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ABSTRACT

It is known that the Cech homology sequence of a compact pair (X, A) over a
compact coefficient group is exact. It is proved that the Cech homology sequence
of a compact pair (X, A) over an algebraically compact coefficient group is exact,
too. To show this it is proved that if the Cech homology sequence of a pair (X, A)
(not necessarily a compact pair) over a coefficient group G is exact and H is a
direct summand of the group G, then the Cech homology sequence of the pair
(X, A) over the group H is exact, too. In showing this we work in the category
Inv (Comp) of inverse systems of chain complexes over a fixed directed set M

which is shown to form a category.




OZET

Kompakt bir (X, A) ikilisinin kompakt katsay! gruplu Cech homoloji dizisinin
tam oldugu bilinmektedir. Kompakt bir (X, A) ikilisinin cebirsel kompakt katsa-
yi gruplu Cech homoloji dizisinin de tam oldugu ispatlanmaktadir. Bunun i¢in gu
gosterilir: Bir (X, A) ikilisin(kompakt bir ikili olmasi gerekli degildir) bir G grubu
{izerindeki Cech homoloji dizisi tam ise ve H grubu G grubunun bir direkt toplam
terims ise, (X, A) ikilisinin H katsay gruplu Cech homoloji dizisi de tamdur.
Bunu kanitlarken zincir komplekslerinin sabitlenmis bir M y6nlendirilmis kiimesi
tizerindeki ters sistemlerinden olugan Invy (Comp) kategorisinde(bir kategori

oldugu gbsterilir) ¢aligilir.
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CHAPTER ONE
INTRODUCTION

In this thesis it is shown that the Cech homology sequence of a compact pair

(X, A) over an algebraically compact coeflicient group is exact.

Firstly, we describe axioms for a homology theory we require in the following
sections. Some categorical terminology to deal with homology theories is intro-
duced in Section 1.3 of this chapter. With this terminology it becomes easier to
describe the homology theory with a coefficient group G on the category Comp
of chain complexes of abelian groups and using this to define formal homology
theory of simplicial complexes in Chapter 2. These and the inverse limit of in-
verse systems(studied in Chapter 3) suffice to define the Cech homology theory
in Chapter 4. In the first two chapters and Sections 3.1, 3.2 we give a summary
of the basic theories and terminology we use in the proofs at Section 3.3 and
Section 4.2; it is mainly from Eilenberg & Steenrod (1952). The definition of the
Cech homology in Section 4.1 is also from Eilenberg & Steenrod (1952). For the
proofs of the results stated in these sections, see Eilenberg & Steenrod (1952);

we give proofs only for the results we obtained.

Although we say homology theory, Cech homology lacks the exactness axiom
required in the Eilenberg-Steenrod axioms, although it is useful for some other
reasons(see Eilenberg & Steenrod, 1952; Eda & Kawamura, 1997; Guri, 1993;
Watanabe, 1987). Cech homology theory forms a distinguished example of so
called a partially exact homology theory.

The Cech homology sequence of a pair (X, A) over a coefficient group G is

known to be exact under some restrictions on the pair (X, A) and on the group



G. One such is that the pair (X, A) be a compact pair and the group G be a
compact abelian group. In this thesis we show that if the pair (X, A) is a compact
pair and the group G is an algebraically compact group, i.e. algebraically a direct
summand of a compact group, then exactness is again obtained as proved in
Chapter 4. In showing this, we prove that if the Cech homology sequence of a
pair (X, A) over a group G is exact and H is a direct summand of the group G,
ie. G= H® H for some subgroup H of G, then the Cech homology sequence
of the pair (X, A) over the group H is exact, too. To obtain this result we work
in the category Inv,,(Comp) of inverse systems of chain complexes over a fixed

directed set M; this category is described in Section 3.3.

Notes about the topic compact abelian groups and algebraically compact
abelian groups of infinite abelian groups are given at Section 1.4. Divisible groups,
bounded groups, cocyclic groups, a direct product of copies of the additive group
of p-adic numbers, linearly compact groups are examples of algebraically com-
pact abelian groups. The definitions of such kind of groups and more about
algebraically compact groups like some structure theorems, cardinal invariants
can be found in Fuchs (1970).

1.1 Terminology, notation and conventions

We will use only abelian groups and compact abelian groups, not general R-
modules for a ring R, so we will give all definitions in terms of abelian groups
and compact abelian groups. Unless otherwise stated, by a group we will mean
an abelian group and by a compact group, we will mean a compact abelian group,
although we generally stress that the groups are abelian; groups will be written
additively with zero element 0. In the definition of compactness we include also
the Hausdorff condition, i.e. compact spaces are always assumed to be Hausdorff.
A compact group is a topological group whose topology is compact; a topological
group G is a group with a topology such that the functions G x G——G, (a,b) —

a+b and G——G, a — —a are continuous, where G X G is equipped with the



product topology using the topology of G.

Categorical language will be used generally in the following sense. By a map
of one object into another object in the category we are working in, we want
to mean a map belonging to that category, i.e. a morphism in this category,
that is a meaningful map in the structure we are considering. For example by a
map f: A——B in the category 4 of abelian groups, we want to mean a group
homomorphism. By a map f : X——=Y in the category of topological spaces, we
want to mean a continuous function. By a map f: A——B in the category ¢
of compact abelian groups, we want to mean a group homomorphism which is also
a continuous function, i.e. a continuous homomorphism. By a map f: A——>B
in the category Comp of chain complexes of abelian groups we want to mean a
chain homomorphism from the chain complex A to the chain complex B as we

will see.

In general, instead of writing the cases for abelian groups and compact abelian
groups always separately, we will mean by a group either an abelian group or
compact abelian group, and by a homomorphism we will mean either an ordi-
nary group homomorphism or a group homomorphism which is continuous in the

corresponding cases. These assumptions will be clear from the context.

In stating the axioms for a homology theory in the next section we need the

following definitions and conventions.

Definition 1.1.1. A pair of sets (X, A) is defined to be a set X and a subset A
of X. In case A = (), the symbol (X, ) is usually abbreviated by (X) or, simply,
by X. A map f of (X, A) into (Y, B), in symbols,

is a single valued function from X to Y such that f(A) C B. If also

[ : (Y, B)}—(Z,C) is a map of pairs, then the composition of the functions is a
map gf : (X, A)—(Z,C) given by (gf)z = g(fz) for each z € X. The relation
(X',A') C (X,A) means X' C X and A’ C A. The map i : (X', A)—(X, A)




defined by iz = z for each z € X is called the inclusion map and is denoted by
i (X', A)Y—(X, A).

If (X', A") = (X, A), then the inclusion map i is called the identity map of (X, A).
In case when we consider inclusion map of the set A into B and identity maps of
the same set A, then we will write iny4 : A——=B or simply in : A——B for the
inclusion map and i4 : A——A or simply i : Ac——A for the identity map of A.
A function is distinguished from those obtained from it by trivial modifications of
the domain or range. Let f : (X, A)—>(Y, B) be given, and let (X', A'), (Y", B)
be pairs such that X' ¢ X, Y c Y, f(X') c Y', and f(4') C B'. Then the
unique map f : (X', A")—(Y",B’) such that f'(z) = fz foreach z € X' is
called the map defined by f, and f is said to define f. If f: (X, A)——=(Y, B),
the map of A into B defined by f is denoted by

f|A : A——>B.

The lattice of a pair (X, A) consists of the pairs

(X,0)
(0,0) — (4,0) (X, 4) — (X, X)
(4, 4)

all their identity maps, the inclusion maps indicated by arrows, and all their
compositions. If f: (X, A)——=(Y, B), then f defines a map of every pair of the
lattice of (X, A) into the corresponding pair of the lattice of (Y, B).

Definition 1.1.2. A pair of topological spaces or, briefly a pair is a pair (X, A)
where X is a topological space and A is a subspace of X. A map of pairs
f: (X, A)——>(Y, B) is continuous if the map X——=Y defined by f is a con-
tinuous function. Note that identity and inclusion maps in topological spaces
are always continuous. A pair (X, A) of topological spaces is called compact if
X is compact and A is a closed(and therefore compact) subset of X'; remember
that we include the Hausdorff condition in the definition of compactness. We will

write briefly space for a topological space.



A family a of pairs of spaces and maps of such pairs which satisfies the conditions
(1) to (5) below is called an admissible category for homology theory. The pairs

and maps of a are called admissible.

1. If (X, A) € a, then all pairs and inclusion maps of the lattice of (X, A) are

in a.

2. If f:(X,A)—>(Y,B) is in a, then (X, A) and (Y, B) are in a together
with all maps that f defines of members of the lattice of (X, A) into the
corresponding lattice of (Y, B).

3. If f, and f, are in a, and their composition f; fo is defined, then f, f> € a.

4. If I =[0,1] is the closed unit interval, and (X, A) € a, then the cartesian
product
(X, A)xI=(XxI,AxI)

is in a and the maps
90,91 ¢ (X, A)—(X,4) x I

given by
go(x) = (3770)1 gl(x) = (:B, 1)

are in qa.

5. There is in a a space Py consisting of a single point. If X, P are in g, if

f: P—>X, and if P is a single point, then f € a.

The following are examples of admissible categories for homology theory:

a; = the set of all pairs (X, A) and all maps of such pairs. This is the largest

admissible category.
ac = the set of all compact pairs and all maps of such pairs.

arc = the set of pairs (X, A) where X is a locally compact Hausdorff space, A is
closed in X, and all maps of such pairs having the property that the inverse

images of compact sets are compact sets.



Definition 1.1.3. Two maps fy, f : (X, A)——(Y, B) in the admissible cate-

gory a are said to be homotopic in a if there is a map
h: (X, A) x I—(Y, B)

in a such that
fo = hgo, fi=hg
or, explicitly,

fo(z) = h(z,0), fi(z) = h(z,1).

The map h is called a homotopy.

Definition 1.1.4. Let G be a group and L a subgroup. G/L denotes the fac-
tor(quotient) group, i.e. the group whose elements are the cosets of L in G. The

natural homomorphism

n:G—>G/L

is the function which attaches to each element of G the coset of L which contains
it: n(g) = g+ L for each g € L. When the group G is a compact group, a
topology on G/L is introduced as follows: a subset U of G/L is open if and only
if ~1(U) is open in G. With this quotient topology on G/L, G/L is a compact

abelian group and 7 is continuous.

Definition 1.1.5. If ¢ : G——@G and L C G, L' C G’ are subgroups such that
#(L) C L' then the homomorphism $:G/L—>G /L induced by ¢ attaches
to each coset of L in G the coset of L' in G which contains its image under ¢.
The natural maps 7: G——G/L, 5 : G —@G' /L’ and the homomorphisms ¢,
¢ satisfy the commutativity relation ¢n = ' ¢:

G—2 ¢
|
G/L—>G /L

We say that the above diagram is commutative.

We will be using commutative diagrams so often.



Definition 1.1.6. A diagram of groups and homomorphisms is said to be com-
mutative if we get the same composite homomorphisms whenever we follow di-
rected arrows along different paths from one group to another group in the dia-

gram.

We will use a special diagram pattern in Chapters 3 and 4 repeatedly and say
that a diagram of the form
Ag<t— A,
yzl sz yll Tfl
Ay<5— A,
is commutative to mean that the diagram obtained by taking f;, f» and leaving

out g and g, is commutative, and the diagram obtained by taking g:, g» and

leaving out f; and f, is commutative, i.e. the following diagrams

Ay <P A Ay <2 A
sz Tfl 93 l lgl
Ay <5 A Ay~ 4

are commutative, so that we do not draw this pair of diagrams repeatedly.

Definition 1.1.7. A subgroup H of a group G is a said to be a direct summand
of G if there exists a subgroup A of G such that G = H @ A(internal direct sum).
Not to think over internal or external direct sums, we can say that a group H is
a direct summand of a group G if there exist subgroups H and A of G such that
G=H & A and H = H where & means isomorphic as groups; in that case we

can identify H and H', so consider H as a subgroup of G.

For a homomorphism f : A——B between groups, Ker(f) denotes the kernel
of f and Im(f) denotes the image of f.

The following easily obtained fact gives a characterization of a group being
a direct summand of another group in terms of mappings which is needed for

categorical arguments:



Proposition 1.1.8. For abelian groups A and B, if there exist group homomor-
phisms f: A——B and g: B—>A such that go f = is where ig : A——=A is
the identity map of A, then B = Im(f) @ Ker(g) and as f is a monomorphism
B = A® Ker(g), so we can say A is a direct summand of B with the identifica-
tion of A and Im(f). Conversely, if A is a direct summand of the group B, then
clearly there exists such homomorphisms(Take f: A——=B as the inclusion of
A in B and g: B——>A as the projection of B onto its direct summand A, for
these go f =14).

Z denotes the set of all integers; by a sequence we will usually mean one
indexed by Z.

Definition 1.1.9. A lower sequence G of groups is a collection {Gy, ¢¢} ez OF
shortly {Gy, ¢,} where for each integer g(positive, negative or zero), G, is a group,

and ¢q : Gg——G,_1 is a homomorphism:

Pq+1 &q
G B e Gq+1 Gq Gq_l'_%- '

It is said to be ezact if Ker(¢,) = Im(dy41) for all ¢ € Z. A lower sequence
G = {G,, ¢,} is said to be a subsequence of the lower sequence G = {G,, ¢}
if for each g, G; C G4 and ¢'q = ¢q|G; . A subsequence is determined by any set
of subgroups {G,} provided $¢(G,) C G,_, for each g. The word subsequence
is used here in a sense different from the usual one—no terms of the original
sequence are discarded. If G = {Gy, ¢,},G = {G;, ¢;} are two lower sequences,
a chain homomorphism or simply homomorphism v : G——@G is a sequence
{4} ez such that, for each integer g, v, : Gq——>G; is a homomorphism and

the following commutativity relations hold:

¢;¢q = ¢q—1 ¢q:

that is the diagram
GG,

%"l lwq



is commutative. We denote a chain homomorphism by

¢q

G: "'HGq'—> q_l._e....

'Iﬁl "/’ql "ﬁq—ll

G - '”_>G:]_¢_I>qu—l_—>'
q

The subgroups {Ker1,} form a subsequence of G called the kernel of v, and
Ker 1) = 0 means Ker 1, = 0 for each g. Likewise Im ) = {Im ¢, } is a subsequence
of G'; and when G’ = Im 1), we say that G is onto. If each 1), is an isomorphism,

then 1) is said to be an isomorphism.

Definition 1.1.10. If L is a subsequence of the lower sequence G, the factor
sequence G/L of G by L is the lower sequence composed of the factor groups
Gy/Lq and the homomorphisms ¢, : G /L,—>Gq_1/Le_; induced by the ¢,.
Let 1y : Gg—>Gq/Ly be the natural homomorphism. Since ¢g7, = 7,_14, it
follows that n = {n,} : G——G/L. It is called the natural homomorphism of G
onto G/L.

Definition 1.1.11. Let L be a subsequence of a lower sequence G = {Gy, ¢,}-
L is said to be a direct summand of G if there exists a subsequence L' of G such
that foreach ¢ € Z, G, = L, GBL;. As in Definition 1.1.7, we will say that a lower
sequence L is a direct summand of a lower sequence G, if G has a subsequence I
which is a direct summand of G in the sense just defined and which is isomorphic
to L.

Proposition 1.1.12. Let G = {G;,(;S;} and G = {Gg,d,} be lower sequences
and f: G ——>G and g: G——>G be chain homomorphisms such that go f =
ig', where iy : G ——G s the identity chain homomorphism. Then G is a

direct summand of G and so G’; is a direct summand of G4 for each q € Z.

Proof. g o f =iy implies gy o fy = ig: for each g € Z, where ig, : G'q—>G; is
the identity map of G. Then by Proposition 1.1.8, G, = Im(f,) ® Ker(g,) for
each ¢ € Z. Im(f) = {Im(f,)} is a subsequence of G and Ker(g) = {Ker(g,)} is a
subsequence of G, so by Definition 1.1.11, Im(f) = {Im(f,)} is a direct summand
of G. Since f, is monomorphism for each g, Im(f,) & G'q for each ¢ € Z. Thus
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G’ is isomorphic to the subsequence Im(f) = {Im(f,)} of G(via f) which implies
that G is a direct summand of G by Definition 1.1.11. a

The conventions and notations introduced for the pairs of sets (X, A) and their

maps will also be used for pairs of groups and their homomorphisms.

1.2 Eilenberg-Steenrod Axioms for a Homology

Theory

A homology theory H on an admissible category a is a collection of three functions
as follows: The first is a function H,(X, A) defined for each pair (X, A) in a and
each integer ¢. The value of the function is a group. It is called the g-dimensional

relative homology group of X modulo A.

The second function is defined for each map
f+ (X, A)—(Y, B)
in a and each integer ¢, and attaches to such a pair a homomorphism
fag t Hy(X, A)——H,(Y, B).

It is called the homomorphism induced by f.

The third function d(g, X, A) is defined for each (X, A) in a and each integer
g. Its value is a homomorphism
(g, X, A) : Hy(X,A)——H,_,(A)

called the boundary operator. In (g, X, A), the symbol (g, X, A) is redundant so

it will be omitted.

According to the convention of the preceding section, Hy(X, A) is either al-
ways an abelian group, or always a compact abelian group. The corresponding

conventions govern the homomorphisms 8 and f,.
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In addition, the three functions are required to have the following proper-

ties(seven axioms below):

Axiom 1. If f = identity, then f, = identity.

Explicitly, if f is the identity map of (X, A) in a on itself, then, for each ¢,
f+ is the identity map of H, (X, A) on itself.

Axiom 2. (gf)s = gufe-
Explicitly, if f: (X, A)——=(Y,B) and g: (Y, B)——(Z,C) are admissi-
ble, then the composition of the induced homomorphisms
fet Hy(X,A)——=H,(Y,B) and g.: H,(Y,B)——>(Z,C) is the induced
homomorphism (gf). : Hy(X, A)——=H,(Z,C).

Axiom 3. 0f, = (fia),0.

Explicitly, if f: (X, A)——(Y, B) is admissible and fj4 : A——>B is the
map defined by f, then there are two ways of mapping H,(X, A) into
H,_1(B). As shown in the diagram,

Hy(X, A) RN H,(Y, B)

) o

Hy1(A) G He-1(B)
the composition 9f, is obtained by moving over and then down, the compo-
sition (fj4),0 by moving down and over. The axiom requires that the two

homomorphisms have the same value on each element of Hy(X, A). With

the commutative diagram terminology, the above diagram is commutative.

Axiom 4. (EXACTNESS AXIOM). If (X, A) is admissible and i: A—=X,
j:X——>(X,A) are inclusion maps, then the lower sequence of groups
and homomorphisms

S H (A) > H(X) 2> H (X, A)—2 > H,_, (A)—> ...
is ezact. This lower sequence is called the homology sequence of (X, A).

To make the above statement more precise the groups and homomorphisms
of the lower sequence must be indexed by integers. We choose Hy(X, A) as
the 0™ group, i.e. Gsg = Hy(X, A), ¢3q = 0, Gagy1 = Hy(X), etc.
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Axiom 5. (HOMOTOPY AXIOM). If the admissible maps
Jo. f1: (X, A)——(Y, B) are homotopic in a, then, for each ¢, the homo-
morphisms fo., fi. of Hy(X, A) into Hy(Y, B) coincide.

Axiom 6. (EXCISION AXIOM). If U is an open subset of X whose closure U
is contained in the interior of A(i.e. U C V C A for some open set V of X),
and if the inclusion map (X — U, A — U)“——(X, A) is admissible, then it
induces isomorphisms Hy(X — U, A — U)——=H,(X, A) for each q.

An inclusion map i : (X — U, A — U)——(X, A) where U is open in X and

U is in the interior of A is called an excision map or just an ezcision.

Axiom 7. (DIMENSION AXIOM). If P is an admissible space consisting of a
single point, then H,(P) = 0 for all g # 0.

The consitency of the axioms is easily verified by choosing each H, (X, A) = 0.
The interest, naturally, lies in the existence of nontrivial homology theories. We
know existence of such. One example is the singular homology theory on the
largest admissible category a; of all pairs of spaces and their maps(see any of
Bredon (1993), Rotman (1988), Munkres (1984), Eilenberg & Steenrod (1952)).
Another example on the category ac of compact pairs is the Cech homology the-
ory over a compact coefficient group given in Chapter 4. The singular homology
theory is essentially the one derived from mappings of triangulable spaces into
general spaces, and the Cech theory from the mappings of general spaces into tri-
angulable spaces; both of these homology theories have some extremal properties

among all homology theories.

We show in this thesis that on ac we have also the Cech homology theory over

an algebraically compact coefficient group.

'The homotopy and excision axioms can also be formulated in the following

forms:

Axiom 5. (HOMOTOPY AXIOM). If (X, A) is admissible and

2L YORSYKOCRITIM KURDLY
DOKOMANTASYOR SiEhxrel
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90,91 : (X, A)—>(X, A) x I are defined by go(z) = (2,0), 1(z) = (,1),
then go. = g14-

Axiom 6'. (EXCISION AXIOM). Let X; and X, be subsets of a space X such
that X is closed and X = Int X; U Int X,. If the inclusion map
i: (X1, X1 N Xp)—(X1 U Xz, X,) is admissible, then it induces isomor-
phisms i, : Hy(X1, X1 0 Xp)——Hy(X, U X3, X,) for each g.

Here Int denotes the interior of a subset of a topological space.
Theorem 1.2.1. A map f: (X,A)——(Y, B) defines maps
fi: X—Y fa: A——>B.

The collection of homomorphisms f, fix, and fo. form a chain homomorphism
of the homology sequence of (X, A) into that of (Y, B). It will be denoted by fi.:

HS. of (X, A) : ...—> Hyyi (X, A) 2= Hy(A) > H,(X) &> Hy(X, A) — - --

A

HS. of (Y,B):...— Hy (Y, B) 2> H(B) - H,(Y) 2~ H,(Y, B) — - --

where H.S. denotes homology sequence and i,4,1,j are appropriate inclusions.

1.3 c-categories, 0-functors, h-categories and

h-functors

Categorical language is useful when speaking about homology theories. We will
introduce in this section more general categories than admissible categories for

homology. We will not give the usual definitions of category, functor and subcat-

egory.

The category of prime importance in the axiomatic treatment of homology
theory is the category a; of all pairs and continuous maps of this pairs. The

admissible categories defined in Definition 1.1.2 are subcategories of a;.
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The category 4 consists of abelian groups and their homomorphisms. The
category ¢ consists of compact abelian groups and their continuous homomor-
phisms. We may consider the categories S;./, S;4¢ whose objects are lower
sequences of groups in /4 or ¢ and whose mappings are chain homomorphisms
of one such lower sequence into another where the chain homomorphism consists
of homomorphisms or continuous homomorphisms in .4 or 4 respectively. The

exact lower sequences form subcategories I, /%, 4.

We will see in the next chapter the category K, of simplicial pairs and their
simplicial maps. The triangulable pairs and their continuous maps form a full

subcategory of a, which is an admissible category for homology theory.

In terms of functors, homology theory is seen better. Let a be an admissible
category on which a homology theory is given. Let ¢ be a fixed integer, and
define for an admissible map f : (X, A)——(Y, B),

Then axioms 1 and 2 for a homology theory assert that the pair of functions
H,(X,A) and Hy(f) is a covariant functor H, on the category a with values in
the category /b or A . Instead of using the category /4 we may use the category
E; A of exact lower sequences in . We then define H (X, A) to be the homology
sequence of (X, A), and H(f) to be the chain homomorphism f,. of the homology
sequence of (X, A) into that of (Y, B) induced by f as in Theorem 1.2.1. Then
H is a covariant functor on a to E;4 or E;4¢. This functor is briefly referred

as the homology functor.

Definition 1.3.1. A category with couples(briefly a c-category) is category € in
which certain pairs (o, §) of maps, called couples, are distinguished, subject to
the sole condition that the composition Bc is defined; that is in the category €
we define some of the pairs («, 8) of maps such that Sa is defined, to be a couple
and the remaining not to be a couple. If «: A——>B, f: B——C is such a
couple, we write

(e, ) : A—=B—->C.
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A covariant[contravariant] functor T' : €——® of a c-category into a c-category,
is called a c-functor if for each couple (a, 8) in €, the pair of maps (T, Tf)
[(TB,Ta)] is a couple in D.

Example 1.3.2. Consider an admissible category a. For each pair (X, A) in a
take only the inclusion maps i : A——X, j : X<—(X, A) as forming a couple

G,§) : A—>X —(X, A).

Another example of a c-category is obtained from the category 4 (or A¢) of
groups by definining couples

(¢, "/J) : G1—>Gy ——>G3

whenever ¢ : G;——=Gy has kernel zero, 9 : Go——>G3 is onto, and Kery =

Im ¢, i.e. whenever the sequence

1s exact.

Definition 1.3.3. Let (Ol, ,B) :A——>B——>C and (al,,Bl) 5 Al-—>B1 —>01
be couples in a c-category €. We define a map («, 8)—(aq, B1) of couples to

be a triple of maps
T - A—>A1, Yo B———*Bl, Y3 - C—f—>01

in € such that commutativity holds in the two squares of the diagram

A—=2-pt.c

o

A1 T1>B]_ TCI

With the maps thus defined, the couples (, 8) in € form a category of their own.
A cfunctor T : €—=9 induces a functor on the category of couples of € into
that of 2.

Definition 1.3.4. Let € be a c-category. We shall consider systems
H= {Hq(A), Ol 3(a,,3)} where
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1. For each object A in € and each integer g, Hy(A) is a group.

2. For each map o : A——B and each integer q, o, : Hy(A)——Hy(B) is a

homomorphism.

3. For each couple (a, 8) : A—>B ——C and each integer g,
Ota,p) : He(C)—H,y_1(A) is a homomorphism.

The groups and homomorphisms belong to just one of the categories 4 or .
Such a system H will be called a covariant 8-functor on the c-category € provided

the following four axioms hold:
Axiom 1. If o = identity, then o, = identity.
Axiom 2. (Ba)y = Batis

Axiom 3. If v;,7s,73 form a map of the couple (o, ) : A——=B ——C into
the couple (a1, 1) : A;——=B; —>C;, then commutativity holds in the
diagram

Hq(C) — q(Cl)
9a,p) l la(al,ﬂl)

Hy1(A) —> Hy-1(A1)

Axiom 4. For every couple (e, 8) : A—>B ——C the sequence

Hy(A)—2>Hy(B)—"">H,(C)—2>Hy_1(A)— ...
is exact.

Proposition 1.3.5. Let H be a covariant 8-functor on a c-category Dand lel

T :C€——® be a covariant c-functor. The composition
HT = {Hy(TA), (Ta)., Orars)}
is then a covariant 0-functor on €.
Definition 1.3.6. An h-category € is a c-category in which

i. A binary relation o = 8(a homotopic to B) is given for maps o, f : A——B
in €.



17

ii. Certain maps @ : A——B in € are singled out and are called ezcisions.

ifi. Certain objects of € are singled out and are called points.

A covariant J-functor on € which satisfies the anologs of the Homotopy, Excision
and Dimession Axioms in Section 1.2 will be called a homology theory on the
h-category €.

Let «: A——B, 8: B——A be two maps in an h-category €. If
Ba: A——>A and off : B——B are both homotopic to identity maps, then «
and B are both called homotopy equivalences, B is called a homotopy inverse of
o and vice versa. A map a: A——B in € which is a composition of a finite

number of excisions and homotopy equivalences is called a generalized ezcision.

Proposition 1.3.7. If H is a homology theory on an h-category € and
a: A——>B is a generalized excision, then a, : Hy(A)——H,(B) is an isomor-

phism.

Definition 1.3.8. A covariant c-functor 7' : €——=9 on the h-category € with
values in the h-category ® is called an h-functor if T preserves homotopies,
generalized excisions, and points. Explicitly: if o = 8 in €, then Ta: = T8 in D;
if o« is a generalized excision in €, then T« is a generalized excision in ®; and if

A is a point in €, then T'A is a point in D.

Proposition 1.3.9. Let T : €——=9 be a covariant h-functor and H a homology
theory on ®. Then the composition HT is a homology theory on €.

1.4 Algebraically compact groups

This section is not complete in definitions since this will take us too much into
the topic of infinite abelian groups, instead we will give some examples and refer
to Kaplansky (1954) and Fuchs (1970) for these examples and further details.
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For an example of a compact abelian group we firstly remind the circle group
S' of the unit circle in the complex plane C; its topology is the topology that
it inherets as a subspace of C and its operation is the ordinary multiplication of
complex numbers. This group S! is isomorphic to the additive quotient group
R/Z of real numbers modulo 1 (R denotes the real numbers). We remind once
more that we are dealing with abelian groups, so we do not consider nonabelian

compact matrix groups, like orthogonal matrices.

The Pontryagin duality describes the relation between a (locally) compact
abelian group G and its character group G* = Hom(G, S?) of all continuous ho-
momorphisms from G to S! equipped with compact-open topology. The character
groups of discrete abelian groups(with the suitable topology) are just the compact
abelian groups. If G is a compact abelian group and H its character subgroup
then G is in turn the character group of the discrete group H. Particularly,
this leads a duality between discrete torsion groups and 0-dimensional(totally
disconnected) compact abelian groups. Using duality theory and the structure
theorem for complete modules, some cardinal number invariants are obtained for

the structure of compact abelian groups.

The method of describing the algebraic structure of a compact abelian group
led to the discovery of algebraically compact groups(Kaplansky, 1954). Any
group A satisfying any of the equivalent conditions in the theorem that follows

is called an algebraically compact group:

Theorem 1.4.1. (Fuchs, 1970)The following conditions on an abelian group A

are equivalent:

1. A is algebraically a direct summand of a group that admits a compact topol-

ogy(i.e. a compact group).
2. A is a direct summand in every group G that contains A as a pure subgroup.

3. A has the form C & D where C is a divisible group and D is of the form
[1, Dy (the product being extended over all distict primes) where each prime
D, is complete in its p-adic topology. (Kaplansky, 1954)
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A is a direct summand of a direct product of cocyclic groups.
A is pure-injective.

If every finite subsystem of a system of equations over A has a solution in

A then the whole system is solvable in A.

Example 1.4.2. The following are all algebraically compact groups:

1.

10.

11.

Every divisible group, like the additive group Q of rational numbers, the

quasicyclic group Z(p™), p prime number, and direct sums of such groups.

Every bounded group(i.e. a group A such that nA = 0 for some positive

integer n).
Every finite group.

Every cocyclic group(i.e. cyclic groups of order p* or the quasicyclic group

Z(p*™) where p is a prime and k is a positive integer).

. Every direct summand of an algebraically compact group.

. Every group whose reduced part is algebraically compact.(A group decom-

poses into a direct sum of a maximal divisible subgroup and a reduced part

with no nonzero divisible subgroup.)

A direct product of algebraically compact groups.(A direct product of al-
gebraically compact groups is algebraically compact if and only if each

component is algebraically compact.)

A direct summand of a direct product of cyclic p-groups.(A reduced alge-

braically compact group is necessarily of this form.)

The additive group of p-adic integers, a direct product of copies of p-adic

integers.

Linearly compact abelian groups(this class of groups is between algebraically

compact groups and compact groups).

Hom(A, C) where A is an arbitrary group and C is an algebraically compact
group.
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12. Hom(A, C) where A is a torsion group and C is an arbitrary group.

The additive group Z of integers is not algebraically compact. More generally,

(nonzero) free groups are never algebraically compact.



CHAPTER TWO
HOMOLOGY THEORY OF
CHAIN COMPLEXES AND
SIMPLICIAL COMPLEXES

In this chapter, we develop the formal homology theory of simplicial complexes
which we will use when defining the Cech homology in Chapter 4. Formal ho-
mology theory of simplicial complexes is obtained by using the homology theory
of chain complexes which is described in the first three sections; simplicial com-
plexes are defined in Section 2.4. We give all the essential steps in the definitions
of these homology theories and use the clarifying language of Section 1.3 because
in the proofs in Chapter 4, we turn back to these definitions and use the basic

properties of tensor product defined in Section 2.2 without reference.

2.1 Homology Theory on the h-category [Comp]
Comp of Chain Complexes of [Compact]
Abelian Groups with Values in the
Category [Abg] Ab

Definition 2.1.1. A chain complez K is a lower sequence {Cy(K),d,} of groups
and homomorphisms 9y : Cy(K)——>Cy-1(K) such that d,_10, = 0 for each in-
teger g. C,(K) is called the group of g-chains of K, and 9, is called the boundary

homomorphism. A map f: K——>K' of one chain complex into another is a

21
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chain homomorphism of lower sequences as defined in Definition 1.1.9, that is it
is a sequence of homomorphisms f; : C;(K)——C (K ") defined for each integer
g such that f;-18, = 9, f,-

Definition 2.1.2. Let K = {C,(K),8,} be a chain complex. The kernel, Z,(K)
of 8, is called the group of g-cycles of K. The image, By(K) of 0441 is called
the group of g-boundaries of K. Since 8,0,41 = 0, By(K) is a subgroup of
Z4,(K), and the factor group Hy(K) = Z,(K)/By(K) is called the g-dimensional
homology group of K. If f : K——K' is a map of chain complexes, then f, sends
Z,(K) into Z,(K') and B,(K) into B,(K'), thereby inducing homomorphisms
fet H(K)——=Hy(K').

Proposition 2.1.3. If f: K——=K is the identity map, then f, is the identity
homomorphism. If f: K——>K' and g: K'——K are maps of chain com-

plezes, then (9f)« = gufa-

Chain complexes K and their maps f constitute a category denoted by Comp
or Comp, according as the groups Cy(K) are in the category 4 or ¢. Then
H,(K), f. is a covariant functor from Comp to 4 [or Comp, to A¢]. We shall
convert the categories of chain complexes into c-categories and we shall extend
H,(K), f to a covariant d-functor.

If K is a chain complex and L is a subsequence of K (as in Definition 1.1.9),
then both L and K/L are again chain complexes called the subcomplex and factor
complez respectively. Moreover the inclusion map % : L——K, and the natural

map 7 : K——K/L yield an exact sequence

0—>L—>K—">K/L—>0
That is Keri = 0, Im(z) = Ker7n and Im7 = K/L, so for each g € Z,

0— =Ly > K, "% K,/L—>0

is exact. This suggests the following definition:

Definition 2.1.4. Let L, K, M be chain complexes. The maps ¢ : L—K,
¥ : K——>M are said to form a couple (¢,v): L—=K ——M, provided the
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sequence

0—>L—>K-YM— >0

is exact. If, further, the image of ¢ is a direct summand of K(i.e. #(C,(L)) is a
direct summand of C,(K) for all g), then the couple (¢, ) is called direct.

With couples defined as above, the categories Comp and Comp, become
c-categories. One obtains different c-categories by taking direct couples only. We
will see that it will be necessary to consider direct couples rather than all couples

when we consider tensor product in the next section.

Lemma 2.1.5. Let 0 L2-k-Y-M 0 be an exact sequence of chain

complezes.

i. Let Zo(M) = 9~1(Zy(M)), By(M) = ~'(B,(M)), and
Hy (M) = Z,(M)/B,(M). Then

Zy(M) = 071 (¢Cq-1(L)), By(M) = By(K) + ¢(Cy(L)),
and 1) induces isomorphisms
P I?Iq(M)_»Hq(M)-

i. The boundary homomorphism of the chain complex K defines homomor-
phisms
Zo(M)——>[Zg-1(L)],  By(M)—=¢[By-1(L)]
Since the kernel of ¢ is zero, $~10 defines homomorphisms
Zy(M)—Z¢1(L),  By(M)—>By-i(L),
and induces a homomorphism
A H(M)—H, 1(L).
Definition 2.1.6. The homomorphism
Oy : Hy(M)——H,_,(L)

defined as the composition 3, = Ay~ is called the boundary homomorphism of
the couple (¢,v) : L—>K —=M.
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The star in d, has been inserted to distinguish it from the boundary operator

within the chain complexes; it will be omitted later.

Theorem 2.1.7. The system H = {Hy(K), f., 0.} is a covariant 0-functor on
the c-category Comp[Comp/ of chain complezes with values in the category

A [Ac].

We will now extend the system into a homology theory.

Definition 2.1.8. Let K = {C,(K),8,} and K' = {C,(K'),8,} be chain com-
plexes and let f,g be two maps of K into K. A chain homotopy D of f into

g(notation: D : f = g) is a sequence of homomorphisms

Dy : Cy(K)— q+1(K’)

such that
aIq+1Dq + Dg10; = gg — fo-

8y 8,

K: Cor1(K) > Cy(K) ——>Cyy(K) ——> -+
Dq Dq-—l

fl |9 far1] |9e+1 fa| |9a fa—1| |9a-1

K : Cq+1(KI) s Cq(KI) ; Cq—l(K')___>"

8q+1 3:1

If such a homotopy D exists, f and g are called homotopic and we write f = g.

A map f: K——L of chain complexes is called an ezcision if and only if f

maps K isomorphically onto L.
A chain complex K = {C,(K), d,} is called pointlike if
0, : Cyf(K)—>Cy_1(K)

is an isomorphism for ¢ even and > 0, and also for ¢ odd and < 0.

With the above definitions of homotopies, excisions and points, Comp and

Comp. becomes h-categories and:
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Theorem 2.1.9. The system H = {Hq(K), f+, 0} is a homology theory on
the h-category Comp[Comp] of chain complezes, with values in the category
A[Ac]. (The h-category Comp[Comp] can be considered with all couples or

with direct couples only).

A definition needed for later use(in Section 2.5) is the following:

Definition 2.1.10. A chain complex K is said to be finite, if, for each g, C;(K)

is a free group on a finite base. Then H,(K) also has a finite set of generators.

2.2 Tensor Product

We will firstly define tensor product of two abelian groups in the category 4
which will be an abelian group. Then we will define tensor product of a finitely
generated abelian group and a compact abelian group which will be a compact
abelian group, that is the tensor product of such two groups will be given a

topology that will make it compact.

Definition 2.2.1. The tensor product C®G of two groups C and G is the group
generated by the set of all pairs (c, g),c € C, g € G with relations

(cl + c2, g) - (Clag) - (Cz,g) = 07

(¢, 91+ 92) — (¢, 01) — (¢, 92) = 0,

That is, C ® G is obtained as follows : Let R(C,G) be the free abelian group
generated by the set of pairs (c,g) and let Y(C,G) be the least subgroup of
R(C, G) containing all the elements of the form

(61 + Cz,g) - (cl,g) - (62’9)7 (C, 91,92) - (C, gl) - (C, 92)7

then
C®G=R(C,G)/Y(C,G).
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The element of C ® G which is the image of the generator (c, g) of R(C,G) will
be denoted by c® g. These elements generate the group C ® G and the relations
are

(c1+cz)®g=cl®g+cz®g,

c®(g1+92) =c®g +c® go.

We clearly have for finitely many ¢;’s in C, g;’s in G, c € C and g € Gt

Q_c)®g=) (®g), ¢c® (9)= (c®g).

Lemma 2.2.2. For an abelian group G, the function f:Z ® G——=G defined
by g(n ® g) = ng is an isomorphism. Similarly, GRZ = G. Both Z ® G and
G ® Z will be identified with G by these isomorphisms.

Definition 2.2.3. If f: C——C' and h: G——@G’ are group homomorphisms,
then the correspondence c® g — (fc) ® (hg) defines a homomorphism

fOh:CRG—C' @G

called the homomorphism of the tensor product induced by the homomorphisms
f and h. In case G = G and h is the identity, we shall speak of f ® h as the
homomorphism C ® G——=C' ® G’ induced by f and will denote it by a symbol

such as f .

Proposition 2.2.4. If 1: C——>C, j: G—-=G are identity maps of groups,
then i® j: C® G——>C ® G is the identity. If f:C—-=C', f: c—C",
h:G—=G', b : G——=G" are homomorphisms of groups, then (f f)®(h'h) =
(f ® K')(f ® h). That means, ® is a covariant functor of two variables, in the
category A with values in /.

Proposition 2.2.5. Let C and G be represented as the direct sums
=@, =@,
aEM BeM
Then
CeG2 P C.®Gs

(e,B)EMXN
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Proposition 2.2.6. If C is a free group with base X, then C ® G is generated
by elements £ ® g with relations R (g1 +92) =z ® g1 +2® ga. If G is also a free
group with base Y, then C ® G is a free group with base {z® ylz € X,y € Y}.

Lemma 2.2.7. If f is a homomorphism of the group B onto the group C, then
the induced homomorphism f' : B G—=C ® G is also onto.

Theorem 2.2.8. If
0—>A-—L>B 1050

is an ezact sequence of groups and homomorphisms, then the induced sequence

ARG -B® G ~C®G—>0

is also ezact. (That means, - ® G is a right-ezact functor from A to A with the

terminology of homological algebra.)

It is not always true that f is a monomorphism like f, i.e. Ker f may be
nonzero(that is - ® G is not an exact functor); but if, further, the image of f is a

direct summand of B(i.e. the short ezact sequence 0 A-L.B *.c 0

is a splitting one), then the sequence

/

0—>A® G >BRG">C®G—>0

is ezact, and the image of f is a direct summand of B® G (i.e. it is a splitting

short ezact sequence).

Let’s denote by /4 the subcategory of A consisting of finitely generated
abelian groups and their homomorphisms. We shall generalize the tensor product
to a functor on A" and ¢ with values in b¢.

Lemma 2.2.9. Let C be a free group on a finite base c1,... ,cn. Each element

of C ® G can be written uniguely in the form Y7 ¢; ® g;. The function defined by

f(ici®gi)=(yl,---,gn)

is an isomorphism of C @ G with the direct product G™ of n factors equal to G.



28

Definition 2.2.10. Let G be a compact group and C a free group on the base
Ci,.-. ,Cq. The direct product G" of n factors G is a compact group. The
isomorphism C ® G——G™ of the preceding Lemma 2.2.9 is now used to carry
over the topology of G" into a topology for C ® G. Then C ® G is a compact

group and f is continuous.

Lemma 2.2.11. i. The topology of C ® G is independent of the choice of the

base in C.

it. Let C, D be free groups on finite bases, and f : C——D a homomorphism.
Let G, H be compact groups and h : G——H a homomorphism of compact
groups, i.e. a continuous homomorphism. Then fQh:C®G—=D QR H

18 continuous.
Definition 2.2.12. Let C be a free group with a finite set of generators, and let
R—>F"1sC

be a representation of C as a factor group of a free group F' on a finite base(i
is the inclusion map, and 7 is the natural homomorphism). Let G be a compact

group. In the induced diagram
R®G—*>F®G'>~CQ®G

R®G and F®QG are compact, i is continuous, and by Lemma 2.2.7, ' is onto and
kery =Im3 . In this way C®G is isomorphic to the compact group F ®G/Imi'.
Using this isomorphism we carry over the topology of the factor group to provide
a topology in C ® G. This is equivalent to defining a set U C C ® G to be open
if p~}(U) is open in F ® G.

Lemma 2.2.13. i. If C has a finite set of generators and G is compact,
the topology of C ® G is independent of the choice of the representation
C = F/R in the Definition 2.2.12.

it. If C, D have finite sets of generators, and G, H are compact, and
f:C——>D, h: G——=H are homomorphisms(h is continuous), then

f®h:CQ®G——=D® H is continuous.
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With some appropriate modifications, the previous results carry on the com-
pact groups case, that is the resulting homomorphisms become also continuous;
the result for direct sums holds true if it is restricted to finite sums and they are
topological direct sums, that is not just algebraic direct sums(the inclusion and

projection maps for the terms of the direct sum are required to be continuous).

Summarizing, we have:

Theorem 2.2.14. /& denotes the category of abelian groups and their homomor-
phisms. &' denotes the subcategory of b consisting of finitely generated groups
and their homomorphisms. /¢ denotes the category of compact abelian groups
and their continuous homomorphisms. Then the tensor product is defined in the

following cases:
. Cedb, Geb, then CRGeHb
i CecH, Gelg, then C®Ge Mbc

with the previous results valid in the first case and valid for the second case with

some appropriate modifications.

2.3 Homology Theory with [compact] coeflicient
group G on the h-category [Comp]Comp
of Chain Complexes of [Finitely Generated]
Abelian Groups with Values in the Cate-
gory [Abc] Ab

The tensor product operation extends to chain complexes as follows:

Definition 2.3.1. If K = {C,(K),,} is a chain complex and G is a group,
define K ® G to be the chain complex {C,(K) ® G,8,} where 8, is induced by
Oy, i.e. 6; = 8, ® i where i is the identity map of G. If f: K—K  is a map
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of chain complexes, let f': K @ G—=K ® G be the map induced by f, i.e.
f; = f, ® i. The resulting functor from chain complexes to chain complexes is
denoted by again -®G. There are two cases. Comp denotes the category of chain
complexes of groups in . Let Comp denote the category of chain complexes
of finitely generated groups, i.e. groups from the category '. Comp denotes
the category of chain complexes of compact abelian groups and their continuous

homomorphisms.
i. Ge A, then -®G:Comp——>Comp
ii. G€ AHg, then -QG:Comp—Comp,

Theorem 2.3.2. If Comp, Comp are regarded as h-categories in the sense
of direct couples(see 2.1.4), then, in both of the two cases, - ® G is a covariant

h-functor.

Definition 2.3.3. According to Proposition 1.3.9, the composition of the

h-functor - ® G with the homology theory H on Comp|[Comp](see Section 2.1)
is a new homology theory defined on the domain of -®G. It is called the homology
theory with coefficient group G . For any chain complex K, the group H,(K ® G)
is customarily written Hy(K; G) and is called the g-dimensional homology group
of K with coefficients in G, or the g homology group of K over G. There are

two cases:
i. Ged, KeComp then H(K;G)e A

ii. G€ He, KeComp then H,(K;G)e A¢

The group of chains, cycles, and boundaries of K with coefficients in G are
written Cy(K; G), Z4(K;G), and By(K;G) rather than Cy(K ® G), etc. In
keeping with this notation the chain ¢ ® g, where ¢ € Cy(K) and g € G, will
be written gc. Thus, any element of Cy(K; G) is a linear combination ) g;c; of
elements of Cy(K) with coefficients in G, and any relation is a consequence of

relations of the form

(91 + .92)0 = g1c+ gac, g(cl + 02) = gc; + gea.
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Likewise the boundary operator of K ® G is given by

8, _gc) =) 9:(8ecs),

and, if f : K—>K' is a chain homomorphism, then f' : K@ G——K ® G is
given by

1,0 gc) =) gilfeci)-
In the case when G = Z is the group of integers, then using the identification of
C ®Z with C for any group C, we have K®Z = K and H,(K;Z) = Hy(K). Thus

ordinary homology groups are regarded as those based on integer coefficients.

2.4 Simplicial Complexes

Definition 2.4.1. An n-simplez s is a set of n+1 objects called vertices, usually
denoted by {A|A a vertice of s}, or shortly by vertices {A}, together with the
set of all real-calued functions a defined on {A} satisfying

Y a(A)=1, of4)>0.

A single function « is called a point of s. The values of o on the vertices of s
are called the barycentric coordinates of the point . The distance p(a, 8) of two

points «, B of s is defined by
ple B) = [D_(a(4) — B(A))*]2.
A

The topological space thus defined is denoted by |s|. Clearly the barycentric

coordinates are continuous functions on |s|.

Definition 2.4.2. A simplex s together with a simple ordering A° < -- - A7 of its
vertices is called an ordered simplez. The correspondence a — (a(4?),- -, a(A?))
is an isometric map(i.e. a distance preserving map) s——R**!, called the canon-
ical embedding of s in R"* (R denotes the set of all real numbers). The image of

s in R**! is denoted by A™ and is called the unit simplex of R*t!.
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A" is compact. Hence s is compact for any simplex s.

Definition 2.4.3. A g-face s of an n-simplex s is a g-simplex whose vertices

form a subset of the vertices of s.

A point of ¢ of s is a function defined over a subset of the vertices of s. It
can be extended to a function o on all vertices defined by setting a(4) = o/ (4) if
Aisin s, and a(A) = 0 otherwise. Then « is clearly a point of s. The extension
o of o is necessarily unique. The map o —>a imbeds |s'| isometrically in |s|.

We identify o/ with « so that |s'| is a subset of |s|, a closed subset.

A O-simplex has just one vertex A, and just one point c(A4) = 1. It is custom-
ary to identify the vertex with the point and to denote either by A. With this
convention the vertices A of s are the 0-faces of s, and are points of s. As a result,
A(B) is defined for any two vertices, and A(B) =0 if A # B, and A(4) =1 for
each A. In the unit simplex A" in R**! the vertices appear as the unit points on
the coordinate axes. In addition A™ is the smallest convex set in R**! containing

these unit points. For this reason the simplex is said to span its vertices.

Definition 2.4.4. A simplicial complez K is a collection of faces of a simplex s
satisfying the condition that every face of a simplex in the collection is likewise
in the collection. The space |K| of K is the subset of |s| consisting of those

points which belong to simplexes of K.

The same simplicial complex K may lie in two different simplexes s; and ss.
In such a case K also lies in the simplex s spanning the vertices common to s¢
and sy. Since the topology of s is the subspace topology of both s; and sg, it
follows that the topology of K is independent of the particular simplex s in terms
of which it is defined.

The collection of all faces of s including s itself is a simplicial complex. This
complex is also denoted by s. The collection of all faces of s excluding s itself, is

a simplicial complex and is denoted by s.
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Definition 2.4.5. A simplicial complex K is said to be n-dimensional, briefly
an n-complez provided K contains an n-simplex but no (n + 1)-simplex(and,

therefore, no simplex of dimension > n).

Definition 2.4.6. If K is a simplicial complex, a subcomplez L of K is a col-
lection of the simplexes of K such that each face of a simplex in L is also in L.

Clearly, L is a simplicial complex.

Definition 2.4.7. If K, K' are simplicial complexes and f: |K|—|K'| is a
map, then we say that f is linear if f is linear in terms of the barycentric
coordinates. Precisely, if o, a?,--- ,a™ are points of | K| and

n

a = weal + - - - + wpa®, Zwizl, w; > 0,

=0

then
F(0) = wof (@) + - + unf(a®)

A linear map which carries vertices into vertices is called simplicial.

Let L, L' be subcomplexes of K, K' respectively. By a linear[simplicial] map
f:(K,L)—>(K',L') is meant a map of (|K|, |L|) into (|K'|, |L'|) which defines

a linear[simplicial] map of K into K.
Proposition 2.4.8.  i. The identity map (K, L)—(K, L) is simplicial.

ii. If f: (K,L)—(K',L') and g : (K', L')—>(K", L") are both linear [sim-
plicial], then gf : (K, L)—>(K", L") is linear[simpliciall.

Theorem 2.4.9. A linear map f:(K,L)——>(K',L') is uniquely determined
by its values on the vertices. A map ¢ of the vertices of K into points of K " can
be eztended to a linear map f: (K,L)—(K ’ L') if and only if the ¢-image of
the set of vertices of any simplex of K or L is contained in a simplezx of K' or
L' respectively. If ¢ maps vertices into vertices, then f is simplicial.

Theorem 2.4.10. If f : (K, L)—>(K', L) is linear[simplicial], and if (K, L),
(K',L') are subcomplezes of (K,L),(K',L'), respectively, such that f maps |K|
into |K'| and |L| into |L'|, then the map of (K, L) into (K',L’) defined by f is

linear[simplicial].



34

Definition 2.4.11. Given a pair (X, A), a triangulation T = {t,(K, L)} of

(X, A) consists of a simplicial pair (K, L) and a homemomorphic map
LE (lKli |L|)_>(X7 A)

The pair (X, A) together with a triangulation T is called a triangulated pair. If
a triangulation of a pair (X, A) exists, the pair is called triangulable.

We do not study properties of simplicial maps, triangulated spaces, barycentric
subdivision or simplicial approximation since for the results we state these defini-
tions suffice althpugh they are certainly needed in proving some of the theorems
stated.

2.5 Formal Homology Theory of

Simplicial Complexes

Formal homology theory of simplicial complexes is achieved by associating a chain
complex to each simplicial complex and then using the results of Section 2.3. The
homology theory of simplicial complexes is constructed in two ways. The classical
procedure attaches to each simplicial complex K a chain complex K, which is
called the alternating chain complex of K. The other procedure attaches to
each K the ordered chain complex K,. There is a natural mapping K,——K,
which induces isomorphisms of their homology groups. The first one is good for
computations. We will use only the second one so we will only define that one;

it suffices for our purpose.

For the formal homology theory that will be dealt the assumption that the
simplicial complex be finite may be dropped:

Definition 2.5.1. Let W be an infinite set of objects called vertices. A complez

K with vertices in W is a collection of (finite dimensional) simplexes whose

| KORDW
mmoc%



35

vertices are in W, subject to the condition that a face of a simplex in the collection

is also in the collection.

The concepts of ‘subcomplex’ and ‘simplicial map’ are introduced in the ob-
vious way. The category of pairs of infinite complexes and simplicial maps will
be denoted by K. The term ‘infinite’ is always used in the sense of ‘finite or

infinite’, so that the finite complexes form a subcategory of K, denoted by K, .

Definition 2.5.2. If K is a simplicial complex, an array A°...A%q > 0) of
vertices of K, included among the vertices of some simplex of K, is called an
elementary g-chain of K. Precisely an elementary g-chain is a function which,
to each integer i = 0,... ,q, assigns a vertex A’ of K such that A°... A7 all lie
in a simplex of K. The free group generated by this set of elementary g-chains
of K will be denoted by C,(K,). By definition, C,;(K,) = 0 for g < 0.

For each elementary g-chain A°... A%(q > 0), define

q
0y(A°.. A% = (—1)iA°.. AP, . AT

=0
where the circumflex over a vertex indicates that the vertex is omitted. Having

defined J, for the generators of Cy(K,), a homomorphism
0y 1 Cg(Ko)—>Cy-1(Ko)

is uniquely determined. If ¢ < 0, then 8, = 0, by definition.

It is checked that 8, ,9, = 0, so that {C,(K,),d,} is a chain complex. This
chain complex will be denoted by K,. If L is a subcomplex of K, then Cy(L,) is
generated by a subset of the set generating C,(K,), and 9, on L, agrees with 0,
on K,. Given ¢ € C,(K,) we shall write ¢ C L to denote that ¢ € Cy(L,).

Definition 2.5.3. For each simplicial pair (K, L), the chain complex K,/L, is
called the ordered chain complex of the pair (K, L). The groups C,(K,/L,) are
free groups, and if K is finite, then K,/L, is a finite chain complex in the sense
of Definition 2.1.10.



36

Lemma 2.5.4. If f: (K,L)—(K',L') is simplicial, the homomorphisms
fq 1 Co(Ko)—Cy(K,) and f,: Cy(Lo)—C,(L,) defined by

Fi(A%.. A% = F(AY)...f(A9)

define a map

fo: Ko/Lo—>K,/L,.
Moreover, if f:(K,L)——(K,L) is the identity, then f, is the identity, and
if f:(K,L)—(K',L'), g:(K,L')—(K",L") are simplicial maps, then
(950 = Gofo-

The lemma states that K,/L, and f, form a covariant functor O on the
category K, of simplicial pairs and simplicial maps with values in the cate-
gory Comp of chain complexes of abelian groups. We now convert K into a
c-category by defining couples (%, j) to consist of the inclusion maps i : L——K,
j: K——(K,L) for each pair (K,L) in K,. Since i, is the inclusion map

L,——K,, it follows that the sequence

0—>Ly—2>K,— %K,/ Ly—>0

is exact, thus (4,,j,) is a couple on the category Comp. Since L, is a direct

summand of K,, it follows that the couple is direct in the sense of Definition 2.1.4.

Summarizing we have:

Theorem 2.5.5. The pair K,/L,, f, forms a covariant c-functor O on the cate-
gory Ky of simplicial complexes and simplicial maps with values in the c-category

Comp of chain complezes(with only direct couples considered).

Definition 2.5.6. Two simplicial maps f, g : (K, L)—(K', L') are called con-
tiguous if, for every simplex s of K[of L], the simplexes f(|s|) and g(|s|) are faces
of a single simplex K'[of L']. This relation will play the role of homotopy in the
category K.

The term ‘contiguity’ is used instead of homotopy to avoid confusion with the

homotopy of the maps f, g : (| K|, |L|)—(|K'|,|L'|) of the associated topologi-
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cal spaces(when K and K are finite complexes). Indeed if f and g are contiguous,
then they are also homotopic but the converse is generally false.

Theorem 2.5.7. If the simplicial maps f,g: (K, L)——>(K',L’) are contigu-

ous, then the induced chain maps f,, 9o : Ko/L,—>K, /L, are chain homotopic.

Definition 2.5.8. If K’ and K" are subcomplexes of a chain complex K, we
denote by K' N K" and K’ + K" the subcomplexes of K defined by

C (K, K"y = Ci(KYNCYK"), CoK +K")=Cy(K')+Cy(K")
Then clearly,
(K NK")e=K,nK.,, (K +K),=K,+K,

Definition 2.5.9. Let K’ and K" be subcomplexes of a simplicial complex K.

The inclusion map
i: (KI,KI n K")‘H(KI +K",K")
is called an ezcision.

Definition 2.5.10. Points in the category K, are defined just to be simplicial

complexes consisting of a single vertex.

Having defined the concepts of homotopy, excision, and point in the c-category

K, it becomes an h-category and the following theorem holds:

Theorem 2.5.11. If Comp is regarded as an h-category in the sense of direct

couples, then O : K;—Comp is a covariant h-functor.

Definition 2.5.12. According to Proposition 1.3.9, the composition of the

h-functor O with the homology theory of Comp with coefficient group G yields
an homology theory on K, called the homology theory of K with coefficient
group G. For any simplicial pair (K, L) the homology groups H,(K,/L,; G) will
be written Hy(K, L; G) and will be called the ¢** homology group of (K, L) with

coefficient group G. We have the following two cases:

i. G € A, (K,L) € K,, then H,(K,L;G) € A,
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i, GeMe, (K, LeK, then  Hy (K L;G) € M.

(When K is a finite complex, i.e. (K, L) € K, K,/L, is a finite chain com-
plex, hence K,/L, € Comp' so we get the second case by Definition 2.3.3.)



CHAPTER THREE
INVERSE LIMITS OF INVERSE SYSTEMS

We describe in this chapter the concept of inverse limits of inverse systems of
sets, groups, topological spaces, topological groups, lowers sequences of groups,
chain complexes, etc. which are used in defining the Cech homology theory in
the next chapter and which form the algebraic part used in this theory. When
studying exactness of the Cech homology sequence of a pair, we will use the
results of Sections 3.2 and 3.3 of this chapter. Section 3.3 forms the algebraic
part dealing with limits of inverse systems of exact sequences used in the proof of
Theorem 4.2.2 at Section 4.2 where the exactness of the Cech homology sequence

of a compact pair (X, A) over an algebraically compact coefficient group is proved.

3.1 The Category Inv(a) of inverse systems of
elements of a and limit functor Inv(a)—a for

some categories a whose objects are sets

Definition 3.1.1. A binary relation < in a set M is called a quasi-order if it is

reflexive and transitive, that is for every o, 8,7 € M,

i a<a.

ii. e < B and B <vimpliesa <y

39
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In general, o < 8 and B < « does not imply that o = S(i.e. we do not take the

anti-symmetry condition as in a a partial order).

A directed set M is a quasi-ordered set, with < denoting quasi-order, such
that for each pair o, 8 € M, there exists a v € M for which a <y and 8 < .
A directed set M’ is said to be a subdirected set of a directed set M if M' C M
and o < B8 in M’ implies @ < B in M. A subdirected set M of M is cofinal in
M if, for each & € M’ there exists a f in M such that o < 8. If M and N are
directed sets, a map ¢ : M———N of directed sets is an order-preserving function
from M to N, i.e. « < 8in M implies ¢a < ¢8 in N.

Definition 3.1.2. An inverse system of sets {X,(c: € M); 78} (or shortly {X, 7})
over a directed set M is a function which attaches to each o € M a set X,,, and
to each pair «, 8 such that o < § in M, a map

7I'g . Xﬂ—-——>Xa

such that
7o = identity, aeM

mimy =13, a<B<yEM.

We denote {Xq(a € M); w2} also shortly by {X, 7} with the meaning that the
appropriate indices are put when they are used; in the same sense we shortly
write 7 for 78,

The maps 72 are called projections of the system. If each X, is a topological
space, or an abelian group, or a topological group, and each projection is re-
spectively, continuous, or group homomorphism, or a continuous homomorphism
then {X,(a € M);7P}(shortly {X,n}) is called an inverse system of, respec-

tively, topological spaces, groups, or topological groups.

A directed set M becomes a category if each relation o < 8 is regarded as a
map a—=>3. Then an inverse system over M is simply a covariant functor from
M to the category of sets and maps, or to the category of groups and homomor-

phisms, or to the category of topological groups and continuous homomorphisms.
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Definition 3.1.3. Let {X,(a € M);7?} and {X;, (@ € M');7r:5} be inverse

systems over M and M respectively. Then a map
® : {Xa(o € M);ml}—>{X\, (' € M');n?}
of inverse systems(shortly ® : {X,n}——{X,n'}) consists of a map
¢: M—M
of directed sets, and, for each &' € M, a map
Py - Xm'—>X;,, oeM

such that, if @ < 8 in M, then commutativity holds in the diagram

¥ 1
.X ;- /]
a 7r' B

where 7,7 and ¢ have appropriate indices.

Whenever both of the inverse systems are inverse systems of topological spaces,
groups, or topological groups, the components ¢, of the map ® are regarded to
be continuous, or homomorphic, or continuously homomorphic.

In case
®: {X,(a € M);ﬂg}—>{X;, (o € M');7r:5 }
o . {X;, (@ € MI);'H':; }—>{X:,, = M");ﬂ'ag }
are two maps of inverse systems, their composition
®'P: {Xo(a € M); wg}—>{X:;,, (o' € M");W:;ﬁ
is defined to consist of the compositions
¢p and ¢ uopy,, o EM .

The identity map @ of {X,(c € M); w2} is composed of the identities
¢: M——=M and ¢, : Xo—>X,, x € M.
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Proposition 3.1.4. Let a be any of the following categories: sets and maps,
spaces and continuous maps, compact spaces and continuous maps, groups and
homomorphisms, topological groups and continuous homomorphisms, compact
groups and continuous homomorphisms. Inverse systems and maps of such, all

of whose elements belong to a forms a category denoted by Inv(a).

Definition 3.1.5. Let {X,(c € M); 72} be an inverse system of sets over a
directed set M. The inverse limit X, (briefly limit) of {X,(a € M);x8} is the
subset of the product

I] X

aEM
consisting of those functions £ = (24)aenm (shortly z = (z,)) such that, for each
relation o < 8 in M,

78 () = x4
Define the projection
g : Xeo—>Xg Dby

ng(z) =zp for each £ = (Zy)aecm € H Xa.
acEM

If {X,n} is an inverse system of topological spaces, then X, is assigned the
topology it has as a subspace of [[, Xo. If {X, 7} is an inverse system of abelian
groups, then it is easily seen that X, is a subgroup of [, X, and X is assigned
this structure of a group. Similarly, an inverse limit of an inverse system of

topological groups is a topological group.

Definition 3.1.6. Let @ : {X,(a € M);'rrg}—-—>{X;, (@ € M');w:g'} be a map

of one inverse system into another. The inverse limit ¢, of @ is a map
Poo : Xoo—> X,

defined as follows: If z € X and o € M, set .’I); = Po(Ty(e))- If o < Bin
M, it follows by the definition of a map of inverse systems that W'i(x;a) = z,.

Therefore £ = (z,,) e is an element of X . Define ¢oo(z) =z .

Theorem 3.1.7. (Limit functor Inv(a)——>a) Let a be any of the following
categories:

sets and maps,
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spaces and continuous maps,

compact spaces and continuous maps,

groups and homomorphisms,

topological groups and continuous homomorphisms,

compact groups and continuous homomorphisms.
Let Inv(a) denote the category of inverse systems and maps of such, all of whose
elements belong to a. Then the operations of assigning an inverse limit X to
each inverse system {X,(a € M); w8} (shortly {X,n}) in Inv(a) and an inverse

limit ¢oo : Xm—>X:x> to each map
@ : {Xa(@ € M2} —{(X, (o € M');n%)

(shortly ® : {X,n}——{X', 7'} ) of inverse systems in Inv(a), form a covariant

functor from Inv(a) to a.

3.2 Inverse Systems of Lower Sequences of

Abelian Groups and Their Inverse Limits

Definition 3.2.1. An inverse system of lower sequences {Sqo(ow € M); w2} (shortly
{S,7}) over a directed set M is a function which attaches to each o € M a lower

sequence

¢a, ¢a, -1
Sa = {Sa,q, ¢a’q}qu : P sAS'(z’q g Sa,q_l g e«

and to each relation ¢ < 8 in M, a homomorphism 75 : Sp—S, of lower

sequences
S : Spg—P% Spys—>n
,rgl wz,ql lwﬁ,q_,
S, : Saa 5> Sag-1—= "+

i.e. homomorphisms 75 ; : Sgg—>S,,, for each g € Z such that

Gag O Mg = Tag-1° $pg



satisfying

7o = identity, and
min] = x fa<f<yin M

Then for any fixed g, the groups and homomorphisms {Sq(a € M); 75} form
an inverse system of groups over M; denote its limit group by Seq. Again for a
fixed g, the homomorphisms ¢, 4, @ € M together with identity map of M form
a map

®, : {Saq(c € M); 18 }—>{Saq-1(a € M);7l, 1}

of inverse systems. Denote the limit of ®, by

¢°°»q : S°°9q—-—>sw9q_l'

The lower sequence So, = {Sco,g) Poo,g}qez S0 obtained is called the inverse limit
of the system {S,(a € M);n8}(shortly {S,7}). In this definition it is to be
understood that all groups and homomorphisms in an inverse system of lower
sequences belong to the category /b of abelian groups or to the category /b¢
of compact abelian groups; then the limit sequence is also of the same type.
Notation of this definition will be used when we work with lower sequences of

groups in the next section.

Definition 3.2.2. A lower sequence {Gq, #¢}qcz is said to be of order 2 if the
composition of any two successive homomorphisms of the sequence is zero, i.e.
$q © $gr1 = O for every ¢ € Z so Ker(¢,) D Im(dg1). Although this notion
coincides with that of chain complex, the ‘order 2’ language is preferred whenever

the lower sequence in question is not treated as a chain complex.

It is not true that the limit sequence of an inverse system of exact lower

sequences is exact but we have:

Theorem 3.2.3. If each sequence of an inverse system of lower sequences is of

order 2, then the limit sequence is also of order 2.

Theorem 3.2.4. Let {Sa(a € M); 78} (shortly {S,n}) be an inverse system of

ezact lower sequences over a directed set M where all groups and homomorphisms
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of {S,n} belong to the category ¢ of compact abelian groups(i.e. the groups are
compact topological groups and homomorphisms are continuous homomorphisms).

Then the limit sequence So of {S, 7} is also ezact.

3.3 The category Invy(Comp) and

limit functor Inv,(Comp) — Comp

Remember that by Comp we denoted the category of chain complexes of abelian
groups and their chain homomorphisms. Lower sequences of order 2 are chain
complexes; they are the same according to their definitions but the terminology
‘chain complex’ is used generally if from it homology groups are obtained. The
lower sequences we will work in the next section when discussing exactness of
Cech homology will themselves be homology sequences(of a simplicial complex)
and will not be treated as a chain complex, but we will not create a different
notation for the lower sequences of order 2; we will again use Comp to denote
the category of lower sequences of order 2(=chain complexes) and their chain
homomorphisms. We will not care much about this now and use chain complex

and lower sequence of order 2 interchangeably.

Definition 3.3.1. Fix a directed set M. By Inv)/(Comp) we will denote the
‘category’ of inverse systems of chain complexes over the directed set M. The
verification that it is a category with the definition of its objects and maps given

below is done in the proof of the theorem that follows.

The objects of Invy(Comp) are inverse systems {S,(a € M); w2} (shortly
{S,7}) of lower sequences of order 2(we have defined in Definition 3.2.1 what
an inverse system of lower sequences is). Maps(morphisms) of Inv,,(Comp) are
defined as follows:For {S,(e: € M); 78} (shortly {S,7}) and {S,(a € M);'fl"z}
(shortly {S',7'}), a map

¥ {S,7}—>{5, 7'}



46

consists of chain homomorphisms
Yo Sa—>S;7 aeEM

such that if @ < 8 in M, then commutativity holds in the diagram

Saﬁ-—Sﬁ

Ya L
So<5Ss

a 48
7ra

~

We denote a map in Inv,,(Comp) by capital greek letters(like ¥) and its ‘com-
ponents’ by small letters(like 1), as above or by ¥, or by (¥),). Composition of

two maps
U {S, 1} —{S, 7'}, ¥ :{S,7}—{5",7"}
in Invy (Comp) is defined as the map
V'V {S,7}—{S",7"}

given by
(T W) = ¥, Y0, a € M.

Identity map of {S,n} in Invy,(Comp) is the map
i{Sﬂf} : {Sa 7‘-} > {S’ 77}
given by

(i{s,ﬂ})a =1g,, a€EM

where ig, : Sq—S, is the identity chain homomorphism of S,. The nota-
tion of this definiton will be used throughout when working in the category
Invy(Comp).

Theorem 3.3.2. Invy/(Comp) forms a category.

Proof. Firstly, let us verify that the composition ¥'¥ in the definition is a map in

Inv,/(Comp). Since ¥' and ¥ are maps in Inv,,(Comp), we have the following
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Composition of chain homomorphisms is a chain homomorphism(in the category
Comp), s0
VYothe : Sa—>S,,

is a chain homomorphism for every oo € M. The diagram
=
Soq<— Sﬁ
¢;¢al l«/z,;«/w
SH Sg

a up
T o

is commutative as

(Ystha) 0 78 = 9y 0 (the 0 78) = (0 m'5) 0 9hp = 75 o (Ypehp)

because by commutativity of the two previous diagrams

1B ’ 18 np ’
¢ao7ra=7ra°¢ﬂ and ¢aowa=7rao¢ﬂ

Composition of maps in Inv,/(Comp) is ‘associative’ because composition of

chain homomorphisms is associative: for maps
Ui {S,m}—{S, 7'}, ¥ S, 7 }—{5", 7"}, ¥ : {§", 7" }—{S", 7"}

in Invy,(Comp), we have for every o € M

"1 " 7

[\I’” (‘I’,‘I’)]a = ¢:(¢;¢a) = (¢a¢a)¢a) = [(\I’ v )\I’]a

which implies ¥"(¥'¥) = (¥'¥')¥. For {S,n} in Inv)/(Comp), the identity
(map7

ismy t {S,}—{S, 7}
is really a map in Invy(Comp), because the diagram

=5

Sq <83
X

1Sq
Sa<5— Sﬂ

8
is clearly commutative as ig, and ig, are identity maps of chain complexes. That
the map i{s,} is an ‘identity map’ in the category Inv(Comp) follows because

for maps
U {S,7}—{5, 7'}, {5, 7 }—={S, 7}
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is clearly commutative as is, and ig, are identity maps of chain complexes. That
the map 4(g} is an ‘identity map’ in the category Inv,/(Comp) follows because
for maps

: (S, 71}—{S,7'}, v {5, 7 }—{S,7}

in Invy(Comp), we have for each « € M

(¥ 0 i{gx})e = Yals, = Ya
and

(igsm © % )a = isa¥a = Ya
which give

Voigssy=¥ and igmo¥ =VT.

All these show that Inv,,(Comp) forms a category with the Definition 3.3.1 [
Definition 3.3.3. Let ¥ : {S,7}—{S',n'} be a map in Inv,(Comp). We

will follow the notation given in the Definitions 3.3.1 and 3.2.1. For every g € Z
and a < B in M, the diagram

"/’a,ql l"/’ﬂ,q

Saaq 18 Sﬁ »q

g
is commutative(because the diagram without the ¢’s is commutative by the def-

inition of a map in Inv,/(Comp)) so the map
\Ijq : {Sa,(I(a € M);"rg,q}_>{sz'z,q(a € M); ﬂixﬂ;q

which is defined to consist of the identity map of M and (¥,), = ¥o,q, 0 € M is
a map of inverse systems of abelian groups, i.e. a map in the category Inv(4) .

Hence we can pass to limit by Theorem 3.1.7 to obtain a homomorphism
Yoo,q S’oo,q—>S;°,q.
of groups for each g € Z. The map
Yoo * Soo———>S;°

of lower sequences defined by those 14, g € Z is called the inverse limit of the
map ¥ : {S,7}—{S',7'}.



49

Proof. For each q € Z, the following diagram in Inv(4) is commutative:

¥, ’ '
{SQ,Q(a € M)’ ﬂ-g,q} {Sa,q(a € M)’ ﬂ'aﬂ;q}

@,,l J;p;

{Sa,q_l(a € M); ﬂ-g,q—l} W—l) {S;,q—l(a € M); W;fq—l}

because for every a € M

7
’lpa!q_l o ¢a:q = ¢a,q © ’l/)a’q

as o : Sq—>8,, is a chain homomorphism. Thus applying the limit functor

Inv(A)——>A by Theorem 3.1.7, we get the commutative diagram

2
Soo,q—l,,p_>w'q_l Soo,q—l

that is, for every g € Z

"poo,q—l o ¢oo,q = ¢Ioo,q o "poo,q-
But this means that 9o : Seo——>S, is a chain homomorphism. O

Theorem 3.3.5. Let Comp denote the category of chain complezes(=lower se-
quences of order 2) of abelian groups(i.e. groups in A) and their chain homo-
morphisms, and Inv,,(Comp) denote the category of inverse systems of chain
complezes of abelian groups over a directed set M. Then the operation of assign-
ing an inverse limit Sy, to each inverse system {Sa(a € M); w8} (shortly {S,7})
in Invy (Comp)and an inverse limit map Yoo : S;o—>S,, in Comp to each
map ¥ :{S,7}——>{S',7'} in Invy(Comp) forms a covariant functor from
Invy (Comp) to Comp, which we call as the limit functor

Invy(Comp)——Comp.

Proof. By Theorem 3.2.3, it follows that the limit sequence S, of an inverse
system {S, 7} in Inv,/(Comp) is also a chain complex, thus in Comp, because

a chain complex is just a lower sequence of order 2.
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Proof. By Theorem 3.2.3, it follows that the limit sequence S of an inverse
system {S, 7} in Inv,,(Comp) is also a chain complex, thus in Comp, because
a chain complex is just a lower sequence of order 2.
For the identity map ifss) : {S,7}——={S, 7} of {S, 7} in Inv, (Comp),
(2457} 00,q * Soo,g——>So0,g

is the identity map for every ¢ € Z because it is obtained by applying the limit
functor Inv(4)——4 (by Theorem 3.1.7) to the identity map

(i{Sﬂf})q : {Sa,q(a € M); 7"cl?z,q}_—”[soz,q(0‘ € M); 7Tg,q}

in Inv(4). Thus

('i{S,ﬂ'})oo : Seo—>S0

is the identity map of S, in Comp.

For maps
U {S,7}—{S, 7'}, U :{S,n'}—{5",7"}
in Inv,(Comp), we must check that
(T'0) oo = ¥ Voo

Let g € Z.

’

(V) oo,g : So—8,

o0

is the limit of the map
(T'W)g : {Saqle € M); 78 }—> (S (o € M);n"2 )}
in Inv(4). But that map in Inv() is the composition of the maps
’ ’ 18 " np
L {Sa,q(oz € M);m o }—{Sa (@€ M);7™,, .}

and

U, : {Sp (e € M); ﬂg’q}—>{S;,q(a € M); W'g,q}

L€ VOKSEXOCUETR KURILY
RBEARTASYOP @IRXYYS
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Theorem 3.3.6. Let {S,(a € M); w8} (shortly {S,7}) and {S,(« € M);ﬂ'lz}
(shortly {S',n'}) be inverse systems of ezact lower sequences of abelian groups

over a directed set M. Assume that we have maps
f:{S,n'}—{S,n} and  g:{S,7}—{S,7'}

in the category Invy (Comp) of inverse systems of chain complezes(of groups in
A) over the directed set M such that

gof=tq
where g .y is the identity map of {S',7'} in Invy(Comp)/so for every a € M
the chain homomorphisms f, : S;—>Sa and g, : Sa—>5'; satisfy goofo =1 s,
s0 each S, is a direct summand of S,, hence each S;,q is a direct summand of

Sa,q for each integer q]. Then

i. S, is o direct summand of S

#. If Sw is ezact, then S, is also ezact.

Proof. i. Applying the limit functor Invy(Comp)——Comp of the previ-
ous Theorem(3.3.5) to
gof= i{s’,w'}
in Invy (Comp), we get
oo © foo =1 s
So by Proposition 1.1.12, S, is a direct summand of Sy, hence, S;o,q is a

direct summand of S, for each ¢ € Z.

ii. Since fy, : S, —>Seo a0d goo : Seo—>S,, are chain homomorphisms, we
get the following ‘commutative’ diagram for every q¢ € Z, that is each
square in the following diagram is commutative in the sense described in
Definition 1.1.6:

’ !

SI ¢oo,q+1 o Y ¢oo,q Sl
00,¢+1 00,9 00,4—1
foo,q41| | 9o0sg+1 Joo,q| |9o0sa foo,q—1| |9o0,9—1
S, > Soo.q—1
oo,g+l $oo,q+1 s $oo,q oo
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We already know that S, is a chain complex, i.e. imageCkernel. So to
show exactness, we must show for each ¢ € Z that
Ker¢y,, CIm@y o1

Take z € Ker g, 4, 50 $o 4(x) = 0. Then

foo,q—l o ¢;°,q(.'17) =0.

By commutativity of the previous diagram,

1
foo,q—l o ¢oo,q = ¢00,q ° foo,q-

So we get,

boo,a(fooa(7)) =0,
that is,
Joo,q(z) € Ker oo q.

By exactness of S,
Ker ¢oo,q = Im ¢oo,q+1-

Thus,
foo,q(x) = ¢oo,q+l (y)

for some y € Soo,g+1- Then,

Goo,g © foo,q(w) = Goo,q © Poo,g+1 (y)

By commutativity of the previous diagram,

1
Joo,q © Poo,gt1 = ¢oo,q+1 0 foo,g+1

and since gy, © foo =iy ,
oo

9oo,q © Joo,g = L=

where ig .8 the identity map of S'oo’q. So we obtain

iS,'x,q (.’L‘) = ¢w,q+1 0 foo,g+1 (:B)
that is,

T = ¢°°,q.|.1 (f oo,q+1(y)) € Im ¢:>0,Q+1

as required.
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Corollary 3.3.7. If in the previous Theorem 3.3.6, we assume further that {S, 7}
is an inverse system of ezact lower sequences over M where all groups and ho-
momorphisms of {S, 7} belong to the category ¢ of compact abelian groups(so
also belongs to the category A of abelian groups), then it follows that Sy, is
ezact as well as Sy and is a direct summand of S, S0 S;o is an exact lower se-
quence of algebraically compact groups and homomorphisms(just ordinary group

homomorphisms).

Proof. By Theorem 3.2.4, S, is an exact lower sequence. So by Theorem 3.3.6,
S;o is a direct summand of S, and it is exact. Since for each ¢ € Z, S;o,q
is a direct summand of Sy 4, which is a compact abelian group, each S:x,,q is

algebraically compact by definition. O



CHAPTER FOUR
THE CECH HOMOLOGY THEORY:A
PARTIALLY EXACT HOMOLOGY THEORY

The Cech homology theory is defined on the category a, of arbitrary pairs (X, A)
and their maps; the coefficient group is taken in . Further, if (X, A) is a
compact pair, then the Cech homology group H,(X, A) is also defined when the
coefficient group is taken in ¢, and is itself in 4. The Eilenberg-Steenrod
axioms are valid except for the Exactness axiom, which is valid only with some
restrictions. The Cech homology sequence of any pair is defined, and it is known
that the composition of any two successive homomorphisms in this homology
sequence is zero but this homology sequence may not be exact. It is known
that when the pair (X, A) is restricted to be a compact pair and the group G is
restricted to be a compact group, then the full exactness axiom is obtained. We
prove that it suffices also to restrict (X, A) to be a compact pair and G to be
an algebraically compact group, i.e. a direct summand of a compact group. In
case, (X, A) is a triangulable pair, exactness holds without any restricition on the
coefficient group. To include theories like Cech homology, the exactness axiom is
modified to a partial ezactness aziom and the resulting such theories are called
partially ezact homology theories. The Cech homology theory has distinguishing
features among all partially exact homology theories as described in Eilenberg
& Steenrod (1952). For further properties of the Cech homology theory and
its relation, comparison with other homology theories, we refer also to Eda &
Kawamura (1997), Guri (1993), Watanabe (1987).

54
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4.1 The Cech Homology Theory

Definition 4.1.1. An indezed family of sets in a space X is a function « defined
on a set V, of indices such that, for each v € V,, a,(the value of  on v) is a
subset of X. If

X=Ua1,,

vEVa
then o is called a covering of X. It is called an open(closed) covering of X if

each o, is open(closed) in X. The set of all open coverings of X is denoted by
Cov(X). If A is a subset of X, and V2 is a subset of V,, such that

AcC U Oy,

veVA

then we say that o is a covering of the pair (X, A) with (V,, V2) as indexing
pair. The set of all open coverings of (X, A) is denoted by Cov(X, A).

Definition 4.1.2. Let « be an indexed family of sets in a space X. Let s, be
the simplicial complex consisting of all simplexes whose vertices are elements of
Va(if V, is finite, then s, is itself a simplex). If s is a simplex of s,, the carrier
of s, denoted by Carg(s), is the intersection of those sets a, which correspond
to vertices v of s. The nerve of «, denoted by X,, is the subcomplex of s,
consisting of all simplexes with nonempty carriers. If a is a covering of the
pair (X, A) indexed by (V,, V), then we denote by A, the subcomplex of X,
consisting of all simplexes s with vertices in V such that ANCar,(s) # 0. The
pair (Xg, Aa) is then called the nerve of a. Note that «, is the carrier of the

vertex v.
Lemma 4.1.3. If s is a face of s, then Cara(s') D Cary(s).

Definition 4.1.4. If f: (X, A)——(Y, B) is a continuous map and 3 is a cov-
ering of (Y, B), then =!8 is a covering « of (X, A) with the same indexing pair,
(Va, V) = (V3,V}?), and defined by o, = f~'(B,) for each v € Vj. It follows

from the continuity of f that, if 8 is an open(closed) covering, so also is f~!8.

Lemma 4.1.5. i If f:(X,A)——(Y,B) is a continuous map and a =

1B where B is a covering of (Y, B), then the nerve X, is a subcomplez of
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Y3 and A, is a subcomplez of Bg. The inclusion map (X4, Ay) (Y3, Bg)
is denoted by fa.

. If f: (X, A)——(X, A) is the identity, and « is a covering of (X, A), then
[la=a and f, is the identity map of (Xq, Aa)-

. If f:(X,A)—(Y,B) and g: (Y, B)——(Z,C) are continuous maps, y
is a covering of (2, C), and B = g\, then f~1g~\y = (9f)"'7 and (¢f), =
g'yfﬂ-

Definition 4.1.6. Let o and § be two coverings of the pair (X, A). The covering
B is called a refinement of a, denoted by a < S, if every set of 8 is contained in
some set of o, and every set of 8 indexed by an element of VﬂA is contained in
some set of @ indexed by VA, If & < B, a function p: (Vs, Vi)—(V,, V4) is
called a projection if o, D B, for each v € V3. The vertex mapping p extends

uniquely to a simplicial map sg——=s, which is also denoted by p.

Lemma 4.1.7. i. The relation < of the previous definition is a quasi-order,

i.e. a < a, and a < B < v implies o < vy for every a, B, v € Cov(X, A).

#. The set Cov(X, A) of open coverings of (X, A) is a directed set with respect

to the relation <.

Lemma 4.1.8. i. For any «, the identity map sq—>54 %5 a projection. If
P:Sg—>Sa, P ! sy—>8p are projections, then their composition

!

PP : Sy—>84 18 a projection.

@ If o < B are coverings of (X, A), then a projection p: sg—>S, maps
(Xg, Ag) into (X4, Ag). This simplicial map of the nerve of B into that of

o s also called a projection and is denoted by the same symbol p.

Theorem 4.1.9. If o < § are two coverings of (X, A), then any two projections
p,p : (Xp, Ag)—(Xq, Aa) are contiguous simplicial maps.

Corollary 4.1.10. Using homology groups of simplicial complezes in the sense of

Definition 2.5.12, we have, for any coefficient group G, that the homomorphisms

H,y(Xp, Ap; G)—=Hy(Xa, Aq; G)
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induced by a projection (Xg, Ag)—>(Xa, As) are independent of the choice of

the projection and are therefore uniquely associated with the relation a < B.

Lemma 4.1.11. If f: (X, A)——(Y, B) is a continuous map, and o < B are
coverings of (Y,B), then, if o = f'a, 8 = f'B, we have &' < . If
p: (Y, Bg)—(Y,, Ba) is a projection, then p maps (Xg, Ag) into (Xp, Ay)-
Ifp' is the map so defined by p, then p is a projection and commutativity holds
in the diagram

(X, Ayg) <" (Xg, Ag)

'l "

(Yas Ba) <~ (Yﬂa Bﬂ)

Definition 4.1.12. Let (X, A) be a pair of topological spaces and G an abelian
group(in the category ). Let Cov(X, A) be the directed set of all open coverings
of (X, A). For each o € Cov(X, A), let (X,, A,) be its nerve, and let

Hyo = Hy(Xa, A; G).
For each relation o < 8 in Cov(X, A), let
5 Hyp—>Hyo

be the homomorphisms induced by any projection (Xg, Ag)— (X4, Aa). The
collection {H, (e € Cov(X, A)); 8} is called the ¢** Cech homology system of
(X, A) over G.

Theorem 4.1.13. The ¢ Cech homology system of (X, A) over G is an inverse
system of groups defined on the directed set Cov(X, A).

Definition 4.1.14. The inverse limit of the ¢** Cech homology system of (X, A)
over G is denoted by H,(X, A;G) and is called the ¢* Cech homology group of
(X, A) over G. The group G may belong to the category 4 of abelian groups.

When G is a compact abelian group, i.e. in the category ¢, the situation
is as follows: The Cech system is an inverse system and the passage to the limit
is permissible. However the groups Hy(X,, Aq; G) themselves are not defined for

G € A since in general the complex X, is infinite. One could try to avoid
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this difficulty by replacing the directed set Cov(X, A) by its subset Cov/(X, A)
consisting only of finite coverings(i.e. coverings a with V,, finite). The previous
definitions and results remain valid for the directed set Cov/ (X, A) when it re-
places Cov(X, A). Of course, the resulting limiting group HJ (X, A; G) may not
be isomorphic with H (X, A; G). However, if the pair (X, A) is compact, then
Cov/(X, A) is a cofinal subset of Cov(X, A) and therefore the limits Hf and H,
are isomorphic. Thus, for compact pairs, we may limit our attention to finite
coverings, and thereby define the homology groups Hy(X, A; G) with G € .
Then the group H,(X, A; G) is also in A¢. The situation resembles the one for
simplicial complexes; the group H,(K, L;G) when G € A¢ was defined only
when the simplicial pair is finite, i.e. in K, of finite simplicial complexes(not for
any pair in the category K, of infinite or finite simplicial complexes). To justify

the above discussion we used the following:

Lemma 4.1.15. If the pair (X, A) is compact, then the set Cov’ (X, A) consist-
ing of finite coverings is a cofinal subset of Cov(X, A).

We will now state the results showing that the Cech homology satisfies the

Eilenberg-Steenrod axioms except the exactness axiom.

Theorem 4.1.16. (Dimension aziom). If P is a single point, then Hy(P; G) =0
for ¢ #£0 and Hy(P;G) = G

Theorem 4.1.17. Let f: (X,A)——>(Y, B) be a continuous map, let
f~!: Cov(Y, B)—> Cov(X, A) be the associated map of the coverings, and, for
each o € Cov(Y, B), let fo: (X, Ay)—>(Ya, Ba) be the inclusion map of the

nerve of o = f~la into that of a. Then the induced homomorphisms
Jor : Hy(X 1, Ayt G)——Hy(Ya, Ba; G),

for all « € Cov(Y, B) together with f~* form a map ®(f) of inverse systems from
the ¢t Cech homology system of (X, A) over G into that of (Y, B).

Definition 4.1.18. The limit of the map ®(f) of the ¢** Cech homology system
of (X, A) into that of (Y, B) is denoted by

ot Hy(X, A; G)——H,(Y, B; G),
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and is called the homomorphism induced by f. The coefficient group G belongs to
the category . If the pair is compact, then we replace Cov by Cov/ throughout,
and as above derive the definition of f, for G in the category /b¢.

Theorem 4.1.19. (Aziom 1). If f: (X, A)——(Y, B) is the identity map of
the pair (X, A), then f. is also the identity.

Theorem 4.1.20. (Aziom 2). If f : (X, A)——(Y,B) and g : (Y, B)—(Z,C)

are continuous maps, then (gf)s = gufe-

Theorem 4.1.21. (Homotopy Aziom). Let go, g1 : (X, A)—(X, A) x I be de-
fined by go(z) = (z,0) g1(x) = (z,1); then gox = g1« for any coefficient group G
for which the appropriate Cech groups are defined.

Theorem 4.1.22. (Ezcision Aziom). IfU is open in the space X and its closure
U is contained in the interior of A C X, then the inclusion map
(X —-U,A-U)—>(X,A) induces isomorphisms

fo: H(X = U,A—U)—>Hy(X, A)

for any coefficient group G for which the respective Cech groups are defined.

The Cech homology groups of (X, A), A, and X are defined as limits of suit-
able systems of groups defined over the directed sets Cov(X, A), Cov(4,0), and
Cov(X,®) respectively. In order to define the boundary operator and discuss
exactness, it will be convenient to have equivalent definitions in which all these
systems are defined over the same directed set. It appears that the directed set

Cov(X, A) is most suitable for this purpose.

Definition 4.1.23. If a € Cov(X, A), let S, be the homology sequence of
(Xa, Aq) over G. If o < B in Cov(X, A), let 78 : S5——>S, be a map induced by
a projection (Xg, Ag)—>(Xq, As). The resulting limit sequence is called the
adjusted homology sequence of (X, A). The groups and homomorphisms of the

adjusted sequence is written

o= Hyy1 (X, A)-2 > Hy(A) x 4y—>Ho(X) x4y Hy(X, A)— ...
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To compare the groups with the subscript (X, A) with the groups without this

subscript, we introduce two maps,
¢ : Cov(X, A)—= Cov(4,0),

1 : Cov(X, A)— Cov(X, 0),

Let & € Cov(X,A) be indexed by the pair (V,,V4). Then ¢a is indexed by
(VA 0) and (¢a), = ANa, for v € VA, The covering 1« is indexed by (V,, 0)

and satisfies (Ya), = a,. Observe that
Aa = A¢aa Xa = X"ﬁa'

The maps ¢ and ¥ and the appropriate identity maps of the homology groups

yield maps of inverse systems

@{Hy(A; G)(@ € Cov(4, 0)); mE}—>{H,(4ei G) (€ Cov(X, A)); 2}

U{H,(X,; G)(a € Cov(X, 0)); 78} ——{H,(Xa; G)(a € Cov(X, A)); 78}
The inverse limits of the maps ® and ¥ are homomorphisms

boo : Hy(A4; G)—=Ho(A; G)x,0); Yoo : Hy(X; G)—>Hy(X;G)(x,4)-
Lemma 4.1.24. The homomorphisms ¢ and 1 are isomorphisms.
Definition 4.1.25. The homomorphism

0: Hy(X,A;G)——H,_1(4;G)
is defined from the diagram
Hy(X, 4 G)— 2 Hy 1 (A: Q) x 0y 22— H,1(4;G)

as 0= ¢;10.
Theorem 4.1.26. (Aziom 3). Let f : (X, A)—(Y,B). Then (fi4)«0 = 0f..

Theorem 4.1.27. The Cech homology sequence of a pair (X, A) over any coef-
ficient group G is isomorphic with the adjusted homology sequence. The isomor-
phism is given by the maps Goo, Yoo and the identity map of Hy(X, A; G) onto
itself.
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With this theorem at hand, the question of the exactness of the Cech homology
sequence of a pair (X, A) is replaced by the question of the exactness of the
adjusted sequences. The adjusted sequences are however limits of systems of
exact sequences defined over the directed set Cov(X,A). Thus the results of
Section 3.2 and Section 3.3 may be applied.

Theorem 3.2.3 yields:

Theorem 4.1.28. For any pair (X, A) and any abelian group G € A, the Cech

homology sequence is a sequence of order 2.

If (X, A) is a compact pair, then, in defining the groups occuring in the homol-
ogy sequence, we may limit our attention to finite coverings. If G is a compact
abelian group, then for each finite covering «, the homology sequence of (X,, Ay)
over G is composed of compact groups and therefore by Theorem 3.2.4 the limit

sequence is exact, that is we have:

Theorem 4.1.29. If (X, A) is a compact pair and G is a compact abelian group,
i.e. G € ¢, then the Cech homology sequence of (X, A) over G is ezact.

But it is not true that the full exactness axiom holds for any group G even
for compact pairs. In Eilenberg & Steenrod (1952) a compact pair is constructed
such that the Cech homology sequence with coefficient group Z(the integers) is
not exact. But still we can enlarge the class of coefficient groups which produce
exact Cech homology sequences for all compact pairs, and that is the content of

the next section which uses the results obtained in Chapter 3.

The Cech homology sequence of a triangulable pair is exact without restriction

on the coefficient group(see Eilenberg & Steenrod, 1952).

The Cech homology theory on the category a; of all pairs of topological spaces
is a typical and a distinguished example of a partially ezact homology theory. In
defining a partially exact homology theory, definition of an admissible category

a and exactness axiom are modiﬁed as follows. In the definition of admissible
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category (Definition 1.1.2) condition (5) is replaced by
(5) If (X, A) is triangulable, then (X, 4) € a. If f: (X, A)—>(Y, B) is a map
of pairs and (X, A), (Y, B) are triangulable, then f € a.

Thus with this definition an admissible category must contain the category of

triangulable pairs as a subcategory. The exactness axiom is replaced by a weaker

one:

Axiom 4' (PARTIAL EXACTNESS AXIOM). If (X, A) is admissible, the ho-
mology sequence of (X, A) is a sequence of order 2. If (X, A) is triangulable,

then the sequence is exact.

Then a system {Hy(X, A), f«,0} satisfying Eilenberg-Steenrod axioms 1-3,5-7
and 4 is called a partially exact homology theory.

4.2 Exactness of the Cech Homology Sequence
of a Compact Pair over an Algebraically

Compact Coefficient Group

Lemma 4.2.1. Let H be a direct summand of a group G, say
G=HoH

for some group H'. To each simplicial pair (K, L), we associate a pair of chain
homomorphisms fkr : S'K,L—>SK,L and gk,L : SK,L—>S}(,L where S}{,L 18 the
homology sequence of the simplicial pair (K, L) over the coefficient group H and
Sk, is the homology sequence of the simplicial pair (K, L) over the coefficient

group G (in the formal homology theory of simplicial complezes):

S}{,L =the homology sequence of (K, L) over the coefficient group H

fK,L[ [91{,1,

Sk,L =the homology sequence of (K, L) over the coefficient group G
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such that
gk,L° fx,L = it .

where is’K N is the identity map of the lower sequence S"K,L.

This assignment of a pair of chain homomorphisms to each simplicial pair is
such that: If
p:(K,L)—(K',L)
is a simplicial map of a simplicial pair (K, L) to a simplicial pair (K', L), then

the following diagram is commutative:

D
SK',L' -~ SK,L

9x' i | |k 9K,L| | fK,L

Sl

']
-
KL ’ SK,L

D

where p, and p, denotes the chain homomorphisms of corresponding homology

sequences induced by the simplicial map p.

Proof. The homology groups H,(K, L; G) of a simplicial pair (K, L) over a coef-
ficient group G is obtained through the following functors(see Chapter 2):

. H,
(K,L)-2>K,/L,~2%(K,/L,) ® G—>H,((K,/L,) ® G)
For the couple (3, j), where i : L——K and j : K——(K, L) are inclusion maps,
L~k -(K, L)

in the h-category K of simplicial pairs, applying the covariant h-functor
O : Ks—Comp gives the direct couple, (%, j,) in Comp, i.e. the (split) short

exact sequence

0—>Ly—2>K,* >K,/Ly—>0

in Comp. Since -® G and - ® H are covariant h-functors from Comp to Comp,

we get by tensoring with H and G the following (split) short exact sequences:

0—>L, ® H*®L K, ® H**%(K,/L,) ® H—>0
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0— L, ® G**8 K, ® G**$(K,/L,) ® G—>0

in Comp, where iy : H——H and ig : G——G are identity maps and by the

map i, ® iy : L, ® H—>K, ® H we mean the chain homomorphism defined by
(to ®imr)g : Cy(Lo ® H) = Cy(L,) ® H—>Cy(K, @ H) = Cy(K,) ® H

(to ®ig)g = (1o)q®ig  for each g € Z,

and the maps j, ® ig, i, ® ig, jo ® ic are similarly defined. We define two maps
between direct couples (i, ® ig,jo ® i) and (i, ® ig, jo ® i) in the c-category

Comp as follows:

0 LeH—~% Kk e@H——*% . (K,/L)®H 0
il | fo| |92 fa| |93
0 L®G— g Ky ® G (Ko/ L)) ® G 0
where we set
fi= i, @ ing, g1 =1L, ® P
fa =ik, ®ing, g1 =ik, @ PH
f3=ik, 1, ® Mg, g1 =iK,/L, ®DH

where ing : H——>G = H® H is the inclusion map of H in G and
pg : G = H® H —H is the projection of G onto its direct summand H; iy,
is the identity map of the chain complex L,, similarly ¢k, and ik,,z, are identity

maps of corresponding chain complexes.

f1, fo, f3, 91, 92 and g3 are chain homomorphisms; let’s verify this for f;, the
other cases are just similar. The map f; = i1, ® ing consists of the homomor-

phisms
(fi)g =Cq(Lo ® H) = Cy(Lo) ® H—>Cy(L, ® G) = Cy(L,) @ G

(f1)g = ic,(L,) ® ing, g€EZ
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where ig,(L,) : Cq(Lo)—>Cq(L,) is the identity map of Cy(Lo). fi acts only on
the H part, keeping the other part fixed by the identity map so that as we show
it gives a chain homomorphism. Let g € Z. Denote by

0 : Cy(Lo)—>C. ~1(Lo)

the boundary homomorphism of the chain complex L,. We must show commu-

tativity of the square in the diagram

8,®ig

Lo®H: Cy(Lo) ® H Cy-1(L,) @ H
f iaq(Lo)®inH| licq_l(l,o)®iny
L,®G: Cy(Le) ® G Boio Cy-1(Lo) ® G

to conclude that f, : L, ® H——L, ® G is a chain homomorphism, that is we
must verify the following equality:

(aq ® iG) el (iCq(Lo) ® inH) = (iCq—l(Lp) ® 'm,H) o (3,1 ® ZH)

This equality is obtained by checking it on the generators z ® h, z € Cy(L,),
h € H of C¢(L,) ® H as follows::

(Bq &® ig) o (iCq(Lo) ® 'inH)(:z: ® h) = (aq ® Z(;)(z' ® h) = (6,,(3:)) ®h

(iy-1(Lo) ® i) © (O, ® i) (& ® h) = (ic,_1(1,) ® inm) ((9g(2)) ® h) = (8,(2)) @ h.

This shows that f; is a chain homomorphism. Similarly we get that fa, f3, g1, 92

and g3 are chain homomorphisms.

To verify that fi, fa, fs form a map of the direct couple (i, ® if,Jj, ® in)
to the direct couple (j, ® i, jo ® ig) and g1, g2, g3 form a map of the couple
(o ® g, J» ® ic) to the couple (i, ® ig, jo ® in), we must show that each square

in the diagram

Le@H— "% g @H — %", (K,/L)®H
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is commutative(in the sense described in Definitionl.1.6). Commutativity of the

diagram with only f’s is obtained from the following equalities:

Jfao (i, ®ig) = (ig, ®ing) o (i, ® i) = (ix, 0i,) ® (ing oig) =i, @ ing
(5o ® i) © f1 = (i, ®ig) 0 (ir, ® ing) = (i, 0ir,) ® (ig 0 ing) =i, @ ing
f30 (Jo ®im) = (ik, /L, ® ing) o (jo ® inr) = (ik,/L, © Jo) ® (ing oig) = j, Qing
(Jo ®ig) o fa = (jo ® ig) 0 (ix, ® ing) = (Jo 0 ix,) ® (ig © ing) = j, ® inyg
This shows that fi, f2, f3 form a map the couple (i, ® ix, j, ® i5r) to the couple

(Jo ® i@, jo ® i). Similarly g, g2, g3 form a map of the couple (j, ® ig, jo ® i)
to the couple (i, ® ix, jo ® ix)-

Let ¢ € Z. Since H, is a covariant d-functor on the h-category Comp of
chain complexes, it must satisfy axiom 3 for the mapping of couples(see Defini-

tion 1.3.4); so we have the following commutative diagram:

fax

Hq((Ko/Po) ® H) Hq((Ko/Lo) ® G)
3..j O
Hys(Lo® H) - Hy (L, ® 6)

Gl

This is the main part to check in obtaining chain maps fx 1 and gxr of the

homology sequences:

S}(,L tewo>Hy(Lo ® H)> Hy(K, ® H)» Hy((Ko/Lo) ®H)§Hq—l(L0®H)>“'

fK,Ll TgK,L fl#l Tgl* fzal ngt f3tl Tgav* fl*l Tyl*

SK,L Ll Hq(Lo ® G) >Hq(Ko ® G) > Hq((Ko/Lo) ® G) %*Hq_l (Lo & G) >
So we must show commutativity of the three squares in the following diagram:

Hy(L, ® H)“22: | (K, ® H)“® 2 H ((K,/L,) ® H) >~ H,_ (L, ® H)

.fh‘lL Tﬂl* fz*l T.‘Jz-s fs..l sz: fl.l Tyl*

Hy(Lo ® G) toaich Ha(Ko ® G) oo Hy(Ko/Lo) ® G) —5—> Hy-1(Lo ® G)

Commutativity of the first two squares follows from the commutativity of this

part when the H, functor has not been applied.
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So through the above procedure described, we associate to each simplicial pair

(K, L) a pair of chain homomorphisms fx 1, and gx,z:

, 9K,L
-~
SK,L___.—_>SK L
Fr,L

For each i = 1,2, 3, g;of; = identity because pgoing = iy where iy : H——H

is the identity map of H. For example, for fi,
g1 0 f1 = (ir, ® pr) o (ir, ® ing) = (ir, 0 ir,) ® (py o ing) = ir, ® ixg = iL,eH

where i, o : Lo ® H——>L, ® H is the identity map L, ® H.

Since g; o f; = identity, it follows by applying the functor H, that,
Gix © fix = identity.

Thus,
gk, ° frL = igl, -

It remains to verify the commutativity of the following diagram for a simplicial
map p: (Ka L)—>(K,7L’)'

D=
SK',L' <‘——SK,L

Ix' L’ fK',L' 9x,L| | fr,L

Sl

!
KI,LI <—-—, SK,L

P

We just use a primed notation for the simplicial pair (K, L’) in the above pro-

cedure of assigning a pair of chain homomorphisms

U
7 P Sl —
SK',LI SK’,L’)
'L

that is in constructing these homomorphisms we use chain complexes L, K, and

maps f;, g; for i = 1,2, 3. To obtain this result, we must show commutativity of
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the following three diagrams:
Hy(L, ® G) <~ Hy(L, ® G)

!
91

Hy(L, ® H)<~———H,(L, ® H)

»

f;' 91x it

Hy(K,® G) ~—— H,(K, 8 G)

U '
9. f2-n g2+ f2*

H(K,® H)<———H/(K,® H)

e

H,((K,/L,) ® G) <—— Hy((Ko/Ls) ® G)

7
934 f:,’nt g3» fau

Hy((Ky /L) © H) <~ Hy((Ku/ L) ® H)

All these three diagrams are commutative since they are obtained by applying

the functor H, to the following three commutative diagrams in Comp:

LeG<"%_1,8G

[f; 91| |fi

L,oH L,® H

!

9

ﬁo@iﬂ

K,@H<~—K,®H

P,RtH

(Ko/L) ® G<22¢(K,/L)® G

(K,/L,)® H (Ko/Lo) ® H

Po®in
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Here i : H—H and ig : G—>G are identity maps, p and p are the simplicial
maps

ﬁ:L_‘_>LI; 5:K'_>Klg
which are induced by the simplicial map p: (K,L)—(K',L’), P, P, and p,
are obtained by applying the functor O : Ks—>Comp to f, § and p.

Commutativity of these three diagrams are easily obtained. Let’s check the

first one for f; and fi:

(Bo ® iG) © f1 = (o ® i) © (iz, ® ingr) = (Bs © ir,) ® (i 0 ing) = Po @ iny,
and

fio (B ®in) = (ir; ® inm) o (Bo ® inr) = (iy; 0 fo) ® (ing o ig) = Po @ iny.

So,
(ﬁo®iG)°fl =f; °(ﬁo®iH)
which means commutativity of the first diagram with f, and f;. The other cases

are similarly obtained; they hold simply because f;’s and g;’s act only on the H

and G parts and p does not effect these parts.

This ends the proof the lemma. a

Theorem 4.2.2. Let (X, A) be a pair of topological spaces and G be an abelian
group such that the Cech homology sequence of (X, A) over the coefficient group

G is ezact. If H is a direct summand of G, then the Cech homology sequence of
(X, A) over H is also ezact.

Proof. Say G = H® H' for some subgroup H' of G. Denote by M, the directed

set Cov(X, A). For each o € M, let

S., = the homology sequence of the simplicial pair (X,, A,) over the coefficient
group H,

Se = the homology sequence of the simplicial pair (X,, A,) over the coefficient

group G.
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Ifa < Bin M = Cov(X, A), let
p: (Xp, Ag)—(Xa, Aa)

be a projection. Let
Vs g . Sﬂ—>Sa
be the chain homomorphism from the homology sequence Sz of (Xg, Ag) over G

to the homology sequence S, of (X,, A,) over G induced by the projection p.
Let
P Sg—=S,

be the chain homomorphism from the homology sequence S;, of (Xs, Ag) over H
to the homology sequence S, of (X,, A,) over H induced by the projection p.
These give us naturally inverse systems {S,(a € M);n2}(shortly {S',7'}) and
{S., (e € M); 7" }(shortly {S,7}) of lower exact sequences over M = Cov (X, A).
The Cech homology sequence of (X, A) is isomorphic to the adjusted homology
sequence which is the limit S, of {S,(c € M);w?} and which is assumed to be
exact by our hypothesis.

By the Lemma 4.2.1, for each oo € M, we have chain homomorphisms
ey & S;—>Sa and Ja : S(,‘—>.S'('x
such that
9o © f a = ZSL
where g is the identity map of the lower sequence S, . To obtain maps
f:{S,n'}—={S,7} and g:{S,7}—={8',7'}

in Invy(Comp) using these f,’s and g,’s, we need to show that for ¢ < § in
M the following diagram is commutative:

A
Sae—T0 5,
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This follows from Lemma 4.2.1 as 72 and w'i are the chain homomorphisms of

corresponding homology sequences induced by the same simplicial map
P (Xﬂ,Aﬂ)—é(Xa,Aa).

Thus we get maps
Fi{8,7}—={S,7} and  g:{S,7}—{S, 7'}
in the category in Invy/(Comp) such that
gof =iy

as go © fo = ig for every oo € M. Then by Theorem 3.3.6 we get our result that
S is exact as Sy is exact. Since S, is the adjusted Cech homology sequence of
(X, A) over the coefficient group H and since this adjusted sequence is isomorphic
to the Cech homology sequence of (X, A) over H, we get that the Cech homology
sequence of (X, A) over the coefficient group H is exact. O

Corollary 4.2.3. Let (X, A) be a compact pair and H be an algebraically com-
pact group. Then the Cech homology sequence of (X, A) over the coefficient group

H is ezact.

Proof. Since H is algebraically compact, H is a direct summand of a compact
group G. Since G is compact, the Cech homology sequence of the compact pair
(X, A) over the coefficient group G is exact by Theorem 4.1.29. By Theorem 4.2.2,
the Cech homology sequence of the compact pair (X, A) over the group H, which

is a direct summand of G, is also exact. O
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