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ABSTRACT

In this study, the elasto-plastic stress analysis of composite plates with a square hole
has been obtained. Finite element method has been used to solve the problem.
Isoparametric rectangular element with nine nodes has been chosen. The automatic mesh
generation has been taken place in finite element model and the special computer

program has been developed to solve the problem.

The engineering constants of composite material have been obtained by using strain
gage in the tensile testing machine after production of the material (Stainless steel-

aluminum composite) .

Finally, in this study, the distribution of the plastic region in the vicinity of the hole
has been studied for different uniform loads, different hole diameter and different
orientation angles. Furthermore, the plate is stronger because of resultant residual

stresses.



OZET

Bu galiymada ortasinda kare delik bulunan kompozit bir plakta elasto-plastik gerilme
analizi yapilmigtir. Problemin ¢éziimiinde sonlu eleman metodu kullanilmugtir. Eleman
olarak dokuz digimli izoparametrik eleman segilmistir. Sonlu eleman modelindeki
eleman ag otomatik: olarak elde edilmig, problemin ¢oziimii icin &zel bilgisayar
programian kullanilimugtir.

Kompozit malzemeye ait mithendislik sabitleri, malzemenin (paslanmaz gcelik-
aluminyum kompoziti) tiretiminden sonra ¢ekme deneyi ile strain gage kullanilarak elde
edilmistir. Kompozit malzeme iiretimi extriizyon yolu ile iiretilmigtir.

Sonug olarak, bu ¢alismada, plak tizerinde degisik uniform yayili yiikler, degisik delik
caplarinda, degisik oryantasyon agilarinda uygulanarak plastik bolgelerin delik gevresinde
dagihimi incelenmistir. Ayrica olusan artik gerilmelerle plagin mukavemeti artirilarak daha.
fazla yiik tagimasi saglanmugtir.
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CHAPTER ONE
INTRODUCTION

1. Introduction

With the increasing technology, it has been investigated to find new materials. When
compared with other materials, composite materials have found a large usage area especially
in plane, space and weapon industries. Nevertheless, the technblogy of metal-matrix
composite materials is being developed very rapidly. The strength and elastic moduli of
metal matrices are higher than those of resin matrices over a wide range of temperature. As
to deformation of the composites, metal matrices can greatly enhance the ductility of the

composite.

Karakuzu /2/, investigated increasing of strength of composite plates with semicircular
holes under the elasto-plastic loads. Owen /4/, studied elasto-plastic finite element analysis
of anisotropic plates and shell. Theo /6/, investigated stress around rectangular holes in
orthotropic plates. Tsai /8/, searched finite element analysis of axisymmetric bodies under
torsion. Zienkiewicz /9/, obtained two dimensional finite element analysis ( plane stress,

plane strain ) of different isotropic structures.

In this study, the elasto-plastic stress analysis of the plates manufactured from steel-
aluminum composite is made under the uniform tension loads. Distributions of plastic
region near the notch and variations of residual stresses are investigated in the different

orientation angles.
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CHAPTER TWO
THE FINITE ELEMENT METHOD

2.1. Introduction

In this method the body is imagined to oe actually broken up into a number of elements
of finite dimension, hence its name. If the body has n (=1,2,3) dimensions of space, it is

subdivided into a system of n-dimensional firate elements.

One-dimensional bodies will be subdivided into finite elements by means of nodes as in
Figure 2. 1a; lines and planes will be used for the subdivision of two and three dimensional
bodies, as shown in Figure 2. 1b and c respectively. In one-dimensional bodies the resulting
finite elements may have unequal lengths, while in two and three dimensions they may have
unequal sizes as well as unlike shapes. Ir 1l cases, however, the finite elements representing
the body will be ‘interconnected’ by means of ‘nodes’ as shown in Figures 2. 1a, b and c.
Thus, in the finite element method of ana‘ysis the body will be replaced by a system of finite

elements and the nodes connecting them.

The precise manner in which finite elements are attached to the nodes is best understood
by referring to Figure 2. 2; here we have two plane finite elements of unit uniform

thickness, one triangular and other rectangular.
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(a)
Figure 2.1 (a) A one dimensional body subdivided into 3 linear elements.
(b) A two dimensional body with a hole subdivided into a system

of plane triangular elements. (c) Three dimensional bodyabcdefg

h subdivided into 8 identical rectangular prism elements.

Clearly Figure 2. 2a, they are separate and not attached to each other in any way. we
shall think of the nodes as ‘nut-and-bolt’ devices which secure adjacent finite elements
trough their ‘extremities’ and hold them together, as in Figure 2. 2b such that the elements
will come apart when the nodes are removed. Clearly therefore, since they will come apart
when the nodes securing them are removed. There is no physical continuity between

adjacent finite elements.

extremities

node

/

node

(a) (b)
Figure 2. 2 (a) Two separate plane finite elements of unit uniform thickness.

(b) The finites of (a) held together by means of nodes.



the next step in this method of analysis to determine the ‘element stiffness matrix’ of the
individual elements representing the body. These will then be assembled to form the ‘overall
stiffness matrix” for the discretized (i.e. broken-up) body by requiring that the continuity of
displacements and equilibrium of forces prevail at all nodes in the finite element model of

the body. This will lead to the matrix equation
[K{U}={F} (2.1)

in which [ K ] denotes the ‘overall stiffness matrix’ of the body. The * overall force vector ’
{ F } list the externally applied forces at all the nodes, while {U} list the displacement of all
the nodes. Throughout this study [ ]and { } will denote square ( or rectangular ) matrices

and vectors respectively.

An inspection of Equation 2. 1 shows that, qualitatively, [ K ] represent the force
required to produce unit displacement of the finite element model of the body as an
equivalent ‘spring’, then [ K ] will obviously be a ‘spring constant’ representing its
‘stiffness’. Thus, the finite element method is essentially one in which the analysis of the

body is carried out from the point of view of its “stiffness’.

For a given set of prescribed boundary conditions and external forces acting on the body,
Equation 2. 1 can be solved uniquely for the nodal displacement, {U}, from which the

stresses and strain within the body can subsequently be computed.

To summaries, the finite element solution of a given problem will require the execution

of the following operation in this order:

—

. Discretization (subdivision) of the body into a system of finite elements.

19

. Derivation of the element stiffness matrix and other properties for each individual

element representing the body.

W

. Assembly of the overall stiffness matrix [K] and overall force vector {F}.

S

. Solution of Equation 2. 1 with prescribed boundary conditions to determine

{ },and



5. Calculation of stresses and strains within the elements from the computed nodal

displacement, { }.

2.2. Why the Finite Element Method ?

Why should anyone use the Finite Element method in preference to other numerical
methods, in particular to the Finite Difference method which after all is well founded, older
and reliable? The main points in favor of the finite element method over other methods are

these:

1. Owing to the flexibility of their sizes and shapes, finite element are able to
represent a given body, however complex its shape may be, more faithfully.
2. Multiply-connected domains (i.e., bodies with one or more holes in them) or
those with corners Figure 2. 3 can be dealt without difficulty.
3. Problems involving variable material properties and/or variable geometry, do not
present any additional difficulty. Geometrical and material non-linearities, even
hereditary (i.e. time-dependent) material properties can be dealt with relatively
eastly.
4. Problems of cause-effect relationships are formulated in terms of generalized

“forces’ and “displacements” which are related trough to overall stiffness matrix.

N

&

Figure 2. 3 Corners in (a) two dimensions and (b) in three dimensions.



This aspect of the finite element method facilitates and indeed simplifies
the understanding of the problem and its solution.

5. Boundary condition are easily dealt with.

6. The versatility and flexibility of the finite element method can be used very
effectively to evaluate the cause-effect relationships in complex structural,
continuum, field and other problems. Resulting accuracy is well comparable and
often better  than those arrived at via other analytical (if possible) or

experimental methods.

2.3. Finite Element Meshes

It would have been observed that it is an easy matter to obtain a coarse subdivision of the

analysis domain with a small number of isoparemetric elements.

The main drawback of the mapping and generation suggested is the fact that
theoriginally circular boundaries in Figure 2. 4 are approximated by simple parabola and a
geometric error can be developed for representation of complex motor car body shapes, can
be adopted for this purpose. If the coordinates x and y are used by interpolation or shape
function in local coordinates, then any complex can be mapped by any single element. The
region of Figure 2. 4 in fact so mapped and a mesh subdivision obtained directly without

any geometry error on the boundary.



Figure 2. 4 Automatic mesh generation by parabolic isoparametric elements.
(a) Specified mesh points (b) Automatic subdivision into small number
of 1soparametric elements.(c) Automatic subdivision into linear

triangles.
2.4. The Isoparametric Elements

The isoparametric formulation makes it possible to generate elements that are
nonrectangular and have curved sides. These shapes have obvious uses in grading a mesh
from coarse to fine, in modeling arbitrary shapes, and in modeling curved boundaries
Figure 2. 5. The isoparametric family includes elements for plane, solid, plate, and shell
problems. In the following isoparametric elements, natural coordinate system must be used
(system £ , n and £ , n ;t in Figure 2. 6. Displacements are expressed in terms of natural

coordinates, but must be differentiated with respect to global coordinates x, y and z.

Accordingly, a transformation matrix must be obtained. In addition, integrations must be

done numerically rather than analytically if elements are nonrectangular.
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Figure 2.5 Turbine blade, modeled by solid elements.

S s S t
S 1O 5 £33 B\
(a) (b) (c) (d) (e)

Figure 2. 6 Isoparametric elements (a) Quadratic plane element. (B) Cubic plane
element. (a) A degred cubic element, the left and lower sides can
be joined to linear quadratic element. (d) Quadratic solid element

with some linear edges. (¢) A quadratic plane triangle

The term isoparametric means same parametric. In other words, the degree of
interpolation on coordinates are the same on displacements. Elements with a higher degree
of interpolation on coordinates than on displacements are called superparametric. If the

coordinates are interpolated to a lower degree than the displacements, elements are called

subparametric.



An important consideration in the global coordinate system. In this regard, three useful

guidelines have been advanced :

1. If two adjacent curved elements are generated from parent elements whose
interpolation function satisfy interelement continuity, these curved isoparametric

elements will be continuous.

2. If the interpolation function are given in the local coordinate system and they are
continuous in the parent element, will also be continuous in the curved

isoparametric element.

3. The isoparametric element formulation offers the attractive feature that, if the
completeness criterion is satisfied in the parent element, it is automatically

satisfied in the curved isoparametric element.

2.5. Interpolation Function

In the finite element literature, the functions used to represent the behavior of a field
variable within an element are called interpolation functions, shape functions, or
approximating functions. Although it is conceivable that many types of functions could
serve as interpolation functions, only polynomials have received widespread use. The reason
is that polynomials are relatively easy to manipulate mathematically, in other words, they
can be integrated or differentiated without difficulty. Trigonometric functions also posses
this property, but they are seldom used. Ignored for the moment any interelement continuity
considerations, we can say that the order of the polynomial we use to represent the field
variable within an element depends on the number of degrees of freedom we assign to the
element. In order words, the number of coefficients in the polynomial should equal the

number of nodal variables available to evaluate these coefficients.

We could not expect a good approximation to reality if our field vanable representation
changed with a change in origin or in the orientation of the coordinate system. Hence the

need to ensure geometric isotropy in our polynomial series with the desired property:
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1. Polynomials of order n that are complete have geometric isotropy.
2. Polynomials of order n that are incomplete, yet contain the appropriate terms to
preserve symmetry, have geometric isotropy.
There are three types of polynomials:
1. One independent variable
2. Two independent variable
3. Three independent variable

Here only two independent variable will be given.
2.6. Two Independent Variable

In two dimensions a complete nth-order polynomial may be written as

Th o
Pn(x,y)“—‘kz1 Xy, 1+j<n (2.2)

where the number of terms in the polynomial is

To=(n+1)(n+2)/2 (2.3)
second- order polynomials with two independent variable are given as

Pa(xy) =1+ 02t 0ay + 0 Xy + ots X’ + g Y (2.4)
2.7. Interpolation Functions Of Rectangular Elements

Interpolation functions have been developed for one, two, and three dimensional
elements. Here only two dimensional interpolation function will be shown for rectangular
element. The basic ideas can be illustrated by a simple example in two dimensions. Suppose
that we wish to construct a rectangular element with nodes positioned at the corners of the
element Figure 2. 7.a. If we assign one value of interpolation to each node, the element
then has four degrees of freedom, and we may select as an interpolation model a four-term

polynomial such as



P(xy)=ai+ox+azy+ouxy (2.5)

and for rectangular element with eight nodes Figure 2. 7.b, a eight-term polynomial is
chosen as

P(xy)=out o2t oy +ouxy + asX + 06y + or Xy + ag Xy’ (2.6)
2.8. Natural Coordinates

A local coordinate system that relies on the element geometry for its definition and
whose coordinates range between zero and unity within the element is known as a natural
coordinate system. Such systems have the property that one particular coordinate has unit
value at one node of the element and zero value at the other node(s). We may construct
natural coordinate system for two-node line elements, three-node triangular elements, four-
node rectangular elements, and so on into n-dimensional hyperspace. Natural coordinates in
n dimensions are called barycentric coordinates.

The basic purpose of the natural coordinate system is to describe the location of a point
inside an element in terms of coordinates associated with the nodes of the element. It will
become evident that the natural coordinates are functions of the global Cartesian
coordinates system in which the element is defined.

Here only natural coordinate will be shown for a four-node quadrilateral element in two
dimensions. Figure 2. 8 shows a general quadrilateral element in the global Cartesian
coordinates system and local natural coordinate system. In the natural coordinate system
whose origin is at the centroid the quadrilateral element is a square with sides extending

E==1,n==I1.

7
4 3 4 3
8 6
1 2 1 5 2
(a) (b)

Figure .2.7 Rectangular element (a) Four-node element, (b) Eighth-node element



n
y 4 4 3
Ar -L.D) (1.1)
4 3
(X3, ¥3)
> &
2 (x2,¥2) (-1.-1) (1.-1)
> X 1 2
(a) (b)

Figure 2. 8 Natural coordinates for a general quadrilateral.(a) Cartesian coordinates
(b) Natural coordinates

The local and global coordinates are related by the following equations:

1
x = [(-8) (I-m)xa + (148) (I-m)xa + (1-5) (Lm)xs + (148) (1-m)xs ] (2.7)

Y= [ (1-8) (I-m)y; + (1+E) (I-n)y2+ (1-€) (1+n)ys + (1+E) (1-M)ya ] (2.8)

2.9. Lagrange Polynomials

One type of useful interpolation function is the Lagrange polynomial, defined as

o D x-xp (XX e (XX A XX s (X=xn) A
L (x) = m%g X=Xm — (Xk—xQ)..... (Xk =Xk 1%k ~XK+1)...__.(XK —Xp ) (2.9)

m=k

Since Ly (x) 1s a product of n linear factor, it is clearly a polynomial of degree n. We note
that, x=x. , the numerator and denominator of Ly (x«) are identical and the polynomial has
unit value. But when x=x., and m # k, the polynomial vanishes. This fact can be used to
represent an arbitrary function &J(x) over an interval on the x axis. For example, suppose

that J(x) is given by discrete values at four points in the closed interval [xo , xs] Figure 2.
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9a. A polynomial at degree 3 passing through the four discrete values &; = & ( x; )

(i=0,1,2,3) and approximating the function &(x) in the interval may be written at once as

3
@ (x) = P (x) = __Zo @; Li (x)=[L]1{®}

and we recognize that L; (x) plays the role N; (x).

The Lagrange polynomials

(2.10)

L; in the expression for &J(x) are sometimes called

lagrangian interpolation coefficients. Figure 2. 9b shows how these coefficient for &, for

instance, would become

{(x=xg }(X=x2 (X-X3)

Li(x)= (x1-x0)(x1-%2 }(X1-X3)

(2.11)

(=4
ﬂh
| yr | = :-‘_\haj% ~ B=gl
| | | - —
N | e=h()
: - ! s
2 T I By
I (a)
T -
AN
\ + » X
D o=
+ P
I ///f N,
< . I':'E\ 4
a ' R ———— ’
I+ —~
D :wj/ \-‘H‘-.‘_: # }:
IT L
g :—-""'—““m.‘.__,:-”/ ' y X

(b)

Figure 2. 9 Interpolation using Lagrange polynomials (a) The given function and its

approximate representation, (b) Lagrange Interpolation coefficients.
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Since the lagrangian coefficients possess the desired properties of the nodal interpolation
functions, we may write immediately for any line element within only &; , specified at the

nodes.

N; (x) = Li (x) (2.12)

With the order of the interpolation polynomials depending on the number of nodes we
assign to the element. Since lagrangian interpolation function guarantee continuity of & at
the connecting nodes, they are suitable for elements used in problems requiring C°

continuity.
2.10. Obtaining The Interpolation Function
2.10.1. For The Isoparametric Finite Element Matrices:
In this study, Lagrange polynomials are chosen as the interpolation functions. In the

plane stress case, each nodal point has two coordinates, x and vy, and two displacement, u

and v, they are obtained for the rectangular elements with nine nodes Figure 2. 10 in this

form;
9 9
x=2X Nix; , y=Z1 N vi (2.13)
i=1 i=
9 9
u= 2 N; u; s v=2 Ni v
i=1 i=1
T n
7 8 9
-1,1) (1, 1)
4 5 6 &
(-1,-1) (1,-1)
1 2 3

Figure 2. 10 The rectangular isoparametric element
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Interpolation functions written as,

Ny (€. n)=Li(€).Li(n)
N2 (€, m)=L2(§).Li(n)
N; €.n)=L:(€).Li(n)
Ns (€. m)=Li(€).L2(n)
Ns (€, n)=L2(§) L2(n) (2.14)
Ns (€. m)=Ls(§).L2(n)
N7 (€, m)=Li(€).Ls(n)
Ng (€.n)=L2(8).Ls(n)

Ns (£, m)=Ls(€).Ls(n)
and Lagrange polynomials are obtained in the following form;

Li) == & (1-8)
L»(8) = (1+ &) (1€) (2.15)
Ls (€)= -= & (148)

and L (n), L2 (n), Ls (n) are obtained similarly, substituting n instead of £ Lagrange

polynomials are second- order polynomials that pass trough tree nodal points.
2.11. Obtaining The Element Properties

In the plane stress case, the strain-displacement relations are written as

ou N u v
Sx:—g > 8)'= W > 'ny=—67+§ (2 16)

and derivatives of u and v with respect to x and y are obtained the following form;
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N & e

ox i ox uj 5 X = Lo ox Vi (2.17)
9

NN XN g

oy oy W o~ Sou VY

Consider for instance the set of local coordinates &, n and a corresponding set of global

coordinates x, y. By the usual rule of partial differentiation we can wrnte instance &, n

derivatives as

N 8N QX ON ay

5E — “ox - et t Tay -Tag (2.18)
ONj O N i 8 x ON ay

an = "dx ~on T "By - Ton

Writing in matrix form we have

[ oN; a.x oy N j &N j
F 08 3 & x 2 X

= = J (2.19)
aN i [ ox 6yJ aN ON
on én on oy oy

In the above, the left-hand side can be evaluated as the functions N; are specified in local
coordinates. Further as x, y are explicitly given by the relation defining the curvilinear
coordinates Equation 2. 13, the matrix J can be found explicitly in terms of the local

coordinates. This matrix is known as the Jacobian matrix.

Inverting J we can write




We can obtain I in the following form

[ v _ax]
1 | & T
Jl=4 | |
-3 3l
an on

and
X ox oy
dety=%- &5 &

We obtain the properties of the Jacobian as

ox 8 N oN
woEE (s
oy 2 oN oN

= HE Vi Rt
ox 8 ON; ON;

————&n :jz;]_an Xl = {_—61'] . }X1
o _dav {_am ;
on o YiT e

We can rewnite Equation 2. 16 in the matrix form as
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(2.22

(2.23)

(2.24)



where
N -
ax 0
0 aNj
B = ey
ONj ONj
ay ox
and
{U={uviu Voo Up Vo)

The system equations are obtained by the minimum potential energy principle as,

[KI{U}={F}

where

K] = }1 lf [B]1" [c]1[B]ldV

In plane stress case, volume element dV can be written as

dV=tdxdy

and
dx dy=det J d€ dn

In this case, we rewrite the stiffness matrix as
1

K] = t ] lf [B]T [Cc][B] detJ d= dn
where
{_1 v 0 _}
[C] = I_EUZ v 1 0|
lo o ]
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(2. 25)

2.26)

(2.29)

2.30)
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2.12. Calculation of Elasto-Plastic Stresses

Various computational procedures have been used with success for a limit range of
elasto-plastic problems utilizing the finite element approch. Two main formulation appear.
In the first, during an increment of loading, the increase of plastic strain i1s computed and
treated as an initial strain for which the elastic stress distribution is adjusted. This approach
manifestly fails in ideal plasticity 1s postulated or if the hardening is small. The second
approach is that in which the stress-strain relationship every load increment 1s adjusted to
take into account plastic deformation. With properly specified elasto plastic matrix this

incremental elasticity approach can successfully treat ideal as well as hardening plasticity.

From the computational point of view the incremental elasticity process has one serious
disadvantage. At each step of computation the stiffness of the structure is changed and
iterative process of solution are necessary to avoid excessive computer times. The initial
stress method
is developedby Zienkiewicz as an alternative approach to the incremental elasticity process.
By using the fact that even in ideal plasticity increments of starin prescribe uniquely the
stress system (while the reverse is not true for ideal plasticity)an adjustment process is

derived in which initial stresses are distributed elastically through the structure.

This approach permits the advantage of initial process (in which the basic elasticity matrix
remains unchanged) to be retained. The process appears to be the most rapidly convergent.
To start elasto-plastic stress analysis, this method uses one dimensional tensile specimen in
elasto-plastic region, then moves on to the two and three dimensional stress case. For a
tensile specimen loaded just over the elastic region (= €1 ).Stress oy is calculated linear

elasticity, thus the stress o as shown in Figure 2. 11 below is given by the following form ;

Go1 = Ox-Of = 01-Op (2.33)

By using oy, one obtains increasing stress value

G> = OytCn (2.34)
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which corresponding to €. The stress difference between o, and real stress at €, gives G,
o3 is obtained by replacing co» in Equation 2. 34. The following analog iteration steps lead
to the point corresponding to the elesto-plastic strain €, and stress 6. Where G,; is the initial

stress.

For calculation of stress in two dimensional cases equivalent stress is usually obtained
according to Von Misses criterion (Distortion energy theory).The equivalent stress in plane

stress case 1s
G = {0.5((0x0y )’ + 6 +0y) + 31} (2.35)
Where o« , Gy , and T are the stress components.

Therefore initial stress can be obtained for plastic region is one dimensional case,
Go=0 - O (2.36)
where o¢ 1s obtained from ©, & diagram a uniaxially loaded tensile specimen. But the
initial stress cannot be exactly described as in Figure 2. 11 in two dimensional case. It can be

mathematically described as follows,

{50} = {UOx Goy t0xy} (2.37)

—

Y ? “total

-y

Figure 2. 11 Representation of initial stress method

where G, Goy and Ty, are components of the initial stress in plane stress case. By using the

following formal, one obtains



{oo} = {o} {00/} (2.38)

where the component of { oy } are proportional to elastically calculated stress. The related
equivalent stress value is equal to { Go} obtained in one dimensional case, according to

Equation 2. 33

1
The loading corresponding to the initial stress as follows;
{(F} =1 BI" {oo} av (2.40)
‘I

First the solution vector is calculated for {F}ocp; , mechanical loading in the first

iteration step

{8}1=[KT" {F}n (2.41)
where { F }n = {F}s + {F}oo then the following iteration steps {&}i , I=1, 2 ...n are
calculated until there is no difference between {0}; and {&}1.1. Then the displacement vector
is

{8}a=[KT" {F}n (2.42)

Finally the stress o, corresponding to {}.1n elasto-plastic region is calculated as

{c}=[C1[B]{8}x (2.43)

In the elasto-plastic region, residual stresses are found at the end of iteration as follows,

{coi}=[{c}.- {o}s (2.44)

where, {c}. is the lineer elastic stress obtained at the end of iteration. In the polar

coordinates, residual stresses are written as,



{G0i}pc= [T] {O0i }

where

lf Cos?0
[T] = | Sin0
L — Sin6. Cos6

is transformation matrix.

Sin®e
Cos™0
SinB. Cosb

2Sin6. Cos0 1|
-2Sin@. Coso |
Cos?0- Sin%6 |

(2.46)



CHAPTER THREE
ANALYSIS OF COMPOSITE MATERIALS

3.1 Introduction

Composite materials are ideal for structural applications where high strength-to weight
and stiffness-to-weight ratios are required. Aircraft and spacecraft are typical weight-
sensitive structures in which composite materials are cost-effective. When the full
advantages of composite materials are utilized, both aircraft and spacecraft will be designed

in a manner much different from present.

For isotropic materials, normal stress causes extension in the direction of the applied
stress and contraction in the perpendicular direction. Also, shear stress causes only shearing

deformation.

For orthotropic materials, like isotropic materials, normal stress in a principal material
direction ( along one of the intersection of three orthogonal planes of material symmetry )
results in extension in the direction of the applied stress and contraction perpendicular to the
stress. However, due to different properties in the two principal material directions, the
contraction can be either more or less than the contraction of a similarity loaded isotropic
material with the same elastic modules in the direction of the load. Shear stress causes
shearing deformation, but the magnitude of the deformation is independent of the various
Young’s moduli and the Poisson’s ratios. That is, the shear modules of an orthotropic

material 1s, unlike isotropic materials, not depend on other material properties.



3.2 Properties of Composite Materials

3.2.1 Fibrous Composites

A fiber is characterized geometrically not only by its very high length-to-diameter
ratio but by its near crystal-sized diameter. Strengths and stiffness of a few selected fiber
materials are shown in Table 3. 1. Many common materials are listed for the purpose
of
comparision. Note that the density of each material is listed since the strength-to-density and

stiffness-to-density

Table 3. 1 Fiber and wire properties

Fiber Density p | Tensile S/p Tensile E/p
or strength stiffness E

wire (kN/m®) | S(GN/m?) | (10°m) (GN/m?) (10°m)
Aluminum 26.3 0.62 24 73 2.8
Titanium 46.1 1.9 41 115 25
Steel 76.6 4.1 54 207 2.7
E-glass 25.0 3.4 136 72 29
S-glass 24.4 4.8 197 86 35
Carbon 13.8 1.7 123 190 14
Beryllium 18.2 1.7 93 300 16
Boron 252 3.4 137 400 16
Graphite 13.8 1.7 123 250 18

ratios are commonly used as indicators of the effectiveness of a fiber, especially in weight-
sensitive applications such as aircraft and space vehicles. Entries in Table 3.1 are arranged in

increasing average S/p and E/p.



3.2.2 Properties of Matrices

Naturally, fibers and whiskers are of the little use unless they are bound together to take
the form of a structural element which can take loads. The binder material is usually called a
matrix. The purpose of the matrix is manifold: support, protection, stress transfer, etc.
Typically, the matrix is of considerably lower density, stiffness, and strength than fibers or
whiskers. However, the combination of fibers or whiskers and a matrix can have very high

strength and stiffness, yet still have low density.

3.3 Laminea

A lamina is a flat (some times curved as in a shell) arrangement of unidirectional fibers
or woven fibers in a matrix. Two typical laminae are shown in figure below along with their
principal material axes which are parallel and perpendicular to the fiber directions. The
fibers, or filaments, are the principal reinforcing or load-carrying agent. They typically
strong and stiff. The matrix can be organic, ceramic, or metallic. The function of the matrix
1s to support and protect the fibers and to provide a means of distributing load among and

transmitting load between the fibers.

warp
direction

direction

Lamina with undirection Lamina with wowen
fibers fibers

Figure 3. 1 Two principal types of laminae

The latter function is especially important if a fiber breaks as figure below. There, load
from one side of a broken fiber as well as to adjacent fibers. The mechanism for the load

transfer is the shearing stress developed in the matrix; the shearing stress the pulling out of
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the broken fiber. This load-transfer mechanism is the means by which whisker- reinforced

composites carry any load at all above the inherent matrix strength.
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Figure 3. 2 Effect of broken fiber on matrix and fiber stresses

3.4 Laminates

A laminate is a stack of laminae with various ortentations of principal material directions
in the laminae as in figure below. Note that the fiber orientation of the layers in this figure is
not symmetric about the middle surface of the laminate. This situation will be discussed 1n
following pages. The layers of a laminate are usually bound together by the same matrix
material that is used in the laminae. Laminates can be composed of plates of different
materials or, in the present context, layers of fiber-reinforced laminae. A laminated circular
cylindrical shell can be constructed by winding resin-coated fibers on a mandrel first with

one orientation to the shell axis, then another, and so until the desired thickness is built up.

A major purpose of lamination is to tailor the directional dependence of strength
and stiffness of a material to match the loading environment of the structural element.
Laminates are uniquely suited to this objective since the principal material directions of each
layer can be oriented according to need. For example, six layers of a ten-layer laminate
could be oriented in one direction and the other four at 90° to that direction; resulting
laminate then has a strength and extensional stiffness roughly 50 percent higher in one

direction than the other. The ratio of the extensional stiffness in the two directions is
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approximately 6/4, but the ratio of bending stiffness is unclear since the order of lamination
is not specified in the example. Moreover, if the laminae are not arranged symmetrically
about the middle surface of the laminate, stiffness exist that describe coupling between

bending and extension. These characteristics will be discussed in following pages.

Figure 3. 3 Laminate Construction

A potential problem in the construction of laminates is the introduction of shearing
stresses between layers. The shearing stresses arise due to the tendency of each layer to
deform independently of its neighbors because all may have different properties (at least
from the standpoint of orientation of principal material directions). Such shearing stresses
are largest at the edges of a laminate and may cause delimitation there. As will be shown in

following pages the transverse normal stress can also cause delimitation.

3.5 Metal Matrix Composite Materials

The technology of metal-matrix composite materials is being developed very rapidly.
Compared to glass-fiber-reinforced plastics, metal-matrix composites are superior for their
performance at elevated temperatures. The strength and elastic moduli of metal matrices are
higher than those resin matrices over a wide range of temperature. As to deformation of the
composites, metal matrices can greatly enhance the ductility of the composite. The stress
concentrations induced by cracked fibers can be relaxed through the plastic deformation of
matrix. As a result there is less chance of a brittle failure of the composite. The majority of

the load applied to a metal matrix composite is carried by the reinforcing fibers. Since the
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metal matrices are strong in shear strength and, in general, well bonded to fibers, short
fibers can be used effectively for the purpose of strengthening. An obvious disadvantage of
this type of composites is their relatively high density.

3.6 Fabrication Methods for Metal-Matrix Composites

In this section the methods used for fabricating metal-matrix composites are briefly.
These methods serve first to combine the fiber and matrix materials and then to consolidate

the combination to form the desired shape of the end-product.

a) Powder Metallurgy Technique

The technique of powder metallurgy involves the compacting of solid materials in the
form of powders. The powder process has been used for ceramic as well as metallic
materials. The product resulting from the powder process is uniform in composition, in
contrast to alloys produced by casting. In the latter case, segregation of the component
phases often occurs during solidification, and homogenization of the alloy is needed. Since
no melting or casting involved, the powder process is more economical than many other
fabrication techniques. In this process, powders of ceramics or metals are first prepared and
then fed into a mold of desired shape. Pressure is then applied to further compact the
powder. In order to facilitate the bonding among powder particles, the compact is often
heated to a temperature which is below the melting point but high enough to develop
significant solid state diffusion. The use of heat to bond solid particles is known as sintering
or firing. There is no separate bonding phase generated in the sintering process. Through
diffusion, the point of contact between two neighboring particles develops into a surface
and the bonding between them is hence strengthenéd. The driving force for sintering is the

elimination of particle surface area.

Metallic materials such as copper, nickel, aluminum, cobalt, and steel are often used in
the powder process as matrix materials. The metal matrices in the form of powders are first
mixed with whiskers or copped fibers . The combination is then consolidated by pressing,

sintering, hot extrusion, or rolling, in order to enhance the density and strength of the
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composite. The exposure to high temperature and pressure for long periods may be

detrimental to some composite systems.
b) Liquid Metal Infiltration

Metal such as aluminum, magnesium, silver, and copper have been used as matrix
materials in this process because of their relatively lower melting points. The method of
liquid metal infiltration is desirable in producing relatively small size composite specimens.
Fibers collimated in a mold are infiltrated with liquid metal. By employing the idea of liquid
metal infiltration, it is possible to cast composite structures such as rods and beams by
passing a bundle of filaments through a liquid-metal bath in a continuous manner. Structures
solidified in this manner have uniform cross-sections with uniaxial reinforcement, and need
little additional work. The application of the liquid-metal infiltration process is limited by the
available choice matrix and reinforcing materials. The degradation of many fibers at high
temperatures rules out their use. Another consideration is the wetting of reinforcements by

the liquid metal. This problem will not be discussed in this study.
c) Diffusion Bonding

Just as in the case of sintering, the diffusion bonding process is carried out under high
pressure and elevated temperature. Filaments of stainless steel, boron, and silicon carbide
have been used with matrices such as aluminum and titanium alloys. Unlike the powder
process, the matrix metals used in most commercially available composites are in the form
of metal foils. In order to fully develop the bonding strength among the foils and between
the foil and the fiber, they all have to be thoroughly cleansed. The fibers are then laid on the
metal sheets in predetermined spacing and orientation. Alternate layers of metal foils and
reinforcing fibers can be arranged for the desired content of reinforcements. The lay-up is
encased 1n a metal can which is sealed and evacuated. The whole assembly is subsequently
heated and pressed to facilitate the development of diffusion bonding. The applied pressure
and temperature, as well as their duration’s for diffusion bonding to develop, vary with the
composite systems. For instance, the boron -aluminum composite develops satisfactory
bonding at 454°C under a pressure of 4.14x10” N/m> has been observed for 6061 Al

reinforced with 48 volume per cent of boron fibers by diffusion bonding. Prolonged hot
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pressing may cause reduction in the composite strength. The change of microstructure
accompanying the reduction in strength in figure below for a stainless steel-aluminum

composite material. This composite contains 27 percent stain-less steel.

The formation of an inter-metallic compound in the vicinity of the fiber-matrix interface
is responsible for the weakening of the composite strength. The diffusion bonding process
may also be used to consolidate tape forms produced by methods such as plasma spray, hot
rolling, and vapor deposition. The tapes easy to handle and can be arranged in

predetermined orientations .

d) Electroforming

Electroforming has the advantage of combining the fiber and matrix materials at low
temperatures, and thus degradation of reinforcing materials can be avoided. The major
apparatuses for electroforming consist of a plating bath a mandrel which serves as the
cathode in the deposition process. A continuous filament is wound onto the mandrel while
the metal matrix material is being deposited. The spacing filaments can be closely controlled
in the winding process, and high-volume fractions of fiber content can be achieved.
Monolayer tapes formed by process can be further consolidated into composite structure
members by diffusion bonding. For multilayer composites formed in this manner, voids tend
to form between fibers and between successively deposited layers. Filaments of boron,
silicon carbide, and tungsten have been successively incorporated into a nickel matrix by
electroforming. Other matrix metals, as well as alumina whiskers, also have been employed

in this method of fabrication.

e) Vapor Deposition

The process of vapor deposition is carried out by decomposing a compound of metal
matrix material and its subsequent deposition on the reinforcing materials. The
reinforcements can be in the forms of continuous filaments or random whisker mats. A main
advantage of this technique is that the chemical decomposition process can be
accomplished at a relatively low temperature and the degradation of fibers can be

minimized. High-volume fraction of fiber can be attained by this process. However, the slow
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and costly process of vapor deposition is its major disadvantage. Metals such as aluminum

and nickel have been used for deposition.
f) Rolling

Both hot and cold rolling can be employed to incorporate filaments and metal strips into
continuous tapes. In this processes, the fibers and metal strips are fed through rollers under
applied pressure. The rollers are heated to a high temperature in the case of hot-rolling.
Both pressure and temperature serve to accelerate diffusion bonding, although the contact
time of the composite assembly with the applied pressure and temperature is relatively short.
The metal strips can be grooved in order to provide precise alignment of the filaments. The
sandwich construction of continuous tapes by the rolling process is restricted to a few
layers in thickness. However, tapes fabricated in this manner can be laid up and further
consolidated by diffusion bonding. The rolling process can also be used to consolidate

continuous fibers coated with a metallic matrix material.
g) Extrusion

One method of extrusion is known as co-extrusion, which does not need the application
of high temperature. Figure 3. 4 below indicates a design of extrusion tooling for making
composite wires. The wire, consisting of a steels ‘core surrounded by an aluminum alloy
sheath, i1s produced by simultaneous feeding of the reinforcing filament and extruding of the
matrix metal. Composite wires formed in this manner can be further rolled into tapes plates
through diffusion bonding. There are other methods of extrusion in which fibers are first
aligned in matrix powders, and this assembly is pressed into the form of bars. A single

perform, or several of them sealed in can, are then extruded to the desired dimension.
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Figure 3. 4 Design of extrusion tooling
h) Other Methods

Methods including plasma spray, pneumatic impaction, and the simultaneous growth of
the reinforcing and matrix materials from a melt also have been used for producing metal-
matrix composites. The method of plasma spray is suitable for low melting point metals. It
employs a plasma torch which sprays matrix materials in the form of liquid droplets on to
rotating mandrel covered with aligned fibers . The composite formed is then removed from
the mandrel and hot-pressed to eliminate voids. As one example, aluminum has been
successively sprayed on silicone carbide-coated boron fiber . Composite tapes formed in
this manner can be further consolidated into structural parts by diffusion bonding.
Pneumatic impaction has been used to consolidate the mixture of metal powders and
reinforcing materials by applying high pressure impact. In view of its basic difference in the

fabrication process relative to all the other methods.

An examination of the fabrication methods reviewed above indicates that the matrix used
in the consolidation process may assume different forms. These include the metallic
powders used in pneumatic impaction and the powder metallurgy technique; the liquid form
used in liquid metal infiltration and plasma spray; the molecular form of matrix metals
appearing in the electroforming and vapor deposition processes; and the metal foils
employed in diffusion bonding and the rolling process. It is also noted that one form of
matrix metal incorporated with reinforcements may be subjected to more than one

fabrication  process. For instance, composite materials produced by sintering are
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subsequently extruded and rolled. Monolayer tapes fabricated by various methods may also

be further consolidated by rolling and diffusion bonding.
3.7 Properties of Aluminum-Stainless-Steel Composites

Metallic materials have been reinforced with all kinds of fiber materials discussed before.
Now we represent Aluminum-Stainless-steel composite which is manufactured by this

thests. In this process the diffusion bonding method 1s used.

First, aluminum foils layered up in a mold then stainless-steel wires put it up. This layer is
done replace three times. This layers are put in a mold. The mold is heated until 550°C then
pressed at 24.66 Mpa during 15 minutes. At the end of pressing, mold 1s cooled at room

temperature. After this process we start examining the composite. These tests are made :
3.7.1 Tensile Test In Elastic Region

This test is made only elastic region. A tensile specimen is prepared 2-direction (at 90°
angle with reinforced direction). And pasted one strain-gage only. This gage is measured
elongation of tensile direction. Thus, we obtain Modulus of Elasticity of material ( E.). After
this test we prepare a tensile test specimen that is at 45° angle with reinforced direction.

Thus, we obtain Shearing Modulus of material ( G;2) by calculation.

After these processes we obtain ultimate tensile strength and shearing strength of

material ( X, Y, S). Table below indicates these properties.
3.7.2 Tensile Test In Elastic And Plastic Region ‘

This test is made two steps. First 1-direction (reinforced direction) tensile test is made in
elastic region. We prepared a tensile test specimen that 0° angle with reinforce direction two
stain-gages pasted to it. One of them measured elongation that tensile direction other
measured 90° angle with tensile direction. Thus we obtain Modulus of Elasticity of material
( E1) . Poisson’s ratio (v;2) .After this loading tensile load is increased up to failure. Thus,

we obtain plastic material properties (K , n).
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3.8 Stress - Strain Relations for Plane Stress in an Orthotropic Material

Three dimensional stress - strain relations in an orthotropic material can be written as :

oy Ch Cp C3 0 00 (81

02 Cyi Cpp C;3 0 0 0 &2

LG Cn Gy 0 0 |{% ‘ (3.1)
To3 0 0 0 Ci, 0 O V23

T3y 0 0 0 0 Ciuo 7 31

(712 L0 O O 0 0 Cgl r12)

For orthotropic material, the strain - stress relations can also be written in the following

form :

ra, Sy Spp 83 0 0 0 ' ro'1 \

&y Ss; S,n S, 0 0 O Oy

y o | g ST dEmY O 193 | (3.2)
723 0 0 0 S, 00 T3

731 0 O 0 0 S0 T3y

Y12, L0 0 0 0 0O Sgi (712

For a lamina in the 1-2 plane as shown in Figure 3. 5, a plane stress state is defined by

setting
0'3:723:73120 (33)

in the three dimensional stress - strain relations given in Equation 3. 1. For orthotropic

material, such a procedure results in implied strains of

€3 = 81301+ Sp305

(3.4)
}’23=}’31:0

Moreover, the strain - stress relations in Equation 3. 2 reduce to
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102 (3.5)
|

where

1
S“:E_l

| (3.6)
522:'];

Figure 3. 5 Unidirectionally reinforced laminea

The strain - stress relations in Equation 3. 5 can be inverted to obtain the stress-strain

relations:
Joﬁ l {Cn C. 0 Ugl l
oy 1= Cp, szngz (3.7)
712 1_0 0 Cqllri
where
S,, Sis
Cn=5 s s, o T slus2
11-222 12 11-922 12 (3 8)
o S o L |
= S11-8, %12 * Ses

or, in terms of the engineering constant,
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Ey, 912-E, 9By
Cu=1"g 9. Cr =19, 9. " 1-9...9
12-VY' 21 12 21 12 21 (3 9)
E, ‘
CZ'Z - 1_912.‘921 B C66—G]2

Note that there are four independent material properties, E;, E>, G2, 012

3.9 Experimental Determination of Strength and Stiffness

For orthotropic materials with equal properties in tension and compression, certain basic
experiments can be performed to obtain the properties in the principal material directions.
The experiments, if conducted properly, generally reveal both the strength and stiffness

characteristics of the material. The stiffniess characteristics are

E, = Young’s modulus in the 1-direction
E> = Young’s modulus in the 2-direction
G2 = Shear modulus in the 1-2 plane
vi2=-€;/ €, for ©;= o and all other stresses are zero
viz=-81 /& for o»=c and all other stresses are zero
where only three of E: , E» .4 Vo1 are independent and the strength characteristics are
X = axial or longitudinal strength (1- direction)
Y = transverse strength (2- direction)

S = Shear strength (1-2 plane)

Several experiments will now be described from which the foregoing basic tenet of the
experiments is that the stress- strain behavior of the materials is linear from zero load to the
ultimate or fracture load. Such linear behavior is typical for glass/epoxy composites nd is
quite reasonable for boron/epoxy composites except for the shear behavior which is
nonlinear to fracture. This characteristics of the linear elastic behavior to fracture is quite
similar to the analysis bodies that exhibit linear elastic behavior up until the onset plastic.
Thus, certain concepts of the theory of plasticity such as yield functions are useful analogues

for the strength theories that will be discussed later.
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First consider a uniaxial tension test in the 1- direction on a flat piece of unidirectionally
reinforced lamina as shown in Figure 3. 6. The strain €; and &> are measured in the test

whereupon, by definition,,

P o
=— ., E,=—%:
TA - (3.10)
- &2 Pult .
1912:_ y X—
2 A

where A is the cross-sectional area of the specimen and perpendicular to the applied load.

|/

Figure 3. 6 Uniaxially loading in the 1-direction
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Second, consider a uniaxial tension test in the 2-direction on a flat piece of
unidirectionally reinforced lamina as in Figure 3. 7. As in the first experiment, €; and &;

are measured so

oot 2
Z—A s 2_8
2 (3.11)
& Puy
Gy =——— , y="&
2 & A

where again A is the cross-sectional area of the specimen end. At this point, stiffness

properties satisfy the reciprocal relations

12 9 »
P2 Y21 12
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Figure 3. 7 Uniaxial loading in the 2-direction

Third, consider a uniaxial tension test at 45° to the 1-direction on a flat piece of the lamina

as shown in Figure 3. 8. By measurement of &, alone, obviously

P/A
£X

E.=

X

(3.13)

Engineering constant E; for orthotropic lamina that is stressed in nonprinciple xy

coordinates are

— — A 2 — 3.
EE Cos™@ +[G,2 E, Sin“6 Cos“6 + E, Sin"6@ (3.14)

Then, by use of the transformation relations in Equation 3. 12

__1__1@ 2945 +;+¢j (3.15)
Ex_4 El E] G12 E2 o

wherein Gj- 1s the only unknown. Thus,

11 29
NN ]

4
— 3.16°
E. E, E, E (3-16)

Gln
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Figure 3. 8 Uniaxial loading at 45° to the 1- direction

3.10 Biaxial Strength Theories For An Orthotropic Lamina

Our attention in this section will be restricted to biaxial loading. Some of the biaxial

strength theories that have been studied are:

1. Maximum stress theory
2. Maximum strain theory
3. Tsai-hill theory

4. Tsai-Wu tensor theory

3.10.1 Maximum Stress Theory
In the maximum stress theory, the stresses in principal material directions must be less
than the respective strengths, otherwise fracture is said to have occurred that is, for tensile
stresses,
G] < Xt
o2 <Yy (3.17)

T2 <8§

and for compressive stresses
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o1 > X

o2 > Y. (3.18)

Note that the shear strength i1s independent of the sign of T, . If any one of the
foregoing inequalities is not satisfied, then the assumption is made that the material has
failed by the failure mechanism associated with X; , X. , Yy, Y., or S, respectively. Note
that there is no interaction between modes of failure in this criterion - there are actually

three subcriteria.

In applications of the maximum stress criterion, the stresses in the body under
consideration must be transformed to stresses in the principal material directions. For
example, Tsai considered a unidirectional reinforced composite subjected to uniaxial load at

angle 6 to the fibers.

61 = Gy oS- 0
0> = Oy sin" 0 (3.19)

T12 = -Cx SIn O cos O

Then by inversion of Equation 3.19 and substitution of Equation 3. 17 the maximum

uniaxial stress, Oy , i1s the smallest of

oy ( —5 (3.20)
sin

S
Ox < sinB.cosf

3.10.2 Maximum Strain Theory
The maximum strain theory is quite similar to the maximum stress theory. Here, strains

are limited rather than stresses. Specifically, the material is said to have failed if one or more

of the following inequalities is not satisfied :
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01 <Xt
s, (Y, (3.21)
t1o| ¢S

Includes for materials with different strength in tension and compression

c1 > Xc

0> >Yt (322)

where

Xzt . Xee are maximum tensile and compressive normal strain in the 1-direction
Y., Y are maximum tensile and compressive normal strain in the 2-direction

S . 1s maximum shear strain in the 1-2 plane

As with shear strength, the maximum shear strain is unaffected by the sign of the shear
stress. The strains in principal material directions,g; ,&2 , Y12 , must be found from the strains

in body coordinates by transformation before the criterion can be applied.
For a unidirectional reinforced composite subjected to uniaxial load at angle 0 to the
fibers (the example of problem in the section on maximum stress theory) the allowable

stresses can be found from the allowable strains X , Y , etc. in the following manner.

Firs given that the stress-strain relations are

1

€ =E.(02 - 021.01) (3.23)
12

Y12 G1o

upon substitution of the transformation equations



61 =0, cos> 0

G, = Oy sin’ 0 (3.24)
T12 = -0y sin O cos 6
In the stress-strain relations Equation 3. 23 the strains can be expressed as
g = Eil.(cos2 0 - vy sinze).cx
gy = ilj.(sinz 6 - vy cosze). Oy (3.25)
- 1 i
T2 = G .(sin6.cos6).c,
Finally, if the usual restriction to linear elastic behavior to the failure is made,
S
Rt =
Yt
Yet = 7y (3.26)
)
Se G12
and
Xc
Keo = F
Y, (3.27)
Y
Yee = &5

(which could equally well come from measured values in an experiment), than the

maximum strain criterion for this example can be expressed as

X
cos20 - Uiy sin? 9
Y
)
SIn“0 - V4 cos2p (3.28)

S
Ox < sinb.cost

oy

oy (

By comparison of the maximum strain criterion Equation 3. 20 with the maximum stress

criterion Equation 3. 21, it is obvious that the only difference is the inclusion of Poisson’s

ratio terms in the strain criterion.
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3.10.3 Tsai-Hill Theory
Hill proposed a yield criterion for anisotropic materials :
(G+H) 6, + (F+H) 62° + (F+G) 03" - 2Ho,0: - 2Go10: - 2F030-
+2LT‘>_32+ 2M’C132+ 21\]"E132 =1 ( 3.29 )
This anisotropic yield criterion will be used as an isotropic strength criterion in the spirit
of both being limits of linear elastic behavior. Thus, Hill’s yield strengths F, G, H, L, M, and
N will be regarded as failure strengths. Hill’s theory is an extension of von-Mises’ isotropic
yield criterion. The von-Mises criterion, in turn, can be related to the amount of energy that
is used to distort the body rather than to change its volume. However, distortion cannot be
separated from dilatation in orthotropic materials so Equation 3. 29 is not related to

distortional energy failure theory.

The failure strength parameters F, G, H, L, M, and N were related to the usual failure
strengths X, Y, and S for a lamina by Tsai. First, if only 12 acts on the body then, since its

maximum value 1s S;

2N = S% (3.30)

Similarly, if only o, acts on the body, then

= 1
G+H=—7- : (3. 31)

and if only G2 acts , then

F+H=;12— (3.32)

the strength in the 3-direction is denoted by Z and only o+ acts, then



(3.33)

For plane stress in the 1-2 plane of a unidirectional lamina with fibers in the 1-direction,
G3 = T13 = T3 = 0. However, from the cross section of such a lamina in Figure 3. 9., Y=2

from geometrical symmetry considerations. Thus, Equation 3. 29 leads to

2 2
(e} C,4.0 (o3 T
1 102 2 12
- 4 + =1 (3.34
x2 x2 y2 = g2 ' )

as the governing failure criterion in terms of the familiar lamina strengths X, Y, and S.

— 2

OO0
OO0
OO0

OO
OO0

Figure 3. 9 Cross section of undirectional lamina with fibers in the 1-direction

Finally, for the off-axis composite example, substitution of the Equation 3. 24 (stress

transformation equations) in Equation 3. 35 yields the Tsai-Hill failure criterion

. ( ) 2
cos 0 1 1 2 .2 sin" 0
+ - cos“ 0.sin“ 0+
x2 G Y2

_ 1
=3 (3.35)
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3.10.4 Tsai-Wu Tensor Theory

The preceding biaxial strength theories suffer from various inadequacies in their
description of experimental data. One obvious way to improve the correlation between
theory and experiment is to increase the number of terms in the prediction equation. This
increase in curve fitting ability plus the added feature of representing the various strengths in
tensor form was used by Tsai and Wu. In the processes, several new strength definitions

are required, mainly having to do with interaction between stresses in two directions.

Tsai and Wu postulated that a failure surface in stress space exists in the form

Foi+Fyo0; =1 1,j=12,....... 6 (3.36)

Where in F; and Fj; are strength tensors of the second and forth rank, respectively and the
usual contracted stress notation is used except that 64 = T3 , Os = Ta1 , O4 = T2
Equation 3. 37 is obviously very complicated; we will restrict our attention to the reduction

of Equation 3. 37 for an orthotropic lamina under plane stress conditions :

F]Gl + Fng + F4G4 + F]]G]z + F22022 + F44(542 + 2F120'103 =1 ( 3.37 )

The terms that are linear in the stresses are useful in representing different strengths in
tension and compression. The terms that are quadratic in the stresses are the more or less
usual terms to represent an ellipsoid in stress space. However, the term involving Fi, is
entirely new to us and 1s used to represent the interaction between normal stresses in the 1-

and 2- directions in a manner quite unlike the shear strength.

Some of the components of the strength tensors are defined in terms of the engineering
strengths already discussed. For example, consider a uniaxial load on a specimen in the 1-
direction. Under tensile load, the engineering strength is X; whereas under compressive

load, 1t is X, . Thus under tensile load,

F]X(+F11X32= 1 (338)
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and under compressive load,

FiX.+F Xl =1 (3.39)

Upon simultaneous solution of Equations 3. 39 and 3. 40

1 1
F’l =X—t+7'c—
] (3.40)
F11 T XeXe
Similarly ,
1 1
F2 :—Y—'(_+—K
y
Fop =— YiYo (3.41)
and
Fs =O
] (3.42)
Fes =22

The determination of the forth rank tensor term Fi» remains. Basically, Fi» cannot be
determined from any uniaxial test in the principal material directions. Instead , biaxial test
must be used. This fact should be surprising sice Fi. is the coefficient of 6; and o> in the
failure criterion, Equation 3. 38. Thus, for example, we can impose a state of biaxial
tension described by o7 =0>= o and all stresses are zero. Accordingly, from

Equation 3. 38.
Fi+F)o+(Fu+Fn+2Fn)o =1 (3.43)

Now solve for F1- after substituting the definitions just derived for Fy , F> . Fy1, and F :

Fio :—L(1—(L+i+—1t—+i)c+(¢+—\—,ti\(;)oz) (3.44)
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The value of F;, then depends on the various engineering strengths plus the biaxial
tensile failure stress, 6. Tsai and Wu also discuss the use of off-axis uniaxial tests to

determine the interaction strengths such as Fi5.

At this point recall that all interaction between normal stresses 6, and o> in the Tsai-Hill

theory 1s related to the strength in the 1-direction :

2 2 2

o1 o0 02 T2 ,
- + =1 3.45

X2  x2 y2 @ g2 ( )

The Tsai-Hill tensor failure theory is obviously of more general character than Tsai-Hill
theory. Specific advantages of Tsai-Wu theory include :
1. Invariance under rotation or redefinition of coordinates,
2. Transformation via known tensor transformation laws,

3. Symmetry properties akin to those of the stiffness and compliance’s.

Accordingly, the mathematical operations with this tensor failure theory are well known

and relatively straightforward.
3.11 Elasto- Plastic Analysis of Orthotropic Composite Materials

In the Orthotropic materials, the procedure of the elasto-plastic analysis is same as
isotropic materials, only the yield criterion changes.

Defining the plastic potential, or effective stress, o, in a similar manner to the Huber-
Mises yield function for isotropic material, we can write for plane stress condition

62 = 31.621+2. a1>.01-05 +a2.0‘22 +a6.1:212 (3.46)

where o), 62, and 11> are the non-zero stress components and a; , a» , a;» and a5 are

anisotropic parameters which can be determined experimentally.

In matrix form, this yield function can be written as

52 = {o}".[A] {o} (3.47)
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where
T
{o} = {0.05. 112} (3.48)
and
] 4 @aq2 0—}
[A] = 612 82 0 ( 3 49 )
L 0 0 aeJ

These parameters can be determined by four independent yield test. For a tensile test in

the 1-direction, we have

a; = %5 (3.50)

Taking the 1-direction as the reference direction, 6=04=X, then a, = 1. Similarly

and substituting these parameters into Equation 3. 46, we obtain Tsai-Hill theory. We can

write Equation 3. 32 following form

/2
2 2
6 =X = [012—01.02 +)Y(—2.(522 +)S(—2.T'122T (3 52)

If the effective stress G, is greater than yield stress o, , elasto-plastic analysis are made

like isotropic materials.
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CHAPTER FOUR
DEFINITION AND FORMULATION

4.1, Definition of The Problem

The geometry of plate is shown in Figure 4. 1. In this application, The plates are loaded
in various uniaxial tension and used orientation angles are 0°, 30°, 45°, 60° and 90°. These
loads are 70, 75, 80 MPa for 0°, 45, 50, 55 MPa for 30°, 30, 35, 40 MPa for 45°, 20 , 25,
30 MPa for 60° and 15, 20, 25 MPa for 90°.

y r
IP T
F ¥
e | s
L—— L, L2 )
P P L,
j— -
L I" x 49 1,
| a2 L2 X
L F "
—r] o
‘T —
‘ Le L N|
r M
a) b)

Figure 4. 1 a) Whole square plate, b) a quarter plate

In the 0° and 90° angles because of symmetry with respect to x and y axis of shape,
loading and material properties a quarter of the plate is taken finite element model. In the
other angles, whole plate 1s used as finite element model.

The plates with a square hole are symbolically divided into finite elements as shown in

Figure 4. 2. These square holes are 20, 40 and 60mm.
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Figure 4.2 Mesh Generation Whole and 1/4 plate

In the solution of the problem, two dimensional isoparametric rectangular element with

nine nodes is used. The finite element model consist of 80 meshes and 360 nodal points.
4.2, Formulation of The Finite Element

By using finite elements formulation following equation

{F} = [K].{8} (4.1)

derivated. Where {F} external force, [K] stiffness matrix and {8} displacement vector of
system. For a given set of prescribed boundary condition and external forces acting on the
body Equation 4. 1 can be solved uniquely for the nodal displacement {6}, from which the
stresses and strains within the body can subsequently be computed. And by using Tsai-Hill
flow critenia the equivalent stresses are can be calculated. The results are compared to
residual stresses and the equivalent stresses are determined. The nodals which are stated into
plastic region are found by comparing the results {;vhich residual stresses. Finally, with the

initial stress method the elasto-plastic stress analysis has been done.
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CHAPTER FIVE
RESULTS AND CONCLUSIONS

1.Results and Conclusions

In this study, orientation of plastic regions and internal stresses for uniform tension loads
of various square holes are shown. Stresses, which are caused by linear elastic events, are
marked with opposite sign according to stresses which are composed within plastic regions
after external forces are removed. So, in the condition of application of tension loads
whenafter internal stresses has been occurred, the stresses that neighbour to notch reduces
the newest stresses and reduces the concentration of stresses that also neighbour to notch.
Therefore, the plastic region becomes noncritical region. In this state, the critical region is
the boundary region, because of the small amount of stress concentration the plate subject
to more amount of loading according to the elastically plates loaded plates. By the way, the

plate has more strength to higher amount of loads within using high strength materials.

If the compressive loads are applied after the formation of internal stresses, the stresses
becomes dangerous due to internal and compressive load stresses have the same sign effect.
As a result, if plate subjected to tension loads, the internal stresses should be existed by
tension loads and in the situation of compressive loading the internal stresses should be

existed by compressive loads.

The following figures are draw by means of prepared computer program. From page 50
to 57, the yielding points are pointed out and the area which contains these yielding points
stayed in the plastic region. In the Figures 5. 1, and 5. 2, because of symmetry, the figures
show plastic regions on a quarter plate. In the Figures 5. 3 to 5. 5 the whole plate plastic
region separation are shown. In addition, in the other figures residual stresses which are
occurred in a quarter plate only in the x axis which is lied along upper points of the hole and

the diagonal from last point of the x axis to the last point of the corner are shown



52

graphically. By the same way, the residual stresses for a whole plate are shown graphically.
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Pa
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— 801IPa
75MPa
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c)

Figure 5.1 6= 0°, Plastic regions on quarter plates, a) hole size 20x20mm b) hole

size 40x40mm and c) hole size 60x60mm
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Figure 5.2 6 =90°, Plastic regions on quarter plates, a) hole size 20x20mm b) hole

size 40x40mm and c) hole size 60x60mm
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Figure 5. 3 © =30°, Plastic regions on whole plates, a) hole size 20x20mm b) hole

size 40x40mm and c) hole size 60x60mm
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a=60 mm
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Figure 5.4 0 =4

5°, Plastic regions on whole plates, a) hole size 20x20mm b) hole

size 40x40mm and c) hole size 60x60mm
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a=60 mm

35MPa
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Figure 5. 5 @ =60°, Plastic regions on whole plates, a) hole size 20x20mm b) hole

size 40x40mm and c) hole size 60x60mm



The following figures are shown graphically.
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Figure 5. 6 A square plate for graphics

R By
0 } ¢ ¥ 1 xi{al2)

-10 1 1,6 2
-20
-30
- —&—70MPa
50 ~—E-76MPa
0 —A—80MPa
-70
-80
-90
-100
-110
a)
10 -l- ©
-10 ' N . v 1 x/(al2)
—&—-70MPa
-l 75MPa
—h—80MPa

b)

60



61

o7 G
[¢] } + + i x/{al2)
40 ® 05 1 1,5 2

—o—70MPa
—B-75MPa
—A—80MPa
c)
Figure 5. 7 6=0°, Residual stresses () on upper line of the hole, a) hole size
20x20mm, b) hole size 40x40mm, c) hole size 60x60mm.
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Figure 5. 8 8=0°, Residual stresses (c) on diagonal line

a) hole size 20x20mm, b) hole size 40x40mm, c) hole size 60x60mm.
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Figure 5. 9 6=90°, Residual stresses () on upper line of the hole,

a) hole size 20x20mm, b) hole size 40x40mm, c) hole size 60x60mm.
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Figure 5. 10 6=90°, Residual stresses (o) on diagonal line

a) hole size 20x20mm, b) hole size 40x40mm, c) hole size 60x60mm:.

Figure 5. 11 A whole plate for graphics
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Figure 5. 12 8=30", Residual stresses (o) on upper line of hole

a) hole size 20x20mm, b) hole size 40x40mm, c) hole size 60x60mm.
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Figure 5. 13 0=45°, Residual stresses (G) on upper line of hole

a) hole size 20x20mm, b) hole size 40x40mm, c) hole size 60x60mm.
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Figure 5. 13 6=60", Residual stresses (c) on upper line of hole

a) hole size 20x20mm, b) hole size 40x40mm, c) hole size 60x60mm.
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