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ABSTRACT

The oriented lines in Euclidean space ( R3 ) are in one-to-one correspondence
with the points of the dual unit sphere in dual space ( D3 ). Lie Algebra and module
over the dual number ring endowed with a dual valued inner product . We use the
Campbell-Hausdorf formula of Lie's general theory. The Campbell-Hausdorf formula
1s used for the consecutive motion.

In this work, the motion of a point on dual sphere is given by Olinde-Rodrigues
formula and also infinitesimal motion of this motion and high degree of acceleration of
velocity are calculated . Moreover it is defined with respect to lie bracket.



0z

R3  Oklid uzayinda yonlendirilmis dogrular, D3 dual uzaymdaki dual birim
kirrenin noktalarina birebir karsilik gelir . Lie cebri ve modiil dual sayilar halkasi
uzerinde dual degerli i¢ ¢arpim olustururlar. Hareket icin genel Lie teorisinin
Campbell-Hausdorf formilini kullaniriz. Bu formiil ardigik hareketler igin kullanilir.

Bu c¢aligmada dual kiire Gzerindeki bir noktamin hareketi Olinde-Rodrigues
formili 1le verilmigtir. Bu hareketin  sonsuz kiigiik hareketi de gozontnde
bulundurulmus , ayrica hizin yilkksek mertebeden ivmeleri lie parantezi cinsinden ifade
edilmigtir.



APPLICATIONS OF LIE ALGEBRA TO THE SPATIAL MOTIONS
1. INTRODUCTION

Kinematics and dynamics of interconnected rigid bodies systems may lead to very
complex computations and it is important to perform these computations in the most
compact form and to search for their most rational organization. This target motivates
a great deal of research on the fundamental operations and the algebraic structures
lying behind kinematics methods.

In [ 1] two opposite approaches may be distinguished: the purely geometrical
methods (linear complex and so on [ 4 ] ) and the matrix methods operating on
coordinates.

The main objective of [ 1 ] is to develop a unified algebraic approach to
mathematical methods in kinematics , including a complete system of basic operations
and computation laws. This system synthesizes the essential contributions of linear
algebra, screw theory dual numbers method and Lie groups to the subject.

Since the publication of the basic papers [ 5,6,7,8 ] many investigations have
made use of dual numbers, dual numbers matrix and dual quaternions in kinematics of
multi-rigid-body chains, including basic expositions, of Refs. [ 9,10 ] including
applications to spatial mechanisms and industrial manipulators.

Coordinate-free methods, based on intrinsical computations in groups or Lie
Algebras have been introduced in Refs. [ 11,12,13,14 ], for the purpose of mechanism
theory , and of dynamics of multibody systems [ 15,16,17 ].

In this article Lie's groups are defined by analytical transformations depending on
a finite number of real parameters. The motion of a point which is on the dual sphere,
is defined by Olinde-Rodrigues formula. Moreover infinitesimal motion of this motion
and the high degree of acceleration of velocity can be calculated with aid of Lie
bracket. It provides a great number of the advantages of pure geometry.

2. SOME MATHEMATICAL PRELIMINARIES

2.1 DUAL NUMBERS

A

Dual numbers are "numbers" expressed by x =x + € x* with x,x" in R and ¢
satisfies €> = 0 The composition rules for the dual numbers result from the definitions:

n A

i) Equality cx=y iff x=y x" =)

N A

ii) Addition cxty=x-+ty+e @ +))

iii) Multiplication :xy =xy+¢& (" +yx")



The set of all dual numbers make an abelian ring having the numbers € ¢

(" real ) as divisors of zero denoted by A ; in an obvious meaning R is a subring of A.

X
The division =~ is possible and unambiguous if y # 0 and it is easily seen that
y
X x'y-y'x
7——+ — 3 (y#0) (2.1.1)
y Yy Yy

In all other cases division is either impossible or ambiguous. We define for a
differentiable funtion f :

f(x)=f(x+ex )=f(x)+ex f'(x), wheref'is the derivative of f.
Therefore

Sin (x+g& X )=Sinx+g x Cos x (2.12)
Cos (x+&x)=Cosx -€ X" Sinx (2.1.3)
Vx+ex ‘/;HF (x>0) (2.14)

We define | x |=\/xTZ:\/x2 +2e0x” .

We have therefore in view of ( 2.1.4):

|x|_x/—+er |x|+s lxl

and consequently:

N ~

Ix|=x (x>0) ; | x |=—x (x<0) .

Evidently, |x|=0 if x=0.



2.2 DUAL VECTORS

AN A

Let Ox x,x; be right- handed orthonormal frame of reference in a three
dimensional Euclidean space E. The unit vector indicating the positive sense on the x, -

axis will be denoted by 7/, ( k=1,2,3 ). The set of all ordered set of dual numbers
denoted by A-module make a module over abelian ring endowed an abelian group

operation ( + ) and external law (Ax)—>A x=(AxiAx2 A x3) with k €A and x cA-
module. The axioms of a A-module are similar to these of a vector space, except
scalars are selected in a ring A and not in a field.

A A-module is always a real vector space if the A ring is reduced to R. Starting
from a real vector space E to leads to a A-module £ such that E is a real vector

subspace of E and E = E®eF ( direct sum of real vector spaces ), €E is the set of

ex” =e(x",x"2,x"s).

If (i,i,,1; ) is a basis of E | it is also a basis of £ over A , thatis to say ; every x

-
N " N N A

% * - _Ek
in E express as x = x,i, + X2 i, + X3 iy = Xi, +X,0, + X,0, + 8,1, + X, i, +x, 1,), X+ &%
where the x; (i=1,2,3) are uniquely defined dual numbers. Thus a vector in £ may be
thought of as a vector with dual coordinates and called a dual vector.

Scalar and vector products of ordmary vectors extend in a natural way from E to

E and provide A- bilinear operations in E

-
A A 3 A A

xy=2.%y €A (22.1)

i=1

)
A N N A N Y n N A N N A A N

XXy =(X2 Y3= X3 Y )iy Hxs y, = X1 Y )i Hoxr y,—x2 y s (22.2)

If x#0 then the norm |x| of x is defined by (xx)12 . From (2.14), we
obtain
- > =, - -3
N —> A
x| = x|+ &= x~(1+g§iz) (223)
x




-

A dual vector x with norm 1 is called a dual unit vector.It follows from ( 2.2.3 )

that x is a dual unit vector iff the relations

-

xx=1, xx =0 (224)

N
A -

-
hold simultaneously. It is easy to verify that for any vector x = x+&x with x # 0

-
- n - -
. x x+&x
the relation x, = — =
3
X x'(1+s )
N
x
- - >
1 > - xXx x 1 2 xx 2
- _ v Y il
= e+ ex®)(1 8_}2) —7 Hi & _)2x)
X X x X X
- =4 >, - e T
X X xXx 2 x XXX )X X
BRI Cav ) ek i B i aa
- —
X X X b o X
. 5 IR (2.25)
S %X XXX )X X
Xo=Xo+&eX o=y g+&——"—7—
- S
~ AR A X X
or x = ||x{ xo holds.

-
A

It is clear that x, is a unit dual vector with the same sense as x and called the

-
A

axis of x .



3. LIE ALGEBRA AND LIE GROUP
3.1 ALGEBRA:

Let V be an infinite or finite dimensional vector space and be defined V' xV = V-
If (.) operation is satisfied bilinear conditions then V is called an algebra over F.

1) x(y+z)=xy+xz for VxyzeV

2) Mxy)y=(Ax)y=x(Ay) for VxyeV,AeF

If x(yz)=(xy)z for Vx,y,z € V then V is associative algebra.

3.2 LIE ALGEBRA
If the following conditions are satisfied instead of associative law:

D) xx=x* =0
2) x(yz)ty(zx)tz(xy)=0 for Vxy,zeV

then V is a lie algebra over F.

Let V be a nonassocitive algebra over F , and {e,e,e,,.....e,} bebaseof V. V
1s associative iff

(ee;)e, =efee,) 1,k=1,273,...,n.

Ifee =Y v,e isdefined

(ee,)e, =efee,) condition is equal 10 D V.,V e = O Yuu¥ ir
V is a lie algebra iff
De% =0 ee, = ¢,

J1

i)(ee, e, He,e,)e, Heee, =0 forijk=123,. . n



These conditions are equivalent to

Vi =0 Ve == o

2

Z (Yijr')/ﬁas Y Y ris +'Ykiryfjs): 0

3.3 LIE BRACKET:
Let V be a vector space over field Fand [ , ]: VxXV—>V
1) It is 2-linear
[x.by+cz] = b[x,yl+c[x,z]
[ax+by,z] = a]x,z]+b[y,z] for Vx,y,z € V abceF
2) [xyl=-lyx] for VxyeV

3) kIy.zllHy lzx[IHzxyll=0  for VxyzeV.

[ , ] transformation is called a lie operation over V.

3.4 LIE GROUP:
A lie group consists of a smooth manifold G which has a group structure.

GxG—G
(x.,y)—>xy

We suppose that this group operation , which may be considered as a mapping is
smooth and also that the map G—G is smooth.
x—>x"

Example:3.4.1

(R",+) isa group and R” is a manifold . It is lie group.



3.5 RELATION BETWEEN LIE BRACKET AND LIE DERIVATIVE:

If V and W are vector fields on M , then their lie bracket [ V,W ] is the unique
vector field satisfying [ VW ] ()= V(W(f))-W(V(f)) for all smooth functions,
f M—R .

[ V,W ]is indeed a vector field. In local coordinates if

V:Zé“'(x)gé , W:Zﬁ(x)é then

m

(VWIS e 2=33 @&yl

i=]l j=1
Example:3.5.1

IfV=y§C— and W:x2§+xy£, then

&

N0 o K]
V. Ww]=V(x )§+V(xy)5 W(yyg;k—

=2x£+ ﬁ_ 2—— __5_4_22
Yy &yy@ xyéc xyo’kyé/

4  MATRIX GROUPS
4.1 GENERAL LINEAR GROUPS
Definition:

Mj (k) is the set of all nxn matrices with elements from k for ke {R,&,H}.The
group of units in the algebra M(R) is denoted by GL(n,R), in M (&) by GL(n,z) and
m My (H) by GL(n,H). These are the general linear groups.

GL(n,R)={AcM,(R) | detA=0}
GL(0,z)={AcMp(2) | detA=0}
Definition:

Let ke{R,z,H}
O(n,k)={AcMp(R) | <xAyA>=<xy> for Vx,y cki }-



For k=R we write O(n,k) as O(n) and call it the orthogonal group.

For k=g we write it as U(n) and call it the unitary group.

If AeO(n) then detA e{-1,1}. We define SO(n)={AcO(n) | detA=1} and call this
the special orthogonal group (the rotation group).

AeM,(R) is said to be skew-symmetric if A+At=0.

4.2 EXPONENTIAL:
Definition:
Let A be a real nxn matrix and set

eA=I+A+A2/2!+.. +Al/n!
where A2 means the matrix product AA. This sequence converges if each of the n?
real number sequences

(I)ij+(A)ij+(A2/2!)ij+. . HAVnij converges.

- -
N Al N

Scalar and vector product of two vectors x and y in £ may be written in the
form respectively.

- > > >
AoA > > "

—>—>  d "
xy=xy+ex y+y x=xy+elx|y]

> > >
O - o B &

- > - - T
XXy =xxy+e(X xy+xxy )= xx y+e@ x y—y x x)=[x,y]
These products provide A- bilinear operations in £ . Endowed with its A- module

structure and this vector product, E is a Lie algebra over A.

5.  DUAL STRUCTURES
5.1 DUAL UNIT VECTORS AND ORIENTED LINES

Let - with regard to the frame of reference introduced at the beginning of the
- - > > -
preceding section x and x~ be two free vectors in E satisfying x x=1, xx =0. Itis
- -
well-known that x and x'may be interpreted as the Pliicker-vectors of an

unambiguously determined line L having x as its direction vector and passing through

> o5

the point p=xxx" Providing L with a positive sense according with the sense
-

indicating by x ,this line becomes an oriented line or spear We call L. the carrier of

5 o 3
the spear and x the spear vector. The vector x  is usually called the moment of the
spear ( with respect to 0 ) . It follows from the above that there exists a one-to-one
correspondence between the set of all oriented lines in three dimensional space and the
set of all dual unit vectors:



-
S "

L¢> x+ex =x (5.1.1)

52 DUAL MATRICES

A matrix, the elements of which are dual numbers , is called dual matrix we

restrict our selves to 3x3 matrices. The matrix having @, = @, +&a’,, in its i-th row
and k-th column will be denoted by

N N

A =(aw)=(a, +&a's) (5.2.1)

We adapt for dual matrices the same composition rules as for real matrices and we
use more over the same nomenclature. As a consequence ( 5.2.1 ) may be written :

A=(a,)+reaw)=A+ed”

A At At A

An orthogonal dual matrix is a matrix for which A4 = A4 A=1 where I stands
for the unit matrix. The row vectors ( column vectors ) of an orthogonal dual matrix
are mutually dual unit vectors , that is , the scalar product of two different row
(column ) vectors is zero, other wise 1.

5.3 THE DUAL UNIT SPHERE

- -
For a real vector x= (x,,%,,%,)= x,i, +X,i, + x,i, we may consider x as the position

vector with respect to Ox,x,x, of a real point with coordinates (x,,x,,x,). The set of all

>
n N " A

- >
points x with x x=1 is the real unit sphere. If the dual vector x =(x1,x2,x3) is not real,

> >
N N n LAYNAY

we call x1,x2,x3 the coordinates of a dual point. The set of all dual points xx=1
that is

A2 A2 A2
X +x, +x, =1
A A A A A A

# A *#
X X +x,%x, +x,%, =0

1s called the dual unit sphere with O as its center. The real unit sphere is a subset of
dual unit sphere. The mapping ( 5.1.1 ) induces an one-to-one correspondence
between the points of dual unit sphere and the oriented lines of three dimensional
space.



54  DUAL FUNCTIONS OF A REAL PARAMETER

If x and x"are real functions of a real parameter t , we call x=x+ex" is a (dual )
function of t. We define

A
*
X0)= Lim O+ Lim * (),
0 11 =1,
provided that the right-handed member has a well-defined meaning. The function

Lim
—1

N A

X (t) is said to be continuous at %o if [im x(t)= x(to)
I—>tp

N N
x(t, +h)y—-x(t,)
It is called differentiable at %, if 7, —O L
0 h

does exist. In this case the value of this limit is denoted by x'(#,) or sometimes by

N

t,). Obviously x'=x"+&x".

S“*f“ .

-
A s

A dual unit vector x which is a function of t can be considered as a point ¢ on
the dual unit sphere the position of which depends on t. The set of these points 1s
called a curve on the dual unit sphere or a dual curve. Under the mapping ( 5.1.1 ) a
dual curve corresponds to a set of oriented lines. These lines therefore a set of rulers

n

of a ruled surface. The some ruled surface corresponds to the antipodal curve -x(t) .

6. THE TRANSITION MATRIX

We assume that we are given two triples of points on the dual unit sphere by

AANA NN A

means of two orthonormal trihedra {i172j3} and {eieze3}.

Then any point on the dual unit sphere can be written unambiguously as a linear

-
AN A AN A A

combination of iij2js as well as of eie2,e3. We have therefore for a point x on
the dual unit sphere:

AA AR A A A A AA AN

Xli1+X2i2+X3i3:xle1+x2e2+x3e3 (61)

10



The column vectors

ol -3
A F/\T
P ¢ > %
N A A N
X=X, and x =|x,
A N
X, X3

-
A A A A A A A

are the position vectors of X with respect to {i1j2j3} and {eie2e3} respectively. We
derive from ( 6.1):

_)
A N A A N A N A N

X~ es e ey, (9123) (62)

putting (e ek)— ai and introducing the dual matrix A —(alk) we see that ( 6.2 )
expresses that

- >
A ANn

X=Ax (63)

A nNAA A A

Since e is a linear combination of  i1j2f3 we put ek—Zﬂ]kl ; , then
j=1

A AN

Qi =1 ey :ﬂik”

A 3 A A

Therefore ex =Y api; (k=1,2,3).

J=1

This shows that A is an orthogonal dual matrix. We suppose from now on that

A ANA N A A A N N n n n
{irj2js} and {e1 2.3} are right-handed trihedra , i.e , i1xi2 =i3 and eixez =es.
LY N N N A N

We call A the transition matrix from the trihedron {ei 2,3} onto {i1j2j3}.
7. DUAL SPECIAL MOTION

Using the notations of the preceding section, we suppose that the trihedron

{i:,i; ,i; } 1s fixed, whereas the vectors eAI,e;,eA3 of the trthedron {e;,e;,eﬂ3 } are functions
of a real parameter t (the time). Then we say that {e:,eAz,e;} moves with respect to
{z':,i; ,i; }.We may interpret this as follows:

The dual unit sphere K5 rigidly connected with {e:,e;,eA3 }moves over the dual unit

sphere K1 rigidly connected with {i,,7,,7, }. We call for shortness sake K the fixed
and K, the moving sphere.

11



-

The motion is called a dual spherical motion and will be denoted by Ko|K1. If x is

a point on Ky coinciding at the instant t with the point X on Kj, we have X = Ax

where 4 =(a, )= A+ 4" is the transition matrix at the said instant from {e,,e,,e, } onto
{i,,1,,i, }. This matrix is the function of t. Since A4 is are an orthogonal dual matrix we
A N T

have A A =1 and therefore:

) N A At
a4 g 424
dr dt

0 (7.1)

N

where 0 1s the 3x3 - zero matrix. This shows that %A‘ is a skew-symmetric dual

matrix. We put :

~ N /\_l
—Ws W,
oy 0 —w =Q=W+eW" (7.2)
7 S 1\ A '
L——W2 W1 0

* t
Here W=% A' and W*=% Al +A%. It is clear that the matrices W and W™ are

the skew-symmetric.

-

The dual velocity of the point x on K5 is defined as

,_dX_d4;
dt dt

Therefore

p=dAL d4 p -9 x_0x (7.3)
/s dt dt

-

Introducing the dual vector w is given by

-
A N A N

t_
w —(WI,WZ,W3)
we may write

- -
A N

=wx X (7.4)

12



-
n

The vector w is called the dual angular velocity or instantaneous screw axis of the
spherical (or helicoidal) motion Ko |K.

>

> - -

. ~w . ) .0

The dual unit vector w, = — with the same sense as w corresponds to a point p
w

-

of K1. The point on Ky coinciding with p at the instant t has the dual velocity zero;

> -

this point also denoted by p . There exists apart from p one other point of Ko with

- -

dual velocity zero, namely the antipodal point of p we shall call p the pole point of

-

I
>

N

w

-
n

the motion K5[Kj. From now on we write p= 4 and

"

n

—wH+ew =w

W

8. RELATIVE MOTION

AN A

Let K1,K9 and K3 be dual unit spheres rigidly connected with the bases {i,,i,,i; }

-
A n A A

and {e,e,,e,} respectively. If x is a point on K3 coinciding at the instant t with the

- -

points X and £ on the dual unit sphere K1 and K, respectively we may write

>
A A A A A A A A AA AA

X=X i+X,i,+X,i;=¢§e+&ert+& es=xr+x,72+XF3

or
- > - >
N N A AN A N N
X=X'i=Fe=x"r
where
[T " -]
- Xl - 51 - xl
N A n N N A
X =X, > &=, > X =X,
N A N
X, ‘fs X3
L L ] L

13



and

r a
A N A

ll 1 rl

i =i, , e=le, , ¥ =¥,
N N N

i e 7.

3 3 3

| e |

Since we may write

>

o
M
R

.
I
—

-~y
Il
M-
&
\N

[
I
—

and

A 3 n

=27

j=1
N A

We have dual orthogonal matrices respectively .4 , B and C.
Then we have

A AN A N A A AN

e=Ai ,r=Bi and r=Ce

We suppose that Kj is fixed , ie. the trihedron {i,i,,i,} i1s fixed. We may
represent the motions KoK, K3Kj and K3[K7 by

X=A4A"¢  X=B"x and é=Cx (8.1)

The rate of changes r with respect to the sphere K1 and K respectively, are

dr . " Or )

E—QBI’, E:QCI’ (82)
dB ] dC ]
h Q,=—58 d Q.=—C".
wnere B i an o i

-
A

The vectorial expression of the point x on K3 can be given by

- -
A A A

x=x'r

14



-

The dual velocities of x with respect to K1 and K, are

dx dx" ‘dr det F o
—= r+x —= +x'Q
dt dt dt (dz‘ 2 (83)

- - -
n A

dx dx' Ll (dx‘

= Y+x —=
dt dt dt dt

+x' Qo (8.4)

- -
A
N A

If x is fixed on K5 , then we have %’;ﬁ = 0. This implies that % =Q,

® >

-

n -

Substituting this value of % into ( 8.4 ) we obtain the dual velocity of x fixed
on Ky with respect to K.

A

ox "
o=@ -0,y

-

-

We denote this dual velocity vector by d,x. Introducing the vector

- > > -
N A N Y

v=(W, V¥ , W, =Wa—-Ws , (F1,2,3).

We may write

d,x xR (85)
—L—=yxx .
a7V

d,x 5 .
If 7:0 then x is a pole point of K .

15



Now by using the theory of SO(n) groups . We define the matrix B=¢"“ . Hence

we have B’ = ¢ Then we may write the motion K3[K7 as

- -
A

N
X=e%x

(8.6)

A N
Here Q=—-(——49.
¢ EL 1

On the other hand since can be written

A A AN AN

r=CAi=Ri
and the trihedron i 1is fixed we have
CA=B

This equality gives that C=B A" .

Hence we compute all the transition matrix in terms of 4 and its derivatives.

9. THE FORMULAS OF THE MOTION OF A POINT ON THE DUAL
SPHERE

The exponential of Q. can be written with the aid of velocity of x.

Qx=wxx=|w|px , w=\w\p , wil=w
XA RARX R
O x =w’(px p)—x
Qx=-wQx
x a2 R A2nl RR
Q" x=(-1)"w Qx=(-1)"w pxx
R A2mE2 A a2mi2 R AR
Q"2 x=(-1"'w  xH-1)"w (p(xp))
thus
x QZ n P
e x = +Q+—+.. . A—t. . )X
2! n!

16



A2 a4 Ab A3 AS A2 a4 AB

-2 i e - e
We obtain
e :c Cosw; §+va:1;;x:c+(l Cosv;)(;fc)]; (9.1)
It is analogy of Olinde Rodrigues Formula.

If p=x ,i.e, x is pole point then p Cosw p+(1— Cosw)p

/\

That is , operator e remains x fixed.

We know that
(p>< x)>< p =(ppx—(px)p=x— (px)p
We have

AAA n A A

(px)p=x— (pxx)xp then

-> - > > - > o >
A AN AN N A N N N A

e“ x = Cosw x-+ Sinw px x+(1— Cosw)(x—(px X)x p) (92)

This is Olinde Rodrigues Formula for a rotation around the axis w of angle w.

s - -
" A A n

This represents the rotation of x around the axis w of angle w and translation along w
w” times.
The last equation may be expressed in the form.

We have

3((1 +df)= %P x = RO
Here we omitted the terms of degree two and higher of dt.

e” x=x+ px xSmw+((xp)p x)(l Cosw) (9.1.3)
e x = x+ px x SinwH(px(px x))(1— Cosw) (9.14)
¢ x = x+[ px]Sinw+{p [ px]1(1- Cosw) (9.15)

We can use the Campbell-Hausdorf formula of Lie's general theory.Denoting X
and Y the differential operators of a certain algebra of Lie:

2 n 2 n
‘e’ :(I+X+%+....+X )(I+Y+Y—+ +Y—)
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=I+X+Y+

(X+Y¥) XY -¥X
+ +
2! 2

[x.7]

2

Neglecting the terms of degree three or higher, the product is the sum of ¢%*"
and half the Lie bracket of the operators:

=¥ 4

eXet =¥t 4 [X’Y]
2

Using this formula we have

e = e+, )2t (9.6)
g = gl ——[Q’Q'] dt = e +—~[Q,’Q] dt

2 2
= eQeQ'dt + Q'Q—QQ,
2
e“e™ = (I + QVdf) (9.7)

-

Applying this operator to x then we have ,

k¢ kS x
e"e”? x = e x+e%(QY x)dt
- - >
N A A

since Q'x=w'xx

We get

- - - -

, A IS n A QI)Q
e x = % x+ (W' x X)dt + %dt

-

A 2 n o~ Q' O
= eQx+(I+Q+%‘—+ ...... +Q—‘)w'xxdt +E—2’~]dt
! n:

- - - > -

A A A A A 2 A A QI’Q
:eQx+(w’><x+Qw'xx+7w’xx+....)dt+[—]dl (9.8)

18



Since e

- - - - - - - - - > > > 5> >
" N A A A N A N NOAA A AN A

Qw'x x =wx(w'x x)= —(W'x x)xw = —(w’ w)x+w x)w’

.
Q% w'x x =(w XWX W —(w wwx x

e e > 2 22 2 2
Q2™ xx—( 1)’”“(w w)wz"‘x+( l)"’(wx)wz’”w m=0,1....
22 P20 FE O g
Q" w'x x =(-1)""'w (wx)wxw H=1)"w (W wwxx n=1,2,....

. a . QIQ—QQ
Qerdt _ 0,0 |

e
2
S S S I S T A S P U
=e” x+w' xx—(W’ w)x+(wx)w +(wx);1‘x _{ Z)'W
w' ww” 2w’ Q- QY *
Lo wewtw | S2Q- 00
3! 3! 2
E O S o< R S O< 2 74 2
w:ow w'
=e® x+w'x x+Hw' w)(—1+?—?+ )x+(wx)(1—? )W'
xR 1 2 X R XA 1 2 X R Q'Q~QQ’7‘>
+Hw' w)(—— %— Jwx x+(wx)(———t—+ WX W ... +(—2——)x
;’2:?;’?“3};5 **’**“sujs 2
=e" x+ ——t— - W'
=" x+w'x x—(w' p)w 3!+5‘ L xHpx)w TR )
RR 2 4 oe R R ORR 4 s LR S S S S S
+pW(—+———+. )pxx—(px)(———+———+.... X W+ (W' x(wx x)— wx(w'x x))dt
(pw)( T e )px x—(px)( TR @ )5( (wx x)—wx(w'x x))

19



by using triple vector product expansion we get:

e - > > - > - - > - >
A A I AA A A AR A A A A

=e® x+w'x x—(w' p)Sinw x-+(px)Sinww' +Hpw"YCosw—1)(px x)

A
- > - - -> > > N s o

—(pO)(Cosw—1)(px »;')4{12”{;”?')}- %(x Dywdt

N
- > > - > > > -
N A A AN A

=e® x+([w'x]-w' p)Sinw x+ p x(Sinw— %dt)w’ +

> » 5 > > > > - > o> o
AnORAA N LARA AN AN A A A

(1- Cosv:z)(— (pw)px x+(px)px u;')—%w(xw’)p)dt

A
- - > > > > > -
A A AA A A A A A

= e x+([wx]—(pw")Sinw x+ p x(Sin w— %dt)w’ +

- > - - > >
AA A A A A A

(1= Cosw)(px(px(w' ;)H%w(xw')p)dt (9.9)

-

This is the infinitesimal motion of x .
By separating the equation

- > > > - > -
A A A A N A N n N

e x= x+ px x Sinw+ px(px x)(1- Cosw
in to real and dual parts where

I - A n - D IS - %
XxX=x+&x , w=w+ewW , p=prtep
-
n - =,
W W+HEW
P=75 >
n N
W L
then

-
A

€% x = x+ex” Hp+ep )x(x+ex")(Sinw +ew Cosw)+{p +ep x(( +&p Wx(x +&x"))(1 — Cosw+&w' Sinw)

=x+ex  Hpxx+e@” xx+px x))(Sinw +ew " Cosw )+

(p+8p*)><(;>< ;+ s(;x J?%-;*x ;))(1— Cosw” +ew"Sinw)

20



=x+ex" +Hp x x)Sinw +e(p x x" + p" x x)Sinw +ew’(p x x)Cosw +

((p x(@ x x)}+e(p x(p x x"y+ep x(p" x x)+ep” x(p x x))(1— Cosw +ew"Sinw )
= x Hp x x)Sinw + p x(p x x)—p x(p x x)Cosw" +&(x” +Hp" x x + p x x")Sinw
w"px xCosw + p x(p x x)w"Sinw + p x(p x x W+ p x(@" x x)}+p* x( x x)
~Cosw(p x(p x x")~Cosw (p x(p* x x))-Cosw (p" x(p x x))

= x+[ px|Sinw + [ 12] p,x]] - [ 14 p,xHCosw +e(x” +([ p,x*] + [ p*,beinw +w'[ px]Cosw + [ 12 p,x]]w *Sinw +

[ p,[ px ]] + [ p{ p*,x]] + [ 12 p,x]] - Cosw[ p,[ px ]] —Cosw [ p{ p*,x]] - Cosw[ Pl p,x]]

= x+| p.x]Sinw + [ p| p,x]] - [ r| p,x]]Cosw +e(x” +([ p,x*] + [ p*,x])Sinw + [ p,[ px ]] + [ p,[ p*,x]]
[7'] p,x]] — Cosw[ plpx’ ]] ~ Cosw[ P p*,x]] ~Cosw[p"[ px]]

+( px]Cosw +| p| p.x]]Sinww") (9.10)

the real part represents a rotation around instantaneous screw axis with angle w of

>
A

point x and the dual part represents as a translation along this axis.

-
A

The acceleration of x is :( \—1; is dual )

d,x= 1Tj>< x
We define lie bracket to be

[w.x]= \TIX x
Hence we have

dpx=[yx]

d d x e ~
E[W’x] = E(\u XX)= Y XX+ xx'
or

d 14
ZhwEl=lyal+{wr]

-

Now we compute high order acceleration of x interms of Lie bracket.
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—;;’;dfx—g[ ¥]=[wa)+[pe]
& d;
S x= Ly ] L [y

=[v ,x]+2[v/,x]+[%x ]

@ _d d
A= lvixle2 t[V"ax]Jfg[%x"]
=[w"x]+[y"x ]+ 2y T2y x|+ v ]+ [wx]
=[y"x]+3 e+ 3w ]+ [yx]
j—;dfx = %:[;y,x] = fz:;(';.)[ yﬁf,xf] (9.11)

- -
A

The vectorial product of the velocities of the points x and y on K3 in the

-
A

direction of instantaneous screw axis \y ,that is,

- -

[dfx,dfy] =d xxd, y=(dfx y)y

or

dyexd,y=[dxd,y)=[[vxlvy]]
Hence we get

d ' '
—Arexdy =] [yl vw] 1

2

d ” ’ ' "
d%d e xdy={[[wx] [wy]2lwx] [vy] Hvx wy] 1}

3

d ” ’ ' "
d—;adfxxdfy ={[[wx]" [wy1+31[wx] [wo] 30 wx] [wy] 1+

Qv w1}

22



n

d " o

—mdpexdy =3 Olvx]" {yal] (9.12)
j=0

where

[wx]™ = Zi:(Z”" w7 xt] (9.13)
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