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ABSTRACT

Molecular and crystal structure of, “1,3-Bis(2,4-dimethoxyphenyl)imidazolidin-2-
ylidenechloro(1,5-cyclooctadiene)rhodium(l)”, (C,,H,,N,O,CIRh), has been
determined by single crystal X-ray diffraction method. Crystallographic data for
Cy,H,N,OCIRR: Triclinic, P-1, a=9.7642(12)4, b=11.1914(11)A,
c=13.0102(14)A, Z=2, D_=1.531(g/cm?), #(MoK,)=0.809mm™,
V=1277.59(7T1) A®, F = 607.9, R,=0.041, wR;=0.091, GOF=1.025, Ap,, =
-0.537 /A3, Ap,, = 0.576 e/A’, (A/G),, = 0.087. The crystal structure was solved
by Patterson method. Using full matrix least-square and difference-Fourier methods,
the 316 atomic parameters were refined to a final R= 0.041 for 2983 reflections with
1 >20'(I). The non-hydrogen atoms were refined anisotropically. The four atoms,
Rhl, Cl1, C20 and C21 form a plane; also the carbene ligand is nearly planar. The
angle between the carbene heterocycle and the coordination plane is 89.8(4)°.
Because of the trans influences of the chelating ligand the bond distances of the Rh-
C20 and Rh-C21 are shorter than the Rh-C24 and Rh-C25. Metal-C(carbene) bond
length is virtually the same as Metal-C(hydrocarbyl) bonds. The C(carbene)-N bond
lengths is significantly shorter than the other C-N bond lengths present in the
complex and is possibly indicative of greater partial double bond character in these
C(carbene)-N bonds due to partial electron donation by nitrogen to the carbene
carbon. CI-Rh-C,_, . angle 90.0(1)°. The imidazole heterocycle makes dihedral
angles of 76.8(3)° and 77.3(3)° with the methoxyphenyl ring planes, respectively. In
addition the dihedral angle between two methoxyphenyl ring planes is 29.3(2)°. And
the crystal structure is stabilized by two weak intermolecular hydrogen bond of the
C-H....Cl type.



OZET

“1,3-Bis(2,4-dimetoksifenil)imidazolidin-2-ylidenekloro(1,5-siklooktadien)
rodyum (1)”, (C,,H,,N,O,CIRh), molekiiliiniin molekiiler ve kristal yapisi tek kristal
x-igm  kirmim  ydntemiyle  ¢dziilmiigtiir. C,, H,,N,O,CIRh  molekiili icin
kristalografik  veriler: Triklinik, P-1, a=9.7642(12)4, b=11.1914(11)A,
c=13.0102(14)A, Z=2, D,=1.531(g/ cm®), 2( MoK )=0.809mm’",
V=1277.59(71) A?, F,,= 607.9, R;=0.041, wR,=0.091, GOF=1.025, Ap,,.=
-0.537 e/A®, Ap,, = 0.576 e/A’, (A/0),,, = 0.087. Kristal yap: Patterson ydntemi
ile ¢oziilmiigtlir. 316 atomik parametre, / >20'(I ) kosulunu saglayan 2983 yansima
igin tam matris en kiigiik kareler ve fark- Fourier yontemleri kullamlarak R=0.041
degerine kadar arttilmustir. Hidrojen atomlar: hari¢ tiim atomlar anizotropik olarak
artilmgtir. Rh1, Cl1, C20, C21 atomlarmm bir diizlem olusturdugu saptanmmgtir.
Karben ligandi da hemen hemen diizlemseldir. Karben heterosiklik ile koordinasyon
diizlemi arasmdaki aginn  89.8(4)° oldugu tespit edilmigtir. Selat yapici ligandin
trans etkilerinden dolayr Rh-C20 ve Rh-C21 atomlan arasindaki bag uzunluklari, Rh-
C24 ve Rh-C25 arasmdaki bag uzunluklarindan kisadir. Yapidaki Metal-C(karben)
bag uzunlugu, Metal-C(bidrokarbil) bag uzunluklari ile hemen hemen aymdir.
Karben karbonu ile azot arasindaki bag uzunluklar1 kompleksdeki oteki C-N bag
uzunluklarmdan kisadir. Ciinkii donor N atomlarindan karben karbonuna kismi
elektron akigi, bu baglarm nispeten ¢ift bap karakteri gostermesini saglar. Cl-Rh-
C.oopene atomlant arasmdaki ag1  90.0(1)°. Imidazol heterosikligin, metoksifenil halka
diizlemleri ile yaptipn  dihedral ag1 sirasiyla 76.8(3)° ve 77.3(3)°. Ayrica iki
metoksifenil halka arasmndaki dihedral a¢1 29.3(2)°. Ve kristal yap1 molekiiller arasi
C-H ...Cl tipi zayif iki hidrojen bag: ile kararh durumdadr.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction
In this research, the crystal structure of  “1,3-Bis(2,4-
dimethoxyphenyl)imidazolidin-2-yli_denechloro(l,S-cyclooctadiene)rhodium(l)”,
(C,H,N,OCIRR), which is functionalized N-heterocyclic carbenes (NHCs)
complex, is determined by single crystal X-ray diffraction technique. The chemical
diagram of the title compound is given in Figure 1.1.

INY
= 5\vo L cn/,g -
—/ /] =

Figure 1.1 The chemical diagram of the title compound.



NHCs based on the imidazol(in)ium ring system, 1 and 2, respectively, have
proven to be versatile and important class of ligands both in organometallic
chemistry and homogeneous catalysis; they tend to coordinate very strongly to the
metal centers (Weskamp et al., 2000; Bourissou et al., 2000; Herrmann, 2002;
Lappert, 1988).

Ly L L ;|
M) @ ),

Figure 1.2 (1):imidazolin-2-ylidene, (2):imidazolidin-2-ylidene,
(2), :Dimerized form of (2)

The dimerized form (2), of the (2) have reactivity characteristic of nucleophilic
carbenes (Lappert, 1988). Some typical procedures employed to prepare complexes
of saturated NHC’s with linear or cyclic groups are presented in Eqn. 1, 2.
Deprotonation of imidazolinium salts (3, Eqn. 1) and cleavage of C=C bond of the
alkene (4, Eqn. 2) [Weskamp et al., 2000; Bourissou et al., 2000; Herrmann, 2002]

occupy a prominent place.

R LMY N
N
_N«§>—H:| x Lan—-<::|
R "HY R
3) C))
LM
( 2), —_— LM
(5)

Figure 1.3 The general synthesis method of saturated carbene-metal complexes.



N-heterocyclic carbene (NHCs) complexes of late transition metals have been the
focus of increasing interest due to the unique electronic properties of the carbene
ligands (Herrmann, 2002; Herrmann & Kdocher, 1997; Huang et al., 1999; Arduengo
et al., 1992). The donation of electron density by the nitrogen substituents on the
carbene makes the carbene carbon nucleophilic and compensates for the electron
flow from the carbon to the metal. Donation from the nitrogens is such that the
carbene carbon may actually become a partial n-donor (Herrmann (b) et al., 1995;
Frohlich et al., 1997). Heterocyclic carbenes are thus pure donor ligands. They have
similarities to the tertiary phosphines but appear to be stronger coordinating ligands
which undergo little or no dissociation from the metal in solution (Lappert, 1975).

After the Herrmann, who first showed NHCs being used as ligands in active
catalysts, numerous literatures, some of which are (Herrmann (b) et al., 1997; Green
et al., 1998; Cetinkaya et al., 1997; McGuinness et al., 1998; Herrmann et al., 1998;
Danopoulos et al., 2002; Weskamp et al., 1999; Vazquez-Serrano et al., 2002), have
been published on the NHCs metal complexes employed as homogeneous catalysis.

Generally, in these reports, wide variety functional groups on the N-atoms of
NHC:s ligands have been added to improve catalytic properties of the complexes with
many transition elements.

NHCs have shown promise as replacements for the commonly used, air sensitive
phosphine-based class of ligands.

NHCs and phophine ligands have also been combined in some metal complexes.
This combination results in improvement of the catalytic properties and stability of
the compounds under the reaction condition (McGuinness et al., 1998; Vazquez-
Serrano et al., 2002; Weskamp et al., 1999; Herrmann (b) et al., 1997).

Palladium and rhodium c‘carbene’ complexes show an excellent catalyst
performance in Heck olefinations, hydroformylation, hydrogenation, and
isomerization (Herrmann (a) et al., 1995; Herrmann (b) et al., 1995; Herrmann (b) et



al., 1996; Herrmann (c) et al., 1996). The metal-carbon bond of the N-heterocyclic
carbene ligands is very robust so that dissociation from these metal centers (Pd, Rh)
is not observed, even at elevated temperatures (Herrmann (a) et al., 1996).

In our study, X-ray datas for the crystal structure are collected with Enraf Nonius
CAD-4 diffractometer, which is at X-ray Laboratory, Department of Physics
Engineering, Faculty of Engineering, Hacettepe University. After this, the collected
data are solved by Patterson methods with SHELXS-86 (Sheldrick, 1990)
program and the atomic parameters are refined by least squares and difference
Fourier method with SHELXL-97 (Sheldrick, 1998) program at Department of
Physics, Faculty of Arts & Sciences, Dokuz Eyliil University. In different steps of
the study for geometrical calculations and molecular graphics; WINGX (Farrugia,
1999), ORTEP-1II (Farrugia, 1997), PLUTON (Spek, 1990), PLATON (Spek,
1990) package programs were used. Also the chemical diagrams were formed by
CHEMWIN program.



CHAPTER TWO
X-RAYS AND X-RAY DIFFRACTION DATA

2.1 X-rays

X-rays lie in the electromagnetic spectrum between ultraviolet light and gamma
radiation and have an approximate range of wavelengths of 0.1-100A. They are
usually produced by rapidly decelerating fast-moving electrons and converting their
energy of motion into a quantum of radiation. The wavelengths produced will depend
on the energy of the electrons; we shall be concerned with X-rays having a
wavelength of about 1A. X-rays are also emitted by certain radioactive isotopes, for
example, **Fe. Although such sources are convenient for testing and calibration,
they have not been used for diffraction purposes.

To generate X-rays, electrons are accelerated by an electric field and directed
against a metal target, which slows them rapidly by multiple collisions. Under the
usual conditions most of the electrons are not brought to a full stop by a single
collision, and a continuum of radiation is formed (Figure 2.1). The minimum
wavelength of this white radiation is determined by the accelerating voltage and can
be calculated from

At = ___121/’398 @.1)

ace

The greatest intensity occurs at a somewhat longer wavelength. As the voltage is
increased, not only are the cutoff and peak intensity moved to shorter, more



penetrating wavelengths, but also the total intensity increases even though the

electron current remains the same (Stout & Jensen, 1989).

I (counts/zec)
dh
400- k) <)
)
200+ 19 k¥
1004 /N
. ot =S
05 10 20 A (angstrom)

Figure 2.1 Continuous X-ray spectra as a function of accelerating voltage.

While the distribution of intensity in the white radiation depends primarily on the
accelerating voltage and only to a small extent on the nature of the target material, X-
ray spectra show in addition a number of sharp spikes of high intensity whose
positions change from one material to another (Figure 2.2). These peaks are the
characteristic lines for the element of which the target is made. When the electrons
bombarding the target reach certain critical energies (threshold potentials) they are
capable of knocking electrons out of their atomic orbitals. In particular, at energies
of about 10000ev (for elements whit atomic number ~ 30) they can remove
electrons from the innermost (K) shell. The vacancy in the K shell is then filled by
the descent of an electron from the next higher shell (L) or the one above that (M).
The decrease in potential energy in going from the higher level to the lower appears
as radiation, and as the energies of the shells are well defined, each transition gives a
nearly monochromatic line. The principal peaks are

Ko, Kz LK
Km,Kﬁz M-K



Mo

05 10 15  Cngptrom)
Figure 2.2 X-ray spectra for Cu and Mo target showing the characteristic lines.

Because the difference in energy between L and K is less than that between M
and K, X, is always at a longer wavelength than X,. The lines are close doublets

because transitions can occur from two possible electronic configurations, which

differ slightly in energy. K, is twice as intense as K, and about three to six times

asstrong as K, . K, is usually so weak that it is ignored.

As the atomic number (Z) of the target element increases, the characteristic lines
shift to shorter wavelengths, and one can, in principle, select a target to give almost
any desired value for the K, line. In practice, however, one is limited to materials
that are conductive, solid, dense, and high-melting, that is, to metals. Fortunately, the
transition elements of the first and second long periods (Z=21-30 and 39-48) meet
these requirements and have characteristic radiation in the region that is most useful
for crystal structure analysis.

2.2 X-ray Diffraction

The diffraction of X-rays by crystals was discovered by Max von Laue in 1912,
and the sequence of events that led to the discovery is one of the most fascinating
chapters in the history of science. Although X-rays had been discovered in 1895 by

Roentgen, their nature was not known. During the years following their discovery, a



number of determined efforts were made to prove them particles or waves. It was
not, in fact, until diffraction by crystals was observed that their wave character was
proved.

Following the experimental observation of X-ray diffraction early in 1912, von
Laue showed that the phenomenon could be described in terms of diffraction from a
three-dimensional grating. In the same year, however, while engaged in experimental
studies, W. L. Bragg noticed the similarity of diffraction to ordinary reflection and
deduced a simple equation treating diffraction as “reflection” from planes in the
lattice. In order to derive the equation, we consider an X-ray beam incident on a pair
of parallel planes with interplanar spacing d .

e B, b

Figure 2.3 Derivation of Bragg’s formula

As shown in Figure 2.3, an incident X-ray makes an angle 8 with the crystal
plane. If this crystal plane is a mirror plane, it is easy to show that the path difference
between rayl and ray2, AC+CD, is equal to 2dsin@. When it is an integral
multiple n of the wavelength, we have

2dsinf=nl n=l,2,. 2.2)



where d is the lattice spacing, A is the incident X-ray wavelength and @ is the
incident and reflected angle. The X-rays reflected in the direction 8 will have a
maximum in their diffraction intensity. Eqn. (2.2) is called the Bragg Law, When a
beam of X-rays strikes a crystal, it must satisfy the Bragg Law for its reflected rays
to be intensified by diffraction. From this equation we know that the wavelength
must be smaller than 2d, and, if either 4 or d is known, the other can be calculated
after measuring @ in a diffraction experiment (Yang & Hamilton, 1996).

2.3 Measure Methods of Diffraction Intensities

There are three well-known methods for measurement of diffraction intensities. In
first of these, both crystal and detector are not moved. While crystal is constant at the

reflection position, detector is constant at the 2@ position and intensity measured.

In the “w -scan” mode, the detector is held at the 26 angle of the actual reflection
and the crystal rotated on the w -axis of the diffractometer.

In the “w/20 -scan” mode, both crystal and detector are moved. The crystal is

rotated by Aw, while the detector is rotated in the 26 -circle by an angular velocity,
which is twice of the crystal rotation.

The principles of “w-scan” and “ w/20 -scan” methods are shown in Figure 2.4(a)

and 2.4(b), respectively.
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detector

@ ®)
Figure 2.4 Diffractometer scan types. (a) w-scan (b) w/26 -scan

In this study, the data were collected with an Enraf-Nonius CAD-4
diffractometer. A single crystal diffractometer consist of an X-ray source, an X-ray
detector, a goniometer that orients the crystal so that a chosen X-ray diffracted beam
can be received by the detector, and a computer that controls (Enraf-Nonius, 1993)
the goniometer and detector movements and performs the mathematical operations
required to position the crystal and the detector in the desired orientations
(Giacovazzo, 1998, p. 273).

2.4 Scattering of X-rays by a Crystal

When X rays are diffracted by a crystal, the intensity of scattering at any angle
can be calculated by considering the combination of the waves scattered from
different atoms to give various degrees of constructive and destructive interference.
The waves are represented as vectors with real and imaginary components. We
consider that the X-rays diffracted by structure with N atoms. The resultant of N

waves is,

F=fie" + fie 4ot fie” 4ot fre™ 23)
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- N
F=Y fe" Q4

J=

On the vector representation of N waves in Figure 2.5; the resultant F is given
by

F =|Fle (2.5)

Real';:is

Figure 2.5 Vector Representations of N Waves

The amplitude |F | is given by
|F|* = FF* (2.6)

where F° is the complex conjugate of F

F* =|Fle™ @.7)
By analogy we can write,
|F=(4* + B?)* 2.8)
where
N N
A=Y f;cos¢; and B=) f,sing, 2.9

= =
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A and B are, respectively, the real and imaginary components of F, and the
phase angle ¢ is given by

tan ¢ =§ (2.10)

In unit cell if we consider a structure, which have fractional coordinates x,,y,,z;

(=1, 2,..., N), the resultant of the path difference of the waves, which are scattered
by j.th atom, is as follows

8, =Mhx, +hy, +1z,) @.11)

The phase difference can be written as

2z
q>j=(7)5j or @, =2zl +hky, +Iz,) 2.12)
2.5 Crystal Structure Factor

In Eqn. (2.3), F is called crystal structure factor. The structure factor is the
resultant of N waves scattered in the direction of the reflection 4kl by the N atoms

in the unit cell.

If we add Eqn. (2.12) into Eqn. (2.4); we can write

N
Fy =Y f expPrillx, +ky, +1z, ) (2.13)

=]

for crystal structure factor.

In this equation, f; is called the atomic scattering factors. If one assumes

spherical atoms, the scattering power of each atom is a function only of the atom
type and (sin@)/A. It is independent of the position of the atom in the cell. The

scattering power of a given atom for a given reflection is known as its scattering
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factor ( f;) and is expressed in terms of the scattering power of an equivalent number

of electrons located at the position of the atomic nucleus (Stout & Jensen, 1989,
p.188).

The variation of the f; with (sing)/2 is shown in Figure 2.6.

f, exp(-B,, sin’ 6/ 1*)

sin6/4,

Figure 2.6 Atomic scattering factors: (a) stationary atom, (b) atom corrected
for thermal vibration.

2.6 Fourier Synthesis and Electron Density

The electron distribution around the atoms is presented electron density function.
In crystal, atoms have three-dimensional periodic order. Because of this, the number
of electrons per unit volume or electron density at x, y, z point in crystal, can be

shown with three dimensional Fourier series

(%, ,7) =?1/-h JiF(hkl)exp[— Qi + ky +17)] 2.14)
K J=—c0
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In this equation, V is volume of unit cell, F(hkl) is structure factor. From (2.5),
®(hkl) phases angle of a crystal structure factor;

_ B(Hk])
O(hkd) —arctan[———————A(hkl)} (2.15)

can be written. Fridel law proved that diffraction patterns have a center of symmetry,
F(hkl) = F(hkl) or @ (hkl) = ~D (hkl ) 2.16)

and electron density function can be written as

p(x,y,2) = % i F(hid)expil2n(hx + ky + Iz) — id(hkl)] @17

hk j=—o

If we write this equation as trigonometric function, the electron density as follows

+0

px,y,2) = "117 > |F(nkd)| cos2re (e + ky + Iz) — ()] (2.18)

hkl=—0

As we can see at top equation, if we knew |F(hkl)| and ®(hk) we could

compute p for all values of x, y, z and plot the values obtained to give a three-
dimensional electron density map. Then, assuming atoms to be at the centers of
peaks, we would know the structure. But the experimental measured diffraction
intensities give us only amplitudes of crystal structure factors. So we need the
phases, ®(hkl), for three dimensional electron density map.

In this study, Patterson method has been used in order to derive the phases.
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2.7 Data Reduction

Intensity data constitute the raw material from which crystal structures are
derived. In most cases they represent all the information that will be obtained from
physical measurements on the crystal, and the subsequent development of a structure
will depend on the skillful extraction of the information contained within the
intensities. It is the preliminary manipulation of these intensities; their conversion to
a corrected, more generally usable form, which is referred to as data reduction; with
which we shall deal in this chapter.

Structure factor is related to the experimentally observed intensities

I(hkd) | F(hid)|” (2.19)

It is need to add some corrections on this proportional m order to transform this
ratio. Exact ratio shown that;

I(hkl) = K.L.pT.A.E|F (hid)[* (2.20)
K: Scale factor
L: Lorentz factor
p: Polarization factor
T: Debye-Waller Temperature factor
A: Absorption factor
E: Extinction factor

2.7.1 Lorentz Correction

We have seen that diffraction arises whenever reciprocal lattice nodes, that
always have a non-negligible volume, cross the sphere of reflection. If a node is in
diffracting position for a longer time, the intensity of the corresponding reflection
will be proportionally higher. This factor would not be important if the method used
to record the integrated intensities ensured that every reciprocal lattice node were in a
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diffracting position for exactly the same time, as it would effect every reflection in
the same way and in the end it would simply scale all the intensities by the same
factor. This, however, is not the case. Depending on the method used to record the
reflection intensity and on the position of the reciprocal lattice node, the times
required for different nodes to cross the Ewald sphere are different. The Lorentz
correction simply takes this factor into account.

The time a node is in diffracting position is dependent on two factors. The
position of the node and the velocity with which it sweeps through the sphere of
reflection. We will derive the form of the Lorentz factor in a very simple case and
then show the form it takes in a more complicated situation (Giacovazzo, et al.,
1998).

Figure 2.7 Ewald sphere

Figure 2.7 shows the Ewald sphere for a diffraction experiment in which the
crystal is rotated about an axis which is normal to the plane defined by the incident
and the diffracted beams. This is for example the case of a zero-level rotation or
Weissenberg photograph or of the equatorial reflections measured with a
diffractometer.
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The crystal, and therefore the reciprocal lattice, is assumed to be rotated at a
constant angular velocity ®; if V), is the linear velocity component of the reciprocal
lattice node along the radius of the sphere of reflection, the Lorentz factor can be
defined as follows;

_w

V.2
Which is indeed proportional to the time during which diffraction takes place for a
given reciprocal lattice node.

L

(2.21)

The linear velocity of the point P is

w (2.22)
and its component along the radius of the Ewald sphere

V, =|r*|wcosd (2.23)
" Since @ is the angle formed by the linear velocity V and the radius of the sphere of
reflection passing through the point P as shown in Figure 2.7. Substituting | r* | in
terms of Bragg’s law

r =-617=23in0//1 (2.24)

V. =(wlA)2sinBcosd 2.25)
And

L = (sin20)” 2.26)

Which is the simplest possible form that can be taken by the Lorentz factor.
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2.7.2 Polarization Correction

The polarization correction depends on the state of polarization of the incident X-
ray beam and on the scattering angle of the diffracted beam. When a totally non-
polarized beam is diffracted by a crystal, the diffracted intensity is affected by a
factor, called the polarization factor, which in this simple case was shown to be equal
to

p= —;(1 +cos? 20) (227

where @ is the Bragg angle of the reflection considered and the diffracting crystal
was tacitly assumed to be ideally mosaic. This simple expression for the polarization
correction can be applied whenever the incident X-rays are not polarized, that is
when the radiation is produced by a conventional source and monochromatized using
an appropriate filter,

2.7.3 Absorption Factor

The intensity of the diffracted X-rays is thus reduced, with respect to what it
would be without absorption by the factor

IL = exp(—x) (2.28)

0

Which is valid for every point in the crystal. Here x is the total path length and p
is the linear absorption coefficient, in this case, of the crystal.

Eqn. (2.28) can be used to calculate a very rough estimate of the optimum crystal

size for a given compound of linear absorption coefficient p.

The linear absorption coefficient for the crystal can be calculated from the mass
absorption coefficients of the atoms present in the unit cell. No structural knowledge
is required, only the values of the mass absorption coefficients of the elements which
can be found in the international tables for X-ray crystallography. From the values of
i for a given wavelength, p can be calculated by the following equation;



H=pY gi'n
i
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(2.29)

where g; is the mass fraction of element i present in the unit cell, pln is its mass
absorption coefficient, and p is the crystal density. Recall that 'y, is a function of the
atomic number of the element and of the wavelength of the radiation used. It is
smaller for lower atomic numbers and for shorter wavelengths. This explains why
absorption corrections become more important for heavy-element crystals and for
radiation of longer wavelengths. Sometimes all it takes is a change from copper to
molybdenum radiation to sufficiently reduce the absorption problem in a given
crystal structure determination. In any case it is always instructive to calculate the
value of u for the crystal being examined in order to get an indication of the severity
of the absorption problem (Giacovazzo et al., 1998, pp. 304).

Table 2.1 Atomic mass and mass absorption coefficients for C,,H,,N,O,CIRh.

Mass
Number Atomic Total Percent in || absorption
Atom of Atoms mass Mass compound |, coefficient
(akb) | (akb) (MoK,) |
C 27 12.01 324.27 55.1 0.70
H 34 1.01 34.34 5.8 0.37
N 2 14.01 28.02 4.3 1.10
0 4 16.00 64.00 10.9 1.50
Cl 1 35.45 35.45 6.0 11.62
Rh 1 102.90 102.90 175 253

i

> m =588.98akb, p=153g/cm’ , p=p) g u'n= 0880 mm”
i

The linear absorption coefficient is found 4 = 0.880 mm™ for our crystal.
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2.7.4 Debye-Waller Temperature Factor Correctien

Thermal motion also has an effect on the X-ray intensities. The normal scattering
factor curves are calculated on the basis of the electron distribution in a stationary
atom, but in fact the atoms in crystals are always vibrating about their rest points.
The magnitude of the vibration depends on the temperature, the mass of the atom,
and the firmness with which it is held in place by covalent bonds or other forces. In
general, the higher the temperature, the greater the vibration. The effect of such
thermal motion is to spread the electron cloud over a larger volume and thus to cause
the scattering power of the real atom to fall off more rapidly than that of the ideal,
stationary model. It has been shown both theoretically and practically that the change
in scattering power can be given by the expression (Stout & Jensen, 1989)

22
exp(——B 5“;2 a) (2.30)

where B is related to the mean-square amplitude (172) of atomic vibration by

B=87u’ 2.31)
Thus the proper scattering factor for a real atom is not simply £, but rather the

combined expression

f=7, exp(—BSiI; 9] (2.32)

where f, is scattering amplitude at 0 K and f is scattering factor at laboratory

temperature. After the Lorentz-polarization (L - p) correction is done, an average

observed intensity becomes

L = (|Fus 2>m 2.33)

For a unit cell that contains N atoms, it can be shown fairly easily that the theoretical
average intensity is given by

L,=>1’ (2.34)
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H we unite (2.32) and (2.34),

— X sin? @
I, =Z f2 exp(—B 7 ) (2.35)

i=1

here B is constant for all atoms and can be calculated. Than, we can write

o ) N
I, = exp(— B S";z 9)2 12 (2.36)
i=]
Now if
1,=CI, 2.37)
— 29\ N
T, = Cexp(—- B S‘} 0)2 12 (2.38)
i=1

and taking the natural logarithm of both sides,

Ly

3 12

i=1

In

(2.39)

sin’ @
=mC—PB 2]

Thus if the left side of (2.39) is evaluated for each of the shells of constant £, and
the values are plotted against (sin”@)/A*, the result should be a straight line in
which the extrapolated intercept at (sin?#)/1%= 0 is In C and the slope is —2B. B
can thus be obtained directly from the slope, and C is related to the scale constant &

needed to convert |F,| to |F,,| by

k= }{/‘c’ (2.40)
where

|Fope] = K| F| (2.41)
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In Lot
2
3 S
nC
slope={-2B)
. sin 18
» —
Figure 2.8 Wilson plot.

2.7.5 Extinction Correction

E is the extinction coefficient. It depends on the mosaic structure of the crystal
and has two components. The most important one, called secondary extinction,
takes into account the fact that the lattice planes first encountered by the primary
beam will reflect a significant fraction of the primary intensity so that deeper planes
receive less primary radiation. That causes a weakening of the diffracted intensity,
mainly observable for high-intensity reflections at low (sin@)/4 values in
sufficiently perfect crystals. If the mosaic blocks are misoriented (as they usually are)
then they do not diffract together and shielding of deeper planes is consequently
reduced. Secondary extinction is equivalent to an increase of the linear absorption
coefficient: thus it is negligible for sufficiently small crystals. Reflections affected by
secondary extinction can be recognized in the final stages of the crystal structure

refinement when for some high-intensity reflection |F,,,| < |F,,| (Giacovazzo et al.,

1998).
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Figure 2.9 Multiple reflections from a family of lattice planes.

The second component of the extinction coefficient, called primary extinction,
takes into account the loss of intensity due to dynamic effects inside every single
block. This phenomenon can be understood intuitively by means of Figure 2.9. At
the Bragg angle every incident wave can suffer multiple reflections from different
lattice planes: after an odd number of reflections the direction will be the same as the
diffracted beam: after an even number of reflections the direction will be the same as
the primary beam. Each scattering causes a phase lag of 4/4. Thus, the unscattered
radiation having direction S, in Figure 2.9 is joined by doubly scattered radiation
(with much smaller intensity) with a phase lag of = : consequently destructive

interference will result. The same consideration holds for waves propagating along
the direction of the diffracted beam: the result is that both primary and diffracted
beams are weakened because of dynamical effects.

2.7.6 Anomalous Scattering Factor

It is well known that electrons are bound to the nucleus by forces which depend
on the atomic field strength and on the quantum state of the electron. Therefore they
have to be considered as oscillators with natural frequencies. If the frequency of the
primary beam is near to some of these natural frequencies resonance will take place.
The scattering under these conditions is called anomalous and can be analytically
expressed by substitution of the atomic scattering factor f, defined earlier by a

complex quantity

=l +if = f +if 2.42)
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Af and f" are called the real and imaginary dispersion corrections.

It is clear that for a noncentrosymmetric structure Fridel’s law does not hold and
that O(/kl) = —D(hkl ). If the scattering factors are not handled properly, dispersion
introduces error. This can be minimized, however, by an appropriate choice of

radiation (Stout & Jensen, 1989).
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CHAPTER THREE
SOLUTION OF CRYSTAL STRUCTURES

3.1 Phase Problem

If we remember Eqn. (2.18), the electron density at a point X, y, z in a unit cell of

volume V is

p(x,y,2) = -;- i]F(hkl)] cos[2z(hx + ky + Iz) — D(hkl)) 3.1

hk l=—0

Therefore if we knew |F(hkl)| and ®(kk]) we could compute p for all values of x,

¥, z and plot the values obtained to give a three-dimensional electron density map.
Then, assuming atoms to be at the centers of peaks, we would know the entire
structure. However, we can usually obtain only the structure factor amplitudes

]F(hkl )' and not the phase angles, ®, directly from experimental measurements. We

must usually derive ®, either from values of A and B computed from structures we
have guessed or by purely analytical methods. This is the phase problem.

Approximations to electron density maps can be calculated with experimentally
observed values of ]F (hkl)l and values of @ derived from a trial structure. If the

trial structure is not too grossly in error, the map will be a reasonable representation

of the correct electron density map.
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3.2 Direct Methods

With the term direct methods are the methods which try to derive the phases of a
set of structure factors directly from the magnitudes through mathematical
relationships. These magnitudes are calculated readily from the observed intensities,
knowledge of the size and symmetry of the unit-cell, and the chemical composition
of the substance being studied. In the case of X-ray diffraction, it is possible to relate
the phase and the amplitude of a wave, two important properties of the electron
density function should be considered:

1. Itis everywhere positive, p(¥) 20 (positivity);

2. It is composed of discrete atoms (atomicity).

Historically the first mathematical relationships capable of giving phase
information were obtained, in the form of inequalities, by Harker and Kasper and by
Gillis in the late 1940s and early 1950s. Some of these inequalities provided
unambiguous phase relationships for the centrosymmetric decaborane structure, with
Harker and Kasper solved with their aid, but the Harker-Kasper approach had no
great impact initially, because it was limited in practice to rather simple
centrosymmetric structures. Gillis made the important point that, even when the
inequalities could not define the sign of a particular structure factor, they might
imply a sign if the inequality was nearly satisfied. The next important advance was
by Karle and Hauptman in 1950, dealing again with inequalities but in a more
general and eventually fruitful way. They showed that inequalities restrict the range
of phase angles for a non-centrosymmetric structure (Lecture notes, 2001).

In 1953 Sayre considered that for a structure formed by well resolved and almost
equal atoms, the two functions p(7) and p>(F) are quite similar and show maxima
at the same positions. A one-dimensional example is illustrated in Figure 3.1.
Cochran, and independently Zachariasen, arrived at relations among the signs of
structure factors of three related reflections, relations that were shown to have a high
probability of being valid. The relation among the indices of any three reflections

was that the indices of one of them must be expressible as the sum of the indices of
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the other two. The relation was called a triple-product sign relationship, or T7PSR,
because if we let H represent a reflection (4, & I), K represent (7', &', [’), and s be
“the sign of the structure factor of”, then the product of the signs of H, K and (H+K)
is very likely to be positive:

s(H).s(K).s(H + K) =~ + (3.2

o(x)

#(x) x

AN A

Figure 3.1 Comparison between p(x) and p?(x) for a one-dimensional structure

with equal and well resolved atoms.

It turns out that, for most structures, one needs good approximations to the phases
of only about 10 percent of the observed reflections to get a recognizable picture of
the structure from an “E-map”, which is a three-dimensional Fourier synthesis
calculated with E(hkl) rather than F(hkl). Because the method is successful even

when there are some errors in the initial phases, it is not necessary in applying direct
methods that all the assumptions made in deriving the equations used be fulfilled
exactly. The errors in phases are reduced as the image of the molecule is improved
through successive E-maps and F-maps, and as refinement proceeds by least-squares
or other methods are used.
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Many people contributed to the development of direct methods, but the key
significance of the contributions of Herbert Hauptman and Jerome Karle was
recognized by the award to them of the Nobel Prize for Chemistry in 1985.

3.3 Patterson Methods

3.3.1 Introduction to the Patterson Methods
P, = —;—Z[Fw |2 cos 2z (hx + ky + Iz), summed over all reflections (3.3)

If the crystallographic Fourier calculation is made using F? values as the
coefficients it will produce a three dimensional map with peaks which represent not
atoms but inter-atomic vectors. The value of such a map for deducing atoms
positions to initiate a trial structure was first described by A. L. Patterson in 1935,
ergo terms such as “Patterson” maps, “Patterson” summations, and “Patterson”
methods. Until the development of the direct method the Patterson method was
dominant approach for starting structures, and is still used for organometallic
complexes and macromolecular structures (Lecture Notes, 2001).

The salient points about Patterson maps are:

a) Each peak on the Patterson map represents a vector from the origin to that
peak, and this vector corresponds to a vector between two atoms.

b) For n total atoms in the cell there are n” peaks on the Patterson map. Since n
of these are at the origin (see below) there are (n*-n) non-origin vectors.

¢) Peak heights are approximately proportional to the product of the atomic
numbers of the two atoms that produce that peak. Thus, in a structure
containing Ru and C, the Ru-Ru, Ru-C, and C-C vectors have relative peak
heights of roughly.

d) Patterson peak widths are greater than those of electron density maps.

e) The always-large origin peak corresponds to the sum of vectors between each
atom and itself.
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f) The Patterson has the same unit cell and the same translational symmetry
(centering) as the crystal.

L

&

Figure 3.2 The figures up illustrate the relationship between the atoms in a cell
(left figure) and the peaks on a Patterson map (right figure).

3.3.2 Patterson Symmetries

Before illustrating the methods for interpreting the Patterson function, let us first
analyse how the symmetry of the crystal is reflected into the vector map. The
following considerations apply:

1. All Patterson functions are centrosymmetric, regardless of the space group of
the atomic distribution from which it is derived.

2. Their lattice type (P, C, F, etc.) is the lattice type of the original space group.

3. Their space group is derived from the original space group by replacing all
translational symmetry elements (screws, glides) by the corresponding
nontranslational elements (axes, mirrors) and by adding a center of symmetry
if it is not already present (Stout & Jensen, 1989, p. 284).
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The following table gives the Patterson symmetries for the primitive space groups.

Table 3.1 Patterson symmetries for the primitive space groups

Space Groups Space Group of the Vector Map
Triclinic P-1
Monoclinic P2/m
Orthorhombic Pmmm
Tetragonal P4/m
Tetragonal P4/mmm
Trigonal P-3
Trigonal P-3ml
Hexagonal P 6/m
Hexagonal P6/mmm
Cubic Pm3
Cubic Pm3m

For A-, C-, F-, I, and R-centered cells the relationships parallel those given for the
primitive groups above. For example: All I-centered orthorhombic cells have vector
maps in space group Immm; C-centered monoclinic cells have vector symmetry
C2/m; and the centered space group F—43m has a vector map in space group Fm3m
parallel to space group P—43m having a vector map in space group Pm3m (Lecture
Notes, 2001).

3.3.3 Locating One Heavy Atom

If the structure of interest contains only one heavy atom per formula unit, the
location of that atom is usually straightforward. A general list of vectors between the
heavy atoms is obtained by a simple hand calculation.
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Table 3.2 Examples of locating an atom at different space groups

For P-1 (£=2) For P2i/n (£=4) For Pna2, (£Z=4)
Xy z x y z x y z
x yz|0 00 x y z]| 0 0 0 x y z 0 0 0
x-y-z |2x2y22z X -y -z | 2x 2y 2z x -y Stz | 2x 2y 5
S-x Sty 5z | .5¥2x S S5¥2z| .5x.5+y . S+z SH2x 5 S
J+x S-y.5+z1 .5 S+2y 5 Jtx Sy z 5 S+2y 0

In these three examples the italicized x, y, z’s at the top and the left side of the
boxes are atom positions. The positions in bold type within the box are the vectors
obtained by subtracting the left-column entries from the x, y, z atom position.

With this work done, it is usually a simple process to match the intense Patterson
peaks with the vector expressions in the boxes above. Vectors which occur on special
“lines” or planes (involving special values such as 0.0 or 0.5 for x, y and or z) are
called Harker peaks, and the assignments usually start with these peaks because they

are easiest to recognize and because they are generally, by reasons of symmetry,
more intense.

If the most intense non-origin peak on a P —1 Patterson map is at 0.44, 0.16, 0.68,
this is likely the 2x, 2y, 2z peak for the heavy atom and gives the atom position of
0.22, 0.08, 0.34. A very fast start of the trial structure. (Note that if the x value for the
vector is taken as the equivalent values of 1.44 or —0.56 instead of 0.44, the x for the
atom position would be 0.72 which is a harmless shift of origin by 0.5 in x; the same
holds for y and z).

Similarly, consider a Patterson map of a heavy-atom structure in P2,/n which has
two Harker peaks of high intensity at (a) 0.50, 0.88, 0.50 and (b) 0.36, 0.50, 0.84.
Because of the 0.5 patterns, (a) looks like the expected 0.5, 0.5+2y, 0.5 Harker peak,
giving y= 0.19, and (b) looks like expected 0.5+2x, 0.5, 0.5+2z Harker peak, giving -

;“A‘
o

e 1%0‘\

,,*»5;;&‘“’5
Ve
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x =0.43 (or -0.07) and z= 0.17. Thus the heavy atom is at 0.43, 0.19, 0.17 and its 2x,
2y, 2z peak is expected at 0.86, 0.38, 0.34.

Note on the table above that none of the Patterson peaks for the space group
Pna2; give any information about the z coordinate of the heavy atom. The formulas
for the four atom positions show that this is a polar space group with a “floating 2”;
the z of the first atom is arbitrary and establishes the origin in the z direction.

3.3.4 Locating Two Independent Heavy Atoms
The simple approach used in the last section for a single heavy atom can
sometimes be extended to a structure with more than one independent heavy atom.

As an example, assume there are two independent heavy atoms in space group P-1.

Table 3.3 An example on locating two independent heavy atoms

X Vv z c 0 O Ax Ay Az
X -y Z 2x 2y 2z X 3y Xz

x y z Ax Ay Az o 0 0
gy |ExEIyEz | W

If one is at X, y, z and the other at X', y', Z, the vector calculation becomes,
where AX=x-X,Ay=y-y,Az=z-7Z,XX=Xx+X,Xy=y+y,and Xz=z+7

As seen, the A and Y vectors are double-weighted and thus should be the most
intense peaks on the Patterson map. Note the sum of the Y vector and the A vector
equals the 2x2y2z vector [(x+x')+(x-x')=2x], and the difference of the X, vector and
the A vector equals the 2x'2y’2z’ vector [(x+x')-(x-x")=-2x']. If the above set of four
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vectors can be identified the coordinates of the xyz atom can be obtained by halving
2x2y2z, which also fixes the origin for the structure. Halving 2x'2y'2z’ gives a 2-fold
uncertainty for each of x’, y' and Z’ in that 0.5 can be added to any calculated value.
Adding either the X or A vector and its inverse to xyz and checking the results with
the 2x'2y'27’ vector will remove this uncertainty.

3.3.5 Patterson Search and Superposition Methods

Superposition Methods: There are several methods, often quite powerful, for
finding the structure corresponding to Patterson maps by transcribing P, upon itself

with different relative origins (but always the same orientation). One of the simplest
methods of analyzing the Patterson map of a compound containing an atom in a
known position is to calculate, graphically or by computer, a vector superposition

map.

The origin of the Patterson map is put, in turn, at each of the symmetry-related
positions of the known atom and the values of P, are noted at all points in the unit

cell. The lowest value of P in the different superposed Patterson maps is recorded
for each point; the resulting distribution is called a minimum function. The principle
underlying this approach is that it isolates the vectors arising from the interaction of
the known atom with all other atoms in the structure. At points corresponding to the
positions of atoms there will be peaks in the minimum function, each corresponding
to a peak in each Patterson map at this position as the origin was moved. In some of
the maps there will be other peaks at this same position, corresponding to other
vectors in the structure, but these accidental superpositions are eliminated if the
minimum value of P in all the superposed maps is recorded. This method is
increasingly powerful when the position of more than one atom is known initially
(Glusker & Trueblood, 1972, pp. 86).
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Search Methods: Systematic Patterson search methods were developed for small
molecule structures and are used for macromolecular structures. If the dimensions of
a molecule or part of a molecule in a crystal structure are known, but its orientation
(and position) in the unit cell is unknown, the orientation may often be found by a

comparison of calculated and observed vector maps around the origin.

The fit of the calculated and observed Patterson maps can be optimized with a
computer by making a “rotational search” to examine all possible orientations of one
map with respect to the other and to assess the degree of overlap of vectors as a
function of the angles through which the Patterson map has been rotated. The
maximum overlap normally occurs (except for experimental errors) at or near the
proper values of these rotation angles, thus giving the approximate orientation of the
group. Then the Patterson map can be searched for vectors between groups in
symmetry-related positions, and the exact position of the group in the unit cell can be
found and used as part of a trial structure.
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CHAPTER FOUR
CRYSTAL REFINEMENT

4.1 Introduction

After approximate positions have been determined for most, if not all, of the
atoms, refinement of the structure can be started. The atomic parameters that were
determined with Direct, Patterson or other methods can be refined. Additional atoms
can be located and their parameters also refined. These additional atoms are found
using the Fourier synthesis method.

Two methods have been used for the refinement of the atomic positions and
displacement (or temperature) parameters. One method is based on Fourier
techniques, so called Difference Fourier Method, and the other is based on least-
squares techniques, so called Least-Squares Method.

4.2 Least Squares Method

The principle of least squares method is that minimizes the sums of the squares
of differences between the observed and calculated structure factors in order to

increase the sensitive of atomic parameters.

We can write the calculated structure factor, for a better set of atomic coordinates
and temperature factors,

N/2

F(hkd)=Y"2f, exp(— B,
J=1

sin“@

2
2

]cosZzz(hxj +ky, +1z;) “.1n
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where the structure is centrosymmetric and the temperature factor is isotropic. The

correct values of parameters for j.th is as follows :

(B, +AB,,x, +Ax,,y, +Ay,,z, +Az,) (4.2)

and experimental (observed) structure factor can be written as (Aygiin, 1997)

N2 sin2 @ h(x; +Ax ) +k(y; +Ay,)
F o (k) = ;UJ exp{ (B, +AB)) }“52”{+z(z,+Az,.) }

4.3)
The difference of two expressions

AF(hkl) = F, (hkl)— F, (hkl) 4.4)

and AF(hkl) can be written as

_N/z "(me)WAB e py  Wads p, | Wi 4.5
;[ ox; * %, o o ’ )

J

In order to the best approximation for observed structure factors, the following

expression must be minimum.
R, Z{(F )n —(F, I)h} ~0 (4.6)

4.3 Difference Fourier Method

Another convenient way of completing refining a structural model is the
difference Fourier synthesis method. In this method, we investigate the difference
between experimental and calculated electron densities. Calculated electron density
is shown,
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pm,(i")=-;/-ZFm,(hId)exp(—27ziﬁi’) @4.7)
144

experimental electron density is shown,
-1 P
pm(r)=72 F,, (hkl)exp(-2xin F) 4.8)
hkd

In order to see how much the initial model deviates from the real structure, the

difference series,

ADF) = Py (F) = Poa(F) = %%[Fm (hkl)~F,(hk]) |exp(-2mih 7))~ (49)

If in the model an atom is missing, then g, (¥) will be zero at the corresponding
position, while p__(¥) will show a maximum. The difference synthesis will also
show a peak at the same position but it will be almost zero at the positions of model
atoms where o (F) = p,,(7).

4.4 Error Analysis
4.4.1 R Factors

The most important factor in crystallography is known reliability factor. This
factor denotes how well the calculated model fits the observed data and can be
written as

5 [ - i

R= ; (]Fex,, ) (4.10)

The lower the value of R, the greater the confidence that can be placed in the
calculated structure. Although at the beginning of refinement R factor takes big
values as 0.4, 0.5, at the end of the refinement R factor takes small values then 0.06.
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Another factor in crystallography is known weighted R-factor. In this factor,
some big false reflections refining and approach to the best real structure.

Weighted R- factor is shown,

> w{F, (hk)| - |F., (k)

R = )
;wﬁpﬁp (hhi)f

(@.11)

In this equation w is weighting function. For w=1, all reflections takes equal
weight. In structure solving process, various weighting functions are used (Aygiin,
1997).

Weighted R- factor (Ry) can be takes a little big value than reliability (R) factor.

4.4.2 Goodness of Fit

Another index obtained from the least-squares refinement is the “Goodness of
ﬁt”,

] 4.12
(n-p) *12)

S wiF2 (nkd) - F2, (kD))
Goof =S =

In this equation, n is reflection number in refinement period and p is total
parameter number. S value must be nearly 1.0 in a perfect situation.

4.4.3 Final Difference Map
The final difference map provides a real-space counterpart for checking how well

the refined the model fits the experimental data, thus complimenting the R-factor
which is a reciprocal-space measure. The final difference map should be featureless,
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with no peaks or holes of a magnitude greater than a few estimated standard
deviations of the map values.

4.4.4 Estimated Standard Deviations

Also we search for sensitivity of atomic parameters at the end of determination. In
order to determine the structure sensitively, the standard deviations must be less than

0.001 for coordinates, 0.01A for bond distances and 1° for angles.
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CHAPTER FIVE
EXPERIMENTAL DETAILS

IANY
= 5\0 L c>/8 s
—/ U/ \—

Figure 5.1 The chemical diagram of C,,H,,N,O,CIRh

5.1 Preparation of C,,H,,N,0,CIRh

A 50 ml Schlenk tube was charged with (3) (Figure 1.3) (0.240g., 0.52 mmol),
[ RhCI(1,5~COD)], (0.124 g., 0.25 mmol) and 5 ml toluene. The solution was

heated and then refluxed for 4 h. The resulting solution was cooled to room
temperature and added hexane (10ml). The solid formed was filtered off and

recrystallized from CH,CI, /Et,0 .Yield: 0.193g. (66%), m.p.: 232-234 °C.
Anal. Cal. for C,,H,,N,O,CIRh; C: 55.01, H: 5.77, N: 4.75; found C: 54.87, H:
5.73, N: 4.56.
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Results of spectroscopic investigation:

'H -NMR (5,CDCI, ): 2.87 [s, 2H, COD-CH]; 4.52 [s, 2H, COD-CHI; 3.64 [t, 4H,
J=8.90 Hz, NCH,CH,N ]and 4.25 [t, 4H, J= 8.91 Hz, NCH,CH,N ]; 3.79 [s,12H,
2,4-"C1; 6.46 [d, 2H, J=2.47 Hz, 2,4-(OCH,), C,H, ]; 6.58 [d, 2H, J=3.74 Hz, 2, 4-
(OCH,), C,H, ;829 [d, 2H, J~ 8.68 Hz, 2, 4-(OCH, ), CH, 1.

BC -NMR (8,CDCl,): 28.7, 32.7 and 123.7 [COD- CH, J; 97.6 [COD-CH]; 51.5
[ NCH,CH,N}; [2,4-(OCH,), C,H, ]; 5.8 [2,4-(OCH,), C(H, ]; 56.0 [2,4-
(OCH,),CH,1;99.1 [2,4-(OCH,), C,H, }; 104.0 [2,4-(OCH,), C;H,}; 132.9 [2,4-
(oCH,), CH,;155.9 [2,4-(OCH,), C,H, ]; 160.3 [2,4-(OCH,), C;H, ] (Giinay et
al, In press).

5.2 Data Collection of the Crystal

Before starting data collection, the suitable crystals were selected from the
synthesized crystals by using stereomicroscope and polarization microscope. Than a

sample of size 0.18 x 0.30 x 0.35 mm® was selected for the crystallographic study.

The diffraction measurements were performed at room temperature (293K) on an
Enraf-Nonius CAD-4 diffractometer using graphite-monochromated MoK,
radiation. Orientation matrix and unit cell parameters were obtained from the setting
angles of 25 reflections at medium #( 3.0°< 0 < 44.3°). The systematic absences
and intensity symmetries indicated the triclinic P-1 space group. A total of 4650
intensities with Omex = 44.3° were collected in the w/20 scan mode, as suggested by
peak-shape analyses. The crystal and equipment stabilities were checked by the

intensities of three standard reflections monitored every 120 minutes. No
considerable amount intensity decay was observed throughout measurement under
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discussion. The intensitics were corrected for Lorentz and Polarization factors and
also for absorption effect (12 =0.809 mm™).

5.3 Structure Solution and Refinement of the Crystal

The structure was solved by Patterson methods using SHELXS-86 for 2983
reflections with I > 2o (1). The position of the rhodium atom was determined from
a three-dimensional Patterson map. The refinement (on F*) was carried out by full-
matrix least-squares procedure using SHELXL-97. All atoms were refined
anisotropically, except for hydrogens. The structure was refined to R = 0.041 for the
observed reflections and R = 0.091 for all data. The maximum and minimum peaks,
observed in the final Ap map, were 0.576 and ~0.537 ed™, respectively. The
scattering factors were taken from SHELXL -97. All of the H atoms were add with
HFIX. And positions and isotropic thermal parameters were refined. Further details
of single crystal data measurement and refinement are given in Table 5.1. The atomic
coordinates and equivalent isotropic thermal parameters of all atoms are listed in
Table 5.2. Bond distances and angles are given Table 5.4 and Table 5.5. Anisotropic
displacement parameters for C,,H,,N,O,CIRh and torsion angles are listed in Table

5.3 and Table 5.6, respectively.

5.4 Experimental Results

Table 5.1 Crystallographic data for C,, H,,N,O,CIRh.

Crystal Data

Chemical formula C,,H,,N,O,CIRh

Color/shape Yellow/prismatic

Formula weight 588.9

Space group P-1 (No.2)

Crystal system Triclinic

a, b, c(R) 9.7642(12), 11.1914(11), 13.0102(14)
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Crystal Data

a, B, y(° 104.034(9), 106.658(9), 99.658(9)

Cell volume (A%) 1277.59(71)

Formula unit cell (Z) 2

D_(g/em?®) 1.531

F o 607.9

Absorption coefficient u( mm™) 0.809

Crystal size (mm’ ) 0.18 x 0.30 x 0.35

Data Collection

Diffractometer Enraf-Nonius CAD-4

Temperature (K) 293(2)

Scan type W /20

Radiation/Wavelength 1 (&) MoK, /0.71073

Reflections measured 4650

Independent/observed reflections 4301/2983

Range of h,k,I -11-50,-13 5> 13,-16 > 16

Standard reflections 3

Standards interval time (min) 120

Absorption correction v scan ( North et al., 1968)
T..=0854, T _=0980

Standard decay % < %2

Refinement

Data/Restraints/Parameters 4301/0/316

Final R indices [I > 20 (1)] R;=0.041, wR, = 0.091

R indices (all data)

R; =0.091, wR; = 0.105




Weighting function w=[o®(F2,)+(0.0515P)* +0.1106P |

P =-;—(Fj,s +2F2)

GOF (onF?) 1.025
Ap,.[Ap,. (e/A%) -0.537/0.576
Alo),, 0.087

Table 5.2 Atomic Coordinates and Equivalent Isotropic Thermal Parameters (A2)

Atom x y z U,

Rhl 0.4497(4) 0.3251(3) 0.1762(3) 0.0299(1)
Cll 0.3948(1) 0.5152(1) 0.2658(1) 0.0492(5)
o1 0.0219(4) 0.0027(3) 0.3674(3) 0.0574(1)
02 0.5066(3) 0.0226(3) 0.3528(3) 0.0502(1)
03 0.9235(3) 0.3117(3) 0.2583(3) 0.0422(1)
04 1.0400(4) 0.7188(3) 0.1926(4) 0.0549(1)
N1 0.5703(4) 0.2798(4) 0.4008(3) 0.0337(1)
N2 0.7390(4) 0.3946(4) 0.3630(3) 0.0318(1)
C1 -0.0882(6) 0.0655(6) 0.3888(6) 0.067(3)
C2 0.1556(5) 0.0783(5) 0.3809(4) 0.0411(2)
C3 0.1898(5) 0.2083(5) 0.4108(4) 0.0416(2)
C4 0.3276(5) 0.2737(5) 0.4164(4) 0.0405(2)
Cs 0.4293(4) 0.2104(4) 0.3941(4) 0.0315(2)
Cé6 0.3963(5) 0.0785(4) 0.3679(4) 0.0372(2)
C7 0.2584(5) 0.0118(5) 0.3599(4) 0.0405(2)
C8 0.4827(5) -0.1106(5) 0.3332(5) 0.0506(2)
C9 0.5942(4) 0.3331(4) 0.3252(4) 0.0291(1)
C10 0.7034(4) 0.2992(5) 0.4990(4) 0.0376(2)
cit 0.8169(5) 0.3917(5) 0.4768(4) 0.0379(2)
C12 0.8088(4) 0.4731(4) 0.31234) 0.0306(2)
C13 0.7898(5) 0.5934(5) 0.3203(4) 0.0403(2)




Cil4
C15
Clé6
C17
Ci8
C19
C20
C21
C22
C23
C24
C25
C26
C27
HIA
HI1B
H1IC

H4
H7
H8A
H8B
H8C
HI10A
H10B
H11A
H11B
H13
H14
Hi6
H18A
H18B

0.8671(5)
0.9654(5)
0.9864(5)
0.9077(4)
0.9941(6)
1.1187(6)
0.4320(5)
0.5534(6)
0.5622(7)
0.4377(7)
0.3637(6)
0.2481(5)
0.1822(5)
0.2861(6)
-0.17630
-0.11040
-0.05160
0.12200
0.35100
0.23460
0.56850
0.39850
0.46480
0.73130
0.68920
0.84510
0.90470
0.72450
0.85290
1.05310
0.99980
1.09200

0.6733(5)
0.6319(5)
0.5114(4)
0.4308(4)
0.2560(5)
0.6760(5)
0.1306(5)
0.2031(5)
0.2357(7)
0.2815(6)
0.3468(5)
0.2826(5)
0.1421(5)
0.0622(5)
0.00300
0.11530
0.12020
0.25240
0.36210
-0.07660
-0.13630
-0.15430
0.13160
0.22020
0.33650
0.47550
0.36110
0.62160
0.75440
0.48430
0.17270
0.30870

0.2779(5)
0.2283(4)
0.2197(4)
0.2606(4)
0.1827(5)
0.1219(5)
0.1051(5)
0.0927(5)
-0.0119(5)
- 0.0712(5)
0.0065(4)
0.0285(4)
-0.0150(5)
0.0106(6)
0.37680
0.33860
0.46540
0.42700
0.43570
0.34070
0.32390
0.26620
0.39640
0.49980
0.56950
0.53150
0.47920
0.35440
0.28290
0.18650
0.18780
0.20300

0.0461(2)
0.0397(2)
0.0390(2)
0.0297(2)
0.0503(2)
0.054(2)
0.0444(2)
0.0482(2)
0.074(3)
0.064(3)
0.0438(2)
0.0421(2)
0.063(2)
0.075(2)
0.1000
0.1000
0.1000
0.0500
0.0480
0.0480
0.0770
0.0770
0.0770
0.0450
0.0450
0.0460
0.0460
0.0490
0.0560
0.0460
0.0750
0.0750
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H18C
HI19A
HI19B
H19C
H20

H22A
H22B
H23A
H23B
H24

H25

H26A
H26B
H27A
H27B

0.93760
1.16650
1.05140
1.19170
0.45880
0.64850
0.65320
0.56850
0.36460
0.47400
0.36140
0.17810
0.10490
0.13570
0.30670
0.23760

0.24930
0.74660
0.61330
0.63880
0.08600
0.19950
0.30080
0.16060

0.20970
0.34080

0.43400
0.33260
0.12260
0.11820
0.02570

-0.00770

0.10690
0.10420
0.05350
0.15970
0.16110
0.14210
0.00910
-0.06450

-0.13030
-0.10650
0.00650
0.04180
0.01600
-0.09620
-0.05730
0.03000

0.0750
0.0820
0.0820
0.0820
0.0530
0.0580
0.0890
0.0890
0.0770
0.0770
0.0530
0.0500
0.0750
0.0750
0.0910
0.0910

U,, is defined as one third of the trace of the orthogonalized U j tensor.
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The Uiso values for C atoms range from 0.0291(1) A% to 0.075(2) A2, while Uiso
values for H atoms are in the range 0.0450-0.1000 A2.

Table 5.3 Anisotropic displacement parameters (A2)

Atom Uy Uy Us Uy Uy U

Rhl  0.022(2) 0.036(2) 0.028(2) 0.006(2) 0.006(1) 0.006(1)
Cil  0.044(7) 0.047(8) 0.051(9) 0.0047) 0.016(6) 0.018(5)
01 0.034(2) 0.053(2) 0.086(3) 0.021(2) 0.030(2) -0.0005(2)
02 0.040(2) 0.041(2) 0.076(3) 0.019(2) 0.028(2) 0.008(2)
03 0.0442) 0.044(2) 0.050(3) 0.024(2) 0.024(2) 0.014(2)
04 0.057(2) 0.048(2) 0.063(3) 0.026(2) 0.026(2) -0.0008(2)



N1
N2
C1
C2
C3
C4
G5
Cé6
C7
C8
C9
C10
Cl11
Ci12
Ci3
C14
Ci15
Cié
C17
Ci8
C19
C20
C21
C22
C23
C24
C25
C26
C27

0.026(2)
0.022(2)
0.039(3)
0.031(2)
0.032(2)
0.033(2)
0.026(2)
0.029(2)
0.036(3)
0.045(3)
0.020(2)
0.028(2)
0.027(2)
0.024(2)
0.034(2)
0.043(3)
0.033(2)
0.032(2)
0.025(2)
0.057(3)
0.057(3)
0.050(3)
0.046(3)
0.068(4)
0.078(4)
0.054(3)
0.033(2)
0.035(3)
0.050(3)

0.045(2)
0.047(2)
0.076(4)
0.048(3)
0.053(3)
0.040(3)
0.042(3)
0.044(3)
0.036(3)
0.044(3)
0.033(2)
0.055(3)
0.051(3)
0.042(3)
0.043(3)
0.039(3)
0.044(3)
0.041(3)
0.036(3)
0.048(3)
0.061(4)
0.033(3)
0.062(4)
0.127(6)
0.086(5)
0.052(3)
0.057(3)
0.063(4)
0.043(3)

0.029(3)
0.026(2)
0.100(6)
0.044(3)
0.045(4)
0.046(3)
0.025(3)
0.037(3)
0.047(4)
0.056(4)
0.027(3)
0.029(3)
0.031(3)
0.021(3)
0.041(4)
0.056(4)
0.036(3)
0.043(3)
0.026(3)
0.048(4)
0.045(4)
0.040(3)
0.037(3)
0.046(4)
0.048(4)
0.033(4)
0.031(3)
0.061(4)
0.095(6)

0.018(2)
0.014(2)
0.037(4)
0.015(3)
0.018(3)
0.015(2)
0.014(2)
0.010(2)
0.013(2)
0.007(3)
0.002(2)
0.017(2)
0.017(2)
0.014(2)
0.016(3)
0.018(3)
0.016(2)
0.013(2)
0.013(2)
0.011(3)
0.026(3)
0.008(2)
0.007(3)
0.029(4)
0.030(3)
0.021(3)
0.013(3)
-0.003(3)
0.002(3)

0.006(2)
0.008(2)
0.040(3)
0.017(2)
0.017(2)
0.012(2)
0.009(2)
0.014(2)
0.016(2)
0.018(3)
0.004(2)
0.006(2)
0.004(2)
0.002(2)
0.015(2)
0.014(2)
0.006(2)
0.012(2)
0.004(2)
0.021(3)
0.019(3)
0.001(2)
0.012(2)
0.029(3)
0.034(3)
0.013(2)
0.000(2)
-0.006(2)
-0.009(3)
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0.0007(2)
0.002(2)
0.010(3)
0.001(2)
0.013(2)
0.003(2)
-0.0009(2)
0.004(2)
0.001(2)
0.005(2)
0.004(2)
0.009(2)
0.001(2)

-0.0007(2)
0.009(2)
0.0102)
-0.001(2)
0.008(2)
0.004(2)
0.019(3)
-0.002(3)
0.014(2)

0.031(3)
0.053(4)
0.034(3)
0.025(3)
0.018(2)
0.009(2)
0.001(3)

Looking at the values of anisotropic displacement parameters in table, abnormal
values have not been appeared.
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Figure 5.2 An ORTEP3 drawing of the title compound showing the atomic
numbering scheme. Displacement ellipsoids of non-H atoms are shown at % 40

probability level; H atoms are shown as small spheres of arbitrary size.



Table 5.4 Bond distances (A)

Atoms Bond Distance Atoms Bond Distance
Rh1-Cll 2.390(2) C12-C17 1.407(6)
Rh1-C9 2.015(5) C13-C14 1.387(8)
Rh1-C20 2.105(6) C14-Cl15 1.383(7)
Rh1-C21 2.109(6) C15-C16 1.381(7)
Rh1-C24 2.215(5) C16-C17 1.386(7)
Rh1-C25 2.207(5) C20-C21 1.393(8)
01-C1 1.434(8) C20-C27 1.517(9)
01-C2 1.370(7) C21-C22 1.513(9)
02-Cé 1.370(6) C22-C23 1.483(1)
02-C8 1.416(7) C23-C24 1.522(9)
03-C17 1.361(6) C24-C25 1.373(8)
03-Ci18 1.438(7) C25-C26 1.492(8)
04-C15 1.367(7) C26-C27 1.481(8)
04-C19 1.408(8) CI-H1A 0.9601

N1-C5 1.430(6) C1-H1B 0.9592

N1-C9 1.322(6) C1-H1C 0.9603

N1-C10 1.479(6) C3-H3 0.9303

N2-C9 1.351(6) C4-H4 0.9299

N2-C11 1.469(6) C7-H7 0.9300

N2-C12 1.417(6) C8-H8A 0.9598

C2-C3 1.367(8) C8-H8B 0.9604

C2-C7 1.395(7) C8-H8C 0.9614

C3-C4 1.392(8) C10-H10A 0.9694

C4-C5 1.36%(7) C10-H10B 0.9703

C5-C6 1.390(7) C11-H11A 0.9691

C6-C7 1.388(7) C11-H11B 0.9703

C10-C11 1.525(7) C13-H13 0.9299

C12-C13 1.373(7) C14-H14 0.9306
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C16-Hl6 0.9310 C22-H22B 0.9701
C18-H18A  0.9601 C23-H23A 0.9693
C18-HI18B  0.9602 C23-H23B 0.9691
C18-H18C  0.9596 C24-H24 0.9799
C19-HI9A  0.9598 C25-H25 0.9795
C19-H19B  0.9609 C26-H26A 0.9705
C19-H19C  0.9598 C26-H26B 0.9700
C20-H20 0.9795 C27-H27A 0.9706
C21-H21 0.9797 C27-H27B 0.9695
C22-H22A  0.9706
The C-H bond distances range from 0.9299 A to 0.9799 A.
Table 5.5 Bond Angles (°)

Atoms Bond Angles Atoms Bond Angles
CI1-Rh1-C9 90.03(1) C2-C3-C4 119.0(5)
CI1-Rh1-C20  160.6(2) C3-C4-C5 12123(5)
Cl1-Rh1-C21 160.8(2) N1-C5-C4 120.2(4)
Cl1-Rh1-C24 93.0(2) N1-C5-C6 120.2(4)
Cl1-Rh1-C25 90.5(2) C4-C5-C6 119.6(4)
C9-Rh1-C20 92.7(2) 02-C6-C5 116.2(4)
C9-Rh1-C21 89.3(2) 02-C6-C7 124.0(4)
C9-Rh1-C24 160.0(2) C5-C6-C7 119.8(5)
C9-Rh1-C25 163.6(2) C2-C7-C6 119.5(5)
C20-Rh1-C21 38.6(2) Rh1-C9-N1 128.5(3)
C20-Rh1-C24 91.0(2) Rh1-C9-N2 123.6(3)
C20-Rh1-C25 81.5(2) N1-C9-N2 107.8(4)
C21-Rh1-C24 81.4(2) N1-C10-C11 100.9(4)
C21-Rh1-C25 95.4(2) N2-C11-C10 103.6(4)
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C24-Rh1-C25
C1-01-C2
C6-02-C8
C17-03-C18
C15-04-C19
C5-N1-C9
C5-N1-C10
C9-N1-C10
C9-N2-C11
C9-N2-C12
C11-N2-C12
01-C2-C3
01-C2 -C7
C3-C2-C7
C21-C20-C27
Rh1-C21-C20
Rh1-C21-C22
C20-C21-C22
C21-C22-C23
C22-C23-C24
Rh1-C24-C23
Rh1-C24-C25
C23-C24-C25
Rh1-C25-C24
Rh1-C25-C26
C24-C25-C26
C25-C26-C27
C20-C27-C26
0O1-C1-H1A
01-C1-H1B
0O1-C1-H1C
H1A-C1-HIB

36.2(2)
117.2(4)
118.7(4)
116.2(4)
118.3(4)
125.0(4)
120.3(4)
114.6(4)
112.2(4)
126.3(4)
120.6(4)
124.7(5)
114.5(5)
120.8(5)
124.7(5)
70.6(3)
110.0(4)
127.5(6)
115.9(6)
113.2(5)
110.8(4)
71.6(3)
123.2(5)
72.2(3)
108.8(4)
125.8(5)
115.9(5)
115.4(5)
109.49
109.47
109.47
109.46

N2-C12-C13
N2-C12-C17
C13-C12-C17
C12-C13-C14
C13-C14-C15
04-C15-C14
04-C15-C16
C14 -C15-C16
C15-C16-C17
03-C17-C12
03-C17-C16
C12-C17-C16
Rh1-C20-C21
Rh1-C20-C27
02-C8-H8C
H8A-C8-HS8B
HB8A-C8-H8C
H8B-C8-H8C
N1-C10-H10A
N1-C10-H10B
C11-C10-H10A
C11-C10-H10B
H10A-C10-H10B
N2-C11-H11A
N2-C11-H11B
C10-C11-H11A
C10-C11-H11B
H11A-C11-H11B
C12-C13-H13
C14-C13-H13
C13-C14-H14
C15-C14-H14

120.9(4)
119.4(4)
119.5(4)
120.6(5)
119.7(5)
115.4(5)
124.0(5)
120.6(5)
119.8(5)
116.2(4)
124.0(4)
119.8(4)
70.8(3)
113.0(4)
109.45
109.51
109.42
109.42
111.61
111.58
111.61
111.56
109.41
111.05
110.98
111.09
111.01
109.08
119.72
119.68
120.14
120.17
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H1A-C1-HIC 109.45 C15-C16-H16 120.14
H1B-C1-H1C 109.48 C17-C16-H16 120.09
C2-C3-H3 120.52 03-C18-H18A 109.38
C4-C3-H3 120.52 03-C18-H18B 109.52
C3-C4-H4 119.35 03-C18-H18C 109.47
C5-C4-H4 119.37 HI8A-C18-H18B 109.47
C2-C7-H7 120.17 HI18A -C18-H18C  109.48
C6-C7-H7 120.31 H18B-C18-H18C 109.50
02-C8-H8A 109.51 04-C19-H1%9A 109.50
02-C8-H8B 109.52 04-C19-H19B 109.44
Table 5.6 Torsion Angles (°)

Atoms Torsion Angles Atoms Torsion Angles
CI1-Rh1-C9-N1 91.8(4) ClI1-Rh1-C9-N2 -90.2(4)
C20-Rh1-C9-N1 -69.0(5) C20-Rh1-C9-N2 109.1(4)
C21-Rh1-C9-N1 -107.4(5) C21-Rh1-C9-N2 70.6(4)
C9-Rh1-C20-C21 -85.5(4) C9-Rh1-C20-C27 154.1(4)
C21-Rh1-C20-C27 -120.4(6) C24-Rh1-C20-C21 74.8(4)
C24-Rh1-C20-C27 -45.6(4) C25-Rh1-C20-C21 109.9(4)
C25-Rh1-C20-C27 -10.6(4) C9-Rh1-C21-C20 95.2(4)
C9-Rh1-C21-C22 -140.9(4) C20-Rh1-C21-C22 123.9(6)
C24-Rh1-C21-C20 -102.6(4) C24-Rh1-C21-C22 21.3(49)
C25-Rh1-C21-C20 -69.1(4) C25-Rh1-C21-C22 54.8(4)
Cl1-Rh1-C24-C23 153.8(4) CI1-Rh1-C24-C25 -86.9(3)
C20-Rh1-C24-C23 -45.2(4) C20-Rh1-C24-C25 74.1(3)
C21-Rh1-C24-C23 -7.7(4) C21-Rh1-C24-C25 111.6(4)
C25-Rh1-C24-C23 -119.4(6) Cl1-Rh1-C25-C24 94.3(3)
Cl1-Rh1-C25-C26 -143.0(3) C20-Rh1-C25-C24 -103.5(4)
C20-Rh1-C25-C26 19.2(4) C21-Rh1-C25-C24 -67.4(4)
C21-Rh1-C25-C26 55.3(4) C24-Rh1-C25-C26 122.7(5)
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C1-01-C2-C3 -1.5(7) C1-01-C2-C7 179.4(5)
C8-02-C6-C7 -3.2(7) C8-02-C6-C5 175.9(4)
C18-03-C17-C12 165.1(4) C18-03-C17-C16 -17.4(7)
C19-04-C15-C14 -167.5(5) C19-04-C15-C16 14.2(8)
C9-N1-C10-Cl11 6.6(5) C5-N1-C9-N2 177.2(4)
C10-N1-C9-N2 -1.4(6) C5-N1-C9-Rhl -4.5(7)
C9-N1-C5-C4 -75.2(6) C10-N1-C5-C4 103.4(6)
C10-N1-C9-Rhl1 176.9(3) C5-N1-C10-C11 -172.1(4)
C9-N1-C5-C6 106.6(6) C10-N1-C5-Cé -74.9(6)
C11-N2-C12-C13 -93.9(6) C9-N2-C12-C13 74.6(6)
C11-N2-C12-C17 81.2(6) C11-N2-C9-Rhl 176.6(3)

Table 5.7 Hydrogen bonds (A).

D H 4 D—H H.. A D..4 D—H..A(°)
C10 --HI0B .. Cll 0.9703 2.7846 3.723(5)  162.88
C21 --H21 .. 03 0.9797 2.5871 3.460(7)  148.40

Symmetry operation: (/-x, I-y, 1-z)

The crystal structure has two intermolecular hydrogen bonds of the type C-H....Cl
and C-H....O.
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Table 5.8 Standard deviations of atoms from the some remarkable planes(°).

Plane 1 Plane 2 Plane 3 Plane 4
Deviations Deviations Deviations Deviations
Atoms (A) Atoms (A) Atoms ( A) Atoms (A)

*Rhl | 0.015(1) || *N1 | 0.027(4) | *C2 || -0.012(5) | * C12 | 0.003(5)
*CIL | -0.007(1) | *N2 || -0.044(4) | *C3 || 0.012(5) |[ *C13 0.003(5)
*C20 || -0.004(6) | *C9 | 0.010(5) | *C4 | 0.001(5) [ *C14 -0.005(6)
*C21 | -0.004(6) | * C10 || -0.048(5) || *C5 || -0.014(5) | * C15 -0.001(5)
04 0.643(4) | * CI1 || 0.054(5) || *C6 || -0.014(5) | * C16 || -0.004(5)
C1 1.400(7) | Rhl 0.006(1) | *C7 [ -0.001(5) | *C17 | -0.006(5)
Cl4 1.114(6) 01 0.363(4) 01 -0.065(4) | 02 -1.048(3)
04 0.390(4) 02 0.072(4) N1 -0.324(4)

C23 || -1.485(7) | NI -0.020(4) c5 -1.013(5)

Ci12 || -1.451(5) | Cl10 1.104(5)

* The atoms that constituted the planes.

The equation of planes:
Plane 1: 3.44(5) x- 4.00(4) y + 10.35(2)  =2.06(2)
Plane 2: -5.34(2) x +8.78(2) y +4.74(3) z=1.28(2)
Plane 3: 0.76(2) x-2.80(2) y +12.10(1) z =4.52(3)
Plane 4: 4.41(2) x +0.14(2) y +8.50(2) z = 6.28(1)

Table 5.9 Dihedral angles between the planes (°).

Planes Dihedral angle
1-2 89.8(4)
1-3 80.5(4)
2-3 76.8(3)
2-4 77.3(3)
34 29.3(2)
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Figure 5.3 The dimeric structure occurred by intermolecular hydrogen bonds in the

unit cell.
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Figure 5.4 A CPK drawing of C,,H,,N,O,CIRh.



Figure 5.5 Unit cell packing diagram of C,,H,N,0,CIRh.
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CHAPTER SIX
CONCLUSION

In this study, molecular and crystal structures of 1,3-Bis(2,4-
dimethoxyphenyl)imidazolidin-2-ylidenechloro(1,5-cyclooctadiene)rhodium(l),
C,,H,,N,O,CIRh, has been determined by single crystal X-ray diffraction technique
and then following results have been concluded.

Complexes of heterocyclic carbenes are thought to involve only a single M-C
bond. Experimental X-ray evidence shows M-C(carbene) bond lengths are virtually
the same as M-C(hydrocarbyl) single bonds (Herrmann (b) et al., 1995) and ab initio
studies show n-back bonding is not significant with these ligands (Frohlich et al.,
1997).The donation of electron density by the nitrogen substituents on the carbene
makes the carbene carbon nucleophilic and compensates for the electron flow from
the carbon to the metal. Donation from the nitrogens is such that the carbene carbon
may actually become a partial n-donor (Herrman (b) et al., 1995; Frohlich et al.,
1997). Heterocyclic carbenes are thus pure donor ligands (Lappert, 1975).

In our study, the distances between the rhodium and the carbene carbon d(Rh-C9)
= 2.015(5)A and between the rhodium and the chloro atom d(Rh-CI) = 2.3900(15)A
are in the expected range. For the same type studies, the bond distances take value
dRb-C_,,...) = 2.029(HA, d(Rh-CI) = 2.372(1)A (Danopoulos et al.,2002); d(Rh-
Coarpens) = 2.021(3)A (Herrmann (b) et al.,1997); d(Pd-C,,,... ) = 2.009(8)A, d(Pd-
Cl) = 2.3996(9)A (McGuinness et al., 1998).
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As shown in Table 5.4 the Rh-C,,, bond lengths are d(Rh-C20) = 2.105(6)A,

d(Rh-C21) = 2.109(6)A, d(Rh-C24) = 2.215(5)A, d(Rh-C25) = 2.207(5)A. The bond
lengths of the Rh-C20 and Rh-C21 are shorter than the Rh-C24 and Rh-C25. The
reason of this attributed to trans influences of the chelating ligand in Figure 5.1.
These results agree with the values of the literatures (Ingleson et al., 2001; Vicente et
al., 2001).

The C(carbene)-N bond lengths in our complex d(N1-C9) = 1.322(6)A and
d(N2-C9) = 1.351(6)A. This is significantly shorter than the other C-N bond lengths
present in the complexes, for instance d(N1-C10) = 1.479(6)A, and is possibly
indicative of greater partial double bond character in these C(carbene)-N bonds due
to partial electron donation by nitrogen to the carbene carbon. The theoretical studies
also indicated that the stability of these carbenes is due to electron donation from the
nitrogen lone pairs into the formally vacant p(m) orbital of the carbene carbon
(McGuinness et al., 1998).

As it is published for analogous rhodium carbene complexes, the atoms Rhi, Cl1,
C20, C21 form a plane. Also the carbene ligand is nearly planar. The angle of
89.8(4)°, between the carbene heterocycle and the coordination plane, is in agreement
with the values of the literatures (Herrmann (b) et al., 1997; Herrmann (a) et al.,
1996).

Cl-Rb-C,_,,... angle 90.0(1)° is in consistence with this type of compounds in the
literatures (Danopoulos et al., 2002; Herrmann (b) et al., 1997). The imidazole
heterocycle makes dihedral angles of 76.8(3)° and 77.3(3)° with the methoxyphenyl
ring planes, respectively. In addition the dihedral angle between two methoxyphenyl
ring planes is 29.3(2)".

The molecule exhibits intermolecular hydrogen bonds of the type C-H...O and C-
H...CL C21-H21...03 has length 3.460(6) A and C10-H10B...Cl1 has length 3.722(5)
A with symmetry code 1-x, 1-y, 1-z.The bond lengths are in good agreement with
those of similar complexes (Lokanath et al., 2001; Bujak & Zaleski, 2002; Stanley et
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al., 2003). And as shown in Figure 5.3 the crystal structure is stabilized by two weak
intermolecular hydrogen bond between C(10)...CI(1).



61

REFERENCES

Arduengo, A. J., Rasika Dias, H. V., Harlow, R. L. & Kline, M. (1992). J. Am.
Chem. Soc., 114, 5530.

Aygiin, M. (1997). Tek Kristal X-Iginlan Kumumn Yontemiyle C,, H,,0,N, S
CsHsCIO,PS ve C,,H,;ClO, Molekiillerinin Kristal Yapi C6ziimii. Samsun:

Doktora Tezi.
Bourissou, D.,Guerret, O., Gabbai, F. P. & Bertrand, G. (2000). Chem. Rev., 100, 39.

Bujak, M. & Zaleski, J. (2002). Crystal and Molecular Structure of Bis (N, N-
Dimethylethylenediammonium) Hexadecachlorotetraantimonate(I1T)

[(CH,), NH(CH,), NH, ] [Sb,Cl] at 295 and 95 K. A structurally Novel
[$5,C1,s]" Anion. Main Group Metal Chemistry, 25, 571-577.
Cetinkaya, B., Ozdemir, 1. & Dixneuf, P. H. (1997). Synthesis and catalytic

properties of N-functionalized carbene complexes of rthodium(T) and
ruthenium(II). Journal of Organometallic Chemistry, 534, 153-158.

Danopoulos, A. A., Winston S. & Hursthouse, M. B. (2002). C-H activation with N-
heterocyclic carbene complexes of Iridium and Rhodium. J. Chem. Soc. Dalton

Trans., 3090-3091.

Dunbar, K. R. & Quillevere, A. (1993). An Unusual Heterobimetallic Compound



62

with a Rhodium(l)-*-Arene Interaction. Organometallics, 12, 618-620.

Farrugia, L. J. (1997). Ortep3 for Windows. Journal of Aplied Crystallography, 30,
565.

Farrugia, L. J. (1999). WinGX. Jourpal of Applied Crystallography, 32, 837-838.

Frohlich, N., Pidun, U., Stahl, M. & Frenking, G. (1997). Organometallics, 16, 442.
Giacovazzo, C., Monaco, H. L., Viterbo, D., Scordari, F., Gilli, G., Zanotti, G. &

Catti, M. (1998). Fundamentals of Crystallography. Oxford: Oxford University
Press.

Glusker, J. P. & Trueblood, K. N. (1972). Crystal Structure Analysis: A Primer. New
York: Oxford University Press.

Green, M. J., Cavell, K. J., Skelton, B. W. & White, A. H. (1998). A route to new
methylpalladium(IT) carbene complexes. Journal of Organometallic Chemistry,
554, 175-179.

Giinay, M. E., Aygiin, M., Cetinkaya, B. & Kartal, A. (In press).

(a)Herrmann, W. A., Elison, M., Fischer, J., Kocher, C. & Artus, G. R. J. (1995).
Angew. Chem., 121, 2602-2605.

(b) Herrmann, W. A., Elison, M., Fischer, J., Kocher, C. & Artus, G. R. J. (1995).
Angew. Chem. Int. Edn. Engl., 34, 2371-2374.

(a) Herrmann, W. A., Elison, M., Fischer, J., Kocher, C. & Artus, G. R. J. (1996).
Chem. Eur. 1., 2, 772.

(b) Herrmann, W. A., Gooben, L. J., Kdcher, C. & Artus, G. R. J. (1996). Angew.



63

Chem., 108, 2980-2982.

(c) Herrmann, W. A., Gooben, L. J., Kécher, C. & Artus, G. R. J. (1996). Angew.
Chem. Int. Edn. Engl., 35, 2805-2807.

(a) Herrmann, W. A. & Kdcher, C. (1997). Angew. Chem., Int. Ed. Engl., 36, 2163.

(b) Herrmann, W. A., Gooben, L. J. & Spiegler, M. (1997). Functionalized
imidazoline-2- ylidene complexes of rhodium and palladium. Journal of
Organometallic Chemistry, 547, 357-366.

Herrmann, W. A., Reisinger, C. P. & Spiegler, M. (1998). Chelating N-heterocyclic
Carbene ligands in palladium-catalyzed heck-type reactions. Journal of
Organometallic Chemistry, 557, 93-96.

Herrmann, W. A. (2002). Angew. Chem. Int. Ed., 41, 1291.

Huang, J., Schanz, H. J., Stevens, E. D. & Nolan, S. P. (1999). Organometallics,
18, 2370.

Ingleson, M., Patmore, N. J., Ruggiero, G. D., Frost, C. G., Mahon, M. F., Willis,
M. C. & Weller A. S. (2001). Chelating Monoborane Phosphines: Rational and
High-Yield Synthesis of

[ (cop)rn{(w - BH,) Ph,PCH,PP 1} | PF,)(COD =1,5~cyclooctadiene).

Organometallics, 20, 4434-4436.

Lappert, M. F. (1988). J. Organomet. Chem., 534, 153.

Lappert, M. F. (1975). J. Organomet. Chem., 100, 139.

Lecture Notes for the Tenth Summer School “ Course In Crystallography”. (2001).



Structure Analysis by X-Ray Crystallography. (4™ ed.). American Crystallographic
Association: University of Georgia.

Lokanath, N. K., Anandalwar, S. M., Prasad, J. S. & Ramappa, P. G. (2001). Crystal
Structure of Diphenyl Pyraline Tetrachloroferrate. Analytical Sciences, 17, 1135-
1136,

McGuinness, D. S., Green, M. J., Cavell, K. J., Skelton, B. W. & White, A. H.

(1998). Synthesis and reaction chemistry of mixed ligand methylpalladium-carbene
complexes. Journal of Organometallic Chemistry, 565, 165-178.

North, A. C. T., Phillips, D.C. & Mathews, F. S. (1968). Acta Cryst., A24, 351.

Sheldrick, G. M. (1990). Shelxs-86, University of Géttingen, Germany.

Sheldrick, G. M. (1998). Shelx1-97, University of Gottingen, Germany

Spek, A. L. (1990). Platon-Pluton. Acta Crysallographica, A46. C34.

Spannenberg, A., Fdil, N., Firdoussi, L. E. & Karim, A. (2002). Crystal structure of
[(1R)-(+)-3-benzoly-camphoryl- O, O J(cycloocta-1,5-diene)rhodium(l),
C,sH,,O0,Rh. Z. Kristallogr. NCS, 217, 549-550.

Stanley, N., Muthiah, P. T. & Geib, S. J. (2003). N®-Furfuryladenine (kinetin)
hydrochloride. Acta Crystallographica, C59, 27-29.

Stout, G. H. & Jensen, L. H. (1989). X-Ray Structure Determination. John Wiley &
Sons: New York, Chichester, Brisbane, Toronto & Singapore.



65

Vazquez-Serrano, L. D., Owens, B. T. & Buriak, J. M.(2002). Catalytic olefin
hydrogenation using N-heterocyclic carbene-phosphine complexes of iridium.
Chem. Commun., 2518-2519.

Vicente, J., Gil-Rubio, J. & Bautista, D. (2001).Synthesis and Reactivity of Fluoro

Complexes. Part 1. Cyclooctadiene Rhodium(T) Complexes. Inorganic Chemistry,
40, 2636-2637.

Weskamp, T., Kohl, F. J. & Herrmann, W. A. (1999). N-heterocyclic carbenes:

novel ruthenium-alkylidene complexes. Journal of Organometallic Chemistry,
582, 362- 365.

Weskamp, T., Bohm, V. P. W. & Herrmann, W. A. (2000). J. Organomet. Chem.,
600, 12.

Yang, F. & Hamilton, J. H. (1996). Modern Atomic and Nuclear Physics. New York:
McGraw-Hill.

Yildirnm, O. (2002). Diaminocarbene Complexes Containing Ferrocene. Izmir:
Yitksek Lisans Tezi.



