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ABSTRACT

The multidimensional Schrddinger operator is a fundamental operator of

quantum mechanics.

We consider the Schrodinger operator
Lu=—-Au+q(x)u
in the parallelepiped F with Neumann boundary condition

o _y
on| g

where ¢(x) is a periodic function of W, (F) . First we study the general property of

L and its connection with other boundary conditions. Then we obtain asymptotic

formulas for the eigenvalues of the operator L.



OZET

Cok boyutlu Schrédinger operatorii, Kuantum Mekaniginin  temel
operatorlerindendir.
Lu =-Au+q(x)u
seklinde, Neumann smir deger kosulu

aul o
on|

ile verilmig olan Schrédinger operatorii lizerinde g¢alistitk. Burada F n-boyutlu

paralel ylizli olup, g(x) de W) (F)’de tammh periyodik bir fonksiyondur.

Oncelikle L operatoriiniin genel 6zellikleri ve dier smir deger kosullan ile
baglantis1 tizerinde galistik. Sonra da L operatdriine ait 6zdegerlerin asimtotik -

formiillerini elde ettik.
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CHAPTER ONE
INTRODUCTION

We study the Schrédinger operator
L=-A+q(x)
in an n-dimensonal parallelepiped with Neumann boundary conditions, where g(x)

is a periodic function. The aim of this thesis is to find an asymptotic formula for the

eigenvalues of the operator L.

First asymptotic formula for the eigenvalues of Schridinger operator in the
parallelepiped with quasiperiodic boundary conditions is obtained in papers (Veliev,
1987), (Veliev, 1988). The other asymptotic formulas for quasiperiodic boundary
conditions in two and three dimensional cases are obtained in (Feldman, 1990),
(Feldman, 1991), (Karpeshina, 1990), (Karpeshina, 1992). The asymptotic formula
for Dirichlet boundary conditions in two dimensions is obtained in (Hald &
McLaughlin, 1996).

We use the method of papers (Veliev, 1987), (Veliev, 1988) to find the

asymptotic formula for the Neumann boundary conditions in n-dimensions.

In chapter one, some properties of multidimensional periodic functions and

boundary value problems in n-dimensional parallelepiped are studied.

In chapter two, we obtain asymptotic formulas for the eigenvalues of the operator
L.



1.1. On n-dimensional periodic functions

Periodicity of g(x), where x € R", means that, see (Eastham, 1973), (Reed &
Simon, 1978), there are n linearly independent vectors w;,w,,...,w, such that

g(x+w,)=q(x) , k=12,..,n.

Clearly for every linear combination mw, +m,w, +...+m,w, of the vectors
Wy, W,,...,w, Wwith integer coefficients m,,m,,...,m, we have
q(mw, + myw, +...+m,w,)=q(x).

In other words for every we Q={mw, +myw, +...+ m,w, :m;,m,,...m, € Z} the

relation

q(x+w)=q(x) 1.1

holds. The set Q is called lattice generated by w,,w,,...,w,. There is a unique n-

dimensional parallelogram F which has the origin in R" as one corner and the w,

forming the sides which meet at the corner. We call F “the fundamental domain of

the lattice Q”. The function ¢(x) satisfying (1.1) is said to be periodic with
respect to the lattice O and F is called the period parallelogram of g(x). To find

the functions which are periodic with respect to the lattice Q, we need to determine

the lattice I" dual to Q. The dual lattice I" is determined as following:

For each integer k (1<k <n), there is a unique vector »* in R” such that
(r*.w,)=6,,, 1.2
where (.,.) is the dot product in R".

Explicitly, in fact,
rF=(F) e, , 1.3



where F is the matrix (w,w,..w,), the superscript T denotes the transpose and

e, =(1,0,...,0),e, =(0,1,...,0),...,e, = (0,0,...,1) are coordinate vectors. The y* are

clearly linearly independent and are called the reciprocal vectors of w;. The lattice
O ={my' +my*+..+my" :mm,,..m, € Z} 1.4

is called reciprocal lattice of Q and the lattice defined by
'=2720 1.5
is the dual lattice of Q.

Let B denote the n-dimensional parallelogram which has the origin in R" as

one corner and the * forming the sides which meet at that corner. Also, let
B=('y..y").
By (1.3),
B=(F")"' 1.6

and there follows from this, a relation between the n-dimensional volumes |F I and

|B| of F and B.Let e denote the vector with every component unity. Then

0 1
|F|=det(FT e]

and, considering the transposed determinant,

|B|= det(? fTJ :

Hence, if E denotes the nxn matrix with every entry unity, (1.6) gives

v, 1 2

Thus



The functions &'’ for y €T is periodic with respect to Q. Indeed
el rxw) - Gilrx) jilrw) _ pilrm) gizak _ Lilrx)
If w,w,,..,w, are an orthonormal basis, say w, =(a,,0,...,0),w, =(0,a,,0,...,0),
., w,=(0,0,...,a,) in the n-dimensional Euclidean space R”", then the vectors

7! =(~2—”-,0,...,0), y? =(0,-2£,0,...,0), e Y =(0,0,..,—2£) are biorthoganal to the
a

a, a, n

Vectors Wy, W,...,W,, i.€., <wi,;/" >=27z5,.,k , Where (,) is the dot product in R".

The set Q={mw, +m,w, +...+m,w, :m, € Z,i=12,...,n} is a lattice in R" with
the reduced orthonormal basis {w, by and

TC={my' +my* +..+my" :m, e Z,i=12,..,n} is the dual lattice of Q .

We consider the periodic potential g(x) of W, (F), where W, (F) is the set of
functions such that D® f e L,(F) for all lalsl , a=(a,a,,.,a,),

|of
anl MRS 6a — . The fourier coefficient of g(x)
Ox, '0x, *..0x, "

o] =len |+

with respect to the orthonormal basis {ei(y =) hers ¥ =V 25es V), I Ly(F) is

_— 4 a4 a, X i
g, =(g(x),e"") = Iq(x)e'<7’x)dx= [ [ JaGerers. ey,
F 0 0

0

Integrating by part with respect to x,, we have

1% % —iygXy =¥, i ,x, “ 0 —i{y.x
q7=17;5[ ...(;[e 7% e (q(x)e™ 15[ 5[ 5[ q(jc) r2) gy

since &' is periodic with respectto Q, g(x)e™ "" =0. Hence

___l_al “ aq(x) —t Jx)
qy—i716'.6[ '[axl i

Again integrating by part with respect to x, and using the periodicity of e rx) , We
get



oy ) ] ] e

2

(’71 0

7

In this way, integrating by part with respect to x,, / times, we obtain

( 1)1 a  a aq(x) —1yx)
iy ] 1] e e

where the integral a, = aj' aj‘ J‘ s Q(x)

0 0 0 axl

9 =

e ") dx is the fourier coefficient of the

function (x) € L,(F). Hence we have the following relation
l
lqr\ la l ia i Z\a}l,lz <o,
yel
Similarly,
lqu— |a l——17| l ; Zlail <w, Vi=1l2,.,n.
l I 7| yel

It is not hard to see that these relations imply the relation

> (@), A+ <o .

yel
So it is convinient to define a periodic function g(x) in W, (F) as a function

satisfying the last relation.
1.2. On boundary value problems in an n-dimensional parallelpiped

Now we consider the Schrodinger operator in L,(F), defined by the differential
expression
lu=—Au+q(x)u 1.7
and the Neumann boundry condition

in
on| 5

=0 1.8



where F =[0,a,)x[0,a,)x...x[0,a,) = R%z is the fundamental domain of the

n 2
lattice Q, OF is the boundry of F, x=(x;,x,,....x,)€R", A=Zai— is the

)
i=1 OX;

laplace operator in R", ai denotes differentiation along the outward normal and
n

q(x) eW,(F) is real valued , periodic (with respect to lattice Q) and / times

differentiable potential. We denote this operator , defined by the differential
expression (1.7) and the Neumann boundry condition (1.8) , by L; the
eigenfunction and the eigenvalue of the operator L by W,(x) and A,,

respectively.

Let us denote by L’ the operator defined by the differential expression (1.7) in the
case when g(x) =0 and the boundry condition (1.8).

The quasiperiodic or ¢-periodic problem comprises (1.7), considered to hold in

F , and the boundary conditions
u(x +w;) =u(x)e”"" , j=12,.,n.

Where w;,w,,...,w, is a basis of the lattice Q, #,,%,,...,#, are real parameters in [0,1],
t= Z r't,, 7',7%,...y" is the basis of the dual lattice. These boundary condition, in
i=l

brief, can be written as
u(x +w) =u(x)e™, weQ 1.9
We denote the eigenvalues and the eigenfunctions of the quasiperiodic problem as

Ay and @, (x), respectively.

The Dirichlet problem is the one for which (1.7) holds in F with the boundary

condition

u(x)|,, =0 1.10



The eigenvalues and the eigenfunctions of the Dirichlet problem are denoted by v,

and y,(x).

There is the following relation between the eigenvalues of Neumann, Dirichlet

and the quasiperiodic boundary conditions (see; Eastham, 1973):

Let F denote the set of all complex-valued functions f(x) which are continuous

in F and have piecewise continuous first-order partial derivatives in F . Then the

Dirichlet integral J(f,g) inn-dimension is defined by

J(/.8) = [{grads (x) gradg(® + q() f (W)g () e L1
for f(x) and g(x) in F. Here,
gradf(x) = _S{Te' +aa—){2e2 +...+ g){:en

If, in (1.9), g(x) also has piecewise continuous second-order partial derivatives in

F , then Green’s theorem gives
If.8) == [F 880 - (S gt + [ Zas 112

where dS denotes an element of surface area OF .

We consider J(f,g) as applied to the quasiperiodic problem first. If f(x) and
g(x) satisfy the boundary conditions (1.9), the integral over oF in (1.12) is zero
because the integrals over oposite faces of OF cancel out. In particular, when
g2(x) =opy(x), (1.12) gives

J(f,8)=An Sy 1.13

where f, = f S ()@, (x)dx is the fourier coefficient, and we have used the fact that
F

@y(x) is the eigenfunction of the quasiperiodic problem with the corresponding

eigenvalue A, . A particular case of (1.13)is



Ay M=N
J(Py>0) = 1.14
0 M#N
It now follows that
> el I 1.15
N=0

for all f(x) e F which satisfy (1.9).
From (1.15) we obtain the following

4y = min| 7> S) 1.16

flrafa|

F

the minimum being taken over all f(x) (#0) in F which satisfy (1.9).Furthermore,
the minimum in (1.16) is attained only when f, =0 for all N such that A, > 4,,

i.e., only when f(x) is an eigenfunction corresponding to 4,. In the case of the

quasiperiodic problems, the eigenfunctions are real valued and therefore, for these

problems, f(x) can be confined to being real valued in (1.16).

The results (1.13)-(1.16) followed from (1.12) because of the vanishig of the

integral over OF when g(x) is an eigenfunction. Corresponding results hold for the

Dirichlet and the Neumann problems. In the first problem, the integral over OF in
(1.12) vanishes if f(x)=0 on OF . In the second problem, the integral vanishes

without any boundary condition on f(x) since, by (1.8), 6%n =0 on OF when

g(x) is an eigenfunction. Thus, for the Neumann problem, we have
XML <IN 1.17
N=0
forall f(x)eF, where f, = I S (x)¥y (x)dx, while the corresponding result holds
F

for the Dirichlet problem if f(x) isinF and f(x)=0 on OF .



In the following theorem, these results concerning J(f, f) are used.

Theorem 1.1: For N >0,
AySaySvy . 1.18

Proof: To prove the left-hand inequality, we first take f(x) = ¢,(x) in (1.17). Since
Ay =J(f, f) by (1.14), we obtain

202 Y ML 2 A A
N=0 N=0
By the Parseval formula,
YAl = Ifef dx=1.
N=0 F

Hence

Jo 2 Ay

Next we take
J(x)= Co®Py (x)+ o (x),

where ¢, and ¢, are constants such that |c;|” +|c,[" =1 and
co [@u(x)¥o(x)dx + ¢, [p, (x) Wy (x)dx = 0.
F F

Such a choice of ¢, and ¢ is always possible. The first condition makes

ﬂ f (x)lzdx =1 and the second makes f; =0.
F

By (1.14),
I 1) = Aoleo| + Ala]” < 4def +al) =4
Also, by (1.17) and the fact that f, =0,

TS D2 XML 2 ASIAL =, i de= A

Hence

Az A,
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The argument can be extended to the general case N . We consider
J(x) = co@o (x) + @ (X) + ...+ ¢y (%)

where ¢, are constants such that |c)|’ +|e| +..+|cy[*=1 and f,=0 for

0 <i< N -1. The latter conditions are N linear algebraic equations to be satisfied

by N +1 numbers c,,c,,....cy, and such numbers always exist. The proof of the

theorem for general N now follows the same as the proof for N =1.

The proof of the right-hand side of the inequality (1.18) is similar and we use

(1.15) instead of (1.17).
|
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CHAPTER TWO

ASYMPTOTIC FORMULAS FOR THE

EIGENVALUES OF A SCHRODINGER OPERATOR

To obtain the asymptotic formulas for the eigenvalues of the operator L we first

consider the eigenvalues and eigenfunctions of unperturbed operator L.

2.1 On the unperturbed operator L,

Let y be an element of the lattice g, where I' is defined as in section 1.1. We

consider the function

zei(a,x) :

aed,

where

4, ={a=(a,,a,,..a,)€R":

The norm of the function Zei(“”‘> in L,(F) is

aeA,

Z ei(a,x)

aed, aed, aed, F aed,

By (2.1)

n-1

(zei(a,x))2 — Zei(a,x) +2 Zei(a,x> +2"

acd, asd,, k=1 aeduy 2n..200.0...0

taking the integral over F , we get

a|=ly,|i=12,..n}

2
=(Xe, T = [Ty de=2"aa,.a,.

2.1
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2

Z ei(a,x)

aed,

= [(X“Iyax=2"aa,..a,.

F aed,

=1.

z ei(a,x)

acd,

Without loss of generality, we can take

Lemma 2.1: The normalized eigenfunction and the eigenvalue of the operator

L are u, = Zei(a‘x> and |)/|2 respectively, where 7 =(y,,75,.7,) e%.

acd,
Proof: To prove this lemma we must show that the function u, satisfies the
equation
2
—Au, =|y|"u, 2.2
and the boundry conditions (1.8). Differentiating the function

— fax) _ o5+ +a,%,)
uy = ze = Ze

aed, aed,

by x,, we get

auy = Z a i(ayx +..+a,x,) = zl aj ei(alx,+“.+a,,x,,)
ax i aeA,ax j aed,
2
Ou,

=— E a’ele)
ox? J
i aed,

By the definition of 4,, we have la jlzly j‘ = o’ =y, , which together with

the last equation above imply
4 ila,x 2 ila,x 2
~Au, =3 3 yie ™ = e =y,
j=1 aed, aed,
Hence the equation (2.2) is satisfied. Now let us show that the function

Ou
u, satisfies the boundry conditions (1.8): We know that —a—’ is the derivative of
n

the function u, in the direction of the vector n which is the normal to the boundary
of F. By definition of F, the boundary OF lies in the hyperplanes

I, ={xeR":(x,e,)=0} or on its shifts ae, +11,,  where



13

k=1..n ; e =(10,..0),e, =(0,1,0,...,0)...e, =(0,0,...,]). So normal to the II,

Ou
and a,e, +II, are e, or —e,, respectively. Therefore,;’— coinside with the first
7
. . .. Ou ,
partial derivatives —~ or —— of u, . Thus we need to show that,
j j
Zuy — Zaa iz +. 4 2,%,) — Ziajei(alxl+~'~ajxj+anxn) = 0’ 2.3
: X .
X xell; aed, 2 ) xell; acdy xell;
and
Ou, = ——eaa e = Yia el —0. 24
. x
I lxease; 11, acd, M%) xeae,+11; acd, xeae;+T1,
mmx  m,x M m.r
In the set 4, we have the vectors (+——t—"2—,.,——, . ")
a, a, a; a,
mT | M,z m;x m,zw. . . .
and (x—— 2 . ——— ") j=12,.,n. Therefore the right-hand side
a, a, ; a,

L myT m;x m,z
m.w t(i_‘h xli-...+——a Xk =", )

e i o and

of (2.3) and (2.4) consist of the terms i

m,x
7 x,
a’l

. T mjn
i(t——xt.——x t &
.m;z (= atm =%

—1 e / which will be cancelled when x ;=0,a, under

a;

the summation notation . Hence u, satisfies the boundry conditions (1.8).

Lemma 2.2: Let Zei(“’x) and Zei(ﬂ *) be the eigenfunctions of the operator

aedy BeA,

L, where 7,m eg__ Then Z @) Z LCE . z Zei(a,x) .

aed, Bed, Ped, acd, 4

Proof: We can write

Zei(a,x> Zei(ﬂ,x> — Zei(a+ﬁ,x) - Zei(y,x)

acd, PeAd, aed, . fed, {y.y=a+f.acd, ped,}

and
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Z Zei(a,x) — Zei(y,x)

Ped, acd,. g {y:yed,,p.Ped,}
to prove the lemma it is enough to show that the sets

C={y:y=a+p,acd, ,fecd,} and D={y:yed, , feA,} areequal

Let y=a+feC then aed, and fe4d, ,thatis, o, =Fy, and
B, =%Fw; by (2.3). Then y,=y,+®, ot y=-y,-w, or y=y,-o or
Y =-7;+w; Vi=12,.,n.Equivalently we can write

1

V= -T-(yi + a)l,) or y, =¥y, —a)i) Vi=12,..,n 2.5

Nowlet zeD then ze 4, ,, where fed,.Againby (2.3), z,=F(y,+ )
and f, =Fw,. Hence we have

z,=Hy,+o;) or  z,=Fy,-o;) Vi=l2,...n 2.6

From (2.5) and (2.6), itis clear that the sets C and D are equal to each

other. So the lemma is proved . a

The eigenfunctions {Zei(“’”)} - of the self-adjoint operator L° forms an
aedy rey
orthonormal basis in L,(F). Hence the potential g(x) in the operator L(g) can

be written in the following form;

q(x)=>.q, Y e 2.7
' aedy
re3
where q, = J' q(x)Zei<“”‘)dx (without loss of generality we can take
F acAy

9, = Iq(x)dx=0. Other wise we replace g(x) by q(x)——?(’ﬁ; .) is the fourier
F H
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coefficient of the potential g(x) with respect to the basis {Ze %)

aedy 2

Moreover for big parameter p we can write g(x) €W, (F) as

ax)= Yq, > r0(p™) 2.8

rel(p*) fed,
where TI'(p®)={ye g :0< I;/] <p®}, a>0 and O(p™) is a function with
norm of order p~*. Indeed, by (1.20), q(x)eW,(F) means that

> (@@, A+ ") <oo.

yel

Since we have only 2" terms in Zeiw )

Bed,
240, X P A+ [y <o0
765 'BEA7
It implies that
1 2
\q},\z < W}ayl 2.9

where a, = (D%g(x), Zei<ﬂ =y, la| <7 and Zlayl < 0. Therefore, we have
r

ped,
<3

<(Z]q|>2_( |aJ)2—0<p"“)

|7|2p® |7[20*

>4, 2,e

[rlzp®  fed,

which is equivalent to (2.8).
Remark: Note that it follows from (2.9) that

zm_z' ,‘_@\ o PP <o

the sum (Zl [ )2 converges for / >5
/4
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2.2 Asymptotic formulas for the eigenvalues of the operator L

Let us introduce the following notations:

M= Zrlqy| 2.10

_y
%2

V,(p*)={x e R" :|a" ~|x+b]*| < p}

Up®,my=R" \ | J¥,(p%)

bel'(mp®)

where I'(mp®)={b e%:O <|p| < m

p%t. The domain U(p“,m) is said to be a
non-resonance domain and the eigenvalue |;/|2 is called a non-resonance eigenvalue

if y e U(p”,m). The domains V,(p%) for all y e['((mp®) are called resonance

domains and the eigenvalue |;/|2 is called resonance eigenvalue if y eV, (p%). It is
not hard to see that U(p“,m) has asymptotically full measure in R"in the sense
that

uU(p*,m)NS,)
(S ,)

where S, ={xeR" :|x| = p}. To prove (2.11), we calculate u(V,(p*)NS,). Let

>1, 2.11

xeV,(p”), then, by definition of ¥,(p*), we have ||x|2 —x+bP|<p”.

“x|2—|x+b|2=l(x,x)—<x+b,x+b),='—2(x,b)—|b|2‘=p" - —2(x,b>—|b|2=ip":>
2 a a
R - Ok

If II, ={x: (x,b) =0}, then V,(p%) contained between the planes

2 a 2 74
1, +C L8y and m,+ (&2 é’) 2.12
2[p 2 2|

The planes (2.12) are parallel and the distance between them is £—=0( £Y)

2|

(between them and the origin are also O(p®) ). Therefore, it is well known that,
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uV,(pINS,)=0(p"*").
The number of b e I'(mp®) is p"* . Hence

pJ@,(p*)NS ) = 0(p™ D) = O(p™) (S ,) »
b

if —-1+(m+Da<-a,ie., a <—_1F—2—; where 4(S,)= O(p"™"), from which we get
n

@.11).

In the proofs , we denote by ¢,, a,, i =12,... , the constants whose exact values

are not important.

Lemma 2.3: Let ¥, (x) be the eigenfunction of the Schrodinger operator L
defined by (2.1)-(2.2) corresponding to the eigenvalue A, . Then the following

formula holds

(Ay =)y ), D) = (7, (x),9(x) Y ) 2.13

aeA, ae4,

where (.,.) is the inner product in L,(F).

Proof: The eigenfunction W, (x) and the corresponding eigenvalue A, satisfy the
equation
—A¥, (x)+q(x)¥y(x) =AWy (x) 2.14

If we multiply both sides of the equation (2.14) by Ze"(“”‘) , we have

ac4,

(A% () + () Py (x), 2y = (A (), 3¢ )

a4, aed,

(—AF, (x), YN+ (g, (x), Y ) = Ay (T (x), D)

ac4, aed, aed,
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(Wy(x),-A Zei(“’x)) +(Py (x),q(x) D €’ @y = A, (P, (%), > eX*y

aed, aecd, aed,

(B P D @)+ (7, (1),9(0) T @) = A, (F, (x), T e ™)

ae4, aed, ae4,

Ay =PI ), L) = (2, (1), 9(x) Y e)
aeA, aeAr EI

Lemma 2.4: Let |y|2 be the eigenvalue of the operator L, of order p>. Then

there is N such that

Ay = 2M and

(®y (), SN > ¢,p 72, where M

aed,

is the number defined in (2.10).
Proof: We know that the set of eigenfunctions {W¥,(x)} of the self-adjoint

operator L forms a complete system in L,(F) and by Paseval’s equality,

we have
2 2 \
2N =Yy (), ey =1
oed, N aed,
. ) , 1(2.15)
Z (IPN’ Zei(a,x) — Z (\PNa Zei(a,x)) + Z GPN: Zei(a,x))
N aed, N:‘AN—]7|2|>2M aed, N:‘AN—{;/|2‘S2M aed,
Using the equation (2.13) we have
2 2
ila,x a,x 1
DI CMODI0 IEEED I CMOVIOP W) <
N{ay-r[*pam acd, N{Ayr>2m acd, Ay _Iy‘
1 2
< (Fy ()qx) Y ™) <
AM? N:|AN%’\>2M ' aEZA,
2
1 ila,x 1
<o 2 el e e <5

N:}AN—}7[2i>2M acd,

then by (2.15), we have ;
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2

(P (x), Y ")

aeA,

2

Ayl |sam

>2 2.16
4

The number of the eigenvalues A, of the operator L in the interval

I= [|;/|2 —2M,Jy|" +2M] is less than c,p". Because the number of elements w
of g—, satisfying |w| < cp® is less than cp®. Indeed it comes from the following:

y2+3M], is less than

a) The number of eigenvalue |w|2 of L, lyingin [|;/|2 -3M,

a

cp®.

b) By general perturbation theory, the N -th eigenvalue of L, lies in the M -
neighbourhood of the N -th eigenvalue of L.

Using this fact and (2.16), we have; 3IN el such that

2 2

3 a,x n HER
RN SCDI YA CNOD I
N{Ayl7 P |2m aed, aca,
= |(‘Fy (), Zei(a’x)) > ¢ p7
aeAr
Lemma is proved. O

Lemma 2.5: Let y eU(p%,m), i.e. |7/|2 be the non-resonance eigenvalue of I°

2 +oM]

and A, be the eigenvalue of L(g) lying in the interval [ = [lj/l2 -2M ,Iy

then

Ay =y +2f] >%p“ forall e T(mp®).
Proof: If yeU(p*,m) then Vbel(mp®) and we have the following
inequality
* =l + 2| p°
which implies , together with the fact that A, €1,

>

Ay _|y+b|2]= Ay =ly 8+l |2 ~|ay P 2|o" ~2M]

Ipf* Iy +2f
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where p“® is sufficiently large so that

Ay —|}/+b|2

> 1 p*
2 O
Theorem 2.6 : Let y eU(p”,m); i.e. \ylz be non-resonance eigenvalue of the

operator L°. Then there exists an eigenvalue A, of the operator L satisfying
the following formula :

Ay =P +0(p™) 2.17

Proof: By lemma 2.4, there is an index N such that |A, —I}/IZISZM and

(‘I—‘N(x),Zei(“”‘)) >c1p_%. We prove that this eigenvalue satisfies (2.17).

aed,

Substituting the decomposition (2.8) of the potential g(x) in (2.13) we have;

Ay =), TN =1, (), Y g, D> e )+ 0(0™)

ac4, 7nel(p%) Aed, aed,

= Yq, (), Y Y ro0™)

nel(p*) hed, aed,

Using lemma 2.2 , we get

Ay =P, SN = Sg, (B, Y, Y +0(™)

aed, 7el(p%) Bed, acd,,p
= Z Z q,, (\PN (x): zei(a,x)) + 0(p_1a) R
7nel(p™) fredy, aedy, g

since ¥+ f3, e—l;— , 1.e.; [y+ ,Bl|2 is an eigenvalue of the operator L’ with the

corresponding eigenfunction Y .e“**, we can use (2.13) in the last equation and

aeA,_I_ﬂl
we get ;
(2 (0),q(x) Y.
Ay =Py, Y= > q, “ho L O(p™),
acd, el (p) fiedy, AN _l}’ + ﬁ]l

Here, by lemma 2.5, for the denominator we have estimation
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1 &
|AN —|y+ﬂ1[2 >§p , 2.18

because |ﬂ1|=|yll and y,el(p?), ie, B, el(p®). Again sustituting the

decomposition of g(x) in the above equation and using B, e '(p*) we obtain ;

Ay~ ), Y ey =
aeAr
(W (@), Dg,, 2 YN +0p™)

72€l(p%) aed, aed,, )
= Z Z 9y - : ,2’3I +0(p™%)
nel(p®) hredy, Ay _|7+:61

(\PN (x), Z q, Z ei(a,x) z ei(a,x))
- q, nelGh) sk, achw 4 o yle)
heg(;:“)ﬂ;‘ln ’ Ay _'7 +ﬁ1‘2
(\PN (X), Zei<a,x) Zei(a,x))

aed, acd,.g -la
= q,9,, * : +0(p™%)
}'l,yﬁzr(pa)ﬁleZAn ¥ Ay “I?""ﬁllz

Py, D™

acd, pp ~la
= q,4 : +0(p™) ,
71,72621"(/7"),3162«47. S Ay _17"' b lz

Predy,

if the terms with coefficient (¥, (x), Zei("”)) are isolated , we obtain

aeAy
(2, (1), 3]
Ay -2y ), D= Y > q,4q, =
aed, 71,726T(p%) glz:;fl Ay “‘7 +,Ell
o L 2.19
(Ey(), D)
agd,.p.p -ma
+ 4,4, “2—+0(p™)
7,,71625:(;7“)!’32;*2—/31 n AN"‘I7+IB1'2
s )

by using lemma 2.3 in the last term of the equation (2.19) , we get

(P, (%), Zei<a’x>)
(A ~y 2)(\P (X), ei(a,x)) = q lq ] acd,
' l l ¥ ";Ar ﬂJzezr(p")g%ﬁl ne Ay —]y+ﬂ1’2

Bredy,
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(Fy(),q(x) Y.y +0(p™)

aehy. b 4p -la
+ 4,4, b +0(p™)
n,nezl"(p")géﬁ: e (Ay —|7+,Bll2)(AN _IV"'ﬂl +ﬂ2l2)
ﬂZEArlz

Since B, + B, eT'(2p”), by lemma (2.5), the estimation

Ay =lr+B+ B

1

>—p* 2.20
2,0

holds.Using (2.18) and (2.20), substituting the expansion of g(x) into the last

equation and isolating the coefficient of Zei(“”‘) , we have;

aed,
(¥ (), Y e"*)
Ay =B @, TN = T Y g9, T
acd, 71,726F(p°)glze=;fn Ay —IV +ﬂ1|
Pred,,
(Ey (), g, 2 > r000™)
. 0,9, ——LELEL e £0(p™)
rn,yz;(p")g%f " (Ay “17"’:31‘2)(1\1\' —Iy+ﬁl +IB2I2)
Bred,,
(P, (), )
aeA,
= 1,49,
71,72621'(;1")22:%?: y’ Ay _|7+ﬂ1|2
Bred,,
(B (). e
€Ay pi4py 43 -la
+ 4,4,.4,, +0(p™")
rlarz,hzer(p“)g%ﬂn e (Ay _I7+ﬂ]l2)(AN —l}""ﬁ] +ﬂ2]2)
ﬂZEA:'Iz
Bedy,
() (x), Y e
aed,
= q9,4,,
r,,}'zezl“(p“)gz:z;ﬂn n Ay —IV“‘ﬂllz
Bocdy,
(¥ (x), Y e“)
acA
+ 4,4,,4,, :
rn,rz,hzer(p“)g::—%:“;gz)’ nen (A _'7‘*‘,31‘2)(/\1\1 _[7"'161 +182'2)

ﬂ}e 73
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(Py(x), e

acd, g g+ ~la
+ 22 4,499 U = +0(p™)
Voot a7l (6%) B2~ Bt ) TP A=l B A -+ B+ B
gl:An Paedy,

— qhqh
yl,h;(p")g%:ﬂ. Ay —l7+ﬂ1l2

1=

Bred,,
q,4,,4,, a.x
¥ o = (B @), 2
rorarel o =ty My =y + B Ay =y + B+ By)) acd,
Biedy, . Pred,y,
Predyy
SN IR
€A, p11py4 85 -la
+ Z z qlqzqs 2 Y 2 +O(p )
71,72,73e1"(p“)g::-(ﬂ1+€§)7 TN (Ay —|7+ﬁll YAy _|}’+ﬁ1 +ﬂ2] )
e

By the same method as above, iterating m times we obtain the following
formula:
: 1 .
Ay =Py (), 2y = (Z S,.)(\PN (). "N +C +0(p™) 221
acd, i=1 aed,

where

S[ = Z Z qi’l q}’z '"qhﬂ 2.22

2 2
70Y 20?101 By=—(Bi+Ba+. 4 5;) (AN “|7+ﬂ1| )(AN —ly-l_ﬂl +ﬂ2 +"'+ﬁi| )

el(p®)  Bigd,.Bhed,, .04y,

9y Qy (B (), Y€ )

C = AEAy s pis 4y 2.3
l 71,72,z~~~,71+1 ﬂm*‘(ﬂl‘*;u“'ﬁ/) (AN —I}, + ﬁllz)(AN —l}/ + lB] + ﬂz ot ﬂllz)

er(p™) \edy Fredyy v nBrucdy,

Now to obtain the formula (2.17), let us calculate the order of S, and C,

IS,.I < Z Z l 4,9,,-49,,, I

71,72,~~~y71+1§1+1=“(ﬁ1+ﬁ2+~~+/’1) .(AN - I}/ + ﬂl lz)(AN - |7 + :H] + ﬂz +..t ﬂz|2),

el'(p%) (€4, .5,€4,, ..BiaE4,,,
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9, “qh ""'qrm l

)

er”(';’,;;}"“ﬂ'lgj;(’ﬂlz’;ﬂi:::gl’}]GAHH Ay _ly + ,Bliz iy _‘7 +B+ B+t ,Bi‘z
Vi=12,..,m, y,el(p*) and ped = .|=|Bl<p® and

|B,+ By + ...+ B| <mp® Vi=12,...,m, so we can use lemma 2.5 and the equation

(2.10) which defines the number M , and we have

i+1

|S,.[< M =a,p™ Vi=12,.,1

which implies S, =O0(p™*) Vi=12,...,/ and

>s

i=l

-a —2a ~la -
Sagptta,p " +..tap Siglzaxl{ai} Ip

!
D'8,=0(p™) 2.24
i=1

. qi’l ql’z "'q7/+1 (LPN (X), Z ei(a"‘))

@€y, v +pror

lcls 2. 2.

715Y 20V it Bra®=(Bi+Ba+..+B))

(Ay —l}’ +:BI|2)---(AN ‘|7 + 6+ B, +-'~+ﬂ1|2)l

el(p*) 184y, P284p Pt €4y
9, }-ay, J(Ew @, T
< acdyips apn
- 2 2
st flas b Ay =y + B 'A vy + B+ By+..+ B
. 1+]
by using lemma 2.5 and ||[(‘¥, (%), Ze'<a’x)) =1, we have; |C[< ] and
L% o~ p—la
2
C,=0(p™) 2.25

If we substitute (2.24) and (2.25) into the equation (2.21), we get
Ay =@, TN =000 )8, (1), XD +0p™) 226

aed, aed,

dividing both side of the equation (2.26) by (¥, (x), Ze““*")), we get
ae4,
~la
e ),-<a = 2.27
(Py(x), D ")

aed,

Ay =l =0(p™)+
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by lemma 2.4 |(‘F, (x), Zei("”‘)) >c, p_% which implies
aed,
l 0(p—la). < p—la _ csp—(la—%) 2,28
‘(‘I’N(x), ety Ty
aed,

since m is the iteration number , we can choose m to make (m— %) >0 so that

™) _oipe
@00,z P =

aed,

substituting (2.29) into (2.27), we obtain the desired result.

Let d=|— +1, where l:—ﬁ— is the integer part of . Then
2a 2a 2a

p—(ma—%) < p "D g0 instead of (2.28) we can write

) o(p™)

<c p—(l—d)a = O(P_Ia) =0( p-(l—d)a) 230
ilax)\|— 3 ilax)s ‘
,(‘PN(x), 3 ’)} (Fy (0), 3@
aeA, aeA,

Let us denote the term S, in equation (2.22) as follows:

9,49,,-4,,
Si (A ) = Nniys Yisl
Y 71,72sZth+1 Bia=—(Bi+By+..+By) (AN _ly + ﬂ]lz)(AN —ly +ﬂ1 + ﬂz +..t ﬂi‘z)

el'(p®)  Pedy FacdyynPrudy,

2.31
Theorem 2.7: Let yeU(p”,m) then there is an eigenvalue A, of the

operator L satisfying the formulas

Ay =P +F,+0(p™), Vk=12,..,1-d 232

2
F,=0,F= > Y ——zk]i—z , F, =f:s,.qy|2 +F),s=23,..,1 233
nel(p®) pedy, I)’{ —‘7 —,Bll i=l
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Proof: We prove that for the eigenvalue A, satisfying the formula (2.17) the
formulas (2.32) hold. Let us prove it by mathematical induction on &:

for k=1 ; by theorem 2.6, A, satisfy the equation Ay =[y|" + F, +0(p™),
where F, =0,
for k=j ; assume that it is true, i.e.

Ay =l +F +0(p7) 2.34
for k= j+1 ; we must prove that

Ay =P +F,+0(p V)
To prove this we put the expression (2.34) into S,(A,) in the equation

(2.31) and divide both side of (2.21) by (¥, (x), Zei(“’x)) then by using (2.30),

ae4,

we get

Ay =l +iSi(l7|2 +F, +0(p®)) +O(p %) 2.35

i=1

!
adding and subtracting the term Y. S,(y[* + F,,) in (2.35), we have
i=l
! . I
Ay = l}/lz + ZSi (MZ +F,_ +0(p™") ZSi (|7|2 +F )+ O(p %)
= i=

L I
= ‘7'2 +|:ZS" (|},|2 +F, + O(p™*)) -, (MZ +F,, )] N ZS,' (|7/l2 +F )+ O(p~-)
2.36

1
by (2.33) ZS,.(];/I2 +F,)=F,, so we need only to show that the expression in
i=]

square bracket is equal to O(p™V*") .

In order to understand the calculations clearly, we first calculate the orders of
2 g 2 i
Sl(’?’l +Fj—-1 +0(p™ ))_Sl(l}’lz +Fj—1),S2(I7I +F,, +0(p™ ))_Sz(l}’lz +Fj—1)

and S, (| + Fpy + O™ N =S, (p[ + Fo):
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S:(r[ +Fyy + 00N =S, (" + ) =
= q}’l qh . q?l qi’z
|7|2 +Fj—1 +0(p—a)_|7+ﬂllz |7|2 +Fj—1 —|7+ﬁ1|2
equalizing the denominator, we get

—q |:(|7|2 +F;, —|7+ﬂ1|2)_(|7|2 +F, +O(p_ja)_|7+ﬂ1|2)
"I F =l + B+ F 007~ + B

_ [ -0(p™*)
—q}'xq}’z 2 2 2 _ 2
([ +Fa -+ B +Fa+00™)-r+ B[

Since 7 is non-resonance eigenvalue, we have the inequality “ylz -+ ,81|2| > p°,
a —ja 1 .
hence 'lylz +F, —|y+ﬁ,|2‘ > p® and “7|2 +F,,+0(p” )_|y+ﬂ1|2‘ >-2-p by
lemma 2.5 and (2.34). Then, using (2.10) we have;
2 Ja 2 p" ~(j+2)a
lSl (7| + Fu + O™ ) - S,(y| + F), )\ <c, o <c,p
S, (|;/|2 +F_ +0(p™7)) -5, (l},|2 +F,)=0(p ?)

1

S, +F, +0(07* ) =S,y +F.) =
Z(lyl i1 (p™%)) 2(!7| 11) 9,9,,4,, (M2+Fj_]+O(p—i“)_|;/+ﬂ]|2)

1 1
(7" +F o +007™) -+ B+ B G +Fo~lr+BOUT +FL =y + B+ B,

after equalizing the denominators of the above equation, we obtain

S2(|7"2 +Fj—1 +O(P—ja))_S2(|7|2 +Fj—1) =

~0(p7*)y|" + F,, +O(p ™)~y + B ")

=4,49,.4y, 2 —ja 2 2 -ja 2
(|7| +F,_ +0(p ! )_‘7+ﬂ1| )(I7| +F,, +0(p™ )“i?""ﬂ]"‘ﬁzl )

1
G +Fo~r+ B +Fo=ly+ B+ 8"
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) O ™Y +F i~y + B+ B[
W+ F =y + B+ Ea =y + 8+ B

1
A + Fo + 007 =y + B Wr[* + Foy +O(p7*) =y + B, + ﬂzlz)}

= qnqrz q;’; '

-0(p™*)
(r|* + Fr + 00 =y + B+ B YL + Fra =y + B+ Fros =y + B+ B

_ 0(p™*)
(r* + Foy =y + B+ F o + 007 =y + B W + Fy + OG0 ) =y + B, +ﬁ2|2)}

Hence we have
Sz (I}/‘z + Fj-] + O(p'fa )) r S2 (Iy|2 4 Fj_l) - 0(p—(j+3)a)

q?’l q?qu’a q74
([ + Fa+ 0™ )~y + B

Ss(* + F + OGN =S, (| + Fr) =

|
G +Fa+ 0™ )~y + B+ B Wyl +F+ 0007 =l + B+ B+ B

_ q}'lq?zqhqh
(|7|2 +F, _|7+ﬂ1|2)(|7|2 +F, _|7+ﬂ1 +,B2|2)(|7|2 +F;, _|7+ﬁ1 +5, +ﬂ3|2)
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(l?’iz +Fj—l +0(p—ja)_|7+ﬂ1 +ﬁ2|2)
(|7|2 +Fj—] +O(p_ja)_l7+ﬂ1 +ﬁ2|2)

=4,4,9,,9, O(p e )

([ + F + O™ =y + B, + By + By )
([ +Fry + 007 =y + B Y| + Fru +O07*) =y + B, + By + B3|

1
A+ Fos =y + BOYGL + Fa =~y + B+ B Y[+ F =y + B+ By + B[

Q[+ Fa =y + B[ + Fr =y + B+ Bo + B3]
([ +F =y + BT +F =y + B+ Bl Y + Fs =l + B+ By + B

1
[+ Fru + O™ =y + BYYL + F o+ O(0™*) =y + B, + Bof)
1
- T
(" + F + 00 )=y + B+ By + By )

+ (|7|2 +Fj—l _|7+ﬂ1|2)(|7’|2 +Fj—1 _|7+ﬂ1 +ﬂz|2)
(|7|2 +F,, _|7+ﬁ1|2)(|7|2 +F;, _|7’+ﬁ1 "'ﬂzlz)(lylz +F _|7+ﬂ1 +5, +:B3|2)

1
Q[+ Fry + O™ =y + B + F,i +O(p™) =y + B, + B

1
Q[+ FL +O07) =y + B, + By + B

simplifying the above equation and using the inequalities which are proved in this

chapter, we get
’ je 2 —(j+dHa
Sy (7 +F, + 007N =S, ([ +F,.) = 0(p™)
in the same way we obtain

S, + F + 007 N -S, (] +F)=0(p7V"™)  Vi=12,.,1

since p Y < p U Vi=12,..,], we can write
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le: S, (|;/|2 +F,_, +0(p™*))-8, (I;/|2 +F)=0(p™)
substituting this to (2.36) we get
Ay = +F, +0(p )+ 007"
since 1<j+1<l-d, p 0% gp e which implies the the result for

k=j+1. -
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