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AUDITORY MOTIVATED DISCRETE TIME FREQUENCY SIGNAL 

REPRESENTATION AND ITS APPLICATION TO VOWEL 

CLASSIFICATION 

 

ABSTRACT 

 

In this thesis the Auditory Motivated Discrete Time Frequency Signal 

Representation method is presented. The method is simple and independent from the 

window function, which affect the obtained time frequency resolution in classical 

methods. The numerical simulations with different SNR values show that the proposed 

method is applicable for time frequency signal analysis. The proposed method is 

applied to the speech vowel signals and similar spectral shapes are obtained from the 

same vowel signals independent from the speakers, which is good evidence for 

existing similar spectral shapes inside the same vowels. The vowel classification based 

on vowel patterns extracted from spectral peaks distribution  is performed in order to 

test the existence of the similar spectral shapes, and the obtained results show that the 

proposed method can be used to extract additional vowel patterns in speech 

recognition applications to improve the speech recognition performance. 

               

Keywords : Vowel classification, spectral envelope, discrete time frequency, time 

frequency resolution, basilar membrane vibration, human ear. 
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İNSAN KULAĞI YAPISINA DAYALI AYRIK ZAMAN FREKANS SİNYAL 

TEMSİLİ VE SESLİ HARF SINIFLANDIRILMASINDA UYGULAMASI 

 

ÖZ 

 

Bu tez çalışmasında insan kulağının yapısı ve çalışmasından esinlenerek geliştirilen 

yeni bir ayrık zaman frekans sinyal analizi yöntemi sunulmuştur. Geliştirilen yöntem, 

klasik zaman frekans sinyal analizi yöntemlerinde kullanılan ve zaman frekans 

çözünürlüğünü etkileyen `pencere` fonksiyonundan bağımsızdır. Değişik SNR 

değerleriyle yapılan sayısal simulasyonların sonuçları geliştirilen yöntemin zaman 

frekans sinyal analizinde uygulanabilirliğini göstermektedir. Sunulan yöntem sesli 

harflere uygulanmış ve konuşmacıdan bağımsız aynı sesli harflerden benzer spektral 

şekiller elde edilmiştir, ve elde edilen sonuçlar aynı sesli harfler içinde benzer spektral 

şekiller olabileceğinin iyi bir kanıtıdır. Benzer spektral şekillerin varlığını test etmek 

için spektral tepelerin dağılımından elde edilen sesli harf örüntüleri sesleri 

sınıflandırmak için kullanılmıştır ve elde edilen sonuçlar geliştirilen yöntemin ses 

tanıma uygulamalarında tanıma başarasını arttırmak amaçlı yardımcı ses örüntüleri 

olarak kullanılabileceğini göstermektedir.  

          

Anahtar sözcükler : Ünlü harf ses sınıflandırma, spektral dağılım, ayrık zaman 

frekans, zaman frekans çözünürlüğü, bazal membran titreşimi, insan kulağı. 
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ABBREVIATIONS 

 

AMTFR – Auditory Motivated Discrete Time Frequency Signal Representation 

ANN – Artificial Neural Networks 

ASR – Automatic Speech Recognition 

ASTFT – Adaptive Short Time Fourier Transform 

DFT – Discrete Fourier Transform 

FT – Fourier Transform 

HMM – Hidden Markov Model 

IF – Instantaneous Frequency 

MFCC – Mel Frequency Cepstral Coefficients 

SNR – Signal to Noise Ratio 

SPD – Spectral Peaks Distribution 

STFT – Short Time Fourier Transform 

WT – Wavelet Transform 

WVD – Wigner-Ville Distribution 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

There are a lot of types of signals existing in nature and the signals can be 

classified into different classes based on their characteristics. One classification of 

the signals is deterministic or random signals, and the random signals have 

characteristics varying over time which lead to another classification of non-

stationary signals (Umapathy et al.,2010).  

 

The frequency content of signal is powerful basis for signal analyzing 

applications. The Fourier Transform (FT) is the popular choice for obtaining the 

frequency content of the signals. The FT gives the overall frequency content of the 

signal, and the time information is lost because the FT transform is performed over 

all signal duration. Therefore the FT is powerful analyzing tool for stationary signals 

which have the characteristics that do not change with time. 

 

For non-stationary signals, the occurrence times of the frequencies are important 

because these signals have characteristics that change with time. In order to obtain 

the time information the Short Time Fourier Transform (STFT) is used where the 

fixed width window function is introduced to the FT. The STFT assumes the signals 

stationarity for the specific duration in time defined by the fixed window width. 

Therefore, for good time frequency resolutions the STFT fails in the case of non-

stationary signals. 

 

To overcome the resolution problems the multiresolution signal analysis methods 

are widely used. The Wavelet Transform (WT) is a powerful time frequency signal 

representation tool for non-stationary signals. The WT uses the variable window 

width for multiresolution signal analysis. The narrow window gives the good time 

resolution but the frequency resolution is poor, and the large window give good 

frequency resolution but the time information is poor (Mertins, 1999).  
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The above mentioned signal analysis methods are widely used by many 

researchers.  The STFT, WT, Wigner-Ville Distributons (WVD) (Wang&Jiang, 

2010) and time frequency representations based on the time frequency dictionaries 

(Umapathy et al.,2010) are popular choices used for time frequency signal 

representations. Each of these methods uses different kernels to obtain better time 

frequency resolutions for the analyzed signals. According to Zhong&Huang (2010) 

most of the scientists believe that there is no single kernel that matches best time 

frequency resolution for all signal types. Zhong&Huang (2010) introduced the 

Adaptive Short Time Fourier Transform (ASTFT) where the window width of the 

STFT is set according to the Instantaneous Frequency (IF) detected from the ridge of 

the WT.  The deconvolutive STFT spectrogram (Lu&Zhang, 2009), time frequency 

resolutions based on Rmanujan Sums (Sugavaneswaran et al., 2012) were used to 

obtain better time frequency representation for the specific class of signals. 

According to the Heisenbergs Uncertainty Principle (Loughlin&Cohen, 2004) the 

time and frequency resolutions cannot be optimized at the same time, the time and 

frequency resolutions satisfy the condition   where the minimal value 

of  is called the Heisenberg box (Zhong&Huang, 2010).  

 

In this thesis the Auditory Motivated Discrete Time Frequency Representation 

(AMTFR) method is presented. AMTFR gives the time frequency representation 

without the use of any windowing function. The function of the inner hair cells in the 

human auditory system is tried to be simulated under some assumptions. The method 

is simple and window independent. The numerical simulations show the 

effectiveness of the AMTFR. The performance of the method is tested under noisy 

conditions. 

 

The speech signals fall into non-stationary signals class. Therefore the time 

frequency resolutions play important role for speech signal analysis. The human 

brain is still superior to many technical solutions. Therefore the human auditory 

system based feature extraction methods for automatic speech recognition (ASR) 

systems were widely used in literature. The Mel Frequency Cepstral Coefficients 

(MFCC) described in Picone (1993) is the most popular method used in this area. 
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Chatterjee&Kleijn (2011) give the auditory based design and optimization of feature 

vectors for ASR. The vowel patterns obtained from MFCC are explained well in 

Dusan (2007).  The MFCC try to capture the frequency selectivity of human auditory 

system by transferring the normal frequency scale to the so called mel-scale.  

 

Different hearing tests with subjects who have the normal hearing ability were 

performed in the literature to determine which of the formant frequencies are 

important for vowel identification (Zahorian&Zhang, 1992; Shannon et al., 1995; 

Sakayori et al., 2002). The formant frequencies F1 and F2 are important to identify 

the vowels (Sakayori et al., 2002). However, for the same speaker the formant 

frequencies F1 and F2 can be used to identify the vowels, but in the case of multiple 

speakers there exist overlap between the formant frequencies. 

 

Zahorian&Zhang (1992) suggested that spectral envelope is important information 

for vowel identification. Zahorian&Jagharghi (1993) showed that computational 

vowel classification based on spectral envelope is superior to the information on the 

F0, F1, F2 and F3. According to Sakayori et al. (2002) the human auditory system may 

identify the vowels according to the spectral shapes and formant frequencies F1 and 

F2 in the critical spectral regions.  

 

The proposed method is applied to the vowel signals and similar spectral shapes at 

higher frequencies are obtained for the same vowels independent from the speakers, 

which suggest that spectral envelopes can be used as external cues for the 

classification of the vowels independent from the speakers. The proposed method is 

simple and independent from the window function.  

 

The thesis is organized as follows. In chapter two the basics of sound transduction 

inside the human ear will be explained. In chapter three the novel discrete time-

frequency signal representation method will be presented. Chapter four presents the 

vowel classification algorithm which is based on the spectral peaks distribution 

obtained from discrete time-frequency signal analysis method. In chapter five the 

conclusions will be given. 
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CHAPTER TWO 

 

HUMAN EAR SOUND TRANSDUCTION 

 

2.1 The Structure of the Human Ear 

 

The human ear consists of three parts: Outer Ear, Middle Ear and Inner Ear. The 

schematic drawing of the human ear is given in Figure 2.1. 

 

 

Figure 2.1 Schematic drawing of the human ear (From: Moller, A.R., 

“Anatomy and Physiology of sensory organs”, chapter two, pp. 38, Sensory 

Systems, Elsevier Inc. 2003, with permission)  

 

2.1.1 The Outer Ear  

 

The Outer Ear is the only part of the human ear that can be seen from the outside. 

The Outer Ear consists of the pinna and ear canal and the outer ear modify the 

spectrum of the sound according to the sound source (Moller,2003b).  
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2.1.2 The Middle Ear  

 

The middle ear consists of tympanic membrane and three small bones (ossicles): 

the malleus, incus and stapes. These bones form a chain structure which is known as 

ossicle chain. The tympanic membrane conducts the sound vibrations to the 

vibrations of these bones (Moller,2003b). The footplate of stapes is located in the 

oval window, which is one of the openings of the cochlear structure (inner ear). The 

other opening of the cochlear structure is the round window. The vibrations of the 

stapes according to the sound waves put the fluid inside the cochlea to the motion. 

When oval window moves inward the round window moves outward, which allow 

the fluid inside the cochlea, which has rigid structure, to vibrate according to the 

sound waves, therefore middle ear acts as an impedance transformer which improves 

the sound transmission from middle ear to the inner ear (Moller,2003a).  

 

2.1.3 The Inner Ear (Cochlea) 

 

The cochlea is fluid filled and has snail-shaped structure (Figure 2.1)  Its length is 

approximately 3.5cm. In humans the cochlea has 2.25 turns. The Figure 2.2 shows 

the cross section of the guinea pig cochlea.  

 

The fluid filled structure of the cochlea is divided longitudinally into three parts: 

scala vestibuli, scala tympani and in the middle scala media. The scala media is 

separated from scala tympani and scala vestibule by the Reisnerr’s membrane and 

basilar membrane.  

 

The hair cells which are responsible for transferring the choclear fluid vibrations 

to the auditory nerve fibers are located along the basilar membrane. There are one 

row of inner hair cells and three rows of outer hair cells. The numbers of inner hair 

cells are approximately 3.500 and the numbers of outer hair cells are approximately 

12.000. The inner hair cells and outer hair cells are morphologically similar but their 

functions are different, the only inner hair cells conduct the basilar membrane 

vibrations to the neural signals, however the outer hair cells participate in the motion 
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of the basilar membrane and amplify the basilar membrane vibrations 

(Moller,2003a). 

 

Figure 2.2 The cross section of the second turn of the guinea pig cochlea (From: 

Moller, A.R., “Anatomy and Physiology of sensory organs”, chapter two, pp. 38, 

Sensory Systems, Elsevier Inc. 2003, with permission)  

 

2.2 The Conduction of Sound into Basilar Membrane Vibrations 

 

The outer ear and middle ear transfer the sound waves into fluid motion of the 

cochlea. The middle ear act as impedance matcher which improves the sound 

transmission to the cochlear fluid motion. This action of the middle ear causes the 

force over the oval window to be greater than round window. The difference between 

the forces over these two windows put the cochlear fluid into motion. If the sound is 

allowed to reach these two windows in an identical way, there would not be any fluid 

motion inside the cochlea (Moller,2003a).  

 

The stapes of the oval window sets the cochlear fluid into motion. When oval 

window moves inward, the round window moves outward, and this allows the fluid 

inside the rigid structure of the cochlea to vibrate. The vibration of the fluid vibrates 

the basilar membrane and bends the hair cells located along the basilar membrane. 

The hair cells create the action potentials which are then transferred to the auditory 
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cortex of the human brain by auditory nerve fibers. The schematic drawing of basilar 

membrane vibrations is given in Figure 2.3. 

 

 

Figure 2.3 Schematic illustration of basilar membrane vibration. The cochlea is shown as 

strait line. (From: Moller, A.R., “Hearing” chapter five, pp. 293, Sensory Systems, Elsevier 

Inc. 2003, with permission) 

 

The hair cells are mechanoreceptors that convert the vibrations of basilar 

membrane into neural signals. There are two types of hair cells: outer hair cells and 

inner hair cells. The outer and inner hair cells are similar in their structure but their 

functions differ from each other. The hair cells are directly connected to auditory 

nerve fibers, there are two types of nerve fibers: afferent and efferent nerve fibers. 

When the hair cells are deflected the action potentials are created. The hair cells are 

innervated by afferent and efferent nerve fibers (Moller, 2003b; Sumner et al.,2002). 

The schematic illustration of innervations of hair cells is shown in Figure 2.4. 

 

The deflections of hair cells are bidirectional. When the hair cells are deflected in 

one direction, the positive receptor potential is generated and this depolarizes the hair 

cells. When the hair cells are deflected in opposite direction the negative receptor 

potential is generated and this hyperpolarizes the cell. The deflections of hair cells 

occur according to the basilar membrane vibrations. When the basilar membrane 
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vibrates the hair cells generate positive and negative receptor potentials 

(depolarization and hyperpolarization) continuously and generate the nerve impulses 

which encode the basilar membrane vibrations. The schematic illustration of 

deflections of hair cells and generated nerve impulses are shown in Figure 2.5. 

 

 

Figure 2.4 Schematic illustration of innervations of hair cells. AD:afferent 

dendrite, E:efferent synapse, OH:outer hair cell, IH: inner hair cell (From: 

Moller, A.R., “Hearing” chapter five, pp. 284, Sensory Systems, Elsevier 

Inc. 2003, with permission) 

 

 

 

Figure 2.5 The schematic illustration of bidirectional sensitivity of hair 

cells (From: Moller, A.R., “Anatomy and Physiology of sensory organs”, 

chapter two, pp. 66, Sensory Systems, Elsevier Inc. 2003, with permission)  
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2.3 The Frequency Selectivity of Basilar Membrane 

 

The basilar membrane vibrations are directly related with the frequency of the 

sound signals. According to Loizou (1998), the different sound signal frequencies 

create the travelling cochlear fluid waves which cause the largest amplitude 

displacement of the basilar membrane at specific location along the basilar 

membrane; the high frequency signals create the travelling waves that displace the 

base of the basilar membrane with largest amplitude, and the low frequency sounds 

create the travelling waves that displace the apex of the basilar membrane with 

largest amplitudes. The mid frequency signals maximally displace the middle part 

between the base and apex of the basilar membrane. The base part of the basilar 

membrane is near to the stapes and the apex is on another ending of the basilar 

membrane. The maximum displacement parts of basilar membrane to the different 

frequency sinusoids is shown in Figure 2.6. 

 

 

Figure 2.6 The diagram of the basilar membrane with base and apex parts. 

The points of maximum displacement of basilar membrane to different 

sinusoids with different frequencies (in Hz) are shown. (From: P.C. Loizon, 

Mimicking the Human Ear, pp.103, IEEE Signal Processing Magazine, 1998, 

with permission)   
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The cochlea is the mechanism that encodes the frequencies of the sound signal. 

The each location of the basilar membrane and deflection of hair cells along the 

basilar membrane respond with largest amplitude to specific frequencies, this is 

known as ‘place theory’ (Loizou,1998).  

 

The displacement of the basilar membrane is not only the function of the sound 

intensity but at the same time it is the function of the frequency of the sound signal 

(Moller, 2003b). The width of the basilar membrane increases when moving from 

base to apex. The schematic drawing of basilar membrane of the human cochlea 

from Moller (2003a) is given in Figure 2.7. 

 

 

Figure 2.7 The schematic drawing of the basilar membrane of the human 

choclea (From: Moller, A.R., “Anatomy and Physiology of sensory organs”, 

chapter two, pp. 61, Sensory Systems, Elsevier Inc. 2003, with permission) 
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According to Moller (2003a), the transfer of basilar membrane vibrations to hair 

cells deflection is a complex process; some hair cells respond to the velocity of the 

basilar membrane vibrations, some of them respond to the acceleration of the basilar 

membrane vibrations and some of them respond directly to the displacement of the 

basilar membrane.  

 

The stapes sets the cochlear fluid into motion. As shown in Figure 2.7 the base of 

the basilar membrane is stiffer than other locations of the basilar membrane, and this 

facilitates the energy transfer to the basilar membrane. The vibration of basilar 

membrane travels from base to the apex which results in a travelling wave motion. 

The distance of the wave that travels along the basilar membrane is directly the 

function of the sound signal frequency, when the wave travels specific distance it 

suddenly becomes extinct (Moller,2003a).    

 

The human ear is sensible to the frequency range of approximately from 20Hz to 

20kHz. The most sensible frequency range of the human ear is from 500Hz to 

6000Hz (Moller, 2003c).  
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CHAPTER THREE 

 

AUDITORY MOTIVATED DISCRETE TIME FREQUENCY SIGNAL 

REPRESENTATION 

 

3.1 The Brief Overview of Time Frequency Signal Representations 

 

The Fourier Transform (FT) of any continuous time signal  is given in 

Equation 3.1: 

 

 

 

The  contains overall frequency content of the signal , the time information 

is lost because the integration is performed over all duration of the analyzed signal. 

The Discrete Fourier Transform (DFT) of discrete time signal  is given in 

Equation 3.2: 

 

 

 

The  contains overall discrete frequency content of the discrete time signal 

. The FT and DFT are mostly used for stationary signals, and when the 

occurrence time intervals of specific frequencies are not important. But in many 

practical applications the time information is important. In order to obtain time 

dependent frequency content of the analyzed signal the Short Time Fourier 

Transform (STFT) was developed and widely used by introducing the window 

function to the standard FT Equation. The continuous and discrete time forms of the 

STFT are given in Equations 3.3 and 3.4 respectively (Mertins,1999; Oppenheim & 

Schafer, 1999). 
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In Equations 3.3 and 3.4 the  signal is multiplied with continuous and discrete 

window functions respectively and the  signal is suppressed outside the certain 

region which gives the local spectra. By shifting the window and performing the FT 

gives the time dependent FT. In STFT the window function has fixed width which 

assumes the local stationarity (Oppenheim & Schafer, 1999).  

 

 The spectrogram is another time frequency measure which has been used widely 

in many practical applications. The spectrogram is obtained by taking the absolute 

square of the STFT as given in Equation 3.5: 

 

 

 

In order to overcome the shortcomings of the STFT the wavelet based time 

frequency signal representations were introduced and widely used in signal analysis 

applications. The continuous wavelet transform of signal  is given in Equation 

3.6 (Mertins, 1999): 

 

 

 

The  is called the mother wavelet. The  is translation parameter and  is 

dilation or scale parameter which affect the center frequency and bandwidth of the 

mother wavelet function. The  is used to verify that at different scales defined 

with  the each mother wavelet function has the same energy. By changing the scale 

parameter  the multiresolution analysis is obtained.  
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3.1.1 The Effect of Windowing 

 

According to the convolution theorem (Oppenheim & Schafer, 1999) if  is 

the Fourier Transform of x(n), and  is the Fourier Transform of h(n), and if: 

 

 

 

then, 

 

 

 

The convolution in time is equal to the multiplication in Fourier Domain. According 

to the windowing theorem (Oppenheim & Schafer, 1999), if   is the Fourier 

Transform of the x(n), and  is the Fourier Transform of the w(n), then 

 

 

 

 

 

The multiplication in time is the periodic convolution in frequency domain. 

Therefore, multiplying the signal with the window function in time domain, leads to 

the convolution of the original signal with the windowing function in the frequency 

domain. The window function has effect on the obtained time frequency resolution. 

The simplest window function is the rectangular window. The rectangular window 

function and its Fourier Transform are given in Figures 3.1 and 3.2 respectively. The 

other window functions like hamming window are used to obtain better frequency 

response as shown in Figures 3.3 and 3.4. As can be seen from Figures 3.1-3.4 the 

window function has directly effect on the obtained time frequency resolution. For 

rapidly changing signals the window length should be small. 
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                      Figure 3.1 The rectangular window with 50 samples length  

 

 

                Figure 3.2 The frequency spectrum of the rectangular window with 50 samples length  
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                  Figure 3.3 The hamming window with 50 samples length 

 

 

                   Figure 3.4 The frequency spectrum of the hamming window with 50 samples length 
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3.2 Auditory Motivated Discrete Time Frequency Signal Representation 

 

In chapter two, the basics of human auditory system is given. As described in 

chapter two, according to Moller (2003a) some of the hair cells respond to the 

displacement of the basilar membrane, some of them respond to the speed of the 

basilar membrane, and some of them respond to the acceleration of the basilar 

membrane vibrations. Each hair cell responds to a specific frequency. The hair cells 

are depolarized and hyperpolarized according to the motion of the basilar membrane 

as given in Figure 2.5, chapter two. If the depolarization and hyperpolarization of 

hair cells are approximated as sinusoidal deflection than each hair cell has specific 

sinusoidal frequency to which it responds best. 

 

In the Equation 3.2, the DFT is the response of the analyzed signal to the all 

discrete frequencies defined with  for all samples of the analyzed signal. At this 

point the discrete frequencies  may be thought as frequency responses of each hair 

cell. Therefore it is possible to define the internal sums of the DFT as given in 

Equation 3.11, which will give the time dependent responses of the each discrete 

frequency : 

 

 

 

Where  

 

The parameter  is introduced to the standard DFT Equation in order to obtain 

the internal sums of each discrete frequency component. The Equation 3.11 will give 

two dimensional data with discrete frequencies  and time dependent internal sums 

. As a test signal, the cosine signal with 50Hz and 100Hz frequency components 

for 0.5s, and with 150Hz and 200Hz frequency components for the next 0.5s is used. 

The result of applying the Equation 3.11 to the test signal with different frequency 

components is given in Figure 3.5. The .    
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        Figure 3.5 The plot of the  for cosine signal with different frequencies.   

 

As can be seen from Figure 3.5, the internal sums will increase in the Equation 

3.11 for the existing frequency components inside the analyzed signal. Therefore it is 

possible to define the slope Equation inside the specific time samples interval. The 

internal sums given in Equation 3.11 may be treated as the response of the hair cells 

to the displacement of the basilar membrane, and then the slope Equation will give 

the average speed of the basilar membrane vibrations inside the specific time 

interval.  

 

 

 

where  

 

The Equation 3.12 may be treated as the speed of the basilar membrane vibrations 

and the results obtained in Equation 3.12 will give the frequency content of the 
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analyzed signal. The  is the average speed interval and can easily be changed 

according to the analyzed signal. The result of applying Equation 3.12 with  

samples to the internal sums  obtained for different frequency cosine signal 

is shown in Figure 3.6. 

 

 

          Figure 3.6 The plot of the  for cosine signal with different frequencies 

 

The Figure 3.6 shows the frequency content of the analyzed signal. It is possible 

to define the slope Equation for the speed Equation  again which may be 

treated as the average acceleration of the basilar membrane vibrations.  

 

 

 

Where  
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The acceleration Equation 3.13 will provide the information on the start and end 

times of the specific frequency components if the Equation 3.12 is treated as the 

frequency content of the analyzed signal. The Figure 3.7 shows the result of applying 

the Equation 3.13 to the results obtained in Figure 3.6. 

 

 

              Figure 3.7 The plot of  applied to the signal shown in figure 3.6 

 

As can be seen from Figure 3.7, the start and end time intervals of the specific 

frequency components can be obtained from the Equation 3.13.  

 

In Equation 3.12,  defines the average speed interval and has directly effect on 

the obtained frequency resolution. The  can easily be adjusted according to the 

analyzed signal in order to obtain better time frequency resolution. The  is 

 samples shorter than the analyzed signal length, which may be treated as the 

stabilization time of the basilar membrane vibrations.  should not be chosen very 

small in order to detect the average speed. However the sample rate N has more 

effect on time frequency resolution, and will be discussed in the next sections. 
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   3.2.1 Signal Reconstruction 

 

The signal reconstruction from the Inverse Discrete Fourier Transform is given in 

Equation 3.14: 

 

 

 

In the standard DFT Equation the  is the overall frequency content of the 

analyzed signal. The internal sums  given in Equation 3.11 is the time 

dependent increase in the frequency content and the overall frequency content is 

simply the frequency content at . The signal reconstruction from the 

internal sums  and the average speed  are given in the Equations 

below: 

 

 

 

From the Equation 3.12: 

 

 

 

 

 

The Equation 3.17 is the signal reconstruction formula from the Equation 3.12 which 

give the time dependent frequency content of the analyzed signal.  

 

The original signal can also be reconstructed directly from the average speed 

Equation 3.12. At any time instant m the reconstruction can be performed by using 

the inverse discrete fourier transform formula as given in Equation 3.18. 
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When the inverse discrete fourier transform is performed for any fixed m=Tn the 

Equation 3.18 will give the last  samples from Tn of the original signal. Therefore 

it is possible to define the fast reconstruction algorithm by applying the Equation 

3.18 for specific Tn’s. The Figures 3.10 and 3.11 show the result of applying the 

Equation 3.18 for two different Tn. 

  

 In the standard DFT all samples of the analyzed signal must be known in order to 

reveal the overall frequency content of the analyzed signal. In the proposed method 

the analysis need not be made for all samples of the analyzed signal, because the 

 defined in Equation 3.12 give the time dependent frequency spectrum. The 

analysis can be made for the desired sample numbers of the original signal and the 

original signal can easily be reconstructed from the  or  when the  

is known by using the Inverse Discrete Fourier Transform Equation. For the known  

, the  and  can be performed for the desired sample numbers 

defined with , only the analyzed signal samples can be reconstructed by using the 

Equation 3.18. 

 

As an example, the original  defined in Equation 3.19 is used to make the 

analysis for the  samples of the original signal when . The first 

335 samples of the original signal and the frequency content obtained from 

Equations 3.11 and 3.12 are given in Figures 3.8 and 3.9 respectively. 

 

 

 

The Figures 3.10 and 3.11 show the results obtained from Equation 3.18 for Tn=300 

and Tn=200 respectively. The reconstructed original signal from the reconstruction 

algorithm is given in Figure 3.12. 
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     Figure 3.8 The original  signal defined in equation 3.19, first  samples 

 

Figure 3.9 The plot of the  for  samples, applied to the 

signal shown in figure 3.8,  
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                    Figure 3.10 The reconstructed signal samples for Tn=300, =50. 

 

 

                   Figure 3.11 The reconstructed signal samples for Tn=200, =50. 
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Figure 3.12 The reconstructed signal from equation 3.18,  

 

3.2.2 Numerical Simulations 

 

The presented Auditory Motivated Time Frequency Representation (AMTFR) 

method is simple and is based on the  defined in Equation 3.12. In this 

section the AMTFR method is applied to the different mono component and multi 

component signals and its performance is tested for different  and SNR values. 

 

The spectrogram of the STFT defined in Equation 3.5 is applied to the  

as given in Equation 3.20 and the results for different types of signals are shown for 

 and its spectrogram. 

 

 

 

The  is  samples shorter than  because of the slope interval. In 

the results shown in this section, the first  samples of the  is made equal 
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to the first  samples of . The  is shifted  samples right in order 

to equalize the lengths.  

 

The nonlinear chirped signal is given in the Equation below (Zhong&Huang, 

2010): 

 

 

 

Where . 

 

The  is the length of the signal and the f  is the maximum frequency. The real part 

of the Equation 3.21 is taken for analysis as given in Equation 3.22: 

 

 

 

The waveform defined in Equation 3.22 is given in Figure 3.13. 

 

Figure 3.13 The nonlinear chirped signal with frequencies from zero to 900Hz. 
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Figure 3.14 The contour plot of  for the nonlinear chirped signal defined in 

equation 3.22,   

 

          Figure 3.15 The Contour Plot of for . 
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               Figure 3.16 The contour plot of  for  

 

 The Figures 3.14 and 3.15 show the results obtained for different  values. As 

can be seen from Figures the  has effect on the obtained time frequency resolution, 

but it simply can be adjusted to obtain better resolution. The sample numbers defined 

by N has more effect on the resolution because of the discrete computation of the 

slope interval.  

 

The result obtained in Figure 3.16 from  give better visualization of 

the proposed method. The obtained time and frequency resolutions are almost same 

at higher and lower frequencies. The results given in Figure 3.16 are comparable to 

the results obtained in (Zhong&Huang, 2010). In (Zhong&Huang, 2010) the local 

stationarity of the nonlinear chirped signal is defined from the instantaneous 

frequency (IF) obtained from the ridge of the Wavelet Transform, and the window 

length of the Adaptive Short Time Fourier Transform (ASTFT) is adjusted according 

to the detected IF.   
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The additive white Gaussian noise is added to the nonlinear chirped signal for the 

different SNRdB values.The white Gaussian noise added to the nonlinear chirped 

signal given in Equation 3.22 for the SNR=0dB, is shown in Figure 3.17. 

 

 

Figure 3.17 The nonlinear chirped signal with additive white Gaussian noise, SNR=0dB. 

 

Figures 3.18 and 3.19 show the results obtained from  for the SNR 

values 0dB and 5dB respectively. As can be seen from Figures, the obtained time 

frequency resolutions are similar to the results obtained in Figure 3.16 even for low 

SNRdB values.  

 

The synthetic time series consisting of three linear chirps is given in the Equation 

below (Lu&Zhang, 2009): 

 

 



30 
 

 

 

         Figure 3.18 The contour plot of ,  SNR=0dB. 

 

         Figure 3.19 The contour plot of ,  SNR=5dB. 
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The waveform obtained in 3.23 and the  for , are shown in 

Figure 3.20 and 3.21 respectively. 

 

 

           Figure 3.20 The waveform of synthetic time series defined in equation 3.23 

 

Figure 3.21 The contour plot of  applied to the signal shown in figure 3.20 
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             Figure 3.22 The contour plot of  for the  

 

The Figure 3.22 shows the results obtained with additive white Gaussian noise 

added to the signal given in Equation 3.23 for the . The results obtained 

in Figures 3.21 and 3.22 give same time frequency resolution for low and high 

frequency components. In (Lu&Zhang, 2009) the Deconvolutive Short Time Fourier 

Transform approach is used to obtain the time frequency resolution. The results 

obtained from  are for higher values of n when compared to the synthetic 

signal used in (Lu&Zhang, 2009), also the frequencies are higher. Because the slope 

Equation is used in AMTFR method, the sample numbers play important role in the 

obtained time frequency resolution. The time frequency resolution obtained for low 

sample rate is poorer which is the main disadvantage of the AMTFR method. 

However at higher sample numbers the AMTFR method give comparable results to 

the results obtained in literature. The AMTFR is independent from the window 

function mostly used in time frequency signal representations, which gives main 

constraint to the time frequency resolution defined by the uncertainty principle 

(Loughlin&Cohen, 2004). 
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The effectiveness of the AMTFR method is also tested for the multicomponent 

nonlinear chirped signal which has the three nonlinear chirped signal components 

with different frequencies. The signal is created with the chirp function of the 

Matlab, the logarithmic sweep method is used to create the three nonlinear chirped 

signal with the following start  and end  frequencies: 

. The waveform of the original signal and the 

noisy signal with  are shown in the Figure 3.23 and 3.24 respectively. 

 

The results obtained from , for the original and noisy signal 

are shown in Figures 3.25 and 3.26 respectively. The time frequency resolution is 

same for low and high frequency components also in the case of multicomponent 

signals, and are comparable to the results obtained in (Zhong&Huang, 2010) for the 

two component nonlinear chirped signal by using the adaptive short time fourier 

transform. Only sample rate used for the simulations in the AMTFR method is 

higher.   

 

 

Figure 3.23 The original waveform of the multicomponent nonlinear chirped signal 
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Figure 3.24 The noisy waveform of the multicomponent nonlinear chirped signal, 

. 

 

 

Figure 3.25 The contour plot of  applied to the original 

multicomponent nonlinear chirped signal, . 
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Figure 3.26 The contour plot of  applied to the noisy multicomponent 

nonlinear chirped signal, . 

 

In this section the different chirped signals were used to show the effectiveness of 

the AMTFR method. In all simulation results fixed  values were used. The 

performance of the AMTFR method was tested also for noisy signals with different 

 values. The nonlinear chirped signals have the characteristics that change 

over time, but within the small time intervals their characteristics are stationary. 

Therefore for the non-stationary signals those have the local stationary properties the 

fixed  can be used for the time frequency analysis. The sample rate is more 

important than  for the performance of the AMTFR method which is the main 

disadvantage of the proposed method. However when the sample rate is high enough, 

the results are comparable to the results obtained in literature.  

 

For the non-stationary signals without local stationary properties the variable  

must be used which will be explained in the next sections.  
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3.2.3 Auditory Motivated Discrete Time Frequency Signal Analysis Method 

 

The AMTFR method described in section 3.2 can be used for time frequency 

representation, which is simply based on the internal sums of the Discrete Fourier 

Transform (DFT). The average speed Equation 3.12 detects the increase in the 

internal sums of the DFT obtained in Equation 3.11 for fixed . However, for fixed 

, the sudden increase in the internal sums Equation 3.11 cannot be easily detected 

because the higher frequency components last in shorter time intervals. Therefore it 

is important to define the variable  for each frequency component. In the case of 

continuous time signals the variable  can be defined as given in the Equations 

below: 

 

 

 

 

        

 

 

The average speed of each frequency component can be calculated in two periods of 

the analyzed frequency. Therefore the Equation 3.25 will give the better time 

frequency resolution compared to the results obtained in section 3.2.2. However, 

because of the discrete computation of the computers, it is impossible to define 

variable discrete slope intervals for each frequency component. In order to overcome 

this problem, it is possible to define the complex exponentials those have the discrete 

periods, and the variable  slope Equation can be applied easily to these discrete 

time intervals, as given in the Equations below: 
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Where . 

 

The variable  is the discrete period of the each complex exponential function 

defined in Equation 3.27 and its frequency correspondence is dependent on the 

sample rate N of the analyzed signal. For , the frequency correspondence 

 of the  is plotted in Figure 3.27. 

 

 

               Figure 3.27 The plot of  versus  for  

 

The frequency resolution obtained for  is poor at higher frequencies, lower  

values. However, the frequency resolution can easily be increased by increasing the 

sample rate . In the proposed method the frequency resolution is dependent on the 

sample rate. The following examples give the results obtained with fixed  and 

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Sn

fc
 -

 H
z



38 
 

 

variable  for the 160ms duration of the vowel /a/ speech signal shown in Figure 

3.28, where N=8000. 

 

              Figure 3.28 The original speech waveform for vowel /a/. 

 

 

             Figure 3.29 The frequency resolution obtained with fixed . 
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                  Figure 3.30 The frequency resolution obtained with variable . 

 

The Figures 3.29 and 3.30 show the time frequency resolution obtained for fixed 

and variable  respectively, the Sn can easily be converted to the corresponding 

frequencies fc in order to compare the results obtained in Figures 3.29 and 3.30. The 

frequency resolution obtained for fixed  is better than variable , however, the 

time resolution is better for variable  and the frequency resolution is dependent on 

the sample rate N which is defined with Sn.  

 

The variable  give different approach to the time frequency signal analysis, and 

will be used to obtain the time frequency resolutions for speech vowel signals which 

are non-stationary signals, and will be explained in the next chapter.  

 



40 

CHAPTER FOUR 

 

SPEECH VOWEL CLASSIFICATION BY USING AUDITORY MOTIVATED 

DISCRETE TIME-FREQUENCY SIGNAL ANALYSIS METHOD 

 

4.1 The Mel Frequency Cepstral Coefficients (MFCC) 

 

The speech signals have high variability due to the speakers, therefore performing 

the speech recognition by computer system is very difficult task 

(Rabiner&Yuang,1993; Kasabov,1996). The human brain is still superior to many 

technical solutions. Therefore the human auditory system based methods are widely 

used for speech recognition applications. The most popular one is the Mel Frequency 

Cepstral Coefficients (MFCC).  

 

The Mel frequency is the scale derived from auditory system. The relation 

between normal frequency and mel frequency scale is defined in the Equation 4.1 

(Picone, 1993). 

 

 

 

The plot of the mel scale versus normal frequency scale is given in Figure 4.1. In 

the derivation of MFCCs the triangular filters are used based on the mel scale 

obtained in Equation 4.1. The mel scale filter banks and block diagram for the 

computation of the MFCCs are shown in Figures 4.2 and 4.3 respectively. 

 

Chatterjee&Kleijn (2011) generalized the Mel frequency scale given in Equation 

4.1 by introducing the  which is the warping factor and affects the extent of 

warping. 
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Figure 4.1 The plot of the mel frequency scale versus normal frequency scale f. 

 

 

 

                        Figure 4.2 Approximate Mel filter banks 
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Speech Signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cepstral Coefficients 

 

Figure 4.3 The standard approach for acoustic feature extraction 

(Redrawn from: (Pavez&Silva, 2011)) 

 

In the standard acoustic feature extraction approach, the speech signal is pre-

emphasized by the filter, than the hamming window is used to extract the features for 

the short duration in time. The mel filter bank energies together with logarithm and 

discrete cosine transform are employed to obtain the feature vectors.   

 

The MFCCs are based on short term speech analysis methods where the speech 

signal is assumed as stationary for short time durations. Because they use auditory 

frequency scale the features extracted with MFCC are used widely for speech 

recognition applications. In order to classify the speech signals the Hidden Markov 

Model (HMM) or Artificial Neural Networks (ANN) are widely used in literature 

(Chatterjee&Kleijn, 2011; Dusan, 2007; Ali et al., 2002; Zahorian&Nossair, 1999). 

 

       Pre-Emphasis Filter 

        Hamming Window 

 width: 32ms, period: 10ms 
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4.2 Application of Auditory Motivated Discrete Time Frequency Signal Analysis 

Method to the Vowel Speech Signals 

 

The spectral information is widely used in speech recognition applications. The 

short term Fourier coefficients are used to extract the patterns from the speech 

signals. The vowel signals are characterized by the fundamental frequency F0, and 

upper formants F1 , F2 and F3.    

 

Different hearing tests with subjects who have normal hearing ability were 

performed in the literature to determine which of the formant frequencies are 

important for vowel identification (Zahorian&Zhang, 1992; Shannon et al., 1995; 

Sakayori et al., 2002). The formant frequencies F1 and F2 are important to identify 

the vowels (Sakayori et al., 2002). However, for the same speaker the formant 

frequencies F1 and F2 can be used to identify the vowels, but in the case of multiple 

speakers there exist overlap between the formant frequencies, which makes it 

difficult to identify the vowels based on the formant frequencies. Therefore 

additional information is needed to identify the vowels. According to Sakayori et al.  

(2002) in order to minimize the change of phonetic quality, each formant frequency 

should be moved by %1-12 upward by one octave increase in the fundamental 

frequency F0. This shows that vowel patterns can be dependent on the fundamental 

frequency F0. However Shannon et al. (1995) suggested that F0 cue is not essential 

for vowel identification based on the hearing tests performed with different listeners.  

 

Zahorian&Zhang (1992) suggested that spectral envelope is important information 

for vowel identification. Zahorian&Jagharghi (1993) showed that computational 

vowel classification based on spectral envelope is superior to the information on the 

F0, F1, F2 and F3. According to Sakayori et al. (2002) the human auditory system may 

identify the vowels according to the spectral shapes and formant frequencies F1 and 

F2 in the critical spectral regions.  

 



44 
 

 

Kameoka et al. (2010) suggested the joint estimation of the fundamental 

frequency F0 and spectral envelope. In the following Figures the results of the 

proposed method to the different speech vowel signals are given. 

 
                Figure 4.4 The vowel /ı/ signal recorded from male speaker 

 

 

 

 
                 Figure 4.5 The vowel /ı/ signal recorded from female speaker 
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The Figures 4.4 and 4.5 show the vowel /ii/ signals for 40ms duration, the signal 

is sampled at N=20000 sample rate. The frequency scale fc obtained for the Sn 

values from 1 to 200 is given in Figure 4.6. 

 

 

               Figure 4.6 The plot of fc versus Sn values from 1 to 200, N=20000. 

 

The frequency scale fc is similar to the auditory motivated mel frequency scale 

given in Figure 4.1, where the low frequencies are sampled closer than high 

frequencies.  

 

In order to compare the results obtained with the proposed method, the analysis is 

made also with wavelet transform, where the ‘haar’ and ‘morlet’ mother wavelet 

functions shown in Figures 4.7 and 4.8 are used to obtain the time frequency 

resolutions. 

 

The following Figures give the results obtained with the proposed method and 

with wavelet transform. 
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                     Figure 4.7 The ‘Haar’ Mother Wavelet Function. 

 

 

 
                  Figure 4.8 The ‘Morlet’ Mother Wavelet Function 
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Figure 4.9 The Time Frequency resolution obtained with the proposed method,  applied to 

the speech signal recorded from male speaker. 

 

 
Figure 4.10 The time frequency resolution obtained with ‘Haar’ wavelet transform, 

applied to the speech signal recorded from male speaker. 
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Figure 4.11 The time frequency resolution obtained with ‘Morlet’ wavelet transform, 

applied to the speech signal recorded from male speaker. 

 
Figure 4.12 The Time Frequency resolution obtained with the proposed method,  applied to 

the speech signal recorded from female speaker. 
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Figure 4.13 The time frequency resolution obtained with ‘Haar’ wavelet transform, 

applied to the speech signal recorded from female speaker. 

 

 
Figure 4.14 The time frequency resolution obtained with ‘Morlet’ wavelet transform, 

applied to the speech signal recorded from female speaker. 
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As can be seen from Figures 4.9-4.14, the window function has directly effect on 

the obtained time frequency resolution. Because the proposed method is independent 

from the window function, the results are directly based on the recorded signal 

structure. In the results obtained with the proposed method, for two different 

speakers the similar spectral envelope is obtained at higher frequencies, lower Sn 

values for the same vowel signal, where in the case of wavelet transform, the spectral 

envelopes are different for two different speakers.  

 

In order to detect the spectral envelope, the spectral peaks obtained for each Sn 

value can easily be determined by taking the maximum values of the amplitudes 

inside 40ms duration, which gives the spectral peaks distribution over specific time 

duration, and can be thought, as approximate spectral envelope. The following 

Figures show the detected spectral peaks distribution for both speakers, with the 

proposed method and wavelet transform.   

 

 
Figure 4.15 The detected spectral peaks distribution with the proposed method, for male 

speaker.  
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Figure 4.16 The detected spectral peaks distribution with the proposed method, for 

female speaker.  

 
Figure 4.17 The detected spectral peaks distribution with the ‘Haar’ wavelet 

transform, for male speaker.  
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Figure 4.18 The detected spectral peaks distribution with the ‘Haar’ wavelet 

transform, for female speaker.  

 

 
Figure 4.19 The detected spectral peaks distribution with the ‘Morlet’ wavelet 

transform, for female speaker.  

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

Scales - a

A
m

p
lit

u
d
e

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Scales - a

A
m

p
lit

u
d
e



53 
 

 

 
Figure 4.20 The detected spectral peaks distribution with the ‘Morlet’ wavelet 

transform, for female speaker.  

 

The Figures 4.15-4.20 show the spectral peaks distribution obtained for two 

different speakers. In the case of proposed method the similar spectral peaks 

distributions are obtained easily for two different speakers, for higher frequencies. 

The distributions of spectral peaks are directly relational to the fundamental 

frequency F0 which supports the Sakayori et al. (2002). In the case of higher F0 the 

spectral peaks distribution is narrow, and in the case of lower F0 the distribution is 

wider. The results obtained with the proposed method are good evidence for the 

existing similar spectral envelope for the identification of the vowels. 

 

The proposed method is applied to the remaining Turkish vowels /a/, /o/, /u/, /e/, 

/i/, /ö/, /ü/, recorded from male and female speakers, and the following Figures show 

the obtained time frequency representations and the detected spectral peaks 

distribution (SPD) for each vowel. 
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              Figure 4.21 The time frequency resolution for vowel /a/, female sepaker 

 

 

            Figure 4.22 The time frequency resolution for vowel /a/, male sepaker 
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         Figure 4.23 The time frequency resolution for vowel /o/, female sepaker 

 

 
                  Figure 4.24 The time frequency resolution for vowel /o/, male speaker 
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              Figure 4.25 The time frequency resolution for vowel /u/, female speaker 

 

 
                  Figure 4.26 The time frequency resolution for vowel /u/, male speaker 

 

 

 



57 
 

 

 

 

 
             Figure 4.27 The time frequency resolution for vowel /e/,female speaker 

 

 

 
                 Figure 4.28 The time frequency resolution for vowel /e/, male speaker 
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               Figure 4.29 The time frequency resolution for vowel /i/, female speaker 

 

 

 
                Figure 4.30 The time frequency resolution for vowel /i/, male speaker 
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                   Figure 4.31 The time frequency resolution for vowel /ö/, female speaker 

 

 

 
                   Figure 4.32 The time frequency resolution for vowel /ö/, male speaker 
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                 Figure 4.33 The time frequency resolution for vowel /ü/, female speaker 

 

 

 
               Figure 4.34 The time frequency resolution for vowel /ü/, male speaker 
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                   Figure 4.35 The detected SPD for vowel /a/, female speaker 

 
                   Figure 4.36 The detected SPD for vowel /a/, male speaker 

 

 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5
x 10

-3

Sn

A
m

p
lit

u
d
e

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

x 10
-4

Sn

A
m

p
lit

u
d
e



62 
 

 

 
                Figure 4.37 The detected SPD for vowel /o/, female speaker 

 

 
                Figure 4.38 The detected SPD for vowel /o/, male speaker 
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                   Figure 4.39 The detected SPD for vowel /u/, female speaker 

 

 

 
                  Figure 4.40 The detected SPD for vowel /u/, male speaker 
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                  Figure 4.41 The detected SPD for vowel /e/, female speaker 

 

 
                 Figure 4.42 The detected SPD for vowel /e/, male speaker 
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                  Figure 4.43 The detected SPD for vowel /i/, female speaker 

 

 
                Figure 4.44 The detected SPD for vowel /i/, male speaker 
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                   Figure 4.45 The detected SPD for vowel /ö/, female speaker 

 

 
               Figure 4.46 The detected SPD for vowel /ö/, male speaker 
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                 Figure 4.47 The detected SPD for vowel /ü/, female speaker 

 

 
                   Figure 4.48 The detected SPD for vowel /ü/, male speaker 
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As can be seen from Figures 4.35-4.48 the similar SPDs are detected for the same 

vowel independent from the speakers. The similar distribution of spectral peaks 

occurs at higher frequencies (lower Sn) and the width of the distribution is dependent 

on the fundamental frequency F0.  

 

4.3 The Auditory Motivated Discrete Time Frequency Signal Analysis Method 

Based Vowel Classification 

 

In order to test the existence of the similar spectral peaks distribution (SPD) for 

the same vowels independent from the speakers, the vowel classification tests are 

performed. According to the results obtained in section 4.2 the vowel patterns should 

be fundamental frequency dependent.  

 

The vowel classification tests are performed for the Turkish vowels /a/, /ı/, /o/, /u/, 

/e/, and /i/, which are also common in most of the languages. The vowel patterns are 

extracted from the SPDs which are easily detected from the time frequency 

distribution.  

 

The detection of the vowel signal endpoints is easily performed with simple 

thresholding. In the case of consonant-vowel speech signals detection of the 

endpoints is more complex procedure. The SPDs are also independent from the 

duration of the vowel signals because it gives the instant amplitudes of the 

frequencies inside the short time duration.  

 

After detecting the vowel signal, the signal is lowpass filtered in order to detect 

the approximate fundamental frequency of each vowel signal. The transfer function 

of the filter is given in Figure 4.49. The time frequency resolution and detected 

spectral peaks distribution after low pass filtering are given in the Figures 4.50 and 

4.51 respectively. As can be seen from Figure 4.51, the Sn value at which the 

amplitude is maximum gives the approximate fundamental frequency, which will be 

used as scaling factor in the extraction of the vowel patterns from SPDs. 
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             Figure 4.49 The frequency response of the used low pass filter 

 

 

               Figure 4.50 The obtained time frequency resolution after low pass filtering  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

Normalized Frequency  (  rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

Normalized Frequency  (  rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)



70 
 

 

 

                Figure 4.51 The detected SPD after low pass filtering  

 

According to the results obtained in section 4.2 the similar SPD occur at higher 

frequencies and the spread of the similar SPD is dependent on the fundamental 

frequency. Therefore in the extraction of the vowel patterns the fundamental 

frequency dependent vowel patterns are extracted with different lengths.  

 

In order to test the existing similar SPD for vowel signals taken from different 

speakers, the correlation coefficient which gives the similarity measure is used to 

obtain the best match of the current SPD to the reference SPDs obtained from the 

vowel signals.  

 

The algorithm is tested with 4 male and 4 female speakers saying each vowel 5 

times. For each vowel experiment is repeated 40 times and the total of 240 tests are 

performed to test the existence of the similar SPDs. The classification results are 

given in Table 4.1. 
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Table 4.1 Classification performance. 

 Classified  Performance 

% Actual /a/ /ı / /o/ /u/ /e/ /i/ 

/a/ 40 0 0 0 0 0 %100 

/ı / 0 36 2 2 0 0 %90 

/o/ 0 0 39 0 1 0 %97.5 

/u/ 0 0 2 35 3 0 %87.5 

/e/ 0 0 0 0 38 2 %95 

/i/ 0 0 0 3 2 35 %87.5 

 

 

The overall classification performance is %93, which is the good evidence of the 

existing similar SPD in each vowel signal.  

 

In Yavuz&Topuz (2010) the speaker dependent Turkish vowel classification is 

performed by using the probabilistic neural networks approach. The classification 

performance obtained in Yavuz&Topuz (2010) is higher than %95. In the results 

given in Table.1, the %93 performance is obtained for speaker independent vowel 

classification without any training.    
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CHAPTER FIVE 

 

CONCLUSION 

 

 

The sound transduction process inside the human ear is a complex procedure. The 

outer hair cells control the function of the inner hair cells which suggests that every 

process inside the human ear is an adaptive process which makes it very difficult to 

simulate by the aid of computer algorithms. 

 

However some basic operations of the human ear can be simulated under some 

assumptions. In this thesis the auditory motivated discrete time frequency signal 

representation method is presented. The method is motivated from the structure and 

operation of the basilar membrane and inner hair cells under some assumptions.  

 

The proposed method is independent from the window function and obtained 

discrete time frequency resolution is directly dependent on the signal shape. At 

higher sample rates, the proposed method gives comparable results to the results 

obtained in literature. The bandwidth and center frequency properties of the 

windowing functions affect the obtained time frequency resolutions. The numerical 

simulations at low SNRdB values show that the method can be used to obtain the 

discrete time frequency resolution easily from the analyzed signal.   

 

The application of the AMTFR method with variable  give the time frequency 

representation for non-stationary signals, and the obtained frequency values are 

similar to the frequency selectivity of the basilar membrane.  

 

For the speech vowel signals, the proposed method give the detailed spectral 

shapes and because the method does not employ any windowing function, the 

obtained time frequency resolution is directly dependent on the signal shape. Most of 

the spectral feature extraction methods use the energies of the frequency bands. 

However in the proposed method the spectral envelope like spectral peaks 

distributions are used as feature vectors, and the results show that inside the speech 
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signals there may exist similar spectral envelopes for the same speech signals 

independent from the speakers. These features may be directly used as feature 

vectors or they may be used as additional cues for speech recognition applications.  

 

The speaker independent vowel classification scores based on spectral peaks 

distribution is a good evidence of existing similar spectral envelopes. The 

classification scores for Turkish vowels obtained in (Yavuz&Topuz, 2010) are 

speaker dependent, however the classification results obtained in chapter 4 are 

speaker independent. The data set was larger in (Yavuz&Topuz, 2010) and the 

classification is performed for all Turkish vowels. In the proposed method, the 

classification is performed to test the existence of the similar spectral peaks 

distribution. The results support the hearing experiments made in (Sakayori et al., 

2002) which show that the spectral envelopes are important for phonetic quality. 

Also in (Zahorian&Jagharghi, 1993) it is shown that spectral envelope based vowel 

classification is superior to the classification based on the formant frequencies.  

 

The proposed method and the results obtained for vowel speech signals show that 

the proposed method is applicable to spectral feature extraction, and discrete time 

frequency signal analysis of stationary and non-stationary signals. According to 

Crick (2003) the human brain like the database search engine tries to find the best 

match of the all current sensory input features to the existing features saved from the 

previous experiences of the human brain, which shows that there may exists similar 

information inside the sensory signals. The obtained results show that the similar 

features for the same class of signals may be extracted by simulating the human 

sensory organs under some assumptions.   

 

The proposed method can be applied and its performance can be tested for speech 

signals from different languages in the future works. The proposed method is used to 

obtain the spectral peaks distributions for short durations in time obtained from 

vowel speech signals. It is important to notice that the method can be expanded to 

obtain the spectral peaks distributions for consonants and vowels, and the obtained 

features can be used for word recognition applications.      
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