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ABSTRACT

In some science branches it is required that images are processed and stored into
memory. However, 65536 byte of memory is required for an image of 256x256 pixel size
to be stored without any processing. This causes serious memory problem if we have lots of
images to be stored. In order to overcome this problem different image compression

techniques are used.

In this thesis, the most popular image compression techniques of nowadays were
mvestigated. It is seen that Run-Length Coding Algorithm is successful at low compression
ratios. If the compression ratio is increased the algorithm becomes unsuccessful, and
horizontal lines, which are undesired covers the image. The Discrete Fourier Transform and
the Discrete Cosine Transform are better than Run-Length algorithm at many different
compression rates. Nowadays, the other mostly used compression technique is the Vector
Quantization. In this technique, the image is divided into blocks of small images. All blocks
are entered into a training algorithm. Using this training algorithm, a codebook which can
represent the image is obtained. The compression is achieved by using this codebook. By
using this codebook at the reconstruction process, the image becomes very close to the
original image. |

The Hierarchical Finite State Vector Quantization (HFSVQ) is improved version of
Vector Quantization technique. In this technique, the image is divided into blocks of
different sizes. Training algorithm is applied to the each block of group. By using the
codebook the compression process is achieved. It is noticed that this algorithm has perfect
results when the original image has large areas of constant gray level.

In this thesis HFSVQ algorithm was applied on different biomedical images (MRI and
BT images). In this algorithm the sizes of the blocks change. Large blocks were used to
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represent the low contrast area of the image so high compression ratios were obtained.
Small blocks were used to represent the high contrast area of the image so low compression
ratios were obtained. Since the backgrounds of all the biomedical images have large areas of
constant gray level, it is seen that HFSVQ algorithm is very suitable for biomedical images.
Finally, HFSVQ algorithm was applied on different MRI and BT images and very low mean
square errors were obtained at high compression ratios. It is seen that HFSVQ algorithm
which is used to compress the biomedical images is better than mostly other techniques

which have been used so far.
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OZET

Baz bilim dallarinda goriintiiniin iglenip bilgisayarda saklanmast gerekmektedir. QOysa
256x256 piksel ¢oziiniirkige sahip bir goriintiiniin hi¢ iglenmeden saklanmas: igin hafizada
65536 byte’ bk yere ihtiyag vardir. Bu da ozellikle gok resim saklanmasi gerektiren
durumlarda ciddi bellek problemi olugturur. Bu problemi ortadan kaldirmak igin degisik

gorintii stkigtirma teknikleri geligtirilmigtir.

Bu tezde, giiniimiizde en ¢ok kullanilan gériintii stkigtirma teknikleri incelenmistir.
Bunlardan Run-Length coding ‘ in az bir sikigtirma gerektiren uygulamalarda bagarili oldugu
gozlenmistir. Sikigirma orammi arttirdifumizda bu algoritmamn basarisiz olup, sonugta
olugan uzun yatay gizgilerin resmi anlagiimaz hale getirdigi tespit edilmigtir. Ayrik Fourier ve
Kosiniis Transform gorintii sikaigtirma teknikleri birgok sikigtirma orammnda daha basarih
sonug veren yontemlerdir. Son zamanlarda sik¢a kullanilan bir diger sikistrma teknigi ise
vektdr kuantalamadir. Bu teknikte resim sabit biiyiikliikte bloklara ayrilir. Tiim bloklar bir
egitime tabi tutulup sonugta resmi temsil edebilecek bir vektor grubu olusturulur. Bu vektér
grubu yardimiyla sikigtirma yapildigmda sonugta elde edilecek resinin orjinal resme yakmlig
goze garpmustir.

Vektor kuantalamanm ileri bir versiyonu olan Hiyerarsik vektor kuantalama yénteminde,
resim, boyutlar: birbirinden farkh bloklara ayrihp herbir blok grubu igin ayn egitme iglemi
yapilir. Sonugta elde edilen herbir vektor grubu yardimiyla resim kodlanir. Bu yéntemin
Ozellikle resimde gok bos alan olan uygulamalarda mikemmel bir sonug¢ verdigi
gozlenmigtir,

Bu ¢ahgmada Hiyerarjik vektor kuantalama algoritmas: degisik biyomedikal goriintiiler
iizerinde denenmistir (MRI ve BT goriintiileri). Bu algoritmada kullanilan blok biiyiiklikleri



degiskendir. Renk tonu degigiminin az oldugu bolgelerde biyiik bloklar kullanilip yiiksek
sikigtirma, renk tonu degisiminin fazla oldugu bélgelerde ise kiigiik bloklar kullamhp digiik
bir sikigtirma elde edilmigtir. Tiim biyomedikal goriintiilerde fon, genis bir yer kaplayip sabit
bir renk tonuna sahiptir. Bu ytizden bu algoﬁtmamnvbiyomedikal gorintiiler i¢in uygun
oldugu gorilir. Sonugta Hiyerargik Vektor Kuantalama algoritmasi MRI ve BT
goriintiilerine uygulamp ¢ok yiiksek sikigirma oranlarmda ¢ok diigik ortalama karesel
hatalar elde edildi. Bundan bagka bu algoritmanm su ana kadar biyomedikal goriintiiler
tizerinde uygulanan diger algoritmalardan daha iyi oldugu gézlendi.
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CHAPTER ONE
INTRODUCTION

The Image data compression technique is one of the major part in the image processing.
Very often, in practical situations, one encounters images defined over 256x256 or 512x512
pixels. The intensity value (gray level) at each pixel of an image is typically represented by 1
byte. Since a typical image usually has at least 256x256 pixels, representing an image
digitally requires 65536 bytes. Such digital representations not only require large amounts of
memory but often cause some problems if the image data needs to be transmitted on a
severely band-limited medium such a telephone line. It is desirable to represent the data of
an image with considerably fewer number of bits and at the same time be able to reconstruct
this image that is close to the original image. Image compression refers to transforming an

image data to a different representation which requires less memory.

Image compression techniques are useful in brodcast television, remote sensing via
satellite, aircraft, radar, somar, teleconferencing, computer communications, facsimile

transmission, etc.

There are two image compression techniques, namely the lossy and the lossless. In the
lossless compression technique, very low compression ratios such as 2 bit/pixel, 3 bit/pixel
are obtained. However the reconstruct image is as same as the original one [7]. In lossy
compression technique very high compression ratios such as 0.2 bit/pixel, 0.1 bit/pixel are
obtained and the reconstruct image is not the same but very close to the original one. Since
the compression ratio and the bit rate are very important at transmitting any digital
information from one point to an other then lossy image compression technique is more
popular than the other technique.



Different image compression techniques have been improved by the help of discrete
signal processing. Discrete Fourier Transform is a kind of compression technique but it is
generally used as a first step of other compression techniques. The most popular and
efficient method called Vector Quantization (VQ) was presented by Robert M. Gray [5] in
1984, and improved by Nasser M. Nasrabadi & Robert A. King [10] in 1988. In the
following years the VQ algorithm was again improved and mentioned in a paper by Nasser
M. Nasrabadi & Yushu Feng [9] in 1990. Four years later, hierarchical finite state vector
quantization algorithm was found by Ping Yu & Anastasios N. Venetsanopoulos [18] .

In the second Chapter of this thesis, some image enhancement techniques such as
filtering and histogram equalization are given. In the Chapter three, five image compression
techniques are presented in details. They are the run-length compression algorithm, the
discrete fourier transform (DFT), the vector quantization (VQ), the discrete cosine
transform (DCT) and hierarchical finite state vector quantization (HFSVQ). All these
algorithms were written in “C” which is a high-level language. The performance results of
the algorithms (reconstructed images, SNR and MSE) were obtained and compared to each
other. The comparison ratios and MSE values of these algorithms were given in the tables.
Then these image compression techniques were applied to the biomedical images (MRI and
BT) in the Chapter four. It was seen that the most successful one is HFSVQ. For
comparison reason, the performance results of the other biomedical image compression

techniques are also given in this Chapter. In the Chapter five, the conclusion is given.



CHAPTER TWO

DIGITAL IMAGE ENHANCEMENT

2.1 DIGITAL IMAGE REPRESENTATION

The term gray level image or simply image, refers to a two dimensional light intensity
function f{x,y), where x and y denote spatial coordinates and the value of f at any point
(x,y) is proportional to the brightness (or gray level) of the image at that point. Figure 2.1
illustrates the axis convention used throughout this thesis. Sometimes viewing an image
finction in perspective with the third axis being brightness is useful. Figure 2.1 viewed in this
wat and would appear as a series of active peaks in regions with numerous changes in
brightness levels and smoother regions or plateaus where the brightness levels varied little or
were constant. Assigning proportionately higher values to brighter areas would make the
height of the components in the plot proportional to the corresponding brightness[2].

Origin
> Y
2h6x25b6
GRAY LEVEL
IMAGE
-w
x

Figure 2.1 The Image Coordinate System Definition



A digital image is an image f{x,y) that is discretized both in spatial coordinates and
brightness. A digital image can be considered as a matrix whose row and column indices
identify a point in the image and the correspondind matrix element value represents the gray
level at that point. The elements of such a digital array are called image elements, pixels.

2.2 HISTOGRAM PROCESSING

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete
function p(;;) =n, /n. Here r, is the k th gray level, », is the number of pixels in the
image with that gray level, n is the total number of pixels in the image, and k=0, 1, 2,..., L-1

Here p(rk) gives an estimate of the probability of occurrence of gray level 7,. A plot of

this function for all values of k provides a global description of an image. For example,
Figure 2.3 shows the histograms of four basic types of images. The histogram shown in
Figure 2.3 (a) shows that the gray levels are concentrated toward the zero gray level. Thus
this histogram corresponds to an image with overall dark characteristics. Just opposite is true
in Figure 2.3 (b). The histogram shown in Figure 2.3 (c) has a narrow shape, which indicates
little dynamic range and thus represents an image having low contrast. Since all gray levels
occur toward the middle of the gray scale, the image would appear a murky gray. Figure
2.3 (d) shows a histogram with significant spread, represents an image with high contrast.
Figure 2.3 (e) shows the histogram of the image in Figure 2.2.

0

RIS

Figure 2.2 Original 256x256 Peppers Image
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Figure 2.3 Histograms Corresponding to Four Basic Image Types



2.3 HISTOGRAM EQUALIZATION

The purpose of histogram equalization technique is to process an image so that the result
is more suitable than the original image for a specific application [6].

Let the variable r represent the gray levels in the image. In the initial part of our
discussion, I assume that pixel values are continuous quantities that have been normalized so
that they lie in the interval [0,1], with r=0 representing black and r=1 representing white.
Later, I consider a discrete formulation and allow pixel values to be in the interval [0, L-1].
L is the number of gray levels.

For any r in the interval [0,1], the transformation function is given by
s=T(r) 2.1

which produce a level s for every pixel value r in the original image. It is assumed that the
transformation function given in Eq. 2.1 satisfies the following conditions:

(a) T(r) is single-valued and monotonically increasing function in the interval 0 < » < 1.

b O0<T(r)<1 for 0<r<1.
Condition (a) preserves the order from black to white in the gray scale. Condition (b)
guarantees a mapping that is consistent with the allowed range of pixel values.

In order to be useful for digital image processing, the transformation function must be
used in the discrete form. We deal with probabilities of the gray levels that take on discrete

values:

n
P(r) = = 0 <1 k=012,.,L-1 2.2

where P(rk) is the probability of the k th gray level, n, is the number of times this level

appears in the image, and n is the total number of pixels in the image. A plot of P(rk) versus

r, is called a histogram, and the technique used for obtaining a uniform histogram is known
as histogram equalization. The discrete form of the transformation;
5, =T(rk)=27j= Plr) 0<rn<1 k=012, L-1 2.3
j=0 =0

The mverse transformation is denoted;



r,‘=T“1(sk) 0<s, <1 2.4
where both T (rk), that is called as the cumulative distribution function of r, and T "l(sk) are

assumed to satisfy conditions (a) and (b). T "(sk) represent the histogram of new image.

ORI X888

(a) Original Image 1 With The Size Of (b) The Image After Histogram Equalization
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(c) The Histogram of the Original Image
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(d) The Cumulative Distribution of the Original Image
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(e) The Histogram After the Histogram Equalization Process
Figure 2.4 Histogram Equalization Process
24 FILTERING

2.4.1 Neighborhood

The principal approach to defining a neighborhood about (x,y) is to use a square or
rectangular subimage area centered at (x,y) as in Figure 2.5. The center of subimage is
moved from pixel to pixel starting at the top left comer and applying the operator at each
location (x,y) to yield g at that location g(x,y)=T[f(x,y)]. Square and rectangular
neighborhood shapes are common because their implementations are easy. A square shaped
operator which has 3x3 coefficients to use for the filtering is called mask as you see in

Figure 2.6.

Lowpass filters attenuate or eliminate high-frequency components in the Fourier domain
while the filter passes low frequencies. High-frequecy components characterize edges and
other sharp details in an image, so the effect of lowpass filtering is image blurring. Highpass
filters attenuate or eliminate low-frequency components. Since these components are
responsible for the slowly varying characteristics of an image, such as overall contrast and
average intensity, the net result of highpass filtering is a reduction of these features and a
correspondingly apparent sharpening of edges and other sharp details [4].
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Figure 2.5 A 3x3 Neigborhood about a point (x,y) in an image

2.4.2 Lowpass (Smoothing) Filters

For a 3x3 filter, the simplest arrangement would be a mask in which all coefficients have
a value of 1. 'However, the response would then be the sum of gray levels for nine pixels,
which could cause response to be out of the valid gray-tone range. The solution is to scale
the sum by dividing response by nine. Figure 2.6 (a) shows the resulting mask. In Figure 2.6
(b) a 5x5 mask. In all these cases, the response would be the average of all the pixels in the

area of the mask.

119 x

1425 x

Figure 2.6 Lowpass filter masks of various sizes

2.4.3 Median filtering

One of the principal difficulties of the lowpass filtering is that it blurs edges and other
sharp details. If the goal is to achieve noise reduction rather than blurring, an alternative
approach is to use median filters. The gray level of each pixel is replaced by the median of
the gray levels in a neighborhood of that pixel, instead of by the average. This method is
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effective when the noise pattern consists of strong, spikelike components and the
characteristic to be preserved is edge sharpness. Median filters are nonlinear.

The median of a set of values (m) is such that half the values in the set are less than m
and half are greater than m. In order to obtain median filtering in a neighborhood of a pixel,
we first sort the values of the pixel and its neighbors, determine the median, and assign this
value to the pixel. For example, in a 3x3 neighborhood the median is the 4th largest value, in
a 5x5 neighborhood the 13th largest value, and so on. When several values in a
neighborhood are the same, all equall values must be grouped. For example, 3x3
neighborhood has values (10, 20, 20, 20, 15, 20, 20, 25, 100). These values are separated as
(10, 15, 20, 20, 20, 20, 20, 25, 100), which results in a median of 20. Thus the basic
function of median filtering is to force points with distinct intensities to be more like their
neighbors, actually eliminating intensity spikes that appear isolated in the area of the filter

mask.

2.4.4 Highpass filtering

The shape of the impulse response needed to implement a highpass (sharpening) spatial
filter indicates that the filter should have positive coefficients near its center, and negative
coefficients in the outer part. For a 3x3 mask, choosing a positive value in the center

location with negative coefficients in the rest of the mask.

Figure 2.7 shows the classic implementation of a 3x3 highpass filter. Note that the sum
of the coefficients is zero. This means when the mask is over an area of constant or slowly
varying gray level, the output of the mask is zero or very small. This result is reasonable
with what is expected from the corresponding frequency domain filter. Note that this
highpass filter mask eliminates the zero frequency term. Eliminating zero frequency term
reduces the average gray-level value in the image to zero, reducing significantly the global

contrast of the image.
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=1{=1]=1
119 x |=1{8]-I
=1[=1]=1

Figure 2.7 The highpass filter mask

Reducing the average value of an image to zero implies that the image must have some
negative gray tones. As we deal only with positive levels, the results of highpass filtering
mvolve some form of scaling so that the gray levels of the final result span the range [0,L.-1]
Taking the absolute value of the filtered image makes all values positive. This is not a good
idea because large negative values would appear brightly in the image.

1 1 L....
f f
(a] Lowpass [b) Highpass

Figure 2.8 Basic shapes for circularly symmetric frequency domain filters

R

(a) Original 256x256 “Baboon” Image (b) Smoothing Filtered Image
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(d) Highpass Filtered Image

(¢) Median Filtered Image

Figure 2.9 Filter Applications
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CHAPTER THREE
IMAGE COMPRESSION TECHNIQUES

3.1 RUN-LENGTH ENCODING AND COMPRESSION

Run-length encoding and compression is a line based process where pixel intensities are

not stored or transmitted individually, but rather on a given line [14].

Run-length encoding follows these steps below:

1. The gray level of the first pixel on a line is stored and denoted as reference pixel
f(x, y). A run counter is set to 1, indicating that the current ‘run’ consists of 1 pixel.

2. The gray levels of the pixels to the right of f{x, y) along the line (e. g, f(x+1, y),
f(x+2, y), ..., etc) are then sequentially compared to the reference pixel mtensity. If the
intensity difference magnitude exceeds a threshold (T), a new reference value is stored and
the run counter is reset to 1 (indicating a new run). Otherwise the run counter is incremented
by 1 to extend the existing run. Candidate pixels are compared to the reference value, so
that intensity functions with ramp characteristics will not be falsely encoded as constant
mntensity runs.

3. The process is repeated for all pixels of the image, thereby generating a data set
consisting of an intensity and threshold-dependent set of pairs representing the encoded
image of the form { f(x, y), rl} where 1l is the length of the given run (in pixels) with

mtensity f{x,y).
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Since there are likely to be runs of length >> 1 in the compressed image representation,
the resulting compressed data set will be smaller than the raw image data . These effects are
highly dependent on the threshold T, which must be chosen to yield both a reasonable image
representation ( ie, the reconstructed image should appear subjectively ‘close’ to the original
image) and a reasonable number of runs, each consisting of a reasonable number of pixels.
Requirements on the threshold are conflicting; small threshold values tend to maximize the
retained image representation while minimizing compression, whereas large thresholds
produce significant compression while introducing significant distortion. Figure 3.1 shows an
application of run-length compression at different compression ratios and also at different

mean square €rrors.

(b)Threshold= 25,MSE=128.63,SNR=27.03
dB, Comp= Ratio=1.49 bit/pixel

e RS
S SR 3%

USRS

(c) Threshold= 35,MSE=247.91, SNR= (d)Threshold=57, MSE=658.43, SNR=19.94
24.18 dB, Comp Ratio=1.02 bit/pixel. dB, Comp Ratio=0.50 bit/pixel.
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(e) Original Image 2 With The Size Of (f) Reconstructed Image with Threshold=
256x256 25, MSE=138.07, SNR=26.72 dB, Comp
Ratio=2.69 bit/pixel.

(g) Reconstructed Image with Threshold= (h) Reconstructed Image with Threshold=
40, MSE=352.42, SNR=22.66 dB, Comp 60, MSE=750.87, SNR=19.37 dB, Comp
Ratio=1.41 bit/pixel. Ratio=0.70 bit/pixel.

Figure 3.1 An Application Of Run-Length Encoding And Compression
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3.2 DISCRETE FOURIER TRANSFORM (DFT) AND COMPRESSION

Transform theory has played a major role in image processing for many years, and it
continues to be a topic of interest in theoretical as well as applied work in this field. The
transforms are usually used as the first step of an image compression technique especially
the Discrete Fourier Transform. However, in my thesis I am going to show that DFT can be

used as a compression technique [4].

Asume that f{x) be a continuous function of a real variable x. The Fourier transform of
f(x) is defined by the equation

FU ()} = F(u) = | £() explj2me]ae G.1)

—~a0

where j=\/——1. By using inverse Fourier transform f{x) can be obtained;
FYF(u)} = fx) = TF(u) exp[jZnux]du (3.2)

Equations 3.1 and 3.2 are called the Fourier transform pair. Here if f{x) is continuous,
integrable and F(u) is integrable then these equations exist. These conditions are almost
always exist in practice.

All f(x) values throughout my thesis are real, and f{x) represents the intensity function of
an image. The Fourier transform of a real function is generally complex; that is,

F(u) = R(u) + jI(u) (3.3)
where R(u) and I(u) are the real and imaginary components of F(u), respectively. It is
convenient to express Eq 3.3 in exponential form, that is,

F(u) = |F(u).e’™ (3.4)

where

|F(u)] = [R?(u) + ()] (3.5)

and

ola) =t | 19 6.:6)
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The magnitude function |F(x)| is called the Fourier spectrum of f(x) and ¢(u) its phase. The
square of the spectrum,

P(u) =|F(u)" = R*(u) + I(u) (3.7)
is commonly called power spectrum of f{x). The term spectral density is also used to
represent the power spectrum.

The variable u which appears in the Fourier transform is often called the frequency
variable. This name comes from expression of the exponential term, exp[—27zujx]- using
Euler’s formula - in the form:

exp|—j2mux] = cos(2mex) ~ jsin(2mux) (3.8)
Interpreting the integral in Eq 3.1 as a limit summation of discrete terms makes evident that

F(u) is composed of an infinite sum of sine and cosine terms. Each value of u determines the

frequency of its corresponding sine~cosine pair.
Discrete form of Fourier transform is obtained by the following method;

Assume that a continuous function f{x) is discretized into a squence

{£(o), £, +A%), £(x, +2Ax), ..., £x, +[N ~ 1] Ax)} (3.9)
by taking N samples Ax units apart, as shown in Figure 3.2. It will be convenient to use x as
either a discrete or continuous variable, depending on the contex of the discussion. To do so
requires defining

flx) = f(x0 +xAx) (3.10)
where x assumes the discrete values 0, 1, 2, 3, ..., N-1. In other words, the sequence
{£(0), 7(1), £(2), .., f(N=1)} represents any N uniformly spaced samples from a

corresponding continuous function. With the above notation, the discrete Fourier transform
pair that applies to sampled functions is given by

F(u) =%NZ—:f(x)exp[—-j2m/N] : (3.11)
foru=0,1,2,3, ..., N-1 and
Flx) = ZF(u) exp|j2muc/ N] (3.12)

u=0

forx=0, 1, 2, 3, ..., N-1.
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Figure 3.2 Sampling a Continuous Function

The values u=0, 1, 2, ..., N-1 in the discrete Fourier transform (Eq 3.11) correspond to
samples of the continuous transform at values 0, Au, 2Au, ..., (N-1)Au. In other words, F(u)
represents F(uAu). This definition is similar to that used for the discrete f{x), except that the
samples of F(u) start at the origin of tyhe frequency axis. The terms Au and Ax are given by

the expression

1

=— 13
Au N (3.13)
In the two dimensional case the discrete Fourier transform pair is
1 M-IN -1
Fluy) =3 2. 2.7 (e.y) exp|~j2m (e | M+vy  N)] (3.14)
x=0 y=0

foru=0, 1,2, 3, ..., M-1,v=0, 1, 2, ..., N-1, and

f(x,y) = Aiwz-lF(u,v) exp[er:(ux/ M+v_'y/N)] (3.15)

u=0 y=0
forx=0,1,2,..,M-1and y=0, 1, 2, ..., N-1

Sampling of a continuous function is now in a two dimensional coordinate system with
divisions of width Ax and Ay in the x and y axis, respectively. In the 1-D case the discrete
function f{(x,y) represents samples of the function f (xo +xAx, y, + yAy) for x=0, 1, 2, ...,
M-1 and y=0, 1, 2, ..., N-1. Similar technique is applied to F(u,v). The sampling increments
in the spatial and frequency domains are given by |

1
= .16
Au e (3.16)
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and
A 1 3.17
y=— .

When images are sampled in a square array, M=N and

1 N-IN-1
Flu,v) = onéf(x,y) exp[—j27r(ux+vy)/N] (3.18)
foru, v=0, 1, 2, ..., N-1 and
1 N-oIN -1
£y) =37 L 2Fwv) explj27 (u +) 1 V] (3.19)

for x, y=0, 1,2, ..., N-1. Note that 1/N term is in both Equation 3.18 and 3.19. Because
F(u,v) and f{x,y) a Fourier transform pair, the grouping of these constant terms is arbitrary.
In practice, images typically are digitized in square arrays, so I will be mostly use the

Fourier transform pair in Equation 3.18 and 3.19.
3.2.1 Zig-zag order

In the encoding process of discrete Fourier transform first of all, image pixels are
grouped into 8x8 blocks, and each block is transformed by the DFT formulation (Equation
3.18) into a set of 64 values referred to as DFT coefficients. The fist one of these values is
referred to as the DC coefficient and the other 63 as the AC coefficients. Than these 64
coefficients are arranged in order by the zig-zag order rule which is shown i Figure 3.3.
The DC coefficient is most important coefficient in a 8x8 block. Because it contains more
image informations than the all other AC coefficients. The DC coefficient and following few
AC coefficients are also contains the low frequency features of an image. The rest of the
coefficients represent the high frequency features of an image. In the discrete Fourier
transform compression technique some of the coefficients including the DC one are stored
into memory. Since the rest of the coefficients are set to zero a compression ratio is
obtained. The reconstructed image is obtained by using inverse discrete Fourier transform
formulation (Eq 3.19). Since the some of the coefficients are set to zero in the copression
algorithm the reconstructed image will be noisy. The encoder and the decoder algorithms
are given by the block diagrams in Figure 3.4 and Figure 3.5 respectively.
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AC1
DC »L AC28
N e
7 "\
AC35 ACB3
Figure 3.3 Zig-Zag Order
x8 g
IMAGE —| DFT f—|Z9220 —{ Encader | Compressed
Order Image
BLOCKS data

Figure 3.4 DFT - Based Compression Block Diagram

Compressed Inverse
image +| Decoder b—| Zig-Zag }—| IDFT |— Reconstructed
data Order image data

Figure 3.5 DFT - Based Decoder Block Diagram

In the compression algorithm only the phase or the magnitude of the coefficients are
stored into the memory. If the number of stored coefficient is n then the compression ratio=

n/8 bit/pixel. Some examples of this technique are given in Figure 3.6. .
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3.2.2 Applications of DFT based compression technique

(a) 256x256 Original Lena Image (b) Displaying |F(u,v)|. The brighhter the

pixels the bigger the |F (u, v)| values

YL A

(c) Lowpass Filtered Image (IDFT) with (d) Highpass Filtered Image (IDFT) with
Using the Coefficients Between land 11in ~ Using the Coefficients Between 20and 64 in
the Zig-Zag Order the Zig-Zag Order

Figure 3.6 Displaying The Different Features Of DFT
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(a) MSE=281.68, SNR=23.63 dB, (b) MSE=205.59, SNR=25.00 dB,
Comp. Rati10=0.125 bit/pixel Comp. Ratio=0.25 bit/pixel

(c) MSE=173.54, SNR=25.74 dB, (d) MSE=127.04, SNR=27.09 dB,
Comp. Ratio=0.5 bit/pixel Comp. Ratio=1.0 bit/pixel
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(e) MSE=104.45, SNR=27.94 dB, (f) MSE=54.65, SNR=30.75 dB,
Comp. Ratio=2.0 bit/pixel. Comp. Ratio=4.0 bit/pixel.

Figure 3.7 Reconstructed Images at Different Compression Ratios

3.3 DISCRETE COSINE TRANSFORM (DCT) AND COMPRESSION

Discrete cosine transform which is quite similar to DFT is used as a compression
technique. This algorithm begins with blocking the image into 8x8 pixel size. After finding
64 coefficients by the help of DCT formulations the Zig-Zag order rule is applied. Then
some of the coefficients are stored into memory while the rest of them are set to zero. As
we use a few of coefficients in the reconstruction algorithm a compration ratio is achieved.
DCT of a pixel is a real number, but DFT of a pixel is a complex number. Because of this
reason DCT has less calculation complexity than the DFT. So DCT is more popular than
DFT [4].

The 1-D discrete cosine transform (DCT) is defined as

Flu) = 2248 CO{MI—):I

2N
foru=0, 1, 2, ..., N-1. Similarly, the inverse DCT is defined as

£(k) = le-gw(u)ﬁ’(u) co{%j\‘f—ﬂ (3.21)

(3.20)
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for k=0, 1, 2, ..., N-1. In both Equation 3.20 and 3.21, w(u) is
1/2 for u=0

= 22
w(u) 1 for u=1,2,..,N-1 (3.22)
The corresponding 2-D DCT pair is
LSS a(2m+1)| | 2(2n+1)
3.23
”§'§4f m,n) co IN co N (3.23)
fork,1=0, 1, 2, 3, ..., N-1, and
Nl e (2m+1) md(2n+1)
=— k ) 3.24
f( ;gwl( w2 VE(k,]) co N co N (3.24)
form,n=0, 1,2, 3, ..., N-1.
1/2 for k=0 1/2 for 1=0
w, (k) = w, (1) = (3.29)

1 for k=12,.,N-1 1 for I=1,2,.,N-1
In recent years the discrete cosine transform has become the method of choice for image

data compression. Figure 3.8 shows some compression results which were done by DCT

technique.

(a) Original 256x256 “View” Image (b) MSE=895.50, SNR=18.61 dB
Comp. Ratio=0.125 bit/pixel.
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(e) MSE=395.2,SNR=22.2 dB,Comp=1b/p  (f) MSE=254.1,SNR=24.0 dB,Comp=2b/p

(g) MSE=129.9, SNR=27.0dB,Comp=4 b/p  (h) MSE=57.7,SNR=30.5 dB,Comp=6 b/p

Figure 3.8 Reconstructed Images at Different Compression Ratios
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3.4 VECTOR QUANTIZATION (VQ)

Image data compression using vector quantization (VQ) has received a lot of attention in
the last ten years because of its simplicity and adaptability. VQ requires the mput image to
be processed as vectors or blocks of image pixels. The encoder takes a vector and finds the
best or closest match, based on some distortion criterion, from its stored codebook. The
address of the best match is then transmitted to the decoder. The decoder takes this address
number and finds the corresponding vector from its codebook. The reconstructed image is
obtamed. Data compression is achieved in this process because the transmission of the

address requires fewer bits than transmitting the vector itself [9],[5].

The performance of encoding and decoding by VQ is dependent on the available
codebook and the distribution of the image data relative to it. Hence, the design of an
efficient and robust codebook is very important in VQ. Linde, Buzo and Gray first
suggested a practical suboptimal clustering analysis algorithm, known as the LBG algorithm
to generate a codebook based on some training set. It is said that the algorithm only
guarantees a locally optimum codebook relative to the source data used (the training set).
The simulated annealing (SA) method of generating a codebook tries to obtain a global
optimum by a stochastic relaxation technique. Another algorithm, called deterministic
annealing uses a fuzzy clustering and leads to a global optimum.

The size of codebook and the vector dimension also play a major role in determining the
overall performance. From Shannon’s rate distortion theory we know that the larger the
vector dimension, the better the potential performance. However, with increased vector
dimension the required codebook size also increases, and the result is an exponential
mcrease in encoding complexity. So for practical limitations one is forced to work with low-
dimensionality VQ with lesser quality, despite the fact that better VQ performance is
theoretically possible. The increase in codebook size also introduces the problem of empty

cells in the generated codebook. Empty cells makes the codeword zero.
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3.4.1 Codebook design by LBG algorithm

A vector quantizer can be defined as a mapping Q of K-dimensional Euclidean space R*
into a finite subset Y of R*. Thus,

Q:Rt>7Y (3.26)
where Y = (ii ;i=12,3, ..., N) is the set of reproduction vectors and N the number of
vectors in Y. It can also be seen as a combination of two functions : an encoder, which

views the input vector x and produces the address of the reproduction vector specified by
Q(x), and a decoder, which uses this address to produce the reproduction vector x. If a

distortion measure d(x, f) which represents the penalty or cost associated with reproducing

vectors x by x is defined, then the best mapping Q is the one which minimizes the distortion.
The LBG algorithm and other variations of this algorithm are based upon this minimization,
using a training data set as the signal [15],[10].

One simple distortion measure for waveform coding is the square error distortion given

by
A All2 & A g
d(x, x) =|x =% = jZO(xj —xj) (3.27)

K is the number of x vectors.

The goal in designing a vector quantizer is to obtain a quantizer consisting of N
reproduction vectors, such that it minimizes the expected distortion. If there is no other
quantizer that can achieve the minimum expected distortion this condition can be provided.
Lloyd proposed an iterative nonvariational method known as his “Method 1” for the design
of scalar quantizers. Recently, Linde, Buzo and Gray extended Lloyds’ basic approach to

the general case of vector quantizers.

Let the expected distortion be approximated by the expression

N-L

D(x: q(x)) = % ;d(xi’ xAi) (3.28)
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The LBG algorithm for a known distribution training sequence follows these rules :

1) Let N=number of levels ; distortion threshold € > 0. Assume an initial N level
reproduction alphabet ;10, and a training sequence (xj 3 j=0,1L2,..,n— 1), and m= number

of iterations, set to zero.

2) Given A,=(y;=12,..,N), find the minimum distortion partition

P(zam) = (S, ;i=1 ..., N) of the training sequence : x; € 5, if d(xj,y,) < d(xj,y,) for all

1. Compute the average distortion.

Dm=D[(;1m,p(am))]=n_1§mm,e,,md(x,,y) (3.29)

HIf (Dm_1 —Dm) /D, < g, stop the iteration with /im as the final reproduction alphabet;

otherwise continue.

4) Find the optimal reproduction alphabet JE(P(Z,,,)) = (J?(S,) ;i=1,2,..,N ) for P( Am)
where

m

AL
x(S')—”S:" 2, (3.30)

FEI
5) Set .»:1,,,+1 = JE(S’,), increment m to m+1, and go to (2).

In the above iterative algorithm an initial reproduction alphabet ;10 was assumed i order
to begin the algorithm. There are several techniques to obtain the initial codebook. The
simplest technique is to use the first widely spaced words from the training data. Linde,
Buzo and Gray used a splitting technique where the centroid for the training sequence was
calculated and split into two close vectors. The centroids or the reproduction vectors for the
two partitions were then found. Each resulting vector was then split into two vectors and the

above procedure was repeated until an N level initial reproduction vector was obtained.
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Splitting was performed by adding a fixed perturbation vector € to each vector y,

generating two vectors y, +¢&, ), — €.

Input
vector | Nearest Table Qutput
i Neighhor'—'M—u Look up S
Rule ‘
XX XX X X X X
X X X X X X X X
X X X X X X X X
HX XX X X X X
u T =
= .
Codebook Codebook
[ROM) (ROM]

Figure 3.9 Block Diagram Of Simple VQ
3.4.2 Appication

The vectors that represent an image can be selected with different sizes. However,
increasing the vector sizes also adds computationai complexity to our work. So the most
common vector sizes are selected 1x2, 2x2, 4x4 and 16x16 pixel dimensions respectively.
Below, I gave some original images and their vector quantized images with MSE (mean
square error), bit rates and SNR (signal to noise ratio) at different vector sizes. The MSE
and SNR formulations are given in Eq. 3.31 and Eq 3.32. Here, N is the number of pixels in

the image.

N-IN-1

MSE = %ZZ(xy %) ~ (3.31)

1=0 j=0

MSE
SNR = -10log 255

dB (3.32)
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Figure 3.10 VQ Results at Different Block Sizes



(c) Block Size=2x2 pixels, Codebook
Size=4, MSE=196.38, SNR=25.120 dB,
Compression=0.5 bit/pixel

(b) Block Size=2x2 pixels, Codebook
Size=2, MSE=448.38, SNR=21.61 dB,
Compression=0.250 bit/pixel

(d) Block Size=2x2 pixels, Codebook
Size=8, MSE=109.790, SNR=27.72 dB,
Compression=0.75 bit/pixel

31
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(e) Block Size=2x2 pixels, Codebook  (f) Block Size=2x2 pixels, Codebook
Size=16, MSE=82.04, SNR=29.0 dB, Size=64, MSE=69.92, SNR=29.68 dB,

Compression=1.0 bit/pixel Compression=1.5 bit/pixel

Figure 3.11 VQ Results at Different Codebook Size

Table 3.1 Codebook of the Image in Figure 3.11 (e).

Number | Codeword (xl, X, 5 X5, x4) Number | Codeword (xl, X,, X5, x4)
[ | 44 45 43 43 9] 58 55 64 61
[2] 158 165 157 164 [10] 154 150 156 152
[3] 94 91 97 93 | " [11] 100 119 82 102
[4] 126 129 127 130 [12] 139 123 131 114
[5] 72 76 65 69 [13] 80 76 83 79
[6] 179 173 176 175 [14] 194 194 193 193
[71 108 103 111 107 [15] 116 119 116 119
[8] 147 145 144 143 [16] 135 137 137 139




Table 3.2 Codebook of the Image in Figure 3.10 (d).
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N Codeword N Codeword N Codeword N Codeword
[11 {166 179 | [331 [183 191 | 651 |109 131 [971 87 93
[2] 174 176 [34] | 185 186 [66] [110 146 [98] 82 88
[3] 172 171 [35] | 183 182 [67] | 122 129 [99] 91 76
[4] 166 170 [36] | 188 184 [681 | 126 126 | [1001 | 93 85
[S] 175 161 [37]1 {180 178 [69]1 | 117 117 | [101] 70 91
[6] 188 162 [38] (180 173 [70]_ | 115 122 | J102] 60 86
[71 191 150 [39] | 175 183 [71] [ 125 120 | [103] 80 104
[8] 195 129 [40] | 180 183 [72] 1121 121 | [104] 64 111
[91 157 159 [411 | 190 190 [731 [149 96 | [105] 108 75
[10] [ 158 167 [42] | 188 189 [74] | 150 115 | [106] 128 79
[11] | 167 164 [43]1 | 205 179 [751 | 175 96 | 1071 | 138 44
[12] | 163 160 [44] [193 178 [76] | 180 64 | [108] 109 47
[13] [124 192 [45] 195 197 [771 1132 127 [ J109] 72 73
[14] | 103 177 [46] [ 196 194 [78] 136 123 | [110] 78 80
[151 (157 193 [47]1 1192 195 [79]1 | 129 132 | [111} 87 51
[16] | 145 178 [48]1 | 193 192 [80]1 | 134 136 | [112] 83 65
[17]1 {161 134 [491 [211 209 [81]1 | 127 104 | [113] 38 45
[18] | 173 146 [50] | 209 212 [82] | 126 114 | [114] 42 51
[19] | 160 151 [51] | 208 205 [83] [ 114 104 | [115] 41 37
[20] [ 155 153 [52] 1207 208 [84] | 117 110 | [l16] 49 35
[21] {150 153 [53] 1219 220 [85]1 1109 114 | [117]1 27 21
[22] | 151 159 [54]1 | 218 216 [86] | 114 113 | [118] 22 28
[23] [151 146 [55] | 213 216 [871 107 108 | f1191 39 32
[24] [146 149 [56] | 215 212 [88] | 100 108 | [120} 32 30
[25] | 143 131 [571 1200 200 [891 68 153 | [121] 41 91
[26] | 141 131 [58] {200 197 [901 50 132 | [122] 44 71
271 (141 141 [59]1 | 196 200 [91] 87 128 | [123] 64 68
[28] | 143 145 [60] | 198 199 [92] 99 117 | [1241 59 6l
[291 | 135 143 [61] |204 201 [93] [ 103 99 | [125] 69 54
[301 | 125 145 [62] | 201 202 [94] | 109 98 | [126] 67 39
[311 [132 163 [63] | 202 206 [95] 95 102 | [127] 56 51
| _[32] | 140 155 [64] | 205 204 [96] 95 94 | [128] 48 53

Table 3.3 Codebook of the Image in Figure 3.11 (b).

Number Codeword (x1 s Xy5 X3, x4)
1] M8 M8
2l 139 139 139 139
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3.5 HIERARCHICAL FINITE STATE VECTOR QUANTIZATION
(HFSVQ)

The hierarchical finite state vector quantization is a quite new technique which is
developed on the basis of different VQ techniques. In the HFSVQ, an original image is
divided to blocks of different sizes, which are then assigned into different layers, according
to their gray-scale contrast. The blocks of low contrast which are located in a smooth region
of the image will have large sizes and be assigned into higher layers. Fewer codewords can
be used in the higher layers since there are strong correlations between the pixels in the
smooth regions. The blocks located in edge regions where the gray scales vary dramatically
from pixel to pixel need large number of codewords to represent all of the different block

types [18].

There are two parts in HFSVQ. One part consist of the structure codes which provide
the data of layer assignment of the image blocks. The other part consists of the local address
codes of the codewords in the codebook. It is proved that this coding scheme is more
efficient than VQ and by using HFSVQ we achieve a further bit rate reduction especially on

the biomedical images.

3.5.1 Structure map construction

Any gray level image can be divided into several regions according to its gray scale
contrast. The regions with low contrast correspond to the smooth area of the image and the
regions which have edges with different sharpness demonstrate relatively high gray scale
contrast. In this work, I used four types of layers. The higher layers have the blocks in

smooth regions and the lower ones have the blocks in fluctuating regions.

Fist, we decompose the whole image into a group of blocks of size 16x16. If the gray
scale contrast in a block is lower than a given threshold, the block is assigned into layer 1

(Ll), which collects the blocks located in the smoothest regions of the image. Then we
decompose the rest of the blocks into subblocks of size 8x8. The same threshold is used and

blocks located in a fairly smooth regions are assigned into layer 2 (LZ) Finally, we furter
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decompose the remainder into blocks of size 4x4 and assign them to the edge layer, layer 3

(Ls). In order to obtain more perceptual result we need to provide a more accurate edge

reconstruction. Therefore a special layer for edges, layer 4 (L4) is constructed from layer 3.

Layer 4 collects the blocks with large gray scale transition by using a threshold with higher
value. Here, the gray scale contrast is calculated by using horizontal gradyent and
perpendicular gradyent. The horizontal gradyent gives us the average difference between the
horizontal pixels in a block. The perpendicular gradyent gives us the average difference
between the perpendicular pixels in a block. If the both gradyents in a block are smaller than
the threshold, then that block is used in the smooth layer.

If our image size is 512x512, then the procedure above is used. Otherwise, for example,

if the image size is 256x256 then the corresponding block sizes must be 8x8 for (Ll), 4x4
for (Lz) and 2x2 for (L,) and (L4).

After each layer has its own blocksi, then the LBG rule is applied to the layers to find the
codebook for each layer. 4x4 codeword size is used in all LBG trainings. There are some

advantages for this subcodebook generation strategy :

1) Only layer members are involved in training for generation of the codebook. Both the
iteration times and the number of comparisons in each iteration are considerably reduced.

As a result, the total training time can be shortened.

2) By applying layer assignment, we can adjust the size of each codebook according to
the accuracy requirement for reconstruction of the different regions of an image by either

choosing the threshold values or changing the sizes of the codebook for specific layers.

In the application 8 codewords for layerl and layer 2, 32 codewords for layer 3, 128
codewords for layer 4 are found by the LBG algorithm. This means, we need only 3 bits to
represent the layer 1 and layer 2, 5 bits for the layer 3 and 7 bits for the layer 4. So a
compression is achieved. Compression result are stored into the computer memory by the
help of a structure tree shown in Figure 3.12. The assignment result can be demonstrated as
a structure map shown in Figure 3.13. In Figure 3.13 there are zeros and ones which are
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called structure codes. Structure codes are needed to record the structure map which is
based on the branch distribution of the structure tree. The symbol “*”” in Figure 3.13
indicates that there is a codeword address code inserted between the structure codes. In the
reconstruction algorithm the structure codes are decoded again by the help of the structure
tree.

Figure 3.12 Structure Tree

15
L. | Ls
L.
La | Ls
L,
Ls | Lu
L. :
L, | Ls
0 15 16 3

Formulation: 0* 1 10 0* 0* 11 o* 1* 0 1*
L, Lax4 L. L. Lssls Ls L, Ly Ly

Figure 3.13 Structure Map
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(f) Structure Map At Threshold 1=6.0,

Threshold 2=11.0

(e) Original 256x256 Peppers Image
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3.6 CONCLUSION

A comparison of compression techniques according to MSE and bit rate was given in
Table 3.5, Table 3.6, Table 3.7, Table 3.8.

Table 3.4 Histogram informations of some original images

NAME SIZE HISTOGRAM INFORMATION
PEPPERS 256x256 pixel High Contrast Image
BABOON 256x256 pixel High Contrast Image
LENA 256x256 pixel Low Contrast Image
TIFFANY 512x512 pixel Bright Image

Table 3.5 MSE results of the reconstructed images at 2 b/p compression.

Comp. Ratio RUN
2 bit/pixel LENGTH DFT DCT vVQ HFSVQ
PEPPERS 74.98 127.84 36.13 255.60 145.63
BABOON 304.14 235.55 187.99 183.47 134.45
LENA 85.94 104.45 43.02 79.59 108.04
TIFFANY 39.64 48.87 23.31 74.32 74.32

Table 3.6 MSE results of the reconstructed images at 0.5 b/p compression.

Comp. Ratio RUN

0.5 bit/pixel | LENGTH DFT DCT vQ HFSVQ
PEPPERS 658.43 220.48 151.07 304.80 95.69
BABOON 925.64 356.98 339.39 336.95 293.57
LENA 668.00 173.54 137.26 139.41 76.03
TIFFANY 319.21 87.27 72.34 107.49 ‘ 100.18




Table 3.7 MSE results of the reconstructed images at 0.333 b/p compression.

Comp. Ratio RUN
0.333 b/p LENGTH DFT DCT vQ HFSVQ
PEPPERS 962.42 242.83 180.47 120.30 117.98
BABOON 1130.97 380.71 364.94 308.71 289.26
LENA 1048.60 179.11 145.89 99.04 100.78
TIFFANY 574.02 91.46 76.58 64.83 62.32

Table 3.8 MSE results of the reconstructed images at 0.250 b/p compression.

Comp. Ratio RUN
0.250 b/p LENGTH DFT DCT vQ HFSVQ
PEPPERS 1212.73 319.75 286.57 175.84 153.57
BABOON 1197.55 434.97 424.34 371.41 322.75
LENA 1223.73 205.12 180.70 141.56 117.11
TIFFANY 926.14 109.05 102.39 69.56 61.15

We can say that the Run Length coding is efficient at low compression ratios. MSE of
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the reconstructed image increases exponentially when the bit rate is decreased. So, at the

high compression ratios Run Length Algorithm becomes useless.

The MSE values of the reconstructed images of DCT and DFT are quite reasonable at
all bit rates. We can also see that MSE value of DCT is always smaller than DFT’s. As a
result it can be said that, in high compression rates DCT and DFT are better than Run

Length Coding.

At high compression rates such as 0.5 bit/pixel, 0.33 bit/pixel, 0.25 bit/pixel the MSE of

HFSVQ algorithm decreases to an optimum value. Especially the HFSVQ technique has the
lowest MSE value at high compression rates. This is because of the hierarchical blocking
structure of the HFSVQ.
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CHAPTER FOUR
BIOMEDICAL IMAGE COMPRESSION

4.1 INTRODUCTION

There are two types of biomedical imaging; one is CT (Computer Tomography) and the
other one is MRI (Magnetic Resonance Imaging).

CT and MRI systems are quite similar to each other. The MRI data is obtained from a
patient by using following method:

The patient is placed in a magnetic field. Usually the strength of the field is between 0.5
and 1.5 Tesla. This field aligns the atoms with a magnetic moment, such as hydrogen atoms.
The hydrogen atoms are then perturbed by an RF signal. As the atoms return to their
equilibrium position, they emit their own RF signal, with a frequency that depends on the
local magnetic field strength. By introducing variable gradients in the applied fields, and
taking phase shifts in the signal into account, the hydrogen density within a particular
volume can be reconstructed from the RF signals. The information obtained in this way is a
measure of the amount of magnetisation of the hydrogen in each volume element. This
value differs fo different types of tissues due to differences in the hydrogen density and its
chemical bonds [12].

Both MRI and CT are commonly used in hospitals. In an average sized hospital, many
tera-bytes of digital imaging data are generated every year, almost all of which has to be
kept and archived. Archieving this large amount of image data in the‘computer memory is
very difficut without any compression.
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There are many biomedical image compression algorithms. These techniques were
improved in the last ten years. The most common technique is Vector Quantization [2]. The
other techniques are Interframe coding [11], Discrete Hartley Transform (DHT) which is
the alternative to the Discrete Cosine Transform [16], Mixed Transform [13] and Entropy-
Coded DPCM [1]. JPEG algorithm can also be used to compress the biomedical images.

4.2 APPLICATION OF HFSVQ ALGORITHM ON BIOMEDICAL
IMAGES

In this chapter HFSVQ algorithm is going to be applied to different biomedical images.
These images are called BT (Brain Tomography) and MRI (Magnetic Resonance Image).
The image explanations are ;

MRI-1 : The axial cranium section passing through sifenoidal sinus.
MRI-2 : The 7, weighted axial section passing through PONS surface.
MRI-3 : A Knee image.

BT : The axial cranium section passing through the ventricular plate. In the soft tissue
algorithm, intraventricular mass and gray matter are observed.

When the HFSVQ algorithm was applied on MRI-1, the compression ratios 0.235
bit/pixel and 0.200 bit/pixel were obtained at the MSE of 17.39 and 28.9 respectively. Since
the background area of MRI-2 is smaller than the MRI-1, lower compression ratios are
obtained on MRI-2 ; 0.64 bit/pixel and 0.496 bit/pixel at the MSE of 52.17 and 57.47
respectively. The compression ratios of 0.58 bit/pixel at the MSE of 35.59 was obtained for
the BT image. When the algorithm was applied on the 512x512 pixel biomedical image
(MRI-3) , high compression ratio of 0.184 bit/pixel at the MSE of 61.5 was obtained.
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(a) Original 256x256 MRI-1 Image (b) Structure map
“The axial cranium section passing through

sifenoidal sinus”

(c) Threshold 1=5, Threshold 2= 60, (d) Threshold 1=8, Threshold 2=70,
MSE=17.39, SNR=35.72 dB, Compression = MSE=28.90, SNR=33.52 dB, Compression
Ratio=0.235 bit/pixel. Ratio=0.200 bit/pixel



(e) Original 256x256 MRI-2 Image
“The T, weighted axial section passing (f) Structure Map
through PONS surface”

(g) Threshold 1=0.5, Threshold 2=100, (h) Threshold 1=6.5, Threshold 2=100,
MSE=52.17, SNR=30.95 dB, Compression = MSE=57.47, SNR=30.54 dB, Compression
Ratio=0.64 bit/pixel. Ratio=0.496 bit/pixel.



45

(k) Original 256x256 BT Image () Threshold 1=1.0, Threshold 2=100,
“The axial cranium section passing through ~ MSE=35.59, SNR=32.62 dB, Compression
the ventricular plate. In the soft tissue Ratio=0.58 bit/pixel.

algorithm, intraventricular mass and gray

matter are observed”

(m) Original 512x512 MRI-3 “Knee” (n) Structure map
Image
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(p) Threshold 1=2.0, Threshold 2=50,
MSE=61.5, SNR=30.24 dB, Compression
Ratio=0.184 bit/pixel.

Figure 4.1 HFSVQ Applications On Biomedical Images

It is seen that bit rate and SNR of HFSVQ algorithm were better than all other methods
that was mentioned above. As mentioned in chapter 3, since the block sizes change
acording to the gray levels of the images, HFSVQ saves the detailes of the images. The
algorithm also has very high SNR. So we can use this algorithm in biomedical image

compression safely.

4.3 THE PERFORMANCE RESULTS

In the Interframe Coding [11], the inherent noise of MRI is dealt with by using a median
filter within the estimation loop. The residue frames are quantized with a zero-tree wavelet
coder, which includes aritmetic entropy coding. The results of this coding technique are
approximately 1.2 bit/pixel, 1.4 bit/pixel, 1.6 bit/pixel at the SNR of 24 dB, 25 dB, 26 dB
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respectively on a 256X256 MRI brain image. The other compression technique is the Tree-
Structure Vector Quantization [2]. By using this technique the compression ratios of 0.5
bit/pixel, 1 bit/pixel, 2 bit/pixel at the SNR of 25 dB, 32 dB, 40 dB can be obtained
respectively. Discrete Hartley Transform (DHT) [16] is the biomedical image compression
technique which is the alternative to the Discrete Cosine Transform. DHT equations are
quite similar to DCT equations. By using the algorithm the compression ratio of 1.6 bit/pixel
at the SNR of 37.7 dB can be obtained on a biomedical image. The other technique is the
Mixed Transform [13]. This technique consists of two or more nonorthogonal transforms.
Both lossy and lossless compression implementations are conmsidered. By using this
technique the compression ratio of 1.6 bit/pixel at the SNR of 28.42 dB can be obtained on
a medical image. An other technique is Entropy-Coded DPCM [1]. This algorithm is better
then the others. In this technique, 0.84 bit/pixel at the SNR of 38.1 dB can be obtained.
Almost all other lossy compression of medical images performed by using variations on the
standard discrete cosine transform (DCT) coding algorithm combined with scalar
quantization and lossless coding. In the JPEG compression algorithm DCT is combined with
aritmetic coding [1],[6]. In this algorithm 0.86 bit/pixel can be obtained at the SNR of 37.4
dB.

All methods that is mentioned above had tried to obtain very low MSE values. So their
compression ratios were very low. However, in chapter 4.2 the Hierarchical Finite State
Vector Quantization algorithm was used to compress the biomedical images. By using this
method 0.235 bit/pixel and 0.184 bit/pixel were obtained at the SNR of 35.72 dB and 30.24
dB respectively.

The results of HFSVQ shows that the goal of this algorithm is to obtain very high

compression ratios at the MSE of optimum values which was achieved in this thesis.
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CHAPTER FIVE
CONCLUSION

This thesis presents different types of image compression techniques that are commonly
used in the last twenty years. These compression techniques are Run-lenght coding, Discrete
Fourier Transform, Discrete Cosine Transform, Vector Quantization and Hierarchical Finite
State Vector Quantization which is an improved version of VQ. A comparison of these
techniques according to MSE and bit rate was given in Table 3.5, Table 3.6, Table 3.7 and
Table 3.8.

When the compression ratio is very low such as 1 bit/pixel, 2bit/pixel, 4 bit/pixel etc,
Run Length coding is efficient. MSE of the reconstructed image increases

exponentially when the compression ratio is increased. So, at the high compression ratios
Run Length Algorithm becomes useless.

DFT and DCT are the standart compression techniques. They are also used to filter the
mmages. The compression formulations of DFT and DCT are quite simple to implement. The
MSE values of the reconstructed images of DCT and DFT are quite reasonable at all bit
rates. We also see that MSE value of DCT is always smaller than DFT’s. Because, although
we obtain a magnitude value and a phase value for each pixel after DFT process, we only
use one of them in the compression process. So, this causes extra error on this system. Since
DCT result value is only magnitude, we do not need to ignore any value in the compression
process. As a result we can say that, in high compression ratios, DCT and DFT are better
than the Run Length Coding,

At low compression rates such as 1 bit/pixel, 2 bit/pixel, 4 bit/pixel VQ and HFSVQ are
not very good according to the other compression techniques, this is bacause of the limited
codebook size. At high compression rates such as 0.5 bit/pixel, 0.33 bit/pixel, 0.25 bit/pixel
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the MSE of these algorithms decrease to an optimum value. Especially the HFSVQ
technique has the lowest MSE value at high compression rates. This is because of the
hierarchical blocking structure of the HFSVQ.

In this thesis the HFSVQ compression technique was applied to the biomedical images.
Since the black area (background) in the used image is quite large, HFSVQ algorithm is
very suitable. So, optimum MSE values and high compression rates were obtained, which is

generally required in a compression algorithm.

Nowadays, both MRI and CT are commonly used in hospitals. In fact, archieving this
large amount of image data in the computer memory is very difficult without high
compression. The final goal in the compression techniques is to obtain very low MSE
values. So the compression ratio is also very low. However, using the HFSVQ algorithm
optimum MSE values are obtained at very high compression ratios in this thesis.
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