance is  00 ln2 LD   and model deviance is  MM LD ln2  

and the well-known likelihood ratio statistic is M
M

M DD
L

L
G 







 0
0ln2 , 

Equation (3.17) is equal to 

 

      
00

02

D

G

D

DD
R MM

L 


 .            (3.18) 

 

The values of 
2
LR  vary between zero and one. When all the coefficients are equal 

to zero, 
2
LR  takes the value of zero. If we fit the saturated model, then the value of 

log-likelihood from saturated model equals to zero (   0ln SL ) and 
2
LR  takes the 

maximum value of 1.     

 

Menard (2002) has suggested that 
2
LR  is the most proper measure for logistic 

regression. He explained the reasons of this suggestion under four considerations. (1) 

2
LR  is conceptually close to 

2
OLSR  since it depends only on the quantity that the 

model tries to minimize (-2 log likelihood) not also sample size. (2) It is sensitive to 

base rate. (3) It ranges between zero and one. (4) It is applicable not only to 

dichotomous dependent variables but also to polytomous nominal or ordinal 

dependent variables because of being dependent on likelihood function.  
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3.2.9 Geometric Mean Squared Improvement  

 

In linear regression model when errors are normally distributed with zero mean 

and constant variance, standard multiple 2R  is 
n

ML
L

R
/2

02 1 






  (DeMaris, 

2002; Magee, 1990). It is clear that this expression can be extended for logistic 

regression models, because likelihood functions are already calculated for maximum 

likelihood estimation method in logistic regression. Therefore, the statistic for 

logistic regression is  
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n
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2 1lnln
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


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


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


 .          (3.19) 

 

Cox and Snell (1989) defined the term 
n

ML
L

2

0 






  as the geometric mean 

improvement per observation produced by full model versus to intercept only model 

and so the subscript M indicates the use of geometric mean squared improvement.  

 

As an undesirable property, this statistic cannot achieve an upper bound value of 

one even the model predicts the dependent variable perfectly. The maximum 

attainable value of 
2
MR  will be 0.75, if and only if 1Y  with 50% and 0Y  with 

50%, in other words, each observation is predicted with a maximum probability of 

1.00, for logistic model (Nagelkerke, 1991). 

 

2
MR  can be written in terms of likelihood ratio statistic 

MG  as following 
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Since 
2
MR  depends upon 

MG , it may be applied to polytomous models, however 

because of being utilized as geometric mean squared improvement, it has the 

property of intuitively meaningful interpretation, only partially. Furthermore, we 

may interrelate with 
2
LR  using the likelihood ratio statistic that is common in both so 

that a theoretical expression may be provided between them. From Equation (3.19) 

and Equation (3.20), 

  














n

DR
R L

M
0

2
2 exp1 .            (3.21) 

 

 

Let   denote the ratio 
n

D0 , we have 

 

  22 exp1 LM RR   .                     (3.22) 

 

Since   22exp1 LL RR   , it follows from Equation (3.22) 

 

   
22
LM RR                         (3.23) 

 

Therefore, it is understood that when 1 ,  
22
ML RR   and otherwise 

22
ML RR  .  

 

3.2.10 Adjusted Geometric Mean Squared Improvement 

 

As well-known, likelihood function 
ML  is the product of probabilities so it takes 

the values less than 1. Therefore, from Equation (3.19) the maximum of 
2
MR  may 

reach to the following  
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Nagelkerke (1991), to overcome the obstacle to achieve the property of having 

maximum 1, proposed to adjust 
2
MR  as  
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This adjusted measure permits a value of one dividing 
2
MR  by its maximum 

possible value. We know that the maximum value of 
2
MR  is 0.75 so that 

75.0

2
2 M
N

R
R   

and this means that 
22
MN RR  , as expected.  

 

Ryan (1997) examined 
2
MR , 

2
NR  and correct classification rate (CCR) which can 

be treated as a measure of the fit of a model, for assessing the quality of a logistic 

regression model and he suggested to use 
2
NR  as a supplementary statistic since 

2
NR  

has meaningfully different values for different models.  Hu, Shao & Palta (2006, p. 

849), using entropy of the marginal distribution of Y, proved a theorem which 

assumes that “
iX  ni ,,1 , are independent and identically distributed random p-

vectors with finite second moment” and provides the asymptotic limits of 
2
MR  and 

2
NR .  
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where    



m

j

ijij EEH
1

1 log   and is the entropy measure the marginal variation 

of iY ,  



m

j

ijijEH
1

2 log  and is the conditional entropy measure the variation of 

iY  given iX  , hence their difference gives the entropy explained by iX , 
p

 

denotes convergence in probability. Furthermore, they noted that larger the absolute 

value of regression coefficients larger these limits and also although the model has a 

strong relationship with dependent variable, the limits may have low values. 

 

2
NR  is also interrelated with 

2
LR  and this relation can be expressed theoretically 

using the likelihood ratio statistic. From Equation (3.22) and Equation (3.25), we 

may formulize 
2
NR  based on 

2
LR  and hence on        
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If we denote the ratio 
 



 exp1
 as * , then *  will be greater than or equal to 

1, since     exp1 . Therefore, the values of 
2
NR  are less than the values of  

 

    
2*2
LN RR  .             (3.27) 

 

Since 1*  , it is concluded that 
22
NL RR  .  
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CHAPTER FOUR 

NUMERICAL RESULTS 

 

This chapter presents simulation studies and an application on real life addressing 

the effects of misspecification on the asymptotic relative efficiency of coefficients of 

determination in logistic regression analysis. We emphasized three well-known 

coefficients of determination that are given in last subsections in Section 3.2, the 

likelihood ratio 2R , geometric mean squared improvement and adjusted geometric 

mean squared improvement. We will compare them based on efficiency to see the 

influences of asymptotic results of misspecification explained in Chapter 2 on R-

square statistics. Basing our analysis upon more reliable fundamentals is important 

for convenient inferences so we should attach a certain importance to this issue. 

Furthermore, we will perform an application to better understand the results of 

simulations and to show the asymptotic results in practice.  

 

The following section will present the simulation results. In Section 4.2 we will 

give the numerical results of application and the comparisons with findings in 

simulation studies. 

 

4.1 Simulation Studies 

 

Simulation studies are designed to show the influence of misspecification and 

distribution of continuous independent variable on various types of 2R  for logistic 

regression. We examined the effects of misspecification in terms of asymptotic 

relative efficiency using bootstrap method.  

 

Three R-square analogs, namely 
2
LR , 

2
MR  and 

2
NR  were considered for evaluating 

their performances. The reason they are chosen is that they are more popular and the 

most consulted measures for analysis. These statistics are already included in the 

logistic regression outputs in the popular software packages as SPSS, SAS and 

STATA. Besides, the simulation studies were repeated for different sizes of sample 
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to see whether the means and efficiencies of R-squares depend upon sample size. All 

calculations have been carried out using R programming language version of 3.0.1. 

 

To examine the effects of misspecification on the asymptotic relative efficiency of  

2R  statistics, we studied on the population with size N = 100,000. From this 

population we have randomly selected 10,000 samples with sizes of 50n  and 

100n . Bootstrap sampling procedure with B = 500 bootstrap replications has been 

used to estimate the variance of the corresponding statistics. The binary response 

variable Y was generated from the Bernoulli distribution with a success probability 

given with Equation (4.1), with a continuous explanatory variable (X) and a discrete 

covariate (Z). To be consistent with real life, we set the approximate correlations 

between X and Y, X and Z, Z and Y as 0.55, 0.15 and 0.40, respectively.  

 

  
 

 ZX

ZX
YE

210

210

exp1

exp








              (4.1) 

 

X has been assumed to have  2,N , with 0 , 2 1 and 9 to observe the 

effects of extreme rising of variance  and exponential    with parameters  1 and 

3 where mean/1 . Covariate Z has been generated with a structure depending X. 

If X exceeds a value with a probability of almost 0.3, then Z has Binomial 

distribution with p = 0.6 otherwise p = 0.4. For example, for an explanatory variable 

X having N(0,1) distribution, if 5.0iX  for i = 1,…,n (since   3.05.0 iXP ), Z 

has Binomial distribution with p = 0.6. This specific value is 1.5 when X has N(0,9) 

distribution.  

 

Misspecifications chosen for this study include: i) categorizing the continuous 

explanatory variable X  into 2k  and 3k  categories, ii) using wrong functional 

form of X , iii) omitting the discrete covariate Z  from the model. Wrong functional 

form involves taking the third power of X ( 3X ), taking the natural logarithm of X 

  Xln  and taking the square root of X  X . For example, if we use 3X  instead of 

X , the logistic function defined in Equation 4.1 will then take the form of 
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The models conducted with the population values without any misspecification 

are called original model and with the sample values without any misspecification 

are denoted by X . For categorizing X, the cutpoints given with Table 4.1 are 

selected as explained in Section 2.1.1.  

 

For discretizing X, the corresponding cutpoints given with Table 4.1 are selected 

for each distribution. The techniques of choosing cutpoints were mentioned in 

detailed in Section 2.3.1. These values are based on the extension of the Cox’s (1957) 

calculations and provide optimal intervals. The use of cutpoints for optimal intervals 

is attributed to the fact that optimal intervals are more preferable than equiprobable 

intervals. Connor (1972) and Lagakos (1988b) showed that the efficiencies of test 

statistics are much smaller for equiprobable intervals than optimal intervals 

especially when skewed distributions are used. Besides, the numbers of categories as 

two and three are found enough to see the effects of categorization since the 

efficiency losses are expected to be considerably low, after three categories.    

 

Table 4.1 Number of categories and location of cutpoints  

Distribution of X 

Cutpoints of X for 

2k  3k  

N(0,1) Mean -0.612 and 0.612 

N(0,9) Mean -1.836 and 1.836 

Exp(1) 1.594 1.018 and 2.611 

Exp(3) 0.531 0.339 and 0.870 

 

We report the results of 2R  for original model built with population values 

without any misspecification and the medians of 2R  statistics for other models in 

Table 4.2 and in Table 4.3 for 50n  and larger sample size 100n , respectively. 
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For example, in the model type symbolized by 3X  and in the second column, in 

Table 4.2, the value 0.408 is the median of 
2
LR  obtained from 10,000 simulations 

when 3X  is used instead of X having standard normal distribution and when the 

sample of size is 50. Under normal distribution, changing the functional form of X 

with  Xln  and X  has the most effect on 2R  values for both sample sizes. For 

exponential distributions, on the other hand, omitting the covariate Z from the model 

significantly decreases the value of 2R  statistics. These mentioned effects are more 

significant for N(0,9) and Exp(3).  

 

To have a general idea about asymptotic distributions of 2R  statistics due to 

corresponding distributions of X, the density plots of 2R  statistics have been drawn. 

From the figures presented in Appendix, we can observe that the R-squares have 

asymptotically normal distribution. There are some cases that show some minor 

departures from normality such as 
2
LR  and 

2
NR  in models with   Xln  and X  

when X having normal distribution (0,1) and 
2
LR  in models  with X and 3X  when X 

having normal distribution (0,3). However, as graphical display and Kolmogorov-

Smirnov test results confirm, distributions of all 2R  statistics are asymptotically 

normal.       
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 Table 4.2 The real values of 
2R  for original model and the medians of 

2R  for other models for 50n  

Model Type 
N(0,1) N(0,9) Exp(1) Exp(3) 

2
LR  2

MR  2
NR  

2
LR  2

MR  2
NR  

2
LR  2

MR  2
NR  

2
LR  2

MR  2
NR  

Original 0.417 0.370 0.552 0.723 0.614 0.839 0.364 0.394 0.527 0.206 0.209 0.308 

X  0.455 0.389 0.589 0.772 0.635 0.873 0.397 0.418 0.562 0.246 0.240 0.354 

3X  0.408 0.362 0.543 0.745 0.621 0.853 0.374 0.400 0.538 0.240 0.236 0.353 

 Xln  0.230 0.222  0.335 0.164 0.193 0.266 0.352 0.378 0.512 0.233 0.229 0.339 

X  0.261 0.254 0.376 0.205 0.234 0.320 0.385 0.407 0.547 0.243 0.236 0.354 

2k  0.338 0.306 0.465 0.558 0.521 0.713 0.289 0.324 0.437 0.220 0.218 0.328 

3k  0.409 0.360 0.545 0.624 0.558 0.764 0.356 0.378 0.513 0.259 0.250 0.372 

Z omitted 0.330 0.298 0.453 0.711 0.604 0.830 0.268 0.302 0.411 0.088 0.094 0.138 

 

 Table 4.3 The real values of 
2R  for original model and the medians of 

2R  for other models for 100n  

Model Type 
N(0,1) N(0,9) Exp(1) Exp(3) 

2
LR  2

MR  2
NR

 
2
LR  2

MR  2
NR

 
2
LR  2

MR  2
NR

 
2
LR  2

MR  2
NR

 
Original 0.408 0.364 0.543 0.729 0.617 0.843 0.365 0.394 0.528 0.213 0.215 0.317 

X  0.429 0.370  0.562 0.752 0.629 0.859 0.381 0.404 0.544 0.236 0.232 0.346 

3X  0.374 0.334 0.507 0.713 0.607 0.831 0.351 0.379 0.510 0.221 0.217 0.322 

 Xln  0.293  0.180 0.366 0.516 0.263 0.591 0.337 0.365 0.493 0.216 0.214 0.322 

X  0.319 0.191 0.394 0.551 0.276 0.621 0.371 0.397 0.533 0.232 0.228 0.338 

2k  0.319 0.294 0.443 0.548 0.510 0.700 0.295 0.331 0.445 0.207 0.207 0.311 

3k  0.384 0.340 0.516 0.609 0.548 0.752 0.331 0.364 0.489 0.233 0.230 0.344 

Z omitted 0.319 0.292  0.442 0.692 0.598 0.817 0.260 0.297 0.398 0.085 0.092 0.136 
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As we addressed in Section 3.2.9 and in Section 3.2.10, from the interrelation 

between the R-squares, we concluded that 
2
NR  has the greatest values and the 

magnitudes of 
2
MR  and 

2
LR  changes with the ratio of the sample of size and the null 

deviance denoted by  . When 1 , 
22
ML RR   and otherwise 

22
ML RR  . Simulation 

results regarding these comparisons in terms of medians given with Table 4.2 and 

Table 4.3 confirm the theoretical findings about 
2
NR , since overall 

2
NR  are bigger than 

2
MR  and 

2
LR   at all simulation models. In addition, since 

22
ML RR   in general, it is 

said that 1 .  

   

It was explained in detail in Section 2.2 that ARE of two statistics is the ratio of 

their variances as given in Equation (2.17). Therefore, AREs of R-squares have been 

obtained using their sampling variances which are found by bootstrap method. The 

misspecified version of 2R  will be denoted with 
*2R . The asymptotic relative 

efficiency of 
*2

jR  with respect to 
2
jR  is  

 

 















*22

22

2*2 ,

j

j

jj

R

R
RRARE




.  

 

Corresponding values are presented with Tables 4.4 - 4.6. 

 

All three cases for wrong functional form of continuous X are presented in Table 

4.4. Increasing the standard deviation of normally distributed X has generally great 

effects on efficiency under misspecification. For all types of 2R  statistics, using 3X  

instead of X causes significant efficiency loss. For instance, for 
2
NR  the efficiency 

loss is 100%. For exponentially distributed X variables, misspecification at the 

functional form of X does not significantly affect the variance of the statistics. The 

three 2R  measures were found to result in almost identical efficiency values across 

all types of mismodelling. There is at most 5% loss in efficiency.  
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Table 4.4 ARE’s of each 
2R  statistics under both correct and misspecified models when X has been mismodelled 

 2*2 , LL RR  
2*2 , MM RR  

2*2 , NN RR  

50n  100n  50n  100n  50n  100n  

3
X   Xln  X  

3
X

 
 Xln  X  

3
X  

 Xln  X  
3

X  
 Xln  

X
 

3
X  

 Xln  X  
3

X  
 Xln  

X
 

N(0,1) 0.81 0.96 1.03 0.83 0.65 0.68 0.80 0.84 0.92 0.79 1.18 1.24 0.76 0.70 0.78 0.75 0.57 0.61 

N(0,9) 0.07 0.98 0.97 0.63 0.24 0.29 0.00 0.32 0.97 0.58 0.31 0.37 0.00 0.26 0.28 0.55 0.12 0.15 

Exp(1) 0.91 0.88 0.98 0.89 0.88 0.98 0.86 0.79 0.96 0.83 0.78 0.96 0.86 0.79 0.96 0.82 0.78 0.96 

Exp(3) 0.95 1.02 1.01 0.99 1.03 1.01 0.96 1.00 1.01 0.98 1.00 1.00 0.95 0.99 1.00 0.97 1.00 1.00 

 

Table 4.5 ARE’s of each 
2R  statistics under both correct and misspecified models when X has been categorized 

 2*2 , LL RR  
2*2 , MM RR  

2*2 , NN RR
 

 50n  100n  50n  100n  50n  100n  

 2k  3k  2k  3k  2k  3k  2k  3k  2k  3k  2k  3k  

N(0,1) 1.25 1.15 1.15 1.08 0.97 1.02 0.93 0.98 0.97 1.04 0.91 0.97 

N(0,9) 0.95 1.20 0.73 0.96 0.51 0.96 0.40 0.79 0.53 0.86 0.41 0.69 

Exp(1) 1.14 1.08 1.09 1.09 0.88 0.98 0.88 0.98 0.88 0.98 0.87 0.97 

Exp(3) 1.07 0.97 1.07 1.00 1.02 1.00 1.03 1.00 1.02 1.00 1.03 1.00 
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Table 4.5 shows the ARE values of each 2R  statistics for categorizing continuous 

X. The ARE values are in general quite close to unity when X follows exponential 

distribution meaning there is a small loss of efficiency caused by categorization. For 

example, if X has an Exp(1), categorizing into 2k  groups results with 12% loss in 

efficiencies of both 
2
MR  and 

2
NR .  On the other hand when X follows a N(0,9), 

2
MR  

and 
2
NR  are significantly affected by categorization into 2k  groups, since 

efficiency losses reduce to almost 60%. In general, the efficiencies of R-squares, 

when misspecification means categorization, may alter with the number of groups 

and so much number of groups minimizes the increase in the variance of the R-

squares.   

   

Table 4.6 ARE’s of each 
2R  statistics under both correct and misspecified models when omitting Z  

 2*2 , LL RR  
2*2 , MM RR  

2*2 , NN RR
 

 50n  100n  50n  100n  50n  100n  

N(0,1) 1.20 1.15 0.98 0.97 0.94 0.93 

N(0,9) 1.12 0.99 0.98 0.88 0.97 0.86 

Exp(1) 1.27 1.26 0.93 0.92 0.92 0.92 

Exp(3) 1.97 2.00 1.54 1.57 1.48 1.51 

 

Table 4.6 evaluates the AREs of each 2R  statistics under correct model versus Z 

omitted model. All statistics seem robust against the omission of Z under larger 

sample size and normal distribution. Neuhaus (1998) showed that omitting non-

confounding covariate which is correlated with X provides a gain in efficiency of the 

estimated effects and this gain in efficiency increases with the effect of the omitted 

covariate on dependent variable. When we compare the coefficients of correct and 

misspecified regression models, it is seen that 21
*
1   . Thereby Z is said to be a 

non-confounding covariate, i.e., it does not confound the association of X and Y. In 

this respect omitting a non-confounding covariate may provide a gain in efficiency 

especially for exponential distribution with mean value of 1/3. 
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Figure 4.1 ARE’s of each 
2R  statistics under both correct and misspecified models for 50n  

 

 

Figure 4.2 ARE’s of each 
2R  statistics under both correct and misspecified models for 100n     

 

As a summary, in Figure 4.1, a line graph is given to show the behaviors of 

ARE’s of R-squares under misspecification for 50n  with visual perception. The 

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

x
cu

b
e

ln
(x

)

sq
rt

(x
)

k
=

2

k
=

3

z 
o

m
it

te
d

x
cu

b
e

ln
(x

)

sq
rt

(x
)

k
=

2

k
=

3

z 
o

m
it

te
d

x
cu

b
e

ln
(x

)

sq
rt

(x
)

k
=

2

k
=

3

z 
o

m
it

te
d

x
cu

b
e

ln
(x

)

sq
rt

(x
)

k
=

2

k
=

3

z 
o

m
it

te
d

N(0,1) N(0,9) Exp(1) Exp(3)

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

x
cu

b
e

ln
(x

)

sq
rt

(x
)

k
=

2

k
=

3

z 
o

m
it

te
d

x
cu

b
e

ln
(x

)

sq
rt

(x
)

k
=

2

k
=

3

z 
o

m
it

te
d

x
cu

b
e

ln
(x

)

sq
rt

(x
)

k
=

2

k
=

3

z 
o

m
it

te
d

x
cu

b
e

ln
(x

)

sq
rt

(x
)

k
=

2

k
=

3

z 
o

m
it

te
d

N(0,1) N(0,9) Exp(1) Exp(3)

2*2 , LL RR
2*2 , MM RR 2*2 , NN RR

2*2 , LL RR
2*2 , MM RR

2*2 , NN RR



 

 

64 

 

reduction in ARE of 
2
NR , fluctuation in 

2
MR  and alteration in 

2
LR  when X having a 

normal distribution with larger variance is presented more obviously. This plot 

illustrates better that the efficiencies are affected seriously if 3
X  is used when X 

have normal distribution (0,3) and if Z is omitted when X have exponential 

distribution (3). Furthermore, once exponential distribution is considered, it makes 

no difference to use 
2
MR , 

2
NR  or 

2
LR , since they give the same reaction to 

misspecification, regardless of parameter. On the other hand, the line graph given 

with Figure 4.2 shows that when 100n , all three R-squares take very small values 

for  Xln  and X . It is clear that exponential distribution leads to the same 

efficiency loss regardless of not only parameter but also sample size. 

 

For the second part of the simulation, the purpose is to examine the AREs of 2R  

statistics with respect to each other and to evaluate their performances. Table 4.7 

shows the ARE values of 2R  statistics when the model does not have any 

misspecification. It is understood that, if we use correctly specified model, 

considering 
2
MR  instead of 

2
LR  will be more reasonable, because the entire ARE 

values associated with them are notably small. Moreover, since not only 

  1, 22 ML RRARE  but also   1, 22 MN RRARE , 
2
MR  seems the most efficient 2R  

statistic among three. Differences in the distributions and the sample sizes do not 

change this result.  

 

Table 4.7  ARE’s of three 
2R  statistics under correct model 

 22 , ML RR  22 , LN RR  22 , MN RR  

 50n  100n  50n  100n  50n  100n  

N(0,1) 0.49 0.55 1.02 0.93 0.50 0.52 

N(0,9) 0.27 0.28 2.27 2.19 0.61 0.62 

Exp(1) 0.60 0.65 0.92 0.85 0.55 0.56 

Exp(3) 0.70 0.78 0.68 0.62 0.47 0.48 
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The consequences of using wrong functional form of X are presented in Table 4.8. 

It seems that as in the case of correctly specified model, 
2
MR  gives generally the 

most efficient results except the case of using 3
X  when X has N(0,9) distribution. 

From Table 4.2 we know that the variance of 
2
MR  and 

2
NR  for 3

X  model and 50n  

is substantially larger since the ARE values are 0.00. This makes 
2
LR  is more 

efficient than 
2
MR  and 

2
LR . In this case, ARE gets unacceptably large value which is 

presented with “-“ symbol in the table. Besides, we see that 
2
MR  is superior than 

2
NR  

in all conditions. In addition, it is remarkable to note that the use of exponential 

distribution does not cause any unexpected result regardless of parameter value and 

sample size. 

 

Categorization of X or omission of a covariate Z do not change the fact that 
2
MR  is 

the most efficient statistic, as it is obvious in Tables 4.9 and Table 4.10. The other 

common result for both tables is the behavior of 
2
NR  compared to 

2
LR  under N(0,9) 

where 
2
NR  is more efficient than 

2
LR . Using 

2
NR  prevents at least 22% loss in 

efficiency without dependency of sample size when categorizing X. It is clear that the 

number of groups does not behave as a criterion in determining the superiority of 

coefficients of determination in logistic regression. Under omission case, the ARE of 

2
NR  versus 

2
LR  is 1.96 and 1.90, for 50n  and 100n , respectively. This means 

that using 
2
LR  instead of 

2
NR  causes great loss with a 50 percent in efficiency. 

2
MR  

tended to produce more efficient values. The variation in the dependent variable is 

explained by only the explanatory variable X included in the model using 
2
MR , more 

efficiently. 
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Table 4.8 ARE’s of three 
2R  statistics with each other when X has been mismodelled 

 22 , ML RR  22 , LN RR  22 , MN RR  

50n  100n  50n  100n  50n  100n  

3
X

 
 Xln  X  3

X   Xln  X
 

3
X   Xln  X  3

X   Xln  X  3
X   Xln  X  3

X   Xln  X  

N(0,1) 0.50 0.56 0.55 0.59 0.30 0.30 0.96 0.75 0.77 0.84 0.82 0.84 0.48 0.42 0.42 0.49 0.25 0.25 

N(0,9) - 0.80 0.74 0.30 0.22 0.23 0.00 0.62 0.66 1.91 1.07 1.11 0.55 0.49 0.49 0.58 0.23 0.25 

Exp(1) 0.63 0.67 0.62 0.70 0.74 0.67 0.87 0.82 0.90 0.79 0.75 0.83 0.55 0.55 0.55 0.56 0.55 0.56 

Exp(3) 0.70 0.71 0.70 0.79 0.80 0.78 0.68 0.66 0.67 0.61 0.60 0.61 0.47 0.47 0.47 0.48 0.48 0.48 

 

 

Table 4.9 ARE’s of three 
2R  statistics with each other when categorizing X 

 22 , ML RR  22 , LN RR  22 , MN RR  

 50n  100n  50n  100n  50n  100n  

 2k  3k  2k  3k  2k  3k  2k  3k  2k  3k  2k  3k  

N(0,1) 0.63 0.55 0.68 0.61 0.79 0.92 0.73 0.84 0.50 0.51 0.50 0.51 

N(0,9) 0.50 0.33 0.51 0.34 1.26 1.63 1.22 1.58 0.63 0.54 0.63 0.54 

Exp(1) 0.78 0.66 0.81 0.72 0.70 0.83 0.69 0.77 0.55 0.55 0.55 0.56 

Exp(3) 0.73 0.68 0.81 0.77 0.65 0.70 0.59 0.62 0.47 0.47 0.48 0.48 
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Table 4.10 ARE’s of three 
2R  statistics with each other when omitting Z 

 22 , ML RR  22 , LN RR  
22 , MN RR  

 50n  100n  50n  100n  50n  100n  

N(0,1) 0.60 0.66 0.80 0.75 0.48 0.49 

N(0,9) 0.30 0.32 1.96 1.90 0.60 0.61 

Exp(1) 0.83 0.89 0.67 0.63 0.55 0.55 

Exp(3) 0.89 0.99 0.51 0.47 0.46 0.46 

 

The line graphs given with Figure 4.3 and Figure 4.4 reveal the changes in 

efficiencies due to sample size. For 50n , when wrong functional form of X having 

N(0,9), especially 3
X , is used, the reduction in efficiency of 

2
MR  and 

2
NR  is 

illustrated much better. In this case, 
2
LR  seems more preferable in terms of 

efficiency. Under these circumstances, as Menard (2002) noted, 
2
LR  is preferred over 

other 2R statistics. On the other hand, when 100n , both 
2
MR  and 

2
NR  become 

more efficient than 
2
LR . Therefore it is said that the variance of X having normal 

distribution lead to fundamental changes of efficiencies of both 
2
MR  and 

2
NR , 

depending upon the sample size. For the other distributions, especially exponential 

distribution, three lines are quite close to each other in both figures. It means that 

misspecification does not affect the relationships of 2R  statistics.      
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Figure 4.3 ARE’s of three 
2R  statistics with each other for 50n  

 

 

Figure 4.4 ARE’s of three 
2R  statistics with each other for 100n  

 

 

 

 

0,00

0,50

1,00

1,50

2,00

2,50

C
o

n
t

xc
u

b
e

ln
(x

)

sq
rt

(x
)

k=
2

k=
3

z 
o

m
it

te
d

C
o

n
t

xc
u

b
e

ln
(x

)

sq
rt

(x
)

k=
2

k=
3

z 
o

m
it

te
d

C
o

n
t

xc
u

b
e

ln
(x

)

sq
rt

(x
)

k=
2

k=
3

z 
o

m
it

te
d

C
o

n
t

xc
u

b
e

ln
(x

)

sq
rt

(x
)

k=
2

k=
3

z 
o

m
it

te
d

N(0,1) N(0,9) Exp(1) Exp(3)

0,00

0,50

1,00

1,50

2,00

2,50

C
o

n
t

xc
u

b
e

ln
(x

)

sq
rt

(x
)

k=
2

k=
3

z 
o

m
it

te
d

C
o

n
t

xc
u

b
e

ln
(x

)

sq
rt

(x
)

k=
2

k=
3

z 
o

m
it

te
d

C
o

n
t

xc
u

b
e

ln
(x

)

sq
rt

(x
)

k=
2

k=
3

z 
o

m
it

te
d

C
o

n
t

xc
u

b
e

ln
(x

)

sq
rt

(x
)

k=
2

k=
3

z 
o

m
it

te
d

N(0,1) N(0,9) Exp(1) Exp(3)

22 , ML RR
22 , LN RR 22 , MN RR

22 , ML RR
22 , LN RR 22 , MN RR



 

 

69 

 

4.2 Application on Real Land Consolidation Data  

 

4.2.1 Introduction to Land Consolidation 

 

Land consolidation may be described as “the planned readjustment of the pattern 

of the ownership of land parcels with the aim of forming larger and more rational 

land holdings” (Pašakarnis & Maliene, 2010, p: 546). Food and Agriculture 

Organization of the United Nations (FAO) whose one of the aims is to improve 

agricultural productivity is an intergovernmental organization and plays a very 

important role in supporting land consolidation activities. FAO implies that land 

consolidation is not only the simple reallocation of parcels to avoid adverse impacts 

of fragmentation but also it is associated with social and economic reforms (Food 

and Agriculture Organization of the United Nations, 2003).  

 

The content and objective of land consolidation varies substantially from 

countries to counties. The contents may be based on the agricultural and forestry 

structure, other industries, sheltering and living environment, land use needs, attitude 

of landowners, society etc. The objectives may be considered as increasing 

productivity directing all parcels to roads and water access in parallel with lowering 

the costs of production and concerning ecological, social and cultural structures of 

the country (Vitikainen, 2004).      

 

Land consolidation is the most favorable land management approach for avoiding 

land fragmentation improving agricultural productivity and has been applied in many 

countries around the world such as Chine, Cyprus, Armenia, Hungary, Lithuania and 

Serbia. In addition, land consolidation became part of the European Union’s new 

Rural Development Policy (Demetriou, Stillwell & See, 2012).  

 

Land consolidation has a procedure of research, parcel planning, and evaluation 

for parcel design and finally consolidation application. During this process, receiving 

expert consultations, the intervention of governments, briefing of peasants and 

reaching a consensus are substantially necessary. The new parcel designs, especially, 
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should be determined taking peasants demands and technical expects into 

consideration as well as evaluation techniques. In the sense that, interviewing with 

peasants is an important part of consolidation since designs take form depending on 

the information taken this way.   

 

In land consolidation projects, there are several reasons that make land owners 

avoid from joining the consolidation process which include the reasons such as:  

 the parcels they already have are more productive than the others or  

 the new parcels which are planned to take part are in the places they 

don’t approve. 

 

In despite of this, some land owners sustain the project since 

 

 they will have individual parcel instead of shared one  

 their land will connect to a path and a water source 

 in different places fragmented small farms become an obstacle to 

development and sustainable farming,  

 

So the land owners acknowledge the advantages of consolidation such as being 

economic and improving agricultural productivity.          

 

4.2.2 Land Consolidation in Turkey 

 

The land consolidation performances in Turkey have begun in 1961 in Karkin 

village in Konya Province. Basing upon positive results new legislation about it has 

been enacted in 1966. With the enactment of this statute consolidation efforts have 

been applied to a wider range of area. It has continued in an area of total 2,943,000 

hectares until 2012. Nowadays, consolidation activities have been carried on with 

success. From 2013 to 2017, the area of implemented is expected to be 5 million 

hectares (Boyraz & Üstündağ, 2008; Gün, 2003; Türker & Şaban, 2013). 
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4.2.3 Application Case 

 

Binary logistic regression models where dependent variable has only two different 

values have been applied on many agricultural data sets. With the help of logistic 

regression analysis, Raut et al. (2011) studied on the influences of some variables 

such as irrigation facility and landholding size on the adoption of agricultural 

intensification, Minetos & Polyzos (2009) investigated the agricultural land use due 

to land use changes. Mueller et. al. (2005) used logistic regression method to 

improve models which map probability that soil erosion have been arisen before. 

Battaglin & Goolsby (1996) searched on the relations between different drainage 

basin variables and some chosen agricultural chemical concentrations in the rivers. 

There are numerous studies combining the logistic regression and agriculture 

(Msoffe et.al., 2011; Schroeder et.al., 2001; Zhang & Zhao, 2013). Apart from these 

studies, Cimpoieş (2007) and Lerman & Cimpoieş (2006) worked on determining the 

effects of consolidation on living standards of rural peasant families with logistic 

regression.  

 

In this thesis, the willingness of peasants for consolidation will also be 

investigated using this method. The opinions of the peasants are very important to 

begin the consolidation works. So to be able to predict willingness provides a 

significant gain in vision. A researcher can comprehend what attributes affect the 

behaviors of peasants statistically and so that he/she can plan the preparatory works. 

This is the reason, for studying this particular case in this thesis. 

 

This study which has an aim of predicting the willingness of peasants is a part of a 

larger study on land consolidation project which is carried out in Susuzköy Village, 

Ankara Province, in Turkey. During parcel planning stage, every peasant who is the 

owner of the parcel or leased the parcel was included to interview. Data were 

collected on 228 land owners, 176 of whom were willing to consolidation and 52 of 

whom were unwilling to the project.  
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Table 4.11 Descriptions for land consolidation data 

Variable Description Codes/Values Name 

Y Choice 0 : No, 1 : Yes CHO 

X Area Hectare AR 

Z 

The ratio of number of 

shared parcel and 

number of individual 

parcel 

   0 : number of shared parcel > 

number of individual parcel ,  

 

   1 : number of shared parcel ≤ 

number of individual parcel 

SP 

 

Land consolidation depends on many parameters as number and shape of parcels 

belonging to the peasant, the distance from water sources or road, productivity of 

land. In this sense that, experts apply an agricultural rating system before 

consolidation is undertaken. We, however, by getting experts’ advice, included two 

of parameters in our study to be consistent with simulation studies in previous 

section such as one binary dependent variable, one continuous explanatory variable 

and a discrete covariate. 

 

A functional logistic regression model was fitted to the land consolidation data. 

Table 4.11 gives the descriptions and codes of corresponding variables. The response 

indicates willingness of peasants to consolidation in Susuzköy Village, which is 

named by CHO attributing the choice of owners. The response has been of concern 

to survey and agriculture engineers for years. 0 represents the answer “no” and 1 

represents the answer “yes”. The continuous independent variable which is the size 

of area in hectares (AR) that peasants have, takes the values from 105 to 64,674. 

Finally, the discrete covariate represents the ratio of the number of land shared 

parcels and the number of individual parcels. The aim of selecting this variable for 

this study is to see the contribution of the comparison of having shared and 

individual parcels. 0 means the number of land shared parcels is greater than the 

number of individual parcels and 1 means majority of parcels are private, that is, 

belong to individuals. The covariate is named by SP. This is due to the fact that the 
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area size of owners and being a private owner can greatly alter the behavior of him 

and so the chances of inventing the consolidation.  

 

 Before analysis, the distribution of the continuous explanatory variable AR in 

data should be determined. In the sense that, a histogram and a density plot of the 

variable AR are drawn, as presented in Figure 4.5 and Figure 4.6. So the figure gave 

an idea about the distribution may be exponential. We applied Kolmogorov-Smirnov 

test to test for an exponential distribution and find p-value is approximately 0.7. 

Therefore, our data follows an exponential distribution with mean value of 7049.69 

and  = 0.00014.  

 

 

Figure 4.5 Histogram of the explanatory variable AR 

 

 

Figure 4.6 Density plot of the explanatory variable AR 

 

In this thesis, we have fitted logistic regression model to land consolidation data 

to illustrate the behaviors of R-squares. After fitting the logistic regression model to 

the data, the estimated logit is obtained by the following expression 
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  X10
1
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and so 

 

  SPAR 5117.00003.04852.0
1

loglogit 














    

 

On the other hand, the model with other types of AR have been fitted and omitted 

SP from the model. To be consistent with simulation studies and real life as well, 

because these are more often used types, instead of AR, 3AR ,  ARln  and AR  

have been used. In addition AR have been categorized into two and three categories 

considering AR having exponential distribution.     

 

For categorizing AR with optimal intervals, the results of calculations about 

determining the cutpoints if the explanatory variable has exponential distribution 

with parameter   in Section 2.3.1 are used. Corresponding the cutpoint to categorize 

AR into 2k  categories will be 
00014.0

5936.1
= 11,382.86. For 3k , the values are 

00014.0

0176.1
 = 7268.57 and 

00014.0

6112.2
= 18,651.43. 

 

2R  values corresponding to all fitted types of models were calculated and 

presented in Table 4.12. The results are consistent with both theoretical and 

simulation findings about the comparisons of the magnitudes of R-squares. Overall 

2
NR  are bigger than 

2
MR  and 

2
LR  at all models. Furthermore, 

2
MR  and 

2
LR  tended to 

be so close values revealing very little changes in the null deviances of all models.  

 

Some inferences may be drawn about what the correct model is, from the same 

table, since high values of R-squares are regarded as satisfactory for choosing the 

true model and low values as a sign of much remaining unexplained. In the sense 

that, considering that the low values indicate warning evidences that these models 
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may be misspecified, based on the Table 4.12, and having the likelihood ratio test 

with p-value = 0.000, deviance goodness of fit test with p-value = 0.984 and a 

percentage of 85.2 of concordant pairs which means a higher predicted probability, 

we assumed with the considered variables that  ARln  model is the correct model 

for describing the land consolidation data.  

 

Table 4.12 
2R  values associated with all models for land consolidation data  

Type of model 
2
LR  2

MR  2
NR  

AR  0.174 0.171 0.259 

3AR  0.029 0.030 0.046 

 ARln  0.300 0.276 0.419 

AR  0.262 0.246 0.373 

2k  0.077 0.079 0.120 

3k  0.094 0.096 0.146 

Omission SP 0.166 0.163 0.248 

 

According to the results of  ARln  model given with Equation (4.3), with one 

unit increase in the area, the odds of accepting land consolidation increases 

  86.20513.1exp   times.  

 

  

  SPAR

SPAR

4411.0ln0513.12985.6exp1

4411.0ln0513.12985.6exp
ˆ




             (4.3) 

 

To examine the effects of misspecification on the ARE of R-square statistics, since 

their sampling variances are required, a bootstrap study with B = 2,000 bootstrap 

replications to this real data have been performed. After finding sample variances 

using this way and fitting the logistic regression to the bootstrap data, the values of 

ARE are calculated. These calculations are based on  ARln  model since it is 

assumed to be as the correctly specified model, for this study. The ARE results are 

presented in Tables 4.13-4.15. 

         

 



 

 

76 

 

Table 4.13 ARE’s of each 
2R  statistics on the base of  ARln   

Type of model 
ARE 

2*2 , LL RR  2*2 , MM RR  
2*2 , NN RR  

AR  0.45 0.42 0.38 

3AR  0.51 0.40 0.35 

 ARln  1.00 1.00 1.00 

AR  0.70 0.71 0.67 

2k  4.92 3.11 2.96 

3k  2.93 1.94 1.87 

Omission SP 0.44 0.40 0.36 

 

It is clear from the Table 4.13 that all 2R  statistics seem influenced by 

misspecification substantially. The most effected is 
2
NR  with up to 65% loss in 

efficiency. Taking the third power of the explanatory variable causes great losses as 

conveniently with simulation results. In addition, using the variable AR without any 

transformation substantially influences the efficiencies, adversely. On the other hand, 

categorizing the values of AR has significant influence on efficiency and provides a 

substantial gain in efficiency. We may attribute this result to using of optimal 

intervals. To better understand, the data with equiprobable intervals have been 

regrouped, under equal conditions. As a result of this grouping, ARE values are 

calculated and given in Table 4.14. Reduction in ARE’s is seen obviously from the 

table. So categorization type has significant influence on efficiency. But there is still 

no loss in efficiency of R-squares. Therefore, it may be said that these statistics are 

robust against categorization, for this study.  

 

Table 4.14 ARE’s of each 
2R  statistics on the base of  ARln   for categorizing 

Type of model 
ARE 

2*2 , LL RR  
2*2 , MM RR  2*2 , NN RR

 

2k  1.62 1.25 1.30 

3k  1.11 1.02 1.02 
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When we compare the efficiencies of all three coefficients of determination in 

Table 4.15, it is reasonable to infer that 
2
MR  is the most efficient statistic followed by 

2
LR  and 

2
NR  in row. 

2
MR  and 

2
LR  seem equal in terms of efficiency when AR has 

been categorized. They have almost the same efficiency and so they are not superior 

to each other. 

 

Table 4.15 ARE’s between each 
2R  statistics  

Type of model 
ARE 

22 , ML RR  22 , LN RR  22 , MN RR  

AR  0.71 0.61 0.44 

3AR  0.85 0.50 0.43 

 ARln  0.67 0.73 0.49 

AR  0.66 0.69 0.46 

2k  1.05 0.44 0.46 

3k  1.01 0.47 0.47 

Omission SP 0.72 0.60 0.43 

 

As a consequence, it is clear that these results are similar to the simulation results 

which imply that the most efficient 2R  is geometric mean squared improvement 2R .   
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CHAPTER FIVE 

CONCLUSIONS 

 

Misspecification has great influence on many components of not only linear 

regression but also generalized linear models. It has effects particularly on the test 

statistics, the dependent and the independent variables and the estimates of 

parameters of regression, in terms of both biasedness and efficiency (Chao, Palta, 

Young, 1997; Gail et al., 1984; Neuhaus & Jewel, 1993). The aim of this thesis is to 

investigate the effects of misspecification on 2R  statistics in logistic regression 

models due to ARE. These statistics are utility to measure how well a model fits the 

data, although they are alone not enough to judge the usefulness of the model. Some 

other analyses such as the values of goodness of fit statistics (likelihood ratio 

statistic, Pearson chi-square) should be taken into consideration.  

 

In linear regression, 2R  statistic which is also called explained variance is 

defined as the proportion of variance about the mean explained by the regression. 

This explained variance is measured based on error sum of squares. Linear regression 

models have only one error variation criterion for continuous dependent variables. In 

logistic regression, however, there are several error variation criterions such as 

squared error, entropy etc. for binary dependent variable. Therefore, there is not one 

way to measure the strength of association between the dependent variable and all of 

the independent variables. In this sense that, so many 2R  analog statistics were 

derived by some authors failing to agree on one statistic. In this thesis, totally ten 

well-known 2R  statistics have been explained separately in Chapter 3. Some 

suggestions that were made by authors about the most convenient 2R  and eight 

criteria that Kvalseth (1985) described have been given. These most frequently used 

2R  statistics have been compared based upon significant contributions of some 

authors such as Hagle and Mitchell (1992), Hu, Palta and Shao (2006), Menard 

(2000), Mittlböck and Schemper (1996), Veall and Zimmerman (1996). At the end, a 

detailed discussion of the three most frequently used and suggested 2R  statistics for 

logistic models which are likelihood ratio 2R   2
LR , geometric mean improvement 
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 2
MR  and adjusted geometric mean improvement  2

NR  have been presented. In this 

thesis, simulation studies and the application have been designed to compare them.  

 

The concept of ARE has been found to be appropriate for measuring the effects of 

2R  statistics under misspecification. ARE which is a useful technique for the 

comparison of related statistics have been examined in detail in Chapter 2 in two 

parts such as ARE in estimation and ARE in testing. In estimation, when there is at 

least one alternative for an estimator, it should be plausible to reveal the most 

efficient one for basing inferences and interpretations. ARE provides a perceptivity 

while comparing alternative estimators that are convenient to use. This concept 

attributes to the measures of performance of two estimators taking the ratio of their 

variances. Lagakos (1988a), Begg and Lagakos (1990, 1993), Noether (1955), 

Pitman (1949), Serfling (1980, 2011) studied ARE with different points of view. In 

testing, Pitman (1949) introduced the earliest approach to ARE in testing and the 

only major requirement is the information about asymptotic distribution of the test 

statistic. So among others Pitman approach is widely applicable approach. Section 

2.2.2 has included the proof of Pitman’s theorem with detailed calculations. In the 

end, it has been shown that when specific conditions are satisfied, ARE of two test 

statistics equals the limit of their variances. Using this approach, the performances of 

2R  statistics under misspecification have been measured, reasonably.  

 

In this thesis, we have focused on three frequently encountered types of 

misspecification. They involve discretizing a continuous explanatory variable, 

omission of a covariate and using wrong functional form of an explanatory variable. 

Categorization may be the most frequently used technique in especially medical 

research, because of simplifying the interpretation of models. However, to encourage 

undesirable results is unavoidable. It is important to decide for the number of 

categories (k) and correct category cutpoints. Cox (1957) suggested that efficiency of 

a test may be used as a criterion for cutpoint selection and proposed the average 

information loss caused by categorizing random variable X. It seems that maximizing 

ARE is needed to reduce the information loss. So the value maximizing the ARE will 

give the cutpoint value. 
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Cox (1957) made numerical recommendations for a normally distributed 

explanatory variable. His formula can be applied to other distributions such as 

exponential distribution. In literature, exponential distribution with parameter 1   

has already been studied. Connor (1972) and Lagakos (1988a) studied on ARE of 

test statistics when categorizing for up to 6 optimal categories and for explanatory 

variable having the distributions of uniform, normal and exponential with parameter 

1 . We have tried to extend the results for other values of  , as mentioned 

elaborately in Section 2.3.1. For different   parameters, it has been derived that the 

cutpoints may be calculated when the number of categories is two by 5936.1  and 

when the number of categories is three by 0176.1  and 6112.2 . Larger the 

parameter   gets the smaller cutpoints we have. Since   is the inverse of the mean, 

the increased   implies decreased mean. Moreover, it appears that ARE values are 

adversely affected by   and become quite lower. Therefore, it has been concluded 

that, if the distribution of data is determined as exponential with large values of 

parameter, categorization causes inefficient results of test statistics, otherwise 

categorized models are reasonably safe. Another extension has been given in the 

same section applying the loss of information formula to Weibull distribution with 

0 , 1  and 2 . It has been found that categorizing an explanatory variable 

having Weibull distribution with these parameters does not make a destructive effect 

on efficiency. In general, as the number of categories increases, for all distributions 

with all parameters, the categorization becomes safer, as expected.  

 

These results have provided a basis for misspecification effect on the efficiency of 

2R  statistics, since ARE calculations and considerations about the test statistics are 

applicable to the 2R  statistics. In Chapter 4, some numerical results have been 

presented. Section 4.1 includes simulation studies to see how and how much change 

occurs in 2R  statistics with respect to different types of misspecification. AREs for 

each 2R  statistic under correct model versus under the misspecified model have 

been calculated. The efficiency comparisons for three 2R  statistics with each other 

under both correct and misspecified models have also been made. In addition, the 
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influence of sample size has been investigated using 50 and 100 as sample sizes. 

According to the simulation results, for an explanatory variable having normal 

distribution, the increased variance generally leads to substantial losses in efficiency 

of all 2R  statistics when X has been included in wrong functional form or when it 

has been categorized in two categories. However, if an explanatory variable has an 

exponential distribution, then misspecification does not cause any problem. In 

addition, omitting the other covariate tended to provide a gain in efficiency under 

misspecification, as Neuhaus (1998) mentioned. In generally, the less effected 

statistic is seen as 
2
LR . 

2
MR  and 

2
NR  both give almost the same reaction to 

misspecification, especially for exponential distribution. It seems that, there is not 

much to wory if the explanatory variable has exponential distribution. 

 

Even though 
2
LR  is recommended for some authors such as Menard (2002), 

2
MR  

seems the most efficient 2R  statistic among three statistics when it is accurate that 

there is no misspecification. Under misspecification, 
2
MR  is still the most efficient 

statistic except when 3X  is used instead of X mistakenly. As simulation results show, 

using the third power of continuous variable in the model causes some problems for 

the coefficients of determination, such that 
2
MR  and 

2
NR  have great loss in efficiency, 

especially when X having normal distribution with increase in variance. 

Exponentially distributed X makes no difference in efficiency of these three statistics 

with regard to each other regardless of misspecification type. Simulation results 

show that 
2
MR  is more suggestible than 

2
LR  in terms of efficiency.  

 

An application on land consolidation has been presented in Section 4.2 to see the 

behaviors of 2R  statistics when a real data is used. Agriculture is a field that logistic 

regression is applied frequently. In this thesis, logistic regression has been fitted to 

land consolidation data which efforts a wide range of applications in around the 

world. Two cases have been shed light on by this application. Firstly, we provide a 

gain in information about the attributes that affect the peasants’ behaviors by 

applying logistic regression. Using bootstrap technique, secondly, the efficiencies of 
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R-squared statistics with land consolidation data have been attained. To be able to 

predict the willingness of peasants, we have included two variables to the analysis. 

There is certainly a wide range of variables that influences the willingness. Among 

them, we have given preference to the size of area that peasants have and to the ratio 

of the number of land shared parcels and the number of individual parcels. 

According to the performed application, we have concluded that the model 

conducted with the explanatory variable taking the natural logarithmic is the correct 

model with the considered variables for describing the data and the area size has 

influence on the choice of peasants, positively.  

      

Based on results of the bootstrap method, we see that 2R  statistics seem 

influenced by misspecification substantially. The most effected by misspecification 

is 
2
NR . It may be said that all these statistics are robust against categorization, for this 

study. This result has not changed regardless of using optimal and equiprobable 

intervals. The statistics have kept being robust against categorization for any number 

of categories. On the other hand, the efficiencies of 2R  statistics with each other 

have been calculated under misspecification or under the model that assumed to be 

correct. Finally, there are clear indications that 
2
MR  is the most efficient statistic over 

the other two, due to application supporting the simulation study. Only in 

categorization case, it seems to have equivalent efficiencies with 
2
LR .    

 

The results should be interpreted considering that As a result of both simulation 

and application, it has been concluded that there are sufficient indications to believe 

that 
2
MR  is more efficient than the others even if we suspected that we would make a 

specification error. Our recommendation is to select the 2R  statistic associated with 

the logistic regression analysis, carefully and when these R-squared statistics are 

calculated, it would be judicious decision to interpret the results considering 
2
MR . 

 

It should be noted that the inferences obtained from this study are limited with 

considered scenarios. For further researches, this study can be extended to find the 

ARE under different generalized linear model such as probit models. The distribution 
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of continuous explanatory variable can be chosen uniform and beta to observe their 

effects. The variance of the continuous variable can be designed moderetaly, for 

normal distribution. ARE formula for test statistics can be extended for coefficients 

of determinations, theoretically. Different correlation coefficients between the 

variables can be considered. Moreover, this study can be extended to measure the 

performances of other comparable statistics. 
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APPENDIX 

 

Asymptotic distributions of 2
R  statistics due to corresponding distributions of 

X for n = 50 and n = 100 

 

 

 

Figure A.1 Asymptotic distributions of R-squares when X have normal distribution (0,1) for 50n  
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Figure A.2 Asymptotic distributions of R-squares when X have normal distribution (0,1) for 100n  
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Figure A.3 Asymptotic distributions of R-squares when X is distributed normal (0,9) for 50n  
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Figure A.4 Asymptotic distributions of R-squares when X have normal distribution (0,9) for 100n  
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Figure A.5 Asymptotic distributions of R-squares when X have exponential distribution (1) for 

50n  
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Figure A.6 Asymptotic distributions of R-squares when X have exponential distribution (1) for 

100n  

 

 

 



 

 

99 

 

 

 

 

 

Figure A.7 Asymptotic distributions of R-squares when X have exponential distribution (3) for 

50n  
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Figure A.8 Asymptotic distributions of R-squares when X have exponential distribution (3) for 

100n  

 

 


