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ABSTRACT

Computation of eigenvalues of regular Sturm-Liouville problems with
homogeneous and periodic boundary conditions respectively is considered. For each
problem, using the Richardson Extrapolation based on the finite difference, the
accuracy of the eigenvalues are improved. Numerical results demonstrate the

usefulness of the correction.



OZET

Bu ¢alismada, homojen ve periyodik simir degerli Sturm-Liouville problemlerinin
Ozdegerlerinin hesaplanmasi ve iyilestirilmesi ele alinmistir. Problemlere sonlu
farklar yontemi {lizerine Richardson ekstrapolayonu uygulanip hesaplanan
ozdegerlerdeki hata azaltilmigtir. Numerik sonuglar metodun uygulanabilirligini
desteklemektedir.
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CHAPTER ONE
INTRODUCTION

In this thesis, we investigate the computation of eigenvalues of Regular Sturm-
Liouville Problem (SLP)

—y'+q(x)y =
for g(x) e C'[0, 7[] with homogeneous boundary conditions,
y(0)=y(z)=0
and also for g(x) e C' [0,1] and g(x) = g(x +1) with t-periodic boundary conditions,
t € (0,27) - {z}, (Veliev & Duman, 2002)

y(1) =" (0)
y'(0)=€"y'(0).

There have been a number of papers (see Anderssen and de Hoog, 1984; Andrew,
1988, 1988, 1989; Andrew and Paine, 1986) dealing with the same problem with
different boundary conditions in different methods. A survey paper related to this
problem can be found in (Andrew, 1994). Andrew (Andrew, 1989) used the approach
to improve finite difference eigenvalue estimates of periodic Sturm-Liouville
problems. It is proved in (Andrew, 1989) that the application of the correction

technique to the classical finite difference scheme studied in (Evans, 1971) reduces

the error from O(k*h*) to O(kh?). It is well known that when finite difference
methods are used to approximate the eigenvalues, 4, <4, <4, <...., of Sturm-

Liouville Problem, the error in the approximation to A, is known to increase rapidly

with £.



In this thesis, we apply the Richardson Extrapolation to the approximate
eigenvalues computed by finite difference method for improving the results. In the
error analysis of computed eigenvalues we form on equivalent system for the SLP in
order to investigate the behavior of convergence and the maximum number of
extrapolation depending on the number of eigenvalues and also the asymptotic
expansion for the computed eigenvalues. In Chapter 3, the theoretical improved

results are established numerically by solving the problems in (Ghelardoni, 2001)



1.1. Computation of the Eigenvalues of SLP with Homogeneous Boundary

Conditions and Its Asymptotic Expansion

We consider the regular Sturm-Liouville problem (SLP),
=Y (®X)+gx)y(x)=(x), O<x<z

where
g(x) e C! [0, 7z]
with homogeneous boundary conditions
y(0)=0
y(m)=0.
Introducing the new depending variable
y'(x)=z(x),

(1.1) and (1.2) can be written as

y'(x)] [0 1 y(x) [0 0] »(x)
[z’(x)_ [ ][ 2(x )] (q(x)_l)_l O__z(x)]’

1 0] »(0) . 0 0fy(=)]| [0]
0 0jz0)] |1 0fz(=)]| |0]

Defining
Y(x) = [ y(x )]
z(x)
0 1]
Ao 1 B= 00 ’
10 O] 10
1 0] 0 0
C1=‘ acz=l: :]a
0 0 10
we have

Y'(x)= AY(x) +(g(x)-A)BY(x), O<x<=nm
CY(0)+C,Y(n)=0.

We consider the partition of the interval [0, 7]

(1.1)

(1.2)

(1.3)
(1.4)



Applying the finite difference scheme to the SLP (1.3) gives the following system

Y, -Y;, =hAY,, +h(q; - 4,)BY;
CY,+CY, =0

where

—Yjn +(h2‘1j +2)y; = Yja =h22'hyj=

Yim—DVj
h

and 1, is the computed approximate eigenvalue to A, Y, is the approximation to

=Z;4,9; =q(x;), j=0l,..,n-1

Y(x;).
Since
(I-hA)" =(I +h4),

we rewrite Y, as

Y= (I+hA)(I+h(qj —lh)B)Yj =M, (1.5)
where
M(x;)=M,,
M, = 1+h2(qj—l,,) h .
h(g;—%4) 1

The eigenvalues and the corresponding eigenvectors of M ; are

. 1 _
y,{z=§(2-h21,,+h2qj+J—4+(2-hzzh+h2qj)2),
, 1
J _— . .
M =\ -G, - ) -]

Let
2-h*(4, —q;)=2c0s6(x;,4,) = 2cos0,, (1.6)
then

i Fig,

4, =cosf; Fisinf, =e "’ and



ol

Since M ; is diagonalizable matrix, there exists an invertible matrix P(x;) = P;,
Pj = (vlj ’ v{ )
such that
_ -1
M,=PD,P", 1.7

where

Substituting (1.7) into (1.5),
Y, =P,D,P'Y,

and premultiplying by P;,; , we get

-1 _ p-l -1
FiY,a =FAP,D,P'Y,.
Using the transformation
Z,=P'Y,
we can rewrite system as,
Z, = I’jl‘ll’ijZj. (1.8)

From Taylor’s theorem, we have

2 42

- - d _ h® d° __
Pj+11=Pj‘+hEP'(x) +7-;dx—zp‘(x) . x,<E<x, (19
x=xj x=§j
Substituting (1.9) into (1.8), we get
d __ h*d*
Z = ]+haP1(x) Pj+7yp‘(x) P, \D,Z;,
X=Xj x=£;
where
d .
EP (%) PD; =i f;§,
x=xj
v 1 0 -1 1
d f;=— ——0 ,S= .
ar fj zaj__e~10j ox x=; N |:1 _l:|




Since
d2
Z;Z—P_l (%) P,D,| <consth,
x=§j o
we obtain
2,,=(D, +inf,S+0))Z,, j=0l.,n-1 (1.10)

where const is a constant independent of 4 .
Consider the case g(x)=0, Vxe [0, n'].
Then the eigenvalues of fhe original problem (1.1) and (1.2) are known to be
A=k,
Since #(A) =2-h>A, does not depend on x, P will be the constant matrix and the
approximate problem (1.10) for this case can be written as

Z,w=DZ,, j=0l..,n-1,

> eiﬁ(l;,) 0
- 0 e~ |

Hence the backward substitution gives

where

Z,=D"Z,.
From boundary conditions (1.4) and
Y,=PZ,,
we have
CPRZ,+C,PZ, =0,
(i.e)
(cp+c,pD")Z, =0.
Defining

w(4,) = det|C,P + C,PD" ),
then we have a non-trivial solution Z, € R**', if A, is an eigenvalue of the problem

(1.1) and (1.2), that is the solution of the equation
w(4,)=0.



Therefore we obtain

1 1

w(4,)= i it = e™? — ™ =2sinnd =0

and

From (1.6)
0= arccos(% 2-r%2)),
we obtain the approximate eigenvalues,

Mg = ~h1—2(2——2005kh)= hizsinz(f‘zf), k=12..,n-1.

For the case ¢(x) # 0, we already have (1.10), by back substitution, we get

Zn = [Dn—an—ZDn—3""D1D0
+ih(f,D, D, yD,_3..D\S + f,D, \D,_,D, ;...SD,
+ f3D,1D, 3D, _3...8D,Dy + foD, D, _»D,_3....8D,D, D,

where

o0 [ G
f;D,sDy 3D, 4D, SD, ..D,Dy = e,,ja’i—[ ’ . j]
with

a, =6, +...+0, )+, +...+6,),

by =(0,+...+0,,)-(0,, +...+6, ).

Using the same consideration as in g(x) = 0, from the boundary condition, it is

obtained that;
n-1 n—-1

det[ClPo + czpn{ D, ,+iky. f,D,,D,,D,..D;,SD, ..D,D, + O(hz)H =0.
j=0 Jj=0



As a consequence we have

0
n—1 9] ;i , .
(//(ﬂ,)=ei(9°+""+0"") —1(90+ A0p—1) +2th_06_x_7(etb —e —ibj _e—zaj —emj)+0(h2),
j=0e ’ —e
1.e.,
w(d) = 2sin(f, +....+86, 1)+21hz —(sinb; —sina;) + O(h?),
=] x 7 sin f
where
hq,(xj)

0
—0O0(x.,A)= .
o T [aa-g) -2 (A-q;)?

If A is an eigenvalue of the SLP (1.1) and (1.2), then
y(4)=0 1.11)

So the approximation A, to A is obtained solving the equation (1.11).

Performing one iteration of Newton’s method for y/(4,) the starting with £? , it is

obtained
kz)
i =i -YE) Ly G2y,
h ;_(kz) Wz( )
where
d
=—1 (A
v, dz"”()

Because the Sturm-Liouville Problem is regular, the algebraic and geometric
multiplicities of each eigenvalues are the same. Thus for each simple root &2, there
is a corresponding simple root A%,

To find the asymptotic expansion of the approximate eigenvalue, we expand the

Taylor series of A*) around % = 0, by ignoring the term iO(k) since it does not

effect the terms, which contain #°, 4%, 4*

Considering the real part of Taylor series, it is obtained that

/12/() —k2_ sin(Oo +..t+ 0 _1)

n-1

cos(fy +....+ 0,,_1)2 .3 0;



=0

tan[nz—1 arccos(l + — (q ;= k? ))]
1

AW =
h n-1

1

04 - q,) - K (K - q,)*

and
~ » -
ZZ,IkZ—qj
20 | g2 - =0
h ,,z_1 1
| Ak g
| n-1 n-1 n-1 3 n=1 3 ]
-3{ \/kz-q,] YT [——2 Z(kz—q,-)éw[Z\/kz-qj]
2 Jj=0 Jj=0 k qj Jj=0 j=0
+h 5
12 nz_l )
j=o,/k2—qj
+O(kh*).

Since g(x) is continuouson 0<x <7,

n-1 5 |
Z(:)\/k F

n-1 1 |<n

™M

Sanz —qmax » for fixed &.

are hold.

j=o,fk2—qj|

-

9 min

As a consequence, the coefficient term of h2 is of order O(k*), i.e.

n-1
ZZ,Ikz -9
k2 _ j—O

(k) —
Ah - U 1

jg%[kz—qj |

+O(R*k%) . (1.12)
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1.2. Error Analysis and Extrapolation

In this section, we analyze the behavior of convergence due to the asymptotic
expansion of the error for the eigenvalues Sturm-Liouville Problem.
We now that, for the regular Strum-Liouville Problem
-y'(x)=A(x), O<x<=7w

y(0)=0

y(#) =0,
the eigenvalues are

A’k = k 2 s

and the corresponding eigenfunctions are
Ye(x)=cpsin(hx), k=1.2..

The error of our numerical result is
E" =K% - —h- (—) k=1,.,n-1 (1.13)

which satisfies
E" =0(k*n*).
This clearly illustrates the rapid growth of E(™ as a function &. To get more accuracy

we use the Richardson Extrapolation method.
The asymptotic expansion of the error for the eigenvalues is obtained as

11kh2 2 1kh +LLk8h6— 2 ik’°h"+

E(ﬂ)
327 45 24 315 2° 141715 28

or simply

(n) _ 2j4217.2
E} Zazj——kzzj 2p2

where a,; is constant, which given later in this section.
If we denote A" [m] as eigenvalues after m extrapolations
AP]l=k*-EP,

lgcn) [0]= k2 _iazj %kZ_HZhZI’
j=



i
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where A% = 1%[0] is the approximate eigenvalue obtained from finite difference

form of (1.1) and (1.2).
According to algorithm of Richardson Extrapolation, corrected eigenvalues are

computed as follows:

m 4(2n) (n)
2] = 4™ 28M [m —1]- A7 [m - 1]

yO (1.14)

Theorem 1.1: (Kincaid & Cheney, 1996) The quantities A [m] defined in (1.14)

satisfy the following formula

AP [m)=k? + ZA

jom+l
J=m+1

k22 p2i (1.15)
Proof:
When m = 0, the equation (1.15) is

Aﬁn) [O]= k2 +2Aj,1 k2j+2 h2j .
Jj=

Thus we can let4;, = -a, . Now proceed by induction on m. We assume the

in2i
equation (1.15) is valid for some m-/, and on that basis we prove it for m. From

equations (1.14) and (1.15), we have

2j o
/1(">[m]— [4’”(/«2 + ZA m KT (g) J—(kz + D A K thH,
J=m

AP [m]=k* + iA m K2R (L)(fm—.—q, and

fom 4" -1\ 2%
m_4) o
Wm]=k2+3 4, (4—miJ—liJ—,k2”2h2’. (1.16)
= 4m -1 )2
Thus 4;,,,, should be defined by
4" -4/ 1
Ay =4, ( Yo )271 (1.17)
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Notice that 4,, ,,.,; = 0, and thus equation (1.15) can be written as

AP [m]= k> + ‘ZA i E2T2RY

J=m+1

Theorem 1.2: For a certain fixed integer &, the error E{[m] of the corrected

difference eigenvalues at m extrapolation step of Sturm-Liouville Problem (1.1) and
(1.2) with (1.5) satisfying the estimate

1 20m+2)p, 20m31)

E{[m]< 7 (1.18)

2

m*+Tm+2 m<4

where P(m)=4 .
m-+9m-5 m=5

Proof:

We analyze the coefficients A, of k**?>h*, j=m+1.. in (1.14) after m"
extrapolation. From (1.17), we can write 4;,,, in terms of 4,

4™ -47 1
Aj,m+l=Aj,m 4™ _1 EET
. 4147 1 4m -4
- “jlm=1 4m—1 -1 22] 4m_1 22_[

4-4/ 4"’—41’( 1 )"’
Pa-1 7 gy 2%

4t —47 | 1\
Ajam+1=Aj’1 1—[ 43_1 (EZ‘]

s=1

and we know that

1

4y =-a,; 2%

Substituting into the last equation, we get

11 m 45— 47
A"m 1 =‘_a2- n = [ 3 :I

S=
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and
ﬁ 4 -4 g (=17
s=1 4° -1
Thus
; 1 1 iG-1) _ i 1
Ayt = (1 a2 57 25557 2 =D ey, iy

After these arrangements, 4, gets the form

' 1
Aj i = (1) ay, 273G+

Defining the coefficients a,; by

1
g <3
a,; = const 1 »
- j=6
56(-1)-7"

where const =1 which is independent of j, we can write the equation (1.15) as in the

form
(n) 2 y 242725 ) 240D’
AP [m]= k+Z(1)’ j(m)k B35 :
J=m+l - j= 6
26G-D-T°
The error after m extrapolation (£ [m]) will be
1 m<a
1 4m° -
(n) 2(m+1)+2 7. 2(m+1) | 2
E} [m]S o (mA1)(m+2) h 1
Sem7s W23
or
E§ k2(m+2) J20m1)

m*+Tm+2 m<4

where P(m)=3 , .
m°+9m-5 m=5
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Now we can find eigenvalue number (ky4x), which has minimized error after
m extrapolations, or we can construct extrapolation number, which is needed to

minimize error for all eigenvalues, for given #.

Remark 1.1: For given n, for the regular SLP (1.1) and (1.2) with (1.5), If
EM[m]<1 for k=1,.., knax

then the maximum number of corrected eigenvalue is

1
2(m+1) 2(m+2)
k. = [z”’”’ (-"-j } , (1.19)
/3
where
2
m-+7Tm+2 m<4
P(m) = .
{mz +9m-5 m=25
Proof:
For given n, after m extrapolation, the error (1.18) will be
E"[m]<1
then
L ame2) p 20me1)
—Z—mk mre) peim <1
and
_1
2PM)  \2(m+2)
k< } 2m+1)

Since z_ h, it is obtained that
n

1

k < 2P(t)(_’_‘_)2(t+l) 22
- :
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So, we have the assertion

1
2(m+1) 2(m+2)
P n

m?>+Tm+2 m<4

where P(m)=q .
m°+9m-5 m25

Remark 1.2: For given n, for the regular SLP (1.1) and (1.2) with (1.5), if

EM[m <1 for k=1..(n-1),

min

then the number of extrapolations satisfy

1 27n? 2242 27a Y
Mo = —-lo +.[—4log2log(————=) +| log(———— 1.20a
min 10g4 g((n_l)zﬂ'z) \/ g g((n—1)47'[2) g((n_l)zﬂz) ( )

where P(m) = m? + Tm+2,

1 2°n? 275 n? 2n? )
~log( 1;[2”2)+\/—4log2log(m)+[log((—n—)) (1.20b)

m..
" log4 (n- n—l)zfr2

where P(m)=m? +9m—-5.

Proof:
For given n, we have the equation (1.18), and the worse error occurs at (n-/ )’h
eigenvalue. So choose k=(n-1) for equation (1.18), we get

1
2P(m)

(n _ 1)2(m+2) h2(m+1) <1.
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Substituting Z — h into the last inequality and after some calculations give,
n

2(m+1)
(n~ 1)2(m+2) < 2P(m)( n J .
T

Let’s take natural logarithms of above inequality, we have
2(m+2)log(n—~1) < P(m)log2+2(m+1) log(ﬁj . (1.21)
z

Since we constructed P(m) as a piecewise function, we investigate the roots of (1.21)

separately. If P(m) = m?* +7m+2 then the inequality (1.21) gets the form
7 2 2 2
m? log2 + mlog 2 5 (ﬁj + log 2 Z (2) 20. (1.22)
(n-)"\7 (n=-D"\7m

If P(m)=m? +9m—5 then

2 -5 2
m* log2 + mlog[(n 391)2 [%) J+ log((nz_ ) (%) ]2 0. (1.23)

Hence positive root of (1.22)

1 27n? 2252 2"n? ?
Moy = ——| —log(—=———) + . |- 4log 2 log(—=————) +| log(—="
n 10g4 g((n_l)zﬂ_z) g g((n—~1)4ﬂ'2) ( g((n_l)zﬂz ))

where P(m) = m? + 7m + 2 , and positive root of (1.23)

3

2°n? 275p? 2°n? 2
min — ~lo +./—4log2 log(—————— ) +| log(—————
Tog4 g((n_l)zﬂz) J g g((n_1)4ﬂ2) g((n_l)zﬂz)

where P(m)=m* +9m-5.
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Conclusion 1.1: For given n, to get the error estimates E\™ [m,;, |< #*" for all

k=1..(n-1) , for r € Z* of the corrected eigenvalues, the number of extrapolation

which is necessary and sufficient is

2
1 27 n2 22n2(l—r) 27 n2
o =——| —log(————) +,|—4log2 log(——————) +| log(———— 1.24a
Wi 10g4 g((n _1)2”2) \/ g g(( )4 2(1_,.)) g((n _1)27[2) ( )

where P(m) = m* + Tm +2,

1 29 2 95 ,20-7) 2952 2
L= -lo + . |—4log2 log(————————) +| log(————— 1.24b
M oin log4 g( 1)27[2 ) J g g(( )4 2(1-7) ) g((n _1)2 72'2 ) ( )

(n—

where P(m)=m? +9m-5.

Conclusion 1.2: Since ¢(x) is continuous on [0, 7],

Imin < (%) S Grpay 5
the asymptotic error formula (1.12) of the eigenvalues of SLP (1.1) and (1.2) when
q(x) # 0, satisfy the similar inequality

o)

zaz k2_1+2h2]

where a» ; is a constant depend on the maximum and minimum value of the function
q(x), and to get the error estimates as
EM[m i |<h*, forrez®,

the number of extrapolation is (1.24a) and (1.24b).

All of these conclusions are discussed and demonstrated by the numerical results

in the last chapter.
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CHAPTER TWO
COMPUTATION OF THE EIGENVALUES OF

STURM-LIOUVILLE PROBLEM WITH
t-PERIODIC BOUNDARY CONDITIONS AND
ASYMPTOTIC EXPANSION

2.1. Computation of the Eigenvalues of Sturm-Liouville Problem with #-

Periodic Boundary Conditions and Asymptotic Expansion

Consider the Sturm-Liouville Problem on [0,1] with the t-periodic boundary

conditions
- y"(xX)+g(x)y(x)=y(x), O<x<l (2.1)
y(1)=€"¥(0) 22)
y'@)=€"y'(0),
where ¢ € (0,27) - {z} and
gx)=q(x+1). (2.3)

As in the Chapter 1, the problem is converted to the system
Y'(x)=AY(x)+(q(x)-A)BY(x), 0O0<x<l1, (2.4)
Y(1) = e"Y(0).

Taking h=—1-, neN, define x; = jh, q; = q(x;), j =0,,..,n. By using the same
n

method and the similar consideration given in Chapter 1 we obtained
n-1 n-1 )
Z, =|[1Dpaj +itY, fiDpsDy2Dpogo Dy SD; .0\ Dy + O(R) |2, (2.5)
Jj=0 Jj=0
From boundary conditions (2.2) we have

Y, =¢"Y,.



Since Y,=PZ,,

P,Z, =e¢"PZ,

and from (2.3) (i.e. g, =4,)
Zn = eitZO N
Using (2.5) , we get
Jj=

By the same idea as in Chapter 1, the following must be

n-1 n—-1
det[]‘[ D, ;+ih). f;D,,D, ,D, ..D;,SD, ..D\D, + O(h*) - ei’I] =0.

=0 j=0
For the case g(x) =0, Vx , the determinant is
det[D” - e“I]: 0,
ie e —¢" =0,

where
6 = arccoin-;— (2 - hzlh )] .

Solving this, the approximate eigenvalue 4, is computes as

A0 =hi2sin2[§(z+2kn)], tef027), k=1,.,n-1

For the case g(x) # 0, as in the Chapter 1 we obtained the determinant
l//(lh) - (e—i(90+....+9n_1) _ eit Xei(90+....+9"_1) _ eit )+ O(Zh)
W(lh) = eit (eil + e—it) _ eit (e—i(90+....+9n_1) + ei(90+....+0n_l)) + O(ih)

w(4,) =e" cost —e" cos(y +....+ 6,_;) + O(ih)

1 n-1
[]‘[ D,.;+in) f;D,.D,,D, ;..D;,SD,,..D.D, + O(h*) - e"’I}Zo =0.
0 Jj=0

19

Ignoring O(i#) term, by Newton’s method taking the starting value as (¢ +2k7)

with one step, A is computed,

2
AP = (4 2km)? - LR ]
vt + 2k7)
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where
d
=—w(A
Vi dﬂ,v/( )
and
AP = (¢4 2ky? cost —cos(f, +. n:9 1)
sin(@p +...+6,_
( 0 1).’2062' J
- 1
n-1 h2
cost — cos(z arccos(1— > cs))
= (¢t + 2kr)? —% — 20 — ,
sm(Zarccos(l——c ))z—————
= / C _h2 ZJ
where

c; =((t+2kn)* —q;).

Using Taylor Expansion of /12") at h = 0 gives the asymptotic expansion of the

computed approximate eigenvalues

ﬂ,glk) =-hl_2 - 2(COStn——II) +
[E#)5)
j=0 j=0 i
[ n-1 1 n-l1 1
oA e i
+| (2 +2kn)? - —+ 2 -
n-1 1 "‘1—1__ n—l—l‘ n-1 -
1 n—1 1 n—1
(0 o)
+cost R ——-2 ||+ O(r*k*Y)
n-1 1 n-1 1 [n—l J
4 - —_—
Wi
58
s
<&
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Since g(x) is continuous on [0,1],

Grin < 9(X) < Gy

The first term of the asymptotic expansion of A" is bounded by

- . 1
1 2(cost —1) < 1 2(cost—1)
55 | et
c (n t+2kx) — g )
e \i Je+2kn) -, - |
<n’h? 2(cost 1) < const
(t + 2k”)2 ~ 9min
(t + 2k7z)2 = @ rrax

where nh =1 and const is a constant independent of h and k.

2.2. Error Analysis and Extrapolation
We now that, for the regular Strum-Liouville Problem when, g(x) =0

-y'x)=(x), 0<x<l
y(1) =" y(0)
Y =e"y'(0),
the eigenvalues are
A, =@+2kn), k=12,.

The error of our numerical result is
E" = (t+2kn)* —%sinz(—z—(t +2km)), k=1,.,n. (2.6)
This satisfies
EM =0(k*h?).
This clearly illustrates the rapid growth of E™ as a function k. To improve the

approximate eigenvalues we use Richardson Extrapolation method.
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The asymptotic expansion of the error for the eigenvalues is

11 2 1 1 1
EM =—— (t+2kn)*h? - = —(t+2kn)Sh* + ——(t + 2kn)*h® +.......
k 322( ) 4524( ) 31526( )
or simply
© 1 . .
n _ 2j+2 12
E{ _§j=1'a2j oyt + 26m)Th

where a,; is constant, which is defined in Chapter 1.

The error after m extrapolation (E,E")[m]) is constructed in chapter 1 (inequality

(1.18)). Of course & in (1.18) is replaced by (¢ + 2k7) .

Hence
n . 1 m+. n+
EM[m]< 7 (¢ + 2k7)*m) p2msd| (2.7)
2+ 2 m<4
where P(m)= 4 ) 7 .
m +9m-5 m=25

Remark 2.1: For given n, for the regular SLP (2.1) and (2.2), if
E®[m]<1 for k=1,.., kmax

then the maximum number of corrected eigenvalue is

1
k. = I:L(2P(m)nz(m+1))m _ t] ’
2r
where
m*+Tm+2 m<4
Pim)=< ", .
m-+9m-5 m=25
Proof:

Proof is similar to proof of Remark 1.1 in chapter 1.



Sincez € (0,27)— {7:}, we can rearrange the error (2.7) as

E[m]< -—z,,l(m) 27 + 2kr)> ™ g2,
or simply
E,En) [m]< 21,];’") (27[)2(m+2)(1 +k)2(m+2)h2(m+1) ,
and 27 < 2°
E;")[m]< 2P1(m) 26(m+2)(1+k)2(m+2)h2(m+l) )
Therefore
(n) 1 2(m+2) 7,2(m+1)
B )< ooy L+ 2B,
where
Z+m-10 <
Gm) = m2 m m 4.
m - +3m-17 m25

Remark_2.2: For given n, for the regular SLP (2.1) and (2.2), if
E®[m_, |<1 forall k=1..(n-1),
The number of extrapolation which is necessary and sufficient is

10_ 2
. =%[_1+\/1+41082 n ]’

i log2

where G(m) =m* +m—10,

17,2
mm____l_ _34 9_‘_410g2 n ,
2 log2
where G(m) =m* +3m—17.
Proof:

It is similar to the proof of Remark 1.2.
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2.8)
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Conclusion 2.1: For given n, to get the error estimates E,S”)[mm.n]s B*" for all

k=1..n-1) , for r€ Z* of the corrected eigenvalues of SLP (2.1) and (2.2), the

number of extrapolation which is necessary and sufficient is

10 2+2r
mm=%(_1+\/;+410g2 n J’

log2

where G(m)=m”> +m—10,

17 2+2r
m =%[—3+‘/9+4I°g2” J

mn log2

where G(m)=m* +3m—-17.

All computation results are given in Chapter 3.



To illustrate the Richardson Extrapolation based on finite difference method for
Sturm-Liouville Problems with homogeneous and t-periodic boundary conditions,

the following problem used in the papers (Andrew & Paine, 1985) is considered.

Example 3.1:

NUMERICAL RESULTS

CHAPTER THREE

= ¥"(x) + q(x)y(x) = Ay(x)
¥(0)=y(z)=0

where x €[0,7], g(x) e C'[0,7] .

Error estimates with 30 subintervals were calculated and are presented in Table 3.1

25

(3.1.1)
(3.1.2)

and Table 3.2, and the calculated eigenvalues are shown in Figure 3.1 and Figure 3.2.

Table 3.1 Error estimates for (3.1.1) and (3.1.2) with =30 for g(x) =0

el =& -2 | |-k
1]0,00001 | 8,34916x10®° | 1,85874x107*
2| 0,0146 | 5,33957x10° | 2,58549x107°
3 | 0,07377 | 6,07467x10° | 6,69691x10°
25| 284,678 17,5064 0,1412
26| 327,011 21,8785 0,19169
27| 373,17 27,0879 0,25709
28 | 423,229 33,2467 0,34093
29 | 477,243 40,4753 0,44739




Table 3.2 Error estimates for (3.1.1) and (3.1.2) with n=30 for g(x) =¢”

AR AR AR A N EANRY AR [P RAE
1 | 4,89155 0,00512 9,40362x107 | 1,53078 x10™°
2 | 10,0145 0,03072 1,71546x10° | 3,57413 x10°
3 | 15,9221 0,09724 4,78974x10° | 4,18342 x10*®
25| 347,032 267,625 17,2539 0,14696
26 | 355,534 | 305,805 21,5181 0,20088
27 | 362,064 347,167 26,5526 0,27296
28| 366,69 391,486 32,5168 0,36350
29 | 372,983 433,86 40,8161 0,39481
800 o
w
*r
B
.
800 | }
400 |
200 ¢+
— g3 ] ‘-F-. " N N N
10 15 20 25

Figure 3.1 (n=30, for g(x)=0)
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Figure 3.2 (n=30, for g(x)= €")

Table 3.3 Error estimates for (3.1.1) and (3.1.2) with n=100 for g(x) = e*

el | -] | k- 2] | | R]- 2B | Bl 44
1| 4,89621 | 4,6051x107 | 7,65411x10° | 2,71871x10™ | 4,6203x10™"
2 | 10,0424 | 0,00275 1,38391x107 | 2,71871x10™ | 1,68399x10™"
3 | 16,0105 |  0,00873 3,8152x107 | 2,04032x10"" | 2,03535x10™"!
96| 40434 47478 427,75 4,71557 0,00757
97| 4050,08 | 4907,78 453,068 5,11499 0,00829
98 | 4054,75 | 5071,18 479,565 5,54255 0,00908
99 | 4061,05 5232,5 508,572 5,91784 0,01125
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When we look at Table 3.1 we can see easily two extrapolations is enough to get
error less than 1. In Chapter 1 we conclude that the same extrapolation number,
which is needed for g(x) =0 is also valid for g(x) # 0. And in Table 3.2 we see that
the difference between eigenvalues after 2nd and 3rd extrapolations is nearly 0. It
means the 2nd extrapolation is very close to exact eigenvalues. Also from Table 3.3
we can say 3rd extrapolation is enough for n=100, g(x) =¢e". So in Figure 3.3 the

eigenvalues after 3rd and 4th extrapolations are so close that we cannot see the 3rd

extrapolation eigenvalues because of 4th extrapolation eigenvalues.
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Example 3.2:

= ¥"(x) +q(x)y(x) = y(x) (3.2.1)

y(1) =" y(0)
Y’ =e"y'(0)
where x € [0,1], ¢(x) e C'[0,1] and g(x) = g(x +1) and 1=2.

(3.2.2)

Error estimates with 50 subintervals were calculated and are presented in Table 3.4

and Table 3.5, and the calculated eigenvalues are shown in Figure 3.4 and Figure 3.5.

Table 3.4 Error estimates for (3.2.1) and (3.2.2) with n=50 for gq(x) =0

k Iﬂ’k — I/Ik — A [1] l/lk - X [2] |/lk - 2[3] |}"k — [4]
1]0,15677 | 3,58654x10° | 1,01385x10” | 3,37366 x10™" | 83125 x10°

2 | 1,49643 | 1,05936x10° | 1,00182x107 | 5,64171x10"" | 8,24059 x10™"°
3] 6,26252 | 9,09186x107 | 1,76658 x10° | 2,24986 x10™° | 5,88159 x10"'°
23| 115774 908,183 9,30043 0,01441 3,74687 x10°
24| 13365,1 1149,14 12,8735 0,02176 6,17044 x10°
47 88111,8 35531,1 1835,12 13,1613 0,01512
48 | 92057,4 39021,1 2124,89 15,9928 0,01923
49| 96004,9 42720,4 2451,1 19,3454 0,02433

Table 3.5 Error estimates for (3.2.1) and (3.2.2) with n=50 for g(x) = sin(27x)

el | -4 |kl 2] ||l 42 (8] || B]- a5 [4] | |2 - 2305
1| 68,4565 | 0,15674 3,58415x10° | 7,58504 x107° | 1,14314x10” | 1,14872x10™
2 | 210,683 | 1,45538 0,00105 1,00265 x107 | 2,2311x10™ | 4,98385x10”
3| 428,442 | 6,25344 0,00908 1,76653 x10° | 1,23026 x10” | 4,77405x10°
23| 9888,77 |  10699,2 898,883 9,28605 0,01440 3,76046 x10°
24 | 9981,65 12216 1136,26 12,852 0,02175 6,19175 x10°
47 281,231 | 52580,7 33696 1821,96 13,1462 0,01511
481 111,234 | 53036,3 36896,2 2108,5 15,9736 0,01922
49| 18,3452 | 532844 40265,4 2431,74 15,3216 0,02432
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