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FAILURE ANALYSIS OF BOLTED AND PINNED COMPOSITE JOINTS 

UNDER TEMPERATURE EFFECTS 

 

ABSTRACT 

 

     In the first part of the study, experimental failure analysis has been carried out to 

determine the effects of high temperatures and tightening torques on the failure load 

and failure behavior of single lap double serial fastener glass fiber / epoxy composite 

joints. 40, 50, 60, 70, and 80 degrees centigrade temperatures were exposed to the 

specimens during tensile tests.  It was seen that the load-carrying capacity of the joint 

is decreased gradually by increasing temperature level. In proportion to the room 

temperature, the maximum decrease of failure loads occurs at 70 and 80 degrees 

centigrade with the rate of nearly 55 and 70 percent respectively, because of the heat 

damage to the resin matrix. In the second part of the study, experimental 

investigations were conducted on failure responses of single lap double serial 

fastener joints in glass fiber / epoxy composite laminates when subjected to low 

temperature environment. The results of experiments, implemented at five different 

low temperature levels ranging from 0 to -40 degrees centigrade, were evaluated in 

comparison with room temperature tests. Joints exhibited relatively higher load-

carrying capacities with increased stiffness by decreasing temperature. Both in the 

first and second part of experiments, bolts were fastened under M= 6 Nm and M= 0 

Nm (finger tightened) torques in order to examine tightening torque effects at each 

temperature condition. As expected, a greater amount of bearing load could be 

carried by the joints with pre-tightened fasteners. The results proved that, tightening 

torque is still effective at elevated and low temperature conditions, Furthermore, any 

reduction in temperature at subzero degrees centigrade is observed to lift the 

effectiveness of tightening torque on the joint strength. In addition, bearing mode, the 

most desirable failure type in mechanically fastened joints was monitored as the 

main failure mode, regardless of the temperature exposed. 

  

Keywords: glass fiber composites, composite joints, high temperature, low 

temperature  
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CIVATALI VE PĐMLĐ KOMPOZĐT BAĞLANTILARIN SICAKLIK 

ETKĐLERĐ ALTINDA HASAR ANALĐZĐ  

 

ÖZ 

 

     Çalışmanın ilk bölümünde, yüksek sıcaklığın ve sıkma momentinin tek katlı, çift 

seri cıvatalı cam elyaf / epoksi kompozit bağlantıların hasar yükleri ve hasar 

davranışları üzerindeki etkilerini belirlemek için deneysel hasar analizleri 

gerçekleştirilmiştir. Çekme testleri sırasında numunelere 40, 50, 60, 70 ve 80 

santigrat derecelerinde sıcaklık kademeleri uygulanmıştır. Görülmüştür ki, sıcaklık 

seviyesinin yükselmesiyle birlikle, bağlantının yük taşıma kapasitesi de kademeli 

olarak düşmüştür. Reçine matristeki ısıl deformasyon nedeniyle, oda 

sıcaklığındakine oranla hasar yükündeki en yüksek azalma 70 ve 80 santigrat derece 

sıcaklıklarında sırasıyla yaklaşık yüzde 55 ile 70 seviyelerinde gerçekleşmiştir. 

Çalışmanın ikinci bölümünde, düşük sıcaklık ortamına maruz bırakıldığında tek katlı, 

çift seri cıvatalı cam elyaf / epoksi kompozit plaka bağlantıların hasar davranışları 

üzerine deneysel araştırmalar gerçekleştirilmiştir. 0 ile -40 santigrat dereceleri 

arasında değişen beş farklı sıcaklık kademesinde gerçekleştirilen deneylerin 

sonuçları oda sıcaklığındaki test sonuçlarıyla karşılaştırmalı olarak 

değerlendirilmiştir. Bağlantılar sıcaklık düşüşüne karşılık rijitlik artışı ile birlikte, 

nispeten daha yüksek yük taşıma kapasiteleri sergilemişlerdir. Deneylerin birinci ve 

ikinci bölümünün her ikisinde de her bir sıcaklık ortamındaki sıkma momenti etkisini 

sınayabilmek için cıvatalar M= 6 Nm ve M= 0 Nm (el ile sıkılmış) momentleri ile 

sıkılmıştır. Beklendiği üzere, daha yüksek seviyedeki çekme yükleri ön gerilme 

uygulanmış cıvatalara sahip bağlantılar tarafından taşınabilmektedir. Sonuçlar, sıkma 

momentinin, yüksek ve düşük sıcaklıklarda da halen etkili olduğunu ispat etmektedir. 

Ayrıca, sıfır santigrat altındaki sıcaklıklarda, sıcaklıktaki herhangi bir azalmanın 

sıkma momentinin bağlantı dayanımı üzerindeki etkisini yükselttiği gözlemlenmiştir. 

Buna ek olarak, uygulanan sıcaklığa bağlı olmaksızın, ana hasar mekanizması olarak 

mekanik bağlantılarda en çok tercih edilen hasar tipi olan yatak ezilme hasarı 

gözlemlenmiştir.            

Anahtar sözcükler: cam elyaf kompozitler, kompozit bağlantılar, yüksek sıcaklık, 
düşük sıcaklık 
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1 

CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview  

 

     Because of rapid technological development and increased competition in 

industry, lightweight, high strength materials with high performance have been the 

main need in real applications. The use of composite materials which meets the need 

has an ever-expanding trend of variety such as for military and commercial air 

vehicles, robot arms, and automotive industry. Especially for use in aviation and 

aerospace industry, composite materials, which are lighter than metals and higher 

strength in terms of weight, are designed and produced. Trusses, optical benches, 

equipment-panels, solar array support systems, and radiators, are some typical 

spacecraft structures which should have high specific stiffness, low coefficient of 

thermal expansion and dimensional stability during operation. High-performance 

composites satisfy these requirements, and also offer the minimum weight material 

solution for these structures (Park, 2001). They are also becoming more commonly 

used with every generation of aircraft. The Boeing 787 is a prime example, which is 

set to include 50% composite material by weight. (Pearce et al., 2010). 

 

     It is generally impossible to produce a structure without using joints because of 

the limitations of material sizes, and conformity for manufacture or transportation. 

Joints are usually the weakest points of a construction so they determine the stability 

of composite structure. Composite structures can be assembled by using adhesively 

bonded and / or mechanically fastened joints. Although leading to a weight penalty 

due to stress concentration created by drilling a hole in the laminate, mechanical 

fasteners are widely used in composite joints owing to their unique characteristics 

such as lower cost of producing, testing and maintaining and convenience to inspect 

load carrying capacity etc. 

 

The above mentioned stress concentrations lead to high tensile stresses in pinned 

and bolted composite parts. On the other hand, the front side of the hole is deformed 
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under pressure and the interface between the fastener and the laminate change as 

applied load increasing, which results in altering the force distribution in the 

interface. Depending on its geometry, a pinned or bolted composite joint can exhibit 

four different failure modes, namely the net tension, bearing, shear-out, and cleavage 

failure. In practice, combinations of these failure modes are observed. The bearing 

and shear-out failure modes are usually more or less ductile, but the net-section and 

cleavage ones are brittle and abrupt. The net tension failure mode is defined by 

fracture of a laminate across its width from the hole to its edges, the shear-out failure 

mode is described by the pull-out fracture between the hole and laminate end, and the 

cleavage failure mode is defined by the simultaneous fracture across the width to one 

edge and between the hole and the laminate end. The bearing failure mode is thought 

to be the desirable mode, since it generally gives a higher strength, and the failure is 

less brittle. The other three modes are often considered as premature ones, which 

should be prevented through a proper design of the joint geometry and the composite 

material it self. These failure types are undesirable, giving rise to an abrupt damage 

growth. Finally, a serious problem in designing the joints is the selection of their 

geometrical parameters suitable to force the bearing failure (Pekbey, 2008).  

 

An understanding of the stiffness, strength and failure mode of bolted joints is 

critical to an efficient design of composite structures. The strength of pinned or 

bolted joints depends on many factors, including joint geometry, fiber orientation, 

stacking sequence, through thickness pressure, etc. Similarly, the particular failure 

mode that is observed in a pinned or bolted connection is also dependent on 

geometry, lay up, and loading direction. A large part of the research that has been 

done on mechanically fastened joints has been concerned with the experimental and 

numerical determination of the influence of geometric factors on the joint strength 

and failure type. Several authors carried out the effects of joint geometry, ply 

orientation and geometrical parameters such as the end distance-to-diameter (E/D), 

width-to-diameter ratios (W/D) on the failure strength and failure modes of 

mechanically fastened laminated composite plates (Asi, 2010). 
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     Karakuzu et al. (2008) investigated the effects of geometrical parameters such as 

the edge distance-to-hole diameter ratio (E/D), plate width-to-hole diameter ratio 

(W/D), and the distance between two holes-to-hole diameter ratio (M/D) on the 

failure loads and failure modes in woven-glass–vinyl ester composite plates with two 

serial pin-loaded holes, experimentally and numerically. In the numerical analysis, 

they used the Hashin failure criterion in order to determine failure loads and failure 

modes.  LUSAS commercial finite element software was utilized during their 

analysis. After experimental and numerical studies they showed that the ultimate 

load capacity of woven glass– vinyl ester laminates with pin connections increased 

by increasing ratios E/D, W/D, and M/D. Besides geometrical parameters, Sayman & 

Ozen (2011) investigated the first failure load and the bearing strength behavior of 

pinned joints of glass fiber reinforced woven epoxy composite prepregs with two 

serial holes subjected to traction forces by two serial rigid pins for immersed and 

unimmersed conditions. There was almost no difference between the results of the 

immersed and unimmersed specimens under preload moments. 

 

Aktaş et al. (2009) analyzed experimentally and numerically failure mode and 

failure load of glass-epoxy plates with single and double parallel-pinned joints.  The 

distance from the free edge of plate to the diameter of the first hole (E/D) ratios (2, 3, 

4, 5) and the width of the specimen to the diameter of the holes (W/D) ratios (2, 3, 4, 

5) were investigated during analyses. Experiments were carried out according to 

ASTM D953-D and numerical study was performed by means of ANSYS program. 

According to experimental and numerical results, from which a good agreement 

obtained, the pin hole farthest from the free edge is subjected to the highest stress.  

 

Okutan (2006) investigated the effects of joint geometry and fiber orientation on 

the failure strength and failure mode in pinned joint laminated composite plate. 

E/glass-epoxy laminated composites were loaded through pins. The specimens were 

loaded by single hole and tested to evaluate width to hole diameter (W/D) and the 

edge distance to hole diameter (E/D) effects. Six different composite configurations 

([0/±45]s–[90/±45]s, [0/90/0]s–[90/0/90]s and [90/0]2s–[±45] 2s) were used. E/D 

ratios from 1 to 5 and W/D ratios from 2 to 5 were tested. Testing results showed that 
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the fiber orientations have definite influence on the position around hole 

circumference at which failure initiated. Another result was that the ultimate load 

capacities of E/glass-epoxy laminate plates with pin connection were increased by 

increasing W and E, but if E/D and W/D are increased beyond a critical value it has 

not a significant effect on the ultimate load capacity of the connection.   

 

Asi (2010) studied pinned joints of glass fiber reinforced composite filled with 

different proportions of Al2O3 particles (as function of filler loading and joint 

geometry) and investigated the bearing strength behavior. The weight fractions of the 

filler in the matrix were 7,5,10 and 15 %. The single hole pin loaded specimens were 

tested in tension. The test results showed that the increase of Al2O3 particle in the 

matrix improves the bearing strength of composites. Beyond a critical value of 

particle content the bearing strength began to decrease but remained above that of the 

unfilled glass reinforced epoxy composites.   

 

     In order to determine the influence of the preload moment, the edge distance to 

the pin diameter ratio, and the specimen width to the pin diameter ratio on the 

strength of the material, Pekbey (2008) investigated the failure strength of a bolted 

joint e-glass/epoxy composite plate.   Load-displacement curves were obtained for 

each test. Experimental results showed that the maximum bearing strength was 

reached at max preload moment 4 Nm, max W/D ratio 6 and max E/D ratio 5. At 

W/D=2 the most dangerous mode net tension developed and at E/D<2 the shear-out 

failure mode occurred, which is another undesirable failure mode. 

 

Ling (1986) considered the effect of clamping on bolted joints and presented a 

way to predict critical bearing strength of single-hole joints on the basis of observing 

and analyzing the results of experiments. The comparison between the experimental 

and the calculated value showed that the estimate method of the ultimate bearing 

load is available for bolted joints.  

 

Dano at al. (2000) presented a finite element model including the characteristics 

friction, non-linear shear behavior, large deformation theory and property 
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degradation. In particular, the influence of the failure criteria and the inclusion of 

geometric and shear non-linearities was discussed in the paper. The deformation 

behavior of the pin loaded joint was predicted using a two dimensional finite element 

model developed in the commercial software ABAQUS. The composite plate was 

modeled using a single layer of CPS4 elements since shell element couldn’t be used 

to simulate in plane-contact problems. Because the technique allowed computing the 

stresses in each ply, propagation of damage from ply-to-ply could be studied. Then 

the progressive failure analysis used to study damage propagation around the hole 

was described. To predict the progressive ply failure, the analysis combined Hashin 

and the maximum stress failure criteria. From the theoretical  and the experimental 

results of the study, it can be concluded that when the shear stress-strain relationship 

is linear, the use of maximum stress criterion for fiber failure leads to higher and 

more realistic strength than Hashin criterion. When a non-linear shear stress-strain 

relationship is considered, the predictions from the different failure analysis converge 

toward the same predictions. When using mixed failure criteria, including a non-

linear shear behavior has a slight effect for the quasi-isotropic [(0/±45/90)3]s 

laminate whereas for the [(0/90)6]s and [(±45)6]s laminates the increase in the 

strength prediction was quite important.   

 

Park (2001 a) developed a methodology for assessing the delamination bearing 

strength of mechanically fastened joints in finite carbon-epoxy composite laminates 

in conjunction with accurate three dimensional contact stress analysis via a quasi-

three-dimensional finite element procedure based on the layer wise theory. The 

contact phenomena and stress distribution in the vicinity of joints in composite 

laminates were investigated. The lamination bearing failure strengths of 

mechanically fastened joints in composite laminates were predicted using modified 

Ye-delamination failure criterion based on layer wise finite element contact stress 

analysis. Comparisons of the numerical results with experimental data showed the 

accuracy and applicability of the analysis. 

 

Park (2001b) examined the effects of stacking sequence and clamping force on 

delamination bearing strength and ultimate bearing strength of mechanically fastened 
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joints in carbon/epoxy composite laminates using the acoustic emission (AE) 

technique. Two orthotropic and three quasi-isotropic laminate lay-up configurations 

and four clamping forces were examined. Based on the experiments, the effects of 

stacking sequence and clamping force on joint strengths were systematically 

investigated. Guidelines for effective stacking sequences and maximum clamping 

forces for mechanically fastened joints in composite laminates were suggested based 

on delamination bearing strength and ultimate bearing strength. According to the 

experimental investigation it was found that: a) the stacking sequence and clamping 

pressure have a great influence on the delamination and the ultimate bearing strength 

of bolted and pinned joints of composite laminates. b) The stacking sequence of the 

lay-up [906/06]s with 90º layers on the surface would be more advantageous than the 

lay-up [06/906]s with 0º layers on the surface, in the aspect of delamination failure of 

composite laminates on bearing plane. c) The stacking sequence of [903/03/±453]s, 

which has the highest delamination bearing strength and the second highest ultimate 

bearing strength, should be preferred from the view-point of its characteristics of the 

fail-safe delamination failure. d) The delamination bearing strength of the lay-up 

with 90º layers on the surface is stronger than the one with 90º layers located at the 

center of laminate. e) The lateral clamping pressure increases both the delamination 

and ultimate failure strengths of bolted joints in composite laminates. f) As the 

clamping pressure increases, the ultimate bearing strength shows a significant 

increase toward saturation, while the delamination bearing strength shows a 

progressive increase. The ultimate bearing strengths do not increase after the 

saturated bolt clamping pressure. Hence, it is desirable that the clamping torque of a 

bolted joint in a composite laminate should not exceed the saturated bolt clamping 

pressure.       

   

     A methodology to predict the onset of damage, final failure and failure mode of 

mechanically fastened joints in composite laminates was introduced by Camanho & 

Lambert (2006). The stress distribution at each ply was obtained using semi-

analytical or numerical methods. The elastic limit of the joint was predicted using the 

ply strengths and stress distribution in failure criteria. Final failure and failure mode 

were predicted using point or average stress models. Standardized procedures to 
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measure the characteristic distances used in the point or average stress models were 

proposed. The statistical analysis of the experimental results showed that the 

characteristic distances in tension are a function of both the hole diameter and 

specimen width. It was also concluded that the characteristic distances in 

compression are a function of the clamping conditions applied to the joints and of the 

hole diameter. The methodology proposed was proved that it is practical in double-

shear mechanically fastened joints using quasi-isotropic laminates under uniaxial or 

multi-axial loading. The predictions were compared with experimental data obtained 

in pin-loaded and bolt-loaded joints, and the results indicated that the methodology 

proposed could accurately and effectively predict ultimate failure loads as well as 

failure modes in composite bolted joints. 

 

     Bolt-hole clearance effects on failure behavior have been another issue of interest, 

the researchers are dealing with. Kelly and Hallström (2004), examined the effect of 

bolt-hole clearance on the bearing strength at 4% hole deformation and at ultimate 

load. Significant reduction in bearing strength at 4% hole deformation was found for 

both pin-loaded and clamped laminates as a result of bolt-hole clearance. It was 

concluded that the effect of bolt-hole clearance is significant with regard to the 

design bearing strength of mechanically fastened joints. The magnitude and 

distribution of stress at the hole was found to be significantly dependent on the level 

of clearance. 

 

Sen et al. (2008) investigated the failure mode and bearing strength of 

mechanically fastened bolted-joints in glass fiber reinforced epoxy laminated 

composite plates, experimentally. Two different geometrical parameters which are 

the edge distance-to-hole diameter ratio (E/D) and plate width-to-hole diameter ratio 

(W/D) were studied. E/D ratios were selected from 1 to 5, whereas W/D ratios were 

chosen from 2 to 5. Laminated plates were stacked as three different group which are 

[0º/0º/45º/−45º]s, [0º/0º/45º/45º]s and [0º/0º/30º /30º]s, to determine material 

parameters effect. In addition, the preload moments were applied as 0, 3 and 6 Nm, 

to observe the changing of failure mechanism under various preloads. The 

experiments were also performed under a clearance, thus the diameters of the bolt 
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and the circular bolt hole were fixed 5 and 6 mm, respectively. Results showed that 

failure modes and bearing strengths were affected by the increasing of preloads to a 

considerable extent. The maximum values of bearing strengths were calculated for 

the group of having 3 Nm torque. Furthermore, when the material and geometrical 

parameters of composite bolted joints were changed, the failure behavior and the 

values of bearing strengths were fully influenced from this change. 

 

     A similar study was conducted by Kishore et al. (2009). The study was aimed to 

obtain failure modes and failure loads for multi-pin joints in unidirectional glass 

fiber/epoxy composite laminates by finite element analysis and validating the results 

with the experimental work. The effect of variation in pitch-to-diameter ratio (P/D), 

in addition to side width-to-diameter (S/D) and edge-to-diameter (E/D) ratios were 

studied in multi-pin joints. Developing a two-dimensional finite element model with 

ANSYS software, Tsai–Wu failure criteria associated with material property 

degradation was used in the analysis to predict failure load and to differentiate failure 

modes.  

 

     An artificial neural network (ANN) method was developed by Sen et al. (2010) to 

predict the bearing strength of two serial pinned / bolted E-glass reinforced epoxy 

composite joints. The experimental data with different geometrical parameters and 

under various applied torques were used for developing the ANN model. 

Comparisons of ANN results with desired values showed that ANN is a valid 

powerful tool to prediction of bearing strength of two serial pinned / bolted 

composite joints. In another study, Sen & Sayman (2011) investigated the effects of 

material parameters, geometrical parameters and magnitudes of preload moments on 

the failure response of two serial bolted joints in composite laminates. Some 

geometrical ratios were found out to be unfavorable and the increasing of preloads 

was seen very convenient for safe design of two serial bolted composite joint. 

 

Lie et al. (2000) developed a boundary element formulation for analyzing a 

mechanically bolted composite. Boundary equations were formulated for all the 

member panels of the composite joints. These equations were solved together with 
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the fastener equations to get the resultant contact forces for all the fasteners involved. 

The fasteners were then modeled as 1D springs that are governed by linear 

relationship between the fastener forces and the displacements of member panels at 

the respective fastener centers. After obtaining all the fastener forces from the global 

analysis, detailed stress analysis was performed for region around an individual 

fastener. The stress distributions around fastener holes were then used to evaluate the 

margin of safety of the composite panels. The numerical predictions on the fastener 

forces, failure modes and failure loads of two typical bolted composite joints using 

the proposed method were compared and it was found that they agree well with that 

of the experimental results. 

 

The onset of local damage in joints, such as delamination, cracking and fastener 

loosening can often be difficult to detect and has long-term implications on the 

performance of the structure. To develop an innovative technique to monitor the state 

of damage in composite structures, Thostenson et al. (2008) reported the capability 

of  carbon nanotube networks as in situ sensors for sensing local composite damage 

and bolt loosening in mechanically fastened glass/epoxy composite joints. According 

to their research it was possible to detect the onset and progression of damage in the 

joint through careful design of the specimen.  

 

Ekh & Schön (2006) developed a three-dimensional finite element model in order 

to determine the load transfer in multi fastener single shear joints. The model was 

based on continuum elements and accounted for the mechanisms involved in load 

transfer, such as bolt-hole clearances, bolt clamp-up and friction. They conducted an 

experimental program in order to validate the finite element model through 

measurement of fastener loads, by means of instrumented fasteners. The results 

showed that simulations and experiments agreed well and the bold-hole clearance is 

the most important factor in terms of load distribution between the fasteners. Any 

variation in clearance between the different holes implies that the load is shifted to 

the fastener where the smallest clearance occurs. It was also found that sensitivity to 

this variation was large, so that temperature changes could significantly affect the 

load distribution if member plates with different thermal expansion properties are 
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used. It was concluded that, good accuracy in load transfer predictions requires that 

all factors would be taken into consideration and nonlinear kinematics should be 

accounted for the solution process.       

 

     In some cases, the joints transferring large mechanical loads between composite 

panels of advanced vehicles need to be operated at high and low temperature 

extremes. Mechanical properties of polymer matrix joints are usually influenced by 

the thermal environment. In particular, it is known that temperatures exceeding the 

glass transition temperature (Tg) seriously degrade the material properties. The 

amount or rate of material degradation varies depending on the material (Song et al., 

2008). At the other end of spectrum, an application of composite joint in a cryogenic 

environment would be possible. A computational study investigating thermal effects 

on pin bearing behavior of IM7/PETI5 composite joints was reported by Walker 

(2002). Pin-bearing tests of several lay-ups at the operating temperatures of -129, 21, 

and 177 °C were conducted to generate data on the effect of temperature changes on 

the pin-bearing behavior. Thermal residual stresses were combined with the state of 

stress due to pin-bearing loads at three-dimensional solution. The presence of 

thermal residual stresses intensify the inter laminar stresses predicted at the hole 

boundary in the pin-bearing problem. The research showed that changes in material 

properties drive pin-bearing strength degradation with increasing temperature. 

 

     Sánchez-Sáez et al. (2002) tested carbon fiber reinforced epoxy laminates to 

determine the effect of low temperature on the mechanical behavior. Tensile and 

bending static tests were carried out on two laminate lay-ups (quasi-isotropic and 

cross-ply laminates), determining properties such as the mechanical strength, 

stiffness and strain to failure. The results reveal the changes in the mechanical 

behavior of this material at different test temperatures (20, -60 and -150 °C). As a 

result, three different test temperatures affected the mechanical behavior of the 

material. The stiffness of the quasi-isotropic laminate grows as the temperature 

decreases. At room temperature, the matrix fails first. As the temperature decreases, 

the fiber–matrix interface becomes much weaker and thus the fibers debond from the 

matrix.   
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     Hirano et al. (2007) investigated the effects of temperature on the bearing failure 

of a pinned joint in CF/epoxy quasi-isotropic laminates. Two stacking sequences, 

namely, [0/45/−45/90]3S and [90/−45/45/0]3S, were loaded at room temperature 

(25°C), high temperature (150°C), and low temperature (-100°C); then, the internal 

damages were evaluated. It was found that the bearing failure of a pinned joint is 

composed of various damages depending on environmental temperatures; further, the 

strength of the pinned joint is closely related to the compressive kinking failure of all 

the inner layers. 

 

1.2 Objectives of the Study 

 

     As seen in related literature, many authors were interested in material and 

geometrical parameters influencing the failure behaviors of mechanically fastened 

composite joints. However, a few of them have taken into account the environmental 

effects, particularly the temperature extremes that composite joints are exposed 

during operation. Among these studies, those associated with glass-fiber reinforced 

composites are even more limited. 

 

     Through the current experimental study it was intended to investigate the failure 

responses of mechanically fastened joints in glass fiber – epoxy composite laminates 

at varying high and low temperature levels. The bolted joints were initially subjected 

to tensile loadings together with the effects of high thermal conditions from 40 °C up 

to 80 °C, gradually increasing chamber temperatures for each test. In the second 

phase of experiments, the joints were exposed to low temperature environments, 

which were gradually decreased down to – 40 °C during tensile tests. Carefully 

observing failure behaviors of joints at varying temperature levels, it was finally 

reached to some significant conclusions about mechanically fastened joints under 

thermal effects.   
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CHAPTER TWO 

COMPOSITE MATERIALS 

 

2.1 Introduction  

 

      Composite materials can be defined as materials consisting of two or more 

constituents (phases) that are combined at the macroscopic level and are not soluble 

in each other. Modern synthetic composites using reinforcement fibers (one phase) 

and matrices (another phase) of various types have been introduced as replacement 

materials to metals in civilian, military, and aerospace applications (Sheikh-Ahmad, 

2009, p.1).  

 

     In fact, what expected by using composite materials is to provide different 

physical, mechanical or chemical properties by the constituents, having these special 

features alone.  When analyzing the internal structure of composite materials, which 

is highly heterogeneous character at macro level, it is possible to distinguish the body 

compounds. The different characteristics of structural components integrate into one 

formation. It is therefore impossible to observe the characteristics, all of which 

composite material possess, in a single component.    

 

2.2 Historical Development of Composite Materials 

 

     In nature, composite materials have been in existent for millions of years. Wood, 

bamboo and bone are just a few examples of the natural occurring composite 

materials. Man has learned to fabricate composite materials relatively recently. 

Perhaps, one of the first evidence of a man-made composite material is the mud-

blocks reinforced with straws. The composite material fabrication technology has 

since progressed from straw based mud-blocks to man-made fiber reinforced 

composite materials (Choo, 1990, p.2).  

 

     In the 20th century, modern composites were used in the 1930s when glass fibers 

reinforced resins. Boats and aircraft were built out of these glass composites, 
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commonly called fiber-glass. Since the 1970s, application of composites has widely 

increased due to development of new fibers such as carbon, boron, and aramids, and 

new composite systems with matrices made of metals and ceramics (Kaw, 2006, 

p.1,2).  

 

 

  Figure 2.1 Relative importance of material development through history (Staab, 1999) 

 

     The structural materials most commonly used in design can be categorized in four 

primary groups: metals, polymers, composites and ceramics. These materials have 

been used to various degrees since the beginning of time. Their relative importance 

to various societies throughout history has fluctuated (Figure 2.1). The relative 

importance of each group of materials is not associated with any specific unit of 

measure (net tonnage, etc.). As with many advances throughout history, advances in 

material technology (from both manufacturing and analysis viewpoints) typically 

have their origins in military applications. Subsequently, this technology filters into 

the general population and alters many aspects of society. This has been most 

recently seen in the marked increase in relative importance of structural materials 

such as composites starting around 1960, when the race for space dominated many 

aspects of research and development. Similarly, the Strategic Defense Initiative 
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(SDI) program in the 1980s prompted increased research activities in the 

development of new material systems (Staab, 1999, p.2).      

 

2.3 The Major Characteristics of Composites and Comparison with Conventional 

Materials  

 

     An obvious advantage that the fiber reinforced composite materials have over the 

conventional engineering materials such as copper, steel, aluminum, titanium, etc., is 

the high specific strength and modulus as seen in Table 2.1. The definition of 

specific strength is the ratio of the material strength to the material density and the 

specific modulus is defined as the material Young’s modulus per unit material 

density. High specific strength and specific modulus have important applications on 

the engineering applications of composite materials. It means that the composite 

materials are strong and stiff and yet light in weight. Such characteristic are very 

desirable in the aeronautical and aerospace industry. The weight savings realized by 

fabricating structural components out of composite materials is directly translated 

into fuel savings which in turn makes the operation of aeroplane and space vehicle 

more economical (Choo, 1990, p.2). A comparative representation of the 

performance of typical structural composites from the point of view of specific 

properties is shown in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 Performance map of structural composites 
(Daniel & Ishai, 1994) 

 



 

 
 

15

Table 2.1 Specific Modulus and Specific Strength of Typical Fibers, Composites, and Bulk Metals 
(Kaw, 2006) 

Material                                                    
Units 

Specific 
Gravity 

Young's 
modulus   

(Gpa) 

Ultimate 
strength 
(Mpa) 

Specific 
modulus    

(Gpa-m³/kg) 

Specific 
Strength 

(Mpa-m³/kg) 

System of Units: SI               

Graphite fiber 1.8 230.00 2067.00   0.1278   1.148 

Aramid fiber 1.4 124.00 1379.00   0.08857   0.9850 

Glass fiber 2.5 85.00 1550.00   0.0340   0.6200 

Unidirectional graphite/epoxy 1.6 181.00 1500.00   0.1131   0.9377 

Unidirectional glass/epoxy 1.8 38.60 1062.00   0.02144   0.5900 

Cross-ply graphite/epoxy 1.6 95.98 373.00   0.06000   0.2331 

Cross-ply glass/epoxy 1.8 23.58 88.25   0.01310   0.0490 

Quasi-isotropic graphite/epoxy 1.6 69.64 276.48   0.04353   0.1728 

Quasi-isotropic glass/epoxy 1.8 18.96 73.08   0.01053   0.0406 

Steel 7.8 206.84 648.01   0.02652   0.08309 

Aluminum 2.6 68.95 275.80   0.02652   0.1061 
Specific gravitiy of a material is the ratio between its density and density of water. 

  

     Besides strength, stiffness and lightweight, some additional outstanding 

improvements in material properties can be achieved by using composite materials. 

Those are, corrosion resistance, abrasion resistance, fatigue life, temperature-

dependent behavior, thermal insulation, thermal and electrical conductivity, acoustic 

insulation etc.  

 

     As well as these advantages, some disadvantages may also be encountered when 

working with composite materials. High costs of production, difficulties in 

processing, repairing  and  in obtaining the required surface quality, lack of recycling 

property and low elongation values before fracture are main drawbacks representing 

limits when employing composites in structures. In addition, mechanical 

characterization of a composite structure is more complex than that of a metal 

structure. Properties of composites depend on both the fiber orientation and the lay-

up sequence in the laminate because of anisotropic nature of fiber-reinforced 

composites, unlike metals. The other challenge is the impracticability of 

nondestructive inspection techniques, such as eddy currents and X-ray which give 

satisfying results in metal parts.  Ultrasound, laser and acoustic emission techniques 

are more convenient to inspect flaws and crack initiation in composite structures. The 

mentioned drawbacks forces researchers to develop manufacture processes which is 

controlled by the real-time monitoring tools. In order to obtain high quality products, 
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optimum process parameters should be estimated by using a mathematical model, 

which is appropriate to the certain manufacturing process.          

 

2.4 Classifications of Composite Materials  

 

2.4.1 Classifications by the Geometry of the Reinforcement 

 

     The second constituent is referred to as the reinforcing phase, or reinforcement, as 

it enhances or reinforces the mechanical properties of the matrix. In most cases the 

reinforcement is harder, stronger and stiffer than the matrix, although there are some 

exceptions; for example, ductile metal reinforcement in a ceramic matrix and 

rubberlike reinforcement in a brittle polymer matrix. At least one of the dimensions 

of the reinforcement is small, say less than 500 µm and sometimes only of the order 

of a micron. The geometry of the reinforcing phase is one of the major parameters in 

determining the effectiveness of the reinforcement; in other words, the mechanical 

properties of composites are a function of the shape and dimensions of the 

reinforcement. We usually describe the reinforcement as being either fibrous or 

particulate ( Matthews & Rawlings, 1999, p.5).    

 

     2.4.1.1 Fibrous Composite Materials  

 

     Fibrous Composite Materials are composed of fibers embedded in matrix 

material. Such a composite is considered to be a discontinuous fiber or short fiber 

composite if its properties vary with fiber length. On the other hand, when the length 

of the fiber is such that, any further increase in length does not further increase, the 

elastic modulus of the composite, the composite is considered to be continuous fiber 

reinforced. 

 

     Discontinuous or short-fiber composites contain short fibers or whiskers as the 

reinforcing phase (Figure 2.3). These short fibers, which can be fairly long compared 

with the diameter, can be either all oriented along one direction or randomly 

oriented. In the first instance the composite material tents to be markedly anisotropic 
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or, more specifically, orthotropic, whereas in the second it can be regarded as quasi-

isotropic. 

 

     Continuous fiber composites are reinforced by long continuous fibers and are the 

most efficient from the point of view of stiffness and strength (Figure 2.3). The 

continuous fibers can be all parallel (unidirectional continuous fiber composite), can 

be oriented at right angles to each other (crossply or woven fabric continuous fiber 

composite), or can be oriented along several directions (multidirectional continuous 

fiber composite). In the latter case, for a certain number of fiber directions and 

distribution of fibers, the composite can be characterized as a quasi-isotropic material 

(Daniel & Ishai, 1994, p.20).    

 

 

Figure 2.3 Classification of composite materials by the geometry of the 
reinforcement (Daniel & Ishai, 1994) 
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     A fibrous reinforcement is characterized by its length being much greater than its 

cross-sectional dimension. Nevertheless, the ratio of length to the cross-sectional 

dimension, known as the aspect ratio, can vary considerably. In single-layer 

composites long fibers with high aspect ratios give what are called continuous fiber 

reinforced composites, whereas discontinuous fiber composites are fabricated using 

short fibers of low aspect ratio. The orientation of the discontinuous fibers may be 

random or preferred. The frequently encountered preferred orientation in the case of  

a continuous fiber composite is termed unidirectional and the corresponding random 

situation can be approximated to by bidirectional woven reinforcement ( Matthews & 

Rawlings, 1999, p.5) 

 

     2.4.1.2 Particulate Composite Materials  

 

     Particulate composites consist of particles of various sizes and shapes randomly 

dispersed within the matrix (Daniel & Ishai, 1994, p.20). Particulate reinforcements 

have dimensions that are approximately equal in all dimensions. The shape of the 

reinforcing particles may be spherical, cubic, platelet, or any regular or irregular 

geometry. The arrangement of the particulate reinforcement may be random or with a 

preferred orientation, and this characteristics is also used as a part of classification 

scheme. In the majority of particulate reinforced composites the orientation of the 

particles is considered, for practical purposes, to be random ( Matthews & Rawlings, 

1999, p.5). 

 

     Particulate composites may nonmetallic particles in a nonmetallic matrix 

(concrete, glass reinforced with mica flakes, brittle polymers reinforced with 

rubberlike particles); metallic particles in nonmetallic matrices (aluminum, particles 

in polyurethane rubber used in rocked propellants); metallic particles in metallic 

matrices (lead particles in copper alloys to improve machinability); and non metallic 

particles in metallic matrices (silicon carbide particles in aluminum, SiC(p)Al) 

(Daniel & Ishai, 1994, p.20).   
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2.4.2 Classifications by the Type of Matrix 

 

     It has been stated before, that composites consist of two or more distinctly 

different materials. In most cases, the composite is made of matrix and reinforcement 

materials that are mixed in certain proportions. The matrix material may be made 

from metals, ceramics, or polymers. It may be pure, or mixed with other materials 

(additives) to enhance its properties. The reinforcement may also be treated to 

enhance bonding to the matrix (Sheikh & Ahmad, 2009, p.7). 

 

     2.4.2.1 Polymer Matrix Composites 

 

     The most common advanced composites are polymer matrix composites (PMCs) 

consisting of a polymer (e.g., epoxy, polyester, urethane) reinforced by thin diameter 

fibers (e.g., graphite, aramids, boron). For instance, graphite/ epoxy composites are 

approximately five times stronger than steel on a weight for- weight basis. The 

reasons why they are the most common composites include their low cost, high 

strength, and simple manufacturing principles. The main drawbacks of PMCs include 

low operating temperatures, high coefficients of thermal and moisture expansion,* 

and low elastic properties in certain directions (Kaw, 2006, p.19). Some mechanical 

properties of polymer matrix composites are given in Table 2.2.  

 

     Glass, graphite, and Kevlar are the most common fibers used in polymer matrix 

composites because of the unique advantages, including high strength, low cost, high 

chemical resistance, and good insulating properties. On the other hand, low elastic 

modulus, poor adhesion to polymers, high specific gravity, sensitivity to abrasion, 

and low fatigue strength present obstacles in construction.           

 

     The main types are E-glass (also called “fiberglass”) and S-glass. The “E” in E-

glass stands for electrical inasmuch as it was designed for electrical applications. 

Nonetheless, it is used for many other purposes now, such as decorations and 

structural applications. The “S” in S-glass stands for higher content of silica. It 

retains its strength at high temperatures compared to E-glass and has higher fatigue 
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strength. It is used mainly for aerospace applications. Other types available 

commercially are C-glass (“C” stands for corrosion) used in chemical environments, 

such as storage tanks; R-glass used in structural applications such as construction; D-

glass (dielectric) used for applications requiring low dielectric constants, such as 

radomes; and A-glass (appearance) used to improve surface appearance. 

Combination types such as E-CR glass (“E-CR” stands for electrical and corrosion 

resistance) and AR glass (alkali resistant) also exist (Kaw, 2006, p.19). 

 

Table 2.2 Typical mechanical properties of polymer matrix composites and monoclinic materials 

(Kaw, 2006) 

Property Units 
Graphite/ 

epoxy 
Glass/ 
epoxy 

Steel Aluminum 

System of Units: USCS               

Specific gravity --- 1.6 1.8   7.8   2.6 

Young’s modulus Msi 26.25 5.598   30.0   10.0 

Ultimate tensile stength ksi 217.6 154.0   94.0   40.0 

Coefficient of thermal expansion µin./in./°F 0.01111 4.778   6.5   12.8 

System of Units: SI        

Specific gravity --- 1.6 1.8   7.8   2.6 

Young’s modulus GPa 181.0 38.6   206.8   68.95 

Ultimate tensile stength MPa 150.0 1062   648.1   275.8 

Coefficient of thermal expansion µn./m/°C 0.02 8.6   11.7   23 
  

 

     Graphite fibers are also very common in the applications of aircraft components, 

in terms of their high specific modulus and strength, low coefficient of thermal 

expansion and high fatigue strength. High cost, low impact resistance, and high 

electrical conductivity represent the disadvantages of graphite fibers in polymer 

matrix composites.    

 

    Aramid fibers are made of an aromatic organic compound, consisting of hydrogen, 

carbon, oxygen, and nitrogen. Aramid fibers are inexpensive, resistant to impact, low 

density, and high tensile strength, but high moisture uptake and sensitiveness to 

sunlight restrain its use in composites.   

 

     Epoxy, phenolics, acrylic, urethane, and polyamide are most commonly used 

binder materials in polymer matrix composites. Of these types of materials, epoxy is 
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one of the most preferred one, even though it is costlier than other polymer matrices. 

Its superior characteristics, such that high strength, low viscosity and low flow rates, 

which allow good wetting of fibers and prevent misalignment of fibers during 

processing, low volatility during cure, low shrink rates, which reduce the tendency of 

gaining large shear stresses of the bond between epoxy and its reinforcement, and its 

being available in more than 20 grades to meet specific property and processing 

requirements, makes this choice very sensible.     

 

     2.4.2.2 Metal Matrix Composites 

 

     Metal matrix composites (MMCs), as the name implies, have a metal matrix. 

Examples of matrices in such composites include aluminum, magnesium, and 

titanium. Typical fibers include carbon and silicon carbide. Metals are mainly 

reinforced to increase or decrease their properties to suit the needs of design. To 

illustrate, the elastic stiffness and strength of metals can be increased and large 

coefficients of thermal expansion and thermal and electric conductivities of metals 

can be reduced, by the addition of fibers such as silicon carbide. 

 

     Metal matrix composites are mainly used to provide advantages over monolithic 

metals such as steel and aluminum. These advantages include higher specific 

strength and modulus by reinforcing low density metals, such as aluminum and 

titanium; lower coefficients of thermal expansion by reinforcing with fibers with low 

coefficients of thermal expansion, such as graphite; and maintaining properties such 

as strength at high temperatures.  

 

     MMCs have several advantages over polymer matrix composites. These include 

higher elastic properties; higher service temperature; insensitivity to moisture; higher 

electric and thermal conductivities; and better wear, fatigue, and flaw resistances. 

The drawbacks of MMCs over PMCs include higher processing temperatures and 

higher densities (Kaw, 2006, p.40). 
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     2.4.2.3 Ceramic Matrix Composites 

 

     Ceramic matrix composites (CMCs) have a ceramic matrix such as alumina 

calcium alumino silicate reinforced by fibers such as carbon or silicon carbide. 

 

     Advantages of CMCs include high strength, hardness, high service temperature 

limits for ceramics, chemical inertness, and low density. However, ceramics by 

themselves have low fracture toughness. Under tensile or impact loading, they fail 

catastrophically. Reinforcing ceramics with fibers, such as silicon carbide or carbon, 

increases their fracture toughness, because it causes gradual failure of the composite. 

This combination of a fiber and ceramic matrix makes CMCs more attractive for 

applications in which high mechanical properties and extreme service temperatures 

are desired (Kaw, 2006, p.45). 

 

     2.4.2.4 Carbon-Carbon Composites 

 

     Carbon–carbon composites use carbon fibers in a carbon matrix. These 

composites are used in very high-temperature environments of up to 6000°F 

(3315°C), and are 20 times stronger and 30% lighter than graphite fibers. 

 

     Carbon is brittle and flaw sensitive like ceramics. Reinforcement of a carbon 

matrix allows the composite to fail gradually and also gives advantages such as 

ability to withstand high temperatures, low creep at high temperatures, low density, 

good tensile and compressive strengths, high fatigue resistance, high thermal 

conductivity, and high coefficient of friction. Drawbacks include high cost, low shear 

strength, and susceptibility to oxidations at high temperatures (Kaw, 2006, p.46). 
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CHAPTER THREE 

JOINING OF COMPOSITE STRUCTURES 

 

3.1 Introduction  

 

     In practice, it is often unavoidable to apply joints to combine composite parts to 

each other or assemble them with other structural components. 

 

     Joining of composite materials poses a special challenge. How to achieve joint 

strength or other designed-in functionally specific properties anywhere close to those 

of the parent composite, since the integrity or continuity of the reinforcement across 

the joint is difficult or impossible to retain or re-establish. The irony here is that 

composite materials are usually selected for the exceptional properties they offer to 

improve performance. Joining is needed to produce the largest and/or most complex 

and/or most sophisticated structures. The performance of a structure or an assembly 

is critically dependent on the behavior of any joints it contains, and, as just stated, 

most contain joints. Hence, the very reason that composite materials may have been 

chosen in the first place may be lost if effective methods for joining cannot be found 

(Messler, 2004, p.653). 

 

     The most common requirements, affecting the joint design in composites is given 

in Figure 3.1. It should be kept in mind that, these requirements should be satisfied to 

be able to select the most suitable joint configuration. In general, fiber reinforced 

plastic (FRPs) structures can be assembled by using adhesively bonded and/or 

mechanically fastened joints. Welding or thermal bonding is also a viable option for 

thermoplastic polymer matrix composites.   

 

    Joints often occur in transitions between major composite parts and a metal feature 

or fitting. For instance, such a situation is represented in aircraft by articulated 

fittings on control surfaces as well as on wing and tail components, which require the 

ability to pivot the element during various stages of operation. Tubular elements such 

as power shafting often use metal end fittings for connection to power sources or for 
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articulation where changes in direction are required. In addition, assembly of the 

structure from its constituent parts will involve either bonded or mechanically 

fastened joints or both (Peters, 1998, p.610). 

 

 

Figure 3.1 The most common requirement of the joint design   

 

Table 3.1 A comparison of the advantages and disadvantages of adhesively bonded and bolted 
composite joints (Baker, Dutton, & Kelly, 2004) 

Advantages Disadvantages 
Bonded Joints 

� Small stress concentration in adherents  
� Stiff connection  
� Excellent fatigue properties  
� No fretting problems  
� Sealed against corrosion  
� Smooth surface contour  
� Relatively lightweight  
� Damage tolerant 
 
 

� Limits to thickness that can be joined with 
simple joint configuration  

� Inspection other than for gross flaws 
difficult  

� Prone to environmental degradation  
� Sensitive to peel and through-thickness 

stresses 
� Residual stress problems when joining to 

metals  
� Cannot be disassembled  
� May require costly tooling and facilities  
� Requires high degree of quality control  
� May be of environmental concern 

Bolted Joints 

� Positive connection, low initial risk  
� Can be disassembled  
� No thickness limitations  
� Simple joint configuration  
� Simple manufacturing process  
� Simple inspection procedure  
� Not environmentally sensitive  
� Provides through-thickness  
       reinforcement; not sensitive to peel 

stresses  

� Considerable stress concentration  
� Prone to fatigue cracking in metallic 

component  
� Hole formation can damage composite  
� Composite’s relatively poor bearing 

properties  
� Prone to fretting in metal  
� Prone to corrosion in metal  
� May require extensive shimming 
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    In design process, the behavior of joints for certain individual material, geometric, 

and environmental conditions must be taken into account. As shown in Figure 3.1, 

load transfer from one joint member to the other is typically affected by the type of 

load, the environmental conditions, and the materials being joined. Notwithstanding 

adhesive bonding is the principal method and offer much greater joining efficiency, 

mechanically fastened composite joints are used in specific applications, in case 

adhesive bonding is not appropriate or optimum. In terms of being a clue for 

choosing the right joint type, the advantages and disadvantages of adhesively bonded 

and mechanically fastened joints are given in Table 3.1. 

 

3.2 Adhesive Bonding                            

 

     Having uniform load distribution in contact areas, little weight penalty with thin 

bond lines, smooth external surfaces for improved aerodynamic and hydrodynamic 

flow, adhesively bonding is still the principal method for joining composites.  

 

     As stated previously, adhesive joints are capable of high structural efficiency and 

constitute a resource for structural weight saving because of the potential for 

elimination of stress concentrations which cannot be achieved with mechanically 

fastened joints. However, due to lack of reliable inspection methods and a 

requirement for close dimensional tolerances in fabrication, aircraft designers have 

generally avoided bonded construction in primary structure (Peters, 1998, p.610).  

 

     In a structural adhesive joint, the load in one component must be transferred 

through the adhesive layer to another component. The efficiency with which this can 

be done depends on the joint design, the adhesive characteristics and the 

adhesive/substrate interface. In order to transfer the load through adhesive, the 

substrates (or adherend) are overlapped to place the adhesive in shear. Figure 3.2 

shows some typical joint designs for adhesively bonded joints (Campbell, 2004, 

p.245). 
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Figure 3.2 Typical adhesively bonded joint configurations (Campbell, 2011)   

 

     Obtaining adequate mechanical results from adhesively bonded joint requires an 

appropriate preference of adhesive material. The adhesives most often used for 

bonding polymer-matrix composites are synthetic polymeric adhesives that are 

generally similar to the matrix of the composite, or mutually compatible with the 

matrices of mating composites. Thus, thermosetting polymer adhesives are generally 

used for adhesive-bonding thermosetting-matrix composites (e.g., epoxy-glass), 

while thermoplastic polymer adhesives are generally used with thermoplastic-matrix 

composites (e.g., polyetheretherketone (PEEK) graphite). Solvent cementing can also 

be used for bonding thermoplastic-matrix composites, just as it can be used for 

bonding monolithic thermoplastics (Messler, 2004, P.665). 
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Figure 3.3 The four basic types of adhesive loading. Tension and shear are acceptable loading 
methods, provided the bond area is sufficient. Cleavage and peel are to be avoided.     

 
     The joint design must ensure that the adhesive is loaded in shear as much as 

possible. Cleavage and peel loading (Figure 3.3) should be avoided when using 

adhesives. Some further considerations for designing adhesively bonded joints are:  

� The adhesive must be compatible with the adherents and be able to retain 

its required strength when exposed to in-service stresses and environmental 

factors. 

� The joint should be designed to ensure a failure in one of the adherents 
rather than a failure within the adhesive bond line.  

� Thermal expansion of dissimilar materials must be considered. Because of 

the large thermal expansion difference between carbon composite and 

aluminum, adhesively bonded joints between these two materials have been 

known to fail during cool down from elevated temperature cures as a result 

of the thermal stresses induced by their differential expansion coefficients.  

� Proper joint design should be used, avoiding peel or cleavage loading 

whenever possible. If peel forces can not be avoided, a lower-modulus (non 
brittle) adhesive having high peel strength should be used. 

� Tapered ends should be used on lap joints to feather out the edge-of-joint 
stresses. The fillet at the end of the exposed joint should not be removed.  

� Selection tests for structural adhesives should include durability testing for 

heat, humidity, (and/or fluids), and stress, simultaneously (Campbell, 2011, 
p.250).      

 
     Bonded joints must be carefully designed by conducting adhesive joint tests. Tests 

should be done on the actual joints that will be used in production. Environmental 

conditions (temperature, moisture and any solvents) that the joint was exposed also 
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must be carried out. All test conditions must be carefully controlled including the 

surface preparation, the adhesive and the bonding cycle. The failure modes for all 

tests specimens should be examined. Some acceptable and unacceptable failure 

modes are shown in Figure 3.4. If the specimen exhibits an adhesive failure at the 

adherent-adhesive interface rather than a cohesive failure within the adhesive, it may 

be an indication of a surface preparation problem that will result in decreased joint 

durability (Campbell, 2004, p.251).     

 

           

 

Figure 3.4 Typical failure modes of bonded joints (Campbell, 2011)    
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3.3 Mechanical Fastening                       

 

     In many applications, joining composite plates by using mechanically fasteners 

such as, bolts, pins, rivets etc. cannot be avoided because of requirements for 

disassembly of the joint for replacement of damaged structure or to achieve access to 

underlying structure. 

 

     Adhesive joints tend to lack structural redundancy and are highly sensitive to 

manufacturing deficiencies including poor bonding technique, poor fit of mating 

parts and sensitivity of the adhesive to temperature and environmental effects such as 

moisture. Assurance of bond quality has been a continuing problem in adhesive 

joints. While non-destructive evaluation techniques (ultrasonic and X-ray inspection) 

may reveal gaps in the bond, there is no present technique, which can guarantee that 

a bond, which appears to be intact does, in fact, have adequate load transfer 

capability. Thus mechanically fastened joints tend to be preferred over bonded 

construction in highly critical and safety related applications such as primary aircraft 

structural components, especially in large commercial transports, since assurance of 

the required level of structural integrity is easier to be guaranteed in mechanically 

fastened assemblies. As a rule, bonded joints prove to be more efficient for lightly 

loaded/non-flight critical aircraft structures whereas mechanically fastened joints are 

more efficient for highly loaded structures. Bonded construction tends to be more 

prevalent in smaller aircraft components (Peters, 1998, p.611).  

 

     In mechanical fastening, load transfer is accomplished by compression (bearing) 

on the faces of holes passing through the joint members by shear (and, less desirably, 

bending) of the fasteners. Some of the load is also transferred through friction on the 

face of the joint element if the clamping forces imposed by the fasteners are 

sufficient. However, in spite of the fact that high clamping forces (bolt-tightening 

torque) are very important to develop high-friction forces to maximize 

bearing strength, it may not be possible to maintain these levels of clamping force 

during prolonged service, for example, due to wear under service loading conditions.  
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     Now that high through-thickness reinforcement is provided by the fasteners, peel 

failure of the composite is generally not a problem. Nonetheless, problems can arise 

resulting from the relatively low bearing and transverse strengths of the composite 

compared with those of metals. Bearing failure results in hole elongation, allowing 

bending and subsequent fatigue of the bolt or substructure. Alternatively, the fastener 

head may pull through the composite. 

 

 

Figure 3.5 Schematic illustrations of the main failure modes in mechanical joints in composites 
(Jones, 1999) 

 
     Figure 3.5 illustrates the failure modes of a composite joint. They are, briefly, 

tension failure, caused by tangential or compressive stresses at the hole edge, 

bearing failure mode, governed by compressive stresses acting on the hole surface, 

shear-out failure, caused by shear stresses acting in shear-out planes on the hole 

boundary in the principal load direction, bolt failure mode, resulted from high shear 

stresses acting in the bolt shank.    

      

     In addition, mixed-mode failures can occur, including cleavage 

tension, essentially mixed tension / shear; bolt-head pulling through the laminate, a 

problem particularly with deeply countersunk holes; and bolt failure due to 

bearing failure. 
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     The type of failure that occurs depends on the ratio of the effective width to the 

diameter of the fastener hole w/d, and the ratio of the edge distance to the diameter 

e/d. The variation of failure load with w/d and e/d for a quasi isotropic laminate is 

indicated in Figure 3.6. For large w/d and e/d, the joint fails in bearing, and the 

failure load is independent of w/d or e/d. With reduced w/d tension failure of the net 

section will occur with the joint strength dropping to zero when w/d = 1. If the edge 

distance e is reduced, shear failure occurs with the strength of the joint dropping to 

zero when e/d =0.5 (Baker, Dutton, & Kelly, 2004, p.338).  

 

 

Figure 3.6 Transition between failure modes with specimen width (rivet pitch) and edge distance 
(Baker, Dutton, & Kelly, 2004)  

     The allowable stresses in each of these modes are a function of: 

� Geometry of the joint, including thickness. 

� Hole size, spacing, and bearing area, allowing for countersink. 

� Fastener loading, single or double shear; that is, loading symmetrical, as in a 

double-lap joint, or unsymmetrical, as in a single-lap joint. 

� Fastener fit tolerance. 

� Clamping area and pressure, allowing for any countersink. 
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� Fiber orientation and ply sequence. 

� Moisture content and service temperature. 

� Nature of stressing: tension, compression, shear; cyclic variation of stressing; 

any secondary bending, resulting in out-of-plane loading. Stresses due to 

thermal expansion mismatch in metal-to-composite joints may also have an 

effect, but these are rarely considered in mechanical joints. 

 

     The ply configuration in most bolted joints is usually chosen to be close to quasi- 

isotropic, based on 0°, ± 45 °, and 90° fibers. The non-zero fibers are needed to carry 

load around the hole to prevent shear or cleavage-type failures, whereas the 0° fibers 

carry the primary bearing loads and tension. The desired failure mode is usually net 

tension or compression; however, in some situations (the softer or less catastrophic) 

bearing failure may be preferred. If stiff (highly orthotropic) laminates are required 

for a particular application, a higher proportion of 0° fibers may be used and further 

measures may be required to increase hole strength (Baker, Dutton, & Kelly, 2004, 

p.340). 

 

3.4 Hybrid (bolted/bonded) Joining        

 

     A joint bonded with a structural adhesive is usually much stiffer than a similar 

joint joined by mechanical fastening; even when the mechanical joint is optimally 

designed and interference fit fasteners are used. Thus it is not possible to design a 

joint in which the load is effectively shared between the bonded and fastened 

regions. It was shown that for an optimally designed step-lap joint the bolts transmit 

only around one percent of the total load. However, fastening and bonding can be 

beneficially used together for several reasons: 

 

� Fasteners provide an alternate in-plane load path as well as through-thickness 

reinforcement and therefore can contain the spread of damage in thick-section 

composite-bonded joints where failure (for example, due to an overload or to 

the development of local bond or inter laminar flaws) would occur by 

disbonding of the adhesive layer or by delamination of the composite. 
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� Fasteners can be used at the end of a lap joint to reduce peel stresses. 

However, this is a somewhat hazardous application because the 

fastener holes, unless very carefully sealed, allow environmental ingress into 

the bond interface in the most critical region. 

� Fasteners can be used both as a jigging aid and to apply pressure during 

adhesive bonding of composite components; generally, this approach would 

be effective only with paste adhesives. 

� Bonding can be used to alleviate local stresses in the metallic component in a 

mechanically fastened joint, markedly improving fatigue and static strength 

properties. For the reasons mentioned, the bond line carries most of the load, 

and the fasteners become effective only after bond failure. This approach is 

extensively used with riveting in the metallic longitudinal fuselage splice 

region in commercial aircraft. With composite construction, this approach is 

more likely to be used for rework of areas found to be prone to damage 

(Baker, Dutton, & Kelly, 2004, p.340). 
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CHAPTER FOUR 

STRESS ANALYSIS IN COMPOSITES 
 

4.1 Introduction  

 

     A lamina can be defined as a thin plane layer of unidirectional fibers or woven 

fabric in a matrix. It is generally of a thickness on the order of 0.125 mm. Even 

though several layers of fibers actually exist in the same lamina, the modeled lamina 

has only a single fiber per layer (Figure 4.1). A laminate is constructed by stacking a 

number of such lamina in the direction of the lamina thickness (Figure 4.2). 

Mechanical structures made of these laminates, such as a leaf spring suspension 

system in an automobile, are subjected to various loads, such as bending and twisting 

(Kaw, 2006, p.61). Laminated composite materials have different responses to the 

applied loads in different directions. Therefore, the behavior of each individual 

lamina must be predicted to analyze the whole body of composite structure.    

 

Figure 4.1 Schematic illustration of actual and modeled lamina (Staab, 1999) 

 
Figure 4.2 Typical laminate made of three laminas  
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      The lamina has principal axes and is characterized as an orthotropic material 

(Figure 4.1). Axis 1 is the longitudinal fiber direction, Axis 2 is the transverse 

direction in the plane of the lamina, and, Axis 3 is normal to the plane of the lamina. 

If two or more unidirectional laminas are stacked together at various orientations, 

they constitute a composite laminate.  

 

     Stress analysis in composites is performed at two different levels, named as 

micromechanics and macromechanics. In micromechanics, fiber diameter, particle 

size, or matrix interstices between reinforcement are observed and the interactions of 

the constituents are studied on the microscopic scale. Stress, strain and deformation 

analysis in the constituents, including matrix and fiber, and their interface also are 

dealt in micromechanics. Micromechanics is an important scale when studying the 

properties, such as fracture toughness, strength, and fatigue life which are strongly 

affected by local characteristics, as they can not be integrated or averaged.  

 

    Macromechanics is concerned with the average stiffness and strength properties of 

the unidirectional lamina, which is considered to be a quasi homogenous anisotropic 

material.  The whole elastic or elastic-plastic behavior of composite laminates should 

be studied at macroscopic level. None of the particular local failure mechanism is 

referenced, while expressing failure criteria on the basis of average stresses and 

overall lamina strengths.      

 

     At laminate level, the macromechanical analysis is applied in the form of 

lamination theory dealing with overall behavior as a function of lamina properties 

and stacking sequence. Finally, at the component or structure level, methods such as 

finite element analysis coupled with lamination theory give the overall behavior of 

the structure as well as the state of stress in each lamina (Daniel & Ishai, 1994, p.25).     
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4.2 Macromechanical Behavior of a Lamina  

 

4.2.1 Stress-Strain Relations for Anisotropic Materials 

 

     The deformations caused by an arbitrary combination of stresses can be predicted 

by using Generalized Hook’s Low. It also reveals that, if a member is exposed a 

force (which produce a stress in dimension of application) in one direction, strains in 

other directions does not equal to zero. Like an elastic band, when you pull the 

material by any of the planes, the other planes move to inward to fill in the space and 

it becomes thinner. Therefore, strain is produced without stress in other directions, 

too. The Generalized Hook’s Low is a convenient tool to simplify stress-strain 

relations for materials having increased symmetries, and reduce three dimensional 

formulations to plane stress and plane strain case. In the most general case, the 

Generalized Hook’s Low, defining stress-strain relation can be written in indicial 

notation as 

                                klijklij C εσ =  

                                                        3,2,1,,, =lkji                                                   (4.1) 

                                klijklij S σε =  

where ijσ are stress components as shown in Figure 4.3, klε are the strain 

components, ijklC  is the stiffness matrix, and ijklS  is the compliance matrix. As seen 

the compliance matrix ijklS  is the inverse of the stiffness matrix ijklC . In general, 81 

elastic constants wholly characterize the material. Because of the symmetry in the 

stress and strain tensors, the number of elastic constants reduces to 36.       

 

Figure 4.3 State of stress at a point of 
continuum 
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                                            jiij σσ = , jiij SS =                                                       (4.2)                                                         

     The stress-strain relations for anisotropic materials can be written in contracted 

form as follows, 
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  or  jiji S σε =                    (4.4)                   

 

     For elastic materials, the important characteristics of strain energy should be also 

considered. Consider a stress component iσ  produced an infinitesimal strain idε . The 

strain energy in the body per unit volume is:         

 

ii ddW εσ .=                                                         (4.5) 

 
Because of stress-strain relationship in Equation (4.3) the strain energy becomes,   
 

ijij dCdW εε .=                                                     (4.6) 

 

                                                     jiijCW εε
2

1
=                                                      (4.7) 

 
Now, by partial differentiation of Equation (4.7), 
 

                                                   
ij

ji

C
dd

Wd
=

εε

2

                                                        (4.8)  

and, 
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                                                     ji

ij

C
dd

Wd
=

εε

2

                                                      (4.9) 

 
 
Because the order of differentiation does not matter, so 
 
                                                       jiij CC =                                                         (4.10) 

 
Thus, the stiffness matrix is deduced to be symmetric and the number of independent 

constants is reduced from 36 to 21. This means that the compliance matrix [ ]S  in 

Equation (4.4) also has only 21 independent constants because of symmetry.     

 jiij SS =                                                         (4.11) 

 
     4.2.1.1 Anisotropic Material 

 
     After the reduction of material constants from 36 to 21, the stress strain relations 

are described,   
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                       (4.13) 

 

Equation (4.12) and (4.13) are referred to as characterizing anisotropic materials. 

Anisotropic materials, (or called alternatively triclinic materials) have no planes of 

symmetry for material properties. Even if the material is assumed to be homogenous, 

to find the 21 elastic constant, analytic and experimental studies are needed.  
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Fortunately, many natural or synthetic materials possess material symmetries, which 

reduce the number of independent elastic constants.     

 

     4.2.1.2 Monoclinic Material 

 

     If there is one plane of material property symmetry, such a material is called 

monoclinic material. For example, elastic body whose properties are symmetric with 

respect to the 21 xx −  plane is illustrated in Figure 4.4.  

 
   Figure 4.4    One plane of symmetry 

 

     The stresses and strains of the new coordinate system are related to the original 

one by the following relations, 

 

  ijljkikl tt σσ ..'=    and   ijljkikl tt εε ..'=                                      (4.14) 

 

where, ijt are the direction cosines associated with the transformation coordinate 

system. The stress and strain transformations to the symmetrical coordinate system 

are as follows, 
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According to Equation (4.3) 4σ and '4σ  can be written as,  

 

6465454443431421414 εεεεεεσ CCCCCC +++++=                                  (4.17) 

 
   ''''''' 6465454443431421414 εεεεεεσ CCCCCC +++++=                                  (4.18)                                                

 
After summation Equation (4.17) and (4.18), it can be concluded that 

046434241 ==== CCCC  and 5σ and '5σ  can be written as, 

 

6565554543531521515 εεεεεεσ CCCCCC +++++=                                  (4.19) 

 
''''''' 6565554543531521515 εεεεεεσ CCCCCC +++++=                                     (4.20) 

 
Similarly, the summation Equation (4.19) and (4.20) gives that 

056535251 ==== CCCC  

 
     For the material, having only one plane of symmetry the elastic constants are 

reduced to 13. Thus, stress-strain relations in a monoclinic material is,    
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     4.2.1.3 Orthotropic Material 

 

     In addition to the symmetry plane, if there are two orthogonal planes of 

symmetry, so the material has three mutually perpendicular planes of material 

property symmetry, it is called orthotropic or orthogonally anisotropic. In such a 

case, there are four more constants are equal to zero ( 045362616 ==== CCCC ). 

Namely, for orthotropic elastic bodies, such as most composite materials nine elastic 

constants exist in three dimensional cases. Thus, stress-strain relations for orthotropic 

materials are shaped like this:       
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A wooden bar, rolled steel, and a lamina of continuous fiber composite are good 

examples for the orthotropic bodies.   
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     4.2.1.4 Transversely Isotropic Material 

 

     Consider a material; at every point of which there is one plane, that the material 

properties are equal in all directions. In that case, the nine independent elastic 

constants reduced to five and the material is called Transversely Isotropic. The 

stress-strain relationship is 
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     4.2.1.5 Isotropic Material 
 
 
     If there is infinite number of symmetry planes in material, it means that material 

properties do not change depending on the direction. This material is named as 

Isotropic Material, with only two independent material constants in its stiffness 

matrix: 
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4.2.2 Engineering Constants for Orthotropic Materials  

 

     The mechanical constants, which describe the stress-strain relations, can be 

expressed in terms of engineering constants.  The relations between them are 

obtained by using some basic imaginary experiments. Imagine that, an elastic 

orthotropic lamina is exposed longitudinal tension ( 1σ ), transverse in-plane tension 

( 2σ ), transverse out-of-plane tension ( 3σ ), out-of-plane shears ( 3132 &ττ ) and in-

plane shear ( 12τ ) loads, separately. After superposing the relations for different 

loading types in the same material, the stress-strain relations for an orthotropic 

lamina became (Daniel & Ishai, 1994, P.66):     
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As seen in Equation (4.29), it is easy to express the compliance matrix [ ]S  in terms 

of the engineering constants. However, the case is different for the stiffness 

matrix [ ]C ; such that, converting the compliance matrix, the stress-strain relation is 

found as follows: 
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in which ∆  is defined as 
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4.2.3 Stress-Strain Relations for Thin Lamina 

   

     A thin lamina is considered to be a plane stress case, so the stress 

components 233 ,τσ , and 31τ  are equal to zero. Thus, the stress-strain relationship in 

Equation (4.29) is reduced to the following form,  
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The relations is then can be written by using engineering constants,  
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4.2.4 Material Orientation in Two-Dimensional Lamina  

 

     Unidirectional composite laminas have very low transverse stiffness and strain 

properties. Therefore, some of the laminas in laminates were oriented in angled 

directions. Obtaining stress-strain relation in an angle lamina is essential             

(Kaw, 2006, p.110). 
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     The local and the global coordinate systems are used to define the stress-strain 

equations of an angle lamina (Figure 4.5). In local coordinate system, direction 1 is 

the longitudinal direction, which is parallel to fibers and direction 2 is the transverse 

direction oriented perpendicular to the fiber direction.  The global coordinate system 

is represented by x-y axes. The angle between the two coordinate systems is named 

as θ. Here is intended to establish the stress-strain relations in global coordinate 

system.             

 

 

                              Figure 4.5 Local and global axes of an angle lamina 

     The stress and strain components in local coordinate system are converted into the 

global coordinate system by the transformation matrix [ ]T .   
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Putting Equation (4.32) and (4.33), in the inverse form of Equation (4.36) yields,   
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where [ ]R  is the Reuter matrix defined as,  
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The transformed reduced stiffness matrix [ ]Q   is obtained by 

multiplying [ ] [ ] [ ] [ ] [ ] 11
,,,,

−−
RTRQT .  
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4.2.5 Elastic Properties of multidirectional laminates 

 

     4.2.5.1 Basic Assumptions 

 

      The stress-strain relations for a single lamina were explained in the previous 

sections. Nevertheless, a real composite material consists of more than one lamina, 

oriented in different directions.  A unidirectional lamina neither has enough thickness 

to take realistic loads nor is convenient to carry multidirectional loads because of its 

low transverse mechanical properties. Building a laminate by stacking layers at 

different angles satisfies the loading and stiffness requirements, although it increases 

the cost and weight (Daniel & Ishai, 1994, p.142), (Kaw, 2006, p.320).    

      

     It is obvious that, the whole behavior of composite plate is a function of 

properties of each individual lamina. The following assumptions are required to 

develop the equations according to classical lamination theory.          

� Each lamina is orthotropic. 

� Each lamina is homogeneous. 

� A line straight and perpendicular to the middle surface remains straight and 

perpendicular to the middle surface during deformation ( )0== xzxz γγ . 

� The laminate is thin and is loaded only in its plane (plane stress) 

( 0=== yzxzz ττσ ). 

� Displacements are continuous and small throughout the laminate 

( hwvu <<,, ), where h is the laminate thickness. 

� Each lamina is elastic. 

� No slip occurs between the lamina interfaces. 

 

     4.2.5.2 Strain Displacement Relations 

 

     Figure 4.6 illustrates a section view of a plate normal to the y-axis in the global 

coordinate system (x, y, z) before and after deformation. The reference plane ( yx − ) 

is equal in distance from top and bottom surfaces, that is also z = 0.  ,, 00 vu and 0w  
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are the displacements at the middle plane and vu, and w  are the displacement 

components at any point in yx,  and z  directions, respectively.  

 
  Figure 4.6 Laminate section before (ABCD) and after (A'B'C'D') (Daniel, & Ishai, 1994)  

     The middle plane displacements 0u , 0v  and out-of-plane displacement w  are only 

the function of x  and y .  
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At any point the two displacements u and v  in yx −  plane is dependent on the axial 

location of the point and the slope of the laminate middle plane with the x  and y  

directions.    

αzuu −= 0         and        
x

w

∂

∂
= 0α                                       (4.43) 

The displacement in x direction is then,  

                                                                  
x

w
zuu

∂

∂
−= 0

0                                      (4.44) 
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Similarly, other displacement component can be written in the same manner. 
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The strain components at any point are expressed, 
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Equations (4.46), (4.47), and (4.47) can be combined in matrix form, 
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Strains at any point can be written in terms of reference plane strains and laminate 

curvatures,  
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Equation (4.50) shows the linear relationship of strains in a laminate to the 

curvatures of the laminate. It also indicates that the strains are independent of the 

yx −  coordinates (Kaw, 2006, p.324).     
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     4.2.5.3 Strain and Stress Relations in a Laminate 

 

     In case the strains at any point through the laminate thickness are known, the 

stresses of each lamina in the global coordinate system can be calculated according 

to Equation (4.40). The transformed reduced stiffness matrix, [ ]Q , corresponds the 

layer at that point. It can be derived from Equation (4.40) and (4.50), 
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     Unlike a linear variation of strain through the thickness of laminate, stress 

variations in each lamina changes because transformed reduces stiffness matrix [ ]Q  

for each lamina is different.    

 

 

           Figure 4.7 Strain and stress variations through thickness of a laminate 

 

    4.2.5.4 Force and Moment Resultants  

 

     Consider a laminate manufactured by using N  layers as shown in Figure 4.8. The 

thickness of the laminate is “ t ”.   The resulting forces and moments acting in a 

laminate can be found by integrating the stresses in each lamina through thickness. 
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          Figure 4.8 Coordinate locations of layers in a laminate 

 

     

 

Figure 4.9 Force and moment resultants of a flat laminate 

 

The normal force xN  and the bending moment xM per unit width of the laminate, 

illustrated in Figure 4.9 is calculated with the Equation (4.52)  , but the whole 

collection of force and moment resultants can be defined as,    
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Substituting Equation (4.51) in Equation (4.53) and (4.54) resultant forces and 

moments is expressed by the middle plane strains and curvatures, 
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As seen in Equation (4.55) and (4.56) strains and curvatures are not dependent on the 

z coordinate in middle plane. Additionally, transformed reduced stiffness matrix [ ]Q  

does not vary in the laminas. For that reason resultant force and moment Equations 

can be written like this, 
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 Equations (4.57) and (4.58) transform  
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Where, the matrixes, [ ]A , [ ]B  and [ ]D are extensional, coupling and bending stiffness 

matrixes, respectively. [ ]A  relates in-plane loads to in-plane strains; [ ]B  relates in-

plane loads to curvatures and moments to in plane strains; and [ ]D  relates moments 

to curvatures.   The components of these matrixes are, 
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If the equations are combined into a general expression, which converts reference 

plane strain and curvatures into in-plane forces and moments, the final form of the 

expression becomes, 
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4.3 Micromechanical Behavior of a Lamina  

 

     The elastic behavior of a lamina can be either examined experimentally or 

estimated mathematically. These properties vary depending on the properties and 

proportions of fibers and matrix materials. The basic goal of micromechanics is to 

find out the relationship between properties of composite material and its 

constituents mathematically, as illustrated in Figure 4.10 (Jones, 1999, p.121).  

 

  Figure 4.10 Basic goal of micromechanics 

     The stiffnesses and compliances of composites are calculated by the aid of fiber 

and matrix properties ( ),,,,,( mmmfffijij VEVECC νν= ). Here the definitions, fE = 

Young’s modulus for an isotropic fiber, fν = Poisson’s ratio for an isotropic fiber, 

and fV = Volume of fibers / Total volume of composite material, are analogous to 
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that of matrix material with subscript “m”. The determination of composite material 

strengths via the strengths of constituents is also another objective of 

micromechanical analysis. For example the composite strengths in functional form 

are, ),,,( mimfifii VXVXXX = , where == SYXX i ,, Composite material strengths,  

== fffif SYXX ,, Fiber strengths, and fV = Volume of fibers / Total volume of 

composite. These definitions are analogous to that of matrix materials.  

      

4.3.1 The prediction of E1 

     

     Consider a microscopically heterogeneous element is subjected a tensional stress 

in fiber direction (Figure 4.11). In that case, the longitudinal strain ( 1ε ) both for fiber 

and matrix material would be the same, 

L

L∆
=1ε                                                         (4.65) 

In elastic region, the stresses in fiber direction are, 

1εσ ff E=            1εσ mm E=                                       (4.66) 

The total load carried by the matrix and fiber is, 

mmff AAAP σσσ +== 1                                         (4.67) 

where A  is the cross-sectional area, on which 1σ  is acting, fA and mA  are the cross-

sectional areas of fiber and matrix respectively.  

  

 
                       Figure 4.11 Element loaded in direction 1 

 
 



 

 
 

57

The stress in fiber direction is, 

111 εσ E=                                                            (4.68) 

Thus, the young’s modulus in fiber direction is derived, 

A

A
E

A

A
EE m

m

f

f +=1                                          (4.69) 

Fiber and matrix volume fractions are just related to the areas,  

A

A
V

f

f =          
A

A
V m

m =                                      (4.70) 

                                                        mmff VEVEE +=1                                         (4.71) 

 

4.3.2 The prediction of E2  

 

     The young’s modulus in transverse direction to fibers is characterized by 2E . It is 

assumed that both fiber and matrix are subjected the same stress level 2σ . Under 

transverse loading condition however, it is not possible to approximate or assume 

strains in direction 1 and 2 (Figure 4.12).     

 
                                      Figure 4.12 Element loaded in direction 2 

 

 The strains in fiber and matrix materials are found from the stress 2σ .  
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ε =                                             (4.72) 

The total transverse deformation is the summation of fiber and matrix deformations,   

mmff WVWVWW εεε +==∆ 2     or   mmff VV εεε +=2                  (4.73) 

Combining Equations (4.72) and (4.73) gives, 
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According to the stress-strain relation at macroscopic level, 
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2E is then expressed in terms of fiber and matrix properties,  

mffm

mf

EVEV

EE
E

+
=2                                          (4.76) 

 

4.3.3 The prediction of 12ν  

 

     Just like the approach, through which 1E  obtained the major Poisson’s ratio is 

also derived by applying a stress 1σ  in fiber direction. When σσ =1  and the other 

stresses are equal to zero, the Poisson’s ratio 12ν   is defined (Figure 4.13),  

     
1

2
12

ε

ε
ν −=                                                (4.77) 

 

 

                           Figure 4.13 Element loaded in direction 1 

 

Fiber and matrix strains are assumed to be identical and equal to 1ε . On the other 

hand, the deformation in transverse direction W∆  is defined as macroscopically,  

1122 ενε WWW =−=∆                                     (4.78) 

W∆  is also expressed by its microscopic components, fiber and matrix deformations.  

 fWmWW ∆+∆=∆                                           (4.79) 
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Transverse deformations in fiber and matrix are defined approximately, 

1εν mmmW WV=∆        1εν fffW WV=∆                             (4.80) 

Putting Equation (4.78), (4.79), and (4.80) into one expression and eliminating 

W1ε gives, 

ffmm VV ννν +=12                                            (4.81) 

 

4.3.4 The prediction of 12G  

 

     While determining 12G  in micromechanics, the shear stresses acting on fiber and 

matrix materials are assumed to be the same. But the shear deformations can not be 

the same and expressed basically, 

m

m
G

τ
γ =              

f

f
G

τ
γ =                                     (4.82) 

The non linearity of the stress-strain behavior in shear loading is ignored and the 

relation is presumed linear for convenience,  

 

     Figure 4.14 Element loaded in shear 

  The total shear deformation in macroscopic scale is, 

W.γ=∆                                                     (4.83) 

Fiber and matrix deformations in microscopic scale are, 

mmm WV γ=∆              fff WV γ=∆                               (4.84) 
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Because the total deformation is the sum of fiber and matrix components 

( fm ∆+∆=∆ ), and eliminating W  yields, 

ffmm VV γγγ +=                                                   (4.85) 

Total deformation can be written basically,  

12G

τ
γ =                                                         (4.86) 

When Equation (4.85) is rewritten combining Equation (4.86) 
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                                           (4.87) 

As obtained expression for transverse young’s modulus 2E , the shear modulus is 

given finally,  
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CHAPTER FIVE 

FAILURE ANALYSIS IN COMPOSITES 

 

5.1 Introduction  

 

     The general nature of failure for orthotropic materials is more complicated than 

for an isotropic material. A Mohr's circle analysis would show a principal angle 

different from that of an isotropic material, indicating that analysis techniques valid 

for isotropic materials are not adequate for composites. A lamina is stronger in the 

fiber direction than in the transverse direction, so the largest stress on the lamina may 

not be the one that causes failure. 

 
     Failure of a unidirectional laminate begins on the microscopic level. Microscopic 

failures can become macroscopic and result in catastrophic failure. Initial 

microscopic failures can be represented by local failure modes, such as: 

� Fiber failure: breakage, micro buckling, dewetting. 

� Bulk matrix failure: voids, crazing. 

� Interface/flaw dominated failures: crack propagation and edge 

delamination (Staab, 1999, p.142). 

 

     Most of the experiments, conducted to obtain the material strength are based on 

unidirectional state of stresses.  In real structures however, two or three dimensional 

stresses may be simultaneously acting on the material. It is physically impossible to 

obtain strength properties at all possible orientations. Therefore, methods, which 

calculate the characteristics at any orientation, using the material characteristics in 

principal directions must be determined (Jones, 1999, p.102). 

      

     For composite structures, the strength of the laminate is dependent on each 

individual lamina. In order to compare the state of stress to failure criteria in the 

lamina, failure theories were developed. Basically, all of the theories are related to 

the normal and shear strengths of unidirectional lamina.  
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     For isotropic materials, failure theories generally based on principal normal 

stresses and maximum shear stresses. In a lamina however, failure theories are 

originated from the stresses in the material or in the local coordinates thanks to its 

orthotropic nature and varying properties at different angles.  

 

     Unidirectional laminas have two material axes; those are fiber direction and 

perpendicular to fiber direction. Therefore, four normal strength parameters exist 

concerning unidirectional lamina, so that one tension and one compression strength 

for each two local axes should be specified. Additionally, the shear strength appears 

to be fifth parameter in unidirectional laminas, although the shear stresses do not 

affect the shear strengths of a unidirectional lamina. The five strength parameters of 

a unidirectional lamina are listed below (Kaw, 2006, p.138).    

                tX : Ultimate longitudinal tensile strength (in direction 1), 

                cX : Ultimate longitudinal compressive strength (in direction 1), 

                 tY  : Ultimate transverse tensile strength (in direction 2), 

                 cY  : Ultimate transverse compressive strength (in direction 2), and 

                 S  : Ultimate in-plane shear strength (in plane 12). 

 

Figure 5.1 Biaxial stresses generated by off-axis 
uniaxial loading 
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     By an off-axis loading on a unidirectional lamina, biaxial stresses will be 

generated to explain each failure criteria as illustrated in Figure 5.1. An off-axis 

stress, xσ  which is at the angle of θ  to the fiber direction produces biaxial stresses in 

principal material directions. During examining the failure theories, the material is 

going to be regarded as homogenous, although it is orthotropic structure (Jones, 

1999, p.105).  

 

5.2 Failure Criteria of a Lamina 

 

5.2.1 Maximum Stress Failure Criterion 

 

     In the maximum stress failure criterion, failure occurs whenever normal and shear 

stress component in the principal material coordinates is equal or exceeds the 

correspondent strengths. The criterion can be written for tensile, compressive and 

shear stresses as follows, 

tX<1σ           tY<2σ             cX>1σ           cY>2σ            S<12τ            (5.1) 

As seen, the sign of the shear stress has no effect on the shear strength. If any of the 

inequality conditions in Equation (5.1) are not satisfied, the material would fail by 

the associated failure mechanism. There are actually five failure sub criteria exist and 

there is no interaction between them.   

 

     In order to evaluate the state of stress and failure in a material according to 

maximum stress criterion, the stresses in the principal material coordinates must be 

primarily determined. In a uniaxial loading type in Figure 5.1, biaxial stress 

components are obtained by stress transformations. 

θσσ 2
1 Cosx=            θσσ 2

2 Sinx=        θθστ CosSinx .12 −=                 (5.2) 

Then, by putting the expressions 1σ , 2σ , and 12τ  in Equation (5.2)  to  Equation (5.1), 

the maximum uniaxial stress must be the smallest of 
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5.2.2 Maximum Strain Failure Criterion 

 

     In this criterion, the strains in the material principal directions are limited just as 

the stresses in the maximum stress criterion. Failure occurs if one or more of the 

following conditions are not satisfied. 

   
t

X εε <1       
t

Yεε <2       
c

X εε >1        
c

Yεε >2        εγ S<12                   (5.4) 

where,              

     
t

X ε ( )
c

X ε  : maximum tensile (compressive) normal strain in the direction 1 

      
t

Yε  ( )
c

Yε  : maximum tensile (compressive) normal strain in the direction 2 

               εS : maximum shear strain in the material coordinates 1-2 

     Similar to that with the shear strength, the sign of the shear strain does not affect 

the maximum shear strain. Initially, the strains in principal directions, 1ε , 2ε , and 

12γ must be obtained by transforming the strains in global coordinate system, before 

applying this failure criterion.  

 

     As studied in maximum failure criterion, a uniaxial load is applied on a 

unidirectional lamina at an angle of θ  to the longitudinal fiber direction. First 

allowable strains are going to be found and then allowable stresses can be calculated 

through them.  

 

     The two dimensional strain-stress relations in material coordinate system are, 
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Substituting the stress transformation expressions in Equation (5.2) to Equation (5.5), 
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                                     (5.6)       

Maximum strains are written in terms of ultimate strengths in linear elastic behavior, 
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S =ε               (5.7)               

Finally, the maximum strain criterion can be constituted in the following form, 
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A prominent situation is that the maximum stress criterion, Equation (5.3) and the 

maximum strain criterion, Equation (5.8) seem to be similar except for the terms of 

Poisson’s ratio. Predictions, made according these two criteria for glass-epoxy 

composites have given pronounced differences from the experimental results. Thus, 

it is recognized that neither the maximum stress nor maximum strain criterion is 

appropriate for e-glass-epoxy composite materials. 

 

5.2.3 Tsai-Hill Failure Criterion 

 

     This is a yield criterion, predicting failure boundaries for orthotropic materials. 

Tsai-Hill criterion is described in general form, 
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     This is a related and modified form of von Mises distortional energy yield 

criterion for anisotropic materials. In the Equation (5.9), the 
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parameters MLHGF ,,,, , and N are failure strength parameters which are related to 

the material strengths, YX , , and S .  If the only stress acting on the body is S , then 

the equation becomes, 

2

1
2

S
N =                                                    (5.10) 

If 1σ  is the only stress, then 

2

1

X
HG =+                                                  (5.11) 

If 2σ  is the only stress, then 

                                 
2

1

Y
HF =+                                                   (5.12) 

Similarly, if  3σ  act in the direction 3, then 

2

1

Z
GF =+                                                  (5.13) 

Equation (5.11) + Equation (5.13) - Equation (5.12) is equal to 

222

111
2

YZX
G −+=                                                   (5.14) 

Equation (5.12) + Equation (5.13) - Equation (5.11) is equal to 

222

111
2

XZY
F −+=                                                   (5.15) 

Equation (5.11) + Equation (5.12) - Equation (5.13) is equal to 

222

111
2

ZYX
H −+=                                                   (5.16) 

In plane strain case, intended for a unidirectional lamina, 023133 === ττσ . In 

addition to that, for such a lamina, depicted in Figure 5.2 it is obvious that ZY =  

because of the geometrical symmetry. The failure criterion in Equation (5.9) can be 

written for unidirectional lamina   

1
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1 =++−
SYXX

τσσσσ
                                               (5.17) 

The signs of 1σ  and 2σ determine whether the values will be tX  or cX  and tY  or cY . 

If it is an off-axis case, the stress transformation equations (Equation (5.2)) is 

combined with the Equation (5.17)  
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Figure 5.2 Cross-section of a unidirectional lamina (1 is the 
fiber direction)  

      Experimental results for E-glass-epoxy exhibits a good agreement with numerical 

solutions in Tsai-Hill failure criterion. It is found to be an appropriate failure 

criterion for E-glass-epoxy composite laminas in two dimensional stress fields 

although depending on their ductile or brittle nature, maximum stress and maximum 

strain can be better for other type of composite materials. It can be also said that the 

Tsai-Hill is an important criterion for the materials, whose properties are the same in 

tension and compression.  

 

5.2.4 Hoffman Failure Criterion 

 

     In addition to the Tsai-Hill’s equation some terms were added to take into account 

the disparities between tension and compression strengths. 
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The 9 coefficients ( 91 CC K ) are determined by the principal material strengths 

( ,,,,,,,, 3123 SSZZYYXX ctctct and 12S  ). The Hoffman criterion is more simplified in 

plane stress case, where 031233 === ττσ  and because of the isotropy in transverse 

direction the equities, tt YZ = , cc YZ = , and 1231 SS =  are also exist. Thus, the failure 

criterion is degraded from Equation (5.19) to, 
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The Hoffman criterion becomes the same as Tsai-Hill criterion while studying the 

materials, of which the tension and compression strengths are equal 

( XXX tc −=−=  and YYY tc −=−= ). This criterion is a convenient tool if it is the 

case of materials with different tension and compression strengths. Experiments with 

the glass-epoxy, graphite-epoxy, and baron-epoxy materials have given compatible 

failure data with the Hoffmann criterion according to Jones (1999).   

 

5.2.5 Tsai-Wu Tensor Failure Criterion 

 

     This criterion is based on the postulation by Tsai and Wu, which gives a strength 

definition, representing the interaction between stresses in different directions. If a 

six dimensional state of stress exist in material then the criterion is defined in indicial 

notation as            

1=+ jiijii FF σσσ            6,,1, K=ji                             (5.21) 

iF  and ijF  are representing the second and fourth rank strength tensors, and stress 

notations, 54 ,σσ and 6σ  are 3123 ,ττ and 12τ , respectively. In the plane stress case of 

an orthotropic lamina, the equation is reduced to a less complex form. 

12 2112
2

666
2

222
2

111662211 =++++++ σσσσσσσσ FFFFFFF          (5.22) 

Looking at the Equation (5.22) in detail, the linear stress terms are for representation 

of different tensile and compressive properties, whereas the quadratic stress terms 

characterize the ellipsoidal contour in stress space. The normal stress interactions 

between direction 1 and 2 is taken into account by using an independent 

parameter 12F .  

 

     The parameters in the stress tensor can be defined in terms of the material tension, 

compression and shear properties. If only tensile load is applied to the body  

12
111 =+ tt XFXF                                                   (5.23)   
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Similarly, under pure compression,      

12
111 =+ cc XFXF                                              (5.24)        

Upon the joint solution of Equations (5.23) and (5.24)  

ct XX
F

11
1 +=            

ct XX
F

1
11 −=                                   (5.25) 

In similar way, 

ct YY
F

11
2 +=               

ctYY
F

1
22 −=                                     (5.26) 

If thinking of the shear strength being independent of the shear stress signs in 

principal coordinates, that means, 

06 =F                         
266

1

S
F =                                         (5.27) 

 For materials with the same tensile and compressive properties ( ct XX −= and 

ct YY −= )   

01 =F             
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1

X
F =           02 =F            

222
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F =                       (5.28) 

These equations result in the failure criterion to reduce to the following form, 
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Equation (5.29) seems to be similar to Equation (5.17) in Tsai-Hill criterion except 

for the term 12F  which is instead
2

1

X
− . As 12F  is the common product of 1σ  and 

2σ , it is impossible to obtain 12F  from uniaxial tests. Consider a biaxial loading only 

in principal directions with a magnitude of σσσ == 21  . From Equation (5.22)    

( ) ( ) 12 2
12221121 =++++ σσ FFFFF                                  (5.30) 

Finally, 12F  is derived from substituting the definitions of 1121 ,, FFF and 22F  into 

Equation (5.30).  

















++








+++−= 2

212

111111
1

2

1
σσ

σ ctctctct YYXXYYXX
F                    (5.31) 

In addition to the tensile biaxial failure stressσ , the definition of 12F  is dependent on 

several material strengths. Owing to the difficulties of performing biaxial tension 
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tests, Tsai and Wu suggested a 45° off-axis tests or shear tests for determining 12F . It 

was also reported that slight variations in fiber orientation can fully disrupt the 

determination of 12F . The off-axis tests have given poor results. Another test method 

proposed to determine 12F  is to restrict deformations in transverse direction of 

applied load but nonetheless to find the exact value of  12F  remains still unclear 

(Staab, 1999, p.161).          
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CHAPTER SIX 

DETERMINATION OF BASIC MATERIAL PROPERTIES 

 

6.1 Introduction  

      

     Designing composite structures requires an accurate knowledge about mechanical 

properties of composite material. Mechanical tests that are used to derive mechanical 

properties of conventional metallic materials are not applicable for composite 

materials because of anisotropy, coupling effects and different possible failure 

modes. Therefore, appropriate test methods were developed and these were evolved 

into standards, adopted by the American Society for Testing and Materials (ASTM).  

 

     Researches in composite materials always entail basic material properties of 

unidirectional laminated composite plates derived from quasi-static experimental 

study. The data collected from these tests are used to reveal strength and stiffness 

characteristics of the material. For an orthotropic lamina, those are nine independent 

constants, each of which is a specific value defining mechanical response. The 

strength and stiffness characteristics are listed in Table 6.1 (Gibson, 1994). 

 

Table 6.1 The strength and stiffness characteristics of an orthotropic laminate 

Strength characteristics Stiffness characteristics 

X 
Axial or longitudinal strength in 

direction 1.  

E1, 

E2 

Longitudinal and 

 transverse Young modulus 

Y Transverse strength in direction 2. ν12 Poisson’s ratio 

S Shear strength in plane 1, 2.    G12 Shear modulus 
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Table 6.2 ASTM test standards and specimen geometries in determining mechanical characteristics 
(Okutan, 2001)  

Determinable  
properties  

Symbol and 
Unit  

ASTM test method  Specimen geometry  

Axial or 
longitudinal 

modulus  
 

Axial Poisson’s 
ratio  

 

Longitudinal 
tensile strength  

E
1 
 

(MPa)  
 

ν
12 

(-)  

 

X
t 
 

(MPa)  

ASTM 3039-76  

 
 
 
 

 

Transverse 
modulus  

 

Transverse 
Poisson’s ratio  

 

Transverse tensile 
strength  

 
E

2 
 

(MPa)  
 

ν
21 

(-)  

 

Y
t 
 

(MPa)  
 

ASTM 3039-76  

 
 

 

 
 

 

 

 
 

Shear modulus  
 

 
G

12 
(MPa)  

 
ASTM 3518-76  

 

ASTM D 7078-05 
 

ASTM D 5379  
 

 

 
 

         

Shear strength  

 
S  

(MPa)  
 

ASTM D 5379  
 

ASTM D 7078-05 

 

 
 

 
Longitudinal  
compressive 

strength  
 

X
c 
 

(MPa)  
ASTM 3410-75  

 

 

 
Transverse 

compressive 
strength  

 

Y
c 
 

(MPa)  
ASTM 3410 
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6.2 Test Procedures  

 

     In order to assess mechanical responses of a unidirectional lamina, the following 

assumptions are needed, in tensile, compressive and shear loading conditions. These 

descriptions provide a simplified approach in fiber-matrix interactions (Mallick, 

1993).  

 
• Fibers are uniformly distributed throughout the matrix.  
• Perfect bonding exists between fibers and matrix. 
• The matrix is free of voids.  
• Applied loads are either parallel to or normal to the fiber direction.  
• The lamina is initially in a stress-free state (i.e., no residual stresses are 

present)  
• Both fibers and matrix behave as linearly elastic materials.  

 

6.2.1 Determination of the Tensile Properties  

 

     Tensile properties of a unidirectional lamina are Young’s modulus in longitudinal 

and transverse directions (E1, E2), Poisson’s ratio (ν12, ν21), longitudinal and 

transverse tensile strengths (Xt, Yt). Static tensile tests were applied to the test 

specimens having orientations of [00]6 and [900]6 according to the ASTM D3039-76 

standard test method. Test specimens were manufactured as straight sided and with a 

constant cross section. As illustrated in Figure 6.1, the specimens have 250 mm 

length, 13 mm width and a measured thickness of 1.7 mm.     

 

 

Figure 6.1 Test specimen geometry and dimensions for longitudinal 
tensile loading 

 
     Tests were carried out in the Shimadzu AG-100, 100 KN loading capacity testing 

machine, at 0.5 mm/min test speed. A uniaxial tensile loading was applied to the 

specimens and the load was raised up step by step until final failure occurred. During 

experiments, the longitudinal elongation was measured simultaneously by the aid of 
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a video extensometer with two digital cameras connected to the data acquisition 

system of the test machine. The Young’s modulus in fiber direction (E1), and the 

axial strength (Xt) were calculated by using the following conventional equations, 

A

P
=1σ ,       

A

P
E

11

1
1

εε

σ
== ,        

A

P
X ult

t =                            (6.1)     

     On the other hand, the Young’s modulus in transverse direction (E2) and the 

transverse tensile strength (Yt) are found by loading [900]6 test specimens in 

perpendicular to the fiber direction. The geometry and dimensions, which is 

compatible with the standard test method ASTM D3039-76 are given in Figure 6.2.    

 

 
           Figure 6.2 Test specimen geometry and dimensions for transverse tensile loading 

 
     The tensile test speed was 0.5 mm/min, and the load was increased step by step up 

to the occurrence of catastrophic failure. Filling the obtained data to Equation (6.2), 

the tensile properties in transverse direction can be calculated, easily.   

 

   
A

P
=2σ ,       

A

P
E

22

2
2

εε

σ
== ,        

A

P
Y ult

t =                            (6.2)     

 

6.2.2 Determination of the Compressive Properties  

 

     Notwithstanding the buckling effect exists in compression loading, selecting the 

convenient geometry and dimensions in accordance with ASTM D3410 and using 

test fixtures alleviate this effect, significantly. Test specimen geometry with 

dimensions and the test fixture is illustrated in Figure 6.3, schematically. The 

unidirectional laminated  [0º]6 test specimens with the dimensions of 140 mm long, 

13 mm wide and 1.7 mm thick were prepared for longitudinal compressive tests and 

[90º]6 test specimens with the dimensions of 140 mm long, 25 mm wide and 1.7 mm 

thick were prepared for transverse compressive tests. Having recorded the failure 
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loads by compression tests in fiber and perpendicular to fiber directions, longitudinal 

and transverse compressive strengths (Xc, Yc ) were calculated.        

 

Figure 6.3 Test specimen geometry and dimensions for compressive 
loading and its test fixture 

 
6.2.3 Determination of the Shear Properties  

 

     It is a very difficult task to obtain the mechanical shear properties of composites. 

This difficulty stems from the necessity of creating a pure and a constant magnitude 

shear stress in the gage section of specimen. Many test methods have been applied so 

far to assess the in-plane-shear properties of composites. The most common of these 

methods are listed below: 

 

1. ±45 Shear test, 

2. 10o Off-axis test, 

3. Torsion tube, 

4. Rail shear test, 

5. Sandwich cross-beam test, 

6. T-specimen shear, 
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7. Iosipescu shear test, 

8. V-Notched rail shear test. 

     In the current study the v-notched rail shear test method was selected inasmuch as 

the V-notched rail shear test appears to be well-suited for measuring the in-plane 

shear modulus and shear strength of unidirectional and multidirectional composite 

laminates. This test method incorporates attractive features from both the Iosipescu 

V-notched shear test and the standard two-rail shear test. The V-notched specimen 

provides a larger gage section than the standard Iosipescu shear specimen and 

enhanced loading capability compared to other existing test methods (Adams et al., 

2003).  

         

     The ASTM standard D 7078-05 approved by ASTM Committee in March of 2005 

defines the v-notched rail shear test, which determines the shear strength and the 

shear stiffness of materials. The standard test fixture and specimen geometry are 

given in Figure 6.4. Specimens were prepared in [0°]6 and [90°]6 orientations to get 

shear strengths in fiber and perpendicular to the fiber direction.    

 

Figure 6.4 V-notched rail shear test fixture, shown with a standard v-
notched specimen and one pair of grip plates removed 
(www.compositesworld.com) 

    The specimens for the present tests were produced according to the standard 

geometry and dimensions as illustrated in Figure 6.5. The test fixtures were mounted 
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on a SHIMADZU (100 kN) testing machine for loading specimens and in order to 

record strain values a digital strain meter TDS-530 was used. The strain gauges were 

installed on the specimen between the two notches at 45º as shown in Figure 6.6. 

When clamping specimens in grips, the two ends of them were embedded 25 mm 

inside the fixture, so only the notched part was left outside and between the grips. 

The specimens, on which strain gages stuck were loaded only in elastic region to get 

more accurate data, whereas the other specimens were tested until the final failure 

was detected.      

 

Figure 6.5 Dimensions (mm) of the V-
notched rail shear test specimen  

 
Figure 6.6 V-notched rail shear specimen with strain 
gage stuck on before testing  

     Shear properties were calculated by entering the test data to the following 

equations. Initially, in-plane shear strength (S) were calculated,  
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tw

P
S

.
max=                                                            (6.3) 

Where maxP is the maximum shear failure load, reached; w  is the width of the 

narrowest point of the notch and  t  is the thickness of the plate.   

 

6.3 Results of Mechanical Property Tests  

 

     In order to determine the longitudinal modulus 1E , transverse modulus 2E , 

longitudinal and transverse tensile strengths tX  and tY , longitudinal and transverse 

compressive strengths cX  and cY , rail-shear strength S and Poison’s ratio 12ν , a 

unidirectional glass fiber / epoxy composite plate was produced and a series of 

experiments were performed. Following repeated tests, average results obtained by 

tensile, compressive and rail-shear tests were calculated for each specimen having 0º 

and 90º fiber orientations (Table 6.3).   

 

Table 6.3 Mechanical properties of the glass fiber / epoxy composite material 

1E (MPa) 2E (MPa) 12ν  tX (MPa) tY (MPa) cX (MPa) cY (MPa) S(MPa) 

27200 12800 0.25 586.5 137.7 324.7 200.2 61.96 
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CHAPTER SEVEN 

EXPERIMENTAL STUDY AND RESULTS 0F SINGLE LAP DOUBLE 

SERIAL FASTENER JOINTS AT ELEVATED TEMPERATURES 

 

7.1 Introduction  

 

     Vast researches have been performed on mechanically fastened joints with 

different parameters such as material and geometrical properties together with a one 

or a combination of failure criterion to predict the failure load and failure mode on 

the strength of the joint by experimental, analytical and numerical means. Much of 

these previous studies on mechanically fastened composite joints have been carried 

out at room temperature except for a few of them, such as the work reported by Song 

et al.(2008), a study, aimed to investigate the bearing strength of a blind riveted 

single lap joint of a carbon/epoxy composite after heat exposure, but with the present 

study it was intended to investigate the failure behavior of bolted glass-epoxy 

composite material joints at elevated temperatures concurrent with the thermal 

exposure.       

 

     In this chapter, the results of an experimental failure analysis, which was carried 

out to determine the effects of thermal condition and tightening torque on the failure 

load and failure behavior of single lap double serial fastener glass fiber / epoxy 

composite joints were given. 40, 50, 60, 70, and 80 ºC temperatures were exposed to 

the specimens during tensile tests. Besides thermal effects, 0 and 6 Nm tightening 

torques were applied to observe how clamping forces affect the joint strength at high 

temperatures.   

 

7.2 Explanation of the Problem 

 

     Consider a single shear, composite-to-composite, lap joint with 2 fasteners 

arranged in longitudinal direction, subjected to quasi-static loading in tension. 

Composite plates were prepared using glass fiber/epoxy with lay-up of [0/90/45/-

45]s configuration. The laminate specimen was then cut into required dimensions, 
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(L=210mm, W=36mm and h was measured as 2mm). The geometrical features of 

specimens were prepared in accordance with ASTM D 5961/D 5961M – 01, the 

standard test method for bearing response of polymer matrix composite laminates 

(Figure 7.1). Two serial holes (D=6mm) were drilled along the centerline of the 

plates and doublers made of the same material (S=114mm, W=36mm) were stuck 

onto the specimens. Specimens were fastened to each other using rigid bolts with a 

nominal diameter of 6mm and the level of torque was either M=6 Nm or M=0Nm 

(finger tight) for all fasteners within the same joint (Figure 7.2).  

 

 
Figure 7.1 Composite specimen geometry for single lap double fastener bearing test 

 
 
 

 
Figure 7.2  Joint of single shear double fastener composite test specimens 

 

7.3 Material Production 

 

     The glass fiber / epoxy composite plate used in this study was manufactured using 

vacuum assisted resin infusion technique. Prior to the vacuum process, the glass-fiber 
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whose layer has the density of 300 g/m³ was laid on to the heater table according to 

specified orientations, [0/90/45/-45]s.  

 

     After preparing vacuum bag and evacuating the air by a vacuum pump, the 

mixture of Duratek DTE 1000 resin and Duratek DTS 1100 fast hardener was drawn 

into the component by vacuum and it was infused into the glass fiber until complete 

impregnation. It was cured under 0.1 MPa pressure at 120 ºC for 2 hours. The 

measured thickness of composite plate was 2 mm after production. 

 

7.4 Thermal Test Chamber 

 

     In order to simulate environmental conditions and observe the behavior of 

composite joints at various temperatures, a thermal test chamber with a clamp 

resistance heater was designed (Figure 7.3). The chamber was isolated to obtain a 

stable temperature, and for setting the temperature to a fixed value, an adjustable 

thermostat was mounted inside it.   

 

 
Figure 7.3 Thermal test chamber 
(1000 W) 

 

     The upper and lower ends of the chamber were also isolated by means of two lids. 

Rectangular clefts were cut on to the lids, so that upper and lower ends of the 

specimen could be passed through them. To avoid deviations in temperature, it was 

checked by measuring via a thermocouple device. During experiments, the sensors of 
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the measuring instrument were in contact with the fastener bolts where bearing 

failure usually occurs. 

 

7.5 Testing Procedure 

 

     In order to examine the behavior of bolted joints in glass fiber / epoxy laminates 

at varying temperature levels under changing clamping forces, a series of 

experiments were performed. Specimens were tested at six different chamber 

temperatures (Room Temp.(~20ºC), 40-50-60-70-80 ºC) and the tightening torques 

of fastener bolts were  M= 0 Nm (finger tight) and M= 6Nm. Tests were repeated for 

each thermal condition and toque level, after that average values of failure loads 

were recorded. All of the experiments were carried out in the Shimadzu AG-100, 100 

kN loading capacity testing machine, at 1 mm/min test speed (Figure 7.4).  

 

 
Figure 7.4 Set-up of thermal test chamber, thermostat and 
thermocouple 

 

7.6 Results and Discussion 

 

     The failure loads of single shear double serial fastener glass fiber / epoxy 

composite joints exposed to high temperatures investigated experimentally. Figures 

7.5 and 7.6 illustrate the effect of various temperatures on load/displacement curves 

in tensile tests of mechanically fastened joints, under M=0 Nm (finger tight) and 

M=6 Nm tightening torques, respectively. As seen in the figures, when the test 
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temperature increases, the composite matrix material softens to a large extent and it 

affects joint strength, namely the load-bearing capability of the composite gradually 

decreases. The non-linear part of deformation appears to be more dominant as the 

amount of plastic deformation is large and above 60 ºC the whole load / displacement 

curve looks smoother. Nevertheless, slopes of the curves reduce dramatically, which 

means reducing load carried by joint for the same bolt-hole displacement rate. On the 

other hand, while at the peak values of bearing forces, bolt-hole displacements are 

formed to be between 12-14 mm for test temperatures smaller than 60 ºC, it reduces 

dramatically below 10 mm for higher temperature levels that approximates the glass 

transition temperature of the pure resin. High temperature levels cause resin damage 

and shorten residual bearing life of the composite joint. 

 

 
Figure 7.5 The effect of temperature on load/displacement 
curves in tensile tests of bolted glass fiber / epoxy composite 
joint under M= 0 Nm tightening torque. 
 

     In Figure 7.5, the curves are almost linear up to some point. Beyond that load, the 

joints exhibit intensively non-linear load-displacement curves. It is attributed to the 

bearing failure in front of the bolt and pulling-through of the fastener.  
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Figure 7.6 The effect of temperature on load/displacement 
curves in tensile tests of bolted glass fiber / epoxy composite 
joint under M= 6Nm tightening torque 
 

     For bolted joints, fixed under M= 6 Nm tightening torques (Figure 7.6), due to the 

clamping force generated by the fasteners, frictional forces develop between the 

plates. Initially, the load transfer is dominated by this friction when the level of 

applied load is low. When the load is increased to some point, friction forces are 

completely overcome and the composite plates start to slide relative to each other, 

causing the load to be picked up by bolts through contact between fastener and hole 

edges of the plates. The effect of clamping force, produced by tightening torque can 

be observed in load/displacement curves in Figure 7.6. The change in slopes of 

curves between 0-2 mm displacement levels is attributed to the frictional forces to be 

developed fully.     

                                                                                 

     After exceeding frictional force, load pick-up is undertaken by fastener bolts and 

there is no significant difference between the slopes of curves relating to M= 0 Nm 

and M= 6 Nm torque levels at even elevated temperatures, as seen in Figure 7.7.  
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 (a)                                                                    (b) 

 

 

      

 

 

 

 (c)                                                                    (d) 

 

 

 

 

 

 

 

  

 

 (e)                                                                    (f) 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 The effect of bolt tightening torques on load/displacement curves in tensile tests of bolted 
glass fiber / epoxy composite joint (a) Room Temp. (b) 40 °C,  (c) 50 °C, (d) 60 °C (e) 70 °C, (f) 80 °C  
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     Once the load is picked up by bolts, the geometrical (the edge distance-to-hole 

diameter ratio, (E/D), plate width-to-hole diameter ratio (W/D) etc.) and 

environmental (temperature, humidity etc.) parameters, which are the same in both 

specimens became important.  

  

     The obtained experimental data and some calculated statistical results (maximum 

and minimum values, range, mean values and standard deviations) are given Table 

7.1 and Table 7.2 for M= 0 Nm and M= 6 Nm preloads, respectively . Under each 

temperature and preloading conditions, tests were repeated for three times and the 

data recorded.  Data distribution and mean values of failure data were also depicted 

in Figures 7.8 and 7.10 by generating box plots at which the upper and lower edges 

of boxes represent the maximum and minimum failure loads experienced for each 

test condition and centers of the circular marks specify the location of mean values. 

Note that, some test values appear to be very close to the mean value, whereas some 

of them display bigger range and higher standard deviations. As a precise 

temperature control was provided during the test period, these fluctuations are 

attributed to some probable minor scale geometrical inequalities in specimens.   

 

Table 7.1 Recorded and calculated test results of glass fiber / epoxy composite material joints, at 
various chamber temperatures under M= 0 Nm tightening torque  

Temperature (C°) 20 40 50 60 70 80 
Max. Value  (N) 10538.30 9961.96 8656.61 7677.19 4899.38 3281.96 
Min. Value   (N) 10110.30 8940.87 8434.23 7209.86 4789.15 2952.04 
Range           (N) 428.00 1021.09 222.38 467.33 110.23 329.92 
Mean Value (N) 10377.70 9358.82 8555.00 7443.53 4844.27 3117.00 
Stnd. Deviation (N) 233.11 535.14 112.42 330.45 77.94 233.28 

 
 
Table 7.2 Recorded and calculated test results of glass fiber / epoxy composite material joints, at 
various chamber temperatures under M= 6 Nm tightening torque.   

Temperature (C°) 20 40 50 60 70 80 
Max. Value  (N) 12180.00 9844.56 9856.56 7844.94 5212.47 4039.96 
Min. Value   (N) 11184.80 9562.24 9488.66 7781.78 5017.12 3077.48 
Range           (N) 995.20 282.32 367.90 63.16 195.35 962.48 
Mean Value (N) 11533.50 9661.19 9612.15 7813.36 5095.39 3571.31 
Stnd. Deviation (N) 560.43 158.97 211.67 44.66 103.29 481.73 
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Figure 7.8 Box plots of failure loads, occurring at different temperatures under M= 0 Nm 

 

 

M
e
a
n
 o

f 
F

a
ilu

re
 L

o
a
d
 (

N
)

80 C°70 C°60 C°50 C°40 C°20 C°

12000

10000

8000

6000

4000

2000

0

12000

10000

8000

6000

4000

2000

0

10377,7

9358,82

8555

7443,52

4844,26

3117

95% CI for the Mean

Temperature
 

Figure 7.9 Confidence interval (CI) plots for mean values of failure loads, occurring at different 
temperatures under M= 0 Nm 
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Figure 7.10 Box plots of failure loads, occurring at different temperatures under M= 6 Nm 
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Figure 7.11 Confidence interval (CI) plots for mean values of failure loads, occurring at different 
temperatures under M= 6 Nm 
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     While assessing the outstanding effects of the test parameters on the failure 

responses of bolted joints, the utilization of mean failure values of repeated test 

results was considered to be appropriate based on the Figures 7.9 and 7.11, which are 

the confidence interval plots of mean values for M= 0 Nm and M= 6 Nm tightening 

torques, respectively. The Figures illustrate mean values and confidence intervals of 

mean values, in which they are expected to happen with a confidence level of 95 

percent according to the three performed test results. It was shown also, to what 

extent the mean values converge to the actual values and how credible they are. Of 

course, by increasing the number of experiments, it could be possible to minimize the 

size of the confidence intervals, thus it can be converged to the most accurate values. 

However, as regular decreases in failure results was observed and mean values of the 

ultimate loads follow a particular gradually descending curve, no additional 

repetition of tests was considered to be necessary.    

 

      In Table 7.1 and Table 7.2, failure loads are presented depending on varying 

chamber temperatures and tightening torques for glass fiber / epoxy composite bolted 

joints according to tension test results. The effect of temperature and tightening 

torque on bearing loads are also illustrated in Figure 7.12. As might be expected and 

can be observed in Figure 7.12, the load-carrying capacity of the joint is decreased 

by increasing temperature level. When the temperature has risen up, the internal 

energy increases and molecular movement of the material becomes easier.  Joint is 

highly affected by this material degradation, thus failure occurs at lower stress levels. 

In comparison with the room temperature results, the reduction in failure loads 

between the chamber temperatures 40 ºC and 80 ºC varies from about 10 to 70 

percent. Furthermore, the maximum decrease of failure loads occurs at 70 ºC and 80 

ºC with the rate of nearly 55 % and 70 % respectively. This rapid fall is attributed to 

heat damage to the resin matrix.       

 

     The clamping force produced by tightening bolts plays an important role on 

bearing behavior of mechanically fastened composite joints. There is every 

appearance that, the influence of preload moment is effective not only at room 

temperature, but also at higher temperature grades, according the test results. M= 6 
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Nm torque level contributes to the joint strength approximately 5-15 % compared to 

the finger tightened ones.  
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Figure 7.12 The effect of temperature and tightening torque on failure load 

 

 
Figure 7.13 Photo of deformed composite specimens at various temperature levels in tensile tests 
under M= 0 Nm tightening torque. 
 

     Generally speaking, there are three basic pinned joint failure modes related to 

composites: These are net-tension, shear-out and bearing. In practice, combinations 

of these failure modes are possible. Net-tension and shear-out modes are catastrophic 

and result from excessive tensile and shear stresses. Bearing mode is local failure and 

progressive, and related to compressive failure (Aktas, 2009), (Asi, 2010). In Figures 

7.13 and 7.14, photos of deformed glass fiber / epoxy composite specimens exposed 

to six different temperature conditions during tensile loading tests are presented. As 
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it can be seen in the figures, the dominant failure type is bearing mode regardless of 

thermal and clamping force conditions. In addition to that, signs of delamination are 

observed in the specimens tested at the temperatures of 70 ºC and 80ºC.  

 

 

Figure 7.14. Photo of deformed composite specimens at various temperature levels in tensile tests 
under M= 6 Nm tightening torque. 
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CHAPTER EIGHT 

EXPERIMENTAL STUDY AND RESULTS 0F SINGLE LAP DOUBLE 

SERIAL FASTENER JOINTS AT LOW TEMPERATURES 

 

8.1 Introduction  

 

     According to the previous review, many authors were interested in the material 

and geometrical parameters influencing the failure behaviors of mechanically 

fastened composite joints. Nonetheless, a few of them have taken into account the 

environmental effects, particularly the temperature extremes that composite joints are 

exposed during operation. Among these studies, those associated with glass-fiber 

reinforced composites are even more limited. 

 

     The current section reports an experimental investigation on failure responses of 

single lap double serial fastener joints in glass fiber / epoxy composite laminates 

when subjected to low temperature environment. The results of experiments, 

implemented at five different low temperature levels ranging from 0 ºC to -40 ºC, 

were evaluated in comparison with room temperature tests. 

 

8.2 Explanation of the Problem 

 

     Composite plates with lay-up of [0/90/45/-45]s configuration were prepared using 

glass fiber/epoxy. Each specimen has the dimensions of Length (L) = 210mm, Width 

(W) = 36mm and h (thickness measured) 2mm which are consistent with ASTM D 

5961/D 5961M – 01, the standard test method for bearing response of polymer 

matrix composite laminates (Figure 8.1). A single shear, composite-to-composite, lap 

joint was formed using two fastener bolts arranged in longitudinal direction. Rigid 

bolts having a nominal diameter of 6mm were tightened under M=6 Nm or M=0Nm 

(finger tight) torque levels to observe clamping pressure effects in low temperature 

quasi-static tensile tests.        
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Figure 8.1 Joint of single shear double fastener composite test specimens. 
 

 

8.3 Experimental Setup and the Cooling Process 

 

     To be able to simulate the low temperature conditions, a quick freezer spray 

(FREEZER BR, -50 ºC) was injected on to the joint zone where the stress 

concentrations result in the onset damage. The zone was also isolated to maintain the 

stability of the test temperature (Figure 8.2). The temperature of the material surface 

was measured simultaneously by means of a thermocouple device. Tests were started 

as soon as the required temperature level has been reached. During the experiment, 

the spray was injected continuously at some intervals, changing with the temperature 

level until the test ended, so that the heat losses could be compensated.     

 

 

Figure 8.2 Set-up of low temperature test, thermocouple and insulation equipment  
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8.4 Testing Procedure 

 

A set of experiments were conducted to examine the behavior of bolted joints in 

glass fiber / epoxy laminates at low temperatures under two different clamping 

forces. Six different temperature levels (-40, -30, -20, -10, 0 ºC and ~20ºC (room 

temperature)) were exposed to the composite joints. When assembling specimen 

parts, tightening torques of fastener bolts were set to the values of M= 0 Nm (finger 

tight) and M= 6Nm. The torque was applied using a calibrated torque wrench. The 

experiments were carried out in Shimadzu AG-100, 100 KN testing machine, at 1 

mm/min test speed. The tests were continued until the maximum failure load was 

reached and stopped when an instantaneous decrease was experienced in the tensile 

force.     

 

8.5 Results and Discussion 

 

     The present study aimed to investigate the behavior of single lap double serial 

fastener glass fiber / epoxy composite joints in freezing environments, 

experimentally. Followed by the application at room temperature, static tensile tests 

were implemented to the specimens under low temperature exposure. Fastener bolts 

were tightened under the torque levels of M=0 Nm (finger tight) and M=6 Nm. 

Experiments were carried out at the temperatures ranging from room temperature 

down to -40 °C.   

 

     According to the results, the temperature was found to be effective on failure 

characteristics of bolted joints in composite laminates. In Figures 8.3 and 8.4, the 

load – displacement curves of tensile tests are shown that were implemented under 

M= 0 Nm and M= 6 Nm preload moments, respectively. In comparison with those at 

room temperature, an increase is observed in slopes of load – displacement curves 

depending on the exposed temperature level, so the stiffness of the joint increases 

with decreasing temperature. It also means that, the lower the temperature exposed, 

the higher load carrying capacity obtained for the same bolt-hole displacement rates. 
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The difference between slopes becomes more evident when the minimum test 

temperature was exposed to the test specimen. 

 

     Despite the fact that maximum failure loads varies depending on the temperature 

level, the failure displacements, at which the peak values of bearing forces are 

formed didn’t change significantly when the temperature was decreased. As 

expected, there is a reduction in failure displacement when torque was applied to the 

fasteners. This occurrence is due to the increased effect of friction associated with 

the clamping force, which reduces the relative sliding of the composite laminates 

(Chishti et al., 2010). It can be seen clearly in  Figures 8.3 and 8.4, in which the 

failure bolt-hole displacements appear to be between 13-15 mm and 11-13 mm, for 

M= 0 Nm and M= 6 Nm preload moments, respectively.  

 

     The load-displacement curves are linear up to a point. After that, the load-

displacement curves deviate from linearity. The slopes of curves alter at more than 

one point (Okutan Baba, 2006). Following the first deflection, the curves follow a 

zigzag pattern and the load increases more slowly up to the maximum failure load. 

This behavior is called as bearing mode, which is the most desired failure mode due 

to its higher load carrying capacity.  The matrix fracture, delamination between 

laminates, fiber breakages, fiber-matrix interface deformation, fiber buckling etc. are 

the main reasons for the zigzag formation of the curve (Asi, 2010). 

 

      All the specimens exhibited dominantly the bearing failure mode regardless of 

temperature and preload level. In the current experiments, no evidence was found 

that failure mode is directly affected by the environmental factors.   

 

     The load-displacement curves of joints tested under M= 6 Nm tightening torques 

were illustrated in Figure 8.4. Until the force level reaches up to specific point, the 

load transfer between plates is performed by the frictional forces generated by the 

clamping forces that are transmitted by the tightened bolts. The change in slopes of 

curves between 0-2 mm displacement levels is attributed to the frictional forces to be 

developed completely. In the subsequent section, once friction forces are fully 



 

 
 

96

overcome, composite plates start to slide relative to each other, which leads the 

fasteners to pick up the carried load, through the contact between bolts and hole 

edges. The load transition from friction to the fasteners is getting more drastic at 

lower temperatures producing a zigzag line as seen in   Figures 8.4a and 8.4b, due to 

the mutual adhesion between plate surfaces. After the load is picked up by fasteners, 

the geometrical (the edge distance-to-hole diameter ratio E/D, plate with-to-hole 

diameter ratio W/D etc.), material (stacking sequence etc.) and environmental 

(temperature, humidity etc.) parameters become of primary importance in 

determining the failure behavior of mechanically fastened composite joints. Whilst 

the maximum force, reached without sliding composite plates relatively, is about 

3500 N at room temperature, it gets around to 5500 N at subzero degrees centigrade 

(Figure 8.4). 

 

     The temperature has an impact on the yield stress and ductility of the matrix. 

These effects are clearly observed in the final stage. At low temperatures, the matrix 

and each lamina become stiff and mechanically brittle. Thermal residual stresses 

increase as the temperature decreases. More importantly, the strength of the matrix 

generally increases with decreasing temperature (Hirano et al., 2007). In Table 8.1, 

failure loads are presented depending on varying temperatures and tightening torques 

for glass fiber / epoxy composite bolted joints according to test results. The decrease 

in temperature affects maximum bearing forces as an enhancer factor, as illustrated 

in Figure 8.6. When comparing with the room temperature data, the increase in 

failure loads between 0 °C and -40 °C varies from 4 to 22 percent and from 16 to 27 

percent  for M= 0 Nm and M= 6 Nm preload moments, respectively. 

 
Table 8.1 Failure loads of glass fiber / epoxy composite material joints in tension tests at various 
temperatures and under different tightening torques   

 

 

 

 Failure Loads (N) 
Temperature 

(ºC) 
-40 -30 -20 -10 0 20 

Tightening 
torques 
(Nm) 

0 12847.4 12757.0 11839.3 11837.3 10932.1 10511.0 

6 14198.6 13837.0 13170.2 13027.8 13031.2 11209.9 
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Figure 8.3 The effect of temperature on load/displacement curves in tensile tests of bolted glass fiber / 
epoxy composite joint under M= 0 Nm tightening torque. Curves of (a) -40°C  (b) -30 °C,  (c) -20 °C, 
(d) -10 °C (e) 0 °C in comparison with that obtained at ~20°C (room temperature) 
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Figure 8.4 The effect of temperature on load/displacement curves in tensile tests of bolted glass fiber / 
epoxy composite joint under M= 6 Nm tightening torque. Curves of (a) -40°C      (b) -30 °C,  (c) -20 
°C, (d) -10 °C (e) 0 °C in comparison with that obtained at ~20°C (room temperature) 
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Figure 8.5 The effect of bolt tightening torques on load/displacement curves in tensile tests of bolted 
glass fiber / epoxy composite joint (a)-40°C, (b) -30 °C,  (c) -20 °C, (d) -10 °C,(e) 0 °C (f) ~20°C 
(room temperature)     
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Figure 8.6 The effect of temperature and tightening torque on the failure loads 

      

     With the application of the preload moment, the clamping force produced by bolts 

plays an important role on the failure behavior of bolted joints in composite 

laminates. Tightening the bolt not only improves the joint stiffness but also takes the 

maximum bearing forces up to higher levels (Figure 8.5). When comparing with the 

assemblies of finger tightened bolts, an increase of 6.65 percent was obtained in 

failure loads of joints of which bolts were under M= 6 Nm tightening torque at room 

temperature. As the temperature decreased below zero degrees centigrade, the 

tightening torques seems to be more effective on failure loads rather than that 

observed at room temperature. In comparison with finger tightened ones, the average 

rise in failure loads of joints, tightened under M= 6 Nm is observed to be 11.9 

percent at temperatures between 0 °C and -40 °C. 

 
     The post-deformation photos of the joints examined under M= 0 Nm and M= 6 

Nm tightening torques are presented in Figures 8.7 and 8.8, respectively. As seen in 

these figures, the bearing failures for 6 Nm are slightly greater than the failures of 0 

Nm. In the fastened joints with the torque of 6 Nm, even if smaller ultimate failure 

displacements occur compared to finger tightened ones, higher levels of stresses take 

place around the holes due to the frictional forces, acting in the vicinity of the hole 

boundary.   

 



 

 
 

101

Figure 8.7 Photo of deformed composite specimens at various temperature levels in tensile tests under 
M= 0 Nm tightening torque.  
 

Figure 8.8 Photo of deformed composite specimens at various temperature levels in tensile tests under 
M= 6 Nm tightening torque. 
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CHAPTER NINE 

CONCLUSIONS 

 

     Within the framework of the present study, experimental investigations were 

performed to obtain the effects of thermal conditions and preload moments on the 

failure behavior of single lap double serial mechanical fastener glass fiber / epoxy 

composite joints by means of static tensile tests. 

 

     In the first stage, experiments were performed by exposing the joints to five 

different high temperature levels (40, 50, 60, 70, 80 ºC), as has been discussed in 

detail in chapter eight. Subsequently, especially considering the freezing 

environment that the composite structural components of air vehicles are inevitably 

exposed, tests were conducted at five low temperature levels ranging from 0 °C 

down to -40 °C and results were comprehensively reported in chapter nine. Effects of 

exposing high and low temperatures on failure behaviors of bolted composite joints 

were discussed in comparison with those tests conducted at room temperature. The 

effects of preload applied to the fastener bolts and how this effect is influenced by 

temperature changes were also examined during tests. The following conclusions can 

be made based on the experimental results:  

 

• Elevated temperatures significantly affect on failure loads of mechanically 

fastened composite joints. As the test temperature increases, the load-carrying 

capacity of the joint decreases to some extent depending on the temperature level 

exposed.     

 

• Low temperature exposure has significant impact on failure loads in 

mechanically fastened composite joints. Joints exhibit relatively higher load-

carrying capacity when decreasing temperature. When the temperature decreases 

from the room temperature to – 40 °C, the failure load increases gradually.  

 

• The torque applied to the fastener bolts remarkably affects the joint strength of 

composites. Higher failure loads are obtained for composite joints under preload 
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moment compared to the finger tightened ones. The increase in failure loads is 

getting much greater as the temperature decreases to subzero degrees centigrade.  

The positive influence of preload moment is experienced at elevated 

temperatures as well.       

 

• Depending on the test temperature, there is no change in failure modes which are 

highly affected by material and geometrical parameters. Just as the bearing 

failure mode, which is the desirable mode, is observed at room temperature, so it 

is monitored at elevated temperatures and at low temperatures, too. Thus, the 

selected geometry and material properties are found to be suitable for even low 

and high temperature applications. 

 

The following investigations can be performed in the future: 

 

o Hot water aging effects on mechanically fastened composite joints. 

o Effects of hot and cold environments on adhesively-bonded joints. 
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