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ONTOLOGY-BASED MEDICAL IMAGE ANNOTATION AND RETRIEVAL 

 

ABSTRACT 

In this thesis, we proposed a new ontology-based medical image annotation and 

retrieval system for mammographic examinations. For that purpose, we have first 

developed a mammography annotation ontology (MAO) which is a domain ontology 

and it provides shared vocabulary for mammography interpretation. Then we have 

developed a new ontology-based mammography annotation and retrieval tool 

(MART) to create our mammography dataset. Then, we have developed a content 

based image retrieval system where a breast mass is described with three sets of 

features: low, mid and high-level feature. Mathematical model of similarity 

calculation between two breast lesions and implementation of the model with 

SQWRL and XQuery explained in detail. To test our CBIR system, we performed set 

of queries on the DEMS. Furthermore, we present an approach to model uncertainty 

in mammography, and perform SQWRL rules to infer BI-RADS scores for a given 

mass instance. Experimentation results showed that uncertainty exists in 

interpretation of BI-RADS scoring in mammography and average level of 

uncertainty for crisp logic is clearly greater than our approach. Additionally, we 

show that using low-level features together with high and mid-level features in the 

content based image retrieval of breast masses improves the overall system 

performance and it is found statistically significant (p is lower than 0.001).  

Keywords: Ontology, content-based image retrieval, low-level image features, 

breast mass, medical image retrieval, mammography, uncertainty. 
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ONTOLOJİ TABANLI TIBBİ GÖRÜNTÜ BETİMLEME VE ERİŞİMİ 

 

ÖZ 

Bu tez kapsamında, mamografi incelemelerinde kullanılmak üzere yeni bir 

ontoloji tabanlı tıbbi resim betimleme ve geri getirim sistemi önerilmiştir. Bu amaçla 

ilk olarak mamografi incelemelerde kullanılmak üzere ortak bir kelime haznesi 

sağlayan yeni bir mamografi betimleme ontolojisi geliştirdik. Daha sonrasında, veri 

setimizi oluşturmak amacıyla, ontolojimiz ile uyumlu, yeni bir ontoloji tabanlı 

mamografi betimleme ve geri getirim uygulaması geliştirdik. Sonrasında, her bir 

meme kitlesinin üç farklı seviyede öznitelik (yüksek, orta ve düşük) ile temsil 

edildiği içerik tabanlı resim geri getirim modelimizi geliştirdik. İlgili modelin 

matematiksel modeli SQWRL ve XQuery kullanılarak uygulamaya geçirilmesine 

ilişkin detaylar tez içersinde verilmiştir. İçerik tabanlı resim geri getirim sistemimizi 

test etmek amacıyla bir grup sorguyu veri setimiz üzerinde çalıştırdık. Ayrıca, 

mamografi incelemeleri sırasında ortaya çıkabilen belirsiz durumları modellemek 

üzere yeni bir yaklaşım önerdik ve verilen bir meme kitlesinin BI-RADS skorunu 

belirmek için SQWRL kuralları geliştirdik. Yapılan deneyler sonucunda,  mamografi 

incelemeleri sırasında BI-RADS skorlarının belirlenmesi aşamasında bir belirsizlik 

durumunun olduğu ve formüle edilen belirsizlik seviyesinin kesin mantık için bizim 

yaklaşımımızdan açık bir şekilde daha yüksek olduğu görülmüştür. Ek olarak, içerik 

tabanlı resim geri getirim sistemlerinde, düşük seviyeli özniteliklerin, yüksek ve orta 

seviyeli öznitelikler ile birlikte kullanılması, sistem performansını iyileştirmiştir. Bu 

iyileştirme istatistiksel olarak anlamlı bulunmuştur (p küçüktür 0.001).  

Anahtar Sözcükler: Ontoloji, içerik tabanlı resim geri getirim, düşük seviyeli resim 

öznitelikleri, meme kitlesi, tıbbi resim geri getirim, mamografi, belirsizlik. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview 

Breast cancer is the most common tumor for the women, in Western countries. 

Some statistics of breast cancer shows that nearly 1 in 8 women in the United States 

will develop invasive breast cancer over their lifetime (Breastcancer.org, 2013). But, 

breast cancer is most treatable when it is early detected. In this sense, a 

mammography examination, called a mammogram, is the gold standard for breast 

cancer screening, early detection and diagnosis. Mammography is a specific type of 

imaging that uses a low dose x-ray system to examine breasts. Mammograms can 

help to detect up to 90% of breast cancers, even before they are felt like a lump 

(Stephan, 2013). The American Cancer Society recommends that women 40 years 

old and older have an annual mammogram. Therefore, many researchers have been 

working on computer-aided diagnosis system (CADx) to detect and identify breast 

masses automatically in digital mammograms over several decades. All these 

researches aim to support radiologists in the difficult task of discriminating benign 

and malignant breast lesions. Hence, it is not surprising that typically only 15% to 

30% of breast biopsies performed on calcifications will be positive for malignancy 

(Hall et al., 1988).  To improve the level of CADx in mammography, there is a need 

to a system taking the background knowledge of radiologist into account in decision-

making process with a more computable way. In this point, ontologies can be a 

solution to improve the performance of CADx systems in Mammography. 

Ontology is the most common way to represent the knowledge for computers, and 

defined as a formal, explicit specification of a shared conceptualization and encodes 

a partial view of the world, with respect to a given domain.  It is composed of a set of 

concepts, their definitions and their relations that can be used to describe and reason 

about a domain. Ontological modeling of knowledge is vital in many real world 

applications and in medicine.  In intelligent systems, ontologies are the way to 

transform background knowledge of a domain to machine understandable form. For 
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example, the interpretation of radiological examinations includes years of 

experience, the knowledge on the respective domain. The medical image 

interpretation is not solely reached by pattern recognition and it also includes a deep 

knowledge in medical domain. Therefore, a successful implementation of 

radiological imaging system should be able to model and incorporate such 

knowledge into a more computable format. In this point, ontology is a tool to be able 

to solve this issue. Medical ontologies are developed to solve problems such as 

reusing and sharing of patient data, required of semantic-based queries/inference or 

the transmission of these data. The communication of complex and detailed medical 

concepts is a very important task in current medical information systems.  In this 

way, more complex tools such as case-based retrieval or evidence based medicine 

can be possible in medicine. 

Radiology department of an average hospital may produce hundreds of 

mammograms per day. Thus, annotation and retrieval of mammographic 

examinations in an acceptable time is important for right diagnosis. In this respect, 

Hung and Chen propose a Case based Retrieval (CBR) system for mammographic 

cases (Hung & Chen, 2006). On the other hand, in recent years, many researches aim 

to develop ontology-based medical image annotation and retrieval approach to 

reduce the occurrence of irrelevant resource retrieval in a medical imaging 

information system. The main goal is to answer the user queries based on semantic 

relations that can be inferred from meaningfully between the data items. Hu et al. 

built a semantically rich system by accommodating image annotation and retrieval 

services around a rigidly defined ontology for medical images used in breast cancer 

treatment, in 2003. The aim of the their Breast Cancer Imaging Ontology (BCIO) is 

to provide a commonly agreed vocabulary with formal definitions that can be used to 

represent breast X-ray and MRI images, abnormal findings and medical assessments 

(Hu et al., 2003). In 2006, Qi et al. developed a mammography ontology called as 

Pocket-Ontology. They use ontology-based comparison method for finding groups of 

diagnosis that radiologists detect using the same analysis process. Their comparison 

method is based on an edit distance, which is a similarity measurement between two 

concepts (Qi et al., 2006). Ren and Barnaghi created a framework for medical 

specialists to be able to annotate digital mammograms, and to retrieve relevant 
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resources based on semantic relations, in 2007 (Ren & Barnaghi, 2007).  . In 2008, 

Rubin et al. develop an ontology-based annotation and retrieval framework, which is 

called Annotation and Imaging Markup (AIM) (Rubin et al., 2008). Levy et al. 

perform a SWRL rule on AIM to identify the malignancy of liver lesions, depend on 

its length (Levy et al., 2009). Shanbolt et al. developed an ontology-based knowledge 

management system which is called MIAKT (Medical Imaging with Advanced 

Knowledge Technologies) for the data that the screening process generates, as well 

as providing a means for medical staff to investigate, annotate and analyze the using 

web, in 2004 (Shadbolt et al, 2004). 

1.2 Aim of This Thesis 

Aim of this thesis is to develop ontology-based content based image retrieval 

system for breast masses. Hence, a successful implementation of radiological 

imaging system could be able to model and  incorporate such knowledge into a more 

computable format. In this way, more complex tools such as case-based retrieval or 

evidence-based medicine can be possible in mammography. In order to achieve this 

goal, we propose several improvements; …iyileştirmelerin neler olduğunu yazmak 

lazım. 

1.3 Thesis Organization 

This thesis is organized as follows. In chapter 2, we present our Mammography 

Annotation Ontology (MAO) and Mammography Annotation Retrieval Tool 

(MART). In chapter 3, we propose a sample mammogram dataset (DEMS: Dokuz 

Eylul University Mammogram Set), which is fully annotated with the MART. 

Chapter 4 introduces mathematical model of our CBIR system for digital 

mammograms and  figure out the performance effect of different level of features in 

the system. In chapter 5, we propose a new ontology-based mammography 

annotation system with a capability of uncertainty modeling in ontologies. 

Implementation of our ontology-based CBIR system with XQuery is given in chapter 

6. Finally, chapter 7 concludes this thesis and provides future direction. 
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2. CHAPTER TWO 

MAMMOGRAPHY ONTOLOGY WITH ANNOTATION 

AND RETRIEVAL TOOL 

 

2.1 Overview 

Ontology is the most common way to represent the knowledge for computers, and 

defined as a formal, explicit specification of a shared conceptualization and encodes 

a partial view of the world, with respect to a given domain.  It is composed of a set of 

concepts, their definitions and their relations that can be used to describe and reason 

about a domain. Ontological modeling of knowledge is vital in many real world 

applications and in medicine.  In intelligent systems, ontologies are way to transform 

background knowledge of a domain to machine understandable form. For example, 

the interpretation of radiological cases includes years of experience, the knowledge 

on the respective domain. The medical image interpretation is not solely reached by 

pattern recognition and it also includes a deep knowledge in medical domain. 

Therefore, a successful implementation of radiological imaging system should be 

able to model and incorporate such knowledge into a more computable format. In 

this point, ontology is a tool to be able to solve this issue. Medical ontologies are 

developed to solve problems such as reusing and sharing of patient data, required of 

semantic-based queries/inference or the transmission of these data. The 

communication of complex and detailed medical concepts is a very important task in 

current medical information systems.  In this way, more complex tools such as case-

based retrieval or evidence-based medicine can be possible in medicine. 

In this chapter, we present mammography annotation ontology (MAO), 

Mammography Annotation Retrieval Tool (MART). MAO is a domain ontology for 

mammography and it was created based on the 3
th

 edition of ACR (American 

College of Radiologists) BI-RADS (Breast Imaging Reporting and Data System) 

Mammography Atlas (The American College of Radiology, 2012). MART is a 

software tool to annotate and retrieve mammographic examinations based on MAO. 
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2.2 Mammography Annotation Ontology (MAO) 

In terms of computer science, ontologies are state-of-the-art method to represent 

knowledge and become more important in image annotation. Ontology includes a set 

of concepts and the relationships between them. We divide ontologies into two main 

groups; upper ontology and domain ontology. Upper ontologies model the common 

objects, which are generally used in the domain ontologies while the domain 

ontologies model a specific domain or part of the world. Domain ontologies 

generally provide a shared vocabulary. Main role of these vocabularies is to help data 

integration by representing the knowledge and to aid decision-making processes. In 

that respect, ontologies are important for health care systems. 

In this study, Mammography Annotation Ontology (MAO) is an essential part of 

the system. In development of MAO we used the 3
rd

 edition of BI-RADS 

Mammography Atlas, and used the ontology to annotate any abnormality observed in 

mammograms. However, some mammograms may not contain any abnormalities. 

Principally, MAO provides a shared vocabulary and knowledge that makes 

annotations understandable and computable by the computer. Prominently, it makes 

reasoning of any other information possible.  

In literature, some research suggests a framework for ontology-based medical 

image annotation and retrieval as an approach to reduce the occurrence of irrelevant 

resource retrieval in a medical imaging information system. Hu et al. built a 

semantically rich system by accommodating image annotation and retrieval services 

around a rigidly defined ontology for medical images used in breast cancer treatment, 

in 2003. They developed the Breast Cancer Imaging Ontology (BCIO) to provide a 

commonly agreed vocabulary with formal definitions that can be used to represent 

breast X-ray and MRI images, abnormal findings and medical assessments (Hu et al., 

2003). In 2006, Qi et al. developed mammography ontology and used an 

ontology-based comparison method for finding groups of diagnosis that radiologists 

detect using the same analysis process based on edit distance, which is a similarity 

measurement between two concepts (Qi et al., 2006). Ren and Barnaghi suggested a 

framework for medical specialists to be able to annotate digital mammograms and to 
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retrieve relevant resources based on semantic relations, in 2007 (Ren & Barnaghi, 

2007). In 2008, Rubin et al. developed a generalized ontology-based annotation and 

retrieval framework, which is called Annotation and Imaging Markup (AIM) (Rubin 

et al., 2008). Shanbolt et al. developed an ontology-based knowledge management 

system which is called MIAKT (Medical Imaging with Advanced Knowledge 

Technologies) for the data that the screening process generates, as well as providing 

a means for medical staff to investigate, annotate and analyze the using web, in 2004 

(Shadbolt et al., 2004). And, in 2012, we have proposed a system for Ontology-based 

annotation and retrieval of breast masses (Bulu et al., 2012). 

Ontology development is an iterative process and there is no one best way or 

methodology to develop ontologies. In development process of the MAO, we 

consider the domain covered with intended use of the ontology. We use middle-out 

strategy as ontology development methodology (Fernández-López, 1999). To 

achieve this, we choose the base concepts in mammography (i.e., Case, Breast, 

Image, Abnormality etc.) and some of their basic relationships. Then, we describe 

the other necessary concepts (i.e., ROI, 2D Point etc.). Furthermore, the MAO is also 

used to handle uncertainties and to infer the BI-RADS score for a particular breast 

mass (Bulu et al., 2013).  Figure 2.1 shows the important concepts of MAO and the 

relationships between them, excluding details. 

In the MAO, a mammography examination is represented by a MammoCase 

concept having Breast and Image concepts. Each abnormality in a case has a 

BI-RADS concept to show its BI-RADS score. Thus, a MammoCase may contain 

more than one BI-RADS concept. In this case, the highest BI-RADS score is 

assigned to the case as final score. In other words, we set the case‟s BI-RADS score 

automatically from the abnormalities found in the case.  

The Image concept represents the digital images of examination such as MRI, 

CT, mammography etc. Screening mammography generally involves two views of 

the breast: one from above (Cranial-Caudal view, CC) and the other from oblique or 

angled views (Mediolateral-Oblique, MLO).  Therefore, a typical mammography 
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examination contains four mammograms; two MLO and two CC views for two 

breasts.  

The ROI concept describes any region of interest (ROI) on an image. The 

radiologists draw or select a predefined shape for ROI by using the annotation tool 

and we assume that each ROI represents an abnormality with its additional properties 

such as mean intensity value, area of the abnormality as pixel count, etc.  

Abnormality concept describes an abnormality in an image, such as mass, 

calcification, associated finding, special case and other. As a rule, each Abnormality 

concept must have at least one ROI and one BI-RADS concept associated with it. 

Mass concept is used for masses, and it is a subclass of Abnormality concept. Mass 

concept has additional MassDescriptor, which is the super class of MassShape, 

MassMargin and MassDensity classes, to describe any particular mass.  
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Figure 2.1 Simplified view of the Mammography Annotation Ontology (MAO). 

In Figure 2.2 , we illustrate a sample mass annotation, which is in the left breast, 

and annotated by irregular shape, speculated margin, equal density and BI-RADS 

score 5. The mean intensity value of the mass is 35598.1 in 16 bits level and area of 

the mass is 81765 pixel
2
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  Figure 2.2 Annotation of mammograms with the MAO. 

2.3 Mammography Annotation and Retrieval Tool (MART) 

Mammography Annotation and Retrieval Tool (MART) allows radiologists to 

examine four images in total, CC and MLO projection of the right and left breasts, 

for a typical mammography case. In interpreting mammograms, radiologists mark 

and annotate the abnormalities on images by using a variety of tools, and specify the 

breast type. MART stores all annotations in XML format, which is then easily, 

converted into a variety formats, such as; OWL (Web Ontology Language) (W3C, 

22.03.2013), radiology reports in natural language etc. We developed the MART 
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using C++ programming language with QT framework (QT Digia, n.d.) with a cross-

platform support. Figure 2.3 depicts a sample screenshot of the MART. 

(L)

(H)

(A) (B)

(D)

(E)

(F)

(G)

(C)

 

Figure 2.3 Mammography annotation tool. 

2.3.1 General System Overview of the MART 

MART has two inputs, MAO and Mammograms in DICOM format. MAO 

represents the expert knowledge used in MART. The second input is mammogram in 

DICOM format. User must put four mammograms, which are CC and MLO views of 

the two breasts into a Case Folder. Before starting to annotation process, MART 

converts DICOM images into lossless PNG format and renames the PNG files with 

respect to their view and then produces an initial XML file (Annotation.xml) using 

from DICOM header information. As a result, Case Folder contains the following 

files; LCC.png, LMLO.png, RCC.png, RMLO.png and Annotation.xml. After all, 

user can start to annotate the mammograms by using predefined drawing tools and 

annotations controls. The annotations are stored in Annotation.xml file. Then, it is 

possible to convert the XML file to any other format by using predefined XSD 
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(XML Schema Definition) files, such as MAO class instances and radiological report 

etc. All these process are illustrated in Figure 2.4. 

Mammography 

Annotation Ontology 

(MAO)

DigiMAM 

Annotation XML

Instance of 

the MAO

Mammography Annotation 

And Retrieval Tool (MART)

Text Report

Mammograms 

(DICOM)

Mammograms 

(Lossless PNG)

 

Figure 2.4 General system overview. 

2.3.2 Main Components of the MART 

Statistic Widget (shown in Figure 2.3-L) is the widget gives quick statistics for the 

selected repository, where it shows count of the mammographic cases for each 

abnormality properties and their possible values. In this way, user can easily see the 

distribution of the MAO instances for the selected repository and can easily search 

and access mammographic cases for a particular abnormality. For example, user can 

easily list all mammographic cases having at least one mass with lobular shape. 

When double clicked on a case number in the list, then it loads the case selected. 

Case Selection Widget (shown in Figure 2.3-H) is the widget to browse the 

repository and to load any mammographic case with double click. Green background 

indicates the case is already annotated and red background means that the case has 

not been annotated yet.  

Annotation Widget (shown Figure 2.3-D) is used to annotate any selected lesion 

and breast density based on MAO. So, when the MAO is updated, annotation options 

in the widget are also updated automatically. In practice, first user chooses the ROI 

to annotate, and then selects the type of the abnormality (i.e. mass, calcification, 

spatial case etc.) from top part of the widget shown in Figure 2.5-F. Depends on the 

selected type, below section of the widget (shown in Figure 2.5-C) is changed. For 

example, if the type of the abnormality is selected as “mass”, then below section asks 

shape, margin and density of the mass. If “calcification” is selected, below section 

asks category, type and distribution of the calcification. All possible values in the 

drop-down-list controls come from MAO file in run-time. Additionally, the widget 



 

 

12 

 

also calculates width, height, area and mean-intensity (density) values of the selected 

ROI shown in Figure 2.5-D. In the right side of the widget, object browser (shown in 

Figure 2.5-A) lists the ROIs where green rows indicates the ROI is annotated while 

red background indicates the ROI is not annotated yet. The MART does not allow 

user to save un-annotated ROIs. User can clear the annotation of the selected ROI by 

clicking on the button shown in Figure 2.5-B. 

(A)

(C)

(B)

(D)

(E)

(F)

 

Figure 2.5 Sample mass annotation. 

Case-based Retrieval Widget (shown in Figure 2.3-F) performs Case-based 

Retrieval (CBR) functionality, for a given query of abnormality or mammography 

case. In practice, user clicks “Q” button (Figure 2.3-C) and sends the selected 

abnormality to the widget as query. Then clicks “Execute” button (Figure 2.6-A) to 

perform CBR on the selected mammography repository. The result list is shown in 

the “Result List” tab (Figure 2.6-B), where the list is sorted from most similar to least 

similar. To see the detail of the similarity calculation between the query and results, 

user double clicks on any row in the Result List and “Detail” tab (Figure 2.6-C) is 

opened. During the similarity calculation, CBR algorithm (Bulu et al., 2012) uses 

both high-level (semantic) and mid-level features (e.g., mean intensity (density) and 

size of area). In this way, it is possible to sort the abnormalities having same 

high-level feature values by most relevant to least similar. This ranking improves the 

accuracy of the CBR result. Additionally, user can create his own query by using 

“Create Instance” tab (Figure 2.6-D). 
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(A) (B) 

  
(C) (D) 

Figure 2.6 Tab views of the case based retrieval widget. 

Mammograms Display Tool (shown in Figure 2.3-A) enables user to display the 

mammograms in various options.  A standard mammography examination contains 

four mammograms; two for left breast and two for right breast. This provides user to 

compare breasts easily or focus on one view to examine the abnormalities in detail. 

Lesion Selection Tool (shown in Figure 2.3-B) presents four different drawing 

options to user for marking any abnormality seen in the mammograms. These are 

rectangle, oval, polygon and free-hand. Generally, an abnormality is seen in both 
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view (CC and MLO) and in practice user marks them individually and connects them 

to express ROIs belonging to same abnormality. Then, user annotates the ROIs with 

single annotation. When the user clicks any of them, both of them are selected and 

user can easily see the abnormality in both views. 
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3. CHAPTER THREE 

DEMS: DOKUZ EYLUL UNIVERSITY MAMMOGRAM SET 

 

3.1 Overview 

In this chapter, we present a sample mammogram dataset (DEMS: Dokuz Eylul 

University Mammogram Set) which is fully annotated with the MART. DEMS  

contains fully-annotated digital mammograms for computer-aided diagnosis (CAD) 

studies. It is also compliant with the state-of-the-art semantic-web knowledge 

representation technologies. During the preparation process of the DEMS, case 

selection performed in two stages. In first step, candidate cases are selected 

retrospectively from PACS of Radiology Department of Dokuz Eylul University 

Medical Faculty Hospital, among more than 50K mammography examination 

diagnosed between 2004 January and 2008 November. Each candidate case includes 

four images in DICOM format, which are CC    MLO views of both breasts. All of 

the patients and physicians identifications are manually removed and the whole 

dataset were anonymized. To select initial candidate cases, we developed a textual 

Boolean information retrieval system to speed up selection process for each concept 

in the ontology. In final form, DEMS contains 485 mammographic cases where 255 

of them contain one or more lesion. Radiologist expert in mammography annotated 

each case in three phases using MART. 

3.2 Existing Mammogram Dataset in Literature and DEMS 

There are several mammogram datasets available to researchers who want to 

measure performance of their lesion detection and classification approaches.  But 

most of them loses their majority or are no longer available. Major mammography 

datasets are described in following sections. 

Nijmegen Digital Mammogram Dataset; This dataset includes 40 digitized 

mammograms of 20 patients. Dataset created by Department of Radiology, 

University of Nijmegen in the Netherlands and The Dutch National Expertise and 

Training Center for Breast Cancer Screening. Images are obtained by using 
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combination of Kodak MIN-R/SO177 and a variety of hardware. Then images are 

digitized by using Eikonix 1412 12-bit CCD camera with 50 µm sampling aperture 

and 100 µm sampling distance settings (effective pixel resolution 100 µm). Each 

image size is 2048 × 2048 pixels. Subsequently, regional light inequality in the 

images is corrected. All images include at least one cluster of microcalcifications, 

and dataset consists of 7 malignant, 13 benign lesions. This dataset is not available 

now (University of South Florida, n.d.). 

Washington University Digital Mammogram Dataset; This dataset consists of 80 

cases acquired by LoRad CCD-based stereotactic core biopsy system to locate the 

lesion in the breast with single point of view-angle images of digital mammography. 

The number of benign and malign lesions is equal like the number of 

microcalcifications and masses. Each image size has 512 × 512 pixels, 100 µm pixel 

resolution and 12 bits intensity depth Although this dataset is no longer available, 

this is the first example of digitally captured dataset and could have been accessible 

by anyone via FTP (Nishikawa, 1997). 

OWH (Office of Women’s Health) Dataset; According to the Nishikawa's article 

(Nishikawa, 1997), this dataset which is not freely available to everyone developed 

by Office of Women Health under U.S. Ministry of Health. It contains totally 900 

diagnoses from 5 different regions (University of Pennsylvania, University of 

Virginia, UCLA, UCSF and the American National Naval Medical Center) to 

provide a national training dataset for CAD developers. Each case include CC and 

MLO view of both right and left breast acquired using Lumiscan 85 film scanner at 

50 µm pixel resolution and 12-bit color depth. Dataset contains 540 normal subjects 

(proved by biopsy or diagnosed after two years of examination), and 180 benign and 

180 malignant lesions. Additionally, the dataset includes the location and properties 

of the lesion, and pathological features. 

(Mini-)MIAS (Mammographic Image Analysis Society) Dataset; This dataset is 

developed by Mammographic Image Analysis Society, formed by more than twenty 

research institutes in the UK (Davies, 1993). Dataset includes 161 cases selected 

from British National Mammography Screening Program. Each case includes MLO 

view of left and right breast (total number of images 322). The original dataset 
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images have 50 µm pixel resolution with 8-bit color depth, but this set of data is not 

available now (Nishikawa, 1997). Moreover, a new dataset named mini-MIAS 

containing cropped versions of original images at 1024×1024 image size and 200 µm 

pixel resolutions was created according to intensive demand. 

LLNL/UCSF Dataset; This dataset prepared jointly by the U.S. Lawrence 

Livermore National Laboratory (LLNL) and The Department of Radiology of 

University of California at San Francisco (UCSF) to help researchers working on 

microcalcifications. Dataset contains 197 digitized mammograms of 50 patients (CC 

and ML views of both left and right breast for each patient, 2 images instead of 4 for 

one patient who had mastectomy, and 1 corrupted image) (Ashby et al., 1995). 

Images are digitized by using Du Pont Industrial NDT film digitizer with 35 µm 

pixel resolution and 12-bit intensity depth and stored using ICS (Image Cytometry 

Standard) format. Moreover dataset contains two binary truth files describing 

calcification clusters and major calcification boundaries. Additionally, dataset 

contains a text file including case history and expert radiologist comments 

(Nishikawa, 1997). 

DDSM (Digital Database for Screening Mammography); This dataset is 

developed by co-operation of Massachusetts General Hospital, University of South 

Florida (USF), American Sandia National Laboratories and the U.S. Army Medical 

Research and Material Unit Breast Cancer Research Program‟s fund. Each case in 

the dataset contains two standard views (CC and MLO) of two breasts and is selected 

from patients diagnosed between October 1988 and February 1999 at Massachusetts 

General Hospital, Wake Forest University School of Medicine, St. Sacred Heart 

Hospital and Washington St. Louis University School of Medicine (Heath et al., 

2001). The dataset has a total number of 2620 studies. Besides, dataset also contains 

demographic data for each case like, age of the patient, the mammogram acquisition 

date, mammogram digitization date and ACR breast density determined by an expert, 

as well as abnormality verification file containing lesion markings, BI-RADS 

assessment made by a radiology expert, with the degree of difficulty. 

GPCALMA (Grid Platform for a Computer-Aided Library in Mammography) 

Dataset; This dataset was started to be developed by a group of physician working in 
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Italian National Institute for Nuclear Physics (INFN) with radiologists at 1999. 

Dataset contains totally 3369 digitized mammography images of 967 cases (each 

case has varying number of images from 1 to 6) (Lauria, 2009). Mammograms from 

participating Italian Hospitals are digitized by using single CCD film scanner at 

2067x2657 size with 85 µm effective resolution and 12-bit intensity depth and stored 

using CALMA format (Lauria, 2006). No normalization is applied to the images 

during the digitization phase due to unavailability of acquisition parameters of films. 

Dataset contains some assessments made by expert radiologists like breast tissue, 

lesion presence, lesion location and lesion type. Moreover, dataset includes some 

demographical information and follow-up studies. 

INbreast Dataset; This dataset is developed in Breast Centre in CHSJ, Porto. 

Cases in dataset belong to patients who diagnosed between April 2008 and July 

2010. All images acquired by MammoNovation Siemens FFDM at 70 µm effective 

resolution and 14-bit intensity depth. Acquired images are stored in DICOM files. 

Dataset includes a total number of 115 cases and 56 of them have biopsy data 

(Moreira et al., 2012). General properties of all dataset are summarized in Table 3.1 

for easy comparison. 

DEMS:  This dataset contains 485 cases, where each case contains four 

mammograms, MLO and CC views for two breasts, and one XML file called as 

“DEMS Annotation XML”. Each image converted from DICOM images into lossless 

PNG and name of the each images is set according to its view, e.g. LCC.png, 

LMLO.png. Resulting PNG images have 16-bit intensity depth, 70 µm effective 

resolution and, 2560×3328 or 3328×4096 size. Figure 3.1 shows sample 

mammography case in DEMS which have more than one abnormality. The case 

contains one mass and two associated findings in the left breast. The mass is 

indicated with red contour and it has irregular shape, spiculated margin and equal 

density. Additionally, there are skin retraction and skin thickening as the associated 

findings. The breast density of the case is Almost Entirely Fat and final BI-RADS 

score of the case is 6. This means that the mass is pathologically proven malignancy. 
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Table 3.1 General overview of datasets (FT-DM: Digitized Mammography; SR-FFDM: Full Field 

Digital Mammography; in formula of Image Count column a×b=c where a: Images in each Case, b: 

Number of Cases, c: reported number of images in the dataset, N/A: unknown). 
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Figure 3.1 Sample mammography case with its ROI‟s in DEMS, where RCC view is on the right-top 

corner, LCC view is on the left-top corner, RMLO view is on the right-bottom corner and LMLO 

view is on the left-bottom corner. 

3.3 DEMS Annotation XML 

DEMS Annotation XML file contains Patient and Case tags. For privacy reasons 

we just store birth date of the patient. On the other hand Case tag includes all image 

and annotation data with date of study which is important to calculate age of patient 

during examination date. Images are described by Image tag, which contains 

important DICOM headers and lesion annotations denoted by GraphicItem tag.  A 

sample GraphicItem tag is shown in Figure 3.2.  
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<GraphicItem id="1" type="4" groupId="1" uniqueId="123"> 

  <PointCollection> 

    <Point x="2658.057469371625" y="1941.542446510455" /> 

    ... 

  </PointCollection> 

  <Annotation> 

    <Instance classId="03"> 

   <Property valueId="11" id="04" /> 

   <Property valueId="03" id="05" /> 

   <Property valueId="03" id="06" /> 

   <Property valueId="02" id="07" /> 

    </Instance> 

    <MiddleLevelFeatures> 

      <Property valueText="94.6206" id="13" /> 

      <Property valueText="5215.78" id="14" /> 

      <Property valueText="67.5157" id="15" /> 

      <Property valueText="101.529" id="16" /> 

    </MiddleLevelFeatures> 

  </Annotation> 

</GraphicItem> 

Figure 3.2 Sample GraphicItem tag in DEMS annotation XML. 

Each GraphicItem tag includes lesion boundary in PointCollection tag and 

annotation data in Annotation tag. The Annotation tag describes set of MAO 

instances in two child tags, namely, Instance and MiddleLevelFeatures. Value of 

each id attribute in Annotation tag is coming from a mapping XML file which 

derived from MAO to simplify representation of OWL. 

3.4 Statistics of DEMS 

All cases in DEMS annotated for BI-RADS breast type; Almost Entirely Fat, 

Scattered Fibroglandular Tissue, Heterogeneously Dense or Extremely Dense. 

Figure 3.3-A shows breast type distribution, where Extremely Dense has the lowest 

percentage. Secondly, lesions in DEMS are belong to one of the category; mass, 

calcification, special case and associated finding. Additionally, in some of the 

mammograms metallic clips appear. To be able to distinguish them from any other 

lesions, we create one more lesion category as other and we consider them in this 

group. Distribution of the abnormalities is shown in Figure 3.3-B. 

Mass is the one of the major lesion type in DEMS. According to BI-RADS 

mammography atlas each mass has three attributes; shape, margin and density. 

Furthermore, each attribute has a set of allowed values (e.g., mass shape can be 

round, lobular, oval or irregular). Table 3.3 shows the distribution of masses in 
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DEMS according to their attributes in detail.  In the table count of lesions in DEMS 

are given, where Case column shows the number of unique mammographic case 

containing related value, Lesion column shows the number of unique lesion marked 

with related value. For instance, total number of cases containing lobular shaped 

mass is 28. On the other hand, the total number of lobular shaped mass is 29 since a 

case contains more than one mass with lobular shape. The masses annotated as 

BI-RADS category 6 are pathologically proven malignant lesion, while all other 

masses require pathologic examination to determine if they are benign or malign. 

Table 3.2 Features of masses with their count. 

 Feature  Case Lesion 

B
I-

R
A

D
S

 

2 23 27 
3 26 29 
4A 9 9 
4B 6 6 
4C 10 10 
5 37 39 
6 14 16 

S
h

a
p

e 

Round 21 27 
Lobular 28 29 
Irregular 56 59 
Oval 21 21 

M
a
rg

in
 Circumscribed 44 52 

Microlobular 5 5 
Obscured 16 16 
Illdistinct / Illdefined 22 26 
Spiculated 37 37 

D
en

si
ty

 High 51 62 
Equal / Isodence 55 59 
Low / Not Fat Containing 3 3 
Fat Containing Radiolucent 11 12 

 

 

Calcification is the second major abnormality type in DEMS. Like masses, 

annotation of calcifications is determined according to BI-RADS mammography 

atlas. So, each calcification has category, type and distribution attributes with their 

allowed values. Figure 3.3-C shows distribution of the calcification according to 

category attribute, where typically-benign calcification has the highest percentage. 

Furthermore, distribution of calcification categories is shown in Figure 3.3-D. 

Special-cases and associated-findings are the other abnormality types in DEMS. 

There are six allowed values for special-cases, and seven allowed for 



 

 

23 

 

associated-findings. Different from the other abnormalities in DEMS, some 

associated findings may not have BI-RADS scores. For these types of lesions we 

have added one more BI-RADS score as N/A. Distributions of the special-cases and 

associated-findings in DEMS are shown in Figure 3.3-E and Figure 3.3-F, 

respectively.  

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

Figure 3.3 Distribution of breast types and abnormalities. 
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3.5 DEMS Web Browser 

We have developed a web application (shown in Figure 3.4) to make browsing 

DEMS possible and easier. The web application has three main parts; filter, display 

and annotations. In the filter part, user can easily filter the cases in DEMS by using 

combo-boxes. Then, the filtered cases are listed in „Case List‟ list-box. When user 

selects one case from the list, display options are listed above list-box. The list-box is 

filled dynamically according to lesion types of the selected case. When user clicks on 

„Load The Case‟ button, selected case is displayed with selected display option. In 

the display part, mammogram(s) are displayed. Finally, annotation part shows 

annotations of all lesions in selected case. We use color-coding to connect the ROIs 

and annotations. In other words, same color is used for both ROI and its annotation.  

 

Figure 3.4 Screen shot of DEMS browser 
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3.6 DEMS Low-level Features 

Contrary to any existing mammogram datasets, we provide a set of low-level 

features of mammogram cases in DEMS, where these features can be used to 

improve CBR results. Moreover, low-level features are mandatory components of a 

Content-based Image Retrieval (CBIR) system. Without them, the system becomes a 

metadata-based retrieval system. Each mass in DEMS has 29 different low-level 

features describing the content and the characteristics of the masses for their shape, 

texture, margin, mass intensity and size. Low-level features are represented with a 

vector of floating point numbers, whose the total length of the all feature vector is 

578. These features are typically used for classification and clustering of breast 

masses (Berber, 2013), and to improve CBR results of breast masses. 
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4. CHAPTER FOUR 

CONTENT-BASED IMAGE RETRIEVAL OF BREAST MASSES WITH 

HIGH-, MID- AND LOW-LEVEL IMAGE FEATURES BY USING 

SEMANTIC WEB TECHNOLOGIES AND PERFORMANCE 

COMPARISION OF THE FEATURES 

 

4.1 Overview 

Computer aided diagnosis (CAD) of breast cancer becomes significant topic for 

mammography (Mousa et al., 2005), (Verma et al., 2010) and (Keles & Yavuz, 

2011). Hence, there is an urgent need to browse medical image databases by their 

visual content to find cases, and to compare visually similar images and their 

diagnoses (Müller at al., 2004). Case based reasoning (CBR) is one of the most 

common problem solving methods for both human and computer, which is based on 

the solutions of similar past problems and, consequently, it is a popular method for 

CAD systems. CBR has been formalized for purposes of computer reasoning as a 

five-step process, namely, retrieve, reuse, revise, review and retain (Domeshek & 

Kolodner, 1993), (Watson, 1999). Retrieve step is the first and the most important 

steps of case-based reasoning. Likewise, content-based image retrieval (CBIR) 

becomes integral part of the case-based reasoning scenario when medical images are 

considered. 

CBIR systems allow searching large image archive for a given query based on 

visual similarity. For example, radiology department of an average hospital may 

produce thousands of medical images per day. Currently, retrieval of medical images 

stored in archives is generally provided by external attributes (e.g. patient ID, patient 

name, reports or annotations etc.) associated to each case. Search by textual keyword 

from the radiology report or the electronic patient record is also possible. Besides, 

CBIR systems allow to browse and search in large image collections based on visual 

features that are automatically extracted from the images, as well as external 

attributes.  
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To date, many CBIR systems were developed for mammographic examinations 

(Alto & Rangayyan, 2005), (Kinoshita et al., 2007), (Wei et al., 2005) and (El et al., 

2002).  However, it is clearly known that most CIBR systems have semantic gap 

between low-level image features and high-level semantic descriptors. Therefore, 

closing the semantic gap is an important issue in CBIR area. From this point of view, 

some researchers aim to reduce this gap with combination of high- and low-level 

features in medical domain (Nair, 2011), (Selvarani & Annadurai, 2007). Since high-

level semantic descriptions of medical images are subjective, description may be 

change from one expert to another. For instance, for a given breast mass, one expert 

can describe it as round shape while other one can interpret as oval shape. This is the 

nature of medical image interpretation. However, mid and low-level features are 

objective since computers calculate these features automatically without human 

intervention. So, proper combination of different features and similarity score 

calculations will result more similar cases. Hence, there is an urgent need to a CBIR 

system to find similar medical cases for case based reasoning and evidence-based 

medicine. 

In this chapter, we aim to figure out performance effect of different level of 

features in CBIR system for digital mammograms. In this respect, we develop a 

CBIR system where a breast mass is described with three sets of features: low, mid 

and high-level feature. High level (HL) features are expert interpretation of a mass 

for shape, margin and density characteristics. Mid level (ML) features are computer-

calculated values for mass intensity and mass size. Both high- and mid level features 

are human readable. For low-level  (LL) features, we have first examined 25 

different features and then choose the most three successful of them: Zernike 

Moments, Texture Browsing and Mean Margin Difference. Then, we compared the 

performance of individual feature set as well as different combination of them. The 

experimentations show that using low-level together with high and mid level features 

improves the system precision and our CBIR system also helps to close the semantic 

gap between high and low-level features. 
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4.2 Features for Content-based Image Retrieval (CBIR) 

We divide the features into three main groups, namely, high-level, mid-level and 

low-level. We use all of them to describe any existing breast mass observed in the 

mammograms. High level features are semantically meaningful labels describing an 

entity (e.g., round, oval, lobular or irregular to describe shape of a mass). Intuitively, 

high level features are expected to set by human experts. Instead, mid level features 

are generally computed automatically, and someway can be interpreted by both 

computers and humans. Typical mid level features are size, length or average 

intensity of a mass.  The third, low level features are extracted by computers and 

generally represented as a vector numbers. Thus, low-level features are not 

semantically meaningful by human. It requires an intensive processing to make them 

interpretable by human.  Table 4.1  lists the features with their significant properties. 

Table 4.1 CBIR Features 

Feature Level Readability Data Type Acquisition Match Type Similarity  

High Human Scalar Human Exact Equality 

Mid Human/computer Scalar Computer Exact Equality 

Low Computer Vector Computer Similarity Euclidean Distance 

 

We propose to use combination of all features to improve the CBIR performance, 

instead of using high, mid and low-level features individually. In many cases, 

although the masses have exactly same high-level features, mid and low-level 

features can be significantly different and ranking the results from most relevant to 

less is an important task. So, if we use high-level features only, it is impossible to 

rank the masses from the most to the least relevant cases. Hence, to be able to 

retrieve more accurate query results, we need to take all level of features into 

consideration. Details of the features are given in following sections. 

4.2.1 High-Level Features 

According to ACR BI-RADS (Breast Imaging Reporting and Date System) 

mammography atlas (The American College of Radiology,2012) any breast mass is 
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annotated with three high-level features; shape, margin and density. All possible 

feature values are shown in Table 4.2, which make mammographic examinations 

more meaningful to process for the human as well as computers. 

Table 4.2 High-Level features with allowed values where values in parenthesis are acronym. 

Feature Allowed Values 

Shape Round (Ro), Oval (Ov), Lobular (Lb), Irregular (Ir) 

Margin Circumscribed (Ci), Microlobulated (Mi), Obscured (Ob), Indistinct (In), Spiculated (Sp) 

Density High (Hi), Equal (Eq), Low (Lo), Fat (Fa) 

 

Today, PACS systems use text-based image retrieval techniques to annotate and 

retrieve of medical images. However, using high-level features only makes a system 

as Boolean retrieval systems, where no ranking is possible for cases annotated with 

same feature values. This is the most important problem of text-based image 

retrieval. Another major problem is that the task of describing image content with 

keywords is very subjective. An image can mean different things to different people. 

Moreover, even with the same view, the words used to describe the content could 

vary from one person to another. In other words, there could be a variety of 

inconsistencies between user textual queries and image annotations or descriptions 

(Hung & Chen, 2006). 

4.2.2 Mid-Level Features 

The features in this category are calculated automatically by computer for each 

individual breast mass and they can be scalar or vector. One of the advantages of 

using calculated features is being objective. Mid-level features can be read and 

understand by human as well as computers. In this work we proposed to use two 

simple features, Area and Mean Intensity, of the masses. 

4.2.3 Low-level Features 

Low-level features are set of real numbers, so that they are meaningful only for 

computer and heavily used in CBIR systems. Unlike other feature types, low-level 

features lack of semantic information. On the other hand, low-level features are more 
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objective than high-level feature type since they are calculated from image pixel data 

without human intervention. Therefore, we believe that we will be able to get better 

query results by using objective features in similarity calculation. 

In literature, several low-level features and their combinations are used in 

Mammography CADx systems. In this study, we used three low-level features. One 

of them is used in several mammography related works. The others are proposed in 

CBIR literature but not used for mammography images before. Three low-level 

features used in this work are described in following shortly. 

4.2.3.1 Zernike Moments 

Zernike Moments (Khotanzad & Hong, 1990) are orthogonal moments, which use 

unit vector representation of an image. They are rotation and scale invariant and 

denoted as in the following formula. 
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where |∙| denotes absolute value of a real number, ρ is the length of the vector 

from origin to point (x,y), angle between x axis to the vector and 𝐴𝑛𝑚
∗ = 𝐴𝑛,−𝑚 . 

Here, 𝑉𝑚𝑛
∗  𝜌, 𝜃  are the Zernike polynomials and denoted as in the following 

formula. 
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Rosa et al. (Rosa et al., 2008) used Zernike Moments in a mammography CBIR 

system, reported that experimentations on DDSM dataset achieves 90% of precision 

with respect to the recall. 



 

 

31 

 

4.2.3.2 Texture Browsing 

Texture Browsing feature aims to describe texture of a region similar to human 

perception in terms of regularity, coarseness and directionality (Wu et al., 2000) and 

it is an element of MPEG-7 standard. To the best of our knowledge, this texture 

descriptor, like Homogeneous texture descriptor, is not used in medical domain. 

Representation of this descriptor is defined as the following feature vector. 

54321 ,,,, vvvvvTBD  

Elements of the feature vector represent regularity (𝑣1) of texture, dominant 

orientations (𝑣2 ,  𝑣3) of texture and dominant scales (𝑣4 ,  𝑣5) of texture. Extraction of 

this descriptor uses Gabor filter functions with 6 orientations and 4 scales. 

Gabor functions are Gaussian functions that are modulated by complex sinusoids. 

In image processing, these functions are used for edge and bar detections. In medical 

image domain, this feature set is used in some works to represent texture information 

of the image. Müller et al. (Müller et al., 2004) uses a generic CBIR system to create 

a reference medical dataset. Their system uses Gabor filters to describe image textual 

content. Zheng (Zheng, 2009) refers these features as “commonly used visual 

descriptors” in mammographic CAD systems. Yu and Huang (Yu & Huang, 2010) 

show that using Gabor filters in conjunction with windowed Fourier transform shows 

similar performance with high order statistical methods in microcalcification 

detection. 

4.2.3.3 Mean Margin Difference 

Margin of a mass includes very important clues for determining malignancy of a 

mass. Therefore, a low-level feature modeling the mass margin formally is needed to 

assign margin property to a mass. There are several works attempting to model 

margin of a mass using shape features (Rangayyan et al., 2000), (Deloguet al., 2007). 

Although shape descriptors are useful for margin characterization, intensity 

difference between inner and outer object areas is another important feature.  
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Mean Margin Difference Feature aims to model marginal intensity characteristics 

of a mass. Polar representation of mass‟s bounding box that is centered on mass 

center is used to extract angular properties of a mass. Additionally, manually or 

automatically segmented binary mass region is used to determine inner and outer 

regions of a mass in polar representation. Moreover, a dilation and erosion mask is 

used to find inner and outer margin areas. Generating a polar representation of an 

image is given with following formula. 

       
22 yxr        and    )(tan 1

x

y  

 

where (x,y) is the coordinates of original image, (r,θ) are length and angle axis of 

the polar coordinate system. Figure 4.1 contains both original and segmented regions 

and their polar representations.   

  

(a) (b) 

  

(c) (d) 

Figure 4.1 (a) Original ROI (b) Polar representation of original ROI (c) Binary segmentation of the 

mass (d) Polar representation of the segmented ROI (c). 

Herein, using polar representation of region mask we determine inner (IR) and 

outer (OR) regions of the mass in polar coordinate representation. Furthermore, 

approximate margin area is determined by subtracting original image from eroded 

(inner margin area, IMA) and dilated (outer margin area, OMA) mask region. After 

obtaining all required regions, we calculate mean margin difference using following 

formula. 
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)()()( iii ORIRD    

where i denotes i-th column of polar image of region, μIR  and μOR  are average 

intensity values of inner and outer margin area of polar mass image. 

4.3 Similarity Calculation 

In CBIR systems, the similarity calculation between two images is inevitable, 

thus, we explain the similarity calculation of masses in detail. However, system can 

be easily extended to any other type of abnormalities in mammography (e.g. 

calcification, associated finding etc.).  

Let us assume that we have a database of masses, each described with a set of 

features. More formally, a mass database, M, is defined as follows:  

  nmmmM ,...,, 21                                                     (1) 

Furthermore, each mass is defined with a set of features: high, mid and low-level.  

For a given arbitrary mass,
x

m , is defined as follows: 

  LMH ,, xxxx FFFm                                                    (2) 

where the terms 
MH , xx FF  and 

L

xF  denotes high, mid and low-level features of the 

mass xm , respectively. Formally, each type of feature may be defined with a 

different set of sub attributes. 

 dmsH ,, xxxx fffF    ,  miaM , xxx ffF    ,  zmtbmmdL ,, xxxx fffF            (3), (4), (5) 

where superscript represents features names: such as s for shape, m for margin, d 

for density, a for area, mi for mean intensity, mmd for margin mean differences, tb 

for texture browsing and zm for Zernike moments. Using Equation 3, 4 and 5, we can 

represent the xm  as follows, 
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       zmtbmmdmiadms ,,,,,,, xxxxxxxxx ffffffffm                                (6) 

where, 
a

xf  and 
m i

xf are real numbers,  
mmd

xf ,
tb

xf  and 
zm

xf are real number vectors, 

and they are calculated by using pixel values of the mass and,  

 IrregularLobular,Oval,Round,s xf
 

 Spiculated,IlldistictObscured,ar,Microlobulbed,Circumscrim xf
 

 HighEgual,Fat,Low,d xf  

 

The similarity function, S, between masses, am  and bm  is given in Equation 7. 

),(),(),(),( ba

L

ba

M

ba

H

ba mmSmmSmmSmmS           (7)  

where superscript of H, M, and L shows high, mid and low-level similarity score 

of the masses, respectively. And  ,   and   represent weight value of each 

similarity score. In this study, we set each weight value as 1.0. In detail, 
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H ffsimffsimffsimmmS           (8) 

where the functions Ssim , Msim and Dsim use Table 4.3. The arguments of these 

functions denote row and column of the table. The table is similarity matrix for each 

high-level property (i.e., shape, margin and density); its values are empirically set 

within a range of zero and 1. Here, the value of 1 means that the features are 

identically similar while zero indicates no similarity. Similarity calculation of mid-

level features is given as follows: 

 ),(),(),( MiA

bababa

M mmsimmmsimmmS                                     (9) 

where ),(A

ba mmsim  and ),(Mi

ba mmsim  are functions to calculate similarity score 

between the masses am  and bm , depends on their area and mean intensity values, 

respectively. In detail,  
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where 
a

af  and a

bf  are area, 
m i

af  and m i

bf  are mean intensity values of masses am  

and bm , respectively. maxArea and maxMeanIntensity denotes the maximum area 

and mean intensity values in all over masses. Finally, to calculate similarity score for 

the low-level features, we use the distance function shown in Equation 12.  

e(i)maxDistanc

),Euclidean(
-1),(

ii3

1

ba
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ba

L ff
mmS 



   where,   zmtbmmdi ,,                (12)  

Figure 4.2 illustrates a sample similarity calculation. 

Table 4.3 Similarity matrixes for high-level features of the masses. Meaning of the row and column 

headers is given in Table 4. 2.  

Shape (simS) Density (simD) Margin (simM) 

 
Ro Ov Lb Ir 

 
Hi Eq Lw Fa 

 
Ci Mi Ob In Sp 

Ro 1 0.8 0.8 0.4 Hi 1 0.5 0.2 0 Ci 1 0.6 0.5 0.4 0.2 

Ov 0.8 1 0.6 0 Eq 0.5 1 0.7 0.6 Mi 1 1 0.5 0.6 0.3 

Lb 0.8 0.6 1 0.6 Lw 0.2 0.7 1 0.9 Ob 1 0.5 1 0.8 0.7 

Ir 0.4 0 0.6 1 Fa 0 0.6 0.9 1 In 0 0.6 0.8 1 0.8 

          
Sp 0 0.3 0.7 0.8 1 
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Irregular
Spiculated
High Density
472920
37753.3
{1.0, 1.0, 2.0, 2.0, 1.0}

{0.05, 0.045, ... , 0.021}
{0.44, -0.10, ... , -0.05}

Irregular
Indistinct
Equal Density
273012
27985.8
{1.0, 1.0, 1.0, 3.0, 2.0}

{0.04, 0.06, ... , 0.04}
{0.28, -0.04, ... , -0.002}

Shape

Margin

Density

Area

Mean Int.

TB

MMD

ZM

Feature Mass A Mass B Sim. Score

Total Similariy Score

1.0

0.9

0.8
0.7
0.81
0.84
0.72
0.7

6.47
 

Figure 4.2 Sample similarity calculation. 

4.4 Semantic Query-enhanced Web Rule Language (SQWRL) 

SQWRL is built on the Semantic Web Rule Language (SWRL), which is an 

expressive OWL-based rule language. SWRL makes possible to write inference rules 

and this provides more powerful deductive reasoning capabilities than OWL alone. 

Semantically, SWRL is built on the same description logic foundation as OWL and 

provides similar strong formal guarantees when performing inference (Protege, 

02.09.2013). For example, as we mentioned before if a mammographic case contains 

one or more abnormality then the highest BI-RADS score of the masses in that case 

is assigned as the BI-RADS score of the case. So, following SWRL rule, Figure 4.3, 

infers and sets BI-RADS score of a particular mammographic case (MammoCase) 

according to the BI-RADS score of its abnormalities; 
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MammoCase(?case) ∧ hasBreast(?case, ?breast) ∧ 

hasImage(?breast, ?image) ∧ hasROI(?image, ?roi) ∧ 

hasAbnormality(?roi, ?mass) ∧ hasBirads(?mass, ?birads) ∧ 

sortIndex(?birads, ?sortIndx) ˚ sqwrl:makeSet(?setBirads, 

?sortIndx) ∧ sqwrl:groupBy(?setBirads, ?case) ˚ 

sqwrl:max(?maxIndex, ?setBirads) ∧ swrlb:equal(?maxIndex, 

?sortIndx) 

→ 

hasBirads(?case, ?birads) 

Figure 4.3 SWRL Rule to Infer and Set BI-RADS Score of a MammoCase 

On the other hand, SQWRL takes a standard SWRL rule. Both of them have an 

antecedent part, which is referred to as the body, and a consequent part, which is 

referred to as the head. Differently, SQWRL replaces the rule consequent with a 

retrieval specification for retrieving knowledge from OWL by providing SQL-like 

operations  (O‟Connor & Das, 2009). For example, the following SQWRL rule, 

Figure 4.4, retrieves maximum mean intensity value in all mass instances. 

Mass(?mass) ∧ hasROI(?mass, ?roi) ∧ 

hasMidLevelDescriptor(?roi, ?meanIntensity) ∧ 

description(?meanIntensity, ?desMeanIntensity) ∧ 

swrlb:equal(?desMeanIntensity, "MeanIntensity") ∧ 

doubleValue(?meanIntensity, ?meanIntensityValue) ˚ 

sqwrl:makeSet(?setMeanIntensity, ?meanIntensityValue) ˚ 

sqwrl:max(?maxMeanIntensityValue, ?setMeanIntensity)  

→  

sqwrl:select(?maxMeanIntensityValue) 

Figure 4.4 SQWRL Rule to Retrieve Maximum Mean Intensity Value of the Masses 

4.5 Similarity Calculation with SQWRL 

We use OWL and SQWRL to retrieve similar masses for a given mass query. We 

process SQWRL rules with Jess rule engine (Friedman-Hill, n.d.) in SWRLTab of 

Protégé (Stanford Center for Biomedical Informatics Research, n.d.). To be able to 

perform SQWRL rule for retrieval, we also store high-level similarity matrixes in the 

MAO. To do this, we defined object type owl:AnnotationProperty between 

each Mass_Descriptor class and use rdfs:range and rdfs:domain tags 
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of owl:AnnotationProperty to store row and column of our similarity matrix, 

shown in Table 4.3.  rdfs:label tag of owl:AnnotationProperty stores 

the similarity score in string format, and converted into float while calculation. 

Figure 4.5 shows OWL syntax of a sample owl:AnnotationProperty between 

DensityHigh and DensityEqual classes, where similarity score is equal to 

0.5 as shown in Table 4.3. 

<owl:AnnotationProperty rdf:ID="AnnoMassDensityHighEqual"> 

<rdfs:domain rdf:resource="#DensityHigh"/> 

<rdfs:range rdf:resource="#DensityEqual"/> 

<rdfs:label 

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

0.5 

</rdfs:label> 

<rdf:type 

rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 

</owl:AnnotationProperty> 

Figure 4.5 Sample annotation property for classes DensityHigh and DensityEqual. 

To retrieve similar masses for a given query, we run the SQWRL rule given in 

Figure 4.6. Where variable ?m-q denotes querying mass instance and ?m-r 

denotes all other mass instances different from the query mass in the ontology 

(tbox:notEqualTo(?m-q, ?m-r)).  As we mentioned in Equation 6, total 

similarity score between two masses is sum of their high-level and mid-level 

similarity scores. So the antecedent part of the rule consist of two main parts, one for 

calculation high-level similarity score (?sumHigh) and the other part for mid-level 

similarity score (?sumMid) calculation.  

To obtain the high-level similarity score we process 

owl:AnnotationProperty‟s for each high-level feature of the masses (i.e.  

tbox:isAnnotationProperty(?ap-s) where ?ap-s denotes the 

owl:AnnotationProperty for high-level feature Shape). As a result of 

calculation high-level similarity score (?sumHigh), we sum similarity values of 

each  high-level feature of mass (swrlb:add(?temp1, ?sv-s, ?sv-m) ∧ 

swrlb:add(?temp2, ?sv-d, ?sv-b) ∧ swrlb:add(?sumHigh, 
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?temp1, ?temp2), where; ?sv-s, ?sv-m, ?sv-d and ?sv-b denotes 

similarity values for mass high-level features Shape, Margin, Density and BI-RADS, 

respectively). On the other hand, to calculate mid-level similarity score (?sumMid) 

between the masses, first we calculate maximum Area and Mean Intensity values 

(?maxArea and ?maxMeanIntensity) depend on the all mass instances in the 

MAO. Then, we perform Equation 9 and 10 for the normalization process (i.e. 

calculation of 
Asim  in the Equation 9; swrlb:subtract(?subArea, 

?valArea-q, ?valArea-r) ∧ swrlb:abs(?absArea, ?subArea) 

∧ swrlb:divide(?divArea, ?absArea, ?maxArea) ∧ 

swrlb:subtract(?simResArea, 1, ?divArea), where,  ?valArea-

q and ?valArea-r denotes Area value of the query and retrieved masses, 

respectively and ?simResArea denotes result value of the function 
Asim ). Finally, 

by summing ?sumHigh and ?sumMid, we obtain result similarity score 

(?sumSim) between the mass (swrlb:add(?sumSim, ?sumHigh, 

?sumMid)).  We sort descending the result set according to ?sumSim value to list 

most similar masses on the top of the result list.  

  



 

 

40 

 

Mass(?m-q) ∧ ID(?m-q, ?id-q) ∧ swrlb:equal(?id-q, "A") ∧ 

Mass(?m-r) ∧ tbox:notEqualTo(?m-q, ?m-r) ∧ hasROI(?m-q, ?roi-

q) ∧ hasMidLevelDescriptor(?roi-q, ?midArea-q) ∧ 

description(?midArea-q, ?desArea-q) ∧ swrlb:equal(?desArea-q, 

"Area") ∧ doubleValue(?midArea-q, ?valArea-q) ∧ 

hasMidLevelDescriptor(?roi-q, ?midMeanIntensity-q) ∧ 

description(?midMeanIntensity-q, ?desMeanIntensity-q) ∧ 

swrlb:equal(?desMeanIntensity-q, "MeanIntensity") ∧ 

doubleValue(?midMeanIntensity-q, ?valMeanIntensity-q) ∧ 

hasROI(?m-r, ?roi-r) ∧ hasMidLevelDescriptor(?roi-r, ?midArea-

r) ∧ description(?midArea-r, ?desArea-r) ∧ 

swrlb:equal(?desArea-r, "Area") ∧ doubleValue(?midArea-r, 

?valArea-r) ∧ hasMidLevelDescriptor(?roi-r, ?midMeanIntensity-

r) ∧ description(?midMeanIntensity-r, ?desMeanIntensity-r) ∧ 

swrlb:equal(?desMeanIntensity-r, "MeanIntensity") ∧ 

doubleValue(?midMeanIntensity-r, ?valMeanIntensity-r) ∧ 

hasMassShape(?m-q, ?ds-q) ∧ hasMassMargin(?m-q, ?dm-q) ∧ 

hasMassDensity(?m-q, ?dd-q)∧ hasBirads(?m-q, ?db-q) ∧ 

abox:hasClass(?ds-q, ?cs-q) ∧ abox:hasClass(?dm-q, ?cm-q) ∧ 

abox:hasClass(?dd-q, ?cd-q)∧ abox:hasClass(?db-q, ?cb-q) ∧ 

hasMassShape(?m-r, ?ds-r) ∧ hasMassMargin(?m-r, ?dm-r) ∧ 

hasMassDensity(?m-r, ?dd-r)∧ hasBirads(?m-r, ?db-r) ∧ 

abox:hasClass(?ds-r, ?cs-r) ∧ abox:hasClass(?dm-r, ?cm-r) ∧ 

abox:hasClass(?dd-r, ?cd-r)∧ abox:hasClass(?db-r, ?cb-r) ∧ 

tbox:isProperty(?ap-s) ∧ tbox:isAnnotationProperty(?ap-s) ∧ 

tbox:isInDomainOf(?cs-q, ?ap-s) ∧ tbox:isInRangeOf(?cs-r, ?ap-

s) ∧ rdfb:hasLabel(?ap-s, ?lb-s) ∧ StringToDoble(?s2d-s) ∧ 

stringValue(?s2d-s, ?str-s) ∧ swrlb:equal(?str-s, ?lb-s) ∧ 

doubleValue(?s2d-s, ?sv-s) ∧ tbox:isProperty(?ap-m) ∧ 

tbox:isAnnotationProperty(?ap-m) ∧ tbox:isInDomainOf(?cm-q, 

?ap-m) ∧ tbox:isInRangeOf(?cm-r, ?ap-m) ∧ rdfb:hasLabel(?ap-m, 

?lb-m) ∧ StringToDoble(?s2d-m) ∧  stringValue(?s2d-m, ?str-m) 

∧ swrlb:equal(?str-m, ?lb-m) ∧ doubleValue(?s2d-m, ?sv-m) ∧ 

tbox:isProperty(?ap-d) ∧ tbox:isAnnotationProperty(?ap-d) ∧ 

tbox:isInDomainOf(?cd-q, ?ap-d) ∧ tbox:isInRangeOf(?cd-r, ?ap-

d) ∧ rdfb:hasLabel(?ap-d, ?lb-d) ∧ StringToDoble(?s2d-d) ∧ 

stringValue(?s2d-d, ?str-d) ∧ swrlb:equal(?str-d, ?lb-d) ∧ 

doubleValue(?s2d-d, ?sv-d) ∧ tbox:isProperty(?ap-b) ∧ 

tbox:isAnnotationProperty(?ap-b) ∧ tbox:isInDomainOf(?cb-q, 

?ap-b) ∧ tbox:isInRangeOf(?cb-r, ?ap-b) ∧ rdfb:hasLabel(?ap-b, 

?lb-b) ∧ StringToDoble(?s2d-b) ∧ stringValue(?s2d-b, ?str-b) ∧ 

swrlb:equal(?str-b, ?lb-b) ∧ doubleValue(?s2d-b, ?sv-b) ∧ 

swrlb:add(?temp1, ?sv-s, ?sv-m)∧ swrlb:add(?temp2, ?sv-d, ?sv-

b) ∧ swrlb:add(?sumHigh, ?temp1, ?temp2) ˚ 

sqwrl:makeSet(?setmidArea-q, ?valArea-q) ∧ 

sqwrl:makeSet(?setmidArea-r, ?valArea-r) ∧ 

Figure 4.6 The SQWRL rule to retrieve similar masses for a given mass. 
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sqwrl:makeSet(?setmidMeanIntensity-q, ?valMeanIntensity-q) ∧ 

sqwrl:makeSet(?setmidMeanIntensity-r, ?valMeanIntensity-r) ˚ 

sqwrl:union(?setUnionArea, ?setmidArea-q, ?setmidArea-r) ∧ 

sqwrl:union(?setUnionMeanIntensity, ?setmidMeanIntensity-q, 

?setmidMeanIntensity-r) ∧ sqwrl:max(?maxArea, ?setUnionArea) ∧ 

sqwrl:max(?maxMeanIntensity, ?setUnionMeanIntensity) ∧ 

swrlb:subtract(?subArea, ?valArea-q, ?valArea-r) ∧ 

swrlb:abs(?absArea, ?subArea) ∧ swrlb:divide(?divArea, 

?absArea, ?maxArea) ∧ swrlb:subtract(?simResArea, 1, ?divArea) 

∧ swrlb:subtract(?subMeanIntensity, ?valMeanIntensity-q, 

?valMeanIntensity-r) ∧ swrlb:abs(?absMeanIntensity, 

?subMeanIntensity) ∧ swrlb:divide(?divMeanIntensity, 

?absMeanIntensity, ?maxMeanIntensity) ∧ 

swrlb:subtract(?simResMeanIntensity, 1, ?divMeanIntensity) ∧ 

swrlb:add(?sumMid, ?simResArea, ?simResMeanIntensity) ∧ 

swrlb:add(?sumSim, ?sumHigh, ?sumMid)  

→ 

sqwrl:select(?m-q, ?m-r, ?cs-q, ?cs-r, ?cm-q, ?cm-r, ?cd-q, 

?cd-r, ?sumHigh, ?valArea-q, ?valArea-r, ?valMeanIntensity-q, 

?valMeanIntensity-r, ?sumMid, ?sumSim) ∧ sqwrl: 

orderByDescending(?sumSim) 

Figure 4.6 The SQWRL rule to retrieve similar masses for a given mass. (Cont.) 

To test our approach, we processed a list of queries. Table 4.4 shows the results of 

three sample queries. In Query-A and Query-B, all high-level features of the query 

masses are equal. Both of the queries mass has irregular shape, spiculated margin, 

high density and BI-RADS 5. But there is a significant difference between their 

mid-level features, where area of the mass in the Query-B is larger than Query-A. 

Therefore, when we look at the query results, we can see that, the size of the masses 

in result list of the Query-A is smaller than the masses in result list of Query-B. In 

other words, mid-level feature helps to rank result set, effectively. And we query a 

mass with oval shape, circumscribed margin, equal density and BI-RADS 2 in 

Query-C.  
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Table 4.4 Sample mass queries with their results 

 Query-A Result-A.1  Result-A.2  Result-A.3  

    

 Query-B Result-B.1  Result-B.2  Result-B.3  

    

 Query-C Result-C.1 Result-C.2  Result-C.3  

    

 

 

4.6 Performance Effect of Low Level Image Features to Content based Image 

Retrieval of Breast Masses 

To evaluate performance effect of low-level image features to CBIR of breast 

masses, we developed an experimental system and use DEMS (Dokuz Eylul 

Mammography Set) which is a mammogram dataset and contains fully-annotated 

digital mammograms (Dokuz Eylul University, 2012). DEMS is compliant with the 

state-of-the-art semantic-web knowledge representation technologies, and case 

selection has been performed in two stages. In first step, candidate cases were 

selected retrospectively from PACS system of Radiology Department of Dokuz 
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Eylul University Medical Faculty Hospital, among more than 50K mammography 

examination diagnosed between 2004 January and 2008 November. Each candidate 

case includes four images in DICOM format, which are CC and MLO views of both 

breasts. The dataset were manually anonymized by removing all patients and 

physicians IDs. DEMS contains 485 mammographic cases where 255 of them 

contain one or more abnormality and 260 mass annotations in total. DEMS case 

images and the features (i.e., high, mid, low-level) are all downloadable at 

http://demir.cs.deu.edu.tr/index.php/downloads.  

In the dataset, all cases are examined by two radiologists and the lesions are 

marked by a radiologist who has more than 25 years experience on mammography 

interpretation. We call these marks as ROI (Region of interest) of the mass. In Figure 

4.7, first column shows sample masses, and second column shows their ROI's. All 

calculated features (i.e., mid and low-level features) are extracted directly from the 

ROI of the masses. The last column indicates the region of the masses in black and 

white. 

   

   

Figure 4.7 Sample masses in DEMS. 

According to ACR Mammography Atlas, each mass should have a single 

BI-RADS score which can be 2, 3, 4A, 4B, 4C, 5 and 6. As the score increases, 

probability of being malignancy increases as well.  The test set contains 4 query 
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masses from each BI-RADS score, 28 query masses in total. In Equation 13, query 

set is represented as Q where an arbitrary qi represents a query mass.  

 28321 ,...,,, qqqqQ                                                  (13) 

Then, we run our CBIR system for each query mass, qi, and it produces initial result 

list, riin, where, each riin, contains k result masses, mi, shown in Equation 15.  

 k

in

i mmmmr ,...,,, 321                                             (14) 

After that, we ask two expert radiologists, a and b, to judge if masses are relevant to 

given query, qi, in riin. And, we obtain ria and rib , shown in equation 17 and 19, 

where length of the lists, x and y, are changed according to expert's judgment.  

 x

a

i mmmmr ,...,,, 321                                                (15) 

 
y

b

i mmmmr ,...,,, 321                                                (16)  

Finally, we consolidated the two sets ria and rib to obtain final relevant list ri by 

taking intersection of them. Equations 17 shows the final relevant set for query qi. 

 ni mmmmr ,...,,, 321                                                    (17) 

We evaluate our system using these relevance lists in terms of P@10, Precision 

and Recall metrics. To distinguish the power of each feature type (i.e., low, mid and 

high), we set up a series of experimentations for different combinations of them. 

These are HL, LL, ML+LL, HL+ML and HL+ML+LL, where '+' represents 

combination of individual feature type (e.g. HL+LL means that using high and low-

level features together). 

 Figure 4.8 shows the results of P@10 values obtained from experimentations. 

Average P@10 values for HL, LL, ML+LL, HL+ML and HL+ML+LL are 0.29, 

0.13, 0.21, 0.43 and 0.71, respectively.  It shows that, using high, mid and low-level 

features all together produces the best P@10 values. 
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Figure 4.9 shows Precision versus Recall graph, where it is clearly seen that, when 

we use computer-calculated features alone or together (LL and ML+LL), their 

performance is worse than the performance of using HL features alone. But, when 

we add some computer-calculated features to CBIR system, which use only HL 

features, performance is increased (HL+ML). Finally, using HL features with LL and 

ML features have the best performance on CBIR of breast masses.  

 

Figure 4.8 P@10 values for individual query IDs. 

 

Figure 4.9 Precision vs Recall graph. 
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5. CHAPTER FIVE 

UNCERTAINTY MODELING FOR ONTOLOGY-BASED 

MAMMOGRAPHY ANNOTATION WITH INTELLIGENT BI-RADS 

SCORING  

5.1 Overview 

In 1904, Sir William Osler mused that "Medicine is a science of uncertainty and 

an art of probability”.  As time passed, the emergence of science in medicine has 

done much in the last century to reduce the uncertainty surrounding of medicine.  

Apparently, even a simple search in PubMed, using the terms medical and 

uncertainty, results more than a thousand of recent articles. It evidently shows that it 

is still an active research area and many researchers still work on to reduce 

uncertainty. On the other hand, evidence-based medicine aims to provide ways to 

quantify and communicate uncertainty from a probabilistic way. Nevertheless, 

uncertainty remains in the nature of medicine as in the very famous quote of Sir 

William Osler. 

A major weakness of usual ontological technologies is their inability to represent 

and to reason with uncertainty and imprecision (Hudelot et al., 2008). However, 

medicine, being a science whose subject is people, is inherently a science of 

certainty, and mostly deals with uncertain knowledge and imprecise and vague 

information.  In order to achieve maximum advantage from ontologies, we need an 

extension of ontologies, which has the capability of capturing uncertainty knowledge 

about concepts, properties and relations in domains and of supporting reasoning with 

inaccurate information. Along this direction, researchers have attempted in the past 

to use different approaches on modeling uncertainty in ontologies.  

In this chapter, we propose a new ontology-based mammography annotation 

system with a capability of uncertainty modeling in ontologies. To achieve this, we 

use Bayesian probability-based approach, without extending description logic and 

ontology languages.  In addition, we also propose a rule based BI-RADS score 

reasoning approach using Semantic Web technology of SQWRL (Semantic Query-

enhanced Web Rule Language). 
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5.2 Background and Literature Survey 

The current state–of–the–art in image retrieval has two major approaches: Content–

Based Image Retrieval (CBIR) and Annotation–Based Image Retrieval (ABIR). 

CBIR methods only operate on images by the extraction of visual primitives such as 

color, texture or shape. However, there is an important shortcoming of this approach: 

it is not possible to extract all semantic information from images alone, which is 

known as the „semantic gap‟. For mammography some CBIR systems were 

developed for retrieving and classification (Oliveira et al., 2010; Kinoshita et al., 

2007; Oliver et al., 2008; Castella et al., 2007). The second approach, ABIR, mostly 

deals with high-level semantic annotations, which are generally performed by 

humans. Such, Ontology-based Annotation and Retrieval is a kind of ABIR 

approach. 

5.2.1 Ontology-based Annotation and Retrieval of Mammograms 

In terms of computer science, ontologies are state-of-the-art method to represent 

knowledge and become more important when annotating an image. Ontology 

includes a set of concepts and the relationships between the concepts. We can divide 

the ontologies into two main types; upper ontology and domain ontology. Upper 

ontologies model the common objects, which are generally used in the domain 

ontologies while the domain ontologies model a specific domain or part of the world. 

Domain ontologies generally provide a shared vocabulary. Main role of these 

vocabularies is to help data integration by representing the knowledge and to aid 

decision-making processes. In that respect, ontologies are important for health care 

systems.  

In literature, there is some research that suggests a framework for ontology-based 

medical image annotation and retrieval as an approach to reduce the occurrence of 

irrelevant resource retrieval in a medical imaging information system. Hu et al. built 

a semantically rich system by accommodating image annotation and retrieval 

services around a rigidly defined ontology for medical images used in breast cancer 

treatment, in 2003. They developed the Breast Cancer Imaging Ontology (BCIO) to 
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provide a commonly agreed vocabulary with formal definitions that can be used to 

represent breast X-ray and MRI images, abnormal findings and medical assessments 

(Hu et al., 2003). In 2006, Qi et al. developed mammography ontology and used an 

ontology-based comparison method for finding groups of diagnosis that radiologists 

detect using the same analysis process based on edit distance, which is a similarity 

measurement between two concepts (Qi et al., 2006). Ren and Barnaghi suggested a 

framework for medical specialists to be able to annotate digital mammograms and to 

retrieve relevant resources based on semantic relations, in 2007 (Ren & Barnaghi, 

2007). In 2008, Rubin et al. developed a generalized ontology-based annotation and 

retrieval framework, which is called Annotation and Imaging Markup (AIM) (Rubin 

et al., 2008). Shanbolt et al. developed an ontology-based knowledge management 

system which is called MIAKT (Medical Imaging with Advanced Knowledge 

Technologies) for the data that the screening process generates, as well as providing 

a means for medical staff to investigate, annotate and analyze the using web, in 2004 

(Shadbolt et al., 2007). And, in 2012, we have proposed a system for Ontology-based 

annotation and retrieval of breast masses (Bulu et al., 2012). 

5.2.2 BI-RADS Scoring and Mass Descriptors in Mammography 

In mammography, Breast Imaging Reporting and Data System (BI-RADS) is a 

standard for rating mammograms and breast ultrasound images, so it represents the 

radiologist‟s final opinion of the absence or likelihood of breast cancer. The scores 

are assigned to abnormalities to give quick information about malignancy percentage 

of the abnormalities. It was developed by the American College of Radiologists 

(ACR)and the scores change from 0 to 6. BI-RADS scores are highly related to the 

probability of malignancy. Thus, BI-RADS score of a mass increases as probability 

of the malignancy increases. In other words, BI-RADS scoring is a decision making 

process for malignancy probability of the mass. For example, ACR BI-RADS atlas 

states that BI-RADS score is 4A, if the probability of malignancy is between 3% and 

29%.  Table 5.1 shows the meaning of each score (The American College of 

Radiology, 2012). 
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Table 5.1 Breast Imaging Reporting and Database System (BI-RADS) 

Category Diagnosis Number of Criteria 

0 Incomplete 

Mammogram or ultrasound didn't give the radiologist enough 

information to make a clear diagnosis; follow-up imaging is 

necessary. 

1 Negative There is nothing to comment on; routine screening recommended. 

2 Benign A definite benign finding; routine screening recommended. 

3 
Probably 

Benign 
Findings that have a high probability of being benign (>98%) 

4 
Suspicious 

Abnormality 

Not characteristic of breast cancer, but reasonable probability of 

being malignant; 

4A:  Finding needing intervention with a low suspicion for 

malignancy. Probability of being malignant (3 to 29%) 

4B:  Lesions with an intermediate suspicion of malignancy. 

Probability of being malignant (30 to 59%) 

4C:  Findings of moderate concern, but not classic for malignancy. 

Probability of being malignant (60 to 94%) 

Biopsy should be considered. 

5 

Highly 

Suspicious of 

Malignancy 

Lesion that has a high probability of being malignant (>= 95%); 

take appropriate action. 

6 

Known Biopsy 

Proven 

Malignancy 

Lesions known to be malignant that are being imaged prior to 

definitive treatment; assure that treatment is completed. 

 

On the other hand, relation between mass descriptors and morphology is highly 

correlated. Most descriptors of breast masses that define malignancy are related to 

mass morphology. For instance, malign masses tend to spread to other areas, while 

benign masses remain stable. As a result, malign masses commonly form irregular 

shapes; conversely benign masses commonly form regular shapes. Similarly, contour 

of the masses becomes uncertain and shows spicules while malignancy of mass 

increases. Figure 5.1 shows relationships between mass descriptors and morphology. 

If BI-RADS scores are related with probability of malignancy of the mass like mass 

descriptors we deduce that BI-RADS scores are related with mass descriptors. 
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Figure 5.1 Relations between mass descriptors and morphology (Wei et al., 2012). 

5.2.3 Uncertainty in Mammography Interpretation 

Mammography interpretation is a subjective process and even same expert may 

not have certain interpretation about an abnormality, in time.  There is always a 

trade-off between objectivity and relevance in annotation process.  For instance, an 

expert may have difficulty when describing an abnormality if its shape is oval or 

round. Naturally, when we face an uncertain situation we tend to use more than one 

attribute together with different percentages. (e.g., 60% round and 40% oval). 

Besides, there is uncertainty between mass descriptors and BI-RADS scores. In 

other words, possibility of the BI-RADS scores are not same for each mass 

descriptors, while some of the descriptors tend to get higher BI-RADS scores, others 

tend to get lower. However, current Semantic Web technologies are based on crisp 

logic where the relations are binary and they are unable to represent these 

uncertainties in mammography. Thus, if we want to represent expert knowledge with 

respect to mass descriptors and BI-RADS scores, we develop the ontology by using 

current Semantic Web technologies, shown in Figure 5.3-a. Here, it is important that 

there is no relation between Oval Shape and BI-RADS 5 and 6, as well as 
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there is no relation between BI-RADS 2 and 3 with Indistinct Margin. In 

this study, we propose an approach to deal with these kinds of uncertainty problems 

in ontologies. 

5.2.4 Uncertainty Modeling in Ontologies 

The inherent way to model uncertainty is to use the probabilities. In literature, 

probability has been already used to model uncertainty in classification (Kahn et al., 

1997; Fischer et al., 2004; Burnside et al., 2000). Today, OWL (Web Ontology 

Language) (W3C, 22.03.2013) is the standard web ontology language to model the 

knowledge.  However, OWL is based on crisp logic and it cannot manage uncertainty 

without complete knowledge about an application domain. Moreover, reasoning in 

the Semantic Web is a deterministic process of verifying if statements are true or 

false. However, in real world this is not always possible to represent the whole 

knowledge with crisp logic. The studies in literature, aiming to model uncertainty in 

ontologies, can be grouped in to two categories: (1) works proposing an extension to 

description logic and (2) not proposing an extension.  

First group, some works extend the syntax of description logic with varying 

degrees. They propose solutions in terminological knowledge and/or assertional 

knowledge by adding probability. In description logic, knowledge is represented in 

two ways:  TBox and ABox. TBox contains terminological (intensional) knowledge 

in the form of a terminology and is built through declarations that describe general 

properties of concepts. ABox contains assertional (extensional) knowledge, which is 

specific to the individuals of the discourse domain. In other words, TBox contains 

definitions of concepts and roles, while ABox contains definitions of individuals 

(instances). Some of the works suggest an extension in ABox (Dürig & Studer, 2005; 

Dürig & Studer, 2008) while some suggest TBox only (Heinsohn, 1994; Kolleret al., 

1997) and some researches propose both in ABox and TBox (Lukasiewiczal, 2008; 

Jaeger, 1994).  

The second group includes studies not proposing an extension on description 

logic. Some of the works focus on embedding the probabilities into the OWL (Yang 
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& Calmet, 2005; Nottelmann & Fuhr, 2006; Costa & Laskey, 2006; Ding et al., 

2006), while some focus on the RDF (Resource Description Framework) (W3C, 

22.03.2013; Fukushige, 2004; Udrea et al., 2006). Our proposal falls into second 

group, where it does not require any extension neither in description logic nor in 

OWL syntax. We use only the state-of-the-art Semantic Web technologies to model 

uncertainty. 

5.3 Uncertainty Modeling with Bayesian Probability in Ontologies 

In probability and statistics, an outcome is a particular result of the experiment, 

which is also called Random Variables. Random variables can be discrete or 

continuous. If a random variable can take only a finite number of distinct values, 

then it must be discrete, such as the “number of student in a class” or “one of six 

outcomes from rolling a dice”. Discrete random variables are usually (but not 

necessarily) counts.  Boolean-valued random variable if it denotes an event (a 

hypothesis) and there is some degree of uncertainty as to whether A occurs. For 

example, “Tomorrow will be a rainy day” or “You will enjoy this film”. When the 

variable can assume uncountable infinite values in a given range of values is called 

Continuous Random Variables. Continuous random variables are usually 

measurements. Examples include height, weight, the amount of sugar in an orange, 

the time required to run a mile (Bernardo & Smith, 2001). 

For given two events A and B, P(A) or P(B), i.e. probabilities of each of the events 

occurring without the knowledge of the other events occurrence is called the prior 

probability. On the other hand, given two events A and B, the probability of event A 

occurring given that event B has occurred is called the conditional probability. 

In our case, each abnormality observed in a mammography has a BI-RADS score. 

Radiologists assign a BI-RADS score to an abnormality based on its descriptors (i.e. 

shape, margin, density etc.). In this point of view, description and BI-RADS score 

assignment are two related but distinct actions. However these distinct actions need 

to be connected in some way.  So, Bayes theorem suits well to this issue, because the 

theorem makes it possible to calculate probability of conditional events. The 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
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Bayesian interpretation of probability can be seen as an extension of logic that 

enables reasoning with uncertain statements. The notation of conditional probability 

is P(A|B), where A and B are random variables, and the notation can read as “the 

probability of A for B”. Let us assume that A represents being of oval mass shape, B 

represents being BI-RADS score of 3. Then, the probability of oval mass shape for 

given BI-RADS score of 3, P(A|B), is defined as follows:  

 
(18) 

where .  

In our dataset, we have totally 260 mass annotations, and 40 of them have oval 

shape. With respect to their BI-RADS score, the numbers of oval masses are 21, 15 

and 4 for BI-RADS 2, BI-RADS 3 and BI-RADS 4, respectively. Here, the notation 

P(oval|birads-3)=0.27 shows the probability of being oval shape under the condition 

for BI-RADS 3. According to Table 5.2, detail of this calculation as follows; 

 

 

As a result, by using Table 5.2 and Equation (18), we calculate probability of each 

mass feature for related BI-RADS score, which are shown in Table 5.3.  So, we 

augment the relations between BI-RADS scores and mass descriptors by adding 

probability, as it shown in Figure 5.2-b. Now, representation of our ontology is a 

weighted graph, and it makes probabilistic inference possible for BI-RADS scores. 
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Figure 5.2 Relationships between BI-RADS scores and mass descriptors based on;(a) crisp logic  

(b) non-crisp logic. 

For a given mass with already annotated with the descriptors, we calculate 

probability of the BI-RADS score as follows; 

 
 

where B, S, M and D represents BI-RADS, shape, margin and density, 

respectively.  

Table 5.3 shows conditional probability values of mass descriptors for BI-RADS 

scores. For a better understanding, a mass shown in Figure 5.3, with irregular shape, 

spiculated margin and high density, probability of being BI-RADS 5 is calculated as 

follows: 
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As a result of above calculation, we can infer that probability of BI-RADS 5 is 

nearly 0.45, while probability of BI-RADS 2 nearly 0 for the annotated mass, shown 

in Figure 5.3. Accordingly, the calculation is equal to Naive Bayes classifier, which 

is a simple probabilistic classifier, based on applying Bayes' theorem, Equation 19. 

 

(19) 

 

Figure 5.3 Probability of BI-RADS scores 2 and 5 for a mass with irregular shape, spiculated margin 

and high density. 
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5.4 Intelligent BI-RADS Scoring with SQWRL 

BI-RADS scoring is a decision making process to assign predefined grades for a 

given abnormality with different characteristics and based on previous experiences of 

radiologist. In our approach, for a given abnormality, the annotation tool asks to 

define or choose a set of predefined descriptors based on MAO.   Then, the tool 

automatically suggests a BI-RADS score for the given abnormality using Bayesian 

probability of selected mass descriptors based on previous cases. We call this process 

as intelligent BI-RADS scoring. 

We propose two approaches to handle uncertainty in MAO. First approach keeps 

the probability values between mass descriptors and BI-RADS instances in OWL 

annotation properties. The second approach does not require any additional class or 

property to store. Instead, the probability scores calculated dynamically from 

knowledge base of previous cases, during BI-RADS scoring process. We use OWL 

and SQWRL to perform this kind of reasoning about probability of BI-RADS scores 

for a particular abnormality. 

SWRL is an expressive OWL-based rule language. SWRL makes it possible to 

write inference rules and this provides more powerful reasoning capabilities than 

OWL alone. Semantically, SWRL is built on the same description logic foundation 

like OWL and it provides similar formal guarantees when performing inference 

(Protege, 02.09.2013). For example, in mammography, if a mammographic case 

(examination) contains one or more abnormality, its BI-RADS score is set to the 

maximum BI-RADS score of its abnormalities. So, we use the following SWRL rule 

to infer and set BI-RADS score of the whole case (MammoCase) depending on the 

BI-RADS score of the abnormalities it contains; 

MammoCase(?mc) ∧ hasBreast(?mc, ?b) ∧ hasImage(?b, ?i) 

∧ hasRoi(?i, ?r) ∧ containsAbnormality(?r, ?a) ∧ 

hasMassDescriptor(?a, ?md) ∧ 

hasBiradsMassDescriptor(?md, ?br) ∧ BI-RADS(?br) ∧ 

biradsScore(?br, ?bs) ˚ sqwrl:makeBag(?bag, ?bs) ˚ 
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sqwrl:max(?maxbs, ?bag) ∧ swrlb:equal(?bs, ?maxbs) → 

hasBiradsMammoCase(?mc, ?br) 

On the other hand, SQWRL is built on SWRL and it takes a standard SWRL rule. 

Both of them have an antecedent part, which is referred to as the body, and a 

consequent part, which is referred to as the head. Differently, SQWRL replaces the 

rule consequent with a retrieval specification, so it provides SQL-like operations to 

retrieve knowledge from OWL (O‟Connor & Das, 2009). For example, the following 

query retrieves all masses with mean intensity value is higher than 180; 

Mass(?mass) ∧ containsAnAbnormality(?roi, ?mass) ∧ 

hasMidLevelDescriptor(?roi, ?mid) ∧ roiIntensity(?mid, 

?inten) ∧ swrlb:greaterThan(?inten, 180) → 

sqwrl:select(?mass, ?inten) 

In the first approach, to model uncertainty we store conditional probability values 

in OWL annotation properties that represent relationships between concepts. There 

are two main types of properties, object properties and datatype properties. Object 

properties are relationships between individuals. Datatype properties link an 

individual to an XML Schema Datatype value or an RDF literal. In other words, they 

describe relationships between an individual and data values. OWL also has another 

type of property; annotation properties which is used to add extra information 

(metadata or data about data) to classes, individuals and object/datatype properties. 

OWL has five pre-defined annotation properties that can be used to annotate classes, 

properties and individuals: owl:versionInfo, rdfs:label, rdfs:comment, rdfs:seeAlso, 

rdfs:isDefinedBy.  

In this approach we use object type annotation properties between BI-RADS and 

mass descriptors. And we use rdfs:label to store conditional probability value 

between them. We create 65 OWL annotation properties between 5 BI-RADS and 

13 MassDescriptor classes. Figure 5.4 shows one of them, between mass 

descriptor oval and BI-RADS 3. 
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<owl:AnnotationPropertyrdf:ID="CondPropOvalBI-RADS3”> 

<rdfs:domainrdf:resource="#ShapeOval"/> 

<rdfs:rangerdf:resource="#BI-RADS3"/> 

<rdfs:labelrdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 

0.27 

</rdfs:label> 

<rdf:typerdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"

/> 

</owl:AnnotationProperty> 

Figure 5.4 OWL Syntax of sample annotation property. 

It is possible to access label of annotation properties by using SQWRL with 

rdfb:hasLabel function. But, type of the label is string and it cannot be used in 

mathematical calculations, so we convert these values to float before use in 

calculations. Then, according to given mass, we get the labels and we infer 

probability values for each BI-RADS score. We use SWRL Tab of Protégé 3.4.5 

(Stanford Center for Biomedical Informatics Research, n.d.) to execute SWRL and 

SQWRL rules, with Jess Rule Engine (Friedman-Hill, n.d.). We infer the probability 

value of each BI-RADS score by executing the SQWRL rule in Figure 5.5. The rule 

uses the descriptor of mass ?q with irregular shape, spiculated margin and high 

density. Furthermore, Figure 5.6 shows screen-shot of Protégé SWRL tab where the 

results are shown in bottom half of the figure and the probability of BI-RADS 5 has 

the highest value, 0.45. 

Mass(?mass) ∧ 

abox:hasURI(?q, "http://www.owl-

ontologies.com/Ontology1299746090.owl#MassTest") ∧ hasMassDescriptor(?q, 

?md) ∧ abox:hasClass(?md, ?mdc) ∧ tbox:isProperty(?annotationProp) ∧ 

tbox:isAnnotationProperty(?annotationProp) ∧ tbox:isInDomainOf(?mdc, 

?annotationProp) ∧ tbox:isInRangeOf(?range, ?annotationProp) ∧ 

rdfb:hasLabel(?annotationProp, ?label) ∧ stringValue(?s2d, ?str) ∧ 

floatValue(?s2d, ?doubleLabel) ∧ swrlb:matches(?str, ?label) ˚ 

sqwrl:makeBag(?bag, ?doubleLabel) ∧ sqwrl:groupBy(?bag, ?range) ˚ 

sqwrl:nth(?first, ?bag, 1) ∧ sqwrl:nth(?second, ?bag, 2) ∧ 

sqwrl:nth(?third, ?bag, 3) ∧swrlb:multiply(?probability, ?first, 

?second, ?third) ∧ swrlb:multiply(?h, ?probability, 100) ∧ 

swrlb:round(?r, ?h) ∧ swrlb:divide(?roundedProbability, ?r, 100) → 

sqwrl:select(?mass, ?mdc, ?annotationProp, ?range, ?label, 

?roundedProbability) ∧ sqwrl:orderBy(?range, ?mdc, ?annotationProp) 

Figure 5.5 SQWRL rule for inference of BI-RADS probability for a mass. 
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Figure 5.6 SWRL tab of Protégé. 

Alternatively, it is also possible to calculate conditional probability value between 

BI-RADS and mass descriptor without using any additional classes or properties in 

MAO. In this case, the probability values are calculated dynamically by using 

SQWRL. Consequently, probability values change when the new instance is added 

into instance knowledge base. As a result, the accuracy of the whole system will be 

improved as time changes and as more instances are populated into the knowledge 

base. However, scanning the whole knowledge base is very time consuming and it is 

far more efficient with current Semantic Web technologies.  

5.5 Experimentations 

To evaluate our proposal on uncertainty modeling in ontologies, we set up 

experimentations on two mammography datasets: DEMS (Dokuz Eylul University 

Mammography Set) (Dokuz Eylul University, 2012) and DDSM (Digital Database 

for Screening Mammography) (Heath et al., 2001). 
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DEMS is a fully-annotated digital mammogram dataset, where cases were 

retrospectively selected from the PACS system of Radio-diagnostics Department of 

Dokuz Eylul University Hospital among 50K mammography cases examined during 

from 2004 to 2008. Then, all cases in the dataset were annotated in three phases 

using MAO.  Hence, all masses have shape, margin, density and BI-RADS values 

individually. The resulting dataset has a total number of 485 mammography cases 

where 255 of them contain one or more abnormality and 260 mass annotations in 

total.   

DDSM is developed by co-operation of Massachusetts General Hospital, 

University of South Florida (USF), American Sandia National Laboratories and the 

U.S. Army Medical Research and Material Unit Breast Cancer Research Program‟s 

fund. Each case in the dataset contains two standard views (CC and MLO) of two 

breasts and is selected from patients diagnosed between October 1988 and February 

1999 at Massachusetts General Hospital, Wake Forest University School of 

Medicine, St. Sacred Heart Hospital and Washington St. Louis University School of 

Medicine. The dataset has a total number of 2620 studies. However, DDSM does not 

include density description for masses. In our study, we used 2235 masses in DDSM 

annotated with shape, margin and BI-RADS values. 

Table 5.2 shows the distribution of masses in DEMS based on their BI-RADS 

scores. For example, we have 55 masses with BI-RADS 3, where 25 of them have 

round shape, 15 of them have oval shape, 15 of them have lobular shape and none of 

them has irregular shape. 
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Table 5.2  Distribution of masses in DEMS based on their BI-RADS scores. 

 
Descriptors 

BI-RADS Scores 
Total 

2 3 4 5 6 
S

h
a

p
e
 

Round 15 25 4 0 6 50 

Oval 21 15 4 0 0 40 

Lobular 12 15 18 8 4 57 

Irregular 2 0 23 67 21 113 

M
a

rg
in

 

Circumscribed 44 50 4 0 0 98 

Obscured 4 5 18 0 4 31 

Microlobulated 0 0 9 0 0 9 

Indistinct/Ill-Defined 0 0 16 21 12 49 

Spiculated 2 0 2 54 15 73 

D
en

si
ty

 Fat-Containing Radiolucent 24 0 0 0 0 24 

Low Density 2 4 0 0 0 6 

Equal Density/Isodence 9 36 32 23 11 111 

High-Density 15 15 17 52 20 119 

Total 50 55 49 75 31 260 

 

As we already mentioned above, we calculate all conditional probability values of 

mass descriptors for BI-RADS scores by using Equation (18) with frequencies in 

Table 5.2. As a result we obtain Table 5.3 showing the conditional probabilities for 

DEMS. 

Table 5.3 Conditional probability values of mass descriptors for BI-RADS scores in DEMS. 

   Descriptors 
BI-RADS Scores 

2 3 4 5 6 

S
h

a
p

e
 

Round 0.30 0.45 0.08 0.00 0.19 

Oval 0.42 0.27 0.08 0.00 0.00 

Lobular 0.24 0.27 0.37 0.11 0.13 

Irregular 0.04 0.00 0.47 0.89 0.68 

M
a

rg
in

 

Circumscribed 0.88 0.91 0.08 0.00 0.00 

Obscured 0.08 0.09 0.37 0.00 0.13 

Microlobulated 0.00 0.00 0.18 0.00 0.00 

Indistinct/Ill-Defined 0.00 0.00 0.33 0.28 0.39 

Spiculated 0.04 0.00 0.04 0.72 0.48 

D
en

si
ty

 Fat-Containing Radiolucent 0.48 0.00 0.00 0.00 0.00 

Low Density 0.04 0.07 0.00 0.00 0.00 

Equal Density/Isodence 0.18 0.65 0.65 0.31 0.35 

High-Density 0.30 0.27 0.35 0.69 0.65 
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We assume that the system learning abilities is equivalent to Bayesian Classifier, 

and test our approach with Naïve Bayesian classifier using Rapid Miner tool (Rapid-

I, n.d.) and we obtained the confusion matrixes for DEMS and DDSM shown in 

Table 5.4 and Table 5.5,which is evaluated with10-fold cross-validation method. 

Average accuracy and sensitivity values for DEMS are 0.86, and 0.60, respectively. 

For DDSM, the values are 0.81 and 0.5.  

 

Table 5.4 Confusion matrix of DEMS. 

 BI-RADS 
Expert Judgment 

Precision Accuracy 
2 3 4 5 6 

C
la

ss
 P

re
d

ic
ti

o
n

 

2 26 7 0 0 0 0.78 0.88 

3 19 46 8 0 0 0.63 0.86 

4 3 2 28 7 4 0.63 0.85 

5 2 0 11 68 21 0.66 0.84 

6 0 0 2 0 6 0.75 0.89 

 Sensitivity  0.52 0.84 0.57 0.91 0.19   

 

Table 5.5 Confusion matrix of DDSM. 

 BI-RADS 
Expert Judgment 

Precision Accuracy 
2 3 4 5 

C
la

ss
 

P
re

d
ic

ti
o

n
 2 0 0 0 0 0 0.97 

3 51 337 298 27 0.47 0.76 

4 5 131 635 138 0.69 0.68 

5 0 28 127 458 0.74 0.85 

 Sensitivity 0 0.67 0.59 0.73  
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Table 5.6 shows sample BI-RADS score reasoning results using both our 

approach and crisp logic where BI-RADS columns indicate the prediction value for 

related approach. We define a new measure showing the level of uncertainty, U. For 

this measure, 0 means there is no uncertainty, while 1 represents full uncertainty. 

Formally, the level of uncertainty is defined as follows; 

 

where n represents the number of  BI-RADS scores with the same maximum 

value. All these numbers are underlined in the Table 5.6.  For example, the example 

mass in second row has irregular shape, spiculated margin and high density. Our 

approach produces the prediction values as, <0.0, 0.0, 0.0, 0.44, 0.21> for BI-RADS 

scores from 2 to 6, respectively. Here, the maximum probability value is 0.44 and it 

repeats once, so the value of n is 1 and U is zero. On the other hand, result of crisp 

logic are <0.0, 0.0, 1.0, 1.0, 1.0>, where n is equal to 3, and U is equal to 0.67. 

Average level of uncertainty for our approach and crisp logic are 0.04 and 0.53 for 

DEMS, respectively.   For DDSM dataset, the average level of uncertainty values is 

0.02 and 0.56, respectively. 

  

n
U

1
1
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Table 5.6 Example results in DEMS dataset. 

# 

Image 

(Shape, Margin,  

Density, BI-RADS) 

Our Approach Crisp Logic 

Prediction value  

for BI-RADS scores U 

Prediction value   

for BI-RADS scores U 

2 3 4 5 6 2 3 4 5 6 

1 

 
Lobular, Circumscribed,  

Equal, 3 

0.04 0.16 0.02 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.67 

2 

 
Irregular, Spiculated,  

High, 5 

0.00 0.00 0.00 0.44 0.21 0.00 0.00 0.00 1.00 1.00 1.00 0.67 

3 

 
Irregular, Indistinct,  

High, 5 

0.00 0.00 0.05 0.17 0.17 0.50 0.00 0.00 1.00 1.00 1.00 0.67 

4 

 
Oval, Circumscribed,  

Fat, 2 

0.18 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

5 

 
Oval, Circumscribed,  

Equal, 2 

0.07 0.16 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.50 
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6. CHAPTER SIX 

ONTOLOGY-BASED CONTENT BASED IMAGE RETRIEVAL SYSTEM 

FOR BREAST MASSES BY USING XQUERY   

 

6.1 Overview 

As we mentioned in above sections our low-level features are computer calculated 

decimal vectors and we use Euclidean distance to compute similarity score between 

them. So, to be able to use them in our ontology-based CBIR system, we need to 

define our similarity functions. However, current Semantic Web Technologies does 

not support extendible similarity/comparison functions. The technologies can just 

provide basic comparison functions, such as; equal, smaller, higher etc. All these 

functions work with scalar values and return Boolean results. For example, result of 

the equality functions can be equal or not. But, there is no value/measurement to 

indicate how much equal one to other.  

Let assume that we have two ontology-based systems, where both of them need to 

compare banana with bandana and apple. In the system one, we consider nature of 

the objects, so we can say that apple is more similar to banana than bandana. And, 

in the system two, we consider spelling of the objects, so we can say that bandana is 

more similar to banana than apple. It is clearly understand that, the comparison 

functions should be extendible, their structures and/or return values should have been 

updatable depends on the research fields. In other words, the technologies should 

support user defined functions. Nowadays, two languages are widely used on 

ontologies, SPARQL and SWRL/SQWRL. But both of them have only Boolean 

comparison functions. And there is no way to extend existing functions and create 

user defined functions.  

OWL and RDF is based on XML technologies, so it is possible to process them by 

using XQuery which support user defined functions. Because of that we decided to 

use XQuery in our ontology-based CBIR system. We create our similarity functions 

and we could perform our CBIR algorithms. 
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6.2 General System Overview 

To perform our XQuery functions on our mammography ontology, we have set of 

process to convert the OWL file to XML file. It is also possible to perform XQuery 

on the OWL file, but to increase the speed of our CBIR system, we prefer to use a 

XML file. To obtain the XML file, first we perform a SPARQL query to get all 

breast mass instances as RDF triples and we saved them as a XML file. Then, we 

convert this XML file to our target XML file with a XSLT file. As a result, we 

perform our XQuery functions on the final XML file. Figure 6.1 shows the all 

conversation steps. 

Mammography Annotation 

Ontology (MAO) Instances

(OWL File)

Ontology Instances as 

RDF Triples

(XML File)

Ontology Instances

(XML File)

SPARQL

XSL

XQueryCBIR Result

 

Figure 6.1 General system overview of XQuery calculation. 

6.3 XQuery 

XQuery is a language to extract and find attributes and elements from XML files. 

It is compatible with several W3C standards, such as Namespaces, XML, XSLT, 

XPath, and XML Schema. The main advantage of the XQuery for our study is 

allowing to write user defined functions to process our ontology instances. 

In our CBIR system final similarity score between two masses is compose from 

three sub similarity scores. These are obtaining from high, mid and low-level 

features of the mass respectively. First, we show the similarity calculation for 

high-level features of two masses, $massA and $massB, in Figure 6.2. In the 

figure, the variables $simShape, $simMargin and $simDensity denote the 
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similarity score for each individual high-level image feature. Usage of these 

variables is given in Equation 8 of Chapter 4. 

let $simShape := 

xs:double(data($similarityNodes[@from=xs:string(data($massA/ha

sShape/@isa)) and 

@to=xs:string(data($massB/hasShape/@isa))]/@value))  

  

let $simMargin := 

xs:double(data($similarityNodes[@from=xs:string(data($massA/ha

sMargin/@isa)) and 

@to=xs:string(data($massB/hasMargin/@isa))]/@value)) 

  

let $simDensity := 

xs:double(data($similarityNodes[@from=xs:string(data($massA/ha

sDensity/@isa)) and 

@to=xs:string(data($massB/hasDensity/@isa))]/@value)) 

Figure 6.2 High-level similarity calculation in XQuery. 

Secondly, in Figure 6.3, we show the similarity calculation between  $massA and 

$massB according to their mid-level image features, MeanIntensity and Area. As we 

mentioned in Equation 10 and 11 of Chapter 4, to normalize the middle level 

similarity scores we need to use their maximum value for the related dataset. For that 

purpose, we calculate the maximum values as $maxMeanIntensity and 

$maxArea. As a final point, to calculate the similarity scores for mid-level image 

features we perform Equation 10 and 11 of Chapter 4 and we set the variables 

$simMeanIntensity and $simArea. 

let $maxMeanIntensity := 

max(data(doc($XMLFile)/onto/massCollection/mass/midLevelFeatur

eCollection/midLevelFeature[@name="MeanIntensity"]/@value)) 

 

let $simMeanIntensity := 1- 

(abs(data($massB/midLevelFeatureCollection/midLevelFeature[@na

me="MeanIntensity"]/@value) - 

data($massA/midLevelFeatureCollection/midLevelFeature[@name="M

eanIntensity"]/@value)) div $maxMeanIntensity) 

 

let $maxArea := 

max(data(doc($XMLFile)/onto/massCollection/mass/midLevelFeatur

Figure 6.3 Mid-level similarity calculation in XQuery. 
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eCollection/midLevelFeature[@name="Area"]/@value)) 

 

let $simArea := 1- 

(abs(data($massB/midLevelFeatureCollection/midLevelFeature[@na

me="Area"]/@value) - 

data($massA/midLevelFeatureCollection/midLevelFeature[@name="A

rea"]/@value)) div $maxArea) 

Figure 6.3 Mid-level similarity calculation in XQuery. (Cont.) 

In our CBIR system, to calculate similarity score between low-level image 

features of the masses, we use Euclidean distance. Figure 6.4 shows the 

implementation of the function as local:euclideanDistance where the 

functions takes two double arrays and return a double value.   

declare function local:euclideanDistance 

($arg1 as xs:double*, $arg2 as xs:double*) as xs:anyAtomicType 

{   

 local:mySqrt(sum(local:euclideanPower($arg1, $arg2))) 

}; 

 

declare function local:euclideanPower 

($arg1 as xs:double*, $arg2 as xs:double*) as xs:double* 

{   

 for $i in 1 to count($arg1) 

  return local:pow2($arg1[$i] - $arg2[$i]) 

}; 

Figure 6.4 Euclidean distance function in XQuery. 

Thirdly, in Figure 6.5 we show the similarity calculation for low-level image 

features of the masses. Function allSimScoresLowLevel is used to get all 

similarity score between given massID and other masses for given low-level feature 

name. So, the function takes two parameters, mass identifier value ($massID) and 

low-level feature name ($featureName). Its result is required to determine the 

maximum similarity score for the related low-level feature. In the figure, we show 

the calculation of similarity score for Texture Browsing feature values. After 

obtaining maximum similarity score, we perform to calculate Equation 12 in Chapter 

4 and set $simTextureBrowsing value. 
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declare function local:allSimScoresLowLevel($massID as 

xs:string, $featureName as xs:string) as xs:double* 

{ 

 for $mass in 

doc($XMLFile)/onto/massCollection/mass[@name!=$massID] 

  let $simLowLevel := 

local:euclideanDistance(data(doc($XMLFile)/onto/massCollection

/mass[@name=$massID]/lowLevelFeatureCollection/lowLevelFeature

[@isa=$featureName]/itemCollection/item/@value),data($mass/low

LevelFeatureCollection/lowLevelFeature[@isa=$featureName]/item

Collection/item/@value)) 

 return $simLowLevel 

}; 

 

let $maxSimTB := max(local:allSimScoresLowLevel($massAMassID, 

"TextureBrowsing")) 

 

let $simTextureBrowsing := 1 - 

(local:euclideanDistance(data($massA/lowLevelFeatureCollection

/lowLevelFeature[@isa="TextureBrowsing"]/itemCollection/item/@

value), 

data($massB/lowLevelFeatureCollection/lowLevelFeature[@isa="Te

xtureBrowsing"]/itemCollection/item/@value)) div $maxSimTB) 

 

let $ maxSimZernike := 

max(local:allSimScoresLowLevel($massAMassID, " Zernike")) 

 

let $simZernike := 1 - 

(local:euclideanDistance(data($query/lowLevelFeatureCollection

/lowLevelFeature[@isa="Zernike"]/itemCollection/item/@normaliz

edValue),data($current/lowLevelFeatureCollection/lowLevelFeatu

re[@isa="Zernike"]/itemCollection/item/@normalizedValue))) 

 

let $ maxSimMarginMeanDifference:= 

max(local:allSimScoresLowLevel($massAMassID, " 

MarginMeanDifference")) 

 

let $simMarginMeanDifference := 1 - 

(local:euclideanDistance(data($query/lowLevelFeatureCollection

/lowLevelFeature[@isa="MarginMeanDifference"]/itemCollection/i

tem/@value),data($current/lowLevelFeatureCollection/lowLevelFe

ature[@isa="MarginMeanDifference"]/itemCollection/item/@value)

) div  $maxSimMarginMeanDifference) 

Figure 6.5 Low-level similarity calculations in XQuery. 
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Finally, to test our XQuery methods we perform the our similarity calculation 

function between massA and massB whose details are given in Figure 4.2 in Chapter 

4. As it shown in Figure 6.6 similarity scores for each level of image features and 

final similarity score are equal to sample similarity calculation of Figure 4.2. 

 

Figure 6.6 Example calculation result. 
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CHAPTER SEVEN 

CONCLUSIONS  

Aim of this thesis is to develop ontology-based content-based image retrieval 

system for breast masses. Hence, a successful implementation of radiological 

imaging system could be able to model and  incorporate such knowledge into a more 

computable format. In this way, more complex tools such as case-based retrieval or 

evidence-based medicine can be possible in mammography. In order to achieve this 

goal, we have several improvements. 

In this thesis, we describe a new ontology-based mammography annotation and 

retrieval tool (MART), and a mammography dataset (DEMS) which was created by 

using the MART. For that purpose, we have first developed mammography 

annotation ontology (MAO) which is a domain ontology and it provides shared 

vocabulary for mammography interpretation. During the development process of 

MAO we have used the 3th edition of the ACR BI-RADS Mammography Atlas. 

Main concepts and relations of the MAO are given in the thesis. Then we have 

developed MART, which is easy to use, and domain specific tool for mammography 

annotation. In other words, while developing the MART we have considered the 

requirements and habits of the mammography interpretation experts. All these three 

proposed components are is publicly available at 

“http://demir.cs.deu.edu.tr/index.php/downloads” and they are expected to be useful 

for researchers studying on mammography, for computer-aided diagnosis (CAD) 

studies as well as for medical student education. 

Outputs of the MART are mammograms in lossless PNG and annotation in XML 

format. Hence, it is easily possible to share the outputs with other researches and to 

convert the annotations to any other format. Annotations of the MART are based on 

the MAO. In that respect, the tool save the annotations as OWL ontology instances 

and that make possible to publish them on Semantic Web and use Semantic Web 

technologies. Furthermore, MART is not only a mammography annotation tool, but 

it also supports CBR on mammography datasets. So, it may help experts in 

decision-making process and evidence-based medicine. MART also can be used to 
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evaluate performance of medical students if they annotate the mammography cases 

in the same dataset. Additionally, we provide DEMS with low-level feature set. 

DEMS contains 485 mammography cases where each of them has the mammograms 

in lossless PNG image format, and expert‟s annotations in XML format. The dataset 

is useful for benchmarking mammography related studies. 

We develop a CBIR system where a breast mass is described with three sets of 

features: low, mid and high-level feature. High-level (HL) features are expert 

interpretation of a mass for shape, margin and density characteristics. Mid-level 

(ML) features are computer-calculated values for mass intensity and mass size. Both 

high- and mid-level features are human readable. For low-level  (LL) features, we 

have first examined 25 different features and then choose the most three successful 

of them: Zernike Moments, Texture Browsing and Mean Margin Difference. We 

explain each feature level with their members in detail. Additionally, mathematical 

model of similarity calculation between two breast lesions and implementation of the 

model with SQWRL and XQuery explained in detail. Then, we compared the 

performance of individual feature set as well as different combination of them in 

terms of P@10 and precision-recall graph. 

Additionally, in this thesis, we present an approach to model uncertainty in 

mammography, and perform SQWRL rules to infer BI-RADS scores for a given 

mass instance. Besides, mammography interpretation is a subjective and uncertain 

process itself and even a single expert may describe an abnormality with different 

annotations, in time  (e.g., when describing the shape of a mass as oval or round). 

However, current state-of-the-art in ontology is based on crisp logic, which is 

incapable to handle uncertain condition. To overcome such uncertainty issues, we 

present an approach to model uncertainty in mammography. 

We evaluated our proposal for uncertainty modeling with two mammography 

datasets, DEMS and DDSM, in terms of accuracy and sensitivity metrics. For 

BI-RADS 3, 4 and 5, we found that average sensitivity results are 75.33 and 67.13 

for DEMS and DDSM, respectively. On the other hand, for DEMS, sensitivity value 

of the BI-RADS 6 is low, since masses with BI-RADS 5 and 6 generally have almost 

same mass descriptors. However, the only difference between BI-RADS 5 and 6 is 
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that BI-RADS 6 is to be pathologically proven malignancy while BI-RADS 5 is not. 

Furthermore, we have defined a new measure for level of uncertainty. We show that 

average level of uncertainty for crisp logic is clearly greater than our approach. 

Major findings and contributions of this thesis can be summarized as follows; 

1. We proposed new mammography annotation ontology based on the 3th 

edition of the ACR BI-RADS Mammography Atlas. 

2. We proposed a new ontology based mammography annotation and retrieval 

tool which is a cross platform and anyone can easily create a new dataset 

based on our ontology by using the tool. 

3. We proposed a new fully annotated mammography dataset called as DEMS 

which can be useful for benchmarking of mammography related works. 

4. We proposed a new Content based Image Retrieval model for breast masses. 

The model uses high, mid and low-level image features of the breast. 

5. We compared the performance of individual feature set as well as different 

combination of them. We show that using low-level features together with 

high and mid-level features improves the overall system performance and it is 

found statistically significant (p<0.001). This result can also be used to 

minimize the semantic gap between semantic descriptors and low-level 

features of breast masses. Also, the system helps to improve the performance 

of CADx system in mammography. 

6. We gained that uncertainty exists in interpretation of BI-RADS scoring in 

mammography. However, current Semantic Web technologies are not 

sufficient to achieve modeling this uncertainty since they are based on crisp 

logic where the relations are binary. As a result, we show that use of Bayesian 

probability with description logic improves to handle uncertain relations 

between the concepts. 

In future, to increase the performance of CADx system, more studies are needed 

on new low-level features for mammography, or different combination or fusion of 

different feature level. Furthermore, the findings of this study need to be 

experimented in other area of medical domain apart from mammography. We 

assume that Semantic Web technologies will be improved and they will be able to 
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handle uncertainty in their structure, and we hope that more built-in functions in 

SWRL and SQWRL will be developed and efficiency of existing functions will be 

improved. 
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