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ABSTRACT

It is proved that for every proper class A of short exact sequences of modules over
an integral domain R the class A ={E | rE€A, for some OzreR} is proper. For every
proper class A containing the class §0 of quasisplitting sequences and reR the class

rA is proper. In the case of Z-modules nA-projective and nA-injective modules are

studied.




OZET

Bir R tamlik bolgesi iizerindeki modiillerin kisa tam dizilerinden olusan keyfi A
6z simifi igin 2\={E |rEcA, for some O#reR} sinifinin 6z sif oldugu ispat
edilmigtir. .§0 kuazipargalanan diziler sinifim igeren her A simfi ve reR igin rA’nmin

6z simif oldugu ispat edilmistir. Z-modiiller i¢in nA-projektif ve nA-injektif modiiller

incelenmigtir.
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CHAPTER ONE
INTRODUCTION

1.1. Introduction to Modules and Homological Algebra

Homological algebra first arose as an algebraic tool for the study of topological
spaces, that is as a branch of algebraic topology. Subsequently applications to

algebra (via non- abelian group theory, algebraic geometry etc) were found.

The best category for homological algebra is the category of modules, in
particular Z-modules, i.e. abelian groups. On the other hand homological methods
are crucial in module theory and today owing to the application of homological
methods, abelian group theory seems rather a part of module theory than of general
group theory. Since D. Buchsbaum defined proper classes of short exact sequences in
1959. Relative homological algebra became one of the popular themes. It takes its
origin from change of rings and purity of subgroups and studies homological notious

-and properties (such as injectivity, projectivity, homological dimension etc.) with
respect to classes of short exact sequences satisfying Buchsbaum’s axiom. There are
some operations which give rise to new proper classes from given ones. In this thesis

two of them will be studied.

In Chapter Two, some preliminary facts are given. In Section 2.1, a module
structure on Hom(A,B) is defined. In Section 2.2, complexes of modules and their
homology groups are given. For a short exact sequence of complexes the connecting
homomorphisim is defined and the long exact sequence is given. In Section 2.3,
describes the construction of derived functors, in particular functors Ext"(C,A). In

Section 2.4, module structure on Ext"(A,B) is given and it is proved that
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multiplication by a scalar r in Ext"(A,B) is induced by multiplication by the same r in
A. In Section 2.5, the definition of proper classes of short exact sequences and some

relative notions are given. The equivalent conditions for a module to be A-projective

(A-injective) are proved.

Main results are collected in Chapter Three. For a proper classes A let
A——-{E | rE€A, for some 0zreR} In case of Z-modules the class A was studied by
Walker (Walker, 1964) for A=S,, by Hart (Hart, 1974) for A=S and A=D, the class
of all torsion splitting short exact sequences and by R. Alizade (Alizade, 1986) for

every A. For arbitrary integral R, it is proved in Section 3.1, that Aisa proper class.

It is well known that the class of pure exact sequences of abelian groups is

ﬂ ndbs , Abs being the class of all short exact sequences and the class of neat exact

0zneZ

sequences in ﬂpAbs. In Section 3.2, the class r A for reR and every proper class

pisprime
A containing §o is investigated, éo being the class of quasisplitting sequences. It
was shown that A=A for such classes. Using this fact it was proved that rA is
aproper class for A containing éo. As a corallary of this fact the class of neat exact

sequences is proper.

In Section 3.3, nA-projective and nA-injective objects are studied in terms of n in
the case R=Z, i.e. in the case of abelian groups. In particular the complete description
of n4bs-projective and ndbs-injective Z-modules is given. All groups are considered

as abelian and modules which are over an integral domain.




CHAPTER TWO
SOME FACTS ABOUT HOM , EXT

AND
PROPER CLASS

2.1 Hom(A,B) as a Module

Definition 2.1.1 Let us consider a set Hom(A,B)=set of all homomorphisms from

A into B where A and B are R-modules and R be a commutative ring.

For f,geHom(A,B) we define,
(frg)a)=fla)tg(a) acA
(r))(x)=rf{x)

We want to show that Hom(A,B) is a left R-module.

R x Hom(A,B) —~ Hom(A,B)
tf)—>rf

Hom(A,B) is an abelian group under “+” ; O(a)=0, acA, O is the identity

element; (-f)(a)=-f(a) , (-f) is the inverse element.

(1) Distributive laws;

r(frg)y=rftrg

indeed;




(r(f1g))(x)~r(Ng)(x)
= r(f(x)+g(x))
= ri(x)+rg(x)
= (rH)(x)yH(rg)l(x)
(rtr2)f=nf+ rof
indeed;
(mr)H)(X)=(n+r)f(x)
= r1f{(x) +r2f(x)
= (nf)(x)+ (r2f)(x)

(2) ““Associative law’”:

(1 ro)f=n (r2f)
indeed;
(1 D)= r2)Rx)
=11 (nf(x))
=11 ((rzf)(x))

(3) Unitary law:
1 f=f
indeed;
(1D(x)=1f(x)=f(x)
so Hom(A,B) is a left R-module.

2.2 Complexes and Homology Groups

Definition 2.2.1 A complex A is a sequence of modules and maps

neZ with dydy+1=0 all n.




Definition 2.2.2 If A is a complex, then dydn+1=0 implies Im dp+1CKer dn. The n®
homology group H,(A) is Kerd, / Im dy,1 .

One writes Ker d,=Z, (A)=Z, and Im d,:; =B, (A)=B,. Thus
Hi (A)=Z. (A) Bn (A).

Definition 2.2.3 A chain map f:A->A’ is a family of homomorphisms

fa:An=> A, making the following diagram commutative.

Iff:A=>A’ is a chain map, let

Ha(f):Ha (A) > H, (AY)
be given by

ZytBy> fhzp + By’

Usually one writes fy+ or even fo instead of Hy(f).

Definition 2.2.4 Let {A;} icl be a set of modules, {o;} icl be a set of

homomorphisms with some index set 1.

A sequence... Ai;>Ai>A;1=>... is called an exact sequence, if Im a;=Ker o+

for every iel.

+ An exact sequence 0> A>B->C->0is called a short exact sequence.




Define A'——>A —£>A" to be exact if Ker g=Im f. This is exact if and only
if

Al —LyA By A"
is exact for each n.

Theorem 2.2.1 Let 0 > A'—5>A—23>A" >0 be an exact sequence of

complexes. For each n, there is a homomorphism
Sn:Ho(A")>Hna(A")
defined by
2"+By(A”) = i'dp 'z +B..1(AY)

In diagram,;

”

A, —25A 50

4

0>A, , ——>A,

n-1

Theorem 2.2.2 If 0—>A'—H>A—P 3A" >0 is an exact sequences of

complexes then there is an exact sequence

.o H (A)—25H, (A)—3>H,_ (A)—=>H,_ (A)—> ..




2.3 Derived Functors

Definition 2.3.1 Let P be a module. If every diagram

0>A—23B—L35C—>0

with an exact row can be completed by a suitable homomorphism y:P->B, ie. if
there is a homomorphism y:P->B with Boy=¢, for any given homomorphism
¢:P->C, then P is called a projective module.

Definition 2.3.2 Let I be a module. If every diagram

0>A—>B—L5C—0

I
with an exact row can be completed by a suitable homomorphism 1:B->1, i.e. if there
is a homomorphism 7:B->1 with toa=£, for any given homomorphism &:A->1, then I

is called an injective module.

Definition 233 If ... X,»>X,, 2...>X,—>A >0 is an exact

sequence and X; is a projective module i=0,1,2,3.... then the sequence is called a

projective resolution of a module A.

e X, —Sy X | =y X, —>0 is called deleted resolution for A.

An exact sequance 0-»A—55]° —& 54 5 51" .. with injective

thodules I k=0,12....... is called an injective resolution of a module A.

01— 51 5 . is called a deleted resolution for A.




Definition 2.3.4 If f:X, — X, is a chain map for which fe =T, we say f is

over f,

Given a functor T, we now describe its left derived functors L, T (Rotman, 1979).
For each module A, choose, once for all, a projective resolution of A, and let P be

correspendig deleted complex. Next apply T to P, to get the complex

TP, > TP, > TP, >0

Definition 2.3.5 For each module A, (L.T)A=Hy(TPs)=KerTd/ImTds. To

complete the definition of L,T, we must describe its action on f:A~>B. There is a
chain map f : P, — P, over f. Define
fi=(L,T)f L,TA->L,TB
by
(LaT)fE=Hy(TF)
i.e if z,ekertd, then
zHmTdy > (TF) zHmT d’

Definition 2.3.6 For each module A, choose, once for all, an injective resolution

0>A—>E,—L5E —..

and let Eo be the deleted resolution. If T is covariant, define the right derived
functors R"T on modules A by
R"T(A)=H"(TEA)=KerTd"/ImTd"".

Definition 2.3.7 If T=Homg(C, ), then R"T=Ext"g(C, ). In particular,
Ext"r(C, A)=KerHom(C,d")Y/ImHom(C,d"")

Where 0 >A—" E, ¢ »E, —..... is the choosen injective resolution of A.

" Definition 2.3.8 If T=1lomg( ,A), then R"T=Ext"g( ,A). In particular,
Ext"r(C, Ay=KerHom(dy+1,A)/ImHom(d,,A)

Where...—»P, —2—5P, —% 3P — C is the choosen projective resolution of C.
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Finally Ext"r(A,B)=H,(Homg(Pa,B))=H"(Homg(A,Eg)), where P, is a deleted

projective resolution of A and Eg is a deleted injective resolution of B.

If 0B’ — B-—B”—0 is an exact sequence of modules, then there is an exact
sequence
0 — Hom(A, B’) - Hom(A, B) - Hom(A,B")— > Ext'(A,B") — ...
— Ext"(A,B’) - Ext"(A,B) - Ext"(A,B”) — Ext™'(A,B") —> ...
If0—>A"— A— A" — 0 is an exact sequence of modules, then there is an exact
sequence
0 — Hom(A",B) —> Hom(A,B) — Hom(A',B)—2 > Ext'(A",B) — ...
—> Ext"(A",B) - Ext"(A,B) > Ext"(A’,B) > Ext"'(A",B) —> ...

2.4 Module Structure on Ext"(A,B)
Theorem 2.4.1 If R is commutative, Ext"r(A,B) is an R-module.

Proof We know that Homg (P, B) and Homg(A,Ep) are R modules. Hence
KerHom(d,1,B), ImHom(d,,B) and KerHom(A.d"), ImHom(A,d™") are R-modules.

So Ext"r(A, B)=KerHom(dx:1,B)/ImHom(d,B)=KerHom(A,d")/ ImHom(A,d"")

is an R-module.

Let R be commutative and let A be an R-module. If reR, then u:A-> A defined by
a->ra is an R-homomorphism, called multiplication by r.

Theorem 2.4.2 If wA->A is nultiplication by r, then p*:Ext"zx(A, B)=>
Ext":(A,B) is also multiplication by r. If v:B->B is multiplication by r, then
v¥*:Ext"r(A, B)-> Ext"r(A, B) is also multiplication by r.
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Proof There is a diagram
PP P2 A0

0

e DPIDPP A0
where each row is a projective resolution of A. Recall the definition of
u*:Ext"r(A, B)> Ext"r(A, B); first fill in a chain map g over  ( so that g,:P,>Py)
then apply the functor Homg( ,B) to the diagram, and
W¥(zatImdp.1)=gnznt Imdp.;.

We also know that any choice of chain map g over p gives the same pu*. In
particular, if we define g by letting g,:P,~>P, be multiplication by r, then g is a chain
map over [, and

W¥(zotimdy g )=rzy+ Imdp1=r(zo+ Imdy)

The proof of second statement is dual.

2.5 Proper Classes of Short Exact Sequences

Definition 2.5.1 Let A be a class of short exact sequences of modules. If a short
exact sequence
EE0>A—=23>B—E5C—0
Ibelongs to A, a is said to be an A-monomorphism and B an A-epimorphism.A short
exact sequence E is determined by each of the monomorphisim o and epimorphism

B uniquely up to isomorphisim.

The class A is said to be proper, if it satisfies the following conditions
(Buchsbaum, 1959), (MacLane, 1975), (Sklyarenko, 1978).
1) A long with any short cxact sequence A contains every onc isomorphic to it.

~2) A contains all splitting short exact sequences.
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3) The composite of two A-monomorphisims is an A-monomorphism if this
composite is defined. The composite of two A-epimorphisms is an A-
epimorphism if it is defined.

4) If B,o are monomorphisms and Boa is an A-monomorphism, then ¢ is an A-
monomorphism.1f 1,0 are epimorphisms and oy is an A-epimorphism, then §

is an A-epimorphism.

Examples 1) S,, the class of all splitting short exact sequences, is the smalest

proper class.
2) Abs, the class of all short exact sequences, is the largest proper class.

3) S, the class of al pure-exact short exact sequences.

Proposition 2.5.1 Ext4 (C,A) is a subgroup of Extr(C,A) and if R is commutative
then Ext4 (C,A) is a submodule of Extr(C,A).

| Proof It’s obviously known that Exts (C,A) is a subgroup of Extg(C,A). Let
EcExta (C,A), reR and p:A-> A be the multiplication by r in A. Since Ext4 (C,A) is
. a subfunctor of Extg(C,A) we have by Theorem 2.4.2 rE=u*(E)eExt4 (C,A). So
Exta(C,A) is a submodule.

. Definition 2.5.2 Let A be class of short exact sequences. A module A said to be
A-projective (A-injective), if for evey C (A-monomorphism) 6:B>C
c+:Hom(A,B)>Hom(A,C) (o+:Hom(C,A)>Hom(B,A))

is an epimorphism.

A proper class A is said to be projective, if for every module A There is an A-
epimorphism from an A-projective module P onto A. An injective class is defined

dually.

Definition 2.5.3 The smallest proper class containing proper class A, C is called
the sum of proper classes A and C and denoted by A+ C (Pancar, 1997).
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Since the intersection of any family of proper classes is proper, this definition is
well- defined.

Theorem 2.5.1 Let A be a proper class. The following conditions are equivalent

for a module P.

1) P is A- projective.

2) For every short exact sequence 0->A>B->C->0 from A the sequence
0->Hom(P,A)2>Hom(P,B)->Hom(P,C)->0 is an exact.

3) Ext),(P,X)=0 for every module X.

Proof 1)=>2) Let 0—2>A —L >B—15>C—250 be an exact sequence. We
have to prove that 0—=— Hom(P, A)—&— Hom(P, B) —“— Hom(P,C) —*—0
is an exact. In fact we must prove that Imy.=Kerd.. In other words v+ is an
epimorphism. Let feHom(P,C). Since P is a projective, y is an epimorphism and f is
a homomorphism, there is a homomorphisim h:P->B (that is heHom(P,B)) such that
f=y«(h), therefore y- is an epimorphisim.

2)=>3) Let 0—>X—>Y—£ »P—0 be any short exact sequence from
A. Applying Hom(P,.) to this sequence we say by 2) that f::Hom(P,Y)->Hom(P,P) is
an epimorphism. In particular there is a homomorphism g:P>Y such that
fog=f«(g)=1,, i.e. the sequence E is splitting. So every element from Ext,(P,X) is

splitting.

3)=>1) Let E:0——>A——>B—L>C—>0 be any short exact sequence
from A and g:P->C be any homomorphisim. Let g*(E):0>A->D->P->0. Then we
have a commutative diagram with exact rows:
E:0—>A— B >C——0

ERUEANE

g*(E):O———)A————)D—l’-—;‘P——m




Since EcA, we have g*(E)€A, i.e. g*(E)e Ext,(P,A). By 3) g*(E) is splitting,
i.e. there is a homomorphism v: P->D with uov=1,. Then for h=wov: P->B we have

foh=fowov=gouov=go1,=g. So P is A-projective.

Dualy we can prove the following Theorem for A-injective modules.

Theorem 2.5.2 Let A be a proper class. The following conditions are equivalent

for a module L.

1) 1is A-injective.

2) For every short exact sequence 0->A->B->C->0 from A the sequence
0->Hom(C,1)~>Hom(B,I)->Hom(A,1)~>0 is an exact.

3) Ext)(Y,1)=0 for every module Y.
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CHAPTER THREE
MAIN RESULTS

3.1 Classes A

Definition 3.1.1 For every proper class A of short exact sequences of modules

over an integral domain R, we will let A denote the class of the short exact

sequences £ such that rEc A for some 0/reR. Thus;
A ={E| tE€A, for some 0zrcR}
In case of Z-modules the class A was studied by Walker (Walker, 1964) for A=S,,

by Hart (Hart, 1974) for A=S and A=D, the class of all torsion splitting short exact
sequences and by R. Alizade (Alizade, 1986) for every A.

Theorem 3.1.1 A isa proper class for every proper class A.

Proof First, we will prove that Ext ,is an E-functor (Butler & Horrocks, 1961).
We consider homomorphisms f:A=>A’ and g:C’'>C and we suppose that
Ee Ext ;(C,A). Then rE€Exta(C,A) for some O=reR. Since Exta is a functor, we
conclude that  r(fewog™(E))=fs(g*(tE))eExta(C’,A"). This means  that
frog*(E)e Ext , (C',A"). So we have shown that Ext , is a functor. We will show that
Ext, (C.,A) is a subgroup. We take arbitrary E’ and E” in Ext,(C,A). Then nE’,
rE" e Ext4(C,A) for some nonzero r;, reR. Since ExtA(C,A) is a subgroup, it follows
thﬁt m (E'- E")=r(r; E’)-nir(E”)eExta(C,A). rr#0 since r has no zero divisors, so

! ” A a -
—— TC YURSER( ™ =3 S|
DOKUMANTAS 16,7 172 npggrms
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This means that E'- E"€ Ext , (C,A). Now we want to show that Ext,(C,A) is a

submodule. Let Ee Ext,;(C,A), reR. Then sE€A for some nonzero seR. Since

Exta(C,A) is a submodule , s(rE)=r(sE)cA. Therefore rEe A . Hence Ext A(C,A) isa

submodule. Thus, Ext,(C,A) is an E-functor. It will be enough to prove that the

composition of two /A\-monomorphisms i:A>B and jB>D is an A-

monomorphism (Nunke, 1963).

Since the short exact sequence Eo: 0->B->D->G>0 belongs to A. we have
r*(Eqp)=rEo€A for some O#reR. Let us denote the homomorphism of multiplication
by r by the same r:G->G. We consider the epi-mono factorization of the
homomorphism r: r=toc, where 6:G-21G is the standard epimorphism and 1.1G>G
the standard embedding. Then r*=c*ot*. We have the following commutative and

exact diagrams:

Eo
0 0
IR
0 > A > B > C > 0
} RN AR
0——>A—1| 5D > 0E
0 > A > > 0:Es
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0 0
. 0 . > A \‘llé >l .\qlé >l . —> 0:E,
L —— A———7D > F > 0:E;s
0 > A > DZ > FL > 0:E;
Vv _ Y
o ¥/G
A% \
0 0
¥ X

Here r* (Eq): 0>B2>D"">G>0 €A.

We will now show that E;c A . Since E;c A , it follows that k+(E;) €A for some

k+0. We consider the following commutative and exact diagram.

0 0
0 0 \L
0 > > Bt l > > O:kt(E])
k \/ \[
0 > > D> P> 0'ku(Ey)
k
\
0 S A > D~ > F? > 0:E,
v \'
G G
% \ 4 % v
0 0
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Since Ext, is a functor, we conclude that 0->B’->D’’"->G->0 belongs to A. Since

k+(E;)€A, the monomorphism m, being a composition of two A-monomorphisms,

must be an A-monomorphism. Thus, kE, =k.(E,):0 > A—>D" >F" > 0e 4.

Hence, Eze A ;

Obviously, L=Kerf=Kerc=G[r]. We consider the short exact sequence
E3:0>L>F'—L 5 F>0.

Since rL=0, r+(E3)=rE;=r*(E3):0>L>Y->F' >0 splits. We will consider the

commutative and exact diagram

0 ‘ 0
0 0
A A
0 > A > —> F'———> 0:E;s
0 > A > X > F* > 0: E¢
A A
L1k
0 > A > D& > F- > 0E;
0 > A > Xﬂ > T > 0:Eq4
AL oA L
0 0

Since Ext, is a functor, g*(Ej)=Ese A. Since the short exact sequence
rE;=r+(E;):0->L->Y->F'->0 splits, the functioriality of Ext, implies that Esc A,

i.e., nE¢cA for some r#0. But E¢=rEs, hence (r;r) Es= r,E¢. Therefore, Ese A.
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We will prove that r*(E)e A. We put r=@oy, where y:F>rF and ¢@:rF>F are

standard homomorphisms. Then r*=y*op*. We will show that (p*(E)=A. It is easy
to sce that F/Imh=G/rG, hence rFcimh. Then it is obvious that the embedding

@:rFF factors through h, i.e., ¢=hof for some homomorphism &:rF->F. Hence,
O*E)=E*ch*(E). But, h*(E):0>ADD'DF'>0: EscA. Thus, ¢*(E)c A, and,

consequently, Ese A 1t is then obvious that Ec A . This completes the proof of the

theorem.
3.2 Classes rA

Definition 3.2.1 For every proper class A of short exact sequences of modules
over an integral domain R, we will let rA denote the class of the short exact sequence

rE such that E€A, reR. Thus;
rA={rE| EeA, reR}.

Definition 3.2.2 Let S, be class of all splitting short exact sequences. Then .§0 is

. the class of E such that rE is splitting short exact sequences for some nonzero reR.

For Z-modules (i.e. abelian groups) the class §0 was studied in (Walker, 1964)

where it was denoted by Text and short exact sequences from §0 are said to be

torsion splitting (Fuchs, 1970).

Theorem 3.2.1 A+ éo =A.

Proof Denote A+ éo by B. Every E€A can be written as E=1-E (r=1), therefore

Ec A and then AC A . On the other hand, S, CA, therfore .§o cA. Thus A+ §0 cA.

Conversely, let E: 0>A>B-2>C~>0¢ A . Then rE€A for some r=0. Let us denote
by r the endomorphism of multiplication by r on A. Then by Theorem 2.4.2 1E is the

lower exact sequence in the following commutative diagram:
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E: 09A>B->C>0c A
tE: 0>A-B'2C-0cA

The endomorphism r:A-> A can be represented in the natural way r=aoo, where

o:A2>r1A is epimorphism and ci:rA-> A is inclusion map.
We have the following commutative diagrams with exact rows and columns:
0 . 0
L
Alrl  Alr]

E:O——)l >B—2>C s0c A

1]

E':0>rA—>B,—2>X——0

b

0 0

[ \/ v 8

E":0 >TA >B, —>X——0
o p
A2

rE:0——>A >C »0c A
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A/rA is a bounded group. Therefore the short exact sequence
0->rA->A->A/rA->0 belongs to éo and since éo B, it belongs to B, i.e., a is a B-

monomorphism. Since rEcAcB, u is a B-monomorphism. Therefore, by Definition
2.5.1, woa=Bov is a B-monomorphisim. Hence, by Definition 2.5.1, v is a B-

monomorphism. Thus E'eB.

A[r] is bounded. Hence the short exact sequence 0->A[r]>B->B;->0 belongs to

éu and since §0 cB, it belongs to B, i.e. y is a B-epimorphism. Since E'eB, § is a
B-epimorhism. By Definition 2.5.1 8=8oy is a B-epimorphism. Therefore EcB and

we have A cB.

Theorem 3.2.2 If .§0 cAthen A= A.

Proof By Theorem 3.2.1 we know that A+ A(, =Aand é(, CA, hence A= A.

Theorem 3.2.3 A short exact sequence E: 0 ——>A—+*>B-—>C——0 is

. divisible by nonzero reR if and only if i A=A~r;B, for all ry\r.

Proof If a is multiplication by r in A, then Ima-=rExt(C,A). E€Ext(C,A) exactly
.if A/rA is a direct summand of B/rA by Theorem 53.1 in (Fuchs, 1970). This means
that there is a p: B/rA-> A/rA such that p(atra)=atrA and A/rACB/rA.

We have to show that nA=AnrB. Let suppose that xe AnnB; x=nb
b+trAeB/fA and p(btrA)=atrA. x+trA=p(x+rA)=p(rb+rA)=rp(b+rA)=ra+rA.
Therefore x-rjaerA; x-rja=ra’=nria” hence x=r(at+a”)e nA. So AnrBcrnA. We
know that nAcCA, riAcrB, hence rfAcA~rB. While the proof of the converse

statement is a modification of Theorem 27.5 in (Fuchs, 1970).
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Theorem 3.2.4 If A= AthenrAisa proper class.

Proof First, we will prove that Ext_,(C, A) is an E-functor (Butler & Horrocks,

1961). We consider homomorphisms f/A>A’ and g:C'->C and we suppose that
rEe€ Ext ,(C,A). Then E e Ext,(C,A), since Ext, is a functor, we conclude that

fu(g*(rE))=r(fsog*(E))e Ext ,(C, A) . So we have shown that Ext , is a functor.

We will show that Ext, is a subgroup. We take arbitrary rE’ and E” in
Ext ,(C.A) with E’ and E”eExt,(C,A). Since Ext,(C,A) is a subgroup, 1t
follows that rE’-rE"=r(E’-E”)=rE"’, E""=E’-E" € Ext ,(C, A) . This means that
tE’-rE” € Ext ,(C,A). Now we have to show that Ext ,(C,A) is a submodule. Let
EeExt ,(C,A), seR and wA->A be a multiplication by s. Therefore
sE=p*(E)e Ext_,(C,A). Hence Ext ,(C,A) is a submodule.

Suppose that o:C>B and B:B-> A are rA-monomorphisms. Without restriction of
generality,we can assume that CCBcA and a, B are inclusion maps. We want to

* show that the inclusion map Boo:C-> A is an rA-monomorphism.

Let Ei: 02 C>B>X=>0er1A; E;: 02B>A>Y->0crA with Ey=rE'y; E;=rE’; for
some E’;, E’»€A and by using Theorem 3.2.3, we know that for every r\r;
rnC=Cnr;B and nB=BrnA. r,C=CrrB=C(BHrA)=(CnB)r;A= CHnA. This
means that r\E: 0->C->A->Z->0 for every ri\r,hence E=rE’. Now we have to show
that E'eA. Since o, 3 are rA-monomorphisms, therefore A-monomorphisms and A is

a proper class, the composition Boo is an A-monomorphism, i.e. E€A. Then

E'e A=A. So E=rE’crA. ThustA is a proper class.
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3.3 rA-Projective and rA-Injective Modules

Definition 3.3.1 A module I is injective with respect to a short exact sequence
(or E-injective) E: 0->A>B->C->0 if Hom(E,I) is an exact. A module P is

projective with respect to E (or E-projective) if Hom(P,E) is an exact.

Theorem 3.3.1 A direct product I1=[]1I, is E-injective if and only if I is E-

keK

injective for each keK. A direct sum P=@® . P, is E-projective if and only if Py is

E-projective for eachteT.

Now we study rA-injective and rA-projective objects for Z-modules (i.e. abelian

groups).

Corollary 3.3.1 Let n=p*.....p5™ with p; prime integers and E be a short exact
sequence. Then for every I\n, Z, is E-injective (E-projective) if and only if Zp: is E-

injective (E-projective) for every t=1,....,m and 0<s<k,.

Theorem 3.3.2 Let A be a proper class containing éo and n=p}'...p~ bea

positive integer. Then for a short exact sequence E:0—>A—->B—>C —0 the

following conditions are equivalent:

1) EenA
2) EeAand Zp: is E-injective for every t=1,...,m, 0<s<k,.

3) EeA and Z, is E-injective for every I\n.
4) EeA and Z, is E-projective for every \n.

~ Proof 1)=>2) Let EenA, tefl,....,m} and g.' A ZP: be any homomorphism
Oss<ky. Let g.(E):0>Z, —2 3D - C—0. i.e. we have a commutative diagram

with exact rows:
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E:05>A—L3B>C—H0

§

g.(E):0>Z, —>D—>C—0
Then g+(E)enA since Ext,, is a subfunctor, therefore h(Zp:)mpr = h(prp: )=0
by Theorem 53.3 (Fuchs, 1970). Hence h(Zp:) is a direct summand in D by
proposition 27.1 (Fuchs, 1970), i.e. there is a homomorphisim h;: D> Zp: such that

hoh=1, . Then for the homomorphism v=hiouB>Z ., we have

Py

vof=hjouof=hjohog=1, og=g. So Zp, is E-injective.
Py t

2)=>3) folows from Corollary 3.3.1

3)=>1) By Theorem 3.2.3, it is sufficient to show that f{lmA)=f{A)~mB for every
m\n. Clearly f(mA)cf{A)~mB. We have to show that f{mA)>f(A)~mB. First of all
A/mA is isomorphic to direct sum of groups Z; with \m and since A/mA is bounded
and direct sum is a pure subgroup of direct product, A/mA is isomorphic to a direct
. summand of groups Z; with \m by Theorem 27.5 (Fuchs, 1970) and therefore it is E-
injective. Then for canonical epimorphisim o:A->A/mA we have a homamorphism
g:B>A/mA such that gof=c. Now let f(a) be any element from f{A)~mB. Then
f(a)=mb for some beB. Therefore o(a)=gof(a)=g(mb)=mg(b)=0 since m(A/mA)=0.
Then acKerc=mA and f(a)ef(mA).

1)=>4) Let EenA and x:Z) >C be a homomorphism. We have a commutative
diagram with exact rows:

E:O—)A—-)BT\MC——W

IL yI .~,&_Hr Ix
x*(E):0 > A—— 3 ; —0

Take any element beB with z(b)=l. Then z(lb)=lz(b)=0. i.c. IbeKerz=w(A) and
lb=w(a) for some acA. Since x*(E)enA, w(lA)=w(A)IF by Theorem 53.3 in
(Fuchs, 1970) , therefore w(a)ew(lA), i.e. w(a)=w(1a"). Since w is a monomorphism,
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a=la’. Then for the element b'=b-w(a’) we have z(b’)=z(b)=I and 1b’=lb-lw(a’)=w(a)-
w(a)=0, i.e. o(b")<l. On the other hand 0o(z(b'))=0()=l, so o(b’)=l. Thus O(b")=l,

therefore <b’>=Z,, so we can define a homomorphism z': Z;>F such that zoz'=1, .
Then for the homomorphism r=yoz’ we have kor=koyoz'=xo0zoz'=x01, =x. So Z is

E-projective.

4)=>1) Again by Theorem 3.2.3 it is sufficient to show that f{A)~mBcf(mA) for
every m\n. Let flaj=mbef(A)~mB. Then mk(b)=k(mb)=k(f{a))=0. Therefore a
homomorphism g:Z,>C defined by g(i)=ik(b) is well defined. Since Zy, is E-
projective, there is a homomorphism h:Z,->B such that koh=g. Then for the element
b'=b-h(1)eB we have k(b')=k(b)-koh(1)=k(b)-g(1)=0, therefore b’eKerk=Imf, i.e.
b’=f{a") for some a’cA. On the other hand f{ma’)=mb’=mb-mh(1)=f(a)-h(m1)=f(a)-
h(0)=f(a). Since f is a monomorphism a=ma’, i.e. fla)=f(ma")ef(mA).

For the class Abs of all short exact sequences, we can describe all n4bs-injective

and nAbs-projective groups.

Theorem 3.3.3 An abelian group 1 is ndbs-injective if and only if I=D@®A where
D is divisible and nA=0.

Proof Let I be ndbs-injective;there is a monomorphisim fj:I->D’ into a divisible

group D' by Theorem 24.1 (Fuchs, 1970). Let ¢ be the set of all possible

homomorphism ¢: [->M, where M&=Z . for some p“\n. Denote thb by M and
G o

define a homomorphism f3:I-2M by f(a)=(...,¢(a),...).(i.e. ¢™ coordinate of f>(@a) is
¢(a)). Then the homomorphism fI->D'®M defined by fla)=(fi(a),fx(a)) is a
monomorphisim since fi is a monomorphism. On the other hand, for every

homomorphism g:1-> Zpk with p“n we have g=¢ and M= Zpk for some ¢eo.

Therefore for the projection Py:D’®M->M, onto ¢ coordinate we have Pyof=¢=g.
So by Theorem 3.3.2 f is n4bs-monomorphisim. Since I is ndbs-injective. f is
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splitting, i.e. I is isomorphic to a direct summand of D'®M, therefore it is also a

direct sum of a divisible group and a group A with nA=0.
Let us suppose that I=-D®A where D is divisible and nA=0. Therefore

Ext(C,nA)=0. With respest to following diagram;

Ext ,,.(C,A)——Ext , (C,A)
ft g:
Ext(C,nA)=Ext(C,0)=0

We have f:A->nA and g:nA->A ne=(gof)s=g:of+=0, since Ext(C,nA)=0, n«=0.
Hence nExt, (C,A)=Ext , (C,A)=0, by using Theorem 2.5.1 A is a ndbs
injective. Since every divisible group D is ndbs- injective so I=D@A is ndbs-

injective.

Theorem 3.3.4 An abelian group P is ndbs-projective if and only if P=F@®C
where F is free and nC=0.

Proof There is an epimorphism f;:F'>P from a free group F' onto P by
Theorem33 (Rotman, 1979). Let ¢ be the set of all possible homomorphism ¢:Ny—>P
where N&=Z . for some p“\n. Denote @, N, by N and let :N->P be defined by

fz(Zn¢J=Z¢(n¢). Since ng=0 for all but finete number of ¢peo, f; is well
b= 4o

defined. The homomorphism f:F'®&N->P defined by f(a,n)=fi(a)t+fx(a) is an

epimorphism since fj is an epimorphism. Now for every homomorphism g: Z, P
with p“\n, every xe Z, we have foig(x)=£1(0,is(x))=F2(is(x))=d(x)=g(x).

Where iy:Ny=> ZNW is an inclusion map. So foiy=g and Z , is projective with
yep

respect to the epimorphism f and by Theorem 3.3.2 f is an nA4bs-epimorphism.

Therefore f is splitting, i.e. P is a direct summand of F'@&N. Then the torsion part

T(P) of P is bounded (recall that nN=0) and T(P) is a direct summand: T(P)=F©®B by
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Theorem 26b) and Theorem 27.5 (Fuchs, 1970). F is isomorphic to a subgroup of a
free group F’ therefore it is free.

Let us suppose that P=F®C where F is free and nC=0. Therefore Ext(nC,A)=0.
With respest to following diagram,;

Ext ,, (C,A)—~—>Ext ,_ (C,A)
g*\ o
Ext(nC,A)=Ext(0,A)=0

We have f:C>nC and g:nC->C n*=(gof)*=g*of*=0, since Ext(nC,A)=0, n~0.
Hence nExt , (C,A)=Ext_, (C,A)=0, by using Theorem 2.5.1 A is a nAbs-

projective. Since every fre group F is n4bs-projective so P=F@C is n4bs-projective.
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