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ABSTRACT

It is well known that the total torsion of a closed spherical curve is zero. In this
thesis the paper of [3] is discussed and by using [6] a new proof of the above fact is
given.In addition it is shown that the total torsion of regularly homotopic spherical

curves are equal.



OZET

Kapali kiiresel bir egrinin toplam burulmasimn sifir oldugu bilinmektedir. Bu
calismada [3]’deki makale tartisilmis ve [6]’daki makale kullamilarak toplam
burulmaya ait verilen Ozellik yeniden kanitlanmustir. Bunlara ek olarak, regiiler

homotopik kiiresel egrilerin toplam burulmalarinin esit oldugu gosterilmistir.
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CHAPTER ONE
INTRODUCTION

It is a good approach to think the torsion of a curve at a point as the directed
angle between the binormals at that point and its sufficiently close (with the
increasing parameter manner) neighbour point. This result comes from the directed

angle between the oscullating planes, pp 59-61 of [1].

The torsion on a line segment of a polygonal curve is constant. So defining the
total torsion of a curve with its polygonal approximation curve is easier than studying
on a regular curve. It is proved at p. 33 of [1] and [3] that an approximation can be
done with the definition of arc-length and geometrical approach (defining a
polygonal curve with gluing the cutting points on the curve of a sphere which is used
for covering the curve).Also it is proved by [3] that an approximation can be done

and its total torsion is approximately the same of the original curve.

As a result of polygonal approximation to a curve, the total torsion of a regular
closed curve on S*-sphere is zero by [3].By [6] spherical curves satisfy some
conditions, with these conditions it is proved that the total torsion of a regular closed

spherical curve is zero.

Using the above conclusions and the definition of regular homotopy , p.505 of

[5],it is proved that the total torsions of regularly homotopic two curves are the same.



(1.1) THE TORSION OF A CURVE:

Let P and Q denote neighbour points on a curve of class C*, such that; P=a (s)
and Q=0 (s+h) where h>0. And also note that P and Q are not rectification points,

thatis y = 0.

It is clear that the binormals at P and Q, b(s) and b(sth), are normals to the
oscullating planes at P and Q respectively.

Figure 1.1a Normals to the oscullating planes

If a rotation superposes the oscullating plane at P onto the oscullating plane at Q
then b(s) will be send into b(s+h). Thus the angle between these oscullating planes is

also the angle between the binormals, let it is denoted by 6.

And the limit of ratio % as h— 0 is called the torsion of the curve at P;

*(P) = Lim~

h—0 h

7(P) measures the extent to which o fails to lie in its oscullating plane at s.

Another important point is the sign of the angle 8. It is obvious that the normal

plane at point P divides R’ into two half-spaces. If b(s)xb(s+h) and t(s) (tangent



vector at s) point into the same half-space then we give (+) sign to the angle 0,
otherwise 6 has (-) sign. Since,
6

Lim —=+,
h—0

8 and T have the same sign. This can be proved by a simple method; if we get

the Taylor Expansion of b(s-+h) at the point s,

b(st+h)=b(s) +hb’ (s) + o(h)
b(s+h)= b(s) - h. T .n(s)+ o(h)

Consequently,
b(s)xb(s+h) = -h. 7.b(s)xn(s) + o(h)
or
b(s)xb(st+h) = h. T 1(s) + o(h)
thus '
( b(s)xb(sth) ).t(s) =h.t + o(h)

Since h is sufficiently small chosen o(h) cannot affect on ht. So h.t>0 implies
( b(s)xb(sth) ).t(s)»0 the angle between ( b(s)xb(s+h) ) and t(s) is acute
angle.Similarly , h. <0 implies ( b(s)xb(s+h) ).t(s)<0 and the angle between them is

obtuse angle.

This is why ( b(s)xb(s+h) ) and t(s) are pointing the same half-space determined

by normal plane at P gives (+) signto 6 ( depending on 1 ), otherwise (-) sign.

Figure 1.1b Normal Plane determines two half-spaces



(1.2) THE TORSION OF A POLYGONAL CURVE:

Now let o be a polygonal curve in R* with vertices v, .For simplicity we will

assume that o is closed and the number of vertices is finite. With above

approximation to smooth torsion , we will define the polygonal torsion of a curve.

Smooth torsion was a function of points , now polygonal torsion be a function of

segments;
o, ={(-thv, +tv,, :te[0,1]}
SO
1(0;,)=1,.
(1.2.1) Definition : If 6., , o, ., and &, are coplanar then 7(5,)=0.If 5., , o, ,

and o,,, are not coplanar , it is clear that the normal plane to v, - v, divides R’

i+]

into two half-spaces , and v,,; - v,lies in exactly one of these half-spaces ; let 6,

denotes the angle between -n and m whose magnitude is the ( undirected ) angle

between the binormals

_ (v = v )x(vi,, — V)

.(Vi =V )X(Vi, -V, )\

i

and ,
_ (Vi = V)RV — Vi)

i+
l(Vm = VX(Viy = Via)

And same as in the smooth torsion case sign of © changes + as = (b,xb,,,)

points into the same half-space determined by v, -v,. Then,

)

i

T(0; )= —V.’

i+]
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Figure 1.2 Binormals at the polygonal case.
(1.3) POLYGONAL SECANT APPROXIMATION OF A CURVE:

Now we obtain the polygonal secant approximation of a curve by using the

definition of arc-length of the curve and also with the aid of a2 geometric approach.

(1.3.1) The arc-length of a curve:

The length of a path r =r(t) in a closed interval [a,b] is defined as follows.
Divide the segment [a,b] into a finite number of nonoverlapping intervals using

division points

and form the sum of lengths of the segments connecting pairs of points

corresponding to two consecutive values t, and t,, of the parameter in this

subdivision :

et -t

k=1




The least upper bound (l.u.b.) of these sums of all subdivisions is called the arc-
length of the path. It is seen that the approximation of arc-length of a curve can help
us to make a polygonal secant approximation by using the same subdivisions. Also
the subdivision which corresponds to the l.u.b. case will be the best approximation to

that curve.

(1.3.2) COMPACTNESS OF A CURVE:

Let us make a geometric approach to a unit speed regular curve a. : R — R® to

have a polygonal secant approximation y . And for every &€ > 0 there is an integer N
and the length of y is within € of the length of a. And v is composed of precisely

N segments , all of which have the same length:

Foragiven € >0 and any polygonal secant approximation  to o whose length

is within € of the length of a ; let & denotes the length of the shortest segment of

B . Since the graph of o is compact , it can be covered by , say . N open spherical

balls of radius & .

Now pick an arbitrary parameter value s, , and let r be a positive number much
smaller than & . Construct a 2-sphere with center o (s, ) and radius r ; this sphere will
intersect the graph of o at a unique point a (s,) where s, > s, . Construct a 2-sphere
with center o (s,) and radius r; this sphere will intersect the graph of o at a unique
point o (s,) where s, >s, . Continue in this manner until N 2-spheres have been

constructed.

By connecting o(sg),a(s; ). ceenen... ,a(sy) with line segments we obtain a
polygonal secant approximation to that part of a starting at a(s,) and ending at

o(sy) whose segments are all of equal length.



Lets define the arc-length function h(r) from a(sy) to a(s,) ( that is the

forward direction ) will clearly be positive. Since the maximum length between the
origins of two neghbour balls is 28 it is clear that if r gets close to 28 the directed
arc-length h(r) will be negative.

As a function h : [0,28 ] — R is continuous and h(0)> 0 and h(28 )<0 since the
image h([0,28]) of the interval by h must be connected , it must contain 0. This

means that h(r) = 0 for some r € [0,20] ; perfoming our construction with r = r, we

obtain the desired approximation 7 .

Figure 1.3 Spherical covers of a curve.




CHAPTER TWO
THE TOTAL TORSION OF A CURVE

Now we will give a theorem which is several times proved by different methods.
But polygonal secant approximation method is the focus of our study. Following

theorem and its proof will help us to get our aim.

(2.1) THEOREM: The total torsion J%ds of a closed unit speed regular curve

:R — S on the unit 2-sphere S is zero. ( Tilda over an alphabet is used for the

regular case. )

By definition of polygonal torsion , 1(c,)= i , we have forced the

V.

1 Vi
following result.

(2.1.1) Proposition: Let {a,} be a sequence of polygonal secant approximations to
the closed regular curve o such that the vertices of a; are vertices of o fori<j,

and such that o, approaches a uniformly as i tends to oo. Then for each s, the

is the segment of o, for which

torsion 1(s,) =limt(c,) where, for each i, o,
1—>0
a(s,) lies between v, and v, ,. Now if a is the sufficiently close polygonal secant

approximation to the closed unit speed regular curve o then we may approximate

the total torsion of o :



_Frds = Z'Ci Vi — v,.} = Zei .
The summation taken over all segments o, of o,. The following proposition is

the key to the proof of theorem 2.1.

(2.1.2) Proposition: Let o be a closed polygonal curve in R’ whose vertices all lie

on S’ and for which the lengths of all segments o, are equal (this latter condition is

the polygonal analog of unit speed ), then Zei ,

the summation taken over all segments o, of o, is an integral multiple of 27 .

Proof: For each segment o, of o we can define a map T, from the unit circle
S' cR? cR? to S? as follows : Let I, denotes the perpendicular bisecting plane

of &, , and let p, denotes the point of intersection of IT, N S* and the ray emanating

from the origin which passes through the midpoint ;. Since two points of a rotation

of R’ is known then we can define the third point uniquely , then the rotation of R’

taking €, to p, and e, to (v, —Vi)/VM —vi‘ is unique.And T, is the restriction of

this map to S,.

Figure 2.1 The rotation of binormals.
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Since b, and b, are in IT, N S?, and by construction, 8, is the directed angle

i+l

from T'(b,) to T '(b,,,) .Furthermore T '(b,,,) =T (b,,) ; this is simply the

fact that T, o T7' =1, — II.,, is rotation about the line containing b, _, .
i+] i i i+l i+l

We can prove this by thinking a rotation y;:I1, — II,,, as taking the the unit
vector b,,, constant.Since a rotation of this type can be done and uniqueness of T,
show that T,,, o T":I1, — II,,, is the rotation about the line containing b,,,.Then,

T, o T (b)) = by,
or
Ti—l (b)) = T:l (bis1)
The rotation T;,, o T, about the line containing b,,, is satisfied by the necessity

of the lengths of o, are equal, otherwise T,,, o T is not this rotation.

i+l 1

Thus 6, is the angle from T;'(b,) to T;'(b,)=T;'(b,), 6, is the angle from
T'(b,) to T;'(b,) =T, (b,), etc. Since the terminal side of the last angle 0, is

again T,'(b,), it shows that Zei is an integral multiple of 2 .

(2.1.3) COROLLARY:If a, ,ue[0,1] is a continuous deformation from o, to
a, , and at each stage of the deformation, o, satisfies the assumptions of
proposition(2.1.2) ( the common length of the segments is allowed to vary from one

stage of the deformation to another ) , then Zei is the same for both o, and o .

PROOF: Let £:[0,1]— Z be the function for the curves a, , ue[0,1] , which

gives the integer that is obtained from the total torsion ( integer from the multiple of
2n ) for that curve. For example: let the to:al torsion of o, i€[0,1] is I tds=27n ,

then f(i)=n.

Since f is continuous f maps [0,1] , the connected set, to a connected set in Z. So;



f]0,11c Z must be connected.Then, f[0,1] must be an integer.

(See also [4] for connected spaces).

As aresult, f(0)=1{(1)=m (m is any integer ). f(0) = {(1) implies Zei is the

same for both o) and «,.

It is obvious that we can get a planer curve by the use of this continuous
deformation. Since the total torsion of a2 planer curve is zero then the integral

multiple of 27 arising in Proposition is zero.

We have sketched the main ideas here for rigoruous proofs see [3].

(2.2) AN OTHER PROOF OF THEOREM(2.1):

(22.1) LEMMA : If f,g are C” functions on a proper interval L such that;
f(s)? +g(s)’ =1 forallsel,

then there exists a C* function 6 on L such that,
cosB(s) = £(s),sinO(s) = g(s) . (2.2.1a)

Furthermore , if s, is any point on L and 0, is the unique constant satisfying the

conditions;
cosB, = f(s,),sin0, = g(s,),0< 8, <2,

then the function 6 is given explicitly by,
0(s) = [(fg' —gf")ds+8, . (2.2.1b)
So

( By a proper interval we mean an interval with non-empty interior ).



Proof: Let C be the unit circle in the plane with rectangular coordinates (x,y) and

the origin O. Then the point P(s): (f(s),g(s)) moves continuously on C as s moves
continuously on L. Let A be the point on C such that A OP( ) =0, , where s, and

0, are as defined in lemma(2.2.1).

If s, is any point on L, we can reach it by allowing s to increase or decrease
continuously from s,. When s, starting from s,, moves continuously towards s, and
finally reaches it, the point P(s), starting from P(s,) moves continuously along C
until it finally stops at the position P(s,). gThe point P(s) may go back and forth or
around C one or more times before finally stopping at the position P(s,)). We put
0(s,) equal to the sum of 6, and the ‘algebraic’ angle described by the radius vector

OP(s). This defines a single valued function
0 on L such that; 6(s,) =6, .

We assert that © is the function satisfying the required conditions. Obviously , 8

satisfies (2.2.1a). We now prove that 0 is given by (2.2.1b) so thatitis C”.
Since O is continuous, we have by (2.2.1a) that

f'(s) = —sin6(s).0'(s)
g'(s) = cos0(s).8'(s)

Since cos® and sin® can not be both zero at the same point, the above two

equations show that 6’ exists and is continuous.

Let us now put

8(s) = [(fg’ - gf")ds+9,
Sy



it is clear that ©’ = fg' —gf’ = ¢’ This together with 6(s,) =6, = ¢(s,) , proves that
0=9¢.

(2.2.2) THEOREM : If a C” Frenet curve [:x(s), seL, lies on a sphere of radius
R then there is a C* function ¢(s) on L such that;

1
klsind):—ﬁ , k,+¢'=0

Proof:Let § lies on a sphere with center at ¢ and radius equal to R. Then

x—c* =R? and (x-c).¢, = 0. Therefore by lemma (2.2.1) there exists a C”

function ¢(s) on L such that;

d(s) is the angle between (x: ¢) and e—; . And also remember that;

= 2
[
e; =k,e,

0

SO,
(x~c) =Rcosoe, — Rsinge,
differentiation gives,

¢, = —sin¢¢’'Re,+ Rcosde; —~Rcosdo’e, — Rsinde)

¢, =—Rsin¢¢’e; —k,Rcospe, ~Rcosdd’e, + k,Rsinde, —k,Rsinde,
e, = k,Rsinde, — (k, + ¢")Rcosde, —(k, + ¢')Rsinde,

from which it follows k,Rsing =1

and



(since cos¢ and sin¢ can not be zero at the same time so0) k,+9¢'=0.

If we take the integral of the second result k, +¢'=0 at the interval [0,2n ]

(because we want to find the total torsion of a closed curve) we can get;

[k ds = [¢'ds
] B
since,
~ fords=- fords=~(6(9)) and $(2m) = b(0)
B 0

then

[k,ds=o0.
B



(2.3) TORSION ON REGULARLY HOMOTOPIC SPHERICAL CURVES:

After now we are going to deal with the total torsion of special kind of homotopic

unit speed regular curves on the unit 2-sphere S?.

(2.3.1) Definition: Two regular curves on a manifold M are said to be regularly

homotopic and the homotopy g,:I =M can be chosen such that for each v el,g,

is a regular curve, g’ (0)=g;(0),g. (1) =g, (1).

Also a new curve, by gluing the end point of a curve and beginning point of

another curve, may be defined as follows.

(2.3.2) Definition: If o, are curves on S* with a(1) = B(0). The product of o and
B is the curve o.f, defined by:

a(2t)..0<t<1/2

(e P)(t) = {
Bt~1...1/)2<t<1

(2.3.3) Definition: If a is a curve, the same curve with opposite direction, o™', can

be defined as:
(1) =a(l-t).

By this definition it is clear that if two curves are homotopic, that is o, » a.,, then
by defining ;' as «;'(t)=a,(I-t) (opposite direction of a,(t)) we can get
o (1) =a;'(0). And also o,(l)=c;'(0) implies the product a,.a]' is a closed

curve, with o, (0) = a.7*(1).
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If we take these two homotopic curves o, and o, as regularly homotopic and if

they are defined as unit speed onS?, then a regular unit speed closed curve can be

obtained by the product o,.c; .

Let B be the curve of the product o,.cj', thatis B=a,.a; . Then the total

torsion of B is

Irds
B

Since,
_[‘cds =>8,.
B i

We can define,

Zei = ZG it Zek
i f K
where ZG ; 1s the summation of the directed angles between the binormals of the
j

curve a, and Y6, the same for the curve «;'.
k
It is clear that the directed angles between the binormals of the curve o, have
opposite directions of the angles between the binormals of the curve a'. Then we

can easily represent the angles between the binormals of the curve o, as - Zek :
k

Since we have formed a closed unit speed regular curve B on the unit 2-sphere S*

by the product «,.c.;' then we can say that,

Itds =0.
B

Hence,
Itds = Zei
B i

which is given by the linear secant approximation.



So

This implies:

or

>°6,=0 (by Theorem 2.1)

2.6,=2.0,+2.0,=0
i j k

Zej = ‘“Zek

i
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where the right hand side represents the total torsion approximation of the curve

o, ,that is:

And also

Then our conclusion occurs here,

In other words: The total torsion

unit 2-sphere S* are equal.

—Zek = I'cds.
k

oy

Zej = '[‘EdS.
j

&g

Itds = I‘EdS.

&y o

of regularly homotopic unit speed curves on
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