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OPTIMIZATION OF LOSS PROBABILITY IN THE GI/M/n/0 QUEUEING 

MODEL WITH HETEROGENEOUS SERVERS 

 

ABSTRACT 

 

This study is mainly concerned with the finite-capacity queueing system with 

recurrent input, n heterogeneous servers, and no waiting line represented by 

GI/M/n/0. The service discipline is addressed in two different ways. Firstly, 

customers choose only one server from the empty servers with equal probability. 

Secondly, customers choose the server with the lowest index number among the 

empty servers with probability 1. In both cases, when all servers are busy, customers 

depart from the system without taking any service. These customers are called „lost 

customers‟ and the flows of lost customers are called „stream of overflows‟.  

 

The queueing model GI/M/n/0 with heterogeneous servers is analyzed using semi-

Markov process. The semi-Markov process representation of the system is described 

and the kernel functions of semi-Markov process are derived. An implementation of 

this formula is performed for the queueing model GI/M/3/0 with heterogeneous 

servers. Using the kernels of semi-Markov process, one-step transition probabilities, 

and steady-state probabilities are obtained for the related queueing model. 

 

The stream of overflows is analyzed for the queueing model GI/M/n/0 with 

heterogeneous servers, the Laplace-Stieltjes transform of the distribution of the time 

between overflows is obtained and the loss probability of customers is formulated. 

An implementation of this formula is performed for the queueing model GI/M/2/0 

with heterogeneous servers, and the loss probability of customers is computed. 

 

It becomes computationally intractable to compute the exact solution of loss 

probability, besides it is impossible to minimize the loss probability according to 

distribution of arrival process as the number of servers increases. In this respect a 

quite extensive simulation study is performed and the loss probability is computed 

for different distributions of interarrival times and different service disciplines. The 
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conditions in which the loss probability is minimum are determined by simulation 

optimization. 

 

Keywords: Semi-Markov process, Laplace-Stieltjes transform, loss probability, 

stream of overflows, queueing, simulation. 
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HETEROJEN KANALLI GI/M/n/0 KUYRUK MODELİNDE KAYBOLMA 

OLASILIĞININ OPTİMİZASYONU 

 

ÖZ 

 

Bu çalıĢmada rekurent giriĢli, sınırlı kapasiteli, bekleme hattının olmadığı, n 

heterojen kanallı GI/M/n/0 kuyruk modeli incelenir. Hizmet disiplini iki farklı 

Ģekilde ele alınır. Birincisinde, müĢteriler boĢ olan kanallardan herhangi birinden eĢit 

olasılıkla hizmet alır. Ġkincisinde, müĢteriler boĢ olan kanallar arasından index 

numarası en düĢük olan kanalda 1‟e eĢit olasılıkla hizmet alır. Her iki durumda da, 

bütün kanallar dolu ise, müĢteriler hiç bir hizmet almadan sistemden ayrılır. Bu 

müĢteriler „kayıp müĢteriler‟, kayıp müĢterilerin akımı ise „kaybolan müĢteri akımı‟ 

olarak adlandırılır.  

 

Heterojen kanallı GI/M/n/0 kuyruk modelinin analizi yarı-Markov süreci 

kullanılarak yapılır. Sistemi temsil eden yarı-Markov süreci tanımlanır ve yarı-

Markov sürecinin çekirdek fonksiyonları türetilir. Bu formülün bir uygulaması 

heterojen kanallı GI/M/3/0 kuyruk modeli için gösterilir. Yarı-Markov sürecinin 

çekirdekleri kullanılarak, bir-adım geçiĢ olasılıkları ve durağan durum olasılıkları 

ilgili kuyruk modeli için elde edilir. 

 

Heterojen kanallı GI/M/n/0 kuyruk modeli için kaybolan müĢteri akımının analizi 

yapılır, kaybolma anları arasındaki sürenin dağılımının Laplace-Stieltjes dönüĢümü 

elde edilir ve müĢterinin kaybolma olasılığı formüle edilir. Bu formülün bir 

uygulaması heterojen kanallı GI/M/2/0 kuyruk modeli için gösterilir ve müĢterinin 

kaybolma olasılığı hesaplanır. 

 

Kanal sayısı artarken kaybolma olasılığının tam çözümünün bulunması sayısal 

olarak zorlaĢır, ayrıca geliĢ süreci dağılımına göre kaybolama olasılığının minimize 

edilmesi imkansız hale gelir. Bu açıdan oldukça geniĢ bir simülasyon çalıĢması 

yapılır ve kaybolma olasılığı, geliĢlerarası sürelerin farklı dağılımları için ve farklı 
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hizmet disiplinleri için hesaplanır. Kaybolma olasılığının minimum olduğu koĢullar 

simülasyon optimizasyonuyla belirlenir. 

 

Anahtar sözcükler: Yarı-Markov süreci, Laplace-Stieltjes dönüĢümü, kaybolma 

olasılığı, kaybolan müĢteri akımı, kuyruk, simülasyon. 
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CHAPTER ONE 

INTRODUCTION 

 

Queuing theory which is founded by Danish scientist Agner Krarup Erlang in 

1917 has become one of the most important elements of the science and the 

technology, recently. Thanks to the studies of many valuable scientists such as Palm 

(1943), Takacs (1956, 1957, 1962), Bhat (1965, 1968), Çinlar (1967a, 1967b), Whitt 

(1972), Gnedenko & Kovalenko (1989)  and Atkinson (1995, 2000, 2009), the theory 

has been enriched by presenting important results and various application areas.  

 

During the early years the fundamental problems handled had been the 

determination and the calculation of performance measures such as mean number of 

customers in the queue, mean waiting time in the queue, and mean service time. On 

the other hand, in the subsequent years, the theory made progress in analyzing the 

problems such as minimizing the time and work loss and determination of the 

uninterrupted working time. In other words optimizing the system performance by 

increasing the service quality and attaining the outstanding service has become one 

of the most important problems, recently. In addition, queuing models closer to new 

and real systems have been introduced and examined related to the development of 

the production, communication and computer systems.  

 

The queuing systems without waiting line have been analyzed extensively. In this 

kind of systems, since some of arriving customers left without taking any service, a 

very important problem called the analysis of “stream of overflows” appeared.  The 

stream of overflows in queuing systems without waiting line was first studied by 

Palm (1993). Palm (1943) proved that in GI/M/n/0 queuing system, the stream of 

overflows is a renewal process and found the Laplace-Stieljes transform of the 

interoverflow time distribution and obtained the loss probability by using difference 

equations. This problem presented by Palm was also examined in subsequent years 

by the scientists such as Khintchine (1960), Takacs (1956), and Çinlar & Disney 

(1967). Çinlar & Disney (1967) obtained the generating function of the stream of 

overflows in the M/G/1/n–1 system.  
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The models related to queuing systems without waiting line in the literature can 

be classified into two groups in general: 

 

a) M/M/n/0 queuing model: Since there is no waiting line in the system, a 

customer arriving in the system when all servers are busy leaves without 

taking any service. This model is analyzed by means of Markov process since 

the interarrival times and the service times have exponential distribution.  

 

b) GI/M/n/0 and M/G/n/0 queueing models: Since there is no waiting line in both 

systems, a customer arriving in the system when all servers are busy leaves 

without taking any service. However interarrival times are independent of 

each other and have an arbitrary distribution in the former, whereas in the 

latter, the service times are independent of each other and have an arbitrary 

distribution. Since these models cannot be analyzed by Markov process, 

methods such as supplementary variable, embedded Markov chain, and semi-

Markov process were developed. The fundamental problem in this kind of 

models is the calculation of loss probability and the minimization of this 

probability.  

 

A/B/n/m/d notation given by Kendall (1953), facilitates the definition of the 

models in the analysis of the queuing systems. A represents the distribution function 

of interarrival times, B represents the distribution function of the service time, n 

represents the number of servers, m represents the number of customers waiting in 

line, and finally d represents the service discipline. Specially, the letter M stands for  

the exponential distribution whereas G represents an arbitrary distribution; GI 

indicates that interarrival times are independent of each other and have an arbitrary 

distribution function.   
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1.1 Problem Statement 

  

Conny Palm (1943) studied the queuing model GI/M/n/0 with identical servers 

and no waiting line in his study named “Intensitätsschwankungen im 

Fernsprechverkehr”. In this model, interarrival times are independent of each other 

and have distribution function )(tF , and their expected value is finite. There are n-

identical servers in the system. The service time of each customer in server 

),2,1( nkk   is a random variable represented by   and has an exponential 

distribution with parameter  , i.e. 0,1)(   tetP t . The customer, who 

arrives in the system, chooses the server with the lowest index number among the 

empty servers with probability 1. Since the servers in this model are identical, such 

an assumption in terms of service discipline does not affect the traffic flow. In other 

words, the assigned index number of the server to the arriving customer at any time t 

is not important in Palm‟s model.  

 

In real life, it is obvious that the servers may not be identical. In this kind of 

systems, it is more realistic to suppose that the servers are heterogeneous and to 

model the system accordingly, however the analysis of the model becomes relatively 

difficult.  

 

The service discipline gains a great importance when servers are assumed to be 

heterogeneous in the model examined by Palm (1943). Namely, from which server 

an arriving customer in the system at any time t receives the service is very important 

and directly affects the analysis of the model. In other words, depending on the 

service discipline, the calculation of the functions representing the system and 

therefore the calculation of performance measures of the system differ significantly. 

This is the only reason for the difficulty of this kind of systems. 

 

In this thesis, the model of Palm (1943) is generalized by assuming the servers 

heterogeneous, namely, the queuing model GI/M/n/0 with heterogeneous servers and 

no waiting line is analyzed. In this model, interarrival times are independent of each 

other and have distribution function )(tF  and their expected value is finite. There are 
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n heterogeneous servers in the system. That is, their mean service times are different 

from each other. The service time of each customer in server k is a random variable 

represented by k  and has an exponential distribution with parameter

nkk ,,2,1,  . 

 

The service discipline is addressed in two different ways. Firstly, the customer 

arriving in the system starts the service in any of the empty servers with equal 

probability. This discipline is called as „Random Selection Discipline‟ or briefly 

„Random Entry‟ by the author. In the second case, the customer arriving in the 

system chooses the server with the lowest index number among the empty servers 

with probability 1 introduced that was introduced by Palm (1943). This discipline is 

briefly known as “Ordered Entry” in the literature. 

 

Since there is no waiting line in the addressed model, when all servers are busy, 

an arriving customer leaves without taking any service. In this respect, many 

problems such as the stream of overflows, the distribution of the stream of overflows, 

loss probability of a customer, and the optimization of loss probability arise.  

 

In terms of the optimization of loss probability, depending on arrival flow and the 

service discipline, the loss probability can be minimized in two different manners. In 

some cases the conditions where the system is optimal cannot be determined 

theoretically. In such cases, the determination of optimal conditions by simulation 

design appears as a different problem.  

 

The aim of this thesis is to solve abovementioned problems, to generalize the 

queueing model GI/M/n/0 with homogeneous servers first addressed by Palm (1943), 

to analyze a queuing model closer to real systems, to calculate the loss probability of 

an arriving customer, and to minimize this probability. 
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1.2 Thesis Outline 

 

The queuing model GI/M/n/0 with heterogeneous servers introduced in this thesis 

is analyzed by means of semi-Markov process that is one of the most important 

subjects of the stochastic process theory. The model addressed in this sense is a 

perfect application of semi-Markov process. Additionally, overflow times of the 

customer in the model forms a delayed renewal process. Therefore, some concepts, 

definitions, theorems, and proofs of those theorems related to the renewal theory that 

is one of the most important subjects of the stochastic process theory are given in 

Chapter Two for better understanding and easier interpretation of this thesis. The 

fundamental concepts of renewal theory are briefly explained in Section 2.1. Some 

applications of the renewal processes related to the queuing theory and the reliability 

theory are explained with examples. Moreover, some theorems such as Abel and 

Tauber related to Laplace-Stieltjes transforms frequently used in the thesis are 

examined. The renewal function, limit theorems for renewal processes, delayed 

renewal process, Markov renewal process, and semi-Markov process are other 

subjects that are explained in Chapter Two.  

 

In Chapter Three, a comprehensive literature review on especially related to 

queuing models without waiting line has been presented. Afterwards, “the model 

GI/M/n/0 with heterogeneous servers and no waiting line” addressed in this thesis is 

explained with its assumptions. Kernel functions of the process are obtained by 

defining the semi-Markov process representing the model. An implementation of loss 

formula is performed for the queuing model GI/M/3/0 with heterogeneous servers. 

The condition in which the loss probability is minimum is explained with a theorem 

by optimizing the loss probability depending on the arrival flow. Additionally, the 

distribution of the time between overflows is obtained by analyzing the stream of 

overflows. Also, Palm‟s recurrence formula and an extension of Palm‟s recurrence 

formula are examined in detail. For the queuing model GI/M/n/0 with ordered entry, 

it is revealed by a numeric example that, the loss probability obtained by Yao (1986, 

1987) as a function of the extension of Palm‟s recurrence Formula, is not correct for 

n=3. 
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In Chapter Four, simulation models are defined for both random entry and ordered 

entry service disciplines of the queuing model GI/M/n/0 with heterogeneous servers 

and no waiting line. The variation in the loss probability is experimentally observed 

for different interarrival time distributions. Theoretical studies carried out in the 

literature related to the minimization of the loss probability are supported by 

simulation optimization.   

 

Finally in Chapter Five, concluding remarks and a discussion of the future 

research which can be followed as extensions of this thesis are presented.  

 

1.3 Contributions 

 

The main contributions of this thesis are summarized as follows: 

 

1) „A generalization of Takacs’s Formula‟ for „the queueing model GI/M/n/0 

with heterogeneous servers‟ is obtained by deriving kernel probabilities of the 

semi-Markov process. Thus an embedded Markov chain of semi-Markov 

process for the queuing model GI/M/n/0 with heterogeneous servers is 

obtained (Section 3.2). 

 

2) By defining the overflow times of the customers and showing that the time 

until the first loss epoch and successive interoverflow times are independent 

from each other and have a different distribution, it is shown that overflow 

times in the system are delayed renewal process (Section 3.3).  

 

3) The Laplace-Stieltjes transform of the distribution of the stream of overflows 

is derived for the GI/M/n/0 queuing model with heterogeneous servers.  An 

implementation of the Laplace-Stieljes transform of the distribution of the 

stream of overflows is performed for the queuing model GI/M/2/0 with 

heterogeneous servers (Section 3.3). 
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4) It is shown that how a generalization of Takacs‟s formula is applied for the 

queuing model GI/M/3/0 with heterogeneous servers and also the loss 

probability is obtained for the above mentioned model (Subsections 3.2.1 and 

3.2.2). 

 

5) The loss probability obtained for the queuing model GI/M/3/0 with 

heterogeneous servers is minimized according to the arrival process 

(Subsection 3.2.3). 

 

6) Steady-state probabilities are obtained as a solution of the determinant of the 

embedded Markov chain (Section 3.4). 

 

7) „An Extension of Palm’s Loss Formula‟ is derived for „the queueing model 

GI/M/n/0 with heterogeneous servers‟. An implementation of this formula was 

performed for the queuing model GI/M/2/0 with heterogeneous servers and the 

loss probability of customers was computed (Section 3.4). 

 

8) It was explained that an extension of Palm‟s recurrence formula addressed by 

Yao (1986, 1987) is a heuristic formula and does not guarantee the exact 

solution. (Subsection 3.5.1) 

 

9) The contradiction between the main theorem, given by Yao (1987) related to 

the optimization of the loss probability, and the loss probability formula, again 

given by Yao (1986, 1987), is proved with a numerical example (Subsection 

3.5.2).  

 

10)  It is explained with a numerical example that „an extension of Palm‟s Loss 

Formula‟ that we obtained in this thesis is compatible with the main theorem 

of Yao (1987) (Subsection 3.5.2). 

 

11) Studies available in the literature related to the optimization of the loss 

probability are supported by a simulation study. For the situations in which it 
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is not theoretically possible to minimize the loss probability according to the 

interarrival time distribution, the simulation optimization approach is 

proposed and designed. As a result of simulation optimization, the optimal 

conditions for the system are determined. (Chapter 4). 

  

1.4 Publications 
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1) Isguder, H. O., & Celikoglu, C. C. (2010). Sonlu kapasiteli heterojen kuyruk 

modeli için geçiĢ olasılıklarının elde edilmesi. 7. İstatistik Günleri 

Sempozyumu, Ankara, Türkiye, 51-52. 
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45-47. 

 

4) Isguder, H. O., & Celikoglu, C. C. (2012). Minimizing the loss probability in 

GI/M/3/0 queueing system with ordered entry. Scientific Research and Essays 

7(8), 963-968. 
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6) Isguder, H. O., & Celikoglu, C. C. (2010). Computation of loss probability in 
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CHAPTER TWO 

RENEWAL THEORY 

 

In this chapter, renewal process, renewal function, limit theorems for renewal 

processes, delayed renewal process, Markov renewal process, and semi-Markov 

process matters among the most important matters of the stochastic processes theory 

are briefly explained. Definitions, theorems, and examples taking place in this 

chapter will facilitate the comprehension of Chapter Three. This section has been 

prepared by the help of the studies carried out by Pyke & Schaufele (1964), Feller 

(1966), Çinlar (1969, 1975) and Ross (1996). For more information about in this 

chapter, the mentioned references may be consulted. 

 

2.1 Renewal Process 

 

The renewal theory arose from the need for analyzing the problems related to 

breakdown and renewal (repair) of a machine in random times. This theory extended 

its application area (mathematical analysis, physics, economy, engineering, holding 

line models, reliability analysis, etc.) and now became one of the most important 

tools used by millions of researchers. Many problems solved by using difficult 

methods can be easily solved by means of the renewal theory. In this section, 

information will be presented about basic concepts of the mentioned theory. 

 

2.1.1 Basic Concepts 

 

Assume that  ,, 21 XX   are independent, positive random variables having 

identical distribution function F and that expected value of each is finite: 

  

                                 

1,)](1[][
0

 


kdxxFXE k .                                (2.1) 

 

In this case, the sequence 
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                                   1,,0 10  nXXSS nn  ,                                    (2.2) 

 

is called as renewal process or recurrent process. Each nS is called as nth renewal 

time and 1 nnn SSX  as  nth  renewal period. 

 

Let‟s consider the following function defined by means of  

0)( nS    

 

                                





1

)(}:max{)(
n

nn tSItSntN .                                   (2.3) 

 

If each tSn    , then )(tN . The function (2.3)  is also called as renewal process 

in the literature. )(tN  represents the number of renewal times settled in the range 

],0( t . Therefore, )(tN   is a random variable and it is the number of the last term 

smaller than and equal to t in the sequence )( nS . From the definition (2.3), following 

requirements are obtained: 

 

                                              tSntN n )( ,                                                 (2.4) 

 

                                        1)(  nn StSntN .                                             (2.5) 

 

Thus, )(tNS  is the last renewal time coming before the t and 1)( tNS  is the first 

renewal time coming before t (Figure 2.1). 

 

 

Figure 2.1 Renewal times. 

 

In addition, a trajectory of )(tN  process is given in the Figure 2.2. 

0
 

1S

 
2S  )(tNS

 

t  
1)( tNS

 

1X  2X  1)( tNX

 
t
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           Figure 2.2 A trajectory of  N(t) process. 

 

As it can be seen, each nS  is at jumping point of the process )(tN , and the size of 

the jumps is equal to one. 

 

From the requirement (2.4)  or  (2.5), following equation is obtained for )(tN

process: 

 

                                 0,)()(})({ 1   ntFtFntNP nn ,                                   (2.6) 

 

where  1)(0 tF ,  )(tFn   is the distribution function of the  nS : 

 

                                           1,)()(  ntSPtF nn .                                             (2.7) 

 

Since ,, 21 XX  have an independent distribution function F; nF  is n-tuple 

convolution of the F. Convolution formula is explained by Definition (2.1) by means 

of the Theorem 2.1 given below. 

 

Theorem 2.1 (see, Feller, 1966). Suppose that X and Y are two continuous random 

variables, and   f  is their joint density function. In this case, the density function of 

the sum X+Y is given by the formula below: 

)(tN  

t  

0
 

1  

2
 

3  

1S  2S  
3S  
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                                          



  dyyytftf YX ),()( .                                           (2.8) 

 

This formula is as follows for independent X and Y: 

 

                                      



  dyyfytftf YXYX )()()( .                                        (2.9) 

 

Definition 2.1 (see, Feller, 1966). The integral presented in the formula (2.9) is 

called as the convolution of the functions Xf   and  Yf  and shown as )()( tftf YX  . 

This formula is also called as convolution formula. The density function of the sum 

of two independent continuous random variables according to the theorem above is 

obtained as follows by means of the convolution formula: 

 

                                                 )()()( tftftf YXYX  .                                       (2.10) 

 

If  0,1)(   tetXP t

k

 , then the renewal process )(tN  is called as 

Poisson process, because in this case the )(tN  has a Poisson distribution with 

parameter  t  . In fact, since the distribution function of the  nS  is 

 

                                          

1,!/)(1)(
1

0

 




 nkettF
n

k

tk

n

 ,

                            

(2.11) 

 

it becomes  !/)())(( ketktNP tk     according to the formula (2.6). 

 

Renewal processes are used in various fields of the science. Some of them are 

illustrated below: 

 

a)  Suppose that 0, nZn   is recurrent Markov chain and  iZ 0   . In this 

case, successive transition times to state i from a renewal process: 
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}:1min{1 iZnS n  ,   2,}:min{ 1   kiZSnS nkk .

          
(2.12) 

 

b)  In M/G/1 queueing system, the arrival times of the customers in the system 

form a Poisson process and passage times of a server from busy condition to idle 

condition form a renewal process; starting times of uninterrupted operation durations 

of a server in the queueing system G/M/1 form a renewal process. 

 

c)  In the reliability theory, average lifetime of the systems with changeable 

elements is discussed. For example, if a unit starts working at the starting time 

00 S and breaks down at time 11 XS   , it is replaced by a new unit. The new unit 

breaks down at time 212 XXS  and is replaced by another one, and this process is 

continued in indicated manner. Thus, nth renewal time is represented by nS . 

 

Following theorem represents basic characteristics of the )(tN  . 

 

Theorem 2.2 (see, Ross, 1996). )(tN   function provides following characteristics: 

a) For each  0t ,  1))(( tNP . 

b) )()(  ttN , with probability 1. 

c)  )(
1)(

 t
t

tN


, with probability 1. 

 

Proof. (a) According to the law of large numbers, )/( nSn  
with probability 1. 

Since 0   is follows that nS , accordingly the inequality  tSn    is possible 

for at least finite number of values of n. From this fact and (2.2), )(tN   is 

obtained. 

 

This characteristic can also be proved by using the Chebyshev inequality: We can 

write for each R  as: 

 

                      
nXSS

n eEeeEeeePSP nn ])[(][)()( 1
  .              (2.13) 
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From (2.13) and  1][ 1 
X

eE  , 0)(lim 


n
n

SP   is found, namely  nS  with 

probability 1.  

 

(b) As t  for each large number n, since

0)(1)())((  tFtSPntNP nn  ,   1))(lim( 


tNP
t

  is obtained. 

 

(c) According to (2.2), the inequality  1)()(  tNtN StS   , and from there the 

following relation is found 

 

                                                   
)()()(

1)()(

tN

S

tN

t

tN

S tNtN 
 .                                      (2.14) 

 

As t   ,  )(tN . Here from and from the law of large numbers, as  t   ,  

)(/)( tNS tN   is obtained. Theorem is proven. 

 

2.1.2 Laplace-Stieltjes Transform 

 

Suppose that the F  is a monotonously increasing in the range ),0[   and is a non-

negative function. In this case: 

 

                                                      




0

)()(
~

xdFesF sx
.                                         (2.15) 

 

Stieltjes integral is called as Laplace-Stieltjes (LS) transform of the F, where the s is 

a complex variable. The function (2.15) is analytical in the zone }Re:{ 0Sss   for 

the F satisfying the condition 0,)( 0 


xeMxF
xS

. 
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Now suppose that the X is a random variable that is non-negative, and the F is the 

distribution function of the X. In this case, the Laplace-Stieltjes transform  )(
~

sF   can 

be shown as the expected value of the  X: 

 

                                                        ][)(
~ sXeEsF  .                                              (2.16) 

 

This function exists for each  0s  . 

 

The following relation exists between the function (2.15) and Laplace transform 

of the  F, 



0

)()( dxxFesF sx

L   

 

                                                       )()(
~

sFssF L .                                               (2.17) 

 

Some characteristics of Laplace-Stieltjes transform are given below.  

 

a) If 21 bFaFF   , 21

~~~
FbFaF  . 

b) If 


x

t dtexH
0

)( 
 , ssFsH /)(

~
)(

~
 . 

c)      If  


x

t tdFexH
0

)()( 
 , )(

~
)(

~
 sFsH . 

d) 0,)()(  xxFxf , if its derivative exists and is a monotonously  

    increasing function,  )0()(
~

)(
~

sFsFssf  . 

e)   If )()()( 21 xFxFxH   , )(
~

)(
~

)(
~

21 sFsFsH  . 

 

As t )0( t , from the behavior of the )(tF , its Laplace-Stieltjes transform, the 

problem for finding the behavior of the )(
~

sF  as 0s )( s  is called as Abelian 

Theorem and conversely the problem for determining the behavior of the )(tF  as 

t  according to the behavior of the )(
~

sF  as 0s  is called as Tauberian 

Theorem.  
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Theorem 2.3 (Abelian theorem). If  )(lim xF
x 

  is finite, then 

 

                                                )(lim)(
~

lim
0

xFsF
xs 

 .                                             (2.18) 

 

If  n
n

a


lim   is finite and  





0
)(

n

n

nsasa   , then 

 

                                                  n
ns

asas


 lim)()1(lim
1

.                                      (2.19) 

 

The inverse of this theorem is not correct. However, the following theorem can be 

used: 

 

Theorem 2.4 (Tauberian theorem). a)  If  0)( xF   and if the following limit is 

exist: 

 

                                                      0,)(
~

lim
0




 sFs
s

,                                         (2.20) 

then,  

                                    )(
~

lim
)1(

1
)(lim

0

sFsdxxFT
s

T

T



 



 
 .                          (2.21) 

 

b) If 


)()1(lim
1

sas
s

  and  0)(lim 1  


nn
n

aan ,  then  (2.19)  is correct. 

 

The Tauberian theorem gives information about the average of the F but not about 

the F itself. 

 

2.2 Renewal Function 

 

The renewal function plays an important role in the analysis of renewal processes. 

In fact, the basic characteristics of the renewal processes are expressed by this 



18 
 

 
 

function. It is defined as the expected value of renewal times occurring in the range 

],0( t  , namely 

 

                                                    0,)]([)(  ttNEtm .                                      (2.22) 

 

There is a one-to-one correspondence between )(tm and )(tF , therefore  the )(tm  

uniquely determines the renewal process. Certain characteristics of the renewal 

function )(tm  are explained below: 

 

a) For each  0t   ,  )(tm . 

 

Proof. Since 0kX   , there is such  0   that  0)(  kXP .  Now suppose 

 

                                                  
.,1

,0














k

k

k
X

X
X                                            (2.23) 

 

In this case, the following sequence becomes a renewal process: 

 

                                               1,1  nXXS nn  .                                     (2.24) 

 

Let )(tN  corresponds to the number of renewal times until the time t of this process. 

In this case, it becomes )]([)]([ tNEtNE  . It can be seen from (2.23)  and  (2.24) 

that the sum of each  nS   takes values as  ,2,1,0   and  ,, 21 XX  are independent 

random variables, each of them takes the value 1 with the probability 

,2,1,)(  iXP i   and the value  0  with the probability 1  . Accordingly, 

nS , has binominal distribution with parameters ),( n , namely the following can be 

written: 

 

                                         
knk

n knCkSP  )1(),()(  .                                (2.25) 
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By using the total probability formula, the following is obtained: 

 

                               ).1()()1(

)()( 11



 

tSPtSP

tXSPtSP

nn

nnn

                     

(2.26) 

 

And herefrom, the following can be written: 

 

                          
)]1()([)()( 1   tSPtSPtSPtSP nnnn  .                 (2.27) 

 

Herefrom and from the formula  (2.3), the following is found: 

 

                           
)][()1())(([ tStStPntNP nn   ,

                    
(2.28)

 

 

where  ][ t   and integer part of the  t  are shown. Herefrom and from (2.25) with  

][ tk  , the following is found: 

 

                                 knknCntNP knk   ,)1(),(])([ 1  .                      (2.29) 

 

Since the expected value of   negative binominal distribution with parameters ),( k  

is /][)]([ ttNE  , /][)]([)]([)( ttNEtNEtm  , namely the )(tm  is finite. 

 

b) The renewal function can be shown in the following form: 

                   

                                                       






1

)()(
n

n tFtm ,                                             (2.30) 

 

where n-tuple convolution of  F  is shown with nF . 

 

Proof. The formula (2.30)  is obtained from the equation  (2.3)  as follows: 
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.)()()1()(

)]()([))(()(

121

1 1

1



 



























n

n

n

n

n

n

n n

nn

tFtFntnF

tFtFnntmnPtm

                     

(2.31) 

 

The )(tm  is the first moment of the )(tN . rth moment of the )(tN ,  

])([)( r

r tNEtm  , is found as follows: 

 

                                            






1

1 )]()([)(
n

nn

r

r tFtFntm .                                  (2.32) 

 

Herefrom and from the partial sums formula, the following is found 

 

                                           





1

)(])1([)(
n

n

rr

r tFnntm .                                 (2.33) 

 

Herefrom, the second moment of the )(tN  is obtained: 

 

                                        

.)()1(2)(

)()12()(

2

1

2
















n

n

n

n

tFntm

tFntm

                                   

(2.34) 

 

Herefrom, Laplace-Stieltjes transform of the  )(2 tm  is found: 

 

                              
.)(~2)(~]

)(
~

1

)(
~

[2)(~

)(
~

)(
~

2)(~

)(
~

)1(2)(~)(~

22

1

12

2

2

smsm
sF

sF
sm

sFnsFsm

sFnsmsm

n

n

n

n
























                      

(2.35) 
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From this equation, )(2 tm   is obtained: 

 

                                         

t

ydmytmtmtm
0

2 )()(2)()( .                                (2.36) 

 

For example,  since )()( ttm   for a Poisson process with parameter  , )(2 tm   

is found as follows: 

 

                                     

2

0

2 )()()(2)( ttydytttm

t

   .                  (2.37) 

 

c)  The renewal function is the unique solution of the following integral equation: 

                                              
 

t

xdFxtmtFtm
0

)()()()( .                                (2.38) 

 

Proof. Actually we can write the convolution of the functions a, and b by 

representing with  ba   : 

 

                                 

.)()()()()()(

)()()()()()(

1

11

1

tmtFtFtFtFtF

tFtFtFtFtFtm

n

n

n

n

n

n






















             

(2.39) 

 

Thus, the following equation equivalent to (4) is obtained 

 

                                              )()()()( tmtFtFtm  .                                       (2.40) 

 

Now suppose that the )(tM  is the second solution of the equation (2.30) . In this 

case, the function  )()()( tMtmth    will be the solution of the equation  

)()()( thtFth   . Here from )()()( thtFth n    is obtained. Since )(tm  for 
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each  t ,  the sequence (2.30) is convergent, accordingly while n  , 0)( tFn  . 

From there and the previous equation,  0)( th   is found, namely  )()( tmtM  . 

 

Alternative proof.  We can write it by using the expected value formula: 

 

                          
.)()()(

)()](1[

)(]/)([)]([)(

0

0

0

1















t

t

xdFxtmxF

xdFxtEN

xdFxXtNEtNEtm

                                 

(2.41) 

 

The equation (2.38) is called the renewal equation. This equation can be written as 

follows: 

                                                    

t

ydmytFtF
0

)()(
~

)( ,                                    (2.42) 

where  FF 1
~

. 

 

The following formula is obtained from (2.40) for 



0

)()(~ tdmesm st
, Laplace-

Stieltjes transform of the )(tm : 

 

                                                      
)(

~
1

)(
~

)(~

sF

sF
sm


 ,                                              (2.43) 

 

where the Laplace-Stieltjes transform of the F is represented by )(
~

sF . This formula 

is obtained by applying the Laplace-Stieltjes transform to the equation  (2.40)  and by 

using the theorem „Laplace-Stieltjes transform of the convolution of two functions is 

equal to the multiplication of their Laplace-Stieltjes transforms‟. The formula (2.43) 

is obtained from the equation (2.30). 
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From the formula (2.43), the following result is obtained: 

 

                                            





 11

1
)(~lim)(lim

0
smtm

sn
.                             (2.44) 

 

It is seen from the formula (2.43) that there is a one-to-one correspondence 

between the functions )(tF   and )(tm . Each of the formulas (2.30), (2.38), and  

(2.43)  can be used for finding the )(tm  . In the example addressed below,  the )(tm

is found for 0,1)(   tetF t
.  

 

Example 2.1  0,1)(   tetF t
. In this case, since the density function of   

nn XXS  1  is  )!1/()()( 1   nettf tn

n

   ,  )(tFn   becomes the integral of 

this function in the range ),0( t  the )(tm  function that we desire to find obtain as 

follows as required by the formula (2.30): 

 

                              

tdteedte
n

t
tm

t

tt

t

n

t
n




  


 







00 1

1

)!1(

)(
)( .

                   

(2.45) 

 

The same result can be obtained by using the formula (2.43). Since the Laplace-

Stieltjes transform of the )(tF  is  







s
sF )(

~
  , 

ss

s
sm













)/(1

)/(
)(~   , from 

there  ttm )(   is found. 

 

Thus )(tm  is a linear function for a Poisson process with parameter   . The 

inverse of this statement is also correct: Renewal process whose renewal function is 

attm )(  is a Poisson process with parameter a. Indeed, since the Laplace-Stieltjes 

transform of attm )(  is sa / , the equation (2.43) takes the following form: 

 

                                                           
s

a

sF

sF


 )(
~

1

)(
~

,

                                              

(2.46) 
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and here from 
as

a
sF


)(

~
, namely  

taetF 1)(   is found. 

 

2.3 Limit Theorems for Renewal Processes 

 

Asymptotic analysis of the renewal function )(tN  as t  is a very important 

subject in the application of the renewal theory. The proof of a few theorems related 

to the subject mentioned in this section will be given.  

 

Theorem 2.5 (The elementary renewal theorem). For the renewal function )(tm    

 

                                                        


1)(
lim 

 t

tm

t
,                                               (2.47) 

 

asymptotic equation is correct, where, if     ,  0/1    is accepted. 

 

Proof. According to Tauberian theorem, for each monotonously increasing function  

0)( tu   the following equation exists: 

 

                                                   
t

tu
su

ts

)(
lim)(~lim

0 
 .                                            (2.48) 

 

In this equation, the equation (2.47) is obtained by taking )()( tmtu    and 

considering that )()](
~

1[)(~ 1 sFsFsm  : 

 

                                    


1

)0(
~

1

)(
~

1

)(
~

lim
)(

lim
0










 FsF

sFs

t

tm

st
.                              (2.49) 

 

According to the equation (2.47), the average number of renewal within a time 

unit for large t is equal to the inverse of the average time between these renewals.  
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Theorem 2.6 (The key renewal theorem, Smith, 1954). Suppose that  F  is a non-

lattice distribution function. If )(xQ , it is a function monotonously decreasing in the 

range  ),0[    and satisfying the condition  


0
)( dxxQ  . In this case, the 

following asymptotic equation is correct: 

 

                                      





t

t
dxxQxdmxtQ

0 0

)(
1

)()(lim


.                                  (2.50) 

 

This theorem belongs to Smith and he has called it as key of renewal theorem. 

Different limit results are obtained for renewal process by selecting the function

)(xQ  for which the equation (2.50) is found. 

 

Theorem 2.7 (Blackwell‟s theorem, Blackwell, 1948).  If the F  is a non-lattice 

distribution function, for each  0h : 

 

                                                /)]()([lim htmhtm
t




.                                  (2.51) 

 

Theorem 2.8 (Smith, 1958). The key renewal theorem and Blackwell theorem are 

equivalent, namely (2.50) (2.51). 

 

Proof. For proving the requirement (2.50) (2.51) let‟s select the function )(xQ

present in (2.50) as follows: 

 

                                              








.,0

0,1
)(

ht

ht
xQ

                                           

(2.52) 

 

In this case, the left side of  (2.50) is equivalent to the following integral 

 

                                    





t

ht

htHtHxdHxmQ )()()()( .

                            

(2.53) 
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And its right side is equivalent to  )/( ah  , from there (2.51) is obtained. Thus the 

proposition (2.50) (2.51)  is correct. 

 

For proving the requirement (2.51)  (2.50), let‟s show the integral in the left 

side of (2.50) 
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(2.54) 

 

as the sum of the integrals above, and let‟s prove (2.54) can be written as follows as 

t    

 

                                
0)(1 ty ,  /)(2 Qty  ,  




0

)( dttQQ .

                          

(2.55) 

 

Since the )(tQ  is monotonously decreasing, it is  )2/()2/()(0 1 tmtQty   is 

written. From this fact and as t , since 

 

                                                0)( ttQ ,  /1/)( ttm ,                                  (2.56) 

 

we find  0)(1 ty  . Now let‟s select it in a manner that it will be 0h ,  )0(Qh   

according to given number of 0 . In this case, the following equation is correct: 
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Let‟s choose such a large t that we can obtain the following: 
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From the equation (2.51),  the following is found for  2/tu     
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(2.59) 

 

In the light of this information, the following is obtained for )(2 ty    
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(2.60) 

 

From (2.60) and (2.57) for large enough t, the following is found: 
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(2.61) 

 

Since 0   is arbitrary, it becomes /)(2 Qty  . Thus, while  t   ,   (2.50)  

is obtained: 

 

                                       
/)()()()( 21 QtytytmtQ  .                               (2.62) 

 

2.4 Delayed Renewal Process 

 

Suppose that ,, 21 XX  are independent positive random variables and that  

)()( 11 tFtXP  ,  2,)()(  ktFtXP k . In this case, the sequence  

1,1  nXXS nn    is called as delayed renewal process. The renewal 

function of this process 

 

                                 
}:max{)(,)()( 11 tSntNtENtm n  ,

                            
(2.63) 

 

provides following characteristics: 
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Overflow times of the customers in the queueing system GI/M/n/0 form a delayed 

renewal process. This system is analyzed for two different service disciplines in 

Chapter Three. 

 

2.5 Markov Renewal Process 

 

Suppose that ),,( P  is a probability space, nX  and nT  are random variables 

defined in this space and respectively taking the values },1,0{ E  and ),0[ R

for each Zn , if the sequence 2100 TTT  . )0;,( nTX nn   satisfy the 

following characteristic, it is called as Markov renewal process with state space E: 
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    (2.67) 

 

for all Zn , Eji , , and Rt . 

 

Suppose that )0;,( nTX nn  is time-homogeneous: that is, for any Eji , , and 

Rt , 

                                    )(),( 11 tQiXtTTjXP ijnnnn   ,                          (2.68) 
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independent of  n. The family of probabilities ),,(,)(  RtEjitQij  is called as a 

semi-Markov transition kernel over E. For each pair ),( ji , the following equation is 

obtained with  t : 

 

                                                       )(lim tQp ij
t

ij


 .                                              (2.69) 

 

It is easy to see from (2.67) that 

           

                                                    

1,0  
Ej

ijij pp ,                                          (2.70) 

 

namely, ijp are the transition probabilities for certain Markov chains with state space 

E. This implies that )0,( nX n  is a Markov chain with a state space E and a 

transition matrix P. On the other hand, the increments ,, 1201 TTTT   are 

conditionally independent considering the Markov chain ,, 10 XX . If the state 

space E consists of a single point, then the increments are independent and 

identically distributed, namely )0,( nTn  is a renewal process. Finally, the term 

Markov renewal process is a generalization of Markov chains and renewal processes. 

 

2.6 Semi-Markov Process 

 

Semi-Markov process was introduced independently and almost simultaneously 

by Levy (1954), and Smith (1955). Essential developments of semi-Markov process 

theory were proposed by Pyke (1961a, 1961b), and Çinlar (1969). Semi-Markov 

processes are connected to the Markov renewal process. Theory of semi-Markov 

process allows the establishment and the resolution of many models in queueing 

theory. The queueing model GI/M/n/0 with heterogeneous servers to be addressed in 

Chapter Three will be modeled by means of semi-Markov process. 

 

A stochastic process )0,( tYt  given by the following relation 
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                                                  ),[, 1 nnnt TTtXY ,                                         (2.71) 

 

is called as a semi-Markov process generated by the Markov renewal process related 

to the kernel ),,(,)(  RtEjitQij . 

 

The length of a sojourn interval ),[ 1nn TT  is a random variable whose distribution 

depends both on the state nX  being visited and the state 1nX to be entered next. The 

successive states visited form a Markov chain and, conditional on that sequence, the 

successive sojourn times are independent. These form a Markov chain called an 

embedded Markov chain of semi-Markov process. The semi-Markov process is 

irreducible if the embedded Markov chain is irreducible too. 
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CHAPTER THREE 

AN EXTENSION OF PALM’S LOSS FORMULA 

 

Conny Palm (1943) analyzed the queueing model GI/M/n/0 consisting of identical 

servers without waiting line and obtained the loss probability of the customer in the 

system. In this model, the customer arriving in the system gets service with „Ordered 

Entry‟ service discipline. Namely, the customer starts the service in the server with 

the lowest index number among the empty servers with probability 1. Takacs (1959) 

mentions from the ordered entry discipline in his article titled „On the limiting 

distribution of the number of coincidences concerning telephone exchange‟ as 

follows: “C. Palm (1943), let us suppose that the channels are numbered by 

1,2,…,r,…, and that an incoming call realizes a connection through that idle 

channel which has the lowest serial number. This assumption does not restrict the 

generality since )}({ t  is independent of the system of the handling of traffic”. 

Herein )(t is the number of customers present in the system at time t. Namely, since 

the servers are identical in Palm‟s model, the index number of the server in which the 

customer is available at any time t  is not relevant. Therefore, in the queueing model 

GI/M/n/0 with homogeneous server, there is no difference between services taken by 

customers arriving in the system with „Ordered Entry‟, „Random Entry‟, or an 

another service discipline. When the servers are heterogeneous, the number of the 

customers present in the system depends on the system of the handling of traffic, and 

in this case, the service discipline gains a great importance. 

 

In this section, the queueing model GI/M/n/0 with heterogeneous servers without 

waiting line is examined. The mentioned model is separately analyzed for both 

„Random Entry‟ and „Ordered Entry‟ service disciplines and the formula for the loss 

probability of the customer is obtained. This formula is called as „An Extension of 

Palm’s Loss Formula’. 
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3.1 Literature Review 

 

The queueing models with identical servers and no waiting line have been 

examined and analyzed extensively. Since these models have been applied in many 

areas like telecommunication networks, design of call centers, wireless networks, 

computer communication systems, and emergency service systems, they have been 

taking on great importance. The classical model with no waiting line is the M/M/n/0 

queueing system which was first examined by Erlang (1917). Erlang (1917) obtained 

the probability of being state k for the M/M/n/0 model as follows: 

 

                                      nk
k

k
P

n

k

k

k

k 

 

0,
)!/(

!/

0



,                                      (3.1) 

 

where  /  is the offered load, 1  and 
1  are the means of the interarrival 

times and service times, respectively. Formula (3.1) is known as Erlang‟s loss 

formula for nk  . This formula is of great importance for the mathematical 

modeling of communication systems and has been a source of inspiration to analyze 

more complicated systems. 

 

Konig & Matthes (1963) generalized Erlang‟s formula for dependent service 

times. Takacs (1969) analyzed the model, suggested by Erlang (1917), using 

discrete-parameter stochastic process considering the arrival and departure times of 

the customers in the system. Brumelle (1978) generalized Erlang‟s formula for 

dependent arrivals and dependent service rates and obtained the mean system waiting 

time of a customer. 

 

Palm (1943) extended the model suggested by Erlang, for the state of having 

independent interarrival times with a general distribution and examined the GI/M/n/0 

queueing model. Palm (1943) analyzed the stream of overflows in the GI/M/n/0 

queueing model and computed the loss probability of customers in the system as 

follows: 
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where, with  f  being the Laplace-Stieltjes transform of distribution of the interarrival 

time, 
kc  are 
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Takacs (1956) proved that limit distribution of being in any state was independent of 

the initial state. At the same time, he obtained similar results also when the number 

of servers was infinite. Takacs (1957) obtained Palm‟s loss formula (given by Eq. 

3.2) in a simpler way by using the method of finite difference equations. Takacs 

(1958) demonstrated that the sequence of random variables ),2,1(}{ nn , which 

is the number of customers staying in the system immediately before the arrival of 

the nth customer in the system, forms a Markov chain and obtained its one-step 

transition probabilities ][ 1 ijPp nnij     as follows: 

 

                                         


 
0

11 )()1()( tdFeep jittji

jij

 ,                                (3.4) 

 

for 1,,2,1  nj   jnjn pp ,1,  , and )(tF  is distribution of interarrival times. 

 

There are several studies which assume both the interarrival and service times 

have general distribution. In the GI/G/1 queueing model with no waiting line, Halfin 

(1981) obtained the distribution function of the interoverflow times of customers. By 

making a discrete-time analysis of the GI/G/2 loss system, Atkinson (1995) 

presented an alternative to Erlang‟s loss model when the arrival process did not well 

approximate the Poisson process. Again in another study by Atkinson (2000), the  

C2/G/1  queueing model and the C2/G/1 loss system were examined. Atkinson (2000) 

showed that, with 
Xc  being the coefficient of variation of interarrival time, when 

12 Xc , the probability of delay and the probability of loss are both increasing in 
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)(s  for the above-mentioned models, respectively. Herein )(s  is the Laplace-

Stieltjes transform of the service time distribution. 

 

The assumption of identical servers is mostly invalid in real life. The literature on 

Markovian queueing systems with heterogeneous servers is mature. Gumbel (1960) 

obtained the limit distribution of the number of customers in the system for the 

M/M/n model with infinite waiting line and heterogeneous servers. Singh (1970) 

examined the Markovian queueing system with two heterogeneous servers. Singh 

(1970) computed the performance measures of the system and compared these results 

with the homogeneous Markovian two-server model. Singh (1971) obtained the 

steady-state probabilities, the mean number of customers waiting in the queue, and 

the mean system waiting time of a customer for the queueing model with infinite 

waiting line and three heterogeneous servers. Lin & Elsayed (1978) developed a 

computer program to numerically solve multichannel Markovian ordered entry 

queueing system with heterogeneous servers and storage. Fakinos (1980) gave a 

generalization of the Erlang‟s loss formula for the case of non-identical servers. 

Kaufman (1980) analyzed the model M/G/n/0 with heterogeneous servers and 

random selection discipline. Elsayed (1983) developed two computer programs to 

determine the optimal allocation of storage spaces among three heterogeneous 

servers in a finite source queueing system.  Alpaslan & Shahbazov (1996) proved 

that 
qEW  and EW get minimum values under the condition that   n1

 for 

the M/M/n model with heterogeneous servers when ncn /21    . Kumar, 

Madheswari, & Venkatakrishnan (2007) examined Markovian queueing model 

M/M/2 with heterogeneous servers and infinite waiting line also considering the fact 

that, catastrophes fitting the Poisson distribution with a rate of   might take place. 

Alves et al. (2011) derived upper bounds for the average number in queue qL  and the 

average waiting in queue qW  of heterogeneous multi-server Markovian queues, 

M/Mi/c. Nath & Enns (1981) proved that the loss probability is minimum under the 

fastest service rule for the queueing model M/M/n/0 with heterogeneous servers. 
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There are not many studies on non-Markovian queueing systems with 

heterogeneity. Nawijn (1984) considered the two-server queueing model with 

ordered entry and finite waiting rooms. In this model, it was assumed that the service 

time was exponential and the arrival process was deterministic. Nawijn (1984) 

calculated the overflow probability for the defined queueing model by implementing 

the matrix solution. Alpaslan (2002) obtained the distribution function of the stream 

of overflows for the GI/M/2/0 system with heterogeneous servers. In this study, 

Alpaslan (2002) assume that an arriving customer takes service in the first server 

with a probability 1  and in the second server with a probability 2 , as 121  . 

Isguder & Uzunoglu-Kocer (2010) minimized the loss probability according to the 

distribution of interarrival times for the GI/M/3/0 queueing model with 

heterogeneous servers and random entry. Gontijo, Atuncar, Cruz, & Kerbache (2011) 

evaluated algorithms using kernel estimator methods to estimate the performance 

measures of the non-Markovian GI
X
/M/c/N queueing system with bulk arrivals, and 

they compared simulation results for some theoretical distributions. Isguder, 

Uzunoglu-Kocer & Celikoglu (2011) examined a GI/M/n/0 queueing system with 

random entry and heterogeneous servers, and they obtained the kernels of semi-

Markov process representing the system. 

 

Queueing systems with no waiting lines are also frequently used in the studies on 

the modeling of emergency service systems, such as fire department, the police, and 

ambulances. Mendonça & Morabito (2001) analyzed the working system of the 

ambulances positioned on the superhighway between Sao Paulo and Rio de Janeiro 

in Brazil by means of the balance equations they built for 6n  bases and 10 

different atoms, and they computed the loss probability of customers in the system. 

Atkinson, Kovalenko, Kuznetsov & Mykhalevych (2006, 2008) generalized the 

results obtained by Mendonça & Morabito (2001) for n bases and 2n atoms and 

obtained the analytical solution of the loss probability. Nevertheless, it is very 

difficult to make an exact solution as the number of equations extremely increases 

with increasing number of bases. Therefore, two heuristic methods were proposed to 

approximate stationary loss probability (Atkinson, Kovalenko, Kuznetsov & 

Mykhalevych, 2006, 2008). Moreover, the simulation approach was proposed to 
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approximate the stationary loss probability (Atkinson, Kovalenko, Kuznetsov & 

Mykhalevych, 2008). 

 

In the following section, the assumptions of the queueing model GI/M/n/0 with 

heterogeneous servers are explained. The kernels of the semi-Markov process 

representing the model are derived. 

 

3.2 Analyzing the GI/M/n/0 Queueing Model with Heterogeneous Servers Using 

Semi-Markov Process 

 

„The GI/M/n/0 queueing system with finite capacity and heterogeneous servers‟ is 

analyzed in this section. In this model, interarrival times are independent of each 

other and have distribution function )(tF  and their expected value is finite 

))](1[(
0

 


dttFa . There are n non-identical servers in the system. That is, 

their mean service times are different from each other. The service time of each 

customer in server k is a random variable represented by k  and has an exponential 

distribution with parameter ),,2,1( nkk  , i.e. 0,1)( 


tetP
t

k
k . The 

service time is independent of the arrival process. 

 

The service discipline is addressed in two different ways. Firstly, the service 

discipline takes place with the „Random Entry‟ principle. That is, the customer, who 

arrives in the system, starts the service in any of the empty servers with probability 

nll ,,2,1,/1  , where l is the number of empty servers at the arrival time of the 

customer. In the second case, however, the service discipline takes place with the 

„Ordered Entry‟ principle. That is, the customer who arrives in the system starts the 

service in the server with the lowest index number among the empty servers with 

probability 1. 

 

If all servers are busy, the customer who arrives in the system leaves the system 

without taking any service. Such customers are called „lost customers‟. The main 

problem herein is the computation of the probability of lost customers. 
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Let ,,, 210 ttt  be the arrival times of the customers, where  100 tt . Let the 

random variable nT  represent the interarrival time between two consecutive 

customers; that is  nnn ttT  1  for 0n , and 00 T . Let )(tS  be the number of 

customers in the system at time t and 0,)0(  ntSS nn , where nS  is the number 

of customers staying in the system immediately before the arrival of the nth 

customer. The semi-Markov process representing the system can be defined as

}0,)({ ttX , nStX )(  if and only if 1 nn ttt . Suppose that )(xQ  is a square 

matrix consisting of the elements )(xQij , where )(xQij  
 is the kernels of the semi-

Markov process. 

 

                                   
]),[()( 1 iSxTjSPxQ nnnij   .                                  (3.5)  

 

According to the semi-Markov process and the total probability formula, functions 

(3.5) are computed individually for „random entry‟ and „ordered entry‟ disciplines 

using equations (3.6) and (3.7) given as follows. 

 

For Random Entry Discipline: 

 

Considering 1,,1,0  ni  , and )()( ,1, xQxQ jnjn  , 
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where 
t

l

t

k
vl

v

uk

u
eqep

 
 1, . In addition, the summation under the equation 

given by (3.6) extends over all uk ‟s and vl ‟s such that nkkk u  211  and 

nlll v  211  with vu lk  , where ),( vu  pair takes the values )1,( jij   for 

10  ij . Note that an empty product of probabilities denotes 1. Furthermore, as 

only one customer arrives in the system within any interarrival time, 0)( xQij  for

1 ij . 
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For Ordered Entry Discipline: 

 

Let )1,,2,1(,,, 21  nirrr i   be the index numbers of the busy servers. Let m be 

the index number of the server with the lowest index number among the empty 

servers at the arrival time of the nth customer. Considering 1,,1,0  ni  , and 

)()( ,1, xQxQ jnjn  , 

 

                                  


x

in
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ij tdFmrrrgxQ
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1
)(  .                               (3.7) 

 

 The summation under the equation given by (3.7) extends over all 
ir ‟s with 

nrrr i  211  and  },,,{},,2,1{min 21 irrrnm  . Note that 

)(),( 0 mgmrg  . On the right the function g is given by 

 

                             vu lllkkki qqqpppmrrrg 
2121

),,,,( 21 ,                            (3.8) 

 

where the summation of the right of equation (3.8) extends over all 
uk ‟s and 

vl ‟s in 

such a way that 
ukkk  21
 and 

vlll  21
  from the set },,,,{ 21 mrrr i  with 

vu lk  , where ),( vu  pair takes the values )1,( jij   for 10  ij  and 

t

l

t

k
vl

v

uk

u
eqep

 
 1, . Note that an empty product of probabilities denotes 1. In 

addition, as only one customer arrives in the system within any interarrival time, 

0)( xQij  for 1 ij . The summation under the integral in formula (3.7) allows 

assignment to the server with the lowest index number among the empty servers. In 

this way, the ordered entry service discipline is realized. 

 

Square matrix nsq 0)]([  resulting from the Laplace-Stieltjes transform of functions 

njixQij ,,1,0,,)(   is as follows: 

 



39 
 

 
 

                  
,)()()()(

)()()()(

0)()()(

00)()(

)(

,12,11,10,1

,12,11,10,1

121110

0100





























sqsqsqsq

sqsqsqsq

sqsqsq

sqsq

sq

nnnnn

nnnnn











                        

(3.9) 

 

where 

 

                      ),,1,0,(0}Re{,)()(
0

njisxdQesq ij

st

ij  


 .                        (3.10) 

 

}0,{ nSn  is an embedded Markov chain with probabilities ijp  of the semi-

Markov process }0),({ ttX  with the state space ),,1,0( nD  . This Markov chain 

is irreducible and aperiodic. In addition, when x adequately approximates infinity, 

ijij
x

pxQ 


)(lim , and  n

ijpP 0][  is a stochastic matrix (Pyke, 1961a). On the other 

hand, according to the Tauberian theorem 2.4(12) (see, Widder, 1946), it is written as 

)0(qP  . 

 

Theorem 3.1 When assumed that the mean service times of servers are equal 

)( 21   n  and for x  , formulae (3.6) and (3.7) yield formula 

(3.4). 

 

Proof. Depending on the the assumption   n21 , formulae (3.6) and 

(3.7) are written as follows for 1,,2,1  ni   and 10  ij , respectively: 

 

                        












x

jitjn

ji

tjn

jn

i

ij tdFeexQ
0

1

1

1

)()1()()(
)(

1
)(  .                         (3.11) 
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 





 



x

jittji

j

n

in

i

x

n

i

ij

tdFee

tdFgggxQ
n
i

0

11

0
  terms

.)()1()()(
)(

1

)(])()()([
)(

1
)(



  


                        

(3.12) 

 

In the last two equations obtained above, after some algebraic operations have been 

made and when x  

 

                          







0

11 )()1()()(lim tdFeepxQ jittji

jijij
x

 .                      (3.13) 

 

The proof has been completed. 

 

Corollary 3.1 Formulae (3.6) and (3.7) are the generalizations of Takacs‟s formula 

(3.4) for „the GI/M/n/0 queueing model with heterogeneous servers‟ for random 

entry and ordered entry disciplines, respectively. 

 

Theorem 3.2 (see, Çinlar, 1975). Let X Markov chain with state space 

),,1,0( nD   and transition matrix P. Suppose X  is irreducible and aperiodic. 

Then all states of the Markov chain X are recurrent non-null, and steady-state 

probabilities
 j  are the unique nonnegative solution of following linear equations 

 

                                               
Djp

i

ijij 




,
0

 ,                                          (3.14) 

 

                                                           
1

0




j

j .    
                                               

(3.15) 

 

The queueing model GI/M/3/0 with heterogeneous servers is examined for 

random entry and ordered entry disciplines in Subsection 3.2.1 and Subsection 3.2.2 
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respectively. Equations (3.14) and (3.15) given in Theorem 3.2 are solved for 

addressed queueing models, and also steady-state probabilities and the loss 

probability are computed. 

 

3.2.1 The Model GI/M/3/0 with Random Entry 

 

In this subsection, the way of computing formula (3.6) is explained in detail. The 

loss probability of the customer in the system is computed for 3n  by means of 

Laplace-Stieltjes transforms of the kernel functions of the semi-Markov process. 

 

Model assumptions are the same as explained in 3.2. The service discipline is 

random entry and the number of servers is limited to 3. Kernel functions 

)3,2,1,0,;)(( jixQij  of the semi-Markov process representing the system are 

easily obtained by using the formula (3.6). Kernel functions and Laplace-Stieltjes 

transforms of these functions for the model GI/M/3/0 with random entry are obtained 

as follows. 

 

For )(00 xQ , considering )1,0(),()010,0()1,(),(  vujijvu  in the 

formula (3.6) , it is written as   


xx

l

l tdFqqqtdFqxQ
0

321
0

31
3

1

00 )()(
3

1
)(

)(

1
)(

1

1
. 

Herefrom, the following is obtained: 

 

                   



x

ttt
tdFeeexQ

0
00 )()]1()1()1[(

3

1
)( 321 

.
                      

(3.16) 

 

Thus, the Laplace-Stieltjes transform of )(00 xQ  represented by )(00 sq  is obtained as 

follows: 

 

                    )]()()([
3

1
)()( 32100   sfsfsfsfsq .                       (3.17)      
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For )(01 xQ , considering )0,1(),()110,1()1,(),(  vujijvu in the 

formula (3.6), it is written as   


xx

k

k tdFppptdFpxQ
0

321
0

31
3

1

01 )()(
3

1
)(

)(

1
)(

1

1
. 

Herefrom, the following is obtained:  

 

                                 



x

ttt
tdFeeexQ

0
01 )()(

3

1
)( 321 

.
                               

(3.18) 

 

Thus, the Laplace-Stieltjes transform of )(01 xQ , represented by
 

)(01 sq
 
is obtained as 

follows: 

 

                           )]()()([
3

1
)( 32101   sfsfsfsq .                          (3.19)      

 

For )(10 xQ , considering )2,0(),()011,0()1,(),(  vujijvu  in the 

formula (3.6), it is written as  



x

ll

ll tdFqqxQ
0

31
3

2

10 )(
)(

1
)(

21

2"
. More clearly, it is 

written as  
x

tdFqqqqqqQ
0

32312110 )()(
3

1
. Herefrom, the following is obtained: 

 

            









x

tt

tttt

tdFee

eeee
xQ

0
10

.)()]1)(1(

)1)(1()1)(1[(

3

1
)(

32

3121





                    
(3.20) 

 

Thus, the Laplace-Stieltjes transform of )(10 xQ  represented by )(10 sq  is obtained as 

follows: 

 

         
.)]()()([

3

1

)]()()([
3

2
)()(

323121

32110









sfsfsf

sfsfsfsfsq

            (3.21)     
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For )(11 xQ , considering )1,1(),()111,1()1,(),(  vujijvu  in the 

formula (3.6), it is written as  






x

lk
l
k

lk tdFqpxQ
0

31
31

3

2

11

11

1

1

11
)(

)(

1
)( . More clearly, it is 

written as  
x

tdFqpqpqpqpqpqpQ
0

23133212312111 )()(
3

1
. Herefrom, the 

following is obtained: 

 

       









x

tttttt

tttttt

tdFeeeeee

eeeeee
xQ

0
11

.)()]1()1()1(

)1()1()1([

3

1
)(

231332

123121





      
(3.22) 

 

Thus, the Laplace-Stieltjes transform of )(11 xQ  represented by
 

)(11 sq
 is obtained as 

follows: 

 

            
.)]()()(

)()()([
3

2
)(

323121

32111









sfsfsf

sfsfsfsq
              (3.23)     

  

For )(12 xQ , considering )0,2(),()211,2()1,(),(  vujijvu  in the 

formula (3.6), it is written as  



x

kk

kk tdFppxQ
0

31
3

2

12

21

21
)(

)(

1
)( . More clearly, it is 

written as  
x

tdFppppppQ
0

32312112 )()(
3

1
. Herefrom, the following is 

obtained: 

 

                     



x

tttttt
tdFeeeeeexQ

0
12 .)()][

3

1
)( 323121 

                    
(3.24) 

 

Thus, the Laplace-Stieltjes transform of )(12 xQ  represented by )(12 sq
 is obtained as 

follows: 
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.)]()()([

3

1
)( 32312112   sfsfsfsq               (3.25)      

 

For
 

)(20 xQ , considering )3,0(),()012,0()1,(),(  vujijvu  in the 

formula (3.6), it is written as

 
  



xx

lll

lll tdFqqqtdFqqqxQ
0

321
0

31
3

3

20 )()(
)(

1
)(

321

321
. 

Herefrom, the following is obtained: 

 

                            



x

ttt
tdFeeexQ

0
20 .)()1)(1)(1()( 321 

                         
(3.26) 

 

Thus, the Laplace-Stieltjes transform of )(20 xQ  represented by
 

)(20 sq
 
is obtained as 

follows: 

 

        
.)()()(

)()()()()()(

3213231

2132120









sfsfsf

sfsfsfsfsfsq
          (3.27)      

 

For )(21 xQ , considering )2,1(),()112,1()1,(),(  vujijvu  in the 

formula (3.6), it is written as  






x

lk
ll

k

llk

vu

tdFqqpxQ
0

31
31

3

3

21

21

1

211
)(

)(

1
)( . More clearly, it is 

written as  
x

tdFqqpqqpqqpQ
0

21331232121 )()( . Herefrom, the following is 

obtained: 

 

      









x

tttttt

ttt

tdFeeeeee

eee
xQ

0
21

.)()]1)(1()1)(1(

)1)(1([
)(

213312

321





       
(3.28) 

 

Thus, the Laplace-Stieltjes transform of )(21 xQ  represented by
 

)(21 sq  is obtained as 

follows: 
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).(3)]()(

)([2)()()()(

3213231

2132121









sfsfsf

sfsfsfsfsq
        (3.29)      

 

For )(22 xQ , considering )1,2(),()212,2()1,(),(  vujijvu  in the 

formula (3.6), it is written as  






x

lk
l

kk

lkk

vu

tdFqppxQ
0

31
31

3

3

22

1

21

121
)(

)(

1
)( . More clearly, it is 

written as  
x

tdFqppqppqppQ
0

13222132122 )()( . Herefrom, the following is 

obtained: 

 

                        









x

ttt

tttttt

tdFeee

eeeeee
xQ

0
22

.)()]1(

)1()1([
)(

132

231321





                     
(3.30) 

 

Thus, the Laplace-Stieltjes transform  of )(22 xQ  represented by
 

)(22 sq
 is obtained as 

follows: 

 

                       
).(3)(

)()()(

32132

312122









sfsf

sfsfsq
                          (3.31)     

 

 

For )(23 xQ , considering )0,3(),()312,3()1,(),(  vujijvu  in the 

formula (3.6), it is written as   


xx

kkk

kkk tdFppptdFpppxQ
0

321
0

31
3

3

23 )()(
)(

1
)(

321

321
 . 

Herefrom, the following is obtained: 

 

                                        



x

ttt
tdFeeexQ

0
23 .)()( 321 

                                    
(3.32) 

 

Thus, the Laplace-Stieltjes transform  of )(23 xQ  represented by
 

)(23 sq is obtained as 

follows: 
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).()( 32123   sfsq                                        (3.33)     

 

Since only one customer arrives in the system in any interarrival time, considering 

0)( xQij  for 1 ij , 0)(02 xQ , 0)(03 xQ , and 0)(13 xQ  are obtained. 

Additionally, as required by the formula (3.6), kernel functions of )(,3 xQ j are equal 

to )(,2 xQ j , namely, )()( ,2,3 xQxQ jj   can be written. Thus, for  3,2,1,0j , the 

Laplace-Stieltjes transforms of kernel functions of the semi-Markov process )(,2 xQ j  

are as follows: 

 

                                    3,2,1,0,)()( 23  jsqsq jj .                                       (3.34) 

     

One-step transition probabilities for the queueing model GI/M/3/0 with random 

entry are computed by means of kernel functions of the semi-Markov process 

formulated above or Laplace-Stieltjes transforms of kernel functions. According to 

Theorem 2.4 (Tauberian theorem); considering )(lim)(lim
0

sqxQ ij
s

ij
x 

 , one-step 

transition probabilities )(lim
0

sqp ij
s

ij


 )3,2,1,0,( ji  for the related model are 

obtained as follows: 

 

                                  
)],()()([

3

1
1 32100  fffp                                     (3.35) 

 

                                      
)],()()([

3

1
32101  fffp                                                (3.36) 

 

                          
)],()()([

3

1

)]()()([
3

2
1

323121

32110









fff

fffp

                        (3.37) 
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)],()()(

)()()([
3

2

323121

32111









fff

fffp
                       (3.38) 

 

                                   
)],()()([

3

1
32312112   fffp                           (3.39) 

 

                       
),()()(

)()()()(1

3213231

2132120









fff

ffffp
                        (3.40) 

 

                   
),(3)](

)()([2)()()(

32132

312132121









ff

fffffp
                       (3.41) 

 

              
),(3)()()( 32132312122   ffffp                 (3.42) 

 

                                                           
),( 32123   fp                                                   (3.43) 

 

                                                        
,0,0,0 130302  ppp                                                (3.44) 

 

                                                             
.3,2,1,0,23  jpp jj                                                 (3.45) 

 

Using the facts given by Theorem 3.2, by means of one-step transition 

probabilities explained above )3,0,(  jipij , steady-state probabilities 

)3,2,1,0( jj for the queueing model GI/M/3/0 with random entry are obtained as 

follows as the solution of linear equation system given by (3.14): 

 

               
)

3

2
1(

3

1
)

3

1

3

1
1)(21(

)32(
3

1
)31)(

3

2

3

2
1(

32122132

32123221

0

ffffffff

ffffffff





 ,             (3.46) 
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)

3

2
1(

3

1
)

3

1

3

1
1)(21(

)21(
3

1

32122132

321

1

ffffffff

fff





 ,            (3.47) 

 

               
)

3

2
1(

3

1
)

3

1

3

1
1)(21(

9/)1(

32122132

321

2

ffffffff

fff




 ,             (3.48) 

 

               
)

3

2
1(

3

1
)

3

1

3

1
1)(21(

9/

32122132

321

3

ffffffff

fff



 ,           (3.49) 

 

where ),()()(),()()( 32312123211   ffffffff

 

and 

).( 3213   ff  

 

Probabilities 210 ,,   and 3  denote the probability of being idle, the probability 

that only one server is busy in the system, the probability that two servers are busy in 

the system, and the probability that all servers are busy, respectively.  As no waiting 

line is available in the system, the probability that all servers are busy is equivalent to 

the probability of loss of customers in the system. That is, formula (3.49) is equal to 

the loss probability. 

 

Under the condition   321 , the formula of loss probability given by 

(3.49) satisfies Palm‟s loss formula (3.2) for n=3.  

 

It must be noted that the formula (3.49) is obtained by Isguder & Uzunoglu-Kocer 

(2010). 
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3.2.2 The Model GI/M/3/0 with Ordered Entry 

 

In this subsection, the computation procedure of the formula (3.7) is explained in 

detail. The loss probability of the customer in the system is computed for 3n  by 

means of Laplace-Stieltjes transforms of kernel functions of the semi-Markov 

process. 

 

Model assumptions are as explained in Section 3.2. The service discipline is an 

ordered entry and the number of servers is limited to 3. Kernel functions  

)3,2,1,0,;)(( jixQij  of the semi-Markov process representing the system are 

easily obtained by using the formula (3.7) together with (3.8). Kernel functions and 

their Laplace-Stieltjes transforms for the model GI/M/3/0 with ordered entry are 

obtained as follows. 

 

)(00 xQ is written as  
xx

tdFmgtdFmrgxQ
00

03

0

00 )()()(),(
)(

1
)(  by using the 

formula (3.7). By using the equation (3.8), it is obvious that 1)( qmg  . Considering

)1,0(),()010,0()1,(),(  vujijvu , the following is obtained: 

 

                                 



x

t
x

tdFetdFqxQ
00

100 )()1()()( 1 .
                               

(3.50) 

 

Herefrom, the Laplace-Stieltjes transform of )(00 xQ  represented by
 

)(00 sq
 

is 

obtained as follows: 

 

                                              )()()( 100  sfsfsq .                                       (3.51)      

 

)(01 xQ is written as  
xx

tdFmgtdFmrgxQ
00

03

0

00 )()()(),(
)(

1
)(  by using the 

formula (3.7). By using the equation (3.8), it is obvious that 1)( pmg  . Considering

)0,1(),()110,1(),(  vuvu , the following is obtained: 
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                                         



x

t
x

tdFetdFpxQ
00

101 )()()( 1 .
                               

(3.52) 

 

Herefrom, the Laplace-Stieltjes transform )(01 sq of )(01 xQ  is obtained as follows: 

 

                                                       )()( 101  sfsq .                                          (3.53) 

 

)(10 xQ is written as  
xx

tdFmrgtdFmrgxQ
0

1
0

13

1

10 )(),(
3

1
)(),(

)(

1
)(  by using the 

formula (3.7). By using the equation (3.8), it is obvious that

)1,3()1,2()2,1(),(

1

1
}3,2,1min{

31

1 gggmrg

rm
m

r








.  

Considering )2,0(),()011,0(),(  vuvu  , it can be written as follows:  

 
xx

tdFqqqqtdFqqqqqqxQ
0

1321
0

13122110 )()2(
3

1
)()(

3

1
)( . Herefrom, the 

following is obtained: 

 

                





x
tttt

tdFeeeexQ
0

10 )()]1)(1()1)(1(2[
3

1
)( 3121 

.
              

(3.54)  

 

Herefrom, the Laplace-Stieltjes transform )(10 sq of )(10 xQ ‟in LS is obtained as 

follows:     

                                                           

           
).(

3

1
)(

3

2
)(

3

1

)(
3

2
)()()(

31213

2110









sfsfsf

sfsfsfsq

           (3.55) 
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)(11 xQ is written as  
xx

tdFmrgtdFmrgxQ
0

1
0

13

1

11 )(),(
3

1
)(),(

)(

1
)(  by using the 

formula (3.7). By using the equation (3.8), it is obvious that

)1,3()1,2()2,1(),(

1

1
}3,2,1min{

31

1 gggmrg

rm
m

r








.  

Considering )1,1(),()111,1(),(  vuvu , it is computed as 







11

11

11

}2,1{,

1221)2,1(

lk
lk

lk qpqpqpg  . )1,2(g  and )1,3(g  are computed similarly. Thus, 

it can be written as  
x

tdFqpqpqpqpxQ
0

1331122111 )()22(
3

1
)( . Herefrom, the 

following is obtained:   

 

              











x

tttt

tttt

tdFeeee

eeee
xQ

0
11

).()]1()1(

)1(2)1(2[

3

1
)(

1331

1221





        

(3.56) 

 

Herefrom, the Laplace-Stieltjes transform )(11 sq of )(11 xQ ‟in LS is obtained as 

follows: 

                                                              

                    
.)(

3

2
)(

3

4

)(
3

1
)(

3

2
)()(

3121

32111









sfsf

sfsfsfsq

                    (3.57) 

                    

)(12 xQ is written as   
xx

tdFmrgtdFmrgxQ
0

1
0

13

1

12 )(),(
3

1
)(),(

)(

1
)(  by using the 

formula (3.7). By using the equation (3.8), it is obvious that 

)1,3()1,2()2,1(),(

1

1
}3,2,1min{

31

1 gggmrg

rm
m

r








.  
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Considering )0,2(),()211,2(),(  vuvu , it is computed as

21

}2,1{21

21
1)2,1( ppppg

kk

kk


  . )1,2(g  and )1,3(g  are computed similarly. Herefrom, 

it can be written as  
x

tdFppppxQ
0

312112 )()2(
3

1
)( . Herefrom, the following is 

obtained:   

 

                               





x
tttt

tdFeeeexQ
0

12 )()2(
3

1
)( 3121 

.
                          

(3.58) 

 

Herefrom, the Laplace-Stieltjes transform )(12 sq  of )(12 xQ is obtained as follows: 

                  

                       )(
3

1
)(

3

2
)( 312112   sfsfsq .                             (3.59) 

                    

)(20 xQ is written as  
xx

tdFmrrgtdFmrrgxQ
0

21
0

213

2

20 )(),,(
3

1
)(),,(

)(

1
)(  by using 

the formula (3.7). By using the equation (3.8), 

)1,3,2()2,3,1()3,2,1(),,(

}3,2,1min{
31

21

21

gggmrrg

irm
m

rr








 is found. Considering

)3,0(),()012,0(),(  vuvu , it is computed as 

321

}3,2,1{321

321
1)3,2,1( qqqqqqg

lll

lll


  . )2,3,1(g  and )1,3,2(g  are computed similarly. 

Thus, 
x

tdFqqqxQ
0

32120 )(3
3

1
)(  can be written. Herefrom, the following is obtained:   

 

                          



x

ttt
tdFeeexQ

0
20 )()1)(1)(1()( 321 

.
                         

 (3.60) 

 

Herefrom, the Laplace-Stieltjes transform )(20 sq of )(20 xQ  is obtained as follows:      
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).()()(

)()()()()()(

3213231

2132120









sfsfsf

sfsfsfsfsfsq
           (3.61)      

               

)(21 xQ is written as 
x

tdFmrrgxQ
0

2121 )(),,(
3

1
)(  by using the formula (3.7). By 

using the equation (3.8), )1,3,2()2,3,1()3,2,1(),,(

}3,2,1min{
31

21

21

gggmrrg

irm
m

rr








 is 

found. Considering )2,1(),()112,1(),(  vuvu  , it is computed as 

213312321

}3,2,1{
}3,2,1{

21

1

211
)3,2,1( qqpqqpqqpqqpg

vu lk
ll
k

llk  





 . )2,3,1(g  and )1,3,2(g  are 

computed  similarly. Thus,  
x

tdFqqpqqpqqpxQ
0

21331232121 )()(3
3

1
)(  can be 

written.  Herefrom, the following is obtained: 

 

             











x

ttt

tttttt

tdFeee

eeeeee
xQ

0
21

).()]1)(1(

)1)(1()1)(1([
)(

213

312321





             (3.62) 

 

Herefrom, the Laplace-Stieltjes transform )(21 sq  of )(21 xQ is obtained as follows:   

                

   .)(3)]()(

)([2)()()()(

3213231

2132121









sfsfsf

sfsfsfsfsq

  

 (3.63) 

                    

)(22 xQ  is written as 
x

tdFmrrgxQ
0

2122 )(),,(
3

1
)(  by using the formula (3.7). By 

using the equation (3.8), )1,3,2()2,3,1()3,2,1(),,(

}3,2,1min{
31

21

21

gggmrrg

irm
m

rr








 is 

found. Considering )1,2(),()212,2(),(  vuvu , it is computed as

132231321

}3,2,1{
}3,2,1{

1

21

121
)3,2,1( qppqppqppqppg

vu lk
l
kk

lkk  





. )2,3,1(g  and )1,3,2(g  are 
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computed similarly. Thus,   
x

tdFqppqppqppxQ
0

13223132122 )()(3
3

1
)(  can be 

written.  Herefrom, the following is obtained:  

  

                     











x

ttt

tttttt

tdFeee

eeeeee
xQ

0
22

).()]1(

)1()1([
)(

132

231321





                     (3.64) 

 

Herefrom, the Laplace-Stieltjes transform )(22 sq  of )(22 xQ  is obtained as follows:      

             

                ).(3

)()()()(

321

32312122









sf

sfsfsfsq
                  (3.65) 

 

It is written as 
x

tdFmrrgxQ
0

2123 )(),,(
3

1
)(  . By using the equation (3.8),

)1,3,2()2,3,1()3,2,1(),,(

}3,2,1min{
31

21

21

gggmrrg

irm
m

rr








 is found. Considering

)0,3(),()312,3(),(  vuvu , it is computed as 

321

}3,2,1{321

321
1)3,2,1( ppppppg

kkk

kkk


 . )2,3,1(g  and )1,3,2(g are computed 

similarly. Thus, 
x

tdFpppxQ
0

32123 )(3
3

1
)(  can be written.  Herefrom, the following 

is obtained: 

  

                                       



x

ttt
tdFeeexQ

0
23 )()( 321 

.
                                     

(3.66) 

 

Herefrom, the Laplace-Stieltjes transform )(23 sq  of )(23 xQ  is obtained as follows:  

 

                                      ).()( 32123   sfsq                                        (3.67) 
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Since only one customer arriving in the system within any interarrival time, 

considering 0)( xQij  for 1 ij , 0)(02 xQ , 0)(03 xQ  and 0)(13 xQ  are 

obtained. Additionally, as required by the formula (3.7), kernel functions of )(,3 xQ j  

are equal to )(,2 xQ j , namely )()( ,2,3 xQxQ jj   can be written. Thus, the Laplace-

Stieljes transform of kernel functions of the semi-Markov process of )(,2 xQ j  for 

3,2,1,0j  are as follows: 

 

                                          
3,2,1,0,)()( 23  jsqsq jj .                                     (3.68) 

         

One-step transition probabilities for the queueing model GI/M/3/0 with ordered 

entry are computed by means of kernel functions of the semi-Markov process 

formulated above or Laplace-Stieltjes transforms of kernel functions. According to 

Theorem 2.4‟e (Tauberian theorem); considering )(lim)(lim
0

sqxQ ij
s

ij
x 

 , one-step 

transition probabilities )(lim
0

sqp ij
s

ij


 )3,2,1,0,( ji  for the corresponding model 

are obtained as follows: 

 

                                                ),(1 100 fp                                                  (3.69) 

 

                                                             ),( 101 fp                                                                (3.70) 

 

     ),(
3

1
)(

3

2
)(

3

1
)(

3

2
)(1 312132110   fffffp                (3.71) 

 

       ),(
3

2
)(

3

4
)(

3

1
)(

3

2
)( 312132111   fffffp                  (3.72) 

 

                                    ),(
3

1
)(

3

2
312112   ffp                                             (3.73) 
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),()()(

)()()()(1

3213231

2132120









fff

ffffp
                        (3.74) 

 

             
),(3)](

)()([2)()()(

32132

312132121









ff

fffffp
                       (3.75) 

 

      ),(3)()()( 32132312122   ffffp                   (3.76) 

 

                                                     ),( 32123   fp                                                   (3.77) 

 

                                                   ,0,0,0 130302  ppp                                               (3.78) 

 

                                                       .3,2,1,0,23  jpp jj                                                  (3.79) 

 

Using the facts given by Theorem 3.2, by means of one-step transition 

probabilities )3,0,(  jipij computed above, steady-state probabilities 

)3,2,1,0( jj  for the queueing model GI/M/3/0 with ordered entry are obtained as 

follows as the solution of linear equation system given by (3.14): 

 

    

)](2)(1)][()(23[

)](1)[()](1)[(

)]()(2)[(

)]()(1)[()]()(21)[(

)]()(21)][()(2)(3[

)]()(26)[()(33

3213232

321231

3121321

31212131

32321321

312132132

0





























ffff

ffff

fff

ffffff

fffff

ffff

,     (3.80) 
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)](2)(1)][()(23[

)](1)[()](1)[(

)]()(2)[(

)](2)()()(1)[(3

3213232

321231

3121321

3212131211
1



















ffff

ffff

fff

fffff ,      (3.81) 

 

 

        

)](2)(1)][()(23[

)](1)[()](1)[(

)]()(2)[(

)](1)][()(2)[(

3213232

321231

3121321

32131211
2



















ffff

ffff

fff

ffff ,          (3.82) 

 

 

        

)](2)(1)][()(23[

)](1)[()](1)[(

)]()(2)[(

)]()(2)[()(

3213232

321231

3121321

31213211
3



















ffff

ffff

fff

ffff
.          (3.83) 

 

Probabilities 210 ,,   and 3  denote the probability of being idle, the probability 

that only one server is busy in the system, the probability that two servers are busy in 

the system, and the probability that all servers are busy, respectively.  As no waiting 

line is available in the system, the probability that all servers are busy is equivalent to 

the probability of loss of customers in the system. That is, formula (3.83) is equal to 

the loss probability. 

 

Under the condition   321 , the formula of loss probability given by 

(3.83) satisfies Palm‟s loss formula (3.2) for n=3. 

 

It must be noted that the formula (3.83) is obtained by Isguder & Celikoglu 

(2010). 

 

The most important problem is the minimization of the loss probability of 

customer in the queueing system addressed in this study and similar queueing 

systems. Alpaslan (1996), Saglam & Shahbazov (2007) minimized the loss 
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probability of the customer in the system for „the queueing model GI/M/2/0 with 

heterogeneous servers‟. Isguder & Uzunoglu-Kocer (2010) minimized the loss 

probability for „the queueing model GI/M/3/0 with random entry‟ according to 

arrival flow. Isguder & Celikoglu (2012) minimized the loss probability for „the 

queueing model GI/M/3/0 with ordered entry‟ according to the arrival flow. In the 

mentioned studies, it was proven by using the inequality 
asesf )(  obtained from 

Jensen equation that the loss probability is minimum when  interarrival time 

distribution is selected as deterministic among the distributions which has the same 

mean. 

  

In the following subsequent section, the theorem given by Isguder & Celikoglu 

(2012) related to the minimization of the loss probability for „the queueing model 

GI/M/3/0 with ordered entry‟ is explained in detail.  

 

3.2.3 Optimization of Loss Probability According to Arrival Process 

 

Let aH  be a class of distribution functions F of the interarrival times, the mean of 

which is constant a. Let )(FPloss  be the loss probability for the GI/M/3/0 queueing 

system with heterogeneous servers and ordered entry, and aHF . Assume that )(tD  

is the deterministic distribution, in which 1)( tD  for at   and 0)( tD  for at  . 

It is clearly seen here that aHD  and 
ase

 are the Laplace-Stieljes transforms of 

)(tD .  

 

Theorem 3.3 (Isguder & Celikoglu, 2012). When the distribution of interarrival 

times fits the deterministic distribution )( aHD  among all distribution functions 

included in class aH , loss probability )(FPloss  becomes minimum, that is, 

)()(min DPFP lossloss
HF a




. 

 

Proof. To minimize the loss probability, let formula (3.83) be arranged in the 

following way: 
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           )2)(23()1)(23(

)1)(()1)(()2)((

)2(
)(

123322332

3122131312123

13121231

ffffff

fffffff

ffff
FPloss






 .             (3.84) 

 

where )( 11 ff  , )( 22 ff  , )( 33 ff  , )( 2112   ff , )( 3113   ff ,

)( 3223   ff  and )( 321123   ff . 

 

The numerator of formula (3.84), )2( 13121231 ffff  , is written as follows by means of 

inequality 
asesf )(  obtained from the Jensen‟s inequality (See, Shahbazov, 2005): 
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The following inequality is obtained by applying inequality 
asesf )( to the 

Laplace-Stieljes transforms included in the denominator of formula (3.84), 

respectively:  

 

   )21)(23(

)1()1(

)2()2)(23(

)1)(23()1)((

)1)(()2)((

)()(

)()(

)()()(

12332

2332312

2131312123

3212132

321231

3121321























aaaa

aaaa

aaa

eeee

eeee

eeefff

fffff

fffff

  (3.86) 

 

where 

                                              
2)( 22

 a
eff


 ,                                          (3.87) 
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 ,                                         (3.88) 
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a
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a
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If inequalities (3.85) and (3.86) are inserted into their appropriate places in the 

numerator and denominator of formula (3.84) respectively, the following inequality 

is obtained: 
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As the Laplace-Stieljes transform of )(tD  is 
ase

, the right side of the last inequality 

obtained above has the value of )(DPloss . Based on this, it is obtained that 

)()(min DPFP lossloss
HF a




. The proof has been completed. 

 

Corollary 3.2 The loss probability becomes minimum with probability 1 when a 

deterministic distribution is selected among the interarrival distributions with the 

same mean for „the queueing model GI/M/3/0 with ordered entry‟. 

  

It is not possible to minimize the loss probability with the method addressed 

above as the number of servers is increased. The results obtained by Theorem 3.3 

will be supported with simulation study and it will be proven by simulation 

optimization in Chapter Four that, according the arrival input, the optimal condition 

is reached again by deterministic distribution when the number of servers increases.  
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In the subsequent section, the Laplace-Stieljes transform of the distribution of the 

stream of overflows is obtained by analyzing the stream of overflows. Also, the loss 

probability is formulated directly depending on determinant without a need for the 

solution of the equation system taking place in Theorem 3.2 and given by (3.14). 

 

3.3 Analyzing the Stream of Overflows from GI/M/n/0 with Heterogeneous 

Servers 

 

Let the instants of overflows be ,,, 210  , where  100   and 

1 kkkW   for 1k . Sequence }1,{ kk  is called „stream of overflows‟. 

Interoverflow times 
1W  and 2, kWk , are independent and nonnegative random 

variables and equal to the first passage time from 0 to n and the recurrence time to n 

in the semi-Markov process }0,)({ ttX , respectively. Therefore, sequence 

}1,{ nWn  
denotes the interarrival times of the delayed renewal process. For ease, 

they are written as 10 WT n   and 2,  kWT knn , where nT0  and nnT  are the first 

passage time from 0 to n and the recurrence time to n, respectively. )(0 sn  and nn  

are the Laplace-Stieltjes transforms of  nT0  and nnT , respectively. Çinlar & Disney 

(1967) analyzed the stream of overflows for a finite queueing model with a recurrent 

arrival process and a single exponential server and obtained the Laplace-Stieltjes 

transforms of the interoverflow times that were independent and had an identical 

distribution. 

 

Pyke (1961b) proved that the inverse of matrix )]([)( sqsqI ijij    was present 

under 0}Re{ s  and obtained the results given by (3.94) and (3.95) for the Laplace-

Stieljes transform of the distribution of the first passage times and the Laplace-

Stieljes transform of the distribution of recurrence times: 

 

                                                 )(/)()( 00 srsrs nnnn  ,                                (3.94) 

 

                                                   
)(/1)(1 srs nnnn  ,                                       (3.95) 
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where nr0   and  nnr  are the (n,0)th and (n,n)th entries of matrix  
1)]([  sqI , 

respectively. Note that ij  is the well-known Kronecker delta. Using the formula of 

the inverse of the matrix, we obtain the equations for Laplace-Stieljes transform of 

the first passage time distribution and Laplace-Stieljes transform of the recurrence 

time distribution as given in (3.96) and (3.97), respectively: 

                              

                                               )(/)()( 00 sDsDs nnnn  ,                                         (3.96) 

 

                                            )(/)(1)(1 sDsqs nnnn  ,                                    (3.97) 

 

where nD0  and nnD  are the cofactors of the (n,0)th and (n,n)th entries of matrix  

)(sqI  , respectively. On the other hand, the mean recurrence time to n is found as 

follows by means of (3.97): 

 

                                      )0(/),,,(][ 10 nnnnn DmmmDTE  ,                               (3.98) 

 

where, for ni ,2,1 , im  is the expected value of the sojourn time in state i and 

),,,( 10 nmmmD   is the determinant of matrix )]0([ qI  , the 0th column of which is 

vector ),,,( 10


nmmm  . On the other hand, if the semi-Markov process is irreducible 

and if iiT  has a non-lattice distribution with a finite mean, then iP  exists and is 

independent of the initial state (see, Ross, 1996). Furthermore, 

 

                                                      
][/ iiii TEmP  .                                               (3.99) 

 

Note that iP  is equal to the long-run proportion of time where the process is in state i. 

 

Using matrix (3.9) and the determinant properties of the matrix, we can write 

)(sqI  and determinants nD0  and nnD  as follows, respectively: 
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n

n qqqqsD   ,                     (3.101) 
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where )(sff   and )(sqq ijij  , nji  ,0 . Elements of the above determinants 

are obtained by applying the Laplace-Stieljes transform to formulae (3.6) and (3.7) 

for random entry and ordered entry disciplines, respectively. 

 

Definition 3.1 Provided that (3.101), (3.102) and (3.100), (3.102) are inserted into 

their appropriate places in formulae (3.96) and (3.97), respectively, the obtained 

formulae are defined as the Laplace-Stieljes transform of the distribution of the 

stream of overflows from „the GI/M/n/0 queueing model with heterogeneous 

servers‟. 

 

Example 3.1 Consider the GI/M/2/0 queueing model with heterogeneous servers. 

The assumptions of the system are as explained in Section 3.2. Using Definition 3.1, 

formulae (3.6) and (3.7), after some algebraic operations have been made, the 

Laplace-Stieljes transform of the distribution of the stream of overflows in the 

queueing model concerned is obtained as follows for random entry and ordered entry 

disciplines, respectively. 
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For Random Entry Discipline: 
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(3.104) 

 

For Ordered Entry Discipline: 
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where 



0

)()( tdFesf st
, 




0
1 )()( 1 tdFeesf

tst  , 



0

2 )()( 2 tdFeesf
tst  , 

and 



0

)(

21 )()( 21 tdFeesf
tst  . 

 

3.4 Steady-State Probabilities and Loss Probability from GI/M/n/0 with 

Heterogeneous Servers 

 

Using (3.98), the fact that ammm n  10 , the following  is obtained: 
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where 

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0

)](1[ dttFa , )0(iiD  are the cofactors of the (i,i)th entries of matrix 

)]0([ qI   and 
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Depending on this and formula (3.99), the steady-state probabilities of the system are 

obtained as follows: 
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 .                         (3.110) 

 

For the GI/M/n/0 queuing model with heterogeneous servers, the probability that all 

servers are busy )( n  is obtained using formula (3.110) as follows: 

 

                                                    
)1,,1,1(

)0(

D

Dnn
n  ,                                            (3.111) 

 

where )0(nnD  is easily obtained by writing 0 instead of s in determinant (3.102). 

Using the determinant properties of the matrix, it can also be written as 

)())()(()1()0( ,1231201 nn

n

nn ppppD   . Since no waiting line is available in 
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the system, the loss probability of a customer, is equal to the probability that all 

servers are busy. In this way, the loss probability of the GI/M/n/0 queuing model 

with heterogeneous servers is obtained as follows: 
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pppp nn

n
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
 .                           (3.112) 

 

Corollary 3.3 Provided that transition probabilities ),,2,1,( njipij   in the last 

equation obtained above are computed by means of formula (3.6) or (3.7), under the 

reality of Theorem 3.1, formula (3.112) is an extension of Palm‟s loss formula (3.2) 

for „the GI/M/n/0 queueing model with heterogeneous servers‟. 

 

Example 3.2 Let us reconsider Example 3.1. After some algebraic operations using 

equations (3.6) and (3.7) and formula (3.112), the loss probabilities of customers for 

the GI/M/2/0 queueing model with heterogeneous servers are provided through the 

following equations (3.113) and (3.114) for random entry and ordered entry 

disciplines, respectively: 
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where, for 2,1k , 







00
)(lim)( tdFeef

tst

s
k

k  and 









0

)(

0
21 )(lim)( 21 tdFeef

tst

s

 . Loss probabilities (3.113) and (3.114) 

obtained above yield Palm‟s loss formula (3.2) with 2n  when 21   . 

 

Let‟s compute loss probabilities computed for both random entry and ordered 

entry disciplines in Subsection 3.2.1 and Subsection 3.2.2 for the queueing model 
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GI/M/3/0 by means of the extension of Palm‟s loss formula (3.112) obtained by 

analyzing the stream of overflows. The formula (3.112) is written as follows for n=3: 
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where, 
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If the determinant )1,1,1,1(D  is calculated, the following is obtained: 

 

           201212232201232210 )1()1()1,1,1,1( pppppppppD  .             (3.117) 

 

If the equation (3.118) is written in its place in the equation (3.115), the loss 

probability for the queueing model GI/M/3/0 is obtained as follows: 
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For the queueing model GI/M/3/0 with heterogeneous servers and random entry 

the loss probability given by (3.49) is obtained by writing the one-step transition 

probabilities given by (3.36), (3.37), (3.39), (3.40), (3.42), and (3.43) in its place in 

(3.118). Similarly, for the queueing model GI/M/3/0 with heterogeneous servers and 

ordered entry, the loss probability given by (3.83) is obtained by writing one-step 

transition probabilities given by (3.70), (3.71), (3.73), (3.74), (3.76), and (3.77) in its 

place in (3.118). 
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    The loss probability of the customer in the system is more easily computed by 

using the extension of Palm‟s loss formula (3.112) obtained by means of the stream 

of overflows without solving the linear equation system (3.14). Because, computing 

the determinant given by (3.109) is a more practical and rapid method rather than 

solving the linear equation system (3.14). Therefore, the extension of Palm‟s loss 

formula (3.112) proposed in this thesis is an effective and important formula in terms 

of the direct calculation of the loss probability of the customer in the system without 

need for calculating the steady-state probabilities in the system. 

 

„The queueing model GI/M/n/0 with ordered entry‟ was analyzed by means of 

finite difference equations in the literature and the loss probability was obtained as a 

function of an extension of Palm‟s recurrence formula (Yao 1986, 1987). In the 

subsequent section, Palm‟s recurrence formula and an extension of Palm‟s recurrence 

formula are examined in detail. Details of the studies that take place in the literature 

related to „the queueing model GI/M/n/0 with ordered entry‟ are explained and it is 

revealed that the results obtained about the Laplace-Stieljes transform of the 

distribution of the stream of overflows and the loss probability in this thesis are more 

superior than those of other studies. 

  

3.5 Palm’s Recurrence Formula 

 

In this Section
1
, Palm‟s recurrence formula and an extension of Palm‟s recurrence 

formula are investigated. The relationship of these formulas with the loss probability 

-- theorems related to the optimization of the loss probability according to the service 

discipline -- and the results of these theorems are explained in detail. The 

contradiction between the loss probability obtained by Yao (1986, 1987) as a 

function of the extension of Palm‟s recurrence formula advanced in the literature and 

again his main theorem (Yao, 1987) is revealed by a numerical example. Also, it is 

showed that the results obtained in this thesis are not controversial with the main 

theorem of Yao (1987) by means of a numerical example. 

                                                           
1
 It must be noted that the studies explained in the Section 3.5 of this chapter have been presented by 

Isguder (2012) at 8th World Congress in Probability and Statistics organized by the Bernoulli Society 

and the Institute of Mathematical Statistics. 
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Palm (1943) proved that the distribution function of interoverflow times )(tGk  

satisfy the following integral equations system: 
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where )()(0 tFtG  . Taking the Laplace-Stieljes transform of (3.119), Takacs (1958, 

1959) obtained the Palm‟s recurrence formula as follows: 
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where )()(0 sfsf   is the Laplace-Stieljes transform of interarrival time distribution 

)(tF . Herefrom, the loss probability for the queueing model GI/M/n/0 with identical 

servers is obtained as a function of Palm‟s recurrence formula as follows: 

 

                                          

)()()( 11   nn fffp  .                                        (3.121) 

 

The formula (3.121) is equivalent to the formula (3.2). 

 

Since the servers are identical in the queueing model GI/M/n/0 examined by 

Takacs (1958, 1959), Palm (1943) indicated that the number of customers in the 

system is independent from the traffic flow. Namely, in Palm‟s (1943) model, there 

is no difference between assignment to any of the empty servers (Random Entry), 

assignment to the server with the lowest index number among the empty servers 

(Ordered Entry), assignment to the server giving the fastest service from the empty 

servers (The Fastest Service-Rule), or taking service with any other service principle. 

However, once the servers are assumed to be heterogeneous, the service discipline 

must be examined very carefully. Because, the service discipline in the models with 

heterogeneous servers affects the analysis of the model. 
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Many researchers such as Cooper (1976), Matsui & Fukuta (1977), Nath & Enns 

(1981), Nawijn (1983, 1984), Pourbabai & Sonderman (1986), Pourbabai (1987), 

Yao (1986, 1987), Alpaslan (1996), Saglam & Shahbazov (2007), Isguder & 

Uzunoglu-Kocer (2010) and Isguder, Uzunoglu-Kocer & Celikoglu (2011), and 

Isguder & Celikoglu (2012) realizing this condition have modeled and analyzed the 

queueing systems with heterogonous servers. 

 

Cooper (1976) examined the Markovian queue with heterogeneous servers and 

states that if the servers work at different rates, then the birth-and-death process 

representing the system will be a multi-dimensional birth-and-death process. Cooper 

(1976) also states that the solution of such models is difficult and stresses that the 

method he proposed permits the solution of the problems with ordered heterogeneous 

servers, without requiring a detailed solution of multi-dimensional birth-and-death 

equations. Many researchers such as Matsui & Fukuta (1977), Pourbabai & 

Sonderman (1986), Pourbabai (1987), Alpaslan (1996), Isguder & Uzunoglu-Kocer 

(2010), and Isguder & Celikoglu (2012), either studied the limited number of servers 

such as 2 or 3 or presented approximate solutions for the loss probability. 

 

On the other hand, Nath & Enns (1981) analyzed the M/M/n/0 queueing system 

with ordered entry and computed the loss probability. Once the fastest service rule is 

applied, they proved that the loss probability is minimum. Besides, Yao (1986, 1987) 

analyzed the queueing model GI/M/n/0 with ordered entry and computed the loss 

probability of the customer. Yao (1987) proved the loss probability is minimum 

under the fastest service rule by optimizing the system according to the service 

discipline. All of the analyses carried out by Yao (1986, 1987) were directly 

performed by generalization of Palm‟s recurrence formula for heterogeneous servers. 

 

The author‟s claim is that none of these studies adequately address the 

computation of loss probability for the GI/M/n/0 queueing system with ordered entry. 

 

In Subsection 3.5.1 and Subsection 3.5.2, the studies carried out by Yao (1986, 

1987) on Palm‟s recurrence formula will be explained and the contradiction between 
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the main result of Yao‟s (1987) main theorem and the loss probability will be 

revealed with a numerical example. 

 

3.5.1 An Extension of Palm’s Recurrence Formula 

 

An extension of Palm‟s recurrence formula was first introduced by Cooper (1976) 

during the analysis of „the model M/M/n queue with ordered entry‟.  Later, Nath & 

Enns (1981) used this formula for being able to analyze „the queueing model 

M/M/n/0 with ordered entry‟. Yao (1986, 1987) examined the queueing model 

GI/M/n/0 introduced by Palm under the hypothesis that the servers are 

heterogeneous. 

 

Yao (1986, 1987) extended the formula (3.120) for the queueing model GI/M/n/0 

with heterogeneous servers and ordered entry as follows: 

 

                            )1(
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


,                         (3.122) 

 

where )()(0 sfsf   is the Laplace-Stieltjes transform of interarrival time 

distribution )(tF . Equation (3.122) was denoted the Laplace-Stieltjes transform of 

the interoverflow times distribution from the first k servers for nk ,,2,1   for the 

model GI/M/n/0 with ordered entry by Yao (1986). It must be noted that interarrival 

times in the models of Cooper (1976) and Nath & Enns (1981) are distributed 

exponentially and its Laplace-Stieltjes transform is )/()(   ssf . Namely, 

Cooper (1976) and Nath & Enns (1981) derived the formula (3.122) as a function of 

the exponential distribution by assuming that the initial case is distributed 

exponentially. 

 

Palm‟s recurrence formula (3.120) was obtained by taking the Laplace-Stieltjes 

transform of the system of integral equations (3.119). It must be noted that the 

equation (3.122) called as an extension of Palm‟s recurrence formula has not been 

obtained by taking any system of integral equations or Laplace-Stieltjes transform of 
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any function in the studies taking place in the literature. The formula (3.122) was 

obtained by writing directly k  instead of   in Palm‟s recurrence formula (3.120). 

 

 Based on all these explanations, it is claimed that the extension of Palm‟s 

recurrence formula (3.122) is obtained heuristically and doesn‟t guarantee the exact 

solution of the loss probability. It is also claimed that the equation (3.122) is not the 

Laplace-Stieljes transform of the interoverflow times distribution for the model 

GI/M/n/0 with ordered entry. 

 

The loss probability in the heterogeneous system GI/M/n/0 with ordered entry that 

is a function of the equation (3.122) was obtained by Yao (1986, 1987) as follows: 

 

                                         )()()( 1211 nnn fffp    .                                      (3.123) 

 

The formula (3.123) gives a randomly correct result for 1n  and 2n  

However, this formula is not correct for 3n . The fact that this formula is not 

correct for 3n  is explained step by step. 

 

For 3n , namely for the queueing model GI/M/3/0 with ordered entry, the loss 

probability is obtained as follows by means of the formula (3.123): 
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Loss formula (3.124) must give the same results with the loss formula (3.83) 

(obtained for the same model in Subsection 3.2.2). However, if formulas (3.83) and 

(3.124) are examined carefully, it is clearly seen that numerators and denominators 

of these formulas are different from each other. This difference is also shown 

numerically with the numerical example 3.3 to be given in subsequent section. This 

difference stems from the fact that the equation (3.122) is not a Laplace-Stieltjes 
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transform of the interoverflow times distribution for the queueing model GI/M/n/0 

with ordered entry. 

 

The validity of all of these claims will be revealed by means of Example 3.3 in 

subsequent subsection 3.5.2. By using the main theorem given by Yao (1987) related 

to the optimization of the loss probability, the validity of the claims suggested by the 

author will be proven. 

 

3.5.2 Optimization of Loss Probability According to Service Discipline 

 

Optimization of the loss probability according to the service discipline will be 

emphasized in this section. Yao (1987) proved that the loss probability for the 

queueing model GI/M/n/0 with ordered entry would take the minimum value under 

the fastest service rule. Here the fastest service rule is realized by assigning the 

customer arriving in the system to the fastest server among the empty servers rather 

than assigning to the server with the lowest index number among the empty servers. 

  

In this section, definitions, theorems, and results given by Yao (1987) are 

explained related to the minimization of the loss probability. Claims laid in Section 

3.5.1 are proven by using the theorems and the results again obtained by Yao (1987). 

The contradiction of the formula (given by Eq. 3.123) obtained by Yao (1987) for the 

loss probability with his own theorem is shown with a numerical example. 

 

The following Definition 3.2 is given by Yao (1987). 

 

Definition 3.2 (Yao, 1987). For any two permutation vectors 1
x  and 2

x  of )( ixx , 

21
xx sa  if 1

x  can be obtained from 2
x  through successive pairwise interchange of 

neighboring complements, with each interchange correcting an inversion of the 

decreasing order of complements. 
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The following Theorem 3.4(ii), and Corollary 3.4(ii)  proved that in the queueing 

model GI/M/n/0 with ordered entry, the loss probability was minimum with 

probability 1, under the fastest-service rule. 

 

Theorem 3.4 (Yao, 1987). Consider a system of n servers. Let 1
μ  and 2

μ  be two 

server arrangements, and use the superscripts 1 and 2 to index quantities 

corresponding to the two arrangements. If 21
μμ sa  , then 

(i) 21

kLk TT   , for all nk ,,1 , 

(ii) 21
pp  , 

(iii) 21
bb wm . 

 

Corollary 3.4 (Yao, 1987). For any server arrangement μ , 

(i) )()()(


 μμμ kLkLk TTT  , for all nk ,,1 , 

(ii) )()()(


 μμμ ppp , 

(iii) )()()(


 μμμ bbb wmwm . 

 

In the following example, the loss probability of customers is computed 

numerically for 2n  and 3n  by using both formula (3.112) proposed in this 

thesis and formula (3.123) obtained by Yao (1986, 1987). 

 

Example 3.3 Consider the M/M/2/0 and the M/M/3/0 queueing models with 

heterogeneous servers and ordered entry, respectively. The arrival rates and the 

service rates for the models addressed are summarized in Table 3.1. The numerical 

results are provided in Table 3.1; first by applying the fastest-service rule and then 

for an arbitrary permutation of service rates: 
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Table 3.1 A Numerical Example for M/M/2/0 and M/M/3/0 with Ordered Entry 

M/M/2/0 with Ordered Entry M/M/3/0  with Ordered Entry 

Parameters The Fastest- 

Service Rule 

Arbitrary 

Permutation 
Parameters 

The Fastest- 

Service Rule 

Arbitrary 

Permutation 

  90 90   90 90 

1  60 45 1  60 60 

2  45 60 2  45 10 

   3  
10 45 

Loss 

probabilities 
Calculations Calculations 

Loss 

probabilities 
Calculations Calculations 

2  0.34839 0.35714
 

3  0.26533 0.27705 

3p  0.34839 0.35714 3p  0.29988 0.19856 

 

In Table 3.1, n , )3,2( n  represents the loss probability obtained by formula 

(3.112), which is proposed in this thesis; whereas np , )3,2( n  represents the loss 

probability obtained by using formula (3.123). 

 

When 2n , formula (3.112) and (3.123) yield the same result (see, Formula 

3.114). Loss probabilities 
2  and 

2p  are easily calculated by writing )/( 1   

instead of )( 1f , )/( 2   instead of )( 2f , and )/( 21    instead of 

)( 21  f  respectively in formula (3.114). Values of  , 
1 , and 2  are given in 

Table 3.1. It is obviously seen from Table 3.1 that the numerical values of 
2 and 

2p  

are the same. 

 

On the other hand, when 3n , the formula (3.112) yields the formula (3.83) and 

the formula (3.123) yields the formula (3.124). The values of the loss probabilities 

3  and 3p  in Table 3.1 are computed by placing )/( k  in lieu of )( kf   for 

3,2,1k ; )/( rk   in lieu of )( rkf    for 31  rk ; and 

)/( 321   in lieu of )( 321  f  in the formula (3.83) and the formula 

(3.124) respectively. Where, the values of  , 1 , 2  and 3 are given in Table 3.1. 

It can be also seen from Table 3.1 that numerical values of loss probabilities 
3  and 

3p  are different from each other. 
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According to Theorem 3.4(ii), and Corollary 3.4(ii), the 3p  value should be 

minimum with probability 1 under the fastest-service rule. Nevertheless, when Table 

3.1 is carefully examined, it is clearly seen that the 3p  value is not minimum under 

the fastest-service rule. This abnormal situation shows that the formula obtained by 

Yao (1987) for the loss probability contradicts his own theorem.  This unexpected 

case results from the fact that the formula (3.122) does not fully satisfy the ordered 

entry service discipline. 

 

On the other hand, 3  computed with formula (3.83) proposed in this thesis takes 

its minimum value under the fastest-service rule. That is, an extension of Palm‟s loss 

formula (3.112) satisfies Theorem 3.4(ii), and Corollary 3.4(ii). 

 

Corollary 3.5 An extension of Palm‟s recurrence formula (3.122), examined by Yao 

(1986, 1987) not satisfies Palm‟s recurrence formula (3.2) for the queueing model 

GI/M/n/0 with ordered entry when number of servers is more than 2. 

 

Corollary 3.6 Loss formula (3.123) examined by Yao (1986, 1987) is valid for only 

when the number of the servers is 1 or 2. 

 

According to Corollary 3.5 and Corollary 3.6, it is obvious that Yao (1986, 1987) 

couldn‟t completely overcome the analysis of the model queueing GI/M/n/0 with 

ordered entry. 

 

In the subsequent chapter, since the calculation of the extension of Palm‟s loss 

formula (3.112) becomes increasingly difficult as the number of servers increases, 

the loss probability is calculated with a simulation approach. Theoretical studies 

carried out related to the minimization of the loss probability in Subsection 3.2.3 and 

Subsection 3.5.2 are supported with a considerably comprehensive simulation 

design. 

 

 



 
 

77 
 

CHAPTER FOUR 

SIMULATION DESIGN 

 

It becomes computationally intractable to compute the loss probability given by 

formula (3.112) as the number of servers increases. For the cases with more than one 

server, the loss probability can be obtained easily with the simulation approach. The 

simulation model developed and the findings obtained are presented in this chapter. 

  

To obtain the point estimate and confidence interval of the loss probability for the 

finite-capacity GI/M/n/0 queueing system with heterogeneous n servers defined in 

Section 3.2, the discrete-event simulation model is used. More detailed information 

on statistical estimation in simulation and discrete-event simulation can be obtained 

from Alexopoulos (2006), Law & Kelton (2000), Banks, Carson, & Nelson (1996), 

and Fishman (2001). 

 

The simulation study is examined under two main headings depending on the 

service principles random entry and ordered entry disciplines in this Chapter
2
. 

Furthermore, for the  ordered entry discipline, simulation results are also given under 

the fastest-service rule. 

 

For ease, the tabulated models have been expressed by being encoded. In this 

encoding, the first character symbolizes the distribution of the interarrival times, 

while the second one symbolizes the service discipline, and the last one symbolizes 

the traffic intensity. For instance, W-R-080 represents the queueing system where the 

interarrival time fits the Weibull distribution, the service discipline is random entry, 

and the traffic intensity is 0.80. Similarly M-OE-095 represents the queueing system 

where the interarrival time fits the exponential distribution, the service discipline is 

ordered entry, and the traffic intensity is 0.95. 

 

                                                           
2
 It must be noted that the studies explained in this chapter have been presented by Isguder and 

Celikoglu (2012) at 8th International Symposium of Statistics organized by the Anadolu University. 
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4.1 The Simulation Model 

 

The times between successive arrivals  1, iATi  are independent and identically 

distributed  random variables with an arbitrary probability distribution function, with 

finite mean   aATE  . In the simulation study, four different probability 

distributions, i.e. exponential (M), gamma (Ga), Weibull (W) and deterministic (D) 

distributions, were used for the interarrival time distribution. The service times 

 1, iSTij  for each server j ( nj ,...,2,1 ) are independent and identically distributed 

random variables from the exponential distribution with finite mean  
jijSTE /1 , 

where j  is the service rate for server j. Hence,  


n

k k1
  is the total service rate 

for the system. Clearly, 1a  must be achieved for steady state. Both the arrival 

process and the service process are independent of each other and the servers work 

independently of each other.  

 

In the simulation model, the service process is randomly derived from the 

exponential distribution according to the given service rates. By considering the total 

service rate for a given traffic intensity, the mean of interarrival times is obtained. 

Random data with this mean are derived from the distribution stated for the 

interarrival time. In this way, even if the interarrival time distribution is different for 

each number of servers, it is ensured that the data with an identical mean are used. 

This is essential to make a comparison.  

 

The model was considered a finite horizon simulation model. That is, the system 

is evaluated at a specific time interval and the system is empty at the initial time. One 

of the important points here is the determination of the replication number, while the 

other one is how long a replication will be run. To decide how long the system would 

work, first of all the loss probability in the event that it worked for 500 hours in each 

replication was obtained and then the working duration of the system was increased 

fivefold and, at the end of 2,000 hours, the loss probability was computed again. In 

conclusion, it was observed that the loss probability only increased by 0.004 units. 

Since the loss probability is not growing as the simulation proceeds, the system is 
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stable (Henderson & Nelson, 2006). In this study, the estimation of loss probability is 

found depending on the finite sample obtained by running the simulation program for 

1,000 times. The system was run for 500 hours in each replication. 

 

4.1.1 The Algorithm 

 

There are two processes in each replication, i.e. arrival and departure processes. 

The algorithm can be summarized as follows:  

 

 The interarrival times are derived depending on the service rate  


n

k k1
  

and the system utilization factor )(  in such a way that their average will be 

a . 

 

 The last arrival time (AT) and the last departure time (DT) are compared and 

the next event is determined. If DTAT , an arrival takes place and the 

arrival process is run; otherwise, because the next event will be departure, the 

departure process is run. 

 

 Arrival process: The number of empty servers (nes) is determined. If all 

servers are busy (nes=0), arrival is recorded as the lost customer. DT is 

updated and AT is determined for the new arrival. AT and DT are compared 

again. If there is more than one empty server, it is determined which servers 

are empty and arrival is assigned to one of the empty servers according to the 

service discipline (Random Entry or Ordered Entry). The busy state of the 

servers (SS) and AT are updated. Considering which of the busy servers will 

first become empty, DT is updated. 

 

 Departure process: If the next event is departure, it is determined which server 

will first become empty and SS is updated. DT is updated for the server that 

has become empty and the previous ones are maintained.  
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 After the time predicted for simulation has been completed, the total number 

of lost customers for the steady-state system is determined. The loss 

probability is computed by dividing the number of lost customers by the total 

number of customers in the system. 

 

The simulation algorithm is presented in Figure 4.1. The arrival and departure 

processes are configured with the algorithm in Figure 4.2 and Figure 4.3, 

respectively. 
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 Figure 4.1 Simulation algorithm. 
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Figure 4.2 Algorithm of the arrival process. 
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Figure 4.3 Algorithm for the departure process. 

 

4.1.2. Assessment of the Loss Probability 

 

In each run, the system works for 500 hours. Under the steady-state condition, the 

number of lost customers is determined for each run and it is divided by the total 

number of customers served in the system to obtain the loss probability )( lossP  for a 

single run. By repeating this procedure for 1,000 times, the probability distribution 

for the loss probability is obtained and, from this, the estimation of the average 

number of lost customers )ˆ( lossP  and the standard error of the estimate )ˆ(
lossP  are 
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rzPPrzP
losslossloss PlossPloss /ˆˆ/ˆˆ
ˆ025.0ˆ025.0   , where r indicates the number of 

replications. 

 

4.2 Computational Experiments 

 

This section, where the computations will be presented, is examined in two parts. 

In the first part which is the verification part, it is checked whether the 

implementation of the simulation program corresponds to the model. Verification is 

the process of comparing the computer code with the model to ensure that the code is 

a correct implementation of the model. In the second part, the results obtained by the 

implementation of the verified simulation model will be presented. 

 

4.2.1 Verification of the Simulation Model 

 

To verify the simulation model, the finite-capacity M/M/2/0, D/M/2/0, M/M/3/0  

and D/M/3/0 queueing models with heterogeneous servers are considered. By 

attaining the analytical solutions of these models, exact results are obtained for the 

loss probabilities. Later on, the simulation program is run for the same models and 

the loss probabilities are approximated. The obtained results are presented in Tables 

4.1 and 4.2 for random entry and ordered entry disciplines, respectively. 

 

Table 4.1 Loss probabilities under random entry. 

Model n 

Arrival 

rate 

(λ) 

Service  

rates 

Loss probability 
Error 

% 
Exact 

 solution 
Simulation  

M-R-080 2 4 µ1=1, µ2=4 0.36364 0.36307 -0.16 

D-R-080 2 4 µ1=1, µ2=4 0.23033 0.23012 -0.09 

M-R-095 2 4.75 µ1=1, µ2=4 0.41542 0.40491 -2.53 

D-R-095 2 4.75 µ1=1, µ2=4 0.29725 0.29118 -2.04 

M-R-080 3 9.6 µ1=7, µ2=1, µ3=4 0.29729 0.30419  2.32 

D-R-080 3 9.6 µ1=7, µ2=1, µ3=4 0.17967 0.18736  4.28 

M-R-095 3 11.4 µ1=7, µ2=1, µ3=4 0.35547 0.35336 -0.59 

D-R-095 3 11.4 µ1=7, µ2=1, µ3=4 0.25009 0.25236  0.91 
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Table 4.2 Loss probabilities under ordered entry. 

Model 
n 

Arrival 

rate  

(λ) 

Service 

rates 

Loss probability 
Error 

% Exact  

solution 
Simulation  

M-OE-080 2 4 µ1=1, µ2=4 0.37647 0.37599 -0.13 

D-OE-080 2 4 µ1=1, µ2=4 0.24290 0.24270 -0.08 

M-OE-095 2 4.75 µ1=1, µ2=4 0.42618 0.41442 -2.76 

D-OE-095 2 4.75 µ1=1, µ2=4 0.30794 0.30167 -2.04 

M-OE-080 3 9.6 µ1=7, µ2=1, µ3=4 0.28524 0.29246  2.53 

D-OE-080 3 9.6 µ1=7, µ2=1, µ3=4 0.16670 0.17429 4.55 

M-OE-095 3 11.4 µ1=7, µ2=1, µ3=4 0.34566 0.34351 -0.62 

D-OE-095 3 11.4 µ1=7, µ2=1, µ3=4 0.23952 0.24162 0.88 

 

The percentage error (Error%) is given by 

 

                             

%100
exact

)exactobtained(
Error% 




loss

lossloss

P

PP
.                        (4.1) 

 

The simulation model is verified by the fact that the maximum percentage errors in 

Tables 1 and 2 are 4.28% and 4.55%, respectively. That is, for the cases that are 

difficult to find with analytical solutions, the simulation approach presented might be 

used to approximate the loss probability. 

 

4.2.2 Computational Results 

 

In this section, how the loss probabilities vary when we increase the number of 

servers under the assumption that the interarrival time follows different distributions 

is investigated with the simulation approach and the results are presented. Loss 

probabilities under random entry and ordered entry disciplines are approximated for 

the GI/M/n/0 queueing system with heterogeneous servers, respectively. For these 

estimates, standard error and 95% confidence interval are also given. Note that for all 

cases, the interarrival times are examined individually for exponential distribution, 

gamma distribution, Weibull distribution and deterministic distribution, respectively. 

Moreover, the cases, where the numbers of servers are 5, 10, 50 and 100 for all 

above-mentioned distributions, respectively, are individually examined. 
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The loss probabilities for the model concerned when the traffic intensities are 0.80 

and 0.95 under random entry discipline are given in Tables 4.3 and 4.4, respectively. 

 

Table 4.3 Loss probabilities for the model concerned when the traffic intensity is 0.80. 

Model n 
Arrival 

rate (λ) 

Service rate
 

)(
1 

n

k k  

Loss 

probability 

95% CI 
Standard 

error Lower 

bound 

Upper 

bound 

M-R-080 

5 0.232 0.290 0.19954 0.19907 0.20001 0.00024 

10 0.544 0.680 0.12317 0.12269 0.12364 0.00024 

50 5.920 7.400 0.02248 0.02215 0.02282 0.00017 

100 19.840 24.800 0.00595 0.00577 0.00613 0.00009 

Ga-R-080 

5 0.232 0.290 0.16013 0.15972 0.16054 0.00021 

10 0.544 0.680 0.09440 0.09399 0.09480 0.00021 

50 5.920 7.400 0.01324 0.01301 0.01347 0.00012 

100 19.840 24.800 0.00265 0.00254 0.00277 0.00006 

W-R-080 

5 0.232 0.290 0.14065 0.14026 0.14104 0.00020 

10 0.544 0.680 0.08112 0.08077 0.08147 0.00018 

50 5.920 7.400 0.00927 0.00910 0.00947 0.00009 

100 19.840 24.800 0.00147 0.00139 0.00154 0.00004 

D-R-080 

5 0.232 0.290 0.11201 0.11168 0.11234 0.00017 

10 0.544 0.680 0.06067 0.06034 0.06099 0.00017 

50 5.920 7.400 0.00484 0.00472 0.00496 0.00006 

100 19.840 24.800 0.00054 0.00050 0.00059 0.00002 

 

Table 4.4 Loss probabilities for the model concerned when the traffic intensity is 0.95. 

Model n 

Arrival 

rates  

(λ) 

Service  

rates 

)(
1 

n

k k  

Loss 

probability 

95% CI  

Standard 

error 
Lower 

bound 

Upper 

bound 

M-R-095 

5 0.2755 0.2900 0.25992 0.25929 0.26056 0.00032 

10 0.6460 0.6800 0.19019 0.18957 0.19081 0.00032 

50 7.0300 7.4000 0.08364 0.08301 0.08428 0.00032 

100 23.5600 24.8000 0.05515 0.05451 0.05578 0.00032 

Ga-R-095 

5 0.2755 0.290 0.22528 0.22471 0.22585 0.00029 

10 0.6460 0.680 0.16368 0.16314 0.16421 0.00027 

50 7.0300 7.400 0.06929 0.06873 0.06984 0.00028 

100 23.5600 24.800 0.04432 0.04379 0.04484 0.00027 

W-R-095 

5 0.2755 0.290 0.20785 0.20733 0.20837 0.00027 

10 0.6460 0.680 0.14957 0.14906 0.15009 0.00026 

50 7.0300 7.400 0.06181 0.06129 0.06234 0.00027 

100 23.5600 24.800 0.03902 0.03856 0.03949 0.00024 

D-R-095 

5 0.2755 0.290 0.18121 0.18073 0.18168 0.00024 

10 0.6460 0.680 0.12950 0.12904 0.12996 0.00023 

50 7.0300 7.400 0.05197 0.05152 0.05241 0.00023 

100 23.5600 24.800 0.03221 0.03179 0.03264 0.00022 
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The loss probabilities for the model concerned when the traffic intensities are 0.80 

and 0.95 under ordered entry discipline are given in Tables 4.5 and 4.6, respectively. 

 

Table 4.5 Loss probabilities for the model concerned when the traffic intensity is 0.80. 

Model n 
Arrival 

rate (λ) 

Service rate 

)(
1 

n

k k  

Loss 

probability 

95% CI Standard 

error 

 
Lower 

bound 

Upper 

bound 

M-OE-080 

5 0.232 0.290 0.20252 0.20205 0.20298 0.00024 

10 0.544 0.680 0.12209 0.12160 0.12258 0.00025 

50 5.920 7.400 0.02407 0.02375 0.02439 0.00016 

100 19.840 24.800 0.00510 0.00492 0.00528 0.00009 

Ga-OE-080 

5 0.232 0.290 0.15897 0.15854 0.15939 0.00022 

10 0.544 0.680 0.09877 0.09836 0.09917 0.00021 

50 5.920 7.400 0.01460 0.01436 0.01484 0.00012 

100 19.840 24.800 0.00164 0.00155 0.00173 0.00005 

W-OE-080 

5 0.232 0.290 0.13882 0.13841 0.13922 0.00021 

10 0.544 0.680 0.08074 0.08038 0.08110 0.00018 

50 5.920 7.400 0.01085 0.01066 0.01104 0.00010 

100 19.840 24.800 0.00099 0.00093 0.00106 0.00003 

D-OE-080 

5 0.232 0.290 0.11021 0.10988 0.11055 0.00017 

10 0.544 0.680 0.06302 0.06272 0.06332 0.00015 

50 5.920 7.400 0.00397 0.00386 0.00408 0.00006 

100 19.840 24.800 0.00034 0.00031 0.00037 0.00001 

 

Table 4.6 Loss probabilities for the model concerned when the traffic intensity is 0.95. 

Model n 
Arrival 

rate (λ) 

Service rate 

)(
1 

n

k k  

Loss 

probability 

95% CI 
Standard 

error 
Lower 

bound 

Upper 

bound 

M-OE-095 

5 0.275 0.290 0.26189 0.26123 0.26255 0.00034 

10 0.646 0.680 0.19133 0.19071 0.19194 0.00031 

50 7.030 7.400 0.08846 0.08784 0.08907 0.00031 

100 23.560 24.800 0.05225 0.05160 0.05289 0.00033 

Ga-OE-095 

5 0.275 0.290 0.22770 0.22714 0.22824 0.00028 

10 0.646 0.680 0.16149 0.16092 0.16205 0.00029 

50 7.030 7.400 0.06853 0.06796 0.06909 0.00028 

100 23.560 24.800 0.04262 0.04209 0.04316 0.00027 

W-OE-095 

5 0.275 0.290 0.21007 0.20954 0.21060 0.00027 

10 0.646 0.680 0.15191 0.15142 0.15240 0.00025 

50 7.030 7.400 0.06298 0.06246 0.06349 0.00026 

100 23.560 24.800 0.03966 0.03918 0.04014 0.00024 

D-OE-095 

5 0.275 0.290 0.17751 0.17703 0.17799 0.00024 

10 0.646 0.680 0.12945 0.12899 0.12991 0.00023 

50 7.030 7.400 0.04555 0.04510 0.04601 0.00023 

100 23.560 24.800 0.03205 0.03165 0.03245 0.00021 
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Both under random entry discipline (Tables 4.3 and 4.4) and ordered entry 

discipline (Tables 4.5 and 4.6), it is observed that in the models concerned, the loss 

probability decreases, as expected, when the number of servers increases for all 

distributions of interarrival times. On the other hand, it is observed that in models   

D-R-080, D-OE-080, D-R-095 and D-OE-095 the loss probability takes a much 

smaller value as compared to the other models. The results given in Tables 4.4 and 

4.6 are summarized in Figures 4.4 and 4.5. 

 

 
  Figure 4.4 Loss probabilities for the queueing model GI/M/n/0 with random entry. 

 

 
  Figure 4.5 Loss probabilities for the queueing model GI/M/n/0 with ordered entry. 

 

For the ordered entry discipline, the customer, who arrives in the system, starts the 

service in the server with the smallest mean service time instead of starting the 

service in the server with the lowest index number among the empty servers. In this 

way, the fastest-service rule is implemented. Let the fastest-service rule be 

symbolized with OE1. 
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The loss probabilities under the fastest-service rule when the traffic intensities are 

0.80 and 0.95 are given in Tables 4.7 and 4.8, respectively. 

 

Table 4.7 Loss probabilities for the model concerned when the traffic intensity is 0.80. 

Model n 
Arrival 

rate (λ)  

Service rate 

)(
1 

n

k k  

Loss 

probability 

95% CI 
Standard 

error 
Lower 

bound 

Upper 

bound 

M-OE1-080 

5 0.232 0.290 0.19461 0.19415 0.19507 0.00024 

10 0.544 0.680 0.11361 0.11315 0.11408 0.00024 

50 5.920 7.400 0.00862 0.00839 0.00886 0.00012 

100 19.840 24.800 0.00032 0.00028 0.00037 0.00002 

Ga-OE1-080 

5 0.232 0.290 0.15523 0.15481 0.15564 0.00021 

10 0.544 0.680 0.08515 0.08475 0.08556 0.00021 

50 5.920 7.400 0.00337 0.08475 0.08556 0.00021 

100 19.840 24.800 0.00005 0.00003 0.00006 0.00001 

W-OE1-080 

5 0.232 0.290 0.13567 0.13527 0.13607 0.00020 

10 0.544 0.680 0.07182 0.07146 0.07218 0.00018 

50 5.920 7.400 0.00181 0.00172 0.00190 0.00004 

100 19.840 24.800 0.00001 0.00001 0.00002 0.00000 

D-OE1-080 

5 0.232 0.290 0.10707 0.10674 0.10741 0.00017 

10 0.544 0.680 0.05239 0.05209 0.05270 0.00016 

50 5.920 7.400 0.00055 0.00051 0.00059 0.00002 

100 19.840 24.800 0.00000 0.00000 0.00000 0.00000 

 

Table 4.8 Loss probabilities for the model concerned when the traffic intensity is 0.95. 

Model n 
Arrival 

rate (λ) 

Service rate 

)(
1 

n

k k  

Loss 

probability 

95% CI  
Standard 

error 
Lower 

bound 

Upper 

bound 

M-OE1-095 

5 0.275 0.290 0.25608 0.25543 0.25672 0.00033 

10 0.646 0.680 0.18226 0.18164 0.18289 0.00032 

50 7.030 7.400 0.06509 0.06444 0.06574 0.00033 

100 23.560 24.800 0.03480 0.03414 0.03546 0.00034 

Ga-OE1-095 

5 0.275 0.290 0.22118 0.22061 0.22174 0.00029 

10 0.646 0.680 0.15544 0.15489 0.15599 0.00028 

50 7.030 7.400 0.05140 0.05085 0.05195 0.00028 

100 23.560 24.800 0.02561 0.02510 0.02612 0.00026 

W-OE1-095 

5 0.275 0.290 0.20339 0.20286 0.20393 0.00027 

10 0.646 0.680 0.14195 0.14143 0.14247 0.00027 

50 7.030 7.400 0.04486 0.04434 0.04538 0.00026 

100 23.560 24.800 0.02141 0.02094 0.02187 0.00024 

D-OE1-095 

5 0.275 0.290 0.17663 0.17615 0.17712 0.00025 

10 0.646 0.680 0.12230 0.12185 0.12276 0.00023 

50 7.030 7.400 0.03579 0.03533 0.03624 0.00023 

100 23.560 24.800 0.01558 0.01520 0.01596 0.00020 
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When the fastest-service rule is implemented, it is observed that the loss 

probabilities become much smaller for all the models considered, as compared to the 

other disciplines (Tables 4.7 and 4.8). The results given in Table 4.8 are summarized 

in Figure 4.6. 

 

 
 Figure 4.6 Loss probabilities for the the queueing model GI/M/n/0 with OE1-discipline. 

 

 
  Figure 4.7 Loss probabilities for the queueing model D/M/n/0 with heterogeneous servers. 

 

In conclusion, for the GI/M/n/0 queueing model with heterogeneous servers, the 

loss probability takes its lowest value both when the interarrival times are 

deterministically distributed and the fastest-service rule is implemented. This result is 

clearly seen from Figure 4.7. 
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CHAPTER FIVE 

CONCLUSIONS 

 

In this thesis, the finite-capacity GI/M/n/0 queueing system with recurrent input 

and heterogeneous servers has been studied. The semi-Markov process representing 

the system has been formulated and the Takacs‟s formula given by (3.4) has been 

generalized both for random entry and ordered entry service disciplines. An 

implementation of a generalization of Takacs‟s formula is performed for the 

queueing model GI/M/3/0 with heterogeneous servers. It has been proved that the 

loss probability for the queueing model GI/M/3/0 with ordered entry is minimum 

when interarrival times fit the deterministic distribution. By analyzing the stream of 

overflows in the system, the Laplace-Stieltjes transform of the distribution of the 

stream of overflows and loss probability (3.112), which is an extension of well-

known Palm‟s formula (given by Eq. 3.2), have been obtained. An implementation of 

this formula is performed for the queueing model GI/M/2/0 with heterogeneous 

servers and the loss probability of customers in the system is computed. It is proven 

that the extension of Palm‟s recurrence formula (given by Eq. 3.122) addressed by 

Yao (1986, 1987) is a heuristic formula and doesn‟t guarantee the exact solution. 

Furthermore the conditions in which the loss probability is minimum is determined 

by simulation optimization. 

 

5.1 Concluding Remarks 

 

Even though there have been many studies on the queueing models with 

heterogeneous servers since Gumbel (1960), most of these studies have only solved 

this problem for a limited number of servers or proposed a solution for n servers by 

generalizing Palm‟s recurrence formula. This thesis differs from the others in that 

formulae (3.6) and (3.7), which are the generalizations of Takacs‟s formula (3.4), are 

proposed for the GI/M/n/0 queueing model under both random entry and ordered 

entry disciplines. These formulae, obtained by means of the semi-Markov process 

representing the system, enable the attainment of the efficient and exact solution in 

practice. In this context, the analysis of the queueing model GI/M/n/0 with 
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heterogeneous servers handled in this thesis is an excelent implementation of semi-

Markov process. 

 

It is shown that overflow times of the customers in the GI/M/n/0 queueing model 

with heterogeneous servers are delayed renewal process. By analyzing the stream of 

overflows, steady-state probabilities and loss probability as a solution of the 

determinant of embedded Markov chain of semi-Markov process are derived. On the 

other hand, computability of the loss probability of a customer in the system by using 

the extension of Palm‟s loss formula (3.112) without a need for solving the linear 

equation system (3.14) provides an important contribution to the literature. 

Calculating the determinant given by the formula (3.109) rather than solving the 

linear equation system (3.14) is a more practical and rapid method. Therefore, an 

extension of Palm‟s loss formula (3.112) proposed in this thesis is an effective and 

important formula in terms of direct calculation of the loss probability of the 

customer in the system without a need for calculating steady-state probabilities in the 

system. 

 

The GI/M/n/0 queueing model with ordered entry was examined by Yao (1986, 

1987) before this thesis. However, it has proven that Yao (1986, 1987) could not 

overcome the problem obtaining the Laplace-Stieltjes transform of the distribution of 

the stream of overflows and formulating the loss probability. The contradiction 

between the main theorem of Yao (1987) concerning the optimization of the loss 

probability and the formula of loss probability obtained by Yao (1986, 1987) is 

proven with Example 3.3. On the other hand, it is explained by Example 3.3 that, an 

extension of Palm‟s Loss Formula (given by Eq. 3.112) we obtained in this thesis 

doesn‟t contradict the main theorem of Yao (1987). 

 

When the numbers of servers are 5, 10, 50 and 100 and the interarrival time 

distributions are exponential, gamma, Weibull and deterministic in the simulation 

model, the loss probabilities are computed for both random entry and ordered entry 

service disciplines. The loss probability is minimized in two different ways 

according to the service discipline and according to the distribution of interarrival 
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times. It is observed that the loss probability obtained when the interarrival time is 

deterministically distributed is smaller than the loss probability obtained under the 

assumption that the interarrival time fits the other (exponential, gamma and Weibull) 

distributions. On the other hand, it is observed that the loss probability is decreased 

when the arriving customer who arrives in the system is assigned to the fastest-

working server instead of entering the server with the lowest index number among 

the empty servers according to the service discipline (the fastest-service rule). Both 

when the fastest-service rule is applied and the interarrival time distribution is 

deterministic, the loss probability takes its minimum value within all of these 

combinations. 

 

 

5.2 Future Research 

 

Kaufman (1980) analysis the queueing model M/G/n/0 with heterogeneous servers 

and random selection discipline. In the model addressed by Kaufman (1980), if the 

service discipline is selected as ordered entry rather than random entry, since the 

service servers are heterogeneous, the analysis of the model will be completely 

changed. Therefore, the analysis of the queueing model M/G/n/0 with heterogeneous 

servers and ordered entry can be considered as a future research. The main problem 

is obtaining the distribution of the time between overflows and formulating the loss 

probability in this proposed model. Also, it is obvious in this model that the loss 

probability will be minimized under the fastest-service rule. Mathematical proof of 

this problem can also be considered as a future research. 

 

An extension of Palm‟s recurrence formula (3.122) used in the analysis of the 

GI/M/n/0 queueing model with ordered entry by Yao (1986) first proposed by 

Cooper (1976) and was used in the analysis of the model M/M/n queue with ordered 

entry. In this thesis, it has been proven that an extension of Palm‟s recurrence 

formula (3.122) given by Yao (1986, 1987) was obtained completely heuristically. 

Therefore, revisiting the queueing model that Cooper (1976) was addressed and 

verifying the results and proposing new results if necessary would be considered as 

future research. 
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When obtaining the exact solution is either difficult or impossible, the use of 

approximate solution methods such as Markov chain Monte Carlo simulations, 

heuristic and meta-heuristic for the numerical analysis of the GI/M/n/0 model with 

heterogeneous servers may be considered for future research. In addition, for the 

cases in which the interarrival times are phase-type distributed such as Coxian, 

hyper-exponential and matrix-exponential, the loss probability can be computed 

approximately by developing new heuristic methods. For example, Atkinson (2009) 

developed two new heuristics, which are called the GM heuristic and the MG 

heuristic, for the GI/G/n/0 queueing model. In summary, it is an important challenge 

to efficiently estimate the loss probability with heuristic approach methods. The 

formulae (3.6, 3.7 and 3.112) proposed in this thesis will facilitate the finding of 

exact solutions for phase-type distributions, the development of new heuristic 

methods, and the estimation of the loss probability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

 
 

REFERENCES 

 

Alexopoulos C. (2006). Statistical estimation in computer simulation. Handbooks in 

Operations Research and Management Science, 13, 193-223. 

 

Alpaslan, F., & Shahbazov, A. (1996). An analysis and optimization of stochastic 

service with heterogeneous channel and poisson arrival. Pure and Applied 

Mathematika Science, XLIII, 15-20. 

 

Alpaslan, F. (2002). A queuing model with two heterogeneous servers and overflow. 

Pure and Applied Mathematika Science, LV, 1-7. 

 

Alves, F. S. Q., Yehia, H. C., Pedrosa, L. A. C., Cruz, F. R. B., & Kerbache, L. 

(2011). Upper bounds on performance measures of heterogeneous M/M/c queues. 

Mathematical Problems in Engineering, Article ID 702834. 

 

Atkinson, J. B. (1995).  The general two-server queueing loss system: Discrete-time 

analysis and numerical approximation of continuous-time systems. Journal of the 

Operational Research Society, 46(3), 386-397. 

 

Atkinson, J. B. (2000). A note on the C2/G/1 queue and the C2/G/1 loss system. 

Queueing Systems, 36,  237-241. 

 

Atkinson, J. B. (2009). Two new heuristics for the GI/G/n/0 queueing loss system 

with examples based on the two-phase Coxian distribution. Journal of the 

Operational Research Society, 60(6),  818-830. 

 

Atkinson, J. B., Kovalenko, I. N., Kuznetsov, N. Yu., & Mykhalevych K. V. (2006). 

Heuristic methods for the analysis of a queuing system describing emergency 

medical service deployed along a highway. Cybernetics and Systems Analysis, 

42(3), 379-391. 



96 
 

 
 

Atkinson, J. B., Kovalenko, I. N., Kuznetsov, N. Yu., & Mykhalevych K. V. (2008). 

A hypercube queueing loss model with customer-dependent service rates. 

European Journal of Operational Research, 191(1), 223-239. 

 

Banks J., Carson J.S., & Nelson B.L. (1996). Discrete event system simulation. (2nd 

ed.). New Jersey: Prentice Hall. 

 

Bhat, U. N. (1965). Customer in queues with finite waiting space. Australian Journal 

of Statistics, 7, 15-19. 

 

Bhat U. N. (1968) Lecture Notes in Operations Research and Mathematical 

Economics. Edited by M. Beckmann, Providence and H. P. Künzi, Zürich. 

Springer-Verlag, Berlin, Heidelberg, New York. 

 

Blackwell, D. (1948). A renewal theorem. Duke Mathematical Journal, 15(1), 145-

150. 

 

Brumelle, S. L. (1978).  A generalization of Erlang‟s loss system to state dependent 

arrival and service rates. Mathematics of Operations Research,  3(1), 10-16. 

 

Çinlar, E. (1967a). Time dependence of queues with semi-Markovian services. 

Journal of Applied Probability,  4(2), 356-364. 

 

Çinlar, E. (1967b). Queues with semi-Markovian arrivals. Journal of Applied 

Probability,  4(2), 365-379. 

 

Çinlar, E., & Disney, R. L. (1967). Stream of overflows from a finite queue. 

Operations Research, 15(1), 131-134. 

 

Çinlar, E. (1969). Markov renewal theory. Advances in Applied Probability, 1(2), 

123-187. 

 

http://or.journal.informs.org/search?author1=Erhan+%C3%87inlar&sortspec=date&submit=Submit
http://or.journal.informs.org/search?author1=Ralph+L.+Disney&sortspec=date&submit=Submit


97 
 

 
 

Çinlar, E. (1975). Introduction to stochastic processes. NJ: Prentice-Hall, Inc. 

 

Cooper, R. B. (1976). Queues with ordered servers that work at different rates. 

Opsearch, 13(2),  69-78. 

 

Elsayed, E. A. (1983).  Multichannel queueing systems with ordered entry and finite 

source. Computers & Operations Research, 10(3), 213–222. 

 

Erlang, A.K. (1917). Solution of some problems in the theory of probabilities of 

significance in automatic telephone exchanges. Elektroteknikeren, 13, 138-155. 

 

Fakinos, D. (1980). The M/G/k blocking system with heterogeneous servers. Journal 

of the Operational Research Society, 31(10), 919-927. 

 

Feller, W. (1966). An introduction to probability theory and its applications. (2nd 

ed.). NY: John Wiley & Sons, Inc. 

 

Fishman, G. S. (2001) Discrete event simulation: Modeling, programming and 

analysis. NY: Springer. 

 

Gnedenko, B. V., & Kovalenko, I. N. (1989). Introduction to queueing theory. (S. 

Kotz, Trans.). Boston: Birkhäuser. 

 

Gontijo, G. M., Atuncar, G. S., Cruz, F. R. B., & Kerbache, L. (2011). Performance 

evaluation and dimensioning of GI
X
/M/c/N systems through kernel estimation. 

Mathematical Problems in Engineering, Article ID 348262. 

   

Gumbel, M. (1960). Waiting lines with heterogeneous servers. Operations Research, 

8(4) 504-511. 

 

Halfin, S. (1981).  Distribution of the interoverflow time for the GI/G/1 loss system. 

Mathematics of Operations Research, 6(4), 563-570. 

http://www.sciencedirect.com/science/journal/03050548


98 
 

 
 

Henderson S. G., & Nelson B. L. (2006). Stochastic computer simulation. 

Handbooks in Operations Research and Management Science, 13, 1-18. 

 

Isguder, H. O. & Uzunoglu-Kocer, U. (2010). Optimization of loss probability for 

GI/M/3/0 queuing system with heterogeneous server. Anadolu University Journal 

of Science and Technology B – Theoretical Sciences, 1(1), 73-89. 

 

Isguder, H. O. (2012). An  extension of Palm‟s recurrence formula. 8th World 

Congress in Probability and Statistics, Istanbul, Turkey, 45. 

 

Isguder, H. O., & Celikoglu, C. C. (2010). Computation of loss probability in 

GI/M/n/0 queueing model. 8th International Symposium of Statistics, EskiĢehir, 

Turkey. 

 

Isguder, H. O., & Celikoglu, C. C. (2010). Sonlu kapasiteli heterojen kuyruk modeli 

için geçiĢ olasılıklarının elde edilmesi. 7. İstatistik Günleri Sempozyumu, Ankara, 

Türkiye, 51-52. 

 

Isguder, H. O., & Celikoglu, C. C. (2012). Minimizing the loss probability in 

GI/M/3/0 queueing system with ordered entry. Scientific Research and Essays, 

7(8), 963-968. 

 

Isguder, H. O., Uzunoglu-Kocer, U., & Celikoglu, C. C. (2011). Generalization of 

the Takacs‟ formula for GI/M/n/0 queuing system with heterogeneous servers. 

Lecture Notes in Engineering and Computer Science, 1, 45-47. 

 

Kaufman, J. S. (1980). Congestion formulas for a heterogeneous server loss system 

with random selection discipline. Operations Research, 29(6). 1167-1180. 

 

Kendall D. G. (1953). Stochastic processes occurring in the theory of queues and 

their analysis by the method of the imbedded Markov chain. The Annals of 

Mathematical Statistics, 24(3), 338-354. 



99 
 

 
 

Khintchine, A. Y. (1960). Mathematical methods in the theory of queueing. (D. M. 

Andrews, & M. H. Quenouille, Trans.). London: Charles Griffin & Company 

Limited. 

 

Konig, D., & Matthes , K. (1963). Werallgemeiherungen der erlangschen formelu, 

Mathematische Nachrichten, 26, 45-56. 

 

Kumar B. K., Madheswari, S. P., & Venkatakrishnan, K. S. (2007).  Transient 

solution of an M/M/2 queue with heterogeneous servers subject to catastrophes. 

Information and Management Sciences, 18(1), 63-80. 

 

Law A. M., & Kelton W. D. (2000). Simulation modeling and analysis. (3rd ed.). 

NY: McGraw-Hill. 

 

Levy, P. (1954). Processus semi-markoviens. Proceedings of the International 

Congress of Mathematicians, 3, 416-426. 

 

Lin, B. W., & Elsayed, E. A. (1978). A general solution for multichannel queueing 

systems with ordered entry. Computers & Operations Research, 5(4), 219–225. 

 

Matsui, M., & Fukuta, J. (1977). On a multichannel queueing system with ordered 

entry and heterogeneous servers. A I I E Transactions, 9(2),  209-214. 

 

Mendonça, F. C., & Morabito, R. (2001). Analysing emergency medical service 

ambulance deployment on a Brazilian highway using the hypercube model. 

Journal of the Operational Research Society, 52, 261-270. 

 

Nath, G., & Enns, E. (1981). Optimal service rates in the multiserver loss system 

with heterogeneous servers. Journal of Applied Probability, 18(3), 776-781. 

 

http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291522-2616
http://www.sciencedirect.com/science/journal/03050548


100 
 

 
 

Nawijn, W. M. (1983). A note on many-server queueing systems with ordered entry, 

with an application to conveyor theory.  Journal of Applied Probability, 20(1), 

144-152. 

 

Nawijn, W. M. (1984). On a two-server finite queuing system with ordered entry and 

deterministic arrivals. European Journal of Operational Research, 18(3), 388-

395. 

 

Palm, C. (1943). Intensitätsschwankungen im fernsprechverkehr. Ericsson and 

Technics, 44, 1-189. 

 

Pourbabai, B. (1987). Markovian queueing systems with retrials and heterogeneous 

servers. Computers & Mathematics with Applications, 13(12), 917-923. 

 

Pourbabai, B., & Sonderman, D. (1986).  Service utilization factors in queueing loss 

systems with ordered entry and heterogeneous servers. Journal of Applied 

Probability, 23(1), 236-242. 

 

Pyke, R. (1961a).  Markov renewal processes: Definitions and preliminary 

properties. Annals of Mathematical Statistics, 32(4) 1231-1242. 

 

Pyke, R. (1961b). Markov renewal processes with finitely many states. Annals of 

Mathematical Statistics, 32(4) 1243-1259. 

 

Pyke, R., & Schaufele, R. (1964). Limit theorems for Markov renewal processes. 

Annals of Mathematical Statistics, 35(4) 1746-1764. 

   

Ross, S. M. (1996). Stochastic process. (2nd ed.). NY: John Wiley & Sons, Inc. 

 

Saglam, V., & Shahbazov, A. (2007). Minimizing loss probability in queuing 

systems with heterogeneous servers. Iranian Journal of Sciences & Technology, 

Transaction A, 31(A2) 199-206. 

http://www.sciencedirect.com/science/journal/08981221


101 
 

 
 

Shahbazov, A. (2005). Olasılık teorisine giriş. Ġstanbul: Birsen Yayınevi. 

 

Singh,V. S. (1970).  Two-server markovian queues with balking: Heterogeneous vs. 

homogeneous servers. Operations Research, 18(1) 145-159. 

 

Singh,V. S. (1971).  Markovian queues with three heterogeneous servers1. A I I E 

Transactions, 3(1), 45-48. 

 

Smith W. L. (1954). Asymptotic renewal theorems. Proceedings of the Royal Society 

of Edinburgh Section A Mathematical and Physical Sciences, 64(1), 9-48. 

 

Smith W. L. (1955). Regenerative stochastic processes. Proceedings of the Royal 

Society of London, Series A, Mathematical and Physical Sciences, 232(1188) 6-

31. 

 

Smith, W. L. (1958) . Renewal theory and its ramifications.  Journal of the Royal 

Statistical Society Series B, 20(2) 243-302. 

 

Takacs, L. (1956) On the generalization of Erlang‟s formula. Acta Mathematica 

Hungarica, 7,  419-433. 

 

Takacs, L. (1957). On a probability problem concerning telephone traffic. Acta 

Mathematica Hungarica, 8, 319-433. 

 

Takacs, L. (1958). On a coincidence problem concerning telephone traffic. Acta 

Mathematica Hungarica, 9, 45-81. 

 

Takacs, L. (1959). On the limiting distribution of the number of coincidences 

concerning telephone traffic. Annals of Mathematical Statistics, 30(1) 134-142. 

 

Takacs, L. (1962). Introduction to the theory of queues. NY: Oxford University 

Press. 

http://www.informaworld.com/smpp/title~db=all~content=t713772245~tab=issueslist~branches=3#v3


102 
 

 
 

Takacs, L. (1969). On Erlang‟s formula. Annals of Mathematical Statistics, 40(1), 

71-78. 

 

Whitt, W. (1972). Embedded renewal process in GI/G/s queue. Journal of Applied 

Probability, 9(3), 650-658. 

 

Widder, D. V. (1946). The Laplace transform. Princeton: Princeton University Press. 

 

Yao, D. D. (1986). Convexity properties of the overflow in an ordered-entry system 

with heterogeneous servers. Operations Research Letters, 5(3),  145-147. 

 

Yao, D. D. (1987). The arrangement of servers in an ordered-entry system. 

Operations Research, 35(5) 759-763. 

 

http://www.sciencedirect.com/science/journal/01676377

	SKMBT_C25213040214490
	Ph.D - H. Okan Isguder

