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OPTIMIZATION OF LOSS PROBABILITY IN THE GI/M/n/0 QUEUEING
MODEL WITH HETEROGENEOUS SERVERS

ABSTRACT

This study is mainly concerned with the finite-capacity queueing system with
recurrent input, n heterogeneous servers, and no waiting line represented by
GI/M/n/0. The service discipline is addressed in two different ways. Firstly,
customers choose only one server from the empty servers with equal probability.
Secondly, customers choose the server with the lowest index number among the
empty servers with probability 1. In both cases, when all servers are busy, customers
depart from the system without taking any service. These customers are called ‘lost

customers’ and the flows of lost customers are called ‘stream of overflows’.

The queueing model GI/M/n/0 with heterogeneous servers is analyzed using semi-
Markov process. The semi-Markov process representation of the system is described
and the kernel functions of semi-Markov process are derived. An implementation of
this formula is performed for the queueing model GI/M/3/0 with heterogeneous
servers. Using the kernels of semi-Markov process, one-step transition probabilities,

and steady-state probabilities are obtained for the related queueing model.

The stream of overflows is analyzed for the queueing model GI/M/n/0 with
heterogeneous servers, the Laplace-Stieltjes transform of the distribution of the time
between overflows is obtained and the loss probability of customers is formulated.
An implementation of this formula is performed for the queueing model GI/M/2/0

with heterogeneous servers, and the loss probability of customers is computed.

It becomes computationally intractable to compute the exact solution of loss
probability, besides it is impossible to minimize the loss probability according to
distribution of arrival process as the number of servers increases. In this respect a
quite extensive simulation study is performed and the loss probability is computed

for different distributions of interarrival times and different service disciplines. The



conditions in which the loss probability is minimum are determined by simulation

optimization.

Keywords: Semi-Markov process, Laplace-Stieltjes transform, loss probability,

stream of overflows, queueing, simulation.



HETEROJEN KANALLI GI/M/n/0 KUYRUK MODELINDE KAYBOLMA
OLASILIGININ OPTIMiZASYONU

0z

Bu c¢aligmada rekurent girisli, smirli kapasiteli, bekleme hattinin olmadigi, n
heterojen kanalli GI/M/n/0 kuyruk modeli incelenir. Hizmet disiplini iki farkli
sekilde ele alinir. Birincisinde, miisteriler bos olan kanallardan herhangi birinden esit
olasilikla hizmet alir. Ikincisinde, miisteriler bos olan kanallar arasndan index
numarasi en diisiikk olan kanalda 1’e esit olasilikla hizmet alir. Her iki durumda da,
biitiin kanallar dolu ise, miisteriler hi¢ bir hizmet almadan sistemden ayrilir. Bu
miisteriler ‘kayip miisteriler’, kayip miisterilerin akimi ise ‘kaybolan miisteri akim1’

olarak adlandirilir.

Heterojen kanalli GI/M/n/0 kuyruk modelinin analizi yari-Markov siireci
kullanilarak yapilir. Sistemi temsil eden yari-Markov siireci tanimlanir ve yari-
Markov siirecinin ¢ekirdek fonksiyonlar: tiiretilir. Bu formiilin bir uygulamasi
heterojen kanalli GI/M/3/0 kuyruk modeli i¢in gosterilir. Yari-Markov siirecinin
¢ekirdekleri kullanilarak, bir-adim geg¢is olasiliklart ve duragan durum olasiliklari

ilgili kuyruk modeli i¢in elde edilir.

Heterojen kanalli GI/M/n/0 kuyruk modeli i¢in kaybolan miisteri akiminin analizi
yapilir, kaybolma anlar1 arasindaki siirenin dagiliminin Laplace-Stieltjes doniistimii
elde edilir ve misterinin kaybolma olasiligi formiile edilir. Bu formiiliin bir
uygulamasi heterojen kanalli GI/M/2/0 kuyruk modeli igin gosterilir ve miisterinin

kaybolma olasilig1 hesaplanir.

Kanal sayis1 artarken kaybolma olasiliginin tam ¢éziimiiniin bulunmasi sayisal
olarak zorlagir, ayrica gelis siireci dagilimina gore kaybolama olasiliginin minimize
edilmesi imkansiz hale gelir. Bu agidan olduk¢a genis bir simiilasyon c¢aligmasi

yapilir ve kaybolma olasiligi, gelisleraras: siirelerin farkli dagilimlar1 i¢in ve farkli

Vi



hizmet disiplinleri i¢in hesaplanir. Kaybolma olasiliginin minimum oldugu kosullar

simiilasyon optimizasyonuyla belirlenir.

Anahtar sozciikler: Yari-Markov siireci, Laplace-Stieltjes dontisiimii, kaybolma

olasiligi, kaybolan miisteri akimi, kuyruk, simiilasyon.
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CHAPTER ONE
INTRODUCTION

Queuing theory which is founded by Danish scientist Agner Krarup Erlang in
1917 has become one of the most important elements of the science and the
technology, recently. Thanks to the studies of many valuable scientists such as Palm
(1943), Takacs (1956, 1957, 1962), Bhat (1965, 1968), Cinlar (1967a, 1967b), Whitt
(1972), Gnedenko & Kovalenko (1989) and Atkinson (1995, 2000, 2009), the theory

has been enriched by presenting important results and various application areas.

During the early years the fundamental problems handled had been the
determination and the calculation of performance measures such as mean number of
customers in the queue, mean waiting time in the queue, and mean service time. On
the other hand, in the subsequent years, the theory made progress in analyzing the
problems such as minimizing the time and work loss and determination of the
uninterrupted working time. In other words optimizing the system performance by
increasing the service quality and attaining the outstanding service has become one
of the most important problems, recently. In addition, queuing models closer to new
and real systems have been introduced and examined related to the development of

the production, communication and computer systems.

The queuing systems without waiting line have been analyzed extensively. In this
kind of systems, since some of arriving customers left without taking any service, a
very important problem called the analysis of “stream of overflows” appeared. The
stream of overflows in queuing systems without waiting line was first studied by
Palm (1993). Palm (1943) proved that in GI/M/n/0 queuing system, the stream of
overflows is a renewal process and found the Laplace-Stieljes transform of the
interoverflow time distribution and obtained the loss probability by using difference
equations. This problem presented by Palm was also examined in subsequent years
by the scientists such as Khintchine (1960), Takacs (1956), and Cinlar & Disney
(1967). Cinlar & Disney (1967) obtained the generating function of the stream of
overflows in the M/G/1/n-1 system.



The models related to queuing systems without waiting line in the literature can
be classified into two groups in general:

a) M/M/n/0 queuing model: Since there is no waiting line in the system, a
customer arriving in the system when all servers are busy leaves without
taking any service. This model is analyzed by means of Markov process since

the interarrival times and the service times have exponential distribution.

b) GI/M/n/0 and M/G/n/0 queueing models: Since there is no waiting line in both
systems, a customer arriving in the system when all servers are busy leaves
without taking any service. However interarrival times are independent of
each other and have an arbitrary distribution in the former, whereas in the
latter, the service times are independent of each other and have an arbitrary
distribution. Since these models cannot be analyzed by Markov process,
methods such as supplementary variable, embedded Markov chain, and semi-
Markov process were developed. The fundamental problem in this kind of
models is the calculation of loss probability and the minimization of this
probability.

A/B/n/m/d notation given by Kendall (1953), facilitates the definition of the
models in the analysis of the queuing systems. A represents the distribution function
of interarrival times, B represents the distribution function of the service time, n
represents the number of servers, m represents the number of customers waiting in
line, and finally d represents the service discipline. Specially, the letter M stands for
the exponential distribution whereas G represents an arbitrary distribution; Gl
indicates that interarrival times are independent of each other and have an arbitrary

distribution function.



1.1 Problem Statement

Conny Palm (1943) studied the queuing model GI/M/n/0 with identical servers
and no waiting line in his study named “Intensititsschwankungen im
Fernsprechverkehr”. In this model, interarrival times are independent of each other

and have distribution function F(t), and their expected value is finite. There are n-

identical servers in the system. The service time of each customer in server

k (k=12,...n) is a random variable represented by 7 and has an exponential

distribution with parameter », i.e. P(n<t)=1-e* , t>0. The customer, who

arrives in the system, chooses the server with the lowest index number among the
empty servers with probability 1. Since the servers in this model are identical, such
an assumption in terms of service discipline does not affect the traffic flow. In other
words, the assigned index number of the server to the arriving customer at any time t

is not important in Palm’s model.

In real life, it is obvious that the servers may not be identical. In this kind of
systems, it is more realistic to suppose that the servers are heterogeneous and to
model the system accordingly, however the analysis of the model becomes relatively
difficult.

The service discipline gains a great importance when servers are assumed to be
heterogeneous in the model examined by Palm (1943). Namely, from which server
an arriving customer in the system at any time t receives the service is very important
and directly affects the analysis of the model. In other words, depending on the
service discipline, the calculation of the functions representing the system and
therefore the calculation of performance measures of the system differ significantly.

This is the only reason for the difficulty of this kind of systems.

In this thesis, the model of Palm (1943) is generalized by assuming the servers
heterogeneous, namely, the queuing model GI/M/n/0 with heterogeneous servers and
no waiting line is analyzed. In this model, interarrival times are independent of each

other and have distribution function F(t) and their expected value is finite. There are



n heterogeneous servers in the system. That is, their mean service times are different

from each other. The service time of each customer in server k is a random variable

represented by 7, and has an exponential distribution with parameter

U, k=12,...,n.

The service discipline is addressed in two different ways. Firstly, the customer
arriving in the system starts the service in any of the empty servers with equal
probability. This discipline is called as ‘Random Selection Discipline’ or briefly
‘Random Entry’ by the author. In the second case, the customer arriving in the
system chooses the server with the lowest index number among the empty servers
with probability 1 introduced that was introduced by Palm (1943). This discipline is

briefly known as “Ordered Entry” in the literature.

Since there is no waiting line in the addressed model, when all servers are busy,
an arriving customer leaves without taking any service. In this respect, many
problems such as the stream of overflows, the distribution of the stream of overflows,

loss probability of a customer, and the optimization of loss probability arise.

In terms of the optimization of loss probability, depending on arrival flow and the
service discipline, the loss probability can be minimized in two different manners. In
some cases the conditions where the system is optimal cannot be determined
theoretically. In such cases, the determination of optimal conditions by simulation

design appears as a different problem.

The aim of this thesis is to solve abovementioned problems, to generalize the
gueueing model GI/M/n/0 with homogeneous servers first addressed by Palm (1943),
to analyze a queuing model closer to real systems, to calculate the loss probability of

an arriving customer, and to minimize this probability.



1.2 Thesis Outline

The queuing model GI/M/n/0 with heterogeneous servers introduced in this thesis
is analyzed by means of semi-Markov process that is one of the most important
subjects of the stochastic process theory. The model addressed in this sense is a
perfect application of semi-Markov process. Additionally, overflow times of the
customer in the model forms a delayed renewal process. Therefore, some concepts,
definitions, theorems, and proofs of those theorems related to the renewal theory that
is one of the most important subjects of the stochastic process theory are given in
Chapter Two for better understanding and easier interpretation of this thesis. The
fundamental concepts of renewal theory are briefly explained in Section 2.1. Some
applications of the renewal processes related to the queuing theory and the reliability
theory are explained with examples. Moreover, some theorems such as Abel and
Tauber related to Laplace-Stieltjes transforms frequently used in the thesis are
examined. The renewal function, limit theorems for renewal processes, delayed
renewal process, Markov renewal process, and semi-Markov process are other

subjects that are explained in Chapter Two.

In Chapter Three, a comprehensive literature review on especially related to
queuing models without waiting line has been presented. Afterwards, “the model
GI/M/n/0 with heterogeneous servers and no waiting line” addressed in this thesis is
explained with its assumptions. Kernel functions of the process are obtained by
defining the semi-Markov process representing the model. An implementation of loss
formula is performed for the queuing model GI/M/3/0 with heterogeneous servers.
The condition in which the loss probability is minimum is explained with a theorem
by optimizing the loss probability depending on the arrival flow. Additionally, the
distribution of the time between overflows is obtained by analyzing the stream of
overflows. Also, Palm’s recurrence formula and an extension of Palm’s recurrence
formula are examined in detail. For the queuing model GI/M/n/0 with ordered entry,
it is revealed by a numeric example that, the loss probability obtained by Yao (1986,
1987) as a function of the extension of Palm’s recurrence Formula, is not correct for

n=3.



In Chapter Four, simulation models are defined for both random entry and ordered

entry service disciplines of the queuing model GI/M/n/0 with heterogeneous servers

and no waiting line. The variation in the loss probability is experimentally observed

for different interarrival time distributions. Theoretical studies carried out in the

literature related to the minimization of the loss probability are supported by

simulation optimization.

Finally in Chapter Five, concluding remarks and a discussion of the future

research which can be followed as extensions of this thesis are presented.

1.3 Contributions

The main contributions of this thesis are summarized as follows:

1)

2)

3)

‘A generalization of Takacs’s Formula’ for ‘the queueing model GI/M/n/0
with heterogeneous servers’ is obtained by deriving kernel probabilities of the
semi-Markov process. Thus an embedded Markov chain of semi-Markov
process for the queuing model GI/M/n/0 with heterogeneous servers is
obtained (Section 3.2).

By defining the overflow times of the customers and showing that the time
until the first loss epoch and successive interoverflow times are independent
from each other and have a different distribution, it is shown that overflow

times in the system are delayed renewal process (Section 3.3).

The Laplace-Stieltjes transform of the distribution of the stream of overflows
is derived for the GI/M/n/0 queuing model with heterogeneous servers. An
implementation of the Laplace-Stieljes transform of the distribution of the
stream of overflows is performed for the queuing model GI/M/2/0 with

heterogeneous servers (Section 3.3).



4)

5)

6)

7)

8)

9)

It is shown that how a generalization of Takacs’s formula is applied for the
queuing model GI/M/3/0 with heterogeneous servers and also the loss
probability is obtained for the above mentioned model (Subsections 3.2.1 and
3.2.2).

The loss probability obtained for the queuing model GI/M/3/0 with
heterogeneous servers is minimized according to the arrival process
(Subsection 3.2.3).

Steady-state probabilities are obtained as a solution of the determinant of the
embedded Markov chain (Section 3.4).

‘An Extension of Palm’s Loss Formula’ is derived for ‘the queueing model
GI/M/n/0 with heterogeneous servers’. An implementation of this formula was
performed for the queuing model GI/M/2/0 with heterogeneous servers and the

loss probability of customers was computed (Section 3.4).

It was explained that an extension of Palm’s recurrence formula addressed by
Yao (1986, 1987) is a heuristic formula and does not guarantee the exact

solution. (Subsection 3.5.1)

The contradiction between the main theorem, given by Yao (1987) related to
the optimization of the loss probability, and the loss probability formula, again
given by Yao (1986, 1987), is proved with a numerical example (Subsection
3.5.2).

10) It is explained with a numerical example that ‘an extension of Palm’s Loss

Formula’ that we obtained in this thesis is compatible with the main theorem
of Yao (1987) (Subsection 3.5.2).

11) Studies available in the literature related to the optimization of the loss

probability are supported by a simulation study. For the situations in which it



Is not theoretically possible to minimize the loss probability according to the
interarrival time distribution, the simulation optimization approach is
proposed and designed. As a result of simulation optimization, the optimal

conditions for the system are determined. (Chapter 4).
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CHAPTER TWO
RENEWAL THEORY

In this chapter, renewal process, renewal function, limit theorems for renewal
processes, delayed renewal process, Markov renewal process, and semi-Markov
process matters among the most important matters of the stochastic processes theory
are briefly explained. Definitions, theorems, and examples taking place in this
chapter will facilitate the comprehension of Chapter Three. This section has been
prepared by the help of the studies carried out by Pyke & Schaufele (1964), Feller
(1966), Cinlar (1969, 1975) and Ross (1996). For more information about in this

chapter, the mentioned references may be consulted.
2.1 Renewal Process

The renewal theory arose from the need for analyzing the problems related to
breakdown and renewal (repair) of a machine in random times. This theory extended
its application area (mathematical analysis, physics, economy, engineering, holding
line models, reliability analysis, etc.) and now became one of the most important
tools used by millions of researchers. Many problems solved by using difficult
methods can be easily solved by means of the renewal theory. In this section,

information will be presented about basic concepts of the mentioned theory.

2.1.1 Basic Concepts

Assume that X, X,,... are independent, positive random variables having

identical distribution function F and that expected value of each is finite:
p=E[X,]=[[I-F()ldx<oo , k21, (2.1)
0

In this case, the sequence

10



11

S, =0,S, =X, +-+X,, n>1, 2.2)

is called as renewal process or recurrent process. Each S, is called as nth renewal

timeand X, =S, -5, ; as nth renewal period.

Let’s consider the following function defined by means of (S,)¢

N(t) =max{n:S, <t}=>"I(S, <t). (2.3)

n=1
Ifeach S, <t ,then N(t) = . The function (2.3) is also called as renewal process
in the literature. N(t) represents the number of renewal times settled in the range
(0,t]. Therefore, N(t) is a random variable and it is the number of the last term
smaller than and equal to t in the sequence (S, ). From the definition (2.3), following

requirements are obtained:
N({t)<n < S, >t, (2.4)
Nt)=n < S, <t<S, . (2.5)

Thus, Sy, is the last renewal time coming before the t and S, is the first

renewal time coming before t (Figure 2.1).

X, X, Xy (t)+1
R EaN >t
0 S, S, SN(t) t SN(t)+1

Figure 2.1 Renewal times.

In addition, a trajectory of N(t) process is given in the Figure 2.2.
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N(t) 4
3 + —
|
|
|
| ] ] > t
O Sl SZ 83

Figure 2.2 A trajectory of N(t) process.

As it can be seen, each S, is at jumping point of the process N(t), and the size of

the jumps is equal to one.

From the requirement (2.4) or (2.5), following equation is obtained for N(t)

process:

P{N(t) =n}=F,() - F,.,(t), n>0, (2.6)

where F,(t) =1, F,(t) isthe distribution function of the S, :

F (t)=P(S, <t), n>1. 2.7)

Since X, X,,... have an independent distribution function F; F, is n-tuple

convolution of the F. Convolution formula is explained by Definition (2.1) by means

of the Theorem 2.1 given below.

Theorem 2.1 (see, Feller, 1966). Suppose that X and Y are two continuous random
variables, and f is their joint density function. In this case, the density function of

the sum X+Y is given by the formula below:
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fen =] ft-y,v)dy. (2.8)

This formula is as follows for independent X and Y:

e @ = ft=y)f, (y)dy. (2.9)

Definition 2.1 (see, Feller, 1966). The integral presented in the formula (2.9) is
called as the convolution of the functions f, and f, and shown as f, (t)* f,(t).

This formula is also called as convolution formula. The density function of the sum
of two independent continuous random variables according to the theorem above is

obtained as follows by means of the convolution formula:
fX+Y (t) = fx (t) * fY (t) : (2.10)

If P(X, <t)=1-e*",t>0, then the renewal process N(t) is called as
Poisson process, because in this case the N(t) has a Poisson distribution with

parameter At . In fact, since the distribution function of the S, is
n-1
F.(t)=1-) (At) e /k!, n>1, (2.11)
k=0

it becomes P(N(t) =k) = (A1t)*e ' /k! according to the formula (2.6).

Renewal processes are used in various fields of the science. Some of them are

illustrated below:

a) Suppose that Z,, n>0 is recurrent Markov chain and Z, =i . In this

case, successive transition times to state i from a renewal process:
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S;=min{n=1:Z =i}, S, =min{n>S,,:Z, =i}, k=2. (2.12)

b) In M/G/1 queueing system, the arrival times of the customers in the system
form a Poisson process and passage times of a server from busy condition to idle
condition form a renewal process; starting times of uninterrupted operation durations

of a server in the queueing system G/M/1 form a renewal process.

c) In the reliability theory, average lifetime of the systems with changeable

elements is discussed. For example, if a unit starts working at the starting time
S, =0and breaks down at time S, = X, , it is replaced by a new unit. The new unit
breaks down at time S, = X, + X, and is replaced by another one, and this process is

continued in indicated manner. Thus, nth renewal time is represented by S, .
Following theorem represents basic characteristics of the N(t) .

Theorem 2.2 (see, Ross, 1996). N(t) function provides following characteristics:
a) Foreach t>0, P(N(t) <) =1.
b) N(t) - oo (t — o), with probability 1.

- 1 (t > o0), with probability 1.

y7]
Proof. (a) According to the law of large numbers, (S,/n) — u with probability 1.
Since x>0 is follows that S, — oo, accordingly the inequality S, <t is possible

for at least finite number of values of n. From this fact and (2.2), N(t) <o is

obtained.

This characteristic can also be proved by using the Chebyshev inequality: We can

write for each a € R as:

P(S, <a)=P(™ >e*)<e“E[e™>]=e“(E[e ])". (2.13)
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From (2.13) and E[e ™]<1, limP(S, <a)=0 is found, namely S, — oo with

probability 1.

(b) As t > for each large number n, since

P(N(t)<n)=P(S, >t)=1-F,(t) >0, P(!irg N(t) =o0) =1 is obtained.

(c) According to (2.2), the inequality S, <t<Sy., . and from there the

following relation is found

Sne  t_Swoa (2.14)
N() N() N()

Ast—>o , N(t) > . Here from and from the law of large numbers, as t -«

Sn@ / N(t) — x is obtained. Theorem is proven.

2.1.2 Laplace-Stieltjes Transform

Suppose that the F is a monotonously increasing in the range [0,%0) and is a non-

negative function. In this case:
F(s)=[e™dF(x). (2.15)
0

Stieltjes integral is called as Laplace-Stieltjes (LS) transform of the F, where the s is

a complex variable. The function (2.15) is analytical in the zone {s:Res> S} for

the F satisfying the condition F(x) <Me™>* , x>0.
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Now suppose that the X is a random variable that is non-negative, and the F is the
distribution function of the X. In this case, the Laplace-Stieltjes transform F(s) can

be shown as the expected value of the X:
F(s) = E[e¥]. (2.16)
This function exists foreach s>0 .

The following relation exists between the function (2.15) and Laplace transform

ofthe F, F, (s) = fe’SXF(X)dx

F(s)=sF, (s). (2.17)
Some characteristics of Laplace-Stieltjes transform are given below.

a) If F=aF +bF,, F=aF +bF,.

b) If H(x)=JX.e‘“dt , H(s)=F(s)/s.

c) If H(x)=.x[e“dF(t) , H(s)=F(s+A).

d f(xX)=F'(x), x>0, if its derivative exists and is a monotonously
increasing function, F(s) = sF(s)—sF(0).

e) If H(X)=F,(x)*F,(X) , H(s)=FR(s)F,(5).

As t — oo (t — 0), from the behavior of the F(t), its Laplace-Stieltjes transform, the

problem for finding the behavior of the Iz(s) as S — 0 (s—0) is called as Abelian

Theorem and conversely the problem for determining the behavior of the F(t) as

t — oo according to the behavior of the IE(s) as s—0 is called as Tauberian

Theorem.
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Theorem 2.3 (Abelian theorem). If lim F(x) is finite, then
lim F(s) = lim F(x). (2.18)

If lima, isfiniteand a(s)=> " a,s" ,then

n—oo

Isinf(l— s)a(s) = !]m; a,. (2.19)

The inverse of this theorem is not correct. However, the following theorem can be

used:

Theorem 2.4 (Tauberian theorem). a) If F(x)>0 and if the following limit is

exist:

lims“F(s), >0, (2.20)

s—0

then,

T 1
lim T~ [ F(x)dx =
) r

T—ow

ey lims“F(s). (2.21)

b) If Iirq(l—s)a(s)<w and limn(a, —a,,)=0, then (2.19) is correct.

The Tauberian theorem gives information about the average of the F but not about
the F itself.

2.2 Renewal Function

The renewal function plays an important role in the analysis of renewal processes.

In fact, the basic characteristics of the renewal processes are expressed by this
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function. It is defined as the expected value of renewal times occurring in the range
(0,t] , namely

m(t) = E[N()], t=0. (2.22)
There is a one-to-one correspondence between m(t)and F(t), therefore the m(t)
uniquely determines the renewal process. Certain characteristics of the renewal
function m(t) are explained below:

a) Foreach t>0 , m(t) <oo.

Proof. Since X, >0 ,thereissuch & >0 that P(X, >J)>0. Now suppose

— 0, X, <o
X, = (2.23)
1, X, =5 .
In this case, the following sequence becomes a renewal process:
S, =X, +--+X_ , nx1. (2.24)

Let N(t) corresponds to the number of renewal times until the time t of this process.
In this case, it becomes E[N(t)]< E[N(t)]. It can be seen from (2.23) and (2.24)

that the sum of each S, takes valuesas 0,1,2,... and X, X,,... are independent
random variables, each of them takes the value 1 with the probability
L=P(X,20),1=12,... and the value 0 with the probability 1— g . Accordingly,
S, has binominal distribution with parameters (n, ), namely the following can be

written:

P(S, =k)=C(n,k)g“(L-B)"*. (2.25)
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By using the total probability formula, the following is obtained:

P(Sn+l < t) = P(S_n + )?ml < t)
_ _ (2.26)
=1-p)P(S, <t)+ pP(S, <t-1).
And herefrom, the following can be written:
P(S, <t)-P(S,., <t) = B[P(S, <t)-P(S, <t-1)]. (2.27)
Herefrom and from the formula (2.3), the following is found:
P(IN() =n)=AP(t-1<S, <t)= 4§, =[t]), (2.28)

where [t] and integer part of the t are shown. Herefrom and from (2.25) with

k =[t], the following is found:
P[N(t) =n]=C(n,k)g**@-5)"*, n>k. (2.29)

Since the expected value of negative binominal distribution with parameters (k, 53)

is E[N()]=[t]/ 3, m(t) = E[N(t)]< E[N(t)]=[t]/ B, namely the m(t) is finite.

b) The renewal function can be shown in the following form:
m(t) =Y F,(t), (2.30)
n=1

where n-tuple convolution of F is shown with F, .

Proof. The formula (2.30) is obtained from the equation (2.3) as follows:
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m(t) =3 nP(m(t) =n) = 3 n[F, ©) - F, ., (1)]
n=1 n=1 (231)

= YR -2 (-DF, 0= 3,0

The m(t) is the first moment of the N(). rth moment of the N(t),

m, (t) = E[N(t)"], is found as follows:

m, () = gn*[a () F,s O] (2.32)
Herefrom and from the partial sums formula, the following is found

m, (t) = g[n' —(-DF, (). (2.33)

Herefrom, the second moment of the N(t) is obtained:

m,t) =3 (2n-1F, (1
n=t (2.34)

=m(t) + ZZ(n -DF, (1) .
n=2
Herefrom, Laplace-Stieltjes transform of the m, (t) is found:

i, (5) = i(s) + 23" (N - (s)"

_ fi(s) + 2F ()23 nF ()™ (2.35)

— i(s) + 2[1_FS()S)]2 = ffi(s) + 2/i(s)? .
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From this equation, m, (t) is obtained:
t
m, () =m(®)+2[m(t-y)dm(y). (2.36)
0

For example, since m(t) = A(t) for a Poisson process with parameter A, m, (t)

is found as follows:
t
m, (1) = At+2[ A(t-y)d(dy) = At + (A1), (2.37)
0

c) The renewal function is the unique solution of the following integral equation:

m(t) = F(t)+jfm(t—x)dF(x). (2.38)

Proof. Actually we can write the convolution of the functions a, and b by

representing with a=b :

mt) = F()+ Y F. () = FO) + S FO *F, 1)

B (2.39)
=F)+F(t)*> F,(t)=F@)+F@{)*m(t).
Thus, the following equation equivalent to (4) is obtained
m(t) = F(t) + F(t) *m(t). (2.40)

Now suppose that the M (t) is the second solution of the equation (2.30) . In this

case, the function h(t)=m()—-M(t) will be the solution of the equation

h(t) = F(t) *h(t) . Here from h(t) = F, (t)*h(t) is obtained. Since m(t) <« for
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each t, the sequence (2.30) is convergent, accordingly while n—o0 , F,(t) >0 .

From there and the previous equation, h(t) =0 is found, namely M (t) =m(t).

Alternative proof. We can write it by using the expected value formula:

m(t) = E[N(t)]zTE[N(t)/Xl = x]dF (x)
:j[1+ EN (t — x)]dF (x) (2.41)

= F(x)+j'm(t—x)dF(x) :

The equation (2.38) is called the renewal equation. This equation can be written as
follows:

F(t) = [F(t—y)dm(y), (2.42)

~

where F=1-F.

The following formula is obtained from (2.40) for m(s) = J.:e’“dm(t), Laplace-
Stieltjes transform of the m(t) :
F(s)

m(s) = T E()’ (2.43)

where the Laplace-Stieltjes transform of the F is represented by IE(S). This formula

is obtained by applying the Laplace-Stieltjes transform to the equation (2.40) and by
using the theorem ‘Laplace-Stieltjes transform of the convolution of two functions is
equal to the multiplication of their Laplace-Stieltjes transforms’. The formula (2.43)

is obtained from the equation (2.30).
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From the formula (2.43), the following result is obtained:

. o~ 1
limm(t) = limm(s) = — =0, 2.44
n—c () s—0 () 1-1 ( )

It is seen from the formula (2.43) that there is a one-to-one correspondence
between the functions F(t) and m(t). Each of the formulas (2.30), (2.38), and

(2.43) can be used for finding the m(t) . In the example addressed below, the m(t)

is found for F(t)=1-e™* , t>0.

Example 2.1 F(t)=1-e™ , t>0. In this case, since the density function of
S, =X, +-+X,is f (t)=A2(At)"'e* /(n-1)! , F,(t) becomes the integral of
this function in the range (0,t) the m(t) function that we desire to find obtain as

follows as required by the formula (2.30):

m(t)=/1ji(/u)nl eﬂtdt:/lj.eit'eitdt:lt (2.45)
o iz (n=1)! 0 . |

The same result can be obtained by using the formula (2.43). Since the Laplace-

= A ~
Stieltjes transform of the F(t) is F(S) :S— : m(s)—M—i

= = , from
+A 1-A/(s+A) s

there m(t) = At is found.

Thus m(t) is a linear function for a Poisson process with parameter A . The

inverse of this statement is also correct: Renewal process whose renewal function is

m(t) = at is a Poisson process with parameter a. Indeed, since the Laplace-Stieltjes

transform of m(t) = at is a/s, the equation (2.43) takes the following form:

F(9) _ % (2.46)

1-F(s)
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—at

~ a
and here from F(s) “sia’ namely F(t)=1-e™ is found.

2.3 Limit Theorems for Renewal Processes

Asymptotic analysis of the renewal function N(t) as t — oo Is a very important

subject in the application of the renewal theory. The proof of a few theorems related

to the subject mentioned in this section will be given.

Theorem 2.5 (The elementary renewal theorem). For the renewal function m(t)

lim—= m(®) i : (2.47)
t—oo t /Ll

asymptotic equation is correct, where, if g#=o0 , 1/ =0 isaccepted.

Proof. According to Tauberian theorem, for each monotonously increasing function

u(t) >0 the following equation exists:

limu(s) =lim—= ()

s—0 t—o

(2.48)

In this equation, the equation (2.47) is obtained by taking u(t)=m(t) and

considering that i(s) =[1— F(s)]*F(s) :

i MO sIE(s) -1 1

== (2.49)
trt sw1-F(s) F(0) u

According to the equation (2.47), the average number of renewal within a time

unit for large t is equal to the inverse of the average time between these renewals.
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Theorem 2.6 (The key renewal theorem, Smith, 1954). Suppose that F is a non-

lattice distribution function. If Q(x), it is a function monotonously decreasing in the
range [0,0) and satisfying the condition _[: Q(x)dx <o . In this case, the

following asymptotic equation is correct:
t 0
. 1
lim j Q(t—x)dm(x) = = j Q(x) dx. (2.50)
t—owo 0 /,l 0

This theorem belongs to Smith and he has called it as key of renewal theorem.
Different limit results are obtained for renewal process by selecting the function
Q(x) for which the equation (2.50) is found.

Theorem 2.7 (Blackwell’s theorem, Blackwell, 1948). If the F is a non-lattice

distribution function, for each h>0:

lim[m(t + h) - m(O)] = h/ 4. (2.51)

Theorem 2.8 (Smith, 1958). The key renewal theorem and Blackwell theorem are

equivalent, namely (2.50) < (2.51).

Proof. For proving the requirement (2.50) = (2.51) let’s select the function Q(X)

present in (2.50) as follows:

1,0<t<h

2.52
0, t>h. ( )

Q(x) :{

In this case, the left side of (2.50) is equivalent to the following integral

Q#m(x)= Jt.dH(x):H(t)—H(t—h). (2.53)
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And its right side is equivalent to (h/a) , from there (2.51) is obtained. Thus the

proposition (2.50) = (2.51) is correct.

For proving the requirement (2.51) = (2.50), let’s show the integral in the left
side of (2.50)

t/2 t

Y () [Qt-x)dm(x), y,()= [Q(t—x)dm(x), (2.54)

t/2

as the sum of the integrals above, and let’s prove (2.54) can be written as follows as

t—> o
V(0 —>0, v, >Q/u, Q=[Qut. (255)

Since the Q(t) is monotonously decreasing, it is 0<vy,(t)<Q(t/2)m(t/2) is

written. From this fact and as t — o, since

tQ(t) >0, mt)/t—1/p, (2.56)

we find Y, (t) >0 . Now let’s select it in a manner that it will beh >0, hQ(0) < &

according to given number of ¢ > 0. In this case, the following equation is correct:
0<Q-T,<e, T, =h>_Q(nh). (2.57)
n=1
Let’s choose such a large t that we can obtain the following:

h 3 Qnh)<e. (2.58)

n=[t/2h]
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From the equation (2.51), the following is found for u>t/2

Imu+h)-mu) 1 -,

2.59
| h H (259
In the light of this information, the following is obtained for Y, (t)
1 1
(—=&)(T, —g)<y, <(—+&)T,. (2.60)
U JZ
From (2.60) and (2.57) for large enough t, the following is found:
1 1
(;—6‘)(Q—25)<y2 <(;+g)(Q+g). (2.61)

Since &£ >0 is arbitrary, it becomes Y, (t) > Q/x. Thus, while t >« , (2.50)

is obtained:

Q(t) *m(t) = y, (1) + Y, (t) > Q/ . (2.62)

2.4 Delayed Renewal Process

Suppose that X, X,,... are independent positive random variables and that
P(X, <t)=F(t), P(X, <t)=F(t), k>2. In this case, the sequence
S, =X, +--+X,,n=1 s called as delayed renewal process. The renewal

function of this process

m,(t) = EN(t), N,(t) =max{n:S, <t}, (2.63)

provides following characteristics:
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() = F,(0) * > F, (1) = F, () *m(t), (2.64)

m, t) = F,(t) +jm1<t —x)dF (x)
to (2.65)
= R (1) + [ F(t—x)dm, (x),

i (s) =2 (2.66)

Overflow times of the customers in the queueing system GI/M/n/0 form a delayed
renewal process. This system is analyzed for two different service disciplines in
Chapter Three.

2.5 Markov Renewal Process

Suppose that (€2, 3, P) is a probability space, X, and T, are random variables

defined in this space and respectively taking the values E ={0,,..} and R =[0, «)
for each neZ", if the sequence 0=T,<T <T,---. (X,,T,; n=0) satisfy the

following characteristic, it is called as Markov renewal process with state space E:

PX,:=1T,.-T, £t|X0 =gy, Xy =14, X, =1;Ty =t,,..., T, =t,)

n+1 n-

(2.67)
=P(X,,=j.T

n+l —

T, <t|X, =i),

n+l

forallnezZ”,i,jeE,and teR".

Suppose that (X, T, ; n>0) is time-homogeneous: that is, for any i, j € E, and
teR",
P(X,,=1T,.,—-T, £t|Xn =) =Q; ®, (2.68)
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independent of n. The family of probabilities Q;(t), (i, j € E,t e R") is called as a
semi-Markov transition kernel over E. For each pair (i, j), the following equation is

obtained with t — co:
p; = !Lrpo Q;®). (2.69)
It is easy to see from (2.67) that

p; =0, Z p; =1, (2.70)

jeE

namely, p; are the transition probabilities for certain Markov chains with state space
E. This implies that (X,, n>0) is a Markov chain with a state space E and a
transition matrix P. On the other hand, the increments T, -T,,T,-T,... are

conditionally independent considering the Markov chain X, X,,.... If the state

space E consists of a single point, then the increments are independent and

identically distributed, namely (T,, n>0) is a renewal process. Finally, the term

Markov renewal process is a generalization of Markov chains and renewal processes.
2.6 Semi-Markov Process

Semi-Markov process was introduced independently and almost simultaneously
by Levy (1954), and Smith (1955). Essential developments of semi-Markov process
theory were proposed by Pyke (1961a, 1961b), and Cinlar (1969). Semi-Markov
processes are connected to the Markov renewal process. Theory of semi-Markov
process allows the establishment and the resolution of many models in queueing
theory. The queueing model GI/M/n/0 with heterogeneous servers to be addressed in

Chapter Three will be modeled by means of semi-Markov process.

A stochastic process (Y,, t>0) given by the following relation
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Yo =X, t EI.—I-ann+1) ' (2.71)

is called as a semi-Markov process generated by the Markov renewal process related

to the kernel Q;(t), (i, je E,teR").

The length of a sojourn interval [T,,T,,,) is a random variable whose distribution

depends both on the state X, being visited and the state X, to be entered next. The

n+1
successive states visited form a Markov chain and, conditional on that sequence, the
successive sojourn times are independent. These form a Markov chain called an
embedded Markov chain of semi-Markov process. The semi-Markov process is
irreducible if the embedded Markov chain is irreducible too.



CHAPTER THREE
AN EXTENSION OF PALM’S LOSS FORMULA

Conny Palm (1943) analyzed the queueing model GI/M/n/0 consisting of identical
servers without waiting line and obtained the loss probability of the customer in the
system. In this model, the customer arriving in the system gets service with ‘Ordered
Entry’ service discipline. Namely, the customer starts the service in the server with
the lowest index number among the empty servers with probability 1. Takacs (1959)
mentions from the ordered entry discipline in his article titled ‘On the limiting
distribution of the number of coincidences concerning telephone exchange’ as
follows: “C. Palm (1943), let us suppose that the channels are numbered by
1,2,...,r,..., and that an incoming call realizes a connection through that idle
channel which has the lowest serial number. This assumption does not restrict the
generality since {n(t)} is independent of the system of the handling of traffic”.
Herein 7(t) is the number of customers present in the system at time t. Namely, since
the servers are identical in Palm’s model, the index number of the server in which the
customer is available at any time t is not relevant. Therefore, in the queueing model
GI1/M/n/0 with homogeneous server, there is no difference between services taken by
customers arriving in the system with ‘Ordered Entry’, ‘Random Entry’, or an
another service discipline. When the servers are heterogeneous, the number of the
customers present in the system depends on the system of the handling of traffic, and

in this case, the service discipline gains a great importance.

In this section, the queueing model GI/M/n/0 with heterogeneous servers without
waiting line is examined. The mentioned model is separately analyzed for both
‘Random Entry’ and ‘Ordered Entry’ service disciplines and the formula for the loss
probability of the customer is obtained. This formula is called as ‘An Extension of

Palm’s Loss Formula’.

31
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3.1 Literature Review

The queueing models with identical servers and no waiting line have been
examined and analyzed extensively. Since these models have been applied in many
areas like telecommunication networks, design of call centers, wireless networks,
computer communication systems, and emergency service systems, they have been
taking on great importance. The classical model with no waiting line is the M/M/n/0
queueing system which was first examined by Erlang (1917). Erlang (1917) obtained
the probability of being state k for the M/M/n/0 model as follows:

P Ikl

__re , 3.1
ZEZO(pklk!) 3.)

k

1

where p=A/u is the offered load, 2* and g are the means of the interarrival

times and service times, respectively. Formula (3.1) is known as Erlang’s loss
formula for k=n. This formula is of great importance for the mathematical
modeling of communication systems and has been a source of inspiration to analyze

more complicated systems.

Konig & Matthes (1963) generalized Erlang’s formula for dependent service
times. Takacs (1969) analyzed the model, suggested by Erlang (1917), using
discrete-parameter stochastic process considering the arrival and departure times of
the customers in the system. Brumelle (1978) generalized Erlang’s formula for
dependent arrivals and dependent service rates and obtained the mean system waiting

time of a customer.

Palm (1943) extended the model suggested by Erlang, for the state of having
independent interarrival times with a general distribution and examined the GI/M/n/0
queueing model. Palm (1943) analyzed the stream of overflows in the GI/M/n/0
queueing model and computed the loss probability of customers in the system as

follows:
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l—nnc 3.2
F)n_kzokk’ ()

where, with f being the Laplace-Stieltjes transform of distribution of the interarrival

time, c, are

_ _ryl-fky)
¢, =1, ck_lk} i @<k<n). (3.3)

Takacs (1956) proved that limit distribution of being in any state was independent of
the initial state. At the same time, he obtained similar results also when the number
of servers was infinite. Takacs (1957) obtained Palm’s loss formula (given by Eq.
3.2) in a simpler way by using the method of finite difference equations. Takacs

(1958) demonstrated that the sequence of random variables {,} (n=1,2,...), which

is the number of customers staying in the system immediately before the arrival of

the nth customer in the system, forms a Markov chain and obtained its one-step

transition probabilities p; = P[7,,, = j|m, =1 as follows:
py = ([ e @-—e)dr(), 3.4)
forj=12,...,n-1 p,; = P,y;,and F(t) isdistribution of interarrival times.

There are several studies which assume both the interarrival and service times
have general distribution. In the GI/G/1 queueing model with no waiting line, Halfin
(1981) obtained the distribution function of the interoverflow times of customers. By
making a discrete-time analysis of the GI/G/2 loss system, Atkinson (1995)
presented an alternative to Erlang’s loss model when the arrival process did not well
approximate the Poisson process. Again in another study by Atkinson (2000), the
C./G/1 queueing model and the C,/G/1 loss system were examined. Atkinson (2000)

showed that, with ¢, being the coefficient of variation of interarrival time, when

ci <1, the probability of delay and the probability of loss are both increasing in
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B(s) for the above-mentioned models, respectively. Herein g(s) is the Laplace-

Stieltjes transform of the service time distribution.

The assumption of identical servers is mostly invalid in real life. The literature on
Markovian queueing systems with heterogeneous servers is mature. Gumbel (1960)
obtained the limit distribution of the number of customers in the system for the
M/M/n model with infinite waiting line and heterogeneous servers. Singh (1970)
examined the Markovian queueing system with two heterogeneous servers. Singh
(1970) computed the performance measures of the system and compared these results
with the homogeneous Markovian two-server model. Singh (1971) obtained the
steady-state probabilities, the mean number of customers waiting in the queue, and
the mean system waiting time of a customer for the queueing model with infinite
waiting line and three heterogeneous servers. Lin & Elsayed (1978) developed a
computer program to numerically solve multichannel Markovian ordered entry
queueing system with heterogeneous servers and storage. Fakinos (1980) gave a
generalization of the Erlang’s loss formula for the case of non-identical servers.
Kaufman (1980) analyzed the model M/G/n/0 with heterogeneous servers and
random selection discipline. Elsayed (1983) developed two computer programs to
determine the optimal allocation of storage spaces among three heterogeneous
servers in a finite source queueing system. Alpaslan & Shahbazov (1996) proved

that Ew, and Ew get minimum values under the condition that s, +---+ 1, = u for
the M/M/n model with heterogeneous servers when s, = g, =---= . =c/n. Kumar,

Madheswari, & Venkatakrishnan (2007) examined Markovian queueing model
M/M/2 with heterogeneous servers and infinite waiting line also considering the fact

that, catastrophes fitting the Poisson distribution with a rate of » might take place.
Alves et al. (2011) derived upper bounds for the average number in queue L, and the
average waiting in queue W, of heterogeneous multi-server Markovian queues,

M/Mi/c. Nath & Enns (1981) proved that the loss probability is minimum under the

fastest service rule for the queueing model M/M/n/0 with heterogeneous servers.
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There are not many studies on non-Markovian queueing systems with
heterogeneity. Nawijn (1984) considered the two-server queueing model with
ordered entry and finite waiting rooms. In this model, it was assumed that the service
time was exponential and the arrival process was deterministic. Nawijn (1984)
calculated the overflow probability for the defined queueing model by implementing
the matrix solution. Alpaslan (2002) obtained the distribution function of the stream
of overflows for the GI/M/2/0 system with heterogeneous servers. In this study,

Alpaslan (2002) assume that an arriving customer takes service in the first server
with a probability 7, and in the second server with a probability 7, , as 7, + 7, =1.

Isguder & Uzunoglu-Kocer (2010) minimized the loss probability according to the
distribution of interarrival times for the GI/M/3/0 queueing model with
heterogeneous servers and random entry. Gontijo, Atuncar, Cruz, & Kerbache (2011)
evaluated algorithms using kernel estimator methods to estimate the performance
measures of the non-Markovian GI*/M/c/N queueing system with bulk arrivals, and
they compared simulation results for some theoretical distributions. Isguder,
Uzunoglu-Kocer & Celikoglu (2011) examined a GI/M/n/0 queueing system with
random entry and heterogeneous servers, and they obtained the kernels of semi-

Markov process representing the system.

Queueing systems with no waiting lines are also frequently used in the studies on
the modeling of emergency service systems, such as fire department, the police, and
ambulances. Mendonga & Morabito (2001) analyzed the working system of the
ambulances positioned on the superhighway between Sao Paulo and Rio de Janeiro
in Brazil by means of the balance equations they built for n=6 bases and 10
different atoms, and they computed the loss probability of customers in the system.
Atkinson, Kovalenko, Kuznetsov & Mykhalevych (2006, 2008) generalized the
results obtained by Mendonga & Morabito (2001) for n bases and 2n atoms and
obtained the analytical solution of the loss probability. Nevertheless, it is very
difficult to make an exact solution as the number of equations extremely increases
with increasing number of bases. Therefore, two heuristic methods were proposed to
approximate stationary loss probability (Atkinson, Kovalenko, Kuznetsov &

Mykhalevych, 2006, 2008). Moreover, the simulation approach was proposed to
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approximate the stationary loss probability (Atkinson, Kovalenko, Kuznetsov &
Mykhalevych, 2008).

In the following section, the assumptions of the queueing model GI/M/n/0 with
heterogeneous servers are explained. The kernels of the semi-Markov process
representing the model are derived.

3.2 Analyzing the GI/M/n/0 Queueing Model with Heterogeneous Servers Using
Semi-Markov Process

‘The GI/M/n/0 queueing system with finite capacity and heterogeneous servers’ is
analyzed in this section. In this model, interarrival times are independent of each

other and have distribution function F(t) and their expected value is finite

(a:f[l—F(t)]dt<oo). There are n non-identical servers in the system. That is,

their mean service times are different from each other. The service time of each

customer in server k is a random variable represented by 7, and has an exponential
distribution with parameter g, (k=12,...,n), i.e. P(yp <t)=1-e*' , t>0. The

service time is independent of the arrival process.

The service discipline is addressed in two different ways. Firstly, the service
discipline takes place with the ‘Random Entry’ principle. That is, the customer, who
arrives in the system, starts the service in any of the empty servers with probability

1/1,1=12,...,n, where | is the number of empty servers at the arrival time of the

customer. In the second case, however, the service discipline takes place with the
‘Ordered Entry’ principle. That is, the customer who arrives in the system starts the
service in the server with the lowest index number among the empty servers with

probability 1.

If all servers are busy, the customer who arrives in the system leaves the system
without taking any service. Such customers are called ‘lost customers’. The main

problem herein is the computation of the probability of lost customers.
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Let t,,t,,t,,... be the arrival times of the customers, where 0=t; <t, <---. Let the
random variable T, represent the interarrival time between two consecutive
customers; that is T, =t ,, —t, for n>0, and T, =0. Let S(t) be the number of

customers in the system at time t and S, =S(t, —0), n>0, where S, is the number

of customers staying in the system immediately before the arrival of the nth

customer. The semi-Markov process representing the system can be defined as
{X(t),t>0}, X(t)=S, if and only if t, <t<t, . Suppose that Q(x) is a square
matrix consisting of the elements Q;(x), where Q;(x) is the kernels of the semi-

Markov process.
Qij (X) = P[(Sn+1 = J ! Tn < X)|Sn = I ] ' (35)

According to the semi-Markov process and the total probability formula, functions
(3.5) are computed individually for ‘random entry’ and ‘ordered entry’ disciplines
using equations (3.6) and (3.7) given as follows.

For Random Entry Discipline:

Considering i=0,1,...,n-1,and Q, ;(x) =Q,;(x),

1 X
_J.Z pk1 pk2 pkuq|lq|2 "'q|vdF(t) 1 (3-6)

%0 =11

where p, —e M a, =1-e ' In addition, the summation under the equation
given by (3.6) extends over all k,’s and |,’s such that 1<k, <k, <---<k, <n and
1<1, <, <---<1, <n with k, #1,, where (u,v) pair takes the values (j,i+1— j) for
0< j<i+1. Note that an empty product of probabilities denotes 1. Furthermore, as
only one customer arrives in the system within any interarrival time, Q;(x)=0 for

j>i+1.
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For Ordered Entry Discipline:

Let r,r,,...,r (i=12,...,n-1) be the index numbers of the busy servers. Let m be

the index number of the server with the lowest index number among the empty

servers at the arrival time of the nth customer. Considering i=0,1,...,n-1, and

Qn,j (X) = Qn—l,j (X) ’

1
()

Q,(x) = jzg(rl,rz,...,ri,m)dF(t). (3.7)
0

The summation under the equation given by (3.7) extends over all r’s with
1<p<r<--<r<n and  m=min{L,2,...n¥r,r,,...r}. Note that

g(r,,m) = g(m) . On the right the function g is given by

g(rl’rZ""’riim) :Z pk1 pk2 pkuq|1Q|2 "'Q|V ' (3.8)

where the summation of the right of equation (3.8) extends over all k,’s and 1,’s in
such a way that k, <k, <---<k, and I, <I, <---<I, from the set {r,r,,...,r,,m} with
k, =1,, where (u,v) pair takes the values (j,i+1-j) for 0<j<i+1 and

Py, —e a, =1—e“'. Note that an empty product of probabilities denotes 1. In

addition, as only one customer arrives in the system within any interarrival time,

Q;(x)=0 for j>i+1. The summation under the integral in formula (3.7) allows

assignment to the server with the lowest index number among the empty servers. In

this way, the ordered entry service discipline is realized.

Square matrix [q(s)]; resulting from the Laplace-Stieltjes transform of functions

Q;(x),i,j=0,1,...,n isas follows:
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I Uoo(S) Qo,(S) 0 ... 0
Oho(S) g,,(9) O,(s) - 0
@ S S (3.9)
U0 (S) qn—l,l(s) U1 (S) = Uy (S)
_qn—l,O(S) On12(S) Qpgo(S) -+ Opan (S)_ '
where
qy(s) = [ edQ, (x), Re{s}=0(i,j=01...,n). (3.10)

{S,,n>0} is an embedded Markov chain with probabilities p; of the semi-

Markov process {X (t), t >0} with the state space D =(0,,...,n). This Markov chain
is irreducible and aperiodic. In addition, when x adequately approximates infinity,

limQ,(x) = p,, and P =[p;]; is a stochastic matrix (Pyke, 1961a). On the other

hand, according to the Tauberian theorem 2.4(12) (see, Widder, 1946), it is written as
P=q(0).

Theorem 3.1 When assumed that the mean service times of servers are equal

(=, =-=u, =) and for x —+oo , formulae (3.6) and (3.7) yield formula
(3.4).
Proof. Depending on the the assumption 4 =, =---= u, = u, formulae (3.6) and

(3.7) are written as follows for i =1,2,...,n—1 and 0< j <i+1, respectively:

1 I('})ej"‘ (“’jj)(l—e’”t)i*l’de(t). (3.11)

i+1-
(irjrl) 0

Q; (x) =
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Q0= 55 [190+90) +--90IF )
170 (i")terms (312)
=[O e amery e,

In the last two equations obtained above, after some algebraic operations have been

made and when x — +o
limQ, () = p; = (i;l)j e M (L—e M) g (1) . (3.13)
0

The proof has been completed.

Corollary 3.1 Formulae (3.6) and (3.7) are the generalizations of Takacs’s formula
(3.4) for ‘the GI/M/n/0 queueing model with heterogeneous servers’ for random

entry and ordered entry disciplines, respectively.

Theorem 3.2 (see, Cinlar, 1975). Let X Markov chain with state space
D=(04,...,n) and transition matrix P. Suppose X is irreducible and aperiodic.
Then all states of the Markov chain X are recurrent non-null, and steady-state

probabilities z; are the unique nonnegative solution of following linear equations

T =iﬂ'i p;, JeD, (3.14)

i=0

S, =1. (3.15)

i=0

The queueing model GI/M/3/0 with heterogeneous servers is examined for

random entry and ordered entry disciplines in Subsection 3.2.1 and Subsection 3.2.2
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respectively. Equations (3.14) and (3.15) given in Theorem 3.2 are solved for
addressed queueing models, and also steady-state probabilities and the loss

probability are computed.
3.2.1 The Model GI/M/3/0 with Random Entry

In this subsection, the way of computing formula (3.6) is explained in detail. The
loss probability of the customer in the system is computed for n=3 by means of

Laplace-Stieltjes transforms of the kernel functions of the semi-Markov process.

Model assumptions are the same as explained in 3.2. The service discipline is
random entry and the number of servers is limited to 3. Kernel functions

(Q;(x);1,j=0,12,3) of the semi-Markov process representing the system are

easily obtained by using the formula (3.6). Kernel functions and Laplace-Stieltjes
transforms of these functions for the model G1/M/3/0 with random entry are obtained

as follows.
For Qu(X), considering (u,v)=(j,i+1—j)=(0,0+1-0)= (u,v)=(0,1) in the

formula (3.6) , it is written as Qoo(x):(Tl) jo Zq,ldF(t):% Lx(ql+q2 +q,)dF(t).

1<l <3

Herefrom, the following is obtained:
1 x
Quo(¥) =73 L [A-e™)+@-e")+(L-e")dF(). (3.16)

Thus, the Laplace-Stieltjes transform of Q,,(X) represented by q,,(S) is obtained as

follows:

Goo(5) = f(s)—%[f (5+ 1)+ F(5+ ) + (5 + 11)]. (3.17)
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For Q,,(x), considering(u,v)=(j,i+1-j)=@0+1-1) = (u,v)=(0)in the
formula (3.6), it is written as Q,,(x) = j ZpkldF() jox(pl+ p, + p.)dF (t).

Herefrom, the following is obtained:
1 x
Qu,(X) =3 jo (e +e +e " )dF(t). (3.18)

Thus, the Laplace-Stieltjes transform of Q,,(X), represented by d,,(S) is obtained as

follows:
Gor() =§[f (5+ )+ F(5+ 1)+ £ (5+ 1)), (3.19)

ForQ,,(x), considering (u,v)=(j,i+1-j)=(0,1+1-0)= (u,v)=(0,2) in the

formula (3.6), it is written as Q,,(x) = _[ Zq, q,,dF(t). More clearly, it is

(2 ) 1<l;<l,<3

1 ex
written as Q,, = §L (9,0, + 0,05 +0,0;)dF (t) . Herefrom, the following is obtained:

[I-e™)(1l-e ")+ (1-—e")(1l-e")
Qu(¥) =% J (3.20)
+(L—e ) L—e™)]dF(t).

Thus, the Laplace-Stieltjes transform of Q,,(x) represented by ¢,,(s) is obtained as

follows:

Cho(S) = f(S)—%[f(S+m)+ f(s+ 1)+ T (s+ )]
(3.21)

1
+§[f(5+ﬂ1+ﬂ2)+ f(s+ 4+ )+ F(s+ 1, + 1))
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ForQ,(X), considering (u,v)=(j,i+1-j)=@1+1-1)=(u,v)=(@L1) in the

formula (3.6), it is written as Qll(x)=(Tl)'|'oX ZpqulldF(t). More clearly, it is

2 1<k, <3
1<h<3
ky =l

. 1x
written as Q; :éj.o (PG, + PyO; + P,G; + Po0; + P30, + Py0,)dF(t) . Herefrom, the
following is obtained:
et (l-e ) e - ) e (1-e )

Q-1 @2
+ e—#zt (1_ e—ﬂst) + e—ﬂst (1_ e_/llt) + e—ust (1_ e—#zt )]dF (t)

Thus, the Laplace-Stieltjes transform of Q,,(X) represented by q,,(S) is obtained as

follows:

qn(s)=§[f(s+u1)+ (54 1)+ (54 1)
(3.23)

—f(s+m+ )+ F(S+ 1+ p15) + T(S+ 11, + 113)]-

ForQ,,(X), considering (u,v) =(j,i+1-j)=(2,1+1-2)= (u,v) =(2,0) in the

formula (3.6), it is written as le(x)zijX Zpk1 p,,dF(t). More clearly, it is

(g ) 0 1<k; <k, <3

1 ex
written  as Q12=§_L(p1p2+p1p3+p2p3)d|:(t). Herefrom, the following is

obtained:
Q,(X)= % IO " e e re e e e AR (t). (3.24)

Thus, the Laplace-Stieltjes transform of Q,,(X) represented by @,,(S) is obtained as

follows:
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1
0;,(S) :§[f (S+a4+ 11,)+ F(S+ g4+ 10) + T(S+ 1, + 143)). (3.25)

For Q,,(X), considering (u,v)=(j,i+1-j)=(0,2+1-0)= (u,v)=(0,3) in the

formula (3.6), it is written as on(x):ijoX qulq,quadF(t):qulqzqde(t).

(g) 1<l <l,<l3<3

Herefrom, the following is obtained:
Q=] (-e™)1-e™)1-e*)dF(p). (3.26)

Thus, the Laplace-Stieltjes transform of Q,,(x) represented by q,,(S) is obtained as

follows:

Ooo(8) = T(8) = F(S+14) = F(S+ ) — T (S+p15) + T(S+ 14+ )
(3.27)

+F S+ + )+ TS+, + ) = F(S+ 14 + g1, + 115).

For Q,,(X), considering (u,v)=(j,i+1-j)=@2+1-1)=(u,v)=(L,2) in the

formula (3.6), it is written as Qzl(x):ijX Z P, 0,0, dF (t) . More clearly, it is

3
()™ S
1<l <1,<3
k, #=l,

written as Q21=.|'0X(p1q2q3+ P,0,9; + P,0,9,)dF (t). Herefrom, the following is

obtained:

Q,,(X) = j r B (3.28)
T emaie ) loe) re M l—e Ao AR M),

Thus, the Laplace-Stieltjes transform of Q,,(X) represented by d,,(S) is obtained as

follows:
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Opr(S) = F(S+ )+ T (S+p5,) + T(S+ 1) = 2[ F (S + g4 + 11,)
(3.29)

+ F(S+ 14+ p15) + F(5+ gty + 1)1+ 3F (S + 1y + 41, + p15).

ForQ,,(X), considering (u,v)=(j,i+1-j)=(2,2+1-2)=(u,v)=(2,1) in the

formula (3.6), it is written as Q,,(x) =ér z Py, Py, G, dF (1) . More clearly, it is
(3) 0 1<k, <k, <3
e

written as Q22=J:(plp2q3+plp2q2+p2p3ql)dF(t). Herefrom, the following is

obtained:

) [e—/hte—/lzt (1_ e’/’?ﬁ) + e—ulte*ﬂst (1_ e—#zt)
Q)= (3.30)
+e e (1—eO]dF(t).

Thus, the Laplace-Stieltjes transform of Q,,(X) represented by @,,(S) is obtained as

follows:

Upo(S) = F(S+ 4+ 15) + F(S+ 14 + 145)
(3.31)

+ F(S+ 1, + 1) +3F (S + 1+ 1, + 113).

For Q,,(X), considering (u,v)=(j,i+1-j)=(3,2+1-3)=(u,v)=(3,0) in the

formula (36), it is written as Qu() = [ 3P, P PAF® = [ p,p.paF (D) .

(g) 0 1<k, <k, <k3<3

Herefrom, the following is obtained:
Q,s(X) = jo " e g R (1), (3.32)

Thus, the Laplace-Stieltjes transform of Q,,(X) represented by q,,(S) is obtained as

follows:
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Up3(S) = F(S+ 14+ 1, + 115). (3.33)

Since only one customer arrives in the system in any interarrival time, considering
Q;(x)=0 for j>i+1, Qu,(X)=0,Qy(x)=0, and Q;(x)=0 are obtained.
Additionally, as required by the formula (3.6), kernel functions of Q,;(x) are equal
to Q,;(x), namely, Q,;(x)=Q,;(x) can be written. Thus, for j=0,12,3, the
Laplace-Stieltjes transforms of kernel functions of the semi-Markov process Q, ;(x)

are as follows:

One-step transition probabilities for the queueing model GI1/M/3/0 with random
entry are computed by means of kernel functions of the semi-Markov process
formulated above or Laplace-Stieltjes transforms of kernel functions. According to

Theorem 2.4 (Tauberian theorem); considering Iiinj(x)=Iirrgqij(s), one-step
transition probabilities pij=lingqij(s) (i,j=0,1,2,3) for the related model are

obtained as follows:

Poo =1—%[f (10) + T (1) + T (183)], (3.35)

1

Poy = LT (aa) + 1 (aty) + T (as,)], (3.36)

Pro =120 (1) + £ (1) + ()]
(3.37)

+%[f(,ul+,u2)+ F O+ ) + £ (1 + 183)],
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Pua= 201 () + 1)+ (1)

(3.38)

— P+ ) — (g + 115) = T (1, + 185)],

1
p12:§[f(ﬂ1+,uz)+ f(lu1+1u3)+ f(,uz"',us)]’ (3.39)
Poo =1—F () — (1) — F(ps) + (1t + 11)

(3.40)

+ F (e + 1) + 1 (y + 1) = F (g + 11, + 113),
Py = () + F (1) + F (i) — 2L F (g + 1) + (1 + 115) (3.41)

+ F (g, + 1)1+ 3F (1t + 11, + 115), .

Py = F ey + 1) + F (e + 115) + £ (e + 13) = 3F (1 + 1, + 1), (3.42)
Pos = f (14 + 16 + 113), (3.43)
Po2 =0, Pos =0, P =0, (3.44)
Psj = Py j=0123. (3.45)

Using the facts given by Theorem 3.2, by means of one-step transition

probabilities  explained above (p;,0<i, j<3), steady-state probabilities
7; (j=0.2,3) for the queueing model GI/M/3/0 with random entry are obtained as

follows as the solution of linear equation system given by (3.14):

2. 2 1
A= f+ 3 1) F, +30) = f(f, 21, +31,)

Ty =

— : > (3.46)
A=+ 20  fi+ £+ LA-Cfi+f,— F)
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1

5f1(1— f,+2f,)
7, = 1 1 1 5 , (3.47)
(1- f2+2f3)(1—§fl+§f2)+§f2(1—§f1+ f,—f,)
o f f,(1—f)/9 (3.48)
2 1 1 1 2 ’ '
1- fz+2f3)(1—§fl+§f2)+§f2(1—§fl+ f,—f,)
.- f f,f,/9 (3.49)

1 1 1 2 ’
@a-f, +2f3)(1—§ f1+§ f2)+§ f2(1—5 f,+f,—1;)

where f, = f(u)+ () + F(ws), T, = (s +10)+ T (e + 15) + T (1, + 113), and

fo =T+ 1, + 113).

Probabilities 7,7, 7, and 7, denote the probability of being idle, the probability
that only one server is busy in the system, the probability that two servers are busy in
the system, and the probability that all servers are busy, respectively. As no waiting
line is available in the system, the probability that all servers are busy is equivalent to
the probability of loss of customers in the system. That is, formula (3.49) is equal to
the loss probability.

Under the condition g4 = 1, = 3 = i, the formula of loss probability given by
(3.49) satisfies Palm’s loss formula (3.2) for n=3.

It must be noted that the formula (3.49) is obtained by Isguder & Uzunoglu-Kocer
(2010).
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3.2.2 The Model GI/M/3/0 with Ordered Entry

In this subsection, the computation procedure of the formula (3.7) is explained in
detail. The loss probability of the customer in the system is computed for n=3 by
means of Laplace-Stieltjes transforms of kernel functions of the semi-Markov

process.

Model assumptions are as explained in Section 3.2. The service discipline is an
ordered entry and the number of servers is limited to 3. Kernel functions

(Q;(x):1,j=0,12,3) of the semi-Markov process representing the system are

easily obtained by using the formula (3.7) together with (3.8). Kernel functions and
their Laplace-Stieltjes transforms for the model GI/M/3/0 with ordered entry are
obtained as follows.

Quo(X) is written as Qoo(x):(Tl).[:g(ro,m)dF(t)=Lxg(m)dF(t) by using the

formula (3.7). By using the equation (3.8), it is obvious that g(m) =q,. Considering
(u,v)=(j,i+1-j)=(0,0+1-0) = (u,v) =(0,1) , the following is obtained:

Qoo(¥) = [ qdF (1) = [ (L—e)dF (0). (350)

Herefrom, the Laplace-Stieltjes transform of Q,,(x) represented by Qy,(S) is

obtained as follows:

Goo(8) = f(8) = (s +44). (3.51)

Q,1(X)is written as Qoo(x)z(Tl)joxg(ro,m)dF(t)=joxg(m)dF(t) by using the

formula (3.7). By using the equation (3.8), it is obvious that g(m) = p,. Considering
u,v)=10+1-1) = (u,v) =(4,0), the following is obtained:
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Qu(¥) = [ pdF(t) = [ e dF(t). (352)
Herefrom, the Laplace-Stieltjes transform q,,(s) of Q,,(x) is obtained as follows:

Qos(S) = f(s+14). (3.53)

1

)

formula (3.7). By using the equation (3.8), it is obvious that
Y. 9(nm=9@102)+9(2)+9(31).

1<, <3
m=min{l,2,3}
m=r;

Q,o(x)is written as Q,,(X) = ng(rl,m)dF(t):%Lxg(rl,m)dF(t) by using the

0

Considering (u,v) =(0,1+1—-0) = (u,v) =(0,2) , it can be written as follows:

1 X 1 X
Qu() =3 [, (40, + 0 +6s%)AF () = [ (20,0, + Q)R (). Herefrom,  the

following is obtained:
Qu() = % [20-e)a-e ) + - ") a-e)dF (). (3.54)

Herefrom, the Laplace-Stieltjes transform ¢,,(S) of Q,,(X)’in LS is obtained as

follows:

qm@%=ﬂ$—f®+ﬂ0—§f@+ﬂﬁ
(3.55)

1 2 1
_gf(s+ﬂ3)+§f(s+ﬂ1+ﬂ2)+§f(s+ﬂ1+ﬂ3)-
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Q,;(X)is written as Q,,(X) =(Tl)joxg(rl,m)dF(t) =%.[Oxg(rl,m)dF(t) by using the
1
formula (3.7). By using the equation (3.8), it is obvious that

> g(m)=9g@2)+g(2D+g@BI).

1<, <3
m=min{l,2,3}
m=r;

Considering uv)=1L1+1-1) = (u,v) =11, it is computed as

g2 = Z PG, = PG, + P, - 9(2,1) and g(3,1) are computed similarly. Thus,

kel ef1,2}
ky#ly

it can be written as Q,;(X) :%J: (2p,0, +2p,0, + p,0; + P;0,)dF (t) . Herefrom, the

following is obtained:

Lo [Ze_’ult (1_ e—yzt) + Ze—#zt (1_e—/11t)
Qll(x) = gJ.O (3-56)
+ e*ﬂlt (1_ e—yat) + e*ﬂst (1_ e*#ﬁ )]dF (t)

Herefrom, the Laplace-Stieltjes transform @;,(S) of Q,;(X)’in LS is obtained as

follows:

2 1
0y,(8) = f(3+ﬂ1)+§f(3+ﬂ2)+§f(s+ﬂ3)

(3.57)
2
S ) (5 g ).
Q,,(X) is written as  Q,,(x) :%Lxg(rl,m)dF(t) :%Lxg(rl,m)dF(t) by using the

formula (3.7). By using the equation (3.8), it is obvious that
> 9g(m=9g@2)+9(2D+9@BI).

1<, <3
m=min{l,2,3}
ma=r;
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Considering (u,v)=(2,1+1-2) = (u,v) =(2,0), it is computed as

9L2)= D.p, P, 1=PP, . g(2,1) and g(3,1) are computed similarly. Herefrom,

Ky <kpelL, 2}
1 ex
it can be written as Q12(X)=§'|-0 (2p,p, + p,ps)dF (t). Herefrom, the following is

obtained:
QLX) = % L " (2e e e e AR (L) (3.58)

Herefrom, the Laplace-Stieltjes transform 0,,(S) of Q,,(X) is obtained as follows:

2 1
Gua(8) =5 TS+ a0+ 1)+ 2 T(s+ 14+ 445). (3.59)
Q,o(X) is written as Q,,(X) = %J'Ox g(r,r,,mydF(t) = %LX g(r,r,,m)dF(t) by using
2
the formula (3.7). By using the equation (3.8),
Z g(r,r,,m=9123)+9(1,3,2)+9(2,31) is  found.  Considering
mmindl 2.3

(u,v)=(0,2+1-0)= (u,v) =(0,3), it is computed as

0(,2,3) = Zl-q|1q|2q|3 =0,0,0; . 9(1,3,2) and g(2,3,1) are computed similarly.

l<lp<lye{1,2,3}

1 ex
Thus, Q,y(X) =§I0 30,0,09,dF (t) can be written. Herefrom, the following is obtained:

Qo) =] @-e*)a-e*)L-e")dF (D). (3.60)

Herefrom, the Laplace-Stieltjes transform 0,,(S) of Q,,(X) is obtained as follows:
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Go(S) = T(8) = F(S+p4) = F(S+45) = T(S+ 1) + T (S + 14+ 115)

(3.61)
+ F(S+ g+ p15) + F(s+ pt, + ) — F(S+ py + 11, + 115).

1 ¢x
Q,;(X) is written as Q,;(X) :§J‘O g(r,r,,m)dF(t) by using the formula (3.7). By

using the equation (3.8), > g(n.r,m=9(,23)+9(,3,2)+9(2,31) is

1<r <r,<3
m=min{1,2,3}
m#r;

found. Considering (u,v)=(12+1-1)=(u,v)=(L2) , it is computed as

9(1,2,3)= Z Py, 0,0, =Pi9,0; + P.0iGs + P26, - 9(1,3,2) and g(2,31) are
Ky {1,2,3}
I, <l, {1 2,3}

ky =1y

computed  similarly. Thus, QZl(X)zé IOXB(p1q2q3+ P,0,0; + P30, 0,)dF (t) can be

written. Herefrom, the following is obtained:

) [e_,ult (1_ e—uzt )(1_ e*#st) + e—ﬂzt (1_ e—#lt )(1_ e*ﬂat)
Q)= (3.62)
° +e 7t (1—e M) (L—e )[R (b).

Herefrom, the Laplace-Stieltjes transform 0,,(S) of Q,,(X) is obtained as follows:

Upy(S) = F(s+ )+ F(s+ )+ F(s+p5) = 2L F(S+ gy + 1)
(3.63)

+ P (S+p +p5) + F(S+ 1, + 1)1 +3F (S + 41 + 11, + p13).

1 ¢x
Q,,(X) is written as Q,,(X) :éjog(rl,rz,m)dF(t) by using the formula (3.7). By

using the equation (3.8), > g(n.r,m=9(23)+9(,3,2)+9(2,31) is
1<r <r,<3
m=min{1,2,3}

found. Considering (u,v)=(2,2+1-2)=(u,v)=(2,1), it is computed as

g(L2.3) = D PPy, G =PiP,0s+ PPyt + PoPsth . 9(1,3,2) and g(2,31) are
k, <k, €{1,2,3}
l,e{1,2,3}
ky #ly
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1 0x
computed similarly. Thus, sz(x):éj'03(p1p2q3+ P.Psth + P, P )dF (t) can be

written. Herefrom, the following is obtained:

) [e*ﬂﬂe*ﬂzt (1_ e—ust) + eﬂtlte—#st (1_ efuzt)
Q. (0= (3.64)
+e et (1—e ) dF ().

Herefrom, the Laplace-Stieltjes transform @,,(S) of Q,,(X) is obtained as follows:

Up(8) = F(S+ gy + p1,) + F(S+ gy + p3) + (S + g, + pa5)
(3.65)

—3f(s+pu + 11, + 113).

1 ex
It is written asQ23(x)=§L g(r,r,,mdF(t) . By using the equation (3.8),

Z g(r,r,,m=9l@2,3)+9(1,3,2)+9(2,31) is  found.  Considering

1< <r, <3
m=min{1,2,3}
M#T;

u,v)=(3,2+1-3)=(u,v)=(3,0), it is computed as

94, 2,3) = Zpklpkz P, -1=p,P,P;. 9(1,3,2) and g(2,31)are computed

k; <k, <k; {1, 2,3}
1 ¢ex
similarly. Thus, Q,5(X) =§IO 3p, P, P,dF(t) can be written. Herefrom, the following

is obtained:
Q,5(X) = LX e lg e R () | (3.66)
Herefrom, the Laplace-Stieltjes transform q,,(S) of Q,;(X) is obtained as follows:

Up5(S) = F(S+ 4 + 14, + 185). (3.67)
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Since only one customer arriving in the system within any interarrival time,
considering Q;(x)=0 for j>i+1, Qu(X)=0, Qu(x)=0 and Q,(x)=0 are
obtained. Additionally, as required by the formula (3.7), kernel functions of Q;;(x)
are equal to Q,;(x), namely Q,;(x)=Q,;(x) can be written. Thus, the Laplace-
Stieljes transform of kernel functions of the semi-Markov process of Q,;(x) for

j=0,1,2,3 are as follows:
0s;(s) =0,;(s), 1=0,123. (3.68)

One-step transition probabilities for the queueing model GI1/M/3/0 with ordered
entry are computed by means of kernel functions of the semi-Markov process
formulated above or Laplace-Stieltjes transforms of kernel functions. According to
Theorem 2.4’e¢ (Tauberian theorem); considering Ixi_rEQii (X)zlsi_r)rg q; (s), one-step

transition probabilities p; =Iing d;(s) (i, j=0,1,2,3) for the corresponding model

are obtained as follows:

Poo =1— f(1a), (3.69)
Po. = T(a), (3.70)
2 1 2 1
p=1-f (ﬂl)_g f(ﬂz)_g f (ﬂs)"‘g f (e +:u2)+§ f (e + 115), (3.71)
2 1 4 2
P = f(M)+§ f(ﬂ2)+§ f(us)—§ f(/vﬁ+ﬂz)—§ f(es + 145), (3.72)

2 1
p12=§f(u1+uz)+§f(;a+u3), (3.73)



56

Poo =1 F(g) — F () = T (ue) + T (1t + 1)

(3.74)

+ (e + ) + (i + ) = T (i + 11, + 15),

Py = () + F () + T () = 2L F (g + 1) + (g + 115)
(3.75)

+ f(/"z +/u3)]+3f(ﬂ1+/uz +,u3)a

Poo = Tt +16) + T (e + 1) + T (1t + 1) =31 (1 + 1, + 115), (3.76)
Pys = (a4 + 11, + 113), (3.77)
Po2 = 0, Pos = 0, Pz = 0, (3-78)
p3j = p2j 1 J =0!1!213- (379)

Using the facts given by Theorem 3.2, by means of one-step transition
probabilities  (p;, 0<i, j<3)computed above, steady-state  probabilities
7; (1=0.2.3) for the queueing model GI/M/3/0 with ordered entry are obtained as

follows as the solution of linear equation system given by (3.14):

33 (pty + p15) + f (et + 1y + 115)[6+2F (p1y + 11,) + £ (14 + 15)]
—[3F () + 21 (11,) + T (u) I+ 2F (pey + iy + p15) = T (14, + 145)]

— F Qg + ) 1=2F () = T ()] + F (et + ) [1+ F (1) — T (115)] (3.80)
fQp+ gy + 1)[2F (g + 1) + £ (1 + 125)] ’

= P+ 1)1 = T ()14 f (p + 11)[1= T (113)]

+[3=2F (1) — £ ()] — (1t + 15) +2F (py + g1, + 15)]

Ty =
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_ Sf () L= F (g +40) = T (ot +pa5) = T (o + 1,) + 2F (04 + 11 + 145)] ’ (3.81)
FQ+ pty + 1) [2F (e + 1) + £ (1 + 185)]

= F Qg + )L ()]+ f (e + 16,)[1— T (15)]

+[3-2F (1) — ()L F 1ty + 113) + 2F (4 + 1, + 143)]

1

_ Q)2 Qo+ ) + (o + I~ F Qo+ 1 +15)] (3.82)
Ly )2 () + F ()]

= f (e + 1)L F ()] + F (e + 1) 1= F (145)]

+[3-2F (1) — ()L f (ty + 115) + 2F (14, + g1, + 115)]

p— f(/ul) f (;Ul"';uz +:U3)[2f (M"'ﬂz)"‘ f(ﬂl"’ﬂs)] _ (3.83)
T f ()2 (py + py) + F (py + 105)]

= F (g + 1)L ()] + £ (e + 1) L= £ (15)]

+[3—2F (1) — F (u) 1L~ (1 + p15) + 21 (i + 14, + 115)]

Probabilities 7,7, 7, and 7, denote the probability of being idle, the probability

that only one server is busy in the system, the probability that two servers are busy in
the system, and the probability that all servers are busy, respectively. As no waiting
line is available in the system, the probability that all servers are busy is equivalent to
the probability of loss of customers in the system. That is, formula (3.83) is equal to

the loss probability.

Under the condition g4 =, = 1, = 1, the formula of loss probability given by

(3.83) satisfies Palm’s loss formula (3.2) for n=3.

It must be noted that the formula (3.83) is obtained by Isguder & Celikoglu
(2010).

The most important problem is the minimization of the loss probability of
customer in the queueing system addressed in this study and similar queueing

systems. Alpaslan (1996), Saglam & Shahbazov (2007) minimized the loss
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probability of the customer in the system for ‘the queueing model GI/M/2/0 with
heterogeneous servers’. Isguder & Uzunoglu-Kocer (2010) minimized the loss
probability for ‘the queueing model GI/M/3/0 with random entry’ according to
arrival flow. Isguder & Celikoglu (2012) minimized the loss probability for ‘the

queueing model GI/M/3/0 with ordered entry’ according to the arrival flow. In the
mentioned studies, it was proven by using the inequality f(s)>e* obtained from

Jensen equation that the loss probability is minimum when interarrival time
distribution is selected as deterministic among the distributions which has the same

mean.

In the following subsequent section, the theorem given by Isguder & Celikoglu
(2012) related to the minimization of the loss probability for ‘the queueing model

GI1/M/3/0 with ordered entry’ is explained in detail.
3.2.3 Optimization of Loss Probability According to Arrival Process

Let H, be a class of distribution functions F of the interarrival times, the mean of
which is constant a. Let B, (F) be the loss probability for the GI/M/3/0 queueing
system with heterogeneous servers and ordered entry, and F € H, . Assume that D(t)
is the deterministic distribution, in which D(t)=1 for t <a and D(t)=0 for t >a.

S

It is clearly seen here that DeH, and e ™® are the Laplace-Stieljes transforms of

D(t).

Theorem 3.3 (Isguder & Celikoglu, 2012). When the distribution of interarrival

times fits the deterministic distribution (D€ H,) among all distribution functions
included in class H,, loss probability P.(F) becomes minimum, that is,

Erl!_'r: P|OSS(F) = P|OSS(D) *

Proof. To minimize the loss probability, let formula (3.83) be arranged in the

following way:
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fif5(2F, + fis)
(— ) (=2F, — fi0) + (= fi)A— f,) — (- f,) A 1)
+(B-2f, - f)A— f,,) (B2, — £,)(-2f,,)

Poss(F) = (3.84)

where flzf(:ui), fzzf(ﬂz)a fy= (), f12:f(1u'1+:uz)a fa=1(w+u),

foo= T+ 1) and 5= (4 + 1, + 185).

The numerator of formula (3.84), f, f,(2f,,+ f,;), is written as follows by means of

inequality f(S)>e ™ obtained from the Jensen’s inequality (See, Shahbazov, 2005):

fifa(2f,+fy) =1 (/11) f (,U]_ T Hy + ,U3)[2 f (,Ul + ,Uz) + f (ﬂl + ﬂ3)]
3.85
> e—aule*a(/lﬁ#zws) (Ze—a(ﬂﬁﬂz) + e*a(#ﬁﬂs))_ ( )

The following inequality is obtained by applying inequality f(s)>e *to the
Laplace-Stieljes transforms included in the denominator of formula (3.84),

respectively:

(_ f123)(_2 f12 o flS) + (_ f13)(1_ fz)
—(=f,)A- ) +(3-2f, - ;)1 ;)
—(3=21f, — £,)(=2,,) < @ 2arsr) (Qpalutin) 4 g-aliarus)) (3.86)
_ e*a(//1+ll3) (1 —_p ¥ ) + e—a(#1+#2) (1 _ e*aﬂ3)

+ (3 _Dp M _ g7 )(l— e—a(#1+#z) + 2e—a(#1+#z+#3))

where

—f, =—f () <-e%, (3.87)

—f,=—f () <—e ¥, (3.88)

— o= (i + 1) < €70 (3.89)
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—fo= f(uq+ 1) <-4, (3.90)
— fpy = (1, + ) < —€72027%), (3.91)
= F( + y + py) < —e 2atHeti) (3.92)

If inequalities (3.85) and (3.86) are inserted into their appropriate places in the
numerator and denominator of formula (3.84) respectively, the following inequality

is obtained:

e—aﬂ1e*a(ﬂl+ﬂz+ﬂs) (ze—a(ﬂlwz) + e*a(ﬂﬁﬂs))

PFoss (F) 2 . (3.93)

—a(w+up+its) (Ze*a(ﬂﬁﬂz) + e*a(#ﬁﬂs))

_ e—a(ﬂlwa) (1_ @ 8 ) + e—a(ﬂ1+ﬂz) (1_ e—aﬂ3)

+ (3 —2p 2 _ a7 )(1_ e*a(!ﬁﬂlz) + Ze—a(ﬂ1+#2+#3))

—as

As the Laplace-Stieljes transform of D(t) is €™, the right side of the last inequality

obtained above has the value of B,(D). Based on this, it is obtained that

(F)=PR,(D). The proof has been completed.

I';ELr: F)|OSS
Corollary 3.2 The loss probability becomes minimum with probability 1 when a
deterministic distribution is selected among the interarrival distributions with the

same mean for ‘the queueing model GI/M/3/0 with ordered entry’.

It is not possible to minimize the loss probability with the method addressed
above as the number of servers is increased. The results obtained by Theorem 3.3
will be supported with simulation study and it will be proven by simulation
optimization in Chapter Four that, according the arrival input, the optimal condition

is reached again by deterministic distribution when the number of servers increases.
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In the subsequent section, the Laplace-Stieljes transform of the distribution of the
stream of overflows is obtained by analyzing the stream of overflows. Also, the loss
probability is formulated directly depending on determinant without a need for the

solution of the equation system taking place in Theorem 3.2 and given by (3.14).

3.3 Analyzing the Stream of Overflows from GI1/M/n/0 with Heterogeneous

Servers

Let the instants of overflows be <7,,7,7,,..., where O=7,<7 <--- and
W, =7, —7,, for k>1. Sequence {r,,k=>1} is called ‘stream of overflows’.

Interoverflow times w, and W,, k >2, are independent and nonnegative random

variables and equal to the first passage time from 0 to n and the recurrence time to n

in the semi-Markov process {X(t),t=>0}, respectively. Therefore, sequence
{W_, n>1} denotes the interarrival times of the delayed renewal process. For ease,
they are written as T,, =W, and T,,=W,, k>2, where T,, and T, are the first
passage time from 0 to n and the recurrence time to n, respectively. ¢,,(S) and ¢,,

are the Laplace-Stieltjes transforms of T, and T, respectively. Cinlar & Disney

nn?
(1967) analyzed the stream of overflows for a finite queueing model with a recurrent
arrival process and a single exponential server and obtained the Laplace-Stieltjes
transforms of the interoverflow times that were independent and had an identical

distribution.

Pyke (1961b) proved that the inverse of matrix I —q(s) =[5; —q;(s)] was present

under Re{s}>0 and obtained the results given by (3.94) and (3.95) for the Laplace-

Stieljes transform of the distribution of the first passage times and the Laplace-

Stieljes transform of the distribution of recurrence times:

qDOn (S) = rOn (S) / rnn(s) ' (394)

1=0,0(8) =171, (5), (3.95)
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where r,, and r, are the (n,0)th and (n,n)th entries of matrix [l —q(s)]™,
respectively. Note that &; is the well-known Kronecker delta. Using the formula of

the inverse of the matrix, we obtain the equations for Laplace-Stieljes transform of
the first passage time distribution and Laplace-Stieljes transform of the recurrence
time distribution as given in (3.96) and (3.97), respectively:

Pon (S) = DOn (S)/ Dnn(s) ! (396)
l_wnn(s) = |1—q(S)|/ Dnn(s) ) (397)

where D,, and D,, are the cofactors of the (n,0)th and (n,n)th entries of matrix
I —q(s), respectively. On the other hand, the mean recurrence time to n is found as

follows by means of (3.97):

E[T]=D(mg,m,,...m,)/ D,,(0), (3.98)

where, for i=12,...n, m; is the expected value of the sojourn time in state i and
D(m,,m,,...,m,) is the determinant of matrix [I —q(0)], the Oth column of which is
vector (m,,m,,...,m,)". On the other hand, if the semi-Markov process is irreducible

and if T, has a non-lattice distribution with a finite mean, then P, exists and is

independent of the initial state (see, Ross, 1996). Furthermore,
B =m /E[T;]. (3.99)
Note that P, is equal to the long-run proportion of time where the process is in state i.

Using matrix (3.9) and the determinant properties of the matrix, we can write

|I —q(s)|and determinants D,, and D,, as follows, respectively:
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1-f -0y 0 0
1-f 1-q9,, -—-Q, - 0
1—q(s)|=| : : P : (3.100)
1-f =0y —Oia2 0 —Ooan
1-f “Onhar —Oha2 o 1_qn—1,n )
DOn (S) = (_l)n ' (_q01) (_Q12) (_qzs) a '(_qn—l,n) ) (3-101)
1= 0 0 0
—Op 1-0Gy -Gy - 0
D(8)=| : : K : (3.102)
“Oh2o “Oh21 —Oh22 " Uiz
“Ohao —Ohar —Oha2 o 1- S

where f = f(s) and q; =q;(s) , 0<i, j<n . Elements of the above determinants

are obtained by applying the Laplace-Stieljes transform to formulae (3.6) and (3.7)

for random entry and ordered entry disciplines, respectively.

Definition 3.1 Provided that (3.101), (3.102) and (3.100), (3.102) are inserted into
their appropriate places in formulae (3.96) and (3.97), respectively, the obtained
formulae are defined as the Laplace-Stieljes transform of the distribution of the
stream of overflows from ‘the GI/M/n/0 queueing model with heterogeneous

servers’.

Example 3.1 Consider the GI/M/2/0 queueing model with heterogeneous servers.
The assumptions of the system are as explained in Section 3.2. Using Definition 3.1,
formulae (3.6) and (3.7), after some algebraic operations have been made, the
Laplace-Stieljes transform of the distribution of the stream of overflows in the
queueing model concerned is obtained as follows for random entry and ordered entry

disciplines, respectively.
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For Random Entry Discipline:

o (5) - Lf (5+46) + T (54 )1 (5 4+ 1) G109
L= T (&I F(5+ )~ F(s+ 4]
(5 o+ ) (5 +2)+ 15+ )]
(s O F (s aa) = (s +) + 205+ +a5)] g 100

[1- 2 F(s+) - f(s+ )]

+ F(s+ .+ )T (s+ 1)+ T(s+ 11,)]

For Ordered Entry Discipline:

Do, (S) = f(s+m)f(s+u+u,) ’ (3.105)
- FO)IL— f(s+ ) +2F(s+ 14 + 11,)]
+ f(s+u4) F(S+ 4+ 115)
RNV (B0 (=5 { LS ICEITED"S) I

[1- fOIL— f(s+u) +2f(s+ 1y + p15)]

+F(s+m) s+ + 1)

where f(s) = J:Oe‘“dF(t), f(s+ )= Jje‘“e”’ltdF(t), f(s+ 1) = Lwe‘“e”‘ztdF(t),

and f(S+ g +p1,) = jo “e et g (L)

3.4 Steady-State Probabilities and Loss Probability from GI/M/n/0 with

Heterogeneous Servers

Using (3.98), the fact that my =m, =---=m,_ =a, the following is obtained:

A
E[T”]—m, i=01...n, (3.107)
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where a:J.:[l—F(t)]dt, D, (0) are the cofactors of the (i,i)th entries of matrix

[1 —qg(0)] and
- Pos 0 0
a 1-p, -p, - 0
A=|: : : . : (3.108)
a —Prar —Paaz 0 7 Poan
a —Phrig —Pna2 1- Prin| »
1 —py 0 0
1 1-p, -Pp, - 0
A=a-|: : : g © |=a-D@1,...0). (3.109)
1 —Pras = Poaz = —Poan
1 =Pras = Praz 0 1= Poan

Depending on this and formula (3.99), the steady-state probabilities of the system are

obtained as follows:

T = a Dii(o)
' E[T,] D@AL...D’

i=0,1...n. (3.110)

For the GI/M/n/0 queuing model with heterogeneous servers, the probability that all

servers are busy (7,,) is obtained using formula (3.110) as follows:

Dnn (0)

7, =m , (3111)

where D, (0) is easily obtained by writing O instead of s in determinant (3.102).
Using the determinant properties of the matrix, it can also be written as

D,y (0) = (=1)" (= Por)(=P12)(=P23) (= Pytn) - Since no waiting line is available in
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the system, the loss probability of a customer, is equal to the probability that all
servers are busy. In this way, the loss probability of the GI/M/n/0 queuing model

with heterogeneous servers is obtained as follows:

T, = -D)"(- Por) (= Pi2) (= Pas) -+ (= pnfl'”) . (3.112)
D@L....D

Corollary 3.3 Provided that transition probabilities p; (i, j=12,...,n) in the last

equation obtained above are computed by means of formula (3.6) or (3.7), under the
reality of Theorem 3.1, formula (3.112) is an extension of Palm’s loss formula (3.2)

for ‘the GI/M/n/0 queueing model with heterogeneous servers’.

Example 3.2 Let us reconsider Example 3.1. After some algebraic operations using
equations (3.6) and (3.7) and formula (3.112), the loss probabilities of customers for
the GI/M/2/0 queueing model with heterogeneous servers are provided through the
following equations (3.113) and (3.114) for random entry and ordered entry

disciplines, respectively:

_ [FG) + )l (s + 14) 12 ’ (3.113)
L[ () + T ()l 2+ F (e + )

-t t(u+m) (3.114)
1- () + f (i + 1)

2

where, for k=12, f (1) =lim _Lwe‘s‘e’”k‘dF(t) and
f(y,l+,u2)=Iirrgj.:e‘“e‘(”l*”z)tdF(t). Loss probabilities (3.113) and (3.114)

obtained above yield Palm’s loss formula (3.2) with n=2 when 1, =1,

Let’s compute loss probabilities computed for both random entry and ordered

entry disciplines in Subsection 3.2.1 and Subsection 3.2.2 for the queueing model
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GI/M/3/0 by means of the extension of Palm’s loss formula (3.112) obtained by
analyzing the stream of overflows. The formula (3.112) is written as follows for n=3:

3
Ty = (=1 (=Po) (= P12)(=Py3) ’ (3.115)
D(1,111)
where,
1 =py O 0
1 1- - 0
D(1,111) = P = Prz (3.116)

— P2 1- P — P2
1 - p21 - pzz 1- p23 :

If the determinant D(1,1,1,2) is calculated, the following is obtained:

D@L11L1) = pyol— Pop = P2s) + Pos(1— P2o = Pas + Prz) + ProPao- (3.117)

If the equation (3.118) is written in its place in the equation (3.115), the loss
probability for the queueing model GI/M/3/0 is obtained as follows:

— (_1)3(_ p01)(_ p12)(_ pzs) ) (3.118)
Pro(@— Poz = Paz) + Posd— Pay — Pas + Ppo) + PiaPa

7Ty

For the queueing model GI/M/3/0 with heterogeneous servers and random entry
the loss probability given by (3.49) is obtained by writing the one-step transition
probabilities given by (3.36), (3.37), (3.39), (3.40), (3.42), and (3.43) in its place in
(3.118). Similarly, for the queueing model GI/M/3/0 with heterogeneous servers and
ordered entry, the loss probability given by (3.83) is obtained by writing one-step
transition probabilities given by (3.70), (3.71), (3.73), (3.74), (3.76), and (3.77) in its
place in (3.118).
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The loss probability of the customer in the system is more easily computed by
using the extension of Palm’s loss formula (3.112) obtained by means of the stream
of overflows without solving the linear equation system (3.14). Because, computing
the determinant given by (3.109) is a more practical and rapid method rather than
solving the linear equation system (3.14). Therefore, the extension of Palm’s loss
formula (3.112) proposed in this thesis is an effective and important formula in terms
of the direct calculation of the loss probability of the customer in the system without

need for calculating the steady-state probabilities in the system.

‘The queueing model GI/M/n/0 with ordered entry’ was analyzed by means of
finite difference equations in the literature and the loss probability was obtained as a
function of an extension of Palm’s recurrence formula (Yao 1986, 1987). In the
subsequent section, Palm’s recurrence formula and an extension of Palm’s recurrence
formula are examined in detail. Details of the studies that take place in the literature
related to ‘the queueing model GI/M/n/0 with ordered entry’ are explained and it is
revealed that the results obtained about the Laplace-Stieljes transform of the
distribution of the stream of overflows and the loss probability in this thesis are more

superior than those of other studies.

3.5 Palm’s Recurrence Formula

In this Section®, Palm’s recurrence formula and an extension of Palm’s recurrence
formula are investigated. The relationship of these formulas with the loss probability
-- theorems related to the optimization of the loss probability according to the service
discipline -- and the results of these theorems are explained in detail. The
contradiction between the loss probability obtained by Yao (1986, 1987) as a
function of the extension of Palm’s recurrence formula advanced in the literature and
again his main theorem (Yao, 1987) is revealed by a numerical example. Also, it is
showed that the results obtained in this thesis are not controversial with the main

theorem of Yao (1987) by means of a numerical example.

1|t must be noted that the studies explained in the Section 3.5 of this chapter have been presented by
Isguder (2012) at 8th World Congress in Probability and Statistics organized by the Bernoulli Society
and the Institute of Mathematical Statistics.
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Palm (1943) proved that the distribution function of interoverflow times G, (t)

satisfy the following integral equations system:
t
G (1) =G, () - [L-e™)[1-G, (t—y)ldG,,(y), k=12..., (3.119)
0

where G, (t) = F(t). Taking the Laplace-Stieljes transform of (3.119), Takacs (1958,

1959) obtained the Palm’s recurrence formula as follows:

f(s)= fs(5+4) L k=12..., (3.120)
1-fiu(8)+ fiu(s+4)

where f,(s) = f(s) is the Laplace-Stieljes transform of interarrival time distribution
F(t) . Herefrom, the loss probability for the queueing model GI/M/n/0 with identical

servers is obtained as a function of Palm’s recurrence formula as follows:

Pn = F () T () 11 (). (3.121)
The formula (3.121) is equivalent to the formula (3.2).

Since the servers are identical in the queueing model GI/M/n/0 examined by
Takacs (1958, 1959), Palm (1943) indicated that the number of customers in the
system is independent from the traffic flow. Namely, in Palm’s (1943) model, there
is no difference between assignment to any of the empty servers (Random Entry),
assignment to the server with the lowest index number among the empty servers
(Ordered Entry), assignment to the server giving the fastest service from the empty
servers (The Fastest Service-Rule), or taking service with any other service principle.
However, once the servers are assumed to be heterogeneous, the service discipline
must be examined very carefully. Because, the service discipline in the models with

heterogeneous servers affects the analysis of the model.
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Many researchers such as Cooper (1976), Matsui & Fukuta (1977), Nath & Enns
(1981), Nawijn (1983, 1984), Pourbabai & Sonderman (1986), Pourbabai (1987),
Yao (1986, 1987), Alpaslan (1996), Saglam & Shahbazov (2007), Isguder &
Uzunoglu-Kocer (2010) and Isguder, Uzunoglu-Kocer & Celikoglu (2011), and
Isguder & Celikoglu (2012) realizing this condition have modeled and analyzed the

queueing systems with heterogonous servers.

Cooper (1976) examined the Markovian queue with heterogeneous servers and
states that if the servers work at different rates, then the birth-and-death process
representing the system will be a multi-dimensional birth-and-death process. Cooper
(1976) also states that the solution of such models is difficult and stresses that the
method he proposed permits the solution of the problems with ordered heterogeneous
servers, without requiring a detailed solution of multi-dimensional birth-and-death
equations. Many researchers such as Matsui & Fukuta (1977), Pourbabai &
Sonderman (1986), Pourbabai (1987), Alpaslan (1996), Isguder & Uzunoglu-Kocer
(2010), and Isguder & Celikoglu (2012), either studied the limited number of servers

such as 2 or 3 or presented approximate solutions for the loss probability.

On the other hand, Nath & Enns (1981) analyzed the M/M/n/0 queueing system
with ordered entry and computed the loss probability. Once the fastest service rule is
applied, they proved that the loss probability is minimum. Besides, Yao (1986, 1987)
analyzed the queueing model GI/M/n/0 with ordered entry and computed the loss
probability of the customer. Yao (1987) proved the loss probability is minimum
under the fastest service rule by optimizing the system according to the service
discipline. All of the analyses carried out by Yao (1986, 1987) were directly

performed by generalization of Palm’s recurrence formula for heterogeneous servers.

The author’s claim is that none of these studies adequately address the

computation of loss probability for the GI/M/n/0 queueing system with ordered entry.

In Subsection 3.5.1 and Subsection 3.5.2, the studies carried out by Yao (1986,

1987) on Palm’s recurrence formula will be explained and the contradiction between
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the main result of Yao’s (1987) main theorem and the loss probability will be

revealed with a numerical example.
3.5.1 An Extension of Palm’s Recurrence Formula

An extension of Palm’s recurrence formula was first introduced by Cooper (1976)
during the analysis of ‘the model M/M/n queue with ordered entry’. Later, Nath &
Enns (1981) used this formula for being able to analyze ‘the queueing model
M/M/n/0 with ordered entry’. Yao (1986, 1987) examined the queueing model
GI/M/n/0 introduced by Palm under the hypothesis that the servers are

heterogeneous.

Yao (1986, 1987) extended the formula (3.120) for the queueing model GI/M/n/0
with heterogeneous servers and ordered entry as follows:

_ fa(s+14)
f (s)= L1 (04 T, (55 21) (1<k<n), (3.122)

where f,(s)= f(s) is the Laplace-Stieltjes transform of interarrival time

distribution F(t). Equation (3.122) was denoted the Laplace-Stieltjes transform of

the interoverflow times distribution from the first k servers for K =12,...,n for the
model GI/M/n/0 with ordered entry by Yao (1986). It must be noted that interarrival
times in the models of Cooper (1976) and Nath & Enns (1981) are distributed
exponentially and its Laplace-Stieltjes transform is f(s)=A/(s+A). Namely,
Cooper (1976) and Nath & Enns (1981) derived the formula (3.122) as a function of
the exponential distribution by assuming that the initial case is distributed

exponentially.

Palm’s recurrence formula (3.120) was obtained by taking the Laplace-Stieltjes
transform of the system of integral equations (3.119). It must be noted that the
equation (3.122) called as an extension of Palm’s recurrence formula has not been

obtained by taking any system of integral equations or Laplace-Stieltjes transform of
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any function in the studies taking place in the literature. The formula (3.122) was

obtained by writing directly z, instead of x in Palm’s recurrence formula (3.120).

Based on all these explanations, it is claimed that the extension of Palm’s
recurrence formula (3.122) is obtained heuristically and doesn’t guarantee the exact
solution of the loss probability. It is also claimed that the equation (3.122) is not the
Laplace-Stieljes transform of the interoverflow times distribution for the model
GI1/M/n/0 with ordered entry.

The loss probability in the heterogeneous system GI/M/n/0 with ordered entry that
is a function of the equation (3.122) was obtained by Yao (1986, 1987) as follows:

P = F () Ti(ap) - T (a4 (3.123)

The formula (3.123) gives a randomly correct result for n=1 and n=2
However, this formula is not correct for n=3. The fact that this formula is not

correct for n =3 is explained step by step.

Forn =3, namely for the queueing model GI/M/3/0 with ordered entry, the loss

probability is obtained as follows by means of the formula (3.123):

_ f () F (et + 1) F (et + pty + )1 — 1 () + £ (1, + 145)] . (3.124)
[1— () + F(en+ 1)1 {R— F ()L F (1, + 145)]
+ (g + iy + 1)[2—2F (u5) + T (g + 15)1}

Ps

Loss formula (3.124) must give the same results with the loss formula (3.83)
(obtained for the same model in Subsection 3.2.2). However, if formulas (3.83) and
(3.124) are examined carefully, it is clearly seen that numerators and denominators
of these formulas are different from each other. This difference is also shown
numerically with the numerical example 3.3 to be given in subsequent section. This

difference stems from the fact that the equation (3.122) is not a Laplace-Stieltjes
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transform of the interoverflow times distribution for the queueing model GI/M/n/0
with ordered entry.

The validity of all of these claims will be revealed by means of Example 3.3 in
subsequent subsection 3.5.2. By using the main theorem given by Yao (1987) related
to the optimization of the loss probability, the validity of the claims suggested by the

author will be proven.

3.5.2 Optimization of Loss Probability According to Service Discipline

Optimization of the loss probability according to the service discipline will be
emphasized in this section. Yao (1987) proved that the loss probability for the
queueing model GI/M/n/0 with ordered entry would take the minimum value under
the fastest service rule. Here the fastest service rule is realized by assigning the
customer arriving in the system to the fastest server among the empty servers rather

than assigning to the server with the lowest index number among the empty servers.

In this section, definitions, theorems, and results given by Yao (1987) are
explained related to the minimization of the loss probability. Claims laid in Section
3.5.1 are proven by using the theorems and the results again obtained by Yao (1987).
The contradiction of the formula (given by Eq. 3.123) obtained by Yao (1987) for the

loss probability with his own theorem is shown with a numerical example.

The following Definition 3.2 is given by Yao (1987).

Definition 3.2 (Yao, 1987). For any two permutation vectors x' and x* of X=(x;),

2

x'>_ x* if x* can be obtained from x* through successive pairwise interchange of

neighboring complements, with each interchange correcting an inversion of the

decreasing order of complements.
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The following Theorem 3.4(ii), and Corollary 3.4(ii) proved that in the queueing
model GI/M/n/0 with ordered entry, the loss probability was minimum with

probability 1, under the fastest-service rule.

Theorem 3.4 (Yao, 1987). Consider a system of n servers. Let ' and x* be two
server arrangements, and use the superscripts 1 and 2 to index quantities
corresponding to the two arrangements. If 4* >_ 4* , then

—sa

(i) T!> T72.forallk=1...,n,
(i) p'<p*
(i) b'<,, b%.

Corollary 3.4 (Yao, 1987). For any server arrangement g ,
(i) T(u)z T(w)= T (u,)  foral k=1...,n,
(i) p(u,) <p(w) <p(n,),

(iii)  b(a,) <y b(#) <, B(p3).

In the following example, the loss probability of customers is computed
numerically for n=2 and n=3 by using both formula (3.112) proposed in this
thesis and formula (3.123) obtained by Yao (1986, 1987).

Example 3.3 Consider the M/M/2/0 and the M/M/3/0 queueing models with
heterogeneous servers and ordered entry, respectively. The arrival rates and the
service rates for the models addressed are summarized in Table 3.1. The numerical
results are provided in Table 3.1; first by applying the fastest-service rule and then

for an arbitrary permutation of service rates:
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Table 3.1 A Numerical Example for M/M/2/0 and M/M/3/0 with Ordered Entry

M/M/2/0 with Ordered Entry M/M/3/0 with Ordered Entry
Parameters T he Fastest-  Arbitrary Parameters The Fastest-  Arbitrary
Service Rule  Permutation Service Rule  Permutation
A 90 90 A 90 90
My 60 45 y7a 60 60
My 45 60 My 45 10
M 10 45
problégsilsities Calculations  Calculations problézsifities Calculations  Calculations
7T, 0.34839 0.35714 TTq 0.26533 0.27705
Ps 0.34839 0.35714 Ps 0.29988 0.19856

In Table 3.1, 7,, (n=2,3) represents the loss probability obtained by formula

(3.112), which is proposed in this thesis; whereas p,, (n=2,3) represents the loss

probability obtained by using formula (3.123).

When n =2, formula (3.112) and (3.123) yield the same result (see, Formula
3.114). Loss probabilities ~, and p, are easily calculated by writing A/(A+ 1)

instead of f(u), A/(A+u,) instead of f(w,), and A/A+ gy +p,) instead of

f (1, + 12,) respectively in formula (3.114). Values of 4, x,, and u, are given in
Table 3.1. It is obviously seen from Table 3.1 that the numerical values of ~,and p,

are the same.

On the other hand, when n =3, the formula (3.112) yields the formula (3.83) and
the formula (3.123) yields the formula (3.124). The values of the loss probabilities

7y, and p, in Table 3.1 are computed by placing A/(A+ g, )in lieu of f () for
k=12,3; Al(A+py +u)in lieu of f(u+p) for 1<k<r<3; and
A(A+ g+ 11, + 1) in lieu of £ (g + 1, + 22,) in the formula (3.83) and the formula
(3.124) respectively. Where, the values of A, 4, 4, and u;are given in Table 3.1.
It can be also seen from Table 3.1 that numerical values of loss probabilities =, and

p, are different from each other.
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According to Theorem 3.4(ii), and Corollary 3.4(ii), the p, value should be
minimum with probability 1 under the fastest-service rule. Nevertheless, when Table
3.1 is carefully examined, it is clearly seen that the p, value is not minimum under

the fastest-service rule. This abnormal situation shows that the formula obtained by
Yao (1987) for the loss probability contradicts his own theorem. This unexpected
case results from the fact that the formula (3.122) does not fully satisfy the ordered

entry service discipline.

On the other hand, 7, computed with formula (3.83) proposed in this thesis takes

its minimum value under the fastest-service rule. That is, an extension of Palm’s loss
formula (3.112) satisfies Theorem 3.4(ii), and Corollary 3.4(ii).

Corollary 3.5 An extension of Palm’s recurrence formula (3.122), examined by Yao
(1986, 1987) not satisfies Palm’s recurrence formula (3.2) for the queueing model
GI/M/n/0 with ordered entry when number of servers is more than 2.

Corollary 3.6 Loss formula (3.123) examined by Yao (1986, 1987) is valid for only

when the number of the serversis 1 or 2.

According to Corollary 3.5 and Corollary 3.6, it is obvious that Yao (1986, 1987)
couldn’t completely overcome the analysis of the model queueing GI/M/n/0 with

ordered entry.

In the subsequent chapter, since the calculation of the extension of Palm’s loss
formula (3.112) becomes increasingly difficult as the number of servers increases,
the loss probability is calculated with a simulation approach. Theoretical studies
carried out related to the minimization of the loss probability in Subsection 3.2.3 and
Subsection 3.5.2 are supported with a considerably comprehensive simulation

design.



CHAPTER FOUR
SIMULATION DESIGN

It becomes computationally intractable to compute the loss probability given by
formula (3.112) as the number of servers increases. For the cases with more than one
server, the loss probability can be obtained easily with the simulation approach. The

simulation model developed and the findings obtained are presented in this chapter.

To obtain the point estimate and confidence interval of the loss probability for the
finite-capacity GI/M/n/0 queueing system with heterogeneous n servers defined in
Section 3.2, the discrete-event simulation model is used. More detailed information
on statistical estimation in simulation and discrete-event simulation can be obtained
from Alexopoulos (2006), Law & Kelton (2000), Banks, Carson, & Nelson (1996),
and Fishman (2001).

The simulation study is examined under two main headings depending on the
service principles random entry and ordered entry disciplines in this Chapter?.
Furthermore, for the ordered entry discipline, simulation results are also given under

the fastest-service rule.

For ease, the tabulated models have been expressed by being encoded. In this
encoding, the first character symbolizes the distribution of the interarrival times,
while the second one symbolizes the service discipline, and the last one symbolizes
the traffic intensity. For instance, W-R-080 represents the queueing system where the
interarrival time fits the Weibull distribution, the service discipline is random entry,
and the traffic intensity is 0.80. Similarly M-OE-095 represents the queueing system
where the interarrival time fits the exponential distribution, the service discipline is

ordered entry, and the traffic intensity is 0.95.

2 1t must be noted that the studies explained in this chapter have been presented by Isguder and

Celikoglu (2012) at 8th International Symposium of Statistics organized by the Anadolu University.

77
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4.1 The Simulation Model

The times between successive arrivals {AT;,i >1} are independent and identically

distributed random variables with an arbitrary probability distribution function, with

finite mean E(AT)=a. In the simulation study, four different probability

distributions, i.e. exponential (M), gamma (Ga), Weibull (W) and deterministic (D)
distributions, were used for the interarrival time distribution. The service times
{ST. izl} for each server j (j=12,...,n) are independent and identically distributed

ij?

random variables from the exponential distribution with finite mean E(ST, )=1/x;,

where u; is the service rate for server j. Hence, u= Z::l,uk is the total service rate

for the system. Clearly, au >1 must be achieved for steady state. Both the arrival

process and the service process are independent of each other and the servers work

independently of each other.

In the simulation model, the service process is randomly derived from the
exponential distribution according to the given service rates. By considering the total
service rate for a given traffic intensity, the mean of interarrival times is obtained.
Random data with this mean are derived from the distribution stated for the
interarrival time. In this way, even if the interarrival time distribution is different for
each number of servers, it is ensured that the data with an identical mean are used.

This is essential to make a comparison.

The model was considered a finite horizon simulation model. That is, the system
is evaluated at a specific time interval and the system is empty at the initial time. One
of the important points here is the determination of the replication number, while the
other one is how long a replication will be run. To decide how long the system would
work, first of all the loss probability in the event that it worked for 500 hours in each
replication was obtained and then the working duration of the system was increased
fivefold and, at the end of 2,000 hours, the loss probability was computed again. In
conclusion, it was observed that the loss probability only increased by 0.004 units.

Since the loss probability is not growing as the simulation proceeds, the system is
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stable (Henderson & Nelson, 2006). In this study, the estimation of loss probability is
found depending on the finite sample obtained by running the simulation program for

1,000 times. The system was run for 500 hours in each replication.
4.1.1 The Algorithm

There are two processes in each replication, i.e. arrival and departure processes.

The algorithm can be summarized as follows:

e The interarrival times are derived depending on the service rate u :Z::l Hy

and the system utilization factor () in such a way that their average will be

a.

e The last arrival time (AT) and the last departure time (DT) are compared and
the next event is determined. If AT<DT, an arrival takes place and the
arrival process is run; otherwise, because the next event will be departure, the

departure process is run.

e Arrival process: The number of empty servers (nes) is determined. If all
servers are busy (nes=0), arrival is recorded as the lost customer. DT is
updated and AT is determined for the new arrival. AT and DT are compared
again. If there is more than one empty server, it is determined which servers
are empty and arrival is assigned to one of the empty servers according to the
service discipline (Random Entry or Ordered Entry). The busy state of the
servers (SS) and AT are updated. Considering which of the busy servers will

first become empty, DT is updated.

o Departure process: If the next event is departure, it is determined which server
will first become empty and SS is updated. DT is updated for the server that

has become empty and the previous ones are maintained.
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e After the time predicted for simulation has been completed, the total number
of lost customers for the steady-state system is determined. The loss
probability is computed by dividing the number of lost customers by the total

number of customers in the system.

The simulation algorithm is presented in Figure 4.1. The arrival and departure
processes are configured with the algorithm in Figure 4.2 and Figure 4.3,
respectively.



Initialize variables

Deriving n &’s and organization of the service time
according to the service discipline

Deriving the lambda and the mean interarrival time from
the relationship A=pnu

Determination of how many observations will be excluded in
order for the system to become stable

Initialize state variables

Generate exponential service times for all n servers

Generate interarrival times from the specified distribution

Customer

number=cus-num

Arrival time less
than departure time?

Departure
process

Computation of the loss probability for the r-th run and its being
written in the loss probability matrix

f the distribution of loss probabilities

Figure 4.1 Simulation algorithm.

81
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Arrival time
less than
departure time?

Simulation time=arrival time Departure
process

Number of empty servers is determined

Number of
empty servers

Number of lost One of the empty servers is

customers increases by selected according to the
one point queueing discipline

The selected server is filled

Departure time is computed
for this server according to the
service time concerned

The next departure The smallest departure time
time is equalized to the among the departure times in
previous one each server is determined as

the next departure time

The next arrival time is determined

> Continue

Figure 4.2 Algorithm of the arrival process.
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Arrival time less
than departure
time?

Arrival
process

Simulation time=departure time

The server to be departed is determined

The departed server is emptied

A 4
\4
v

Departure time for the emptied server
=99999

The smallest departure time among the

departure times in each server is
determined as the next departure time

Continue

Figure 4.3 Algorithm for the departure process.

4.1.2. Assessment of the Loss Probability

In each run, the system works for 500 hours. Under the steady-state condition, the

number of lost customers is determined for each run and it is divided by the total
number of customers served in the system to obtain the loss probability (R,.) for a
single run. By repeating this procedure for 1,000 times, the probability distribution
for the loss probability is obtained and, from this, the estimation of the average

number of lost customers (P..) and the standard error of the estimate (Gy,) are

0ss

computed, and the 95% confidence interval (95% CI) is constructed as
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Ross—zolozg,&%ss INr < P <Pos +Z°-°256-ﬁ1055 /v, where r indicates the number of

replications.
4.2 Computational Experiments

This section, where the computations will be presented, is examined in two parts.
In the first part which is the verification part, it is checked whether the
implementation of the simulation program corresponds to the model. Verification is
the process of comparing the computer code with the model to ensure that the code is
a correct implementation of the model. In the second part, the results obtained by the

implementation of the verified simulation model will be presented.
4.2.1 Verification of the Simulation Model

To verify the simulation model, the finite-capacity M/M/2/0, D/M/2/0, M/M/3/0
and D/M/3/0 queueing models with heterogeneous servers are considered. By
attaining the analytical solutions of these models, exact results are obtained for the
loss probabilities. Later on, the simulation program is run for the same models and
the loss probabilities are approximated. The obtained results are presented in Tables

4.1 and 4.2 for random entry and ordered entry disciplines, respectively.

Table 4.1 Loss probabilities under random entry.

Arrival . Loss probability
Model n rate Service Exact Error
) rates X Simulation %
) solution
M-R-080 2 4 u1=1, u,=4 0.36364 0.36307 -0.16
D-R-080 2 4 w1=1, u,=4 0.23033 0.23012 -0.09
M-R-095 2 475 w1=1, u,=4 0.41542 0.40491 -2.53
D-R-095 2 475 w1=1, u,=4 0.29725 0.29118 -2.04
M-R-080 3 9.6 =7, u=1, uz=4  0.29729 0.30419 2.32
D-R-080 3 9.6 =7, u=1, uz=4  0.17967 0.18736 4.28
M-R-095 3 114  u=7, up=1, us=4 0.35547 0.35336 -0.59
D-R-095 3 114  w3=7, uy=1, uz=4 0.25009 0.25236 0.91
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Table 4.2 Loss probabilities under ordered entry.

n A::t\éal Service Exl;iis probability Error
Model rates . Simulation %
(4) solution

M-OE-080 2 4 =1, u,=4 0.37647 0.37599 -0.13
D-OE-080 2 4 =1, u,=4 0.24290 0.24270 -0.08
M-OE-095 2 4.75 =1, u,=4 0.42618 0.41442 -2.76
D-OE-095 2 4.75 =1, u,=4 0.30794 0.30167 -2.04
M-OE-080 3 9.6 =7, u=1, uz=4  0.28524 0.29246 2.53
D-OE-080 3 9.6 u1=7, u=1, uz=4  0.16670 0.17429 4,55
M-OE-095 3 114 w1=7, u=1, uz=4  0.34566 0.34351 -0.62
D-OE-095 3 114 w1=7, u=1, uz=4  0.23952 0.24162 0.88

The percentage error (Error%) is given by

—exact P

(obtained P, 0ss) 410006 (4.1)

exact P

loss

Error% =

The simulation model is verified by the fact that the maximum percentage errors in
Tables 1 and 2 are 4.28% and 4.55%, respectively. That is, for the cases that are
difficult to find with analytical solutions, the simulation approach presented might be

used to approximate the loss probability.

4.2.2 Computational Results

In this section, how the loss probabilities vary when we increase the number of
servers under the assumption that the interarrival time follows different distributions
is investigated with the simulation approach and the results are presented. LossS
probabilities under random entry and ordered entry disciplines are approximated for
the GI/M/n/0 queueing system with heterogeneous servers, respectively. For these
estimates, standard error and 95% confidence interval are also given. Note that for all
cases, the interarrival times are examined individually for exponential distribution,
gamma distribution, Weibull distribution and deterministic distribution, respectively.
Moreover, the cases, where the numbers of servers are 5, 10, 50 and 100 for all

above-mentioned distributions, respectively, are individually examined.
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The loss probabilities for the model concerned when the traffic intensities are 0.80
and 0.95 under random entry discipline are given in Tables 4.3 and 4.4, respectively.

Table 4.3 Loss probabilities for the model concerned when the traffic intensity is 0.80.

. 0,
Model Arrivc:ﬂ Servr:ce rate Los§_ LowjrSA)CLIJ — Standard
rate (1) (Zk:l L, ) probability sower bopupnd error
5 0.232 0.290 0.19954 0.19907 0.20001 0.00024
M-R-080 10 0.544 0.680 0.12317 0.12269 0.12364 0.00024
50 5.920 7.400 0.02248 0.02215 0.02282 0.00017
100 19.840 24.800 0.00595  0.00577 0.00613 0.00009
5 0.232 0.290 0.16013 0.15972 0.16054 0.00021
Ga-R-080 10 0.544 0.680 0.09440 0.09399 0.09480 0.00021
50 5.920 7.400 0.01324 0.01301 0.01347 0.00012
100 19.840 24.800 0.00265  0.00254 0.00277 0.00006
5 0.232 0.290 0.14065 0.14026 0.14104 0.00020
W-R-080 10 0.544 0.680 0.08112 0.08077 0.08147 0.00018
50 5.920 7.400 0.00927 0.00910 0.00947  0.00009
100 19.840 24.800 0.00147 0.00139 0.00154 0.00004
5 0.232 0.290 0.11201 0.11168 0.11234 0.00017
D-R-080 10 0.544 0.680 0.06067 0.06034 0.06099 0.00017
50 5.920 7.400 0.00484 0.00472 0.00496 0.00006
100 19.840 24.800 0.00054 0.00050 0.00059 0.00002

Table 4.4 Loss probabilities for the model concerned when the traffic intensity is 0.95.

Arrival S?art}[/elg i Loss oA
Model n rates . robability Lower  Upper Standard
*) (Zkzl’uk ) P bound  bound  error
5 0.2755 0.2900 0.25992  0.25929 0.26056 0.00032
M-R-095 10  0.6460 0.6800 0.19019  0.18957 0.19081 0.00032
50 7.0300 7.4000 0.08364  0.08301 0.08428 0.00032
100 23.5600 24.8000 0.05515 0.05451 0.05578 0.00032
5 0.2755 0.290 0.22528  0.22471 0.22585 0.00029
Ga-R-095 10  0.6460 0.680 0.16368  0.16314 0.16421 0.00027
50 7.0300 7.400 0.06929  0.06873 0.06984 0.00028
100 23.5600 24.800 0.04432  0.04379 0.04484 0.00027
5 0.2755 0.290 0.20785  0.20733 0.20837 0.00027
W-R-095 10  0.6460 0.680 0.14957  0.14906 0.15009 0.00026
50 7.0300 7.400 0.06181  0.06129 0.06234 0.00027
100 23.5600 24.800 0.03902  0.03856 0.03949 0.00024
5 0.2755 0.290 0.18121  0.18073 0.18168 0.00024
D-R-095 10  0.6460 0.680 0.12950  0.12904 0.12996 0.00023
50 7.0300 7.400 0.05197  0.05152 0.05241 0.00023
100 23.5600 24.800 0.03221  0.03179 0.03264 0.00022
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The loss probabilities for the model concerned when the traffic intensities are 0.80
and 0.95 under ordered entry discipline are given in Tables 4.5 and 4.6, respectively.

Table 4.5 Loss probabilities for the model concerned when the traffic intensity is 0.80.

. Service rate 95% ClI Standard
Model n Arrlv?l n Loss Lower  Upper error
rate (1) (Zk:l,uk) probability -~ L ind
5 0.232 0.290 0.20252  0.20205 0.20298 0.00024
M-OE-080 10 0.544 0.680 0.12209  0.12160 0.12258 0.00025
50  5.920 7.400 0.02407  0.02375 0.02439 0.00016
100 19.840 24.800 0.00510  0.00492 0.00528 0.00009
5 0.232 0.290 0.15897  0.15854 0.15939  0.00022
Ga-OE-080 10 0.544 0.680 0.09877  0.09836 0.09917 0.00021
50  5.920 7.400 0.01460  0.01436 0.01484 0.00012
100 19.840 24.800 0.00164  0.00155 0.00173 0.00005
5 0.232 0.290 0.13882  0.13841 0.13922 0.00021
W-OE-080 10 0.544 0.680 0.08074  0.08038 0.08110 0.00018
50 5.920 7.400 0.01085  0.01066 0.01104 0.00010
100 19.840 24.800 0.00099  0.00093 0.00106 0.00003
5 0.232 0.290 0.11021  0.10988 0.11055 0.00017
D-OE-080 10 0.544 0.680 0.06302  0.06272 0.06332 0.00015
50 5.920 7.400 0.00397  0.00386 0.00408 0.00006

100 19.840 24.800 0.00034  0.00031 0.00037 0.00001

Table 4.6 Loss probabilities for the model concerned when the traffic intensity is 0.95.
Service rate 95% ClI

Model 0 Arriv?l N Loss Lower  Upper Standard
rate (1) (Zk:l L, ) probability bound  bound error

5 0.275 0.290 0.26189  0.26123 0.26255 (.00034

M-OE-095 10 0.646 0.680 0.19133  0.19071 0.19194  0.00031

50 7.030 7.400 0.08846  0.08784 0.08907 0.00031

100 23.560 24.800 0.05225 0.05160 0.05289 0.00033

5 0.275 0.290 0.22770  0.22714 0.22824 0.00028

Ga-OE-095 10 0.646 0.680 0.16149  0.16092 0.16205 0.00029

50 7.030 7.400 0.06853  0.06796 0.06909 0.00028

100 23.560 24.800 0.04262 0.04209 0.04316 0.00027

5 0.275 0.290 0.21007  0.20954 0.21060 0.00027

W-OE-095 10 0.646 0.680 0.15191  0.15142 0.15240 0.00025

50 7.030 7.400 0.06298  0.06246 0.06349 0.00026

100 23.560 24.800 0.03966  0.03918 0.04014 0.00024

5 0275 0.290 017751 0.17703 0.17799 0.00024

D-OE-095 10 0.646 0.680 0.12945  0.12899 0.12991 0.00023

50 7.030 7.400 0.04555  0.04510 0.04601 0.00023

100 23.560 24.800 0.03205  0.03165 0.03245 0.00021
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Both under random entry discipline (Tables 4.3 and 4.4) and ordered entry
discipline (Tables 4.5 and 4.6), it is observed that in the models concerned, the loss
probability decreases, as expected, when the number of servers increases for all
distributions of interarrival times. On the other hand, it is observed that in models
D-R-080, D-OE-080, D-R-095 and D-OE-095 the loss probability takes a much
smaller value as compared to the other models. The results given in Tables 4.4 and

4.6 are summarized in Figures 4.4 and 4.5.
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Figure 4.4 Loss probabilities for the queueing model GI/M/n/0 with random entry.
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Figure 4.5 Loss probabilities for the queueing model GI/M/n/0 with ordered entry.

For the ordered entry discipline, the customer, who arrives in the system, starts the
service in the server with the smallest mean service time instead of starting the
service in the server with the lowest index number among the empty servers. In this
way, the fastest-service rule is implemented. Let the fastest-service rule be
symbolized with OE1.
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The loss probabilities under the fastest-service rule when the traffic intensities are
0.80 and 0.95 are given in Tables 4.7 and 4.8, respectively.

Table 4.7 Loss probabilities for the model concerned when the traffic intensity is 0.80.

Model Arrival Serv:]ce rate Loss Lowe9r5% CLIJpper Standard
rate (1) (Zk:yuk) probability "~ L ind error

5 0.232 0.290 0.19461  0.19415 0.19507 0.00024

M-OE1-080 10 0.544 0.680 0.11361  0.11315 0.11408 0.00024

50  5.920 7.400 0.00862  0.00839 0.00886 0.00012

100 19.840 24.800 0.00032  0.00028 0.00037 0.00002

5 0.232 0.290 0.15523  0.15481 0.15564 0.00021

Ga-OE1-080 10 0.544 0.680 0.08515  0.08475 0.08556 0.00021

50  5.920 7.400 0.00337  0.08475 0.08556 0.00021

100 19.840 24.800 0.00005  0.00003 0.00006 0.00001

5 0.232 0.290 0.13567  0.13527 0.13607 0.00020

W-OE1-080 10 0.544 0.680 0.07182  0.07146 0.07218 0.00018

50  5.920 7.400 0.00181  0.00172 0.00190 0.00004

100 19.840 24.800 0.00001  0.00001 0.00002 0.00000

5 0.232 0.290 0.10707  0.10674 0.10741 0.00017

D-OE1-080 10 0.544 0.680 0.05239  0.05209 0.05270 0.00016

50  5.920 7.400 0.00055  0.00051 0.00059 0.00002

100 19.840 24.800 0.00000  0.00000 0.00000 0.00000

Table 4.8 Loss probabilities for the model concerned when the traffic intensity is 0.95.
Service rate 95% ClI

Model 0 Arriv?l N Loss Lower  Upper Standard
rate (1) (Zkzl’uk) probability bound  bound error
5 0.275 0.290 0.25608  0.25543 0.25672  0.00033
M-OE1-095 10 0.646 0.680 0.18226  0.18164 0.18289 0.00032
50 7.030 7.400 0.06509  0.06444 0.06574 0.00033
100 23.560 24.800 0.03480  0.03414 0.03546 0.00034
5 0.275 0.290 0.22118 0.22061 0.22174 0.00029
10 0.646 0.680 0.15544  0.15489 0.15599 0.00028
Ga-OE1-095
50 7.030 7.400 0.05140  0.05085 0.05195 0.00028
100 23.560 24.800 0.02561  0.02510 0.02612 0.00026
5 0.275 0.290 0.20339  0.20286 0.20393 (0.00027
W-OEL-095 10 0.646 0.680 0.14195  0.14143 0.14247 0.00027
50 7.030 7.400 0.04486  0.04434 0.04538 0.00026
100 23.560 24.800 0.02141  0.02094 0.02187 0.00024
5 0.275 0.290 0.17663  0.17615 0.17712 0.00025
D-OE1-095 10 0.646 0.680 0.12230 0.12185 0.12276 0.00023
50 7.030 7.400 0.03579  0.03533 0.03624 0.00023

100 23.560 24.800 0.01558  0.01520 0.01596 0.00020
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When the fastest-service rule is implemented, it is observed that the loss
probabilities become much smaller for all the models considered, as compared to the

other disciplines (Tables 4.7 and 4.8). The results given in Table 4.8 are summarized

in Figure 4.6.
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Figure 4.6 Loss probabilities for the the queueing model GI/M/n/0 with OE1-discipline.
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Figure 4.7 Loss probabilities for the queueing model D/M/n/0 with heterogeneous servers.

In conclusion, for the GI/M/n/0 queueing model with heterogeneous servers, the
loss probability takes its lowest value both when the interarrival times are
deterministically distributed and the fastest-service rule is implemented. This result is

clearly seen from Figure 4.7.



CHAPTER FIVE
CONCLUSIONS

In this thesis, the finite-capacity GI/M/n/0 queueing system with recurrent input
and heterogeneous servers has been studied. The semi-Markov process representing
the system has been formulated and the Takacs’s formula given by (3.4) has been
generalized both for random entry and ordered entry service disciplines. An
implementation of a generalization of Takacs’s formula is performed for the
queueing model GI/M/3/0 with heterogeneous servers. It has been proved that the
loss probability for the queueing model GI/M/3/0 with ordered entry is minimum
when interarrival times fit the deterministic distribution. By analyzing the stream of
overflows in the system, the Laplace-Stieltjes transform of the distribution of the
stream of overflows and loss probability (3.112), which is an extension of well-
known Palm’s formula (given by Eq. 3.2), have been obtained. An implementation of
this formula is performed for the queueing model GI/M/2/0 with heterogeneous
servers and the loss probability of customers in the system is computed. It is proven
that the extension of Palm’s recurrence formula (given by Eq. 3.122) addressed by
Yao (1986, 1987) is a heuristic formula and doesn’t guarantee the exact solution.
Furthermore the conditions in which the loss probability is minimum is determined

by simulation optimization.

5.1 Concluding Remarks

Even though there have been many studies on the queueing models with
heterogeneous servers since Gumbel (1960), most of these studies have only solved
this problem for a limited number of servers or proposed a solution for n servers by
generalizing Palm’s recurrence formula. This thesis differs from the others in that
formulae (3.6) and (3.7), which are the generalizations of Takacs’s formula (3.4), are
proposed for the GI/M/n/0 queueing model under both random entry and ordered
entry disciplines. These formulae, obtained by means of the semi-Markov process
representing the system, enable the attainment of the efficient and exact solution in

practice. In this context, the analysis of the queueing model GI/M/n/0 with

91



92

heterogeneous servers handled in this thesis is an excelent implementation of semi-

Markov process.

It is shown that overflow times of the customers in the GI/M/n/0 queueing model
with heterogeneous servers are delayed renewal process. By analyzing the stream of
overflows, steady-state probabilities and loss probability as a solution of the
determinant of embedded Markov chain of semi-Markov process are derived. On the
other hand, computability of the loss probability of a customer in the system by using
the extension of Palm’s loss formula (3.112) without a need for solving the linear
equation system (3.14) provides an important contribution to the literature.
Calculating the determinant given by the formula (3.109) rather than solving the
linear equation system (3.14) is a more practical and rapid method. Therefore, an
extension of Palm’s loss formula (3.112) proposed in this thesis is an effective and
important formula in terms of direct calculation of the loss probability of the
customer in the system without a need for calculating steady-state probabilities in the

system.

The GI/M/n/0 queueing model with ordered entry was examined by Yao (1986,
1987) before this thesis. However, it has proven that Yao (1986, 1987) could not
overcome the problem obtaining the Laplace-Stieltjes transform of the distribution of
the stream of overflows and formulating the loss probability. The contradiction
between the main theorem of Yao (1987) concerning the optimization of the loss
probability and the formula of loss probability obtained by Yao (1986, 1987) is
proven with Example 3.3. On the other hand, it is explained by Example 3.3 that, an
extension of Palm’s Loss Formula (given by Eq. 3.112) we obtained in this thesis

doesn’t contradict the main theorem of Yao (1987).

When the numbers of servers are 5, 10, 50 and 100 and the interarrival time
distributions are exponential, gamma, Weibull and deterministic in the simulation
model, the loss probabilities are computed for both random entry and ordered entry
service disciplines. The loss probability is minimized in two different ways

according to the service discipline and according to the distribution of interarrival
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times. It is observed that the loss probability obtained when the interarrival time is
deterministically distributed is smaller than the loss probability obtained under the
assumption that the interarrival time fits the other (exponential, gamma and Weibull)
distributions. On the other hand, it is observed that the loss probability is decreased
when the arriving customer who arrives in the system is assigned to the fastest-
working server instead of entering the server with the lowest index number among
the empty servers according to the service discipline (the fastest-service rule). Both
when the fastest-service rule is applied and the interarrival time distribution is
deterministic, the loss probability takes its minimum value within all of these

combinations.

5.2 Future Research

Kaufman (1980) analysis the queueing model M/G/n/0 with heterogeneous servers
and random selection discipline. In the model addressed by Kaufman (1980), if the
service discipline is selected as ordered entry rather than random entry, since the
service servers are heterogeneous, the analysis of the model will be completely
changed. Therefore, the analysis of the queueing model M/G/n/0 with heterogeneous
servers and ordered entry can be considered as a future research. The main problem
IS obtaining the distribution of the time between overflows and formulating the loss
probability in this proposed model. Also, it is obvious in this model that the loss
probability will be minimized under the fastest-service rule. Mathematical proof of

this problem can also be considered as a future research.

An extension of Palm’s recurrence formula (3.122) used in the analysis of the
GI/M/n/0 queueing model with ordered entry by Yao (1986) first proposed by
Cooper (1976) and was used in the analysis of the model M/M/n queue with ordered
entry. In this thesis, it has been proven that an extension of Palm’s recurrence
formula (3.122) given by Yao (1986, 1987) was obtained completely heuristically.
Therefore, revisiting the queueing model that Cooper (1976) was addressed and
verifying the results and proposing new results if necessary would be considered as

future research.
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When obtaining the exact solution is either difficult or impossible, the use of
approximate solution methods such as Markov chain Monte Carlo simulations,
heuristic and meta-heuristic for the numerical analysis of the GI/M/n/0 model with
heterogeneous servers may be considered for future research. In addition, for the
cases in which the interarrival times are phase-type distributed such as Coxian,
hyper-exponential and matrix-exponential, the loss probability can be computed
approximately by developing new heuristic methods. For example, Atkinson (2009)
developed two new heuristics, which are called the GM heuristic and the MG
heuristic, for the GI/G/n/0 queueing model. In summary, it is an important challenge
to efficiently estimate the loss probability with heuristic approach methods. The
formulae (3.6, 3.7 and 3.112) proposed in this thesis will facilitate the finding of
exact solutions for phase-type distributions, the development of new heuristic

methods, and the estimation of the loss probability.
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