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ABSTRACT

In this study, effects of the mass properties and positions of one or more discs having
shafts with variable cross sections on free vibrations have been investigated. Torsional
vibration analysis of multi disc-shaft systems have been carried out by using the
Transfer Matrix and the Finite Element Method. To show the accuracy of the programs
that are developed, the obtainéd results ate compared with the available results of other
investigators in the existing literature. Effects of the number of discs and their positions
on the shaft and the variation of cross section of the shaft on the natural frequencies have
been shown in graphics. In addition, the results obtained by using two different methods
are compared and very good agreement is found.

The MATLAB 5.1 and Visual BASIC computer programs was used in this study.
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OZET

Bu ¢alismada bir mil {izerinde bulunan bir ve birden fazla diskin kiitlesel ozellikleri
ve konumlar1 ile milin kesit degisimlerinin serbest titregimlere olan etkileri
incelenmigtir. Coklu disk-mil sistemlerinin burulma titresimlerinin analizi Transfer
Matrisi ve Sonlu Elemanlar Metodu kullamlarak yapilmustir. Geligtirilen programdan
elde edilen sonuglarin dogrulugu, literatiirde yer alan bazi sonuglarla kargilagtirilarak
goriilmiistiir. Disklerin sayilarmm, mil tzerindeki konumlarmin ve mildeki kesit
farkhliklarmm sistemin dogal frekanslar1 (izerindeki etkileri grafikler halinde
gosterilmigtir. Ayrica her iki metottan elde edilen sonuglar da birbirleriyle
kargilastiriimig ve biiytik bir uyum gézlenmigtir.

Bu ¢alismada MATLAB 5.1 ve Visual BASIC bilgisayar programlan kulla Ir.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

Multi disk-shaft systems are employed in various machines used in industry. Various
working parts in those machines can be reduced to multi disc-shaft systems. For
instance, in a reciprocating machine crank-shaft, connecting rod and piston can be
modeled as an idealized shaft and disk system. Here the disk stands for the connecting
rod and piston, the shaft stands for the crank shaft. Ship propellers, gear boxes, turbines,
helicopter propellers and lathes are some of the examples to those machines. The
number of examples can be increased.

Torsional stresses entail the most important subject for the multi disc-shaft systems
because they are known as the most dangerous stresses on rotating shafts. Therefore
torsional vibration analysis of rotating shafts is inevitable in the design stage. The
natural frequencies of these systems must be known and taken into consideration for the
working frequency.

The vibration analysis of multi disc-shaft systems have been carried out by analytical
and numerical methods. The analytical method solutions of multi disc-shaft systems
take a long time and therefore the chance of making mistakes increases. For this reason,
numerical methods that give sensitive results are commonly used. The fast advancement
of computers have made the use of numerical methods easy.



The works of [1] Pestel and Leckie are the main references on how to solve the multi
disc-shaft systems using transfer matrix method. They give various samples about these

systems.

[3] Ozgiiven have calculated the percentage errors in order to find the critical
velocities of continuous disc-shaft systems taking into consideration the disc and shaft
mass and the shaft length.

[8] Koser and Pasin have investigated the torsional vibrations of forced shaft systems.
They have assumed that the shaft is a continuous element and the system has various
inertia characteristics. The problem then reduced to a non-linear boundary value
problem and the solution has been made by the perturbation method in their study.

[10] Kaneko, Momoo and Okada have studied the torsional vibrations of turbin
blade-disc-shaft systems by the Finite Element and the Transfer Matrix Methods. While
blade-disc systems have been calculated by the Finite Element Method, blade-disc-shaft
systems have been calculated by the Transfer Matrix Method.

[11] Kato, Ota and Nakamura have examined the torsional vibrations of elastic shafts
carrying the rotor when it is passing through critical velocities.



CHAPTER TWO
NUMERICAL METHODS

2.1 The Finite Element Method
2.1.1 What is the Finite Element Method?

The finite element method is a numerical analysis technique for obtaining approximate
solutions to a wide variety of engineering problems. Although it was originally developed
to study the stresses in complex airframe structures, it has since been extended and
applied to the broad field of continuum mechanics. On account of its diversity and
flexibility as an analysis tool, it is receiving much attention in engineering schools and in
industry.

In complex engineering problems today, we find that it is necessary to obtain
approximate numerical solutions to problems rather than exact closed-form solutions. For
example, we may want to calculate the load capacity of a plate that has several stiffeners
and odd-shaped holes, the concentration of pollutants during non-uniform atmospheric
conditions or the rate of fluid flow through a passage of arbitrary shape. Without too
much effort, we can write down the governing equations and boundary conditions for
these problems, but we can easily see that no simple analytical solution can be found. The
difficulty in thes¢ three examples give above, lies in the fact that either the geometty or
some other feature of the problem is irregular or "arbitrary." Analytical solutions to
problems of this type seldom exist; yet these are the kinds of problems that engineers and
scientists are called upon to solve,



The resourcefulness of the analyst usually comes to the rescue and provides several
alternativés to overcome this dilemma. One possibility is to make simplifying
assumptions-to ignore the difficulties and reduce the problem to one that can be handled.
Sometimes this procedure works; but, more often than not, it leads to serious
inaccuracies or wrong answers. Now that large-scale digital computers are widely
available, a more viable alternative is to retain the complexities of the problem and try to
find an approximate numerical solution.

Several approximate numerical analysis methods have evolved over the years-one of
the most commonly used methods is the general finite difference scheme. The familiar
finite difference model of a problem gives a point wise approximation to the governing
equations. This model (formed by writing difference equations for an array of grid points)
is improved as more points are used. With finite difference techniques we can treat some
fairly difficult problems; but, for example, when we encounter irregular geometries or an
unusual specification of boundary conditions, we find that finite difference techniques
become hard to use.

Int addition to the finite difference method, another, more recent numetical method
(known as the "Finite Element Method") has emerged. Unlike the finite difference
method, which envisions the solution region as an array of grid points, the finite element
method envisions the solution region as built up of many small, interconnected sub-
regions or elements. A finite element model of a problem gives a piece-wise
approximation to the governing equations. The basic premise of the finite element method
is that a solution region can be analytically modeled or approximated by replacing it with
an assemblage of discrete elements. Since these elements can be put together in a variety
of ways, they can be used to represent exceedingly complex shapes.

As an example of how a finite difference model and a finite element model might be
used to represent a complex geometrical shape, consider the turbine blade cross section in



Figure 2,1. For this blade we may want to find the distribution of displacements and
stresses for a given force loading or the distribution of temperature for a given thermal
loading. The interior coolant passage of the blade, along with its exterior shape, gives it a

non-simple geometry.

A uniform finite difference mesh would reasonably cover the blade (the solution
region), but the boundaries must be approximated by a series of horizontal and vertical
lines (or "stair steps”). On the other hand, the finite element model (using the simplest

(a) ¢

Figure 2.1 Finite difference and finite e¢lement discretizations of a turbine blade
profile. (a) Typical finite difference model. (b) Typical finite element

model.

two-dimensional element- the triangle) gives a better approximation to the region and
requires fewer nodes. Also, a better approximation to the boundary shape results because
the curved boundary is represented by a series of straight lines. This example is not
intended to suggest that finite element models are decidedly better than finite difference
models for all problems. The only purpose of the example is to demonstrate that the finite
element method is particularly well suited for problems with complex geometries.



2.1.2 How the Method Works

We have been alluding to the essence of the finite element method, but now we shall
discuss it in greater detail. In a continuum problem of any dimension the field variable
(whether it is pressure, temperature, displacement, stress or some other quantity)
possesses infinitely many values because it is a function of each generic point in the body
or solution region. Consequently, the problem is one with an infinite number of
unknowns. The finite element discretization procedures reduce the problem to one of a
finite number of unknowns by dividing the solution region into elements and by
expressing the unknown field variable in terms of assumed approximating functions
within each element. The approximating functions (sometimes called interpolation line
functions) are defined in terms of the values of the field variables at specified points called
nodes or nodal points. Nodes usually lic on the element boundaries where adjacent
elements are considered to be connected. In addition to boundary nodes, an element may
also have a few interior nodes. The nodal values of the field variable and the interpolation
functions for the elements completely define the behavior of the field variable within the
elements. For the finite element representation of a problem the nodal values of the field
variable become the new unknowns. Once these unknowns are found, the interpolation
functions define the field variable throughout the assemblage of elements.

Clearly, the nature of the solution and the degree of approximation depend not only on
the size and number of the elements used, but also on the interpolation functions selected.
As one would expect, we cannot choose functions arbitrarily, because certain
compatability conditions should be satisfied. Often functions are chosen so that the field

variable or its derivatives are continuous across adjoining element boundaries.

Thus far we have briefly discussed the concept of modeling an arbitrarily shaped
solution region with an assemblage of discrete elements and we have pointed out that
interpolation functions must be defined for each element. We have not yet mentioned,
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however, an important feature of the finite element method that sets it apart from other
approximate numerical methods. This feature is the ability to formulate solutions for
individual elements before putting them together to represent the entire problem. This
means, for example, that if we are treating a problem in stress analysis, we can find the
force-displacement or stiffness characteristics of each individual element and then
assemble the elements to find the stiffness of the whole structure. In essence, a complex
problem reduces to considering a series of greatly simplified problems.

Another advantage of the finite element method is the variety of ways in which one
can formulate the properties of individual elements. There are basically four different
approaches. The first approach to obtaining element properties is called the direct
approach because its origin is traceable to the direct stiffness method of structural
analysis. The direct approach also suggests the need for matrix algebra in dealing with the
finite element equations,

Element properties obtained by the direct approach can also be determined by the
more versatile and more advanced variational approach. The variational approach relies
on the calculus of variations and involves extremizing a functional. For problems in solid
mechanics the functional turns out to be the potential emergy, the completentary
potential energy or some derivative of these, such as the Reissner varjational principle.
Knowledge of the variational approach is necessary to work beyond the introductory
level and to extend the finite element method to a wide variety of engineering problems.
Whereas the direct approach can be used to formulate element properties for only the
simplest element shapes, the variational approach can be employed for both simple and
sophisticated element shapes.

A third and even more versatile approach to deriving element properties has its basis
entirely in mathematics and is known as the weighted residuals approach. The weighted
residuals approach begins with the goverrﬁng equations of the problem and proceeds



without relying on a functional or a variational statement. This approach is advantageous
because it thereby becomes possible to extend the finite element method to problems
where no functional is available. For some probléms we do not have a functional-either
because one may not have been discovered or because one does not exist.

A fourth approach relies on the balance of thermal and/or mecharical energy of a
system. The energy balance approach (like the weighted residuals approach) requires no
variational statément and hence broadens considerably the range of possible applications
of the finite element method.

Regardless of the approach used to find the element properties, the solution of a
continuum problem by the finite clement method always follows an orderly step-by-step

process.

1. Discretize the Continuum. The first step is to divide the continuum or solution
region into elements. In the example of Figure 2.1 the turbine blade has been divided into
triangular elements that might be used to find the temperature distribution or stress
distribution in the blade. A variety of element shapes may be used and with care, different
element shapes may be employed in the same solution region. Indeed, when analyzing an
elastic structure that has different types of components such as plates and beams, it is not
only desirable but also necessaty to use different types of elements in the same solution.
Although the number and the type of elements to be used in a given problem are matters

of engineering judgment, the analyst can rely on the experience of others for guidelines,

2. Select interpolation functions. The next step is to assign nodes to each element
and then choose the type of interpolation function to represent the variation of the field
variable over the element. The ficld variable may be a scalar, a vector or & higher-order
tensor. Often, although not always, polynomials are selected as interpolation functions for
the field variable because they are easy to integrat¢ and diﬂ‘erentiéte. The degree of the



polynomial chosen depends on the number of nodes assigned to the element, the nature
and number of unknowns at each node dnd certain continuity requirements imposed at the
nodes and along the element boundaries. The magnitude of the field variable as well as
the magnitude of its derivatives may be the unknowns at the nodes.

3. Find the element properties. Once the finite element model has been established
(that is, once the elements and their interpolation functions have been selected), we are
ready to determine the matrix equations expressing the properties of the individual
elements. For this task we may use one of the four approaches just mentioned: the direct
approach, the variational approach, the weighted residual approach or the energy balance
approach. The variational approach is often the most convenient, but for any application
the approach used depends entirely on the nature of the probler.

4. Assemble the element properties to obtain the system equations. To find the
properties of the overall system modeled by the network of elements we must “assemble”
all the element properties. In other words, we must combine the matrix equations
expressing the behavior of the elements and form the matrix equations expressing the
behavior of the entire solution region or system. The matrix equations for the system have
the same form as the equations for an individual element except that they contain many
more terms because they include all nodes.

The basis for the assembly procedure stems from the fact that at a node, where
elements are interconnected, the value of the field variable is the same for each element
sharing that node. Assembly of the element equations is a routine matter in the finite
element analysis and is usually done by a digital computer.

Before the system equations are ready for solution they must be modified to account
for the boundary conditions of the problem.
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5. Solve the system equations. The assembly process of the preceding step gives a set of
simultancous equations that we can solve to obtain the unknown nodal values of the field

variable.

6. Make additional computations if desired. Sometimes we may want to use the solution
of the system equations to calculate other important parameters. For example, in a fluid
mecharnics problem such as the lubrication problem, the solution of the system equations
gives the pressure distribution within the system. From the nodal values of the pressure
we may then calculate velocity distributions and flows or perhaps shear stresses if these
are desired.

2.1.3 Range of Applications

Applications of the finite element method can be divided into threc categories,
depending on the nature of the problem to be solved. In the first category all the problems
are known as equilibrium problems or time-independent problems. The majority of
applications of the finite element method fall into this category. For the solution of
equilibrium problems in the solid mechanics area we need to find the displacement
distribution or the stress distribution or perhaps the temperature distribution for a given
mechanical or thermal loading. Similarly, for the solution of equilibrium problems in fluid
mechanics, we need to find pressure, velocity, temperature and semetimes concentration
distributions under steady-state conditions.

In the second category so-called eigenvalue problems, are the problems of solid and
flui@ mechanics. These are steady-stat¢ problems whose solution often requires the
determination of natural frequencies and modes of vibration of solids and fluid. Examples
of eigenvalue probléms involving both solid and fluid mechanics appear in civil
engineering when the interaction of lakes and dams js considered and in aerospace

1.C. YOKSEKOGRETIM KURULY
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engineering when the surge of liquid fuels in flexible tanks is involved. Another class of
eigenvalue problems includes the stability of structures and the stability of laminar flows.

In the third category is the multitude of time-dependent or propagation problems of
continuum mechanics. This category is composed of the problems that result when the
time dimension is added to the problems of the first two categories.

Just about every branch of engineering is a potential user of the finite element method.
But the mere fact that this method can be used to solve a particular problem does not
mean that it is the most practical solution technique. Often several attractive techniques
are available to solve a given problem. Each technique has its relative merits and no
technique enjoys the lofty distinction of being “the best” for all problems. Consequently,
when a designer ot analyst has a continuum problem to solve, his first major step is to
decide which méthod to use. This involves a study of the alternative methods of solution,
the availability of computer facilities and computer packages and most important of all,
the amount of time and money that can be spent to obtain a solution.

The range of possible applications of the finite element method extends to all
engineering disciplines, but civil and aerospace engineers concerned with stress analysis
are the most frequent users of the method. Major aircraft companies and other
organizations involved in the design of structures have developed elaborate finite element

computer programs.

2.2 The Transfer Matrix Method
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2.2.1 State Vector

The state vector at a point i of elastic systems is a column vector, the components of
which are the displacements of the point i and the corresponding internal forces. In the
simple case of a spring-mass system (Figure 2.2) the displacement of the point i is clearly
the linear displacement x, and the corresponding internal force is the direct force N, in
the spring. For this special case the state vector z, has the two components x,, N, and

in matrix notation z; has the form:

X X
(e}l

Tig1

Figure 2.2 Spring-mass system

Anslogous to the spring-mass system is the torsion system, consisting of ari elastic
massless shaft with discs concentrated at different points along its length (Figure 2.3).
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Figure 2.3 Torsional system

The displacement in this case, is the angle of twist ¢ and the corresponding force is the
torque T;. The state vector is then given by:

z =m @2)

A more complicated case is that of the straight beam. The displacements at the point i
are the deflection w; and the slope @,. The internal forces are the shear force \'/

corresponding to the displacement w; and the moment M; corresponding to the slope o;.
The state vector in this case, therefore, has four components:

2.3)

< 26 ¥

Notice the order in which the components have been written. The displacements are
placed in the upper half of column and the forces in the lower, in such a way that the
force and the corresponding displacement (that is, wand V, ¢ and M)are in positions that
are mirror images of each other about the center of the column.
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2.2.2 Coordinate System and Sign Convention

We shall introduce transfer matrices by referring to the three systems mentioned in the
previous section. Before doing so we must define the coordinates system and sign
convention. We shall use the right-handed Cartesian coordinate system, the x axis
coinciding with the centroidal axis of the elastic body (Figure 2.4). A cut made across the
body will expose two faces and the face whose outward normal points in the positive
direction of the x axis is known as the positive face, the other being the negative face.

Positive
face

AT

Figure 2.4 Sign conventjon

Positive displacements coincide with positive direction of the coordinate system and
forces are positive if, when acting on the positive (negative) face, their vectors are in the
positive (negative) directions. Force vectors are represented by arrows and moment
vectors are represented according to the right-hand-screw rule by a double line with an
arrowhead (Figure 2.5).

Force vector Moment vector

Figure 2.5 Vector symbals
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2.2.3 Transfer Matrix

Let us consider a spring-mass system of the type shown in Figure 2.2 which is
vibrating with circular frequency o. The masses m;.; and m; are connected by a massless

spring of stiffness k;. The state vector just to the right of mass m; is denoted by z? and
the state vector to the left is denoted by z{“. If we isolate the spring k; and use the

convention explained above, the positive forces and deflection are as shown in Figure
2.6.a

From the equilibrium of the spring we immediately obtain:

NR

i1 =Ny 24

and from the stiffness property of the spring we have the further relation:

Ny = N?:-I =K;(x; —X;_1) (2.5)
Xi-1 I *i _,.| I '
‘ | k,‘ m;w 235
() ANV g -
N{, \ N/ NE R
Negative Positive ' N;
face (a) face (b)
Figure 2.6 Free-body of spring and mass
Rewriting these equations in the form:
N}, L R
X =X v Ny =(0)x;; +Ni (2.6)
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we can then take one more step to express the equation in matrix notation:

MR e
N to 1 [Ny

or

7 =Rz, 2.8)

Hence by means of the matrix F,we have been able to express the state vector z}'in

terms of the vector zX,. The matrix F,is known as the field transfer matrix or more

simply as the field matrix.

The matrix relation that exists between the state vectors to left and right of mass ican
be found by considering the forces (Figure 2.6.b) acting on the mass. The two spring

forces are N?‘and NP 'and in addition there is the inertia force m;o”x; acting in the
positive direction. Since the mass is rigid, the deflections to the left and right of mass
m, are the same, so that:
X§ =X} (2.9)
‘and from the equilibrium of the forces we have:

N} =N} - me’x; (2.10)

Rewritten in matrix notation, the above equations become:
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(2.11)

(2.12)

Again we have found a matrix relation between two adjacent state vectors. This time,

since we are simply transferring over a point, the matrix P,is known as the peint transfer

matrix or the point matrix.

2.2.4 Transfer Matrix for a Torsional System
We shall now consider the torsional vibrations of an elastic shaft of circular cross section,
with disks attached at discrete points along its axis(Fig. 2.7a). The shaft is ¢lastic and
without rotational inertia, and the disks are rigid and have a rotational moment of inertia
I . The shaft between i-1 and i is isolated, the ¢nd rotations and torques being indicated in

Fig. 2.7b.

i-2 i-1 i i+l
0 0l
I ‘
Iiz | P} | L

Figure 2.7 (a) Massless shaft with disks
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2 » — ;

R L

) e — ¢i
Negative face Positive face

Figure 2.7 (b) free-body diagram of shaft

TviR
TL =
i e Iia)2¢i

Figure 2.7 (¢c) free-body diagram of disk
From the equilibrium of the shaft we have
T} =TA (2.13)

and from simple strength of materials the relation
R
g —gF, = et 2.14)
(J:G),

where J; is the polar second moment of area of the shaft and G is the shear modulus of
the material.
In matrix notation these two equations become
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! R
$1 |1 ¢ ‘
HEREEH @19
or
zf =Fz, (2.16)

When relating the state vectors z* andz/ on either side of the disk i, we note that
the angle of twist remains unchanged, so that ¢ =g, but as a result of the inertia

torque of the disk there is a discontinuity in the torque. With reference to Fig. 2.7c, the
equilibrium condition yields the expression
TR -T' +Lw’¢, =0 2.17)

i

These equations are combined in the single matrix expression
R L
] 1 0
I R 1 2.18)
r|, |-»1 1}|T]

2f = Pz} (2.19)

or
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CHAPTER THREE
THEORETICAL ANALYSIS

3.1 Introduction

Before carrying out the theoretical analysis, boundary conditions, variation of cross-
sections and geometric and force conditions have been specified.

The diameters of the shafis may be uniform or changing linear, parabolic (convex),
parabolic (concave), alohg the longitudinal axis. Uniform, linear, parabolic (convex)

diameters, are expressed as:

dx)=d, +zx" (3.1)
and
d,—d
2= 25 (3.2)

where d, denote the diameter of the root cross-section, d; are those at the tip cross-
séction, respectively. The diameter change uniformly where m =0, linearly where
m = 1and parabolically where m =2.

Typical shafts having different diameter variation parameters that are uniform, linear,
parabolic (concav) are shown in Figures 3.1, 3.2, 3.3,



Figure 3.1 Uniform shaft

Figure 3.2 Linear (Tapered) shaft

‘ L

Figure 3.3 Parabolic (Concave) shaft

21
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Variation of the diameter of a shaft having parabolic (convex) cross-sections along its
length can be expressed as:

2.(d, —dy)x _ (4 _do)xz +d

d =
(x ) L LZ 4

3.3)

Equation (3.2) is only valid for the parabolic (convex) cross-section.

Parabolic (convex) cross-séctions are shown in Figures 3.4 .

Figure 3.4 Parabolic (Convex) shaft

3.2 Determination of the Area and Second moment of Area for a Shaft Finite

Element

We have four types of cross-section of the shaft. Area “A” and the second moment of
area of cross-section “I” of the shaft depend on x. To simplify the analysis some
assumptions made are as follows.
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'&

Figure 3.5 Discretizations of the shaft

The shaft is divided into finite elements. The area and second moment of area of a
variable cross-sectioned shaft are different, along the shaft length and depend on x. Let

us take a shaft element from Figure 3.5 into consideration.

Figure 3.6 Average diameter of a shaft element

The diameter (dy) of the element depend on x. The calculated average diameters of the
shaft are denoted by daverge- Using this average diameter, A and I are calculated. This
process is applied to each element. So we form a configuration shown in Fig. 3.7 to
represent & non-uniform shaft.
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Figure 3.7 Shaft elements having average diameters

3.3 Determination of Deflections of a Finite Element

Joint 1‘ y’ I plp .G, 4 Joint 2
P

pa & N ,
\

50 i) 50

Figure 3.8 A Uniform Torsion Element

Consider a uniform torsion of element with the x axis taken along the centroidal axis,
as shown in Fig. 3.8. Let I, denotes the polar moment of inertia about the centroidal axis
and GJ represent the torsional stiffness (J=1I, for a circular cross section).

When the torsional displacement (rotation) within the element is assumed to be linear
with respect to x, as

w
1.C. YOKSEKOCRETIM KURD
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¢ (r)=a ()+b ()
and the joint rotations both at ends of the element, ¢ () and ¢, (¢) are treated as

unknowns, Eq.(3.4) can be expressed, by proceeding as in the case of a bar element, as
follows.,

(3.4)

$:(x.1)= N, (), () + N, (x)p, ¢) (3.5)

where N,(x) and N, (x)are given as

Nx(x)==(l—5) . Nym=2 (.6)
e e

3.3.1 Evaluation of the Element Elastic Stiffness Matrix

The strain energy V' of an elemental length on the shaft is given by

v ()= é—]GJ {M}zdx

5 Ox G

14 1 1 NE
- rlo {- 160~ Lo 0} & (33)
- LG G- 20,60, 04 4.7 0} 69

where the element elastic stiffness matrix is described as;
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[k]=-G—U—[ 1 _l] (3.10)

3.3.2 Evaluation of the Mass Matrix

The kinetic energy T of an elemental length on the shaft is given by

19 [og 50
T(r)_-z—é[p 1,,{ 5 }dx (3.11)
15 x ) x 2
= -52 plp{(l - ;—)m @)+ ?¢2(t)} dx (3.12)
= L O+ 6,06, O+ 62 O} 6.13)
where the mass matrix is describe as
ﬂpIPe 2 1
[m]= : [1 2] (3.14)

3.4 Evaluation of the Transfer Matrix Method

The Transfer Matrix method was discussed in section 2.2. Now we will discuss how
make use of the transfer matrix method in numerical calculations. We have formed
stiffness and mass matrixes as discussed in section 2.2. The matrix multiplications have
been made carrying @ through as a free parameter, and finally applying the boundary
conditions then solving the resulting frequency equation for @®. This matrix operation,



which relates the state vectors
(Fig 3.9)
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z®, and z%, is illustrated here for a disk-shaft system

Figure 3,9 Shaft-Disk System

The relation between z*

HREAH

and that between z/, andz] is

£ and z] is given by

(3.15)

(3.16)

Employing the standard layout for matrix multiplication gives the following expression

,

0o 1

1 0 1 JA
~Io? 14, | -Iw? 1-lo?

(3.18)



28

Hence
T~R
p! =0F =¢f + . (3.19)
and
2
TiR = — o 21ixi1.z.1 + (1 - %—'—I—'L}T,fl (3'20)
R
:Tffl*wZIi(xf_l“"%LJ:Tifl_a)zlixiL (321
i

The same result are obtained by using the following layout, which combines the field
and the point matrix into a single matrix:

- R
[1 ykl_o ][a =[¢] = 2R (G.22)

7
§
=2
Q
il
.
~ow
Il
-
o
a.
g
ou
SQ
% )
for)
E
b3

E %] [a]= (g2 + Tk"?l =g =¢f (3.23)

and the elément b is computed as if the element a belonged to the column vector z;', :
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— -

R
¢
R
i-1
a
o 1 -w?L][p]= ()" +T2 -0*La 3.24)
Since a = ¢ * , we have indeed
b=T*"-0’l¢} =T~ (3.25)

so that by this matrix operation we have done the equivalerit to forming the product

z}P =P F,zF,. (3.26)

i
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CHAPTER FOUR
RESULTS AND DISCUSSION

The vibration analysis of the system in Fig. 4.1 has been carried out, the lengths and
diameters of the first, second and third segments of the shaft are changed in such a way
that the stiffness of the segments were kept constant, by using the Finite Element and the
Matrix Methods, The results obtained using those different methods and given in
Reference {1] are compared in Table 4.1 and good agreement is found. Since the
dimensions are not different for the three cases and the stiffness is constant, frequencies
do not seem take as different as expected.

The variation of the first natural frequency of the system, shown in Fig 4.2, with
respect to torsional stiffness is shown in graphical form in Fig. 4.3. As scen from the
figure if the torsional stiffness increases, the first natural frequency also increases. The
comparison of the results obtained by using the Finite Element and the Transfer Matrix

Methods shows a very good agreement.

Fig. 4.4 shows the effect of the inertia of the discs on the first natural frequency for
the system shown in Fig. 4.2. As seen from this figure, if the inertias of the discs
increase, the first natural frequency decreases. The comparison of the results obtained
using those two different methods gives very good agreement.

Fig. 4.5 shows the variation of the first natural frequency with respect to shaft
stiffness as well as the number of discs having the same mass moment of inertia
(1=3.389376 kg.m®) located on the shaft at equal distances from each other. As seen
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from this figure, if the torsional stiffness increases, the first natural frequency also
increases and if the number of the discs increases, the first natural frequency decreases.

Fig. 4.6 shows the variation of the first natural frequency with respect ta disc inertia
as well as the number of discs having the same mass moment of inertia while all the
stiffnesses of the segments of the shaft (k=112979.2 Nm/rad) are kept constant. As seen
from this figure, if the inertia of the discs increases, the first natural frequency decreases
and if the number of the discs increases, the first natural frequency decreases.

The variations of the first and second natural frequencies of the system, shown in Fig.
4.7, with respect to the distance of the middle disc from the first disc as well as the
inertia of the discs are shown in graphical forms in Fig. 4.8 and 4.9. As seen from Fig.
4.8, if the distance of the middle disc from the first disc increases until the middle of the
shaft, the first natural frequency also increases and when the disc passes the middle of
the shaft, the first natural frequency decreases. As seen from Fig. 4.9, if the distance of
the middle disc from the first dis¢ increases until the middle of the shaft, the second
natural frequency also decreases and when the disc passes the middle of the shaft, the
first natural frequency increases. As seen from these figures the results obtained are
symmetric with reference to the midpoint of the shaft. The figures also show that when
the mass moment of inertia increases, frequencies decrease as expected.

The variation of the first and second natural frequencies of the system, shown in Fig.
4.10, with respect to the distance of the first disc from the clamped support as well as the
inertia of the discs are shown in graphical forms in Fig. 4.11 and 4.12. As seen from Fig.
4.11, if the distance of the first disc from the clamped support increases , the first

natural frequency decreases.

The variations of the first and second natural frequencies of the system shown, in Fig.
4.13, with respect to the distance of the first disc from the left clamped support as well
as the inertia of the discs are shown in graphical forms in Fig. 4.14 and 4.15. As seen
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from Fig. 4.14, if the distance of the disc from the left clamped support increases until
the middle of the shaft, the first natural frequency decreases and when the disc passes
the middle of the shaft, the first natural frequency increases. As seen from Fig. 4.15, if
the distance of the disc from the left clamped support increases until the middle of the
shaft, the second natural frequency increases and when the disc passes the middle of the
shaft, it decreases. As seen from these figures the results obtained are symmetric with
reference to the mid-point of the shaft.

The variation of the first and second natural frequencies of the system, shown in Fig.
4.16, with respect to the distance of the middle two discs from the left and right discs as
well as the inertia of the discs are shown in graphical forms in Fig. 4.17 and 4.18. As
seen from Fig. 4.17, if the distances of the middle two discs from the left and right discs
increase , the first natural frequency also increases. As seen from Fig. 4.18, if the
distances of the middle two discs from the left and right discs incredse , the second
natural frequency decreases.

The variations of the first and second natural frequencies of the system, shown in Fig.
4.19 with respect to the distance of the middle two discs from the left clamped support
and the right disc as well as the inertia of the discs are shown in graphical forms in Fig.
4.20 and 4.21. As seen from Fig, 4.20, if the distance of the middle two discs from the
left clamped support and the right disc increases , the first natural frequency also
increases. As seen from Fig. 4.21, if the distance of the middle two discs from the left
clamped support and the right disc increases , the second natural frequency also
decreases.

The variations of the first and second natural frequencies of the system, shown in Fig.
4.22, with respect to the distance of the middle two discs from the left and the right
clamped supports as well as the inertia of the discs are shown in graphical forms in Fig.
4.23 and 4.24, As seen from Fig. 4.23, if the distances of the middle two discs from the
left and the right clamped supports increase, the first natural frequency also decreases.
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The variations of the first natural frequency of the systems, shown in Figs. 4.25, 4.27
and 4.29, with respect to initial diameter increase of the tapered shafts as well as the
inertia of the discs are shown in graphical forms in Fig. 4.26, 4.28 and 4.30. As seen
from these figures that, if the first diameter of the tapered shaft increases the first
natural frequency also increases and if the inertia of the discs increases the first natural
frequency decreases.

Table 4.2 gives the comparison of the first natural frequency results of the systems
shown in Fig. 4.27 and 4.29. As secen from this table if the inertia of disc increases, the
differences between the results of the natural frequency of the two systems decreases
because inertia of the discs dominates the vibration of the system. The system with right
hand side support is stiffer than the other as a result the frequencies are higher.

The variations of the first natural frequency of the systems, shown in Fig 4.30, with
respect to the first diameter of the tapered, concave and convex shafts are shown in
graphical forms in Fig 4.32. As seen from this figure if the initial diameter of the shafts
increases, the first natural frequency also increases.

The variation of the first natural frequency of the systems, shown in Fig 4.30, with
respect to the length of the tapered, concave and convex shafts are shown in graphical
forms in Fig 4.33. As seen from this figure if the length of the shafts incréases, the first
natural frequency also decreases.

The variation of the first natural frequency of the systems, shown in Fig 4.30, with
respect to the mass moment of inertia of the discs is shown in graphical form in Fig 4.34.
As seen from this figure that if the inertia of the discs increases, the first natural

frequency decreases.
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Figure 4.1 Idealized machine shaft.

The idealized representation of a four cylinder engine with a flywheel attached
is shown in Fig.4.1.

L=I,=L=1=1.129792 kg.m* (10 Ib-in.-sec?)
I,=2.259584 kg.m* (20 Ib-in.-sec®)
ki =ky=k;=169468.8 Nmv/radian (1.5x 10° Ib-in./radian)
k4=225958.4 Nm/radian (2.0x 10° Ib-in./radian)

In this system we change once, twice and third shaft’s length and diameter and solve
with Finite Element Method. On the other hand this system solve with Transfer Matrix
Method.

34



Table 4.1 Comparison with Finite Element Method and Transfer

35

Matrix Method.
Finite Element Transfer Matrix | Reference [1]
=1 7=05 1=025
d=00675 | d=00567 d =0.0477
| | — Nm
k=169468.8Vm/ )
®,| 213.672 214,193 214.283 214.358 214.337
o, 443.01 442.709 4445 444.673 ~ 440
o,| 632262 633.771 634.024 634.245 ~625
o5 | 742452 743.899 744.114 744345 ~ 750
I I__
ktorsianal
le I >

Figure 4.2 Two disks-shaft system with, free-free support

condition.

1=3.389 kg.m®> /=0.5m
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Figure 4.3 Comparison of the results of the Finite Element and the
Transfer Matrix Methods with respect to torsional
stiffness on the natural frequency of vibration for 2 multi
disc-shaft system (Fig. 4.2). n=2, [=3.389 kg.m’, /=0.5 m
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I
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Figure 4.4 Comparison of the results of the Finite Element and the
Transfer Matrix Methods with respect to disc inertia on the
natural frequency of vibration for a multi disc-shaft system
Fig. 42) n=2,1=3.389 kg.m?, /=0.5m

ULy
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Figure 4.5 The effects of torsional stiffness and the number of discs on

the first natural frequency of vibration.

1=3.38937 kg.m®
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Figure 4.6 The effects of torsional stiffness and the number of discs on

the first natural frequency of vibration
k=112979.2 Nni/rad
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Figure 4.7 The multi disk-shaft system that having disk with

free-free support condition. /=1 m, d=0.05 m
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Figure 4.8 The effects of the distance of the middle disk from the first

disk and the disks inertias on the second natural frequency of
vibration.
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Figure 4.9 The effects of the distance of the middle disk from the first
disk and the disks inertias on the third natural frequency of

vibration.

Figure 4.10 The multi disk-shaft system having two disk with
clamped-~ free support condition. /=1 m, d=0.05 m
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Figure 4.11 The effects of the distance of the middle disk from the clamped support
and the disks inertias on the first natural frequency of vibration.
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Figure 4.12 The effects of the distance of the middle disk from the clamped
support and the disks inertias on the second natural frequency.



Figure 4.13 The single disk-shaft system with clamped- clamped
=1 m, d=0.05 m

support condition.
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Figure 4,14 The effects of the distance of the disk from the left
clamped support and the disk inertia on the first

natural frequency.
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Figure 4.15 The effects of the distance of the disk from the left clamped

support and the disk inertia on the second natural

frequency.
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Figure 4.16 The multi disk-shaft system having four disk with free-

free support condition.
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Figure 4.17 The effects of the distance of the middle two disk from the left

and right discs and the disks inertias on the second natural

frequency.

1600
1400
1200

3 (rad/sn)
2 8
o o

600
400
200

0

===]=] (kg.m"2)

——1=3 (kg.m"2)

0

005 01 015 02 025 03 035 04 045

a(m)

0.5

Figure 4.18 The effects of the distance of the middle two disk from the left

and right discs and the disks inertias on the third natural

frequency.
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Figure 4.19 The multi disk-shaft system having three disk with
clamped-free support condition. /=1 m, d=0.05 m
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Figure 4.20 The effects of the distance of the middle two disc from the
left clamped suppert and the right disc and the discs
inertias on the first natural frequency of vibration.
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Figure 4.21 The effects of the distance of the middle two disc from the left
clamped support and the right disc and the discs inertias on
the second natural frequency of vibration.

Figure 4.22 The multi disk-shaft system having two disk with
clamped-clamped support condition /=1 m, d=0.05m
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Figure 4.23 The effects of the distance of the middle two disk from the left

and right clamped support and the discs inertias on the first
natural frequency of vibration.
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Figure 4.24 The effects of the distance of the middle two disk from the left

and right clamped support and the discs inertias on the second
natural frequency of vibration.
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Figure 4.25 The multi disc-shaft system having two disk and tapered
shaft with free-free support condition.
I=1 m diia=0.05 m deng=0.15 m

(kg.m?)

== ]=3

dinitar (M)

Figure 4.26 The effects of changing initial diameter and the inertia of
the disks on the second natural frequency of vibration for

the system shown in Fig. 4.25.
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Figure 4.27 The disc-shaft system having a disk and tapered shaft with
clamped-free support condition.
=1 m diiga=0.05 m depg=0.15 m

2000 , —

1600 // (kg.m’)
1200 M | = I=
— g I=4

o1 (rad/sec)

800
I=5
400
e =10
0 : - . . : ]
0,04 0.06 0.08 0.1 0.12 0.14 0.16

Figure 4,28 The effects of changing initial diameter of tapered shaft and
the inertia of the disk on the first natural frequency of
vibration for the system shown in Fig. 4.27



Figure 4.29 The disc-shaft system having a disk and tapered
shaft with free-clamped support condition.
I=1 m dinia=0.05 m deng=0.15 m

2000 |
/ I=l 2
1600 / (kg.m
il 7
E 800 / //Q S
-
400 = ,
/ —_—0
0 : : , I . r
0.04 0.06 0.08 0.1 0.12 0.14 0.16

dinitias (M)

Figure 4.30 The effects of changing initial diameter of tapered
shaft and the inertia of the disk on the first natural
frequency of vibration for the system shown in Fig. 4.29
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Table 4.2 Comparison of the first natural frequency results of the clamped support
from left and right which can be seen in Fig. 4,27 and Fig. 4.29.

I=0 =1 =2 =3 =4 =5 =10

kg.m’ kgm® | kem® | kem® | kgm® | kem® | kpm®
g_:)aﬁlfgg 1727.487 | 538.1137 | 389.9623 | 321.1058 | 279.2783 | 250.4406 | 178.013
ﬁ(‘i)lillnrf:e ggt 10011.999 | 565.5689 | 400.0335 | 326.6575 | 282.9073 | 253.0474 | 178.9419

(c) Convex

Figure 431 The multi disk-shaft systems having two dises and
(a) tapered, (b) concave, (c) convex shaft with free-

free support conditions.
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Figure 4.32 The effects of increasing the first diameter of convex, tapered and

concave shaft on the first natural frequency for the systems shown
in Fig. 4.31

1200
1000 ‘\ convex [ |
E’ 800 “ m—=otaper |
===concav
E 600 —~—
o~ %N\\\\¥
200 e
0 T . :
0 1 2 3 5 6
I (m)

Figure 4.33 The effects of increasing the length of convex, tapered and

concave shaft on the first natural frequency for the systems

shown in Fig, 4.31
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Figure 4.34 The effects of increasing the inertia of the discs on convex,

tapered and concave shaft on the first natural frequency for
the systems shown in Fig. 4.31
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Private Sub atalet_etkisi Click()

Cls

Open "c:\saha\tez\ataletetkisil.txt" For Output As 1

Open "c:\saha\tez\ataletetkisi.xIs" For Output As 2

n=2

ReDim rigit(n - 1), atalet(n), K12(n - 1), M21(n), a(n), b(n)

ilkatalet = 1

sonatalet = 100

aralik = (sonatalet - ilkatalet)
For v = ilkatalet To sonatalet
f= 1000000

!

Fori=1Ton
atalet(i) = v

Next i
Fori=1To(m-1)
rigit(i)) = f

Next 1

Mll=1
Mi12=0
M22=1
Kii=1
K21=0
K22=1

"mmmen ---—---birinci dogal frekansin bulunmasij-------m-v-v--
wilk =1

wson = 5000 * wilk

kat =2 |

hassasiyet = 0.0001

GoTo 50
30 wilk = w - kat
wson = w

kat =kat / 10

50 For i = wilk To wson Step kat
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ForJ=1To(n-1)
K12(J) = 1/ rigit(J)

Next J

ForJ=1Ton

M21(J) =-i " 2 * atalet(J)
Next J

a(1)=KI11 * M11 +K12(1) * M21(1)

b(1) =K21 * M11 + K22 * M21(1) + M21(2) * a(1)

If n =2 Then GoTo 55

Fors=1Ton-2

a(s + 1)=KI11 * a(s) + K12(s + 1) * b(s)

b(s + 1) = K21 * a(s) + K22 * b(s) + M21(s +2) * a(s + 1)
Next s

55w=i

If kat <= hassasiyet Then GoTo 80
If pes * b(n - 1) < 0 Then GoTo 30
pes=b(n- 1)

Next i

80 Print #1, v, w - kat

Print #2, V, W= kat

Print

Next v

Close #1

Close #2

Open "c:\saha\tez\ataletetkisil.txt" For Input As 1
ny = aralik

ReDim X(ny), Y(ny)

Fori=1 To ny
Input #1, X(i), Y(i)
Next i

Close #1

ymin = Y(1): ymax = Y(1)

Fori=2 Tony

If Y(i) > ymax Then ymax = Y(i)

If Y(i) < ymin Then ymin = Y(i)

Next i

If ymax = ymin Then ymax = ymax + 1: ymin = ymin - 1

Picturel.Scale (1, ymax)-(ny, ymin)
Picturel.PSet (1, Y(1)), c
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Fori=2 To ny
For J=1 To 10000
NextJ
Picturel.Line -(i, Y(i)), RGB(Rnd * 800, 0, 0)
Next i
End Sub
n=2
ReDim rigit(n - 1), atalet(n), K12(n - 1), M21(n), a(n), b(n), a2(n), b2(n)
E=21*10~11
au=0.26
G=E/(2*( +nuw)
pi=3.141596
di=0.1
d2=0.1
11=4

D=4

JN=pi*dl"4/32
R=pi*dl~r4/32
keofl =G * J1 /11
keoR2=G* /12

v=1.13

f1 = keofl

2 = kcof2
Fori=1Ton
atalet(i) =v
Next i

Fori=1Ton-1
rigit(i) = f1
Next i

'

Mlil1=1
Mi12=0
M22 =1
Kil1=1
K21=0
K22=1
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emmmmemmmmnmee—-birinei dogal frekansin bulunmasi-rr-s-m-=-=n--
wilk =1

wson = 5000 * wilk

kat =10

hassasiyet = 0.0000001

GoTo 50

30 wilk = w - kat
wSon = w
kat =kat / 10

50 For i = wilk To wson Step kat
ForJ=1To(n-1)
K12(QJ) = 1/ rigit(J)

Next J

ForJ=1Ton

M21(J) =-i " 2 * atalet(J)
Next J

a(1)=KI1 * M11 +K12(1) * M21(1)

b(1) =K21 * M11 + K22 * M21(1) + M21(2) * a(1)

If n=2 Then GoTo 55

Fors=1Ton-2

a(s+ 1)=KI11 * a(s) + K12(s + 1) * b(s)

b(s +1) =K21 * a(s) + K22 * b(s) + M21(s +2) * a(s + 1)
Next s

SSw=i

If kat <= hassasiyet Then GoTo 80
If pes * b(n - 1) <0 Then GoTo 30
pes=b(n-1)

Next i

80 Print "rigitlik="; f,

Print "1. dogal frekans="; w - kat
dogfrel.Text = Str$(w - kat)

"emmeemmm—mikinei dog fre
wilk = w + 20

wson = wilk * 100

kat =10
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hassasiyet = 0.0000001
GoTo 52

32 wilk = w - kat
wson = w
kat=kat/ 10

52 For i = wilk To wson Step kat
ForJ=1To(n-1)
K12(J) =1/ rigit(J)

Next J

ForJ=1Ton

M21(J) = -i ~ 2 * atalet(J)
Next J

a2(1) =K11 * M11 + K12(1) * M21(1)

b2(1) =K21 * M11 + K22 * M21(1) + M21(2) * a2(1)
If n=2 Then GoTo 552

Fors=1Ton-2

a2(s+ 1) =K11 * a2(s) + K12(s + 1) * b2(s)

b2(s + 1) = K21 * a2(s) + K22 * b2(s) + M21(s +2) * a2(s + 1)
Next s

552w=i

If kat <= hassasiyet Then GoTo 82

If pes2 * b2(n - 1) < 0 Then GoTo 32

pes2 =b2(n- 1)

Next i

82 Print "rigitlik="; f,

Print "2. dogal frekans="; w - kat

dogfre2.Text = Str(w - kat)

End Sub

% Natural Frequency Analysis for Clamped-Clamped Support

E=2.1*10"11;%(N/m"2)
nu=0.26;
G=E/(2*(1+nu));
pi=3.141596;
10=7800;%(kg/m"3)

%
Is=zeros;
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L=zeros;
le=zeros;
d=zeros;
J=zeros;
mcof=zeros;
kcof=zeros;

N=input('enter the number of disks=")

for =1:N
Is(i)=input(‘enter the inertia of disks (kg.m"2)=")
end

for i=1:N-1

L{i)=input('enter the length of shaft segments (m)="

end

for =1:N-1

d(i)=input('enter the diameter of shaft segments (m)="
end
for i=1:N-1

IG)=pi*(d(D))"4/32;
end
n=1;input(‘enter the number of divide of the shaft segments=")
for =1:N-1

le()=L(i)/n;

keoRiy=G*J(i)/le(i)

mcof(i)y=ro*J()*le(i)/6;
end
%
k=[1,-1:-1,1];
m=[2,1:1,2];
%

kgenel=zeros(n*(N-1)+1);
mgenel=zeros(n*(N-1)+1);
kgenelx=zeros(n*(N-1)+1);
mgenelx=zeros(n*(N-1)+1);

for i=1:(n*(N-1))
kgenel(i,i+1)=-1;
kgenel(i+1,i)=1;
end

kgenel(1,1)=1;
kgenel(n*(N-D+1,n*(N-1)+1)=1;
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for i=2:(n*(N-1));
kgenel(i,i)=2;

end;
0/
ra'l

for =1:(n*(N-1));
mgenel(i,i+1)=1;
mgenel(i+1,0)=1;
end;

mgenel(1,1)=2;
mgenel(n*(N-1)+1,n*(N-1)+1)=2;

for F=2:(n*(N-1));
mgenel(i,i}=4;

end;

kgenel;

mgenel;

Youn

%

a=l1;
for 7=1:N-1;
for i=a:n+a-1;

kgenelx(i,iy=kgenel(i,i)*kcof(j);
kgenelx(i,i+1)=kgenel(i,i+1)*kcof(j);
kgenelx(i+1,i)=kgenel(i+1,i)*kcof(j);
mgenelx(i,i)=mgenel(i,i)*mcof(j);
mgenelx(i,i+1)=mgenel(i,i+1)*mcof(j);
mgenelx(i+1,i)=mgenel(i+1,i)*mcof(j);

end;
a=atn;
end;
=L
for i=n+1:n:(n)*(N-2)+1;
kgenelx(i,i)=1*(kcof(j) tkcof(j+1));
mgenelx(i,i)=2*(mcof{(j)+mcof(j+1));
il
end;
format long
kgenelx(n*(N-1)+1,n*(N-1)+1)=kgenel(n*(N-1)+1,0*(N-1)+1)*kcofiN-1);
mgenelx(n*(N-1)+1,n*(N-1)+1)=mgenel(n*(N-1)+1,n*(N-1)+1)*mcofiN-1);
=1 ;

for i=1:n:(n*(N-1)+1);



mgenelx(i,i)=mgenelx(i,))+s(q);
q=q+1;

end

keof(1);

meof(1);

kgenelx

mgenelx

format long
kgenelx(1,:)=[];
kgenelx(:,1)=[1;
mgenelx(1,:)=[];
mgenelx(;,)=[1;
kgenebx(n*(N-1),:)=[;
kgenelx(:,0*(N-1))=[];
mgenelx(n*(N-1),:)={1;
mgenelx(:,n*(N-1))=[];

A=sort(eig(kgenelx,mgenelx));
w=sqrt(A)
w(A)
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% Natural Frequency Analysis for Clamped-Free Support

E=2.1*10*"1,%(N/m"2)
nu=0.26;
G=E/(2*(1-+1u));
pi=3.141596;
ro=7800;%(kg/m"3)

0/,

Is=zeros;
L=zeros;
le=zeros;
d=zeros;
J=zeros;
nmcof=zeros;
kcof=zeros;

N=input(‘enter the number of disks=")

for i=1:N
Is(i)=input(‘enter the inertia of disks (kg.m"2)="



end

for =1:N-1

L(i)=input(enter the length of shaft segments (m)=")

end

for i=1:N-1

d(i)=input('enter the diameter of shaft segments (m)=")
end
for =1:N-1

J()=pi*(d())"4/32;
end
n=1;input(‘enter the number of divide of the shaft segments=")
for i=1:N-1

le()=L{i)/n;

keof(i)=G*I(i)/le(i)

mcof{i)=ro*J(i)*le(i)/6;
end
%
k=[1,-1:-1,1];
m=[2,1:1,2];
%

kgenel=zeros(n*(N-1)+1);
mgenel=zeros(n*(N-1)+1);
kgenelx=zeros(n*(N-1)+1);
mgenelx=zeros(n*(N-1)+1);

for =1:(n*(N-1))
kgenel(i,i+1)=-1;
kgenel(i+1,i)=-1;
end

kgenel(1,1)=1;
kgenel(n*(N-1)+1,n*(N-1)+1)=1;

for =2:(n*(N-1));
kgenel(i,i)=2;

end;

%

for i=1:(n*(N-1));
mgenel(i,i+1)=1;
mgenel(i+1,i)=1;
end;

mgenel(1,1)=2;



mgenel(n*(N-D+1,n*(N-1)+1)=2;

for i=2:(n*(N-1));
mgenel(i,i)=4;

end;

kgenel;

mgenel;

%

%

a=1;
for =1:N-1;
for i=a:n+a-1;

kgenelx(i,i)=kgenel(i,i)*kcof(j);
kgenelx(i,i+1)=kgenel(i,i+1)*keof(j);
kgenelx(i+1,))=kgenel(i+1,i)*kcof(j);
mgenelx(i,))=mgenel(i,i)* mecof(j);
mgenelx(i,i+1)=mgenel(i,i+1)*mecof(j);
mgenelx(i+1,)=mgenel(i+1,1)*mcof(j);

end;
a=atn;
end;
=L
for i=n+1:n:(n)*(N-2)+1;
kgenelx(i,i)=1*(kcof(j)+kcof(j+1));
mgenelx(i,i=2*(mcof(j)+mcof(j+1));
=itls
end;
format long
kgenelx(n*(N-1)+1,n%(N-1)+1)=kgenel(n*(N-1)+1,0*(N-1)+1)*keof{N-1);
mgenelx(n*(N-1)+1,0*(N-1)+1 )=mgeriel(n*(N-1)+1,n*(N-1)+1)*mcofiN-1);
q=1;
for i=1:n:(n*(N-1)+1);
mgenelx(i,i)=mgenelx(i,i)+s(q);
q=qt+i;
end
keof(1);

meof(1);
kgenelx
mgenelx
format long
kgenelx(1,:)=[1;
kgenelx(:,1)={];
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mgenelx(1,:)=[};
mgenelx(;,1)={];

A=sort(eig(kgenelx,mgenelx));
w=sqrt(A)
w(A)

% Natural Frequency Analysis for Free-Free Support

E=2.1*10"1;%(N/m"2)
nu=0.26;
G=FE/(2*(1+nu));
pi=3.141596;
r0=7800;%(kg/m"3)

[ 7A

Is=zeros;
L=zeros;
le=zeros;
d=zeros;
J=zeros;
mcof=zeros;
kcof=zeros;

N=input(‘enter the number of disks=")

for i=1:N
Is(i)=input(‘enter the inertia of disks (kg.m"2)~"
end

for i=1N-1
L(i)=input('enter the length of shaft segments (m)=")
end
for i=1:N-1
d(i)=input(‘enter the diameter of shaft segments (m)=")
end
for i=1:N-1
J(©)=pi*(d(D)"4/32;
end

n=1;input(‘enter the number of divide of the shaft segments=")

for =1:N-1
le(i=L()/n;
keof{)=G*J(i)/le(i)
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mcof{D)=ro*J(i)*le(i)/6;
end
%
k=[1,-1:-1,1];
m={2,1:1,2];
%%o———-
kgenel=zeros(n*(N-1)+1);
mgenel=zeros(n*(N-1)+1);
kgenelx=zeros(n*(N-1)+1);
mgenelx=zeros(n*(N-1)+1);

for =1:(n*(N-1))
kgenel(i,i+1)=1;
kgenel(i+1,i)=-1;
end

kgenel(1,1)=1;
kgenel(n*(N-1)+1,n*(N-1)+1)=1;

for i=2:(n*(N-1));

kgenel(i,1)=2;
end;
%

for i=1:(n*(N-1));
mgenel(i,i+1)=1;
mgenel(i+1,0)=1;
end;

mgenel(1,1)=2;
mgenel(n*(N-1)+1,0*(N-1)+1)=2;

for F2:(n*(N-1));
mgenel(i,i)=4;

end;

kgenel;

mgenel;

o/,
79

L1 74
/0

a=1,
for =1:N-1;
for i=a:n+a-1;
kgenelx(i,i)=kgenel(i,i)*kcof(j);
kgenelx(i,i+1)=kgenel(i,i+1)*kcof(j);
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kgenelx(i+1,i)=kgenel(i+1,i)*kcof(j);
mgenelx(i.i)=mgenel(i,i)*mcof(j);
mgenelx(i,i+1)=mgenel(i,i+1)*mcof(j);
mgenelx(i+1,i)=mgenel(i+1,i)*mcof(j);

end;
a=a+tn;
end;
=L
for i=n+1:n:(n)*(N-2)+1;
kgenelx(i,i)=1*(kcof(j)+kcof(j+1));
mgenelx(i,i)=2*(mcof{(j)+mcof(j+1));
it
end;
format long
kgenelx(n*(N-1)+1,0*(N-1)+1)=kgenel(n*(N-1)+1,n*(N-1)+1)*kcofiN-1);
genelx(n*(N-1)+1,n*(N-1)+1)=mgenel(n*(N-1)+1,n*(N-1)+1)*mcof(N-1);
a=1;
for =L:n:(n*(N-1)+1);
mgenelx(i,)y=mgenelx(i,i)+Is(q);
q=qtl;
end
kcof(1);

mcof(1);
kgenelx
mgenelx
format long

A=sort(eig(kgenelx,mgenelx));
w=sqrt(A)
Ww(A)

%The Natural Frequency Analysis for the Concav Shaft

E=2.1*10"1;%(N/m"2)
nu=0.26;
G=FE/(2*(1+n));
pi=3.141596;
r0=7800;%(kg/m"3)

0/,

Is=zeros;



L=zeros;
d=zeros;
J=zeros;
X=Zeros;

dg=zeros;
%~

n~4;
d=zeros(n);

dilk=input(’enter the inertial diameter of the concav shafi=')
dson=input(‘enter the end diameter of the concav shaft=")
Is(1)=input(‘enter the inertia of the first disk=")
Is(2)=input(‘enter the inertia of the second disk=")
L=input(‘enter the length of the shaft=")
xb=L/n;
dg(1)=dilk
dg(n+1)=dson
for =2:n
dq(D)=(dilk+(dson-dilk)/L2)*(xb*(i-1))"2);
end
for i=1:n

d()=(dq(D-+dq(i+1))/2;

for i=l:n
JD)=pi*(d(i))"4/32;

end

for =1:n
keof{i)=G*J(i)/xb;
mcof(i)=ro*J(1)*xb/6;

end

%%-- -
k=[1,-1:-1,1};
m=[2,1:1,2];

%

kgenel=zeros(n+1);
mgenel=zeros(n+1);
kgenelx=zeros(nt+1);
mgenelx=zeros(nt1);

for =1:(n+1)
kgenel(j,i+1)y=-1;
kgenel(i+1,i)=1;
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kgenel(i,i)=1;
end
for =1:(n+1)
mgenel(i,i+1)=1;
mgenel(i+1,i)=1;
mgenel(i,i)=2;
end

0/ . -
kgenelx(1,1)=kgenel(1,1)+kcof(1);
kgenelx(nt+1,n+1)=kgenel(n+1,n+1)+kcof(n);

for =2:n
kgenelx(i,i)=kgenel(i,i)*(kcof(i-1)+kcof(i));

end

for i=1:n
kgenelx(i,i+1)=kgenel(i,i+1)*kcof(i);
kgenelx(i+1,i)=kgenel(i+1,i)*kcof(i);
end

mgenelx(1,1)=mgenel(1,1)*mcof{(1);
mgenelx(n+1,n+1)=mgenel(n+1,n+1)*mcof(n);

for ¥2:n
mgenelx(i,i)=mgenel(i,i)*(mcof(i-1)+mcof(1));

end

for i=1:n
mgenelx(i,i+1)=mgenel(i,i+1)*mcof(i);
mgenelx(i+1,i)=mgenel(i+1,1)*mcof(i);

end

mgenelx(1,1)=mgenelx(1,1)+s(1);
mgenelx(n+1,n+1)=mgenelx(n+1,n+1)+s(2);
kgenelx;

mgenelx;

format long
A=sort(eig(kgenelx,mgenelx));
w=sqrt(A)
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%The Natural Frequency Analysis for the Convex Shaft

E=2.1*10"1;%(N/m"2)
nu=0.26;
G=E/(2*(1-+nu));
pi=3.141596;
ro=7800;%(kg/m"3)

% ,

Is=zeros;

L=zeros;

d=zeros;

J=zeros;

X=Zeros,

dg=zeros;

%

n=4;
d=zeros(n);

dilk=input('enter the inertial diameter of the convex shafi=")
dson=input('enter the end diameter of the convex shaft=")
Is(1)=input(‘enter the inertia of the first disk=")
Is(2)=input(‘enter the inertia of the second disk=")
L=input('enter the length of the shaft=")
xb=L/n;
dg(1)=dilk
dg(n+1)=dson
for =2;n
dq(i)=dilk+2*(dson-dilk)*xb*(i-1)/L-(dson-dilk)*(xb*(i-1)/L)2;
end
for =l:n
d()=(dq(i)+dq(i+1))/2;

end
for i=1:n

IG)=pi*(d())4/32;
end
for i=1:n

keof(i)=G*J(i)/xb;

mcof{i)=ro*J(D)*xb/6;
end

o/
/0

k=[1,-1:-1,1];




m=[2,1:1,2];
%

mgenel=zeros(n+1);
mgenel=zeros(n+1);
kgenelx=zeros(n+1);
mgenelx=zeros(n+1);

for i=1:(n+1)
kgenel(i,i+1)=1;
kgenel(i+1,i)=1;
kgenel(i,)=1;

end

for =1:(n+1)
mgenel(i,i+1)~1;
mgenel(i+1,i)=1;
mgenel(i,i)=2;

end

% )
kgenelx(1,1)=kgenel(1,1)+kcof(1);
kgenelx(n+1,0+1)=kgenel(n+1,n+1)+kcof(n);

for i=2:n
kgenelx(i,i)=kgenel(i,i)* (kcof(i- 1)+kcof(i));

end

for i=1:n
kgenelx(i,i+1)=kgenel(i,i+1)*kcof(i);
kgenelx(i+1,iy=kgenel(i+1,i)*kcof(i);

end

mgenelx(1,1)=mgenel(1,1)*mcof{1);
mgeénelx(n+1,n+1)=mgenel(n+1,0+1)*mcof(n);

for i=2:n
mgenelx(i,i))=mgenel(i,i)* (mcof(i-1)+mcof(i));

end

for i=1:n
mgenelx(i,i+1)=mgenel(i,i+1)*mcof{(i);
mgenelx(i+1,i)=mgenel(i+1,i)*mcof{(i);

end

mgenelx(1,1)=mgenelx(1,1)+Is(1);
mgenelx(nt+1,n+1)=mgenelx(nt+1,n+1J+Is(2);
kgenelx;

mgenelx;
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format long
A=sort(eig(kgenelx,mgenelx));
w=sqrt(A)

%The Natural Frequency Analysis for the Tapered Shaft

E=2.1*10" 1;%(N/m"2)
nu=0.26;
G=E/(2*(1+nu));
pi=3.141596;
ro=7800;%(kg/m"3)

o/
/79

Is=zeros;
L=zeros;
d=zeros;
J=zeros;

X=Z€ros,
%

n=5;

d=zeros(n);

dilk=input(’enter the inertial diameter of the convex shaft=")
dson=input('enter the end diameter of the convex shaft=")
Is(1)=input('enter the inertia of the first disk=")
Is(2)=input(‘enter the inertia of the second disk=")
L=input('enter the length of the shaft=")
xb=L/n;
dg=((dson-dilk)*xb/L)+dilk
d(1)=(ditk+dq)/2
for #=2:n |
d(i)=d(i-1)+(dson-dilk)*xb/L

end
for i=1:n

JD=pi*(d())™4/32;
end
for i=1:n

keof{i)=G*J(i)/xb

mcof(I)=ro*J(1)*xb/6;
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end

%
k=1,-1:-1,1];
m=[2,1:1,2];
[i /A .

kgenel=zeros(n+1);
mgenel=zeros(n+1);
kgenelx=zeros(n+1);
mgenelx=zeros(n+1);

for i=1:(n+1)
kgenel(i,i+1)=-1;
kgenel(i+1,1)=-1;
kgenel(i,i))=1;

end

for i=1:(n+1)
mgenel(i,i+1)=1;
mgenel(i+1,i)=1;
mgenel(i,i)=2;

end

%

kgenelx(1,1)=kgenel(1,1)+kcof(1);
kgenelx(n+1,n+1)=kgenel(n+1,n+1)+kcof{(n);

for i=2:n
kgenelx(i,)=kgenel(i,i)* (kcof{(i-1)+kcof(D);

end

for i=1:n \
kgenelx(i,i+1)=kgenel(i,i+1)*kcof(i);
kgenelx(i+1,i)=kgenel(i+1,i)*kcof{i);

end

mgenelx(1,1)=mgenel(1,1)*mcof(1);
mgenelx(n+1,0+1)=mgenel(nt+1,n+1)*mcof(n);

for i¥2:n
mgenelx(i,ij=mgenel(i,i)*(mcof(i-1)+mecof(i));

end

for i=1:n
mgenelx(i,i+1)y=mgenel(i,i+1)*mcof(i);
mgenelx(i+1,i))=mgenel(i+1,i)*mcof{i);

end



mgenelx(1,1)=mgenelx(1,1)+Is(1);
mgenelx(n+1,n+1)=mgenelx(nt+1,n+1)+Is(2);
kgenelx

mgenelx

format long
A=sort(eig(kgenelx,mgenelx));
w=sqrt(A)
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Non-dimensional rotational

L (m)

The mode shape of first natural frequency for the system of given in Fig. 4.7
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The mode shape of first natural frequency for the system of given in Fig. 4.16

04 ——2a=0.05m

R —&—a=0.25m
B / \ —4—a=0,35 m
0.2 —¢—a=0.45m

N /A
o 0.2 0.4 0.6 0.8\ 1
ol £ %
0sl/ \
ost 3

L (m)

Non-dimensional rotational

The mode shape of second natural frequency for the system of given in Fig. 4.16



:
g
=
g
S
e e 3=0.05 (m)
§ emmg=0.25 (M)
his =035 (M)
é _|==—=a=0.45 (m)
0 0.2 0.4 0.6 0.8 1

L (m)

The mode shape of first natural frequency for the system of given in Fig. 4.19

0.8

—a=0.05 m

_g mg=0.25 m
g ==g=0.35 m
g s===g=0,45 m
£
I
Z 04

0.6

L (m)

The mode shape of second natural frequency for the system of given in Fig. 4.19



0.45 ‘ —4—2a=0.05m

T 04 —a—3=0.25m
o L 0% —a—a=0.35m| |
'g 0‘52 / \ —%—a=0.45m| |

0.25
"g 0.2 // \€\
g 0.15 /
-g 0.1 ¢ LA
2 0.05

0 ¥ T T T
0 0.2 0.4 0.6 0.8 1

L (m)
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