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to Prof. Dr. Efendi NASİBOĞLU who excited me in my studies. The greatest

contribution of my thesis emerged from the brilliant idea of him.

I would like to present my thanks especially to Prof. Dr. C. Cengiz ÇELİKOĞLU
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A DATA MINING APPLICATION ON COGNITIVE EEG RECORDING

ABSTRACT

Development of computer and data-storage technology caused new techniques

to arise to get these data useful in daily life. Especially complex statistical methods

became easily usable on large amounts of data. This new approach (named as

Knowledge Discovery in Databases or Data Mining) came with many advantages

for every domain. It provided the transition from data to knowledge.

Human body is a complex system with subsystems in itself generating many

data in various types. Brain is individually one of the vital parts of human body.

It has complex communication mechanisms and many unexplored regions and

functions. Electroencephalography (EEG) is a method which is used to present

the electrical activity of the brain. In EEG technique, electrodes located on head

receives small voltage changes produced by brain over time during a process or

even in asleep. These data are used for many areas in especially epilepsy, sleep

disorders, biophysics, neuroscience, etc.

This thesis aims applying some of the data mining methods on EEG data

recorded during dichotic listening test. EEG data were examined in detail, analysed,

partitioned and labelled. Statistical similarity measure ZM statistic was used as a

tool for comparing the similarity or dissimilarity of signals received from different

electrodes for different dichotic stimuli.

ZM statistic is a powerful tool in identifying similarity of signals in amplitude but

not in shape. To avoid this deficiency data were transformed into difference signals

to detect the behavioural similarity. Applying ZM to this transformed signals gave

more reliable results in similarity. Some of the similarities which were not found

before transformation arose in the transformed signals similarity. By this adjustment

of data, signals moving together in different amplitudes were also detected.
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Besides, a clustering was performed on electrodes using dendrogram visualization

to support the similarity results.

Keywords : Data mining, electroencephalography (EEG), dichotic listening, signal

similarity, ZM statistics, biomedical signals.
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BİLİŞSEL EEG KAYITLARI ÜZERİNDE VERİ MADENCİLİĞİ

UYGULAMASI

ÖZ

Bilgisayar ve veri saklama teknolojilerinin gelişmesi veriyi günlük hayatta daha

kullanışlı hale getirmek için yeni tekniklerin ortaya çıkmasına sebep olmuştur.

Özellikle karmaşık istatistiksel yöntemler, büyük miktarlardaki veriler üzerinde

daha kolay uygulanabilir hale gelmiştir. Veri Tabanlarında Bilgi Keşfi ya da Veri

Madenciliği isimli bu yeni yaklaşım her alana birçok avantaj getirmiştir. Bu sayede

veriden tecrübeye geçiş sağlanmıştır.

İnsan vücudu kendi içinde alt sistemleri olan ve çeşitli türlerde veriler üreten

bir sistemler bütünüdür. Beyin başlı başına önemli hayati organlardan birisidir.

Karmaşık iletişim mekanizmalarına ve henüz keşfedilmemiş birçok bölgeye ve

işleve sahiptir. Elektroensefalografi (EEG) beyindeki elektriksel aktivitenin görüntü-

lendiği bir yöntemdir. EEG tekniğinde, kafa üzerine yerleştirilen bir başlıktaki

potansiyel fark alıcıları (elektrotlar), beynin bir işlevi ya da uyku sırasında üretilen

küçük voltaj değişikliklerini zaman üzerine kaydederler. Bu veriler epilepsi, uyku

bozuklukları, biyofizik, nöroloji başta olmak üzere birçok alanda kullanılmaktadır.

Bu tez, veri madenciliği yöntemlerinin bazılarını dikotik dinleme testi sırasında

kaydedilen EEG verileri üzerinde uygulamayı hedeflemektedir. EEG verisi detaylı

olarak incelenmiş, analiz edilmiş, parçalara ayrılmış ve etiketlendirilmiştir. Farklı

uyaranların etkisiyle oluşan tepkileri ve farklı elektrotlardaki sinyalleri karşılaştırmak

ve benzerlik ya da benzemezliği tespit etmek üzere ZM istatistiği temel araç olarak

kullanılmıştır.

ZM istatistiği sinyallerin şiddet benzerliğini belirlemede güçlü bir araç olmasına

karşın şekil benzerliğini tespit etmede güçlü değildir. Tezde bu eksikliği gidermek

amacıyla sinyallerin davranış benzerliğini de bulabilmek için veriler fark sinyallerine
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dönüştürülmüştür. ZM istatistiğini dönüştürülen verilere uygulayarak daha güvenilir

sonuçlar elde edilmiştir. Dönüşümden önce bulunamayan benzerlikler fark edilir

olmuştur. Verinin bu şekilde düzenlenmesiyle farklı büyüklüklerde benzer davranış

gösteren sinyaller de belirlenebilmektedir.

Bunun yanısıra, elde edilen benzerliği desteklemek amacıyla elektrotlar arasında

bir kümeleme çalışması da gerçekleştirilmiş ve dendrogram grafiği ile sunulmuştur.

Anahtar Sözcükler : Veri madenciliği, elektroensefalografi (EEG), dikotik dinleme,

sinyal benzerliği, ZM istatistiği, biyomedikal işaretler.
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CHAPTER ONE

INTRODUCTION

1.1 Data Mining

As a result of developing technology, decrease in cost of data storage devices,

increase of data sources and getting easier to share and access any type of data,

huge amounts of data has become accessible to many users in many domains.

These have caused to arise environments which are rich in data but poor in data

quality and knowledge. In today’s competitor media of business, the importance

of knowledge has been realized so the need for using the present data better for

future prediction has emerged. Traditional statistical methods have been supported

by faster processor and computing structures, new techniques for data processing

have been developed and eventually the concept of “Data Mining” which aims to

use the data to make prediction for the decision makers has been born.

Data mining is the process of applying statistical methods and analysis to huge

amount of data sources in order to extract previously unknown, usable, interesting

and valid information. Data mining is a step of “Knowledge Discovery in Databases

(KDD)” process. In this process, methods for describing, cleaning and transforming

the data, building different models for analysis, identifying the accuracy of the

models and deploying the models are used.

1.2 Biomedical Signals and EEG

Living organisms are made up of many component systems - the human

body, for example include the nervous system, the cardiovascular system and

the musculoskeletal system, among others. Physiological processes are complex

phenomena, including nervous or hormonal stimulation and control; inputs and

outputs that could be in the form of physical material, neurotransmitters, or
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information; and action that could be mechanical, electrical or biochemical. Most

physiological processes are accompanied by or manifest themselves as signals that

reflect their nature and activities. Such signals could be of many types, including

biochemical in the form of hormones and neurotransmitters, electrical in the

form of potential or current, and physical in the form of pressure or temperature

(Rangayyan, 2002).

The representation of biomedical signals in electronic form facilitates computer

processing and analysis of the data. But many practical difficulties are encountered

in biomedical signal acquisition.

The electroencephalogram (EEG) reflects the electrical activity of the brain as

recorded by placing several electrodes on the scalp. The EEG is widely used for

diagnostic evaluation of various brain disorders such as determining the type and

location of the activity observed during an epileptic seizure or for studying sleep

disorders (Sörnmo & Laguna, 2005).

The dichotic listening (DL) paradigm is often used to assess brain asymmetries

at the behavioral level. Dichotic listening means presenting two auditory stimuli

simultaneously, one in each ear, and the standard experiment requires that the

subject report which of the two stimuli was perceived best (Hugdahl, 2005).



3

1.3 Problem Definition - Targets

EEG signal produced by the human brain contain many secret messages. These

messages can be discovered and may be used for diagnosis or treatment of some

diseases, or early detection of some problems. Analysing these signals, many

different outcomes may be achieved. One of the fruitful areas is brain mapping or

localization problem. According to the EEG signal analysis, the source or location

of brain functions can be detected. Some diseases and causes and/or outcomes of

these diseases may be defined by EEG signals.

Human brain does not define the auditory stimuli of the same intensity received

from both ears equally. There is no equilibrium of 50% from right ear and 50%

from left ear. Studies show that people have a right ear advantage in the rate of

60% - 70%. This thesis studies the EEG recordings of different ear advantaged

subjects taken during a dichotic listening test. The responses of brain to auditory

stimuli are explored, differences and similarities of right ear and left ear responses

are determined, similar responses on different electrodes are detected and reasons

and effects of ear advantage have been argued keeping brain asymmetry in mind.

In the study, EEG recordings received from different subjects during dichotic

listening test form the basis. EEG responses are evaluated and labelled as Right

Ear Advantage and Left Ear Advantage. Similarities and differences of these

two responses are investigated. Similarities between different sections/electrodes

and right and left ear response averages are examined to identify the functional

asymmetry and functional localization of the brain. Most similar time sections of

these responses are detected using different window widths. In defining similarities,

cross correlation and a new statistical measure of similarity ZM is used. The

similarity methods used in signal analysis are generally on similarity of amplitude

in signals. But in EEG, similarity in shape or behaviour of EEG signal is much

more valuable in size or amplitude. This deficiency of ZM statistic is overcome by

transforming the signal into a difference signal.



CHAPTER TWO

SIGNAL PROCESSING AND DATA MINING

Signal processing is one of the most complicated areas in many different

domains. Signals from any generator (including human body) carry many important

information about the source. Understanding and working on the signal informs the

researcher about the current situation, helps to predict the future states. Analysing

and watching the signals, may be helpful in detecting errors, monitoring the system,

preventing and avoiding possible problems and enhancing the current system

components.

Signals can be stationary or non-stationary. Stationary signals are easier to

work on because they have stable properties (frequencies or amplitudes). But non-

stationary signals are not observed as expected mostly. Information retrieved from

non-stationary signals are more valuable so far. Extracting information and defining

patterns even in non-stationary behaviour of a signal is a complicated process of

signal processing.

As the technology in computing speed and data storage systems develops, dream

of making analysis on huge amounts of data became true. It was very difficult to

apply statistical models to hundreds or thousands of data. Samples were drawn

and the conclusions were made on the results of the analysis of these samples.

By the developing technology, the researchers are not afraid of the amount of

the data now. Microprocessors of today can make thousands of computations,

databases can answer a query with millions of records just in a few seconds. So

traditional statistical methods can be applied to large amounts of data. Using more

data rather than samples gives more accurate results and more reliable predictions.

This improves the efficiency of decision makers in a particular field of business.

The rapid change in technology also caused the statistical methods to be evolved.

New and faster algorithms were developed for known methods and new methods

4
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were introduced. Estimation and prediction became more popular and easier.

Different disciplines are combined and general solutions for different problems are

constructed. Multi-disciplined groups perform successful operations in many fields.

Complex statistical methods cannot be thought without a computer program.

Using computers and statistical software, statistical methods can be applied to any

field. The corporation of computing, database and statistics emerged a new work

area named data mining. The main target of this new area is to describe the current

data, detect hidden patterns in huge amount of data and make predictions for future

decisions.

2.1 Signal Analysis

The analysis of signals (especially electrical signals) is a fundamental problem

for many engineers and scientists The basic parameters of interest are often

changed into electrical signals by means of transducers. Common transducers

include accelerometers and load cells in mechanical work, EEG electrodes and

blood pressure probes in biology and medicine, and pH and conductivity probes in

chemistry. The outcomes for transforming these parameters to electrical signals are

great, as many instruments are available for the analysis of electrical signals in the

time and frequency domains. The powerful measurement and analysis capabilities

of these instruments can lead to rapid understanding of the system under study.

In this part of the thesis, the concepts of the time and frequency domains are

introduced. These two ways of looking at a problem are interchangeable; that is,

no information is lost in changing from one domain to another. The advantage in

working these two domains is that of a change of perspective to the current situation.

By changing perspective from the time domain, the solution to difficult problems

can often become quite clear in the frequency domain (Agilent, 2000).
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2.1.1 The Time Domain

Time domain view is the traditional way of observing signals. The time domain

is a record of events in a parameter of the system versus time. Figure 2.1 shows a

simple spring-mass system where a pen is attached to the mass and a piece of paper

is pulled under the pen at a constant rate. The resulting drawing is a record of the

displacement of the mass versus time, a time domain view of displacement.

Figure 2.1 Direct recording of displacement - a time

domain view (Agilent, 2000)

It is usually much more practical to convert the parameter of interest to

an electrical signal using a transducer. Microphones, accelerometers, load cells,

conductivity and pressure probes are the examples of transducers.

The electrical signal, which represents a parameter of the system, can be recorded

on a strip chart recorder as in Figure 2.2. Doing so, the gain of the system can be

adjusted to calibrate the measurement. Then the results of simple direct recording

system in Figure 2.1 can be reproduced exactly.

With the indirect system a transducer can be selected which will not significantly

affect the measurement by the outer effects like friction, spring and weight of

the mass. This can go to the extreme of commercially available displacement

transducers which do not even contact the mass. The pen deflection can be easily

set to any desired value by controlling the gain of the electronic amplifiers.
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Figure 2.2 Indirect recording of displacement

(Agilent, 2000)

This indirect system works well until the measured parameter begins to change

rapidly. Because of the mass of the pen and recorder mechanism and the power

limitations of its drive, the pen can only move at finite velocity. If the measured

parameter changes faster, the output of the recorder will be in error. A common

way to reduce this problem is to eliminate the pen and record on a photosensitive

paper by deflecting a light beam. Such a device is called an oscillograph. Since it is

only necessary to move a small, light-weight mirror through a very small angle, the

oscillograph can respond much faster than a strip chart recorder.

Figure 2.3 Simplified oscillograph operation (Agilent, 2000)

Another common device for displaying signals in the time domain is the

oscilloscope. Here an electron beam is moved using electric fields. The electron

beam is made visible by a screen of phosphorescent material. It is capable of
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accurately displaying signals that vary even more rapidly than the oscillograph can

handle. This is because it is only necessary to move an electron beam, not a mirror.

Figure 2.4 Basic oscilloscope operation

(Agilent, 2000)

The strip chart, oscillograph and oscilloscope all show displacement versus time.

Changes in this displacement represent the variation of the parameter versus time.

2.1.2 The Frequency Domain

It was shown over one hundred years ago by Baron Jean Baptiste Fourier that any

waveform that exists in the real world can be generated by adding up sine waves.

This was illustrated in Figure 2.5 for a simple waveform composed of two sine

waves. By regulating the amplitudes, frequencies and phases of these sine waves

correctly, a waveform can be generated identical to the desired signal. Conversely,

any real world signal can be broken down into sine waves.

Figure 2.5 Any real waveform can be produced by

adding sine waves together. (Agilent, 2000)
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Figure 2.6a is a three dimensional graph of this addition of sine waves. Two of

the axes are time and amplitude, familiar from the time domain. The third axis is

frequency which allows to visually separate the sine waves which add to give out

the complex waveform. Viewing this three-dimensional graph along the frequency

axis, view in Figure 2.6b is obtained. This is the time domain view of the sine waves.

Adding them together at each instant of time gives the original waveform. However,

Figure 2.6 The relationship between the time and frequency domains.

a) Three dimensional coordinates showing time, frequency and

amplitude b) Time domain view c) Frequency domain view (Agilent,

2000)

if the graph is viewed along the time axis as in Figure 2.6c, a totally different picture

is displayed. Here the axes of amplitude versus frequency, is commonly called the

frequency domain. Every sine wave separated from the input appears as a vertical

line. Its height represents its amplitude and its position represents its frequency.

Since each line represents a sine wave, the input signal is uniquely characterized in

the frequency domain. This frequency domain representation of a signal is called the

spectrum of the signal. Each sine wave line of the spectrum is called a component

of the total signal.
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It should be expressed that information is neither gained nor lost, just is

represented differently. The same three-dimensional graph is viewed from different

angles. This different perspective can be very useful. At first the frequency domain

may seem strange and unfamiliar, yet it is an important part of everyday life. The

ear-brain combination is an excellent frequency domain analyser. The ear-brain

splits the audio spectrum into many narrow bands and determines the power present

in each band. It can easily pick small sounds out of loud background noise thanks

in part to its frequency domain capability. A doctor listens to the patient’s heart and

breathing for any unusual sounds. An experienced mechanic can do the same thing

with a machine. Using a screwdriver as a stethoscope, he can hear when a bearing

is failing because of the frequencies it produces.

Figure 2.7 Frequency spectrum examples (Agilent, 2000)

In Figure 2.7a, it is seen that the spectrum of a sine wave is just a single line.

The square wave in Figure 2.7b is made up of an infinite number of sine waves,

all harmonically related. This is in contrast to the transient signal in Figure 2.7c

which has a continuous spectrum. Another signal of interest is the impulse shown

in Figure 2.7d in which there is energy at all frequencies.
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2.2 Signal Similarity Methods

Measures of similarity are required in a wide range of radar sonar, communicati-

ons, remote sensing, artificial intelligence and medical applications, where one

signal or image is compared with another. Many basic signal processing operations,

such as matched filtering, cross correlation, and beam formation are based on

measures of similarity. These operations form the foundation of the detection,

classification, localization, association and registration algorithms employed in

semiautonomous sensor systems. Beam-formation and cross-correlation processing

techniques are also used to compute Time-Of-Arrival- Differences (TOADs) or

Time Delay Estimates (TDE) in distribu-ted networks of acoustic sensors (Kennedy,

2007).

Many signals have similarities that can be exploited in signal processing

algorithms. For example, a phase-modulated signal is similar to an amplitude-

scaled version of that signal; processing to extract the information should ideally

be invariant to changes in amplitude. In circumstances where similarities can be

identified, it may be desirable to design signal processing algorithms that are

invariant to the different forms of the signal that are fundamentally similar in some

aspect. Many signal processing algorithms have been developed that attempt to

compensate for differences in amplitude, offset, phase, or time. However, these have

all been developed separately without regard to a unifying principle (Moon, 1996).

2.2.1 Signal Transformations

Mathematical transformations are applied to signals to obtain a further informati-

on from that signal that is not readily available in the raw signal (signals in time

domain).



12

There are number of transformations that can be applied, among which the

Fourier transforms are probably by far the most popular that breaks down a signal

into constituent sinusoids of different frequencies. Another way to think of Fourier

analysis is as a mathematical technique for transforming the view of the signal from

time-based to frequency-based.

Most of the signals in practice, are time domain signals in their raw format. That

is, whatever that signal is measuring, is a function of time. In other words, when

plotting the signal one of the axes is time (independent variable), and the other

(dependent variable) is usually the amplitude. This representation is not always the

best representation of the signal for most signal processing related applications. In

many cases, the most distinguished information is hidden in the frequency content

of the signal. The frequency SPECTRUM of a signal is basically the frequency

components (spectral components) of that signal. The frequency spectrum of a

signal shows what frequencies exist in the signal (Polkar, 2001).

Frequency is something to do with the change in rate of something. If something

changes rapidly, we say that it is of high frequency, where as if this variable does not

change rapidly, i.e., it changes smoothly, we say that it is of low frequency. If this

variable does not change at all, then we say it has zero frequency, or no frequency.

For example the publication frequency of a daily newspaper is higher than that of a

monthly magazine (it is published more frequently).

As expressed in Polkar (2001), the frequency is measured in cycles/second, or

with a more common name, in "Hertz". For example the electric power we use in

our daily life 50 Hz. This means that if you try to plot the electric current, it will be

a sine wave passing through the same point 50 times in 1 second. In the following

figures, the first one is a sine wave at 3 Hz, the second one at 10 Hz, and the third

one at 50 Hz.
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Figure 2.8 Signals in different frequencies (Polkar, 2001)

Why need to transform?

Depending on the target of the analysis, the information that cannot be readily

seen in the time-domain can be seen in the frequency domain. Especially if the work

is about frequencies, time domain plotting will not be helpful for the researcher.

Let’s give an example from biological signals. Suppose we are looking at an ECG

signal (ElectroCardioGraphy, graphical recording of heart’s electrical activity). The

typical shape of a healthy ECG signal is well known to cardiologists. Any significant

deviation from that shape is usually considered to be a symptom of a pathological

condition. This pathological condition, however, may not always be quite obvious
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in the original time-domain signal. Cardiologists usually use the time-domain ECG

signals which are recorded on strip-charts to analyse ECG signals. Recently, the

new computerized ECG recorders/analysers also utilize the frequency information

to decide whether a pathological condition exists. A pathological condition can

sometimes be diagnosed more easily when the frequency content of the signal is

analysed (Polkar, 2001).

This, of course, is only one simple example why frequency content might be

useful. Today Fourier Transforms are used in many different areas including all

branches of engineering.

Although FT is probably the most popular transform being used (especially in

electrical engineering), it is not the only one. There are many other transforms that

are used quite often by engineers and mathematicians. Hilbert transform, short-time

Fourier transform, Wigner distributions, the Radon Transform, and of course our

featured transformation, the wavelet transform, constitute only a small portion of a

huge list of transforms that are available at engineer’s and mathematician’s disposal.

Every transformation technique has its own area of application, with advantages and

disadvantages, and the wavelet transform (WT) is no exception. For example WT is

useful when to have both the time and the frequency information at the same time.

Signals whose frequency content do not change in time are called stationary

signals. In other words, the frequency content of stationary signals do not change in

time. In this case, one does not need to know at what times frequency components

exist , since all frequency components exist at all times.

An example of time domain to frequency domain transformation with FT is

given below for example the stationary signal x(t) = cos(2π10t) + cos(2π25t) +

cos(2π50t) + cos(2π100t). It is stationary because it has frequencies of 10, 25, 50,

and 100 Hz at any given time instant. This signal is plotted below:
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Figure 2.9 Signal of x(t) = cos(2π10t)+ cos(2π25t)+ cos(2π50t)+ cos(2π100t) (Polkar,

2001)

And the following FT is:

Figure 2.10 FT of x(t) = cos(2π10t) + cos(2π25t) + cos(2π50t) + cos(2π100t) (Polkar,

2001)

While working on the signals, application specific transformations can also be

used. Frequency or amplitude filtering, amplification, normalization or averaging

are also used techniques for transformation. In this study, the signals are transformed

by calculating the difference of each instance within the signal as explained in

Section 4.6.1.
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2.2.2 ZM Statistic

In Kennedy (2007) a statistical treatment of a delay-and-sum beam-former is

described and used to derive the new measure of signal similarity. The derivation

is based on a few standard statistical relationships. A hypothesis test is performed

with the null hypothesis being that there is no signal present and that the waveforms

entering the beam former contain only zero-mean Gaussian-distributed noise. It

is assumed that any Direct Current (DC) offset in the data (e.g. sensor bias) or

frequencies that are of no interest (e.g. wind or self noise) have been removed by

a pre-whitening stage. If the null hypothesis is rejected then it is assumed that a

localizable signal is present. The test statistic for all possible lag combinations

corresponding to all physically measurable angles is computed. The most likely

direction of the source is set equal to the angular coordinate for which the null

hypothesis is least likely, i.e. the test statistic is maximized.

In the study of Kennedy (2007), the delay-and-sum beam-former is applied as

y(n) =
M−1∑
m=0

xm(n) (2.2.1)

where xm(n) is the nth sample output from the mth delay channel and y(n) is the

beam-formed output. In Eq. (2.2.1) it is assumed that the appropriate delays have

been applied to steer a beam in a desired direction. The noise statistics of every

sample from all sensors are assumed to be identical, so the nth sample in each delay

channel is assumed to be an independent observation of the random variable Xn.

Analysing the digitized waveforms (in x) over a window of length N , gives a total

of N different random variables, with M observations of each variable. Under the

null hypothesis the variables have a Gaussian (Normal) distribution

XN ∼ N(µn, σ
2
n) (2.2.2)
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At a given n, using the data from all M channels, the Maximum Likelihood

Estimates (MLEs) µ̂n and σ̂2
n , of the (true) mean and variance µn and σ2

n , are

computed using

µ̂n =
y(n)

M
(2.2.3)

and

σ̂2
n =

1

M

{
M−1∑
m=0

xm(n)
2 − y(n)2

M

}
(2.2.4)

Under the null hypothesis the following relationships hold:

If Za =M
(µ̂n − µn)

2

σ2
n

then Za ∼ χ2(1) (2.2.5)

If Zb =M
σ̂2
n

σ2
n

then Zb ∼ χ2(M − 1) (2.2.6)

Under the null hypothesis it is also assumed that the noise statistics of the sensor

outputs are zero mean and time invariant so the parameters of each distribution are

the same:

µ1 = µ2 = . . . = µN = µ = 0 (2.2.7)

and

σ2
1 = σ2

2 = . . . = σ2
N = σ2 = 0 (2.2.8)

Using the reproductive property of χ2 variables, the following aggregate test

statistics can be formed and analyzed:

If Zc =
M

σ2

N−1∑
n=0

µ̂2
n then Zc ∼ χ2(N) (2.2.9)

If Zd =
M

σ2

N−1∑
n=0

σ̂2
n then Zd ∼ χ2(N(M − 1)) (2.2.10)

So far it has been assumed that the true variance (σ2) of the (white) noise is

known. This is an inconvenient and unnecessary assumption. It can be eliminated
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by dividing (2.2.9) by (2.2.10); furthermore, if the numerator and the denominator

are scaled by the inverse of their respective degrees of freedom, i.e.

ZM =
Zc/N

Zd/(N(M − 1))
(2.2.11)

then a variable distributed according to Snedecor’s F distribution results (Freund,

1992, Kennedy, 2007); that is, after substituting (2.2.9) and (2.2.10) into (2.2.11):

ZM = (M − 1)

N−1∑
n=0

µ̂2
n

N−1∑
n=0

σ̂2
n

(2.2.12)

with

ZM ∼ F (N,N(M − 1)) (2.2.13)

ZM = (M − 1)

1

M

N−1∑
n=0

y(n)2

M−1∑
m=0

N−1∑
n=0

xm(n)
2 − 1

M

N−1∑
n=0

y(n)2

(2.2.14)

Alternatively, 2.2.14 may be written in terms of moments:

ZM = (M − 1)

N−1∑
n=0

E[x(n)]2

N−1∑
n=0

E[x(n)2]−
N−1∑
n=0

E[x(n)]2

(2.2.15)

using

E[x(n)] =
1

M

M−1∑
m=0

xm(n) (2.2.16)

E[x(n)2] =
1

M

M−1∑
m=0

xm(n)
2 (2.2.17)

As expressed in Kennedy (2007) the ZM test statistic is the ratio of two sum-

of-squares quantities (2.2.12). If the square of the estimated mean (numerator) is

regarded as the (delay-and-sum) signal power, and the variance (denominator) the
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noise power, then it may be convenient to convert ZM into a Signal-to-Noise Ratio

(SNR) in dB. Images may then be formed using many closely-spaced beams, and

presented to an operator for visual inspection.

Knowing that under the null hypothesis the ZM statistic is F distributed,

allows a detection threshold to be computed to give the desired probability of

falsely rejecting the null hypothesis when it is indeed true (a false alarm). If the

computed ZM value exceeds the threshold then a localisable signal is instead

assumed to be present. The necessary threshold is determined using the inverse

Cumulative Density Function (CDF) of the F distribution. The two parameters

(degrees of freedom) of the function automatically adjust the threshold (increase

it) to compensate for the higher variability of the test statistic when low channel

counts (M) are used and when the data window length (N) is small.

In practice, the null hypothesis is rarely entirely true, and false alarms due to

nuisance sources are common, so a larger detection threshold is usually appropriate,

giving a negligible theoretical false-alarm probability (the size of the test), an

acceptable practical false-alarm probability and a reasonable probability of detection

(the power of the test) (Kennedy, 2007).
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2.3 Data Mining

Due to the emerging data storages in databases, the lack of information and

knowledge arises in every field of daily life. As early as 1984, in his book

Megatrends, John Naisbitt observed that “we are drowning in information but

starved for knowledge.” The problem today is not that there is not enough data

and information streaming in. We are, in fact, inundated with data in most fields.

Rather, the problem is that there are not enough trained human analysts available

who are skilled at translating all of these data into knowledge.

We are overwhelmed with data. The amount of data in the world, in our lives,

seems to go on and on increasing and there’s no end in sight. Personal computers

make it too easy to save things that previously we would have trashed. Inexpensive

multi gigabyte disks make it too easy to postpone decisions about what to do

with all this stuff we simply buy another disk and keep it all. Different types of

electronic equipments record our decisions, our choices in the supermarket, our

financial habits, our comings and goings. We swipe our way through the world,

every swipe a record in a database. The World Wide Web overwhelms us with

information; meanwhile, every choice we make is recorded. And all these are just

personal choices: they have countless counterparts in the world of commerce and

industry. We would all testify to the growing gap between the generation of data and

our understanding of it. As the volume of data increases, inexorably, the proportion

of it that people understand decreases, alarmingly. Lying hidden in all these data

is information, potentially useful information, that is rarely made explicit or taken

advantage of (Witten & Frank, 2005).

The steady and amazing progress of computer hardware technology in the past

three decades has led to powerful, affordable, and large supplies of computers, data

collection equipment, and storage media. This technology provides a great boost

to the database and information industry, and makes a huge number of databases

and information repositories available for transaction management, information
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retrieval, and data analysis (Han & Kamber, 2001).

Traditional data analysis techniques have often encountered practical difficulties

in meeting the challenges posed by new data sets. The following are some of the

specific challenges that motivated the development of data mining:

• Scalability,

• High dimensionality,

• Heterogeneous and complex data,

• Data ownership and distribution,

• Non-traditional analysis.

Brought together by the goal of meeting these challenges, researchers from

different disciplines began to focus on developing more efficient and scalable tools

that could handle diverse types of data. This work, which culminated in the field

of data mining, built upon the methodology and algorithms that researchers had

previously used. In particular, data mining draws upon ideas such as sampling,

estimation and hypothesis testing from statistics, search algorithms, modelling

techniques and learning theories from artificial intelligence, pattern recognition

and machine learning. Data mining has also been quickly adopt ideas from other

areas including optimization, evolutionary computing, information theory, signal

processing, visualization, and information retrieval. (Tan et al., 2006)

Data can now be stored in many different types of databases. One database

architecture that has recently emerged is the data warehouse, a repository of

multiple heterogeneous data sources, organized under a unified schema at a

single site in order to facilitate management decision making. Data warehouse

technology includes data cleansing, data integration, and On-Line Analytical
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Processing (OLAP), that is, analysis techniques with functionalities such as summa-

rization, consolidation and aggregation, as well as the ability to view information

at different angles. Although OLAP tools support multidimensional analysis and

decision making, additional data analysis tools are required for in-depth analysis,

such as data classification, clustering, and the characterization of data changes over

time (Han & Kamber, 2001).

Data mining is an interdisciplinary field, the confluence of a set of disciplines

(as shown in Figure 2.11), including database systems, statistics, machine learning,

visualization, and information science. Moreover, depending on the data mining

approach used, techniques from other disciplines may be applied, such as neural

networks, fuzzy and/or rough set theory, knowledge representation, inductive logic

programming, or high performance computing. Depending on the kinds of data to

be mined or on the given data mining application, the data mining system may

also integrate techniques from spatial data analysis, information retrieval, pattern

recognition, image analysis, signal processing, computer graphics, web technology,

economics, or psychology (Han & Kamber, 2001).

Figure 2.11 Data mining as a confluence of multiple

disciplines (Han & Kamber, 2001)
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2.3.1 Knowledge Discovery

Simply stated, data mining refers to extracting or “mining” knowledge from

large amounts of data. Thus, “data mining” should have been more appropriately

named “knowledge mining from data”. Knowledge mining, a shorter term, may not

reflect the emphasis on mining from large amounts of data. Nevertheless, mining

is a vivid term characterizing the process that finds a small set of precious nuggets

from a great deal of raw material. There are many other terms carrying a similar

or slightly different meaning to data mining, such as knowledge mining from

databases, knowledge extraction, data/pattern analysis, data archaeology, and data

dredging (Han & Kamber, 2001, Larose, 2005, Bramer, 2007, Tan et al., 2006).

Many people treat data mining as a synonym for another popularly used term,

Knowledge Discovery in Databases, or KDD. Alternatively, others view data mining

as simply an essential step in the process of knowledge discovery in databases.

According to Han & Kamber (2001), KDD is a process containing the following

steps:

• Data cleaning

• Data integration

• Data selection

• Data transformation

• Data mining

• Pattern evaluation

• Knowledge presentation
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Figure 2.12 Knowledge Discovery Cycle

2.3.2 CRISP-DM Life Cycle

There is a temptation in some companies, due to departmental inertia and

compart-mentalization, to approach data mining haphazardly, to reinvent the wheel

and duplicate effort. A cross-industry standard was clearly required that is industry-

neutral, tool-neutral, and application-neutral. The Cross-Industry Standard Process

for Data Mining (CRISP-DM) was developed in 1996 by analysts representing

DaimlerChrysler, SPSS, and NCR. CRISP provides a nonproprietary and freely

available standard process for fitting data mining into the general problem-solving

strategy of a business or research unit.

According to CRISP-DM expressed in Larose (2005), a given data mining

project has a life cycle consisting of six phases, as illustrated in Figure 2.13. Note

that the phase sequence is adaptive. That is, the next phase in the sequence often

depends on the outcomes associated with the preceding phase. The most significant

dependencies between phases are indicated by the arrows. For example, suppose



25

that we are in the modeling phase. Depending on the behavior and characteristics

of the model, we may have to return to the data preparation phase for further

refinement before moving forward to the model evaluation phase.

The iterative nature of CRISP is symbolized by the outer circle in Figure 2.13.

Often, the solution to a particular business or research problem leads to further

questions of interest, which may then be attacked using the same general process as

before.

Figure 2.13 CRISP-DM Life Cycle

Lessons learned from past projects should always be brought to bear as input into

new projects. Following is an outline of each phase. Although conceivably, issues

encountered during the evaluation phase can send the analyst back to any of the

previous phases for amelioration, for simplicity we show only the most common

loop, back to the modelling phase.

In Larose (2005) the six phases of CRISP-DM are expressed as follows:
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1. Business understanding phase: The first phase in the CRISP-DM standard

process may also be termed the research understanding phase.

• Enunciate the project objectives and requirements clearly in terms of the

business or research unit as a whole.

• Translate these goals and restrictions into the formulation of a data mining

problem definition.

• Prepare a preliminary strategy for achieving these objectives.

2. Data Understanding phase:

• Collect the data

• Use exploratory data analysis to familiarize yourself with the data and discover

initial insights.

• Evaluate the quality of the data.

• If desired, select interesting subsets that may contain actionable patterns.

3. Data Preparation Phase:

• Prepare from the initial raw data the final data set that is to be used for all

subsequent phases. This phase is very labor intensive.

• Select the cases and variables you want to analyze and that are appropriate for

your analysis.

• Perform transformations on certain variables, if needed.

• Clean the raw data so that it is ready for the modeling tools.

4. Modeling Phase:
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• Select and apply appropriate modeling techniques.

• Calibrate model settings to optimize results.

• Remember that often, several different techniques may be used for the same

data mining problem.

• If necessary, loop back to the data preparation phase to bring the form of

the data into line with the specific requirements of a particular data mining

technique.

5. Evaluation Phase:

• Evaluate the one or more models delivered in the modeling phase for quality

and effectiveness before deploying them for use in the field.

• Determine whether the model in fact achieves the objectives set for it in the

first phase.

• Establish whether some important facet of the business or research problem

has not been accounted for sufficiently.

• Come to a decision regarding use of the data mining results.

6. Deployment Phase:

• Make use of the models created.

• Example of a simple deployment: Generate a report.

• Example of a more complex deployment: Implement a parallel data mining

process in another department.

• For businesses, the customer often carries out the deployment based on your

model.
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2.3.3 Methods and Tasks

In the knowledge discovery process, many methods and techniques must be used

according to the type of the data and the target of the study. In order to understand

and describe the data, find hidden patterns, apply statistical models and to use the

data for prediction, various methods must be experienced. To get reliable results,

many methods and tasks must be tried.

Methods used in data mining process can be classified under two categories -

supervised and unsupervised. In supervised techniques there is a target attribute and

the class label of each sample is provided. In other words, learning of the model is

supervised in that it is told to which class each training sample belongs. Many of

the methods - especially classification methods - used in data mining are supervised

(Tan et al., 2006, Bramer, 2007, Han & Kamber, 2001, Larose, 2005).

In unsupervised techniques, no target attribute exists or the class of the target is

undefined before training. Also the class labels of training samples are not known.

Clustering is an example of unsupervised models.

The general classification of the tasks used in knowledge discovery process are

as follows (Larose, 2005):

• Description

• Clustering

• Classification

• Estimation - Prediction

• Association
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2.3.3.1 Description

Data often contains many information in the first sight. Looking at the big picture

and then detailing it may give fruitful outcomes for decision makers. Before going

in detail, data must be described fully. Database management systems mostly offer

a data dictionary for the data kept, in terms of data type, storage, a short description

about the values stored, etc.

As a good representation of the data, visualization techniques (sometimes called

graphical data analysis) provide rewarding understanding in discovering patterns or

relations in the data. Using different types of charts (bar, box plot, stem and leaf,

scatter plot, pie, web graphs, etc.) and tables help to see what is in a data set. Matrix

plots, distribution diagrams, histograms, cross tabulations and correlations clearly

define the relations between the attributes. Tools for representing data in 2, 3 and

even more dimensions exists in today’s technology. These tools provide different

views for the data.

Besides the visual representation, some numerical values must be obtained for

a better understanding. Descriptive statistics like minimum and maximum values,

ranges, frequencies, averages, modes, standard deviations, variances, quartiles

or deciles, cumulative percentiles, correlation coefficients are useful and simple

computations for representing attributes kept in the data (Vahaplar, 2003).

As mentioned in Larose (2005), describing the data is the concern of a specific

subject named Exploratory Data Analysis which allows the analyst to

• represent the data deeply in terms of graphical, tabular and numerical tools,

• examine the interrelations among the attributes,

• construct new subsets of data according to the related scenario or cases.
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2.3.3.2 Clustering

Clustering refers to the grouping of records, observations, or cases into classes

of similar objects. A cluster is a collection of records that are similar to one another

and dissimilar to records in other clusters. Clustering differs from classification in

that there is no target variable for clustering. The clustering task does not try to

classify, estimate, or predict the value of a target variable (unsupervised). Instead,

clustering algorithms seek to segment the entire dataset into relatively homogeneous

subgroups or clusters, where the similarity of the records within the cluster is

maximized, and the similarity to records outside this cluster is minimized.

Clustering is often performed as a preliminary step in a data mining process,

with the resulting clusters being used as further inputs into a different technique

downstream, such as neural networks. Due to the enormous size of many present-

day databases, it is often helpful to apply clustering analysis first, to reduce

the search space for the downstream algorithms. (Hartigan, 1975, Grabmaier &

Rudolph, 2002)

In clustering, there are some issues to be encountered such as measuring

similarity (or dissimilarity) between records, dealing with categorical variables,

normalization of numerical attributes and determining the optimum number of

clusters.

There are different algorithms used in clustering. Basically clustering algorithms

are classified as follows: (Gan et al., 2007, Ulutagay, 2009)

• Hierarchical Clustering Methods (Connectivity based),

Agglomerative methods, Divisive methods, (CURE, BIRCH)

• Partitioning Methods (Centroid based, center based),

k-means, k-modes, k-medoids, k-prototypes, k-probabilities
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• Density Based Methods,

DBSCAN, GDBSCAN, OPTICS

• Searched Based Methods,

• Grid Based Methods,

STING, CLIQUE

• Graph Based Methods,

• Fuzzy Clustering Methods,

Fuzzy c-means (FCM), Fuzzy Joint Point (FJP)

• Model Based Methods

COBWEB, CLASSIT, AutoClass, Kohonen Self Organizing Maps.

2.3.3.3 Classification

Classification and Prediction are two forms of data analysis which can be used

to extract models describing important data classes or to predict future trends.

Data classification is a two-step process. In the first step named learning, a

model is built using a set of data (training set) with predefined classes. The model

analyses the records each belongs to a predefined class. One of the attributes in

the data is called class label attribute. The elements of the training set is selected

randomly from the sample population. The model is represented as classification

rules, mathematical formulae or decision trees.

In the second step called classification, the model built is used for classification

of future data which class labels are not known. According to the rules or formulae

constructed in model, the class which the record must belong to is determined.

Classification techniques and some favourite algorithms are as follows (Kotsiantis,

2007, Han & Kamber, 2001, Bramer, 2007) :
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• Logic Based Algoritms

decision trees (C4.5, CART, CHAID, QUEST), learning set of rules,

• Perceptron-based techniques

Single layered (WINNOW), multi layered (Artificial Neural Networks),

Radial Basis Function (RBF) networks,

• Statistical Learning Algorithms

Naive Bayes classifiers, Bayesian networks,

• Instance Based Learning

k-Nearest Neighbour (kNN),

• Case Based Reasoning,

• Support Vector Machines,

• Genetic Algorithms,

• Rough Set Approach,

• Fuzzy Set Approach.

2.3.3.4 Estimation - Prediction

Estimation is similar to classification except that the target variable is numerical

rather than categorical. Models are built using “complete” records, which provide

the value of the target variable as well as the predictors. Then, for new observations,

estimates of the value of the target variable are made, based on the values of the

predictors.

Prediction is similar to classification and estimation, except that for prediction,

the results lie in the future. Prediction is the constructing and use of a model to

assess the class of an unlabelled sample or to assess the value or value range
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of an attribute that a given sample likely to have. Basically, classification and

regression are two major types of prediction problems. Classification is used to

predict discrete or nominal variables and regression is used to predict continuous or

ordered variables. The prediction of continuous values can be modelled by statistical

techniques of regression.

In statistical analysis, estimation and prediction are elements of the field

of statistical inference. Statistical inference consists of methods for estimating

and testing hypotheses about population characteristics based on the information

contained in the sample. The unknown value of the population mean µ is estimated

by calculating the average values of a sample x drawn from that population. The

sample proportion p is the statistic used to measure the unknown value of the

population proportion π. The statistic s is used to estimate the standard deviation σ

of the population (Larose, 2005).

In some cases, a point estimation has to be done but in many cases, confidence

interval estimation is more efficient. A confidence interval estimate of a population

parameter consists of an interval of numbers produced by a point estimate, together

with an associated confidence level specifying the probability that the interval

contains the parameter and expressed as point estimate ± margin of error where

the margin of error is a measure of the precision of the interval estimate (Larose,

2005).

Widely used estimation and prediction methods are:

• Point estimation,

• Confidence interval estimation,

• Linear and Multiple regression,

• Nonlinear regression,

• Logistic and Poisson regression.
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Also decision trees, neural networks and k-Nearest Neighbour algorithms are

used for estimation and prediction of the value of a sample. (Larose, 2005, Han &

Kamber, 2001)

2.3.3.5 Association

Association rule mining searches for interesting relationships among the items

in a data set. It is the study of attributes or characteristics that“go together”.

Association analysis is useful for discovering interesting patterns or relationships

hidden in large data sets. The outcomes are represented in the form of association

rules containing if - then - else statements. The strength of an association is

measured in terms of its support and confidence (Han & Kamber, 2001, Larose,

2005). Support determines how often a rule is applicable to a given data set, and

confidence shows how frequently items in Y appear in transactions that contain X .

Simply formulating support and confidence; for an association like A ⇒ B (if A

then B)

support = P (A ∩B) =
number of samples containing both A and B

total number of samples
(2.3.1)

and

confidence = P (B | A) = number of samples containing both A and B
number of samples containing A

(2.3.2)

Association rule mining is a two step process: (1) finding all frequent itemsets,

(2) generating rules from the frequent itemsets. The first step determines the overall

performance of the mining association rules.

Most widely used area of association rule mining is called market basket

analysis. It investigates the shopping behaviours of the customer and provides new

offers of products to them. Especially related items sold together, gives the market

owner big advantages to display products under the title of “You may also want to

see...” or “People who bought this, also bought that...”.
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Association analysis has a huge computational complexity. If there are k items

in the data, there may be k.2k−1 possible association rules. To overcome this

complexity, number of frequent itemsets are reduced (Apriori principle), or the

number of comparisons are reduced (Larose, 2005).



CHAPTER THREE

BIOMEDICAL SIGNAL SOURCES AND REAL LIFE PROBLEMS

3.1 Biomedical signals

Living organisms are made up of many component systems - the human

body, for example include the nervous system, the cardiovascular system and

the musculoskeletal system, among others. Each system is made up of several

subsystems that carry on many physiological processes. For example, the cardiac

system performs the important task of rhythmic pumping of blood throughout the

body to facilitate the delivery of nutrients as well as pumping blood through the

pulmonary system for oxygenation of the blood itself.

Physiological processes are complex phenomena, including nervous or hormonal

stimulation and control; inputs and outputs that could be in the form of physical

material, neurotransmitters, or information; and action that could be mechanical,

electrical or biochemical. Most physiological processes are accompanied by or

manifest themselves as signals that reflect their nature and activities. Such signals

could be of many types, including biochemical in the form of hormones and

neurotransmitters, electrical in the form of potential or current, and physical in the

form of pressure or temperature (Rangayyan, 2002).

3.2 Biomedical Signal Samples

• The action potential (AP) is the electrical signal that accompanies the

mechanical contraction of a single cell when stimulated by an electrical current

and it is caused by the flow of Na+, K+, Cl− and other ions across the cell

membrane (Rangayyan, 2002).

• The Electroneurogram (ENG) is an electrical signal observed as a stimulus

36



37

and the associated nerve action potential propagate over the length of a nerve

(Rangayyan, 2002).

• The Electromyogram (EMG) is a technique for evaluating and recording

the activation signal of muscles. EMG is performed using an instrument

called an electromyograph, to produce a record called an electromyogram.

An electromyograph detects the electrical potential generated by muscle cells

when these cells are mechanically active, and also when the cells are at rest

(Wikipedia, 2009).

• The Electrocardiogram (ECG) is the electrical manifestation of the contracti-

le activity of the heart, and can be recorded fairly easily with surface electrodes

on the limbs or chest. The ECG is perhaps the most commonly known,

recognized and used biomedical signal. The rhythm of the heart in terms

of beats per minute (bpm) may be easily estimated by counting the readily

identifiable waves.

• The Electroencephalogram (EEG) represents the electrical activity of the

brain.

• Event related potentials (ERPs) includes the ENG and EEG in response to

light, sound, electrical or other external stimuli.

• The Electrogastrogram (EGG), the electrical activity of the stomach consists

of rhythmic waves of depolarization and repolarization of its constituent

smoothe muscle cells.

• The Phonocardiogram (PCG) is a vibrationor sound signal related to the

contractile activity of the cardiohemic system (the heart and blood together).

• The carotid pulse (CP) is a pressure signal recorded over the carotid artery

as it passes near the surface of the body at the neck.

• Signals from catheter-tip sensors: For very specific and close monitoring of

the cardiac function, sensors placed on catheter tips may be inserted into the
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cardiac chambers. It then becomes possible to acquire several signals such as

left ventricular pressure, right atrial pressure, aortic pressure and intracardiac

sounds. While these signal provide valuable and accurate information, the

procedures are invasive and are associated with certain risks.

• The speech signal is an important signal although it is more commonly

considered as a communication signal than a biomedical signal. However, the

speech signal can serve as a diagnostic signal when speech and vocal-tract

disorders need to be investigated.

• The vibromyogram (VMG) is the direct mechanical manifestation of contracti-

on of a skeletal muscle and is a vibration signal that accompanies the EMG.

• The vibroarthogram (VAG) is the vibration signal recorded from a joint

during movement of the joint. Detection of knee-joint problems via the

analysis of VAG signals could help avoid unnecessary exploratory surgery and

also aid better selection of patients who would benefit from the surgery.

• Oto-acoustic emission signals represent the acoustic energy emitted by the

cochlea either spontaneously or in response to an acoustic stimuli.

3.3 Objectives of Biomedical Signals

The representation of biomedical signals in electronic form facilitates computer

processing and analysis of the data. Figure 3.1 illustrates the typical steps and

processes involved in computer-aided diagnosis and therapy based upon biomedical

signal analysis. The major objectives of biomedical instrumentation and signal

analysis introduce in Rangayyan (2002) are:

• Information gathering - measurement of phenomena to interpret a system.

• Diagnosis - detection of malfunction, pathology or abnormality.
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Figure 3.1 Computer aided diagnosis and therapy based upon biomedical signal analysis

(Rangayyan, 2002)

• Monitoring - obtaining continuous or periodic information about a system.

• Therapy and control - modification of the behavior of a system based upon the

outcome of the activities listed above to ensure a specific result.

• Evaluation - objective analysis to determine the ability to meet functional

requirements, obtain proof of performance, perform quality control or quantify

the effect of treatment.

3.4 Difficulties in Biomedical Signals

In spite of the long history of biomedical instrumentation and its extensive use in

health care and research, many practical difficulties are encountered in biomedical

signal acquisition, processing and analysis. The characteristics of the problem and

hence their potential solutions are unique to each type of signal. Particular attention

should be paid to the following issues according to Rangayyan (2002):

• Accessibility of the variables to measurement.

• Variability of the signal source.
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• Inter-relationship and interactions among physiological systems.

• Effect of the instrumentation or procedure on the system.

• Physiological artifacts and interference.

• Energy limitations.

• Patient safety.

3.5 Brain and EEG

Human brain is one of the most critical organs for the human body. It is located

in the most secured region with a closed cap of bones (skull) of the body. It is

named encephalon in Latin which comes from ancient Greek word enkephalos - in

the head. It is the center of learning and it regulates thought, memory, judgement,

personal identity, and other aspects of what is commonly called the mind. It also

regulates aspects of the body - including body temperature, blood pressure and the

activity of internal organs - to help the body respond to its environment and to

remain healthy. The brain is said to be the most complex living structure known to

the universe (Britannica, 2008).

The brain and the spinal cord make up the central nervous system processing and

communicating the information that controls all of the body functions. The spinal

cord extends from the base of the brain and is contained within the vertebral canal.

The brain controls the activities of the body and receives information about the

body’s inner workings, and about the outside world by sending and receiving signal

via the spinal cord and the peripheral nervous system. It receives the oxygen and

foot it needs to function by way of a vast network of arteries that carries fresh blood

to every part of the brain.

The brain of a human adult weights about 1 - 1.5 kg. with a volume of 1600

cm3. It consumes 20% - 25% of the overall energy produced by the body. In a
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typical human the cerebral cortex (the largest part) is estimated to contain 15 to

33 billion neurons, each connected by synapses to several thousand other neurons.

These neurons communicate with one another by means of long protoplasmic fibers

called axons, which carry trains of signal pulses called action potentials to distant

parts of the brain or body targeting specific recipient cells (Wikipedia, 2012).

The brain looks like a mushroom contained within the skull.The cap of the

mushroom is the cerebrum and the stem of the mushroom (the part attached to

the spinal cord) is the brainstem. At the back of the head between the brainstem and

the cerebrum is the cerebellum.

The cerebrum is the largest and most highly developed part of the brain. It is

divided into four sections or lobes:

- Frontal lobe controls cognitive functions such as speech, planning and

problem solving,

- Parietal lobe is assigned for controlling sensation such as touch, pressure and

judging size and shape,

- Temporal lobe mediates visual and verbal memory, and smell,

- Occipital lobe controls visual reception and recognition of shapes and colors.

Symmetrical in structure, the cerebrum is divided into the left and right

hemispheres. In most people, the left hemisphere is responsible for functions such

as creativity, and the right hemisphere is responsible for functions including logic

and spatial perception. The left hemisphere controls the movement of the right half

of the body, and the right hemisphere controls the movement of the left half of the

body. This is because the nerve fibres that send messages to the body cross over in

the medulla, part of the brainstem (Britannica, 2008).
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Figure 3.2 Basic parts of human brain

The most prominent series of observations clearly belonging to modern neuro-

psychology was made by Paul Broca in the 1860s. He reported the cases of several

patients whose speech had been affected following damage to the left frontal

lobe and provided autopsy evidence of the location of the lesion. Broca explicitly

recognized the left hemisphere’s control of language, one of the fundamental

phenomena of higher cortical function.

In 1874 the German neurologist Carl Wernicke described a case in which a lesion

in a different part of the left hemisphere, the posterior temporal region, affected

language in a different way. In contrast to Broca’s cases, language comprehension

was more affected than language output. This meant that two different aspects of

higher cortical function had been found to be localized in different parts of the brain.

In the next few decades there was a rapid expansion in the number of cognitive

processes studied and tentatively localized.

Wernicke was one of the first to recognize the importance of the interaction

between connected brain areas and to view higher cortical function as the build-

up of complex mental processes through the coordinated activities of local regions

dealing with relatively simple, predominantly sensory-motor functions. In doing so,

he opposed the view of the brain as an equipotential organ acting en masse.
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Broca’s declaration that the left hemisphere is predominantly responsible for

language-related behaviour is the clearest and most dramatic example of an

asymmetry of function in the human brain. This functional asymmetry is related

to hand preference and probably to anatomical differences, although neither

relationship is simple (Britannica, 2008).

3.6 Brain Data Measurements

Human brain has always been an attractive body part for researchers because of

its functional complexity and large function spectrum. Many different techniques

have been developed for detecting anomalies or damages as well as understanding

how brain works. Some of these techniques as invasive. High levels of anatomical

and metabolic data can be provided with different brain imaging techniques. These

techniques are as follows:

Electroencephalogram (EEG) techniques date back to the work of Canton with

animals in the 1800’s and that of Berger with humans in the 1920’s. The basic idea is

to use activity recorded from the scalp as a window to underlying brain processing.

Technically, EEG measures the difference in the brain’s electrical activity found

between two electrodes. EEG will be mentioned in detail in the next section.

Event-related potentials (ERPs), as the name implies, show EEG activity in

relation to a particular event. ERPs have been used to reflect the processing of

cognitive, emotional, and sensory stimuli in the brain. EEG and ERPs have a real

value in determining the time course of a response, because they reflect millisecond

changes within the electrical activity of the cortex (Ray & Oathes, 2003).

The MagnetoEncephaloGram (MEG) uses SQUID (Superconducting Quantum

Interference Device) to detect the small magnetic field gradients exiting and

entering the surface of the head that are produced when neurons are active. MEG
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signals are similar to EEG signals but have one important advantage: magnetic fields

are not distorted when they pass through the cortex and the skull, which makes

localization of sources more accurate than EEG (Ray & Oathes, 2003).

Computerized Axial Tomography (CAT), or computerized tomographic imaging

is a diagnostic imaging method using a low-dose beam of X-rays that crosses

the body in a single plane at many different angles. A major advance in imaging

technology, it became generally available in the early 1970s. The technique

uses a tiny X-ray beam that traverses the body in an axial plane. Detectors

record the strength of the exiting X-rays, and that information is then processed

by computer to produce a detailed two-dimensional cross-sectional image of

the body. A series of such images in parallel planes or around an axis can

show the location of abnormalities and other space-occupying lesions (especially

tumours and other masses) more precisely than can conventional X-ray images

(Encyclopaedia Britannica, 2012).

Positron emission tomography (PET) systems measure variations in cerebral

blood flow that are correlated with brain activity. It is through blood flow that

the brain obtains oxygen and glucose from which it gets its energy. By measuring

changes in blood flow in different brain areas, it is possible to infer which areas of

the brain are more or less active during particular tasks (Ray & Oathes, 2003).

Like PET, functional Magnetic Resonance Imaging (fMRI) is based on the

fact that blood flow increases in active areas of the cortex. However, it uses a

different technology from PET in that in fMRI local magnetic fields are measured

in relation to an external magnet. Specifically, hemoglobin, which carries oxygen

in the bloodstream, has different magnetic properties before and after oxygen is

absorbed. Thus, by measuring the ratio of hemoglobin with and without oxygen,

the fMRI is able to map changes in cortical blood and infer neuronal activity (Ray

& Oathes, 2003).
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Near InfraRed Spectroscopy (NIRS) is an optical technique for measuring blood

oxygenation in the brain. It works by shining light in the near infrared part of the

spectrum (700-900nm) through the skull and detecting how much the remerging

light is attenuated. How much the light is attenuated depends on blood oxygenation

and thus NIRS can provide an indirect measure of brain activity (Demitri, 2007).

3.7 ElectroEncephaloGraphy - EEG

An early discovery established that the brain is associated with the generation of

electrical activity. Richard Caton had demonstrated already in 1875 that electrical

signals in the microvolt range can be recorded on the cerebral cortex of rabbits and

dogs. Several years later, Hans Berger recorded for the first time electrical “brain

waves” by attaching electrodes to the human scalp; these waves displayed a time-

varying, oscillating behaviour that differed in shape from location to location on the

scalp. Berger made the interesting observation that brain waves differed not only

between healthy subjects and subjects with certain neurological pathologies, but that

the waves were equally dependent on the general mental state of the subject, e.g.,

whether the subject was in a state of attention, relaxation, or sleep. The experiments

conducted by Berger became the foundation of electroencephalography, later to

become an important noninvasive clinical tool in better understanding the human

brain and for diagnosing various functional brain disturbances (Sörnmo & Laguna,

2005).

Electroencephalography (EEG) is a graphical display of a difference in voltages

from two sites of brain function recorded over time. Electroencephalography

involves the study of recording these electrical signals that are generated by

the brain via a cap with electrodes. Most routine EEGs recorded at the surface

of the scalp represent pooled electrical activity generated by large numbers of

neurons. Electrical signals are created when electrical charges move within the

central nervous system. Neural function is normally maintained by ionic gradients
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established by neuronal membranes. Sufficient duration and length of small amounts

(in microvolts) of electrical currents of cerebral activity are required to be amplified

and displayed for interpretation (Tatum et al., 2007).

Signals recorded from the scalp have, in general, amplitudes ranging from a few

microvolts to approximately 100 µV and a frequency content ranging from 0.5 to

30-40 Hz. Electroencephalographic signal frequencies are conventionally classified

into five different frequency bands: Delta (0.5 - 4 Hz.), Theta (4-7 Hz.), Alpha

(8-14 Hz.), Beta (15-30 Hz.) and Gamma (>28 Hz.) (Sörnmo & Laguna, 2005,

Megalooikonomou et al., 2000, Tatum et al., 2007, Bayazıt, 2009, Öniz, 2006).

EEG data can be used for many purposes. Spontaneous activity is measured on

the scalp or on the brain and is called the electroencephalogram. The amplitude of

the EEG is about 100 µV when measured on the scalp, and about 1-2 mV when

measured on the surface of the brain. The bandwidth of this signal is from under 1

Hz to about 50 Hz. As the phrase “spontaneous activity” implies, this activity goes

on continuously in the living individual. Evoked potentials are those components

of the EEG that arise in response to a stimulus (which may be electric, auditory,

visual, etc.) Such signals are usually below the noise level and thus not readily

distinguished, and one must use a train of stimuli and signal averaging to improve

the signal-to-noise ratio. Single-neuron behaviour can be examined through the

use of microelectrodes which impale the cells of interest. Through studies of the

single cell, one hopes to build models of cell networks that will reflect actual tissue

properties (Malmivuo & Plonsey, 1995).

3.7.1 Recording EEG

EEG recordings are received via a cap worn on the head. There are conductive

receivers called electrode on the cap touching the surface of the skull. Mostly

an inductive gel is injected in each electrode to increase the sensitivity. Each
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electrode is connected to an amplifier by wires. The amplifier makes the signal

stronger and transmits the signal info to a computer or a scrolling paper. The

clinical EEG is commonly recorded using the International 10/20 system, which

is a standardized system for electrode placement. This particular recording system

(electrode montage) employs 21 electrodes attached to the surface of the scalp at

locations defined by certain anatomical reference points; the numbers 10 and 20

are percentages signifying relative distances between different electrode locations

on the skull perimeter (see Figure 3.3 and 3.4 presented in Malmivuo & Plonsey

(1995)). Note that odd-numbered electrodes are on the left side and even-numbered

electrodes are on the right side. Z (zero) is the the midline (Sörnmo & Laguna,

2005).

3.7.2 EEG Applications

EEG is a non-invasive, simple (in proportion to other techniques) and instant

method for brain data capturing. Many applications and researches depend on

studies in EEG analysis. Investigating EEG signals, some disorders can be diagnosed,

especially in epilepsy and sleep disorders - which is the two of the most important

clinical applications of EEG analysis. .

Epilepsy is caused by several pathological conditions such as brain injury, stroke,

brain tumours, infections, and genetic factors. The EEG is the principal test for

diagnosing epilepsy and gathering information about the type and location of

seizures (Sörnmo & Laguna, 2005).

Sleep disorders, which are frequent in our society, may be caused by several

conditions of medical and/or psychological origin. There are 4 groups of sleep

disorders defined in Sörnmo & Laguna (2005): insomnia, hypersomnia, circadian

rhythm disorders, parasomnia. EEG is one of the favourite methods used in sleep

disorder studies.
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Figure 3.3 Electrode locations for international 10-20 system

Figure 3.4 A = Ear lobe, C = central, Pg = nasopharyngeal, P = parietal,

F = frontal, Fp = frontal polar, O = occipital.

EEG is also used to help for diagnosing brain seizures/diseases and their type.

These include abnormal changes in body chemistry that affect the brain, brain

diseases such as Alzheimer, infections or tumours in the brain. Additionally, EEG

is used to monitor the depth of anesthesia, and to detect the brain death.
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EEG and ERPs are used in neuroscience, cognitive science and psychology,

biophysics and psychophysiological researches (Wikipedia, 2006). EEG signals are

helpful for detecting structural and functional asymmetry of the brain and mapping

or localization studies.

3.8 Dichotic Listening

Dichotic listening has been used in hundreds of research and clinical reports

related to language processing, emotional arousal, hypnosis and altered states of

consciousness, stroke patients, psychiatric disorders and child disorders, including

dyslexia and congenital hemiplegia. One frequently used method to study language

asymmetry is dichotic listening. Because of its ability to distinguish which hemi-

sphere processes specific sounds, the use of dichotic listening has become widespre-

ad in studies of brain asymmetry (Hugdahl, 2005).

Dichotic listening is applied by presenting two auditory stimuli simultaneously,

one in each ear, through earphones. The subject reports which of the two stimuli was

perceived best. The test follows a typical sequence of events, in which a dichotic

stimuli is presented followed by the subject reporting what he heard, usually out of

a list of six syllables (ba, da, ga, pa, ta, ka) or two tones. The signals presented to

the subject to the left ear (LE) and right ear (RE) are compared with the response of

the subject. Most common approaches for the outcomes is counting or calculating

percentage values of the true responses. The difference of RE and LE describes the

ear advantage of the subject (REA, LEA or NoEA) (Kent, 2003).



CHAPTER FOUR

APPLICATION

4.1 Data Mining and EEG

The problem of multidimensional data (e.g. brain images), can be solved with

newer mining methods which are applied directly to the images in order to capture

most of their information content. Data mining is heavily dependent on statistical

methods for discovering associations and classifications among disparate types of

data. EEG technique seems wealthier to examine from data mining perspective

because of the following advantages:

• EEG data has a high time resolution configured by the recorder. Different

sampling rates can be applied. As other methods for researching brain activity

have time resolution between seconds and minutes, the EEG has a resolution

down to sub-milliseconds.

• Electric activity is easy to measure. By using a number of electrodes and

different numbered caps, the electrical potential differences can be measured

spontaneously from the head without any intervention to the subject.

• Recording EEG does not rely on blood flow or metabolism. Other methods

for exploring functions in the brain require blood flow or metabolism. Newer

research typically combines EEG or MEG with MRI or PET to get high

temporal and spatial resolution.

• EEG provides spontaneous measurement of a response of a subject for a

specific interaction (like stimuli) or event (like an epileptic attack). To see

the result of a stimulus, no need to wait for the result of analysis like blood

test or something similar.

• EEG data can be combined with other body function measures. To measure

50
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the correct respond to a stimulus, EEG records can be analysed parallel with

some other body measures like heart bit rate, blood pressure, etc.

• EEG comes in large databases suitable for data mining operations. For

example, one whole night recording of the human sleep results in 8 h of multi-

channel data sampled with up to 256 Hz.

There are also some disadvantages working with EEG data. These can be listed

as below(Flexer, 2000, Megalooikonomou et al., 2000, Sörnmo & Laguna, 2005):

• EEG signals are very noisy. Whereas the electrical background activity of

the human brain is in the range of 1 - 200 µV, evoked potentials (EPs) have

amplitude of only 1 - 30 µV.

• EEG signals have a large temporal variance. Although the spatial localization

of EEG is already well researched, a lot of effort is still needed to take the

between-subjects temporal variation into account.

• Analysis of EEG data requires the use of the full range of data mining

techniques besides the signal processing operations. The signals must cleaned,

be transformed into different domains (frequency, time) and must be filtered.

There are tasks for classification, regression, clustering, sequence analysis, etc.

for investigating EEG data.
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4.2 The Experiment - Business Understanding

In the application section of the thesis, EEG data were obtained from Dokuz

Eylül University, Department of Biophysics, Research Laboratory for PhD thesis of

Onur Bayazıt (Bayazıt, 2009). The data perceived from different subjects contain

the EEG recordings under the dichotic listening test.

A total of 60 healthy subjects (behavioral main group; mean age 23.38 years,

30 female) participated voluntarily in the DL study after having given informed

written consent. A subgroup of 20 subjects (mean age: 21.15, 10 females) formed

the electrophysiological subject pool. The subjects were mainly students at the

University of Dokuz Eylül University Medical Faculty, İzmir. The subjects reported

no history of any neurological and psychiatric conditions and all were native Turkish

speakers (Bayazıt et al., 2009).

Data used in this study was obtained in the specific experiment made by Dokuz

Eylül University Department of Brain Biophysics laboratories and contains the

unfiltered EEG recordings of a subject captured by 64 electrodes cap.

In the experiment, subject is given a dichotic stimulus (combination of two

consonant vowel syllables like BA to the left ear and DA to the right ear) at pseudo-

random time. 2170 msec later than the stimulus, a light indicator is lit to inform the

subject to answer about what was heard. The answer keypad contains 6 buttons each

assigned to declare vowel syllables ba, da, ga, ka, pa, ta. The subject presses the

related button and again a pseudo-random time passes, second stimuli is delivered.

36 different pairs of stimuli are applied twice to the subject. As a result there are 60

stimulus with two different syllables and 12 homonym stimulus containing the same

syllables. During this procedure, EEG recordings are received from 64 electrodes

of the subject. Continuous EEG activity was taken with a sampling rate of 1 kHz,

filtered between 0.15 and 70 Hz (Bayazıt et al., 2009, Vahaplar et al., 2011).
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Figure 4.1 EEG recording during dichotic listening task, captured from (Bayazıt et al., 2009)

4.3 Summarizing Data - Data Understanding

Mainly 4 data sets were used in this thesis study. 2 of the sets (Data Set 1 and

Data Set 3) have Left Ear Advantage (LEA) and the other two (Data Sets 2 and Data

Set 4) have Right Ear Advantage (REA). The data sets were obtained in MATLAB

.mat file format containing the following information:

• Data: 64 x (size of record in milliseconds). (Rows indicate the electrode

number, columns are the voltage measurements received in that milliseconds.

Data(15,123456) stores the voltage value measured in 123456th millisecond

on the 15th electrode).

• Event: Information about the events (stimuli and response) labeled on EEG

data.

– Type: type of the event labelled on the data. 7 means the stimulus,

1,2,3,4,5,6 are the responses corresponding to the syllables ba, da, ga, ka,

pa, ta respectively.

– Latency: It is the time information of the event when occured (in milliseconds).
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– Urevent: Order of the event. (Totally 144 - 72 for stimuli, 72 for response)

• Chanlocs: Electrode labels of the cap (Ex: 15 denotes ‘CZ’ electrode).

4.4 Preliminary Work - Data Preprocessing

As the first step of the study, some functions to partition the EEG data into

individual pieces were written in MATLAB. This code splits the whole data into

the stimuli-based pieces. EEG recordings for each stimuli were separated and a

new matrix was constructed for each stimuli for the selected electrode. Then each

stimuli data were divided into three sections: pre_stimuli, post_early and post_late.

pre_stimuli section is the part of the recordings beginning from the last response

until the stimuli is given. post_early section contains the recordings and starts from

the time that the stimuli is given and ends until the light indicator comes. post_late

section is the part beginning at the time that the light indicator came up to the subject

presses the button.

Pre_stimuli and post_late sections have variable lengths in time due to the

response of the subject for each stimuli but post_early section has a fixed size of

2170 milliseconds (stimuli and light indicator time interval). The main target of the

study was on the post_early section where the stimuli effects are observed in the

brain.

Initially, the response times of stimuli answers were analysed for each of the

four datasets. The stimuli Negative response times mean that subject has pressed the

button on the keypad before the light indicator was lit. Wrong answers are the ones

which subject responded but the stimuli does not contain that syllable answered

(ex: the stimulus was BA-DA, but the subject responded KA). Table 4.1 gives the

descriptives of the data sets.
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Figure 4.2 Labeled EEG recordings of two stimuli

Table 4.1 Average, minimum and maximum response times of four subjects

Data Sets Min Max Avg Left Right Wrong L% R% W%

Data Set 1 -125 2123 719.14 38 19 3 63% 32% 5%

Data Set 2 -142 1267 561.06 22 36 2 37% 60% 3%

Data Set 3 822 2354 1403.80 30 21 9 50% 35% 15%

Data Set 4 -439 1169 420.38 10 43 7 17% 72% 12%

As an example, for Data Set 1, the subject has responded the stimuli number 3,

8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 21, 24, 25,26, 30, 31, 32, 35, 39, 44, 45, 46, 48,

49, 50, 51, 54, 55, 56, 57, 60, 61, 64, 66, 67, 68, 71 with Left Ear and stimuli 1, 2,

4, 7, 16, 22, 27, 28, 33, 36, 37, 38, 40, 43, 52, 58, 62, 63, 72 with Right Ear. The

stimuli 5, 11, 17, 23, 29, 34, 41, 47, 53, 59, 65, 70 are the homonym ones (same

syllable on left and right). Subject 1 has wrong responses on stimuli 6, 42 and 69.
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At this stage, the responded syllables were examined in terms of response counts.

In Figure 4.3 and Figure 4.4, response counts by ear sides are given. It can be seen

that Data Set 1 has no responses of ‘TA’ in right ear stimuli and Data Set 2 has no

responses of ‘PA’ in left ear stimuli.

Figure 4.3 Syllables and Responses on Data Set 1

and 2

Then, the signals were grouped by the response syllables and signal averages of

0-300 msec. were calculated. Group averages are given in Figure 4.5.

Next, the signals that the subject responded by left and right ear were grouped.

The signals responded with right ear and left ear, wrong responses and homonym

stimuli were grouped and signal averages were computed. The resulting table is

given in the following (Figure 4.6).
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Figure 4.4 Bar graph of syllables and responses on Data Set 1 and 2

As another grouping, the syllables were labelled as “HARD” for ka, pa, ta and

“SOFT” for ba, da, ga. The subject’s responses were examined according to the type

of the response. Figure 4.7 displays the response counts of the subjects in HARD

and SOFT types.

To detail this grouping, the distributions of HARD and SOFT responses sent to

the ears were analysed. Left and Right syllables were labelled as HARD and SOFT,
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Figure 4.5 Signal averages of syllable

responses on Data Set 1 and 2

Figure 4.6 Signal averages of stimuli based

on responding ear

Figure 4.7 Response counts of subjects in HARD and SOFT syllables

and the responses were compared according to the placement of the syllable type

given to each ear. Also the ear distributions are shown in Figures 4.8 and 4.9. The

Stim Type denotes the type of the syllable in the stimuli for the corresponding ear
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(ex: HARD-SOFT means a HARD syllable was presented in the Left ear and a

SOFT one in the right ear).

Figure 4.8 Response types of subjects in HARD and SOFT syllables

Figure 4.9 Distribution of HARD and SOFT syllables
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4.5 Similarity Analysis

The section of the signal subject to this part of the study is the first 300 msecs. of

Post_Early section. The recordings showed that the first effect of the stimuli appears

in this time slice. The aim is to investigate the similarity or dissimilarity of the Right

Ear and Left Ear responses and similarity of different electrodes.

Before working on the data, 0-300 msec. sections of each stimuli was selected.

These were grouped according to the ear advantage of the subject’s responses. The

signals of stimuli which the subject responded with his/her right ear (REA) and

left ear (LEA) were summed and averaged. Homonym stimuli (HOM) were also

grouped for comparisons. The same procedure was applied for all electrodes. Figure

4.10 shows the average values of EEG recordings for the first subject (Data Set 1).

Figure 4.10 REA, LEA and HOM Averages of Data Set 1

Electrodes CZ, C3, C4, F3, F4, T7 and T8 were selected to compare. The reason

for choosing these electrodes is that they are located on the hearing and linguistic

processing parts of the brain as mentioned in section 3.5. The location of the

electrodes are given in Figure 4.11.

For the similarity measure, the method of ZM mentioned in section 2.2.2 (and

introduced in Kennedy (2007)) was applied for the signals on each electrodes in

doubles. Two different electrodes were put in signal similarity process. Each signal

was formed of a 1x300 vector of recorded EEG measurement corresponding to the
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Figure 4.11 Electrodes selected to compare for

similarity

time slice just before the stimulus was given. LEA, REA and HOM signals were

examined individually at this stage.

Using ZM statistic for the signals resulted as in Figure 4.12. The values greater

than 1 show there is a similarity. The test statistic was compared with the value of

corresponding F table value (F(300,300)) and if it is greater than the F table value,

the hypothesis of “no significance signal, just noise” is rejected. It should be noted

that greater values indicate higher similarity but not proportionally. This means that

a ZM value of 20 does not imply two times more similarity than a value of 10. The

highest values of ZM are considered in this study.

Besides electrode comparison for the signals, different sections of EEG recordings

on the same electrode were also studied on similarity of REA, LEA and HOM signal

averages (Figures 4.13 and4.14).
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Figure 4.12 ZM values of electrodes in Data Set 1 and Data Set 2

Figure 4.13 ZM values of REA, LEA and HOM in Data Set 1

Figure 4.14 ZM values of REA, LEA and HOM in Data Set 2

The significant observation can be seen that Data Set 1 (with Left Ear Advantage)

has the greatest similarity value in REA-HOM signals on C3 electrode , but Data Set

2 (with Right Ear Advantage) has the greatest similarity value in LEA-HOM signals

on CZ electrode. Apparently REA-LEA similarities on Data Set 2 are significantly

greater than Data Set 1.
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4.6 Most Similar Time Slices

ZM statistic was used to find the most similar time regions of REA and LEA

signals in EEG recordings. In this section of the study, [-1000;+1000] time interval

was used for the analysis (0 is the time of stimuli). Each region was divided into

parts of width 100 msec. Corresponding windows of REA and LEA on different

electrodes were compared for similarity to detect when the most similarity is

observed. The window width was updated by 200, 300 and 500 msec. and the result

are given in Figure 4.15.

In large width windows most similar slices are all the same which is 1000-1500

msec. (first 500 msec. of the stimuli) for all electrodes. But narrow window widths

give more detailed results. For example in w=200 msec, it is obviously seen that

left side electrodes (C3, F3, T7) have a pattern of similarity in 1400-1600 msec.

(400-600 msec after the stimuli) time slices for Data Set 1.

Figure 4.15 Most similar time slices of REA and LEA on different

electrodes with different window sizes (w=100, 200, 300 and 500)
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It was observed that Left Ear Advantage catches the similarity between left and

right responses earlier in the left side electrodes (C3, F3, T7) than the right side

electrodes (C4, F4, T8). But Right Ear Advantage generally has a stable similarity

time in left and right responses. The greatest similarity was obtained especially in

window 1000 - 1200 msec. which the stimuli is given. As the window size increases,

the similarity of signal has the greatest values in the time slice that the stimuli is

given (1000 - 1500 msec. for w=500).

4.6.1 Signal Similarity in Signal Shape

ZM statistic is powerful in detecting the signal similarities in amplitude. The

amplitude changes in two signals can be compared by this statistic. But, two signals

may have the same shape - in different amplitudes. In this case ZM statistic is not

so powerful in detecting similarity.

In order to figure this out, a section of the EEG signal was randomly selected

and a new signal was generated using this signal by adding a fixed value. To say in

terms, Let x(n) be a vector of any signal and let y(n) = x(n) + 5. In fact these are

the vectors with different amplitudes but with same shape or behaviour as seen in

Figure 4.16.

When ZM statistic is calculated for x(n) and y(n), we compute the value of

0.4246 which is less than table value of 1. This is commented as there is no

significance signal, so these are not similar. This is because that ZM test statistic

relies on the amplitude values of the signals. Averages and standard deviations are

in concern of this statistic. So this is a disadvantage of the method.

To avoid this deficiency and to catch the behavioural similarity in signals using

ZM method, the signals were transformed into a difference vector computing the

difference between the signal received in time t+1 and t. So for a signal x, a new

signal z was obtained by applying z(t) = x(t + 1) − x(t). After transforming the
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Figure 4.16 x(n) and x(n) + 5 signals

signals to be compared, ZM(diff) was calculated on these difference vectors. When

this transformation was applied to the previous example signal x(n) and x(n) + 5,

the ZM value was calculated as 8.5400e+014 instead of 0.4246 which is highly less

than the real similarity measure.

Using this method, presented more similarities on similar shaped signals and

also displayed that some similar signals are not so similar in fact and vice versa.

Examples of the mentioned situations are given in Figures 4.17 and 4.18.

This modification of ZM was also applied to most similar time slices in order to

detect a better matching of the stimulus effect. The outcomes of this modification

can be seen obviously in Figure 4.19.

As a summary, ZM statistic was applied to the difference vectors and the results

were used to explain the behaviour of the two signals. Applying ZM to the original

signal helps us to comment on the similarity of the signals amplitude on the same

direction, but using difference vectors explains the rate of change in amplitude

and direction. This may be an advantage in EEG data. Because of the location of

electrodes on the skull, some conductivity problems may occur. Some electrodes
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may receive the signal values weakly. In this case, using difference vector will give

better results in similarity.

Figure 4.17 ZM = 5.63 and ZM(diff) = 0.81

Figure 4.18 ZM = 0.57 and ZM(diff) = 4.76

Figure 4.19 Most similar time slices of REA and LEA on different electrodes detected

with ZM on difference vectors
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4.6.2 Clustering Electrodes

In statistics, hierarchical clustering is a method of cluster analysis which seeks

to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall

into two types:

• Agglomerative: This is a “bottom up” approach: each observation starts in its

own cluster, and pairs of clusters are merged as one moves up the hierarchy.

• Divisive: This is a “top down” approach: all observations start in one cluster,

and splits are performed recursively as one moves down the hierarchy.

Several criteria for determining distance between arbitrary clusters A and B is

describe as follows in Larose (2005):

• Single linkage, sometimes termed the nearest-neighbor approach, is based on

the minimum distance between any record in cluster A and any record in

cluster B. In other words, cluster similarity is based on the similarity of the

most similar members from each cluster. Single linkage tends to form long,

slender clusters, which may sometimes lead to heterogeneous records being

clustered together.

• Complete linkage, sometimes termed the farthest-neighbor approach, is based

on the maximum distance between any record in cluster A and any record in

cluster B. In other words, cluster similarity is based on the similarity of the

most dissimilar members from each cluster. Complete-linkage tends to form

more compact, spherelike clusters, with all records in a cluster within a given

diameter of all other records.

• Average linkage is designed to reduce the dependence of the cluster-linkage

criterion on extreme values, such as the most similar or dissimilar records.

In average linkage, the criterion is the average distance of all the records in
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cluster A from all the records in cluster B. The resulting clusters tend to have

approximately equal within-cluster variability.

Using the information above, the electrodes were tried to be clustered. For

the distances of the signals, correlation coefficient was used. First the correlation

matrix was constructed, then the distance between two signals in two electrodes

was calculated as d = 1− |r|

According to this distances, average linkage clustering was applied and dendro-

grams for Left and Right signals were obtained as follows:
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Figure 4.20 Dendrogram of Left responses

Figure 4.21 Dendrogram of Right responses

From the dendrogram, it can be commented that first joining electrodes are more

similar (or correlated) than the others. Left and Right clusters were constructed

differently. First joining electrodes were CZ-C2 and F4-F6. This approach may help

in localising the brain in terms of electrodes in dichotic listening.



CHAPTER FIVE

DISCUSSIONS AND CONCLUSIONS

In this study of thesis, biomedical signals were examined and investigated

briefly. The outcomes of body functions and especially signals received from

different sections of body were studied (Rangayyan, 2002, Sörnmo & Laguna,

2005). Difficulties and interferences of biomedical signals were determined. Short

introductions were given for the signals.

There are various types of imaging brain data and each has advantage or

different aspects of analysing the data comparing to each other (Ray & Oathes,

2003, Britannica, 2008, Encyclopaedia Britannica, 2012, Megalooikonomou et al.,

2000, Demitri, 2007). EEG was selected to study with data mining because of its

advantages in size and complexity (Flexer, 2000).

In the thesis, EEG data recorded during a dichotic test were examined in detail.

The data contain voltage values received in each millisecond via a cap of 64

electrodes (Bayazıt, 2009, Bayazıt et al., 2009). For a data understanding, some

codes in MATLAB were written to define the related regions of the data. The EEG

signals were divided into 3 partitions around the stimuli. First part is the time until

the auditory dichotic stimulus is given (pre_stimuli), second part is the time between

the stimulus and led indicator that tells the subject he/she can respond now (this is

2170 msec of time inteval and has fixed width for all stimuli, labelled as post_early).

Third part of the signal is the interval from the led indicator until the next stimulus

(post_late). Signals recorded for each stimulus and response were extracted from the

whole data.Some data summarization (like answering time averages, frequencies of

answers, etc.) were computed. Stimuli and responses were compared and the ear

advantages of the subject were defined according to the number of answers given

by each side (left or right). The responses with left ear and right ear were compared

and visualised in graphics.

70
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The signals were grouped by the answers given and average voltage values

were computed for two of the datasets. It was observed that data set 1 with left

ear advantage has negative averages while data set 2 with right ear advantage has

positive averages. The same work was repeated for the REA, LEA and HOM signal

averages and the results were presented.

In the next step, the syllables were labelled as HARD (ka, pa, ta) and SOFT

(ba, da, ga) and the answers were examined under this consideration. The results

differed in HARD-SOFT and SOFT-HARD syllable pairs in two data sets. Data set

2 (which has right ear advantage) is more receptive for SOFT syllable in right ear

than data set 1 with left ear advantage. The distribution of answers in HARD and

SOFT syllables were presented via tables and graphics. The ear advantage or brain

asymmetry effect for the results was left as the topic of another study of discussion.

For the comparison of signals, the statistical similarity measureZM − introduced

in Kennedy (2007) − was used to detect the similarity. Among the similarity

methods mentioned in Moon (1996) and Kennedy (2007), cross correlation and

ZM statistic was applied to EEG signals to find the similarity between the signals.

ZM was selected as the primary similarity measure because ZM statistic gave more

variable results. The reason is that signals examined generally show the similar

behaviour in the predefined region in terms of correlation coefficients.

Left and right advantaged answered signals were compared with each other.

Different electrodes were examined for similarity. Signals between 0 and 300 msecs

(where 0 is the time that stimuli is given) were taken in concern. CZ, C3, C4, F3,

F4, T7 and T8 electrodes were in center of the study because the locations of these

electrodes take place near to the speech and hearing functional areas of the brain

(Bayazıt, 2009). The signal values were averaged grouping according to the ear

advantages. The right ear answers (REA), left ear answers (LEA) and answers to

homonym stimuli (HOM) were averaged for each electrode. These averages were

processed for similarity.
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As a result of the study, similarities on both locations (between electrodes)

and ear advantage responses (REA and LEA) were detected. It was observed that

similarities on REA and LEA are greater than HOM of different electrodes.

In data set 1 and data set 2, greatest similarity was detected in CZ-C4 electrodes

in REA signal averages. But in LEA signals, the results differed. For the left ear

advantaged data set (data set 1) CZ and C3 were most similar and for data set 2 CZ

and C4 were found as most similar.

Examining the REA, LEA and HOM signals on the same electrode, it was

observed that REA and HOM signals on C3 of data set 1 and LEA and HOM signals

on CZ of data set 2 seem to be more similar.

As another similarity study, most similar time slices were investigated between

REA and LEA signals within different electrodes. Different window widths were

tried in the time interval of [-1000;+1000 msec] where 0 is the time of stimuli. It

was observed that the similarities emerge after the stimulus and in the time interval

of [0-500 msec]. Changing window width (100, 200, 300 and 500) resulted that Left

Ear Advantage causes a similarity earlier than Right Ear Advantage on the left side

electrodes (C3, F3 and T7).

The statistical measure of similarity ZM is successful in detecting similarity

in amplitude. If the signals have near average values of voltages, ZM detects this

similarity. But if the signal averages are different but their shape or behaviour is

similar, then ZM is not a reliable measure. This weakness of the method was proved

by a similar example on a sample signal. The signal itself and the shifted version

of the signal were compared and ZM statistic resulted that they were not similar

although they were the same signals with different voltage values.

To avoid this incapability of the method, the data were transformed into another

signal by taking the difference of each data point from the previous one. The signal

x(t) was transformed as z(t) = x(t + 1) − x(t) and ZM was applied to these
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new signals and the outcomes were rewarding. By doing so, ZM method became

capable to detect not only similarity in amplitude, but the similarity in behaviour

or shape of the signals. The results of this and previous similarity studies showed

that the modification in data using the similarity measure brought a new sight to

the EEG signals. Comparing with the previous ones, some of the dissimilar signals

appeared as highly similar and vice versa. This will be a great compromise because

the weakness of electrode receiving small electrical signals will be confronted by

this application. Besides, the effects of electrical signals within the electrodes were

also eliminated in this manner. Detecting similarity in shape is more important than

detecting similarity in amplitude especially in EEG signals.

At the next stage of the study, a clustering was performed over clusters. A

hierarchical clustering was made and correlation coefficients of EEG signals were

used to construct the distance matrix. The dendrograms given in the study presented

the similarity or proximity of different electrodes in dichotic listening effects. Pre-

joining electrodes were commented to be more similar than lately joining cluster.

As a sub study of thesis, entropy and wavelet topics were researched tangentially

(Çek et al., 2010, Rosso et al., 2001). Entropies of auditory stimuli were analysed.

Different entropy calculations and their comparisons were presented. Entropy

studies on EEG data were not included in this thesis and left as further study topic.

The contributions of this study should be considered in different perspectives.

This thesis is a proof of a multi disciplinary work of four branches: Computer

Sciences, Statistics, Biophysics and Signal Processing. As expressed in Han &

Kamber (2001), multiple disciplines confluences are obtained to get results. First

year of the thesis study contains the construction of framework in order to be able to

communicate within these branches. Each branch has its own vocabulary, different

views for the same data and different working customs. Constructing this bridge is

not a disregarded labour. Listing the contributions of this study:
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• This study is a proof of multiple disciplines collaboration,

• This thesis is a good handbook for the beginners to data mining, EEG and

dichotic listening,

• By this thesis, a new approach to dichotic listening on EEG data using

statistical and data mining techniques was purposed,

• A new method of statistical similarity measure was used in EEG data as a new

challenging work,

• The method was manipulated to detect the similarity in signal shapes, and used

as a new technique in EEG recordings,

• Many open-ended research areas for further studies (like entropy, clustering,

classification, similarity, etc.) were put out for researchers,

• A small library of software for manipulating EEG data in MATLAB was

constructed. The functions and programs used in the thesis can be applied

to many other data in different domains,

• Working on EEG data helped the author of the thesis in brain storming, coding

ability, thinking in matrices and handling lots of numbers.
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Future Work

Data mining individually has a large perspective of work to be done. Especially

using EEG data in data mining gives fruitful results as many other domains. For the

further study of this thesis, topics were listed below for exploring EEG data as a

preliminary step of data mining process:

• Cleansing of EEG data is a hard and specific work area of signal processing

studies. Considering that even eye lid movements effect EEG recordings,

filtering or noise reduction can be a work area.

• Researching EEG data in different perspectives will be useful for obtaining

different and interesting results. Not only time domain but frequency domain

is a large area of work for EEG. Different frequency bands can be investigated

separately. Especially in localisation studies, descriptive methods like clustering

or association rules will give precious outcomes.

• Different visual presentation techniques (like graphs, charts, tables, animations,

etc) will help EEG data to be better understood. Some presentations of EEG

recording or dichotic listening can be prepared for researchers who are far

from or afraid of this topic to be a warm up process for further studies.

• MATLAB is a good tool for EEG data handling, so some packages (like EEG

ToolBox of MATLAB) can be developed or some signal processing tools can

be regulated for EEG data manipulation.

Signal analysis is also another world for studying. Considering EEG signals’

complexity, the researchers must be encouraged to know the basics of signal

processing. This thesis focuses on signal similarity, and especially inZM method for

measuring similarity. Besides the work done in this thesis, signal similarity offers

are:
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• Comparing more than two signals or electrodes may be in concern. Combinati-

on of localised electrodes particularly will give more precise results. In this

thesis, binary comparisons were made. This increases the disadvantage of

effects of electrodes with each other. Instead of two electrode comparisons,

two groups of signals received from nearly located electrodes will be more

helpful to identify the ear advantage or asymmetry in the brain.

• Searching similarities in different sections of EEG recordings may be meaning-

ful. In this study, the EEG signals were extracted as sections like pre stimulus,

post early stimulus and post late stimulus. The studies in this thesis focused on

post early stimulus where the first effects of event occurred. It is known that a

similar effect is observed in later periods of the signal.

• Ear and stimulus effects can be analysed particularly. A detailed analysis based

on syllables or different auditory stimuli may produce interesting outcomes.

• In this thesis EEG recordings obtained during a dichotic listening test were

used. Same studies can be applied for other EEG recordings such as during an

epileptic attack or during sleep. Different stages of sleep can be compared in

terms of similarity. Instead of auditory stimuli, visual or somatic stimuli can

be used and these can be compared with each other.

• Instead of ZM , different signal similarity methods can be used or developed.

Used methods can be adjusted to be suitable for EEG signals considering the

complexity and noisy structure of it.

• Searching similarity in different subject can be an interesting work. Analysing

different subjects’ EEG signals, particular patterns can be detected for specific

stimuli.

Clustering is a giant step for data mining process. With huge amounts of

data, clusters will be leading for different analysis on different targets. In this

study hierarchical clustering was performed among signals received from certain
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electrodes. To define the distances of signals, correlation coefficient was used. The

results were interpreted in terms of similarity again. Firstly joining electrodes were

said to be more similar. The future work topics for cluster analysis can be listed as

below:

• Different clustering techniques (like k-means, DBSCAN, Fuzzy c-means, etc)

can be used for all of 64 electrodes to define the related localisations. It will be

a good work to analyse the clusters before working on raw signals. Different

clustering methods will explore the really related electrodes to work on.

• In constructing clusters, average linkage method was used in this study. Other

methods like single linkage and complete linkage methods can be applied and

the results can be compared.

• For the construction of distance matrix, correlation coefficient was used in this

study. Various distance metrics (Euclidean, Manhattan, etc.) can be computed

on signals or new distance functions can be developed.

• Signal similarity measure can also be arranged to serve as a distance measure.

Applying suitable transformation to ZM statistic or any other measure,

different clusters can be obtained.

• Like clustering methods, various techniques can serve for the same purpose.

Principal Component Analysis (PCA) or Independent Component Analysis

(ICA) are the first featured ones. Typically Discriminant Analysis, regression

techniques or neural network can also be studied as a future research.

Introducing signal similarity and signal transformation, entropy was mentioned

as an important topic in the study. Entropy can be combined with similarity within

the previous work. Even as a similarity measure, entropy can be computed. Also

in clustering, entropy values can be arranged to become a distance or similarity

identifier.
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Wavelet applications provide new and fruitful working areas especially in

EEG signals. Using predefined wavelets, certain EEG patterns can be determined.

Another study can be performed on constructing a new wavelet for particular EEG

signals. For example designing a wavelet for sleep disorder can be helpful in

diagnosing particular distortions in EEG data or a brain injury.
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Symposium Journal, 46(3).

Bayazıt, T. O. (2009). Uyaran Parametrelerinin EEGde Dinamik Etkileri. Ph.D.

thesis, Dokuz Eylül Üniversitesi Biyofizik Anabilim Dalı.

Bramer, M. (2007). Principles of Data Mining. Springer Verlag London Limited,

ISBN 978-1-84628-765-7.

Britannica, E. (2008). Britannica Guide to the Brain. Encyclopaedia Britannica,

Inc., ISBN 9781845298036.

Çek, E., Özgören, M., & Savacı, A. (2010). Continuous time wavelet entropy of

auditory evoked potentials. Computers in Biology and Medicine, 40(1), 90–96.

Demitri, M. (2007). Types of Brain Imaging Techniques, Psych Central. Retrieved

February 2012 from. http://psychcentral.com/lib/2007/types-of-brain-imaging-

techniques/.

Encyclopaedia Britannica, O. A. E. (2012). Computed

Tomography (CT). Retrieved February 2012 from.



80

http://www.britannica.com/EBchecked/topic/130695/computed-tomography-

CT.

Flexer, A. (2000). Data mining and electroencephalography. Statistical Methods in

Medical Research, (9), 395 – 413.

Freund, J. E. (1992). Mathematical Statistics. Prentice Hall, ISBN 0-13-565185-9.

Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and

Applications. SIAM, Society for Industrial and Applied Mathematics, ISBN

0898716233.

Grabmaier, J., & Rudolph, A. (2002). Techniques of cluster algorithms in data

mining. Data Mining and Knowledge Discovery, 6, 303–360.

Han, J., & Kamber, M. (2001). Data Mining - Concepts and Techniques. Morgan

Kaufmann Academic Press, ISBN 1-55860-489-8.

Hartigan, J. (1975). Clustering Algorithms. Wiley.

Hugdahl, K. (2005). Symmetry and asymmetry in the human brain. Academia

Europaea, European Review, 13(2).

Kennedy, H. L. (2007). A new statistical measure of signal similarity. Information,

Decision and Control - IEEE.

Kent, R. D. (2003). MIT Encyclopedia of Communication Disorders. MIT Press,

ISBN 9780262112789.

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification

techniques. Informatica, 31(3), 249–268.

Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Data preprocessing

for supervised learning. Proceedings of World Academy of Science, Engineering

and Technology, 12.



81

Larose, D. (2005). Discovery Knowledge in Data. Wiley and Sons Inc., ISBN 0-

471-66657-2.

Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism - Principles and

Applications of Bioelectric and Biomagnetic Fields. Oxford University Press,

New York.

Megalooikonomou, V., Ford, J., Shen, L., & Makedon, F. (2000). Data mining in

brain imaging. Statistical Methods in Medical Research, (9), 359 – 394.

Moon, T. K. (1996). Similarity methods in signal processing. Transactions on

Signal Processing - IEEE, 44(4).

Öniz, A. (2006). Beyinde Delta, Teta ve Alfa Osilasyon Yanıtlarının Işığında
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