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ABSTRACT

Simulation of complex structures such as electromagnetic waves, smoke etc. is the
technique we use to describe the shape of abstract or concrete objects. In latter
studies we use the shapes of these objects to simulate the process for different time

intervals.

Geometric modeling provides a description or model that is analytical,
mathematical, and abstract rather than concrete. We prefer such methods because it
is a convenient and economical substitute for the real object or process. It is easier
and more practical to analyze a model than to test or measure or experiment with the

real object.

From the point of ideas above simulation process in computer environment
requires deep mathematical knowledge and also powerful computers equipped with
powerful graphic computation capabilities. In this thesis we studied electromagnetic

wave propagation with the support of required equipment mentioned.

Keywords: Geometric modeling, complex structures, simulation
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OZET

Elektromanyetik dalgalar, duman gibi karmagik yapilarin simiilasyonu, soyut yada
somut cisimlerin tamimlanmasinda kullandigimz tekniktir. Ileriki ¢aligmalarda bu
cisimlerin sekillerini kullanarak degisik zaman dilimlerine ait islem simulasyonlarint

elde edecegiz.

Geometrik - modelleme somut bir tanimdan yada modelden ote analitik,
matematiksel ve soyut bir yaklasim sunar. Bu cesit bir yontemi se¢mis olmanuzin
sebebi gercek nesne ve islemleri olusturmaktan daha uygun ve ekonomik olusudur.
Gergek nesneler tizerinde islemler, ol¢timler yapmaktansa bu tiir bir yontem daha

kolay ve pratiktir.

Yukarida bahsedilen fikirler 15131nda bilgisayar ortaminda simiilasyon iglemi derin
matematik bilgisi ile ytksek kapasiteli ve giiclii grafik igleme giicine sahip
bilgisayarlar gerektirmektedir. Bu tez ¢aligmasinda bahsedilen geregler kullanilarak

elektromanyetik dalgalarin yayilimlar: incelenmektedir.

Anahtar sozciikler: Geometrik modelleme, Karmagik cisimler, Simiilasyon
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CHAPTER ONE

INTRODUCTION

Anisotropic electromagnetic theory has been an active research subject for the last
years due to its applications to engineering, automatics, computer facilities,
measurement technologies, and geophysics'. The mathematical models of wave
processes inside of electromagnetic bodies are described by the special system of

21 The number of electromagnetic

differential equations of electromagnetodynamics
constants appear in this system is big, and as a result of it the solution of this system
depends on many electromagnetic constants. This fact is interesting not only in
theory but also in applications'™ * % ¢, For this reason to study the explicit formulas
for fundamental solutions of the Cauchy problem for electromagnetodynamic system
and computer simulation of the wave propagation using these formulas is very

important problem. The aim of this thesis is to study this problem.

1.1 Main Equations of Electromagnetics

The theory developed by Maxwell and Hertz describes electromagnetic waves by
means of two vector fields E and H, the electric and magnetic fields. The properties
of the isotropic homogeneous medium in which the waves propagate are given by the
material constants € >0, u>0,0.

The properties of the anisotropic homogeneous medium are given by symmetrical
matrices £ , i, 0, where € , i are positive defined.

The complete set of basic Maxwell’s equations has the form!”":



curl H =la—D+4—”J, (1.1)
cdt ¢
1 0B
curl E = ———, 1.2
x o1 (1.2)
div.B =0, (1.3)
div,D = 47p, (1.4)

where vectors [, Band J are electric displacement, magnetic induction and
current density, 0 is the density of electric charges. The values O and J satisfy

the relation
awp .
—+div. J =0, 1.5
o p (1.5)

and hence equations (1.1) and (1.2) are related to each other. This relation

expresses the law of the conservation of electric charge. In addition there are
constitutive relations that express I, Band J in terms of F and H . These

equations are
D = &¢E, B=uH, J=0oFE+j, (1.6)

where £ is the dielectric permeability, /4 is the magnetic permeability, O is the
conductivity, ] is the density of currents, arising from the action of the external

electromagnetic forces.
Later we shall assume
E=0,H=0, p=0,j=0, for 7<0. (1.7)

This means there is no electromagnetic field, currents, or electric charges at the

time £ < (. We note that equation (1.3) follows immediately from (1.2), (1.6) and



(1.7), and equation (1.4) can be obtained from (1.1), (1.5), and (1.6). Really, applying

the operator div, to (1.2) we have

idiva =0, where (div curl Z =0)

ot

And we can find from (1.6)

div B|, ,=0.

0

These last two relations imply (1.3). Applying the operator divx to (1.1) we find

div, _aa? +4mdiv J =0

and using (1.5) we have
9 [div.D —4np]=0.
ot

Equation (1.4) follows from this last relation and (1.6), (1.7).

1.2 Main Problem

Let us consider now the problem of determining vector-functions E, H and the

function O satisfying (1.1)-(1.7) and j is the known vector function. It is easy to
show that a solution of this problem may be found successively. On the first step we
determine E, H appearing in equations

10 4 A

curl H =~—(éE)+—oE +— j, (1.8)
c ot c c
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curl £ =——— , 1.9
—o, ) (1.9)
subject to conditions
1<0 =Y lt<0 =0. (110)
And then recover a function 0 from relations
ap . [ 4r }
—=—div |cE+—j |, Al
ot c / (1.11)
Pl =0. (1.12)
Equations (1.8)-(1.9) may be written as follows
curl H = é_‘(a—E + B'E) +7j, curl E = —ﬁa—H , (1.13)
ot ot
E|r<0 =0, H|t<0 =0, where (1.14)
= — - 4 - 47
g:f’ﬂ=ﬁ, O':ﬂ, ]:ﬂ
c c c c

Further we shall omit bars over letters £, [, O, J for the simplicity of writing.

From the equations (1.13), (1.14), and (1.11) we can write more specific Maxwell

equations for our assumptions.

curlH =E(aa—lf+0'EJ+j, (1.15)



oH
curlE = —pu—, 1.16
yZ o (1.16)
E|t<0 =0’ |t<() =O’ (117)
dp .| c ,
—=—div| —0cE+ | =0, .
dt lv[4ﬂ8 ]} leO (1.18)

1.3 The Goal of the Thesis

One of the goals of this thesis is to solve the Cauchy problem given in equation
(1.15)—(1.17). The other goal is to find explicit formulas for the solutions of

electromagnetic wave propagation by computer using these solutions.

1.4 Methods and Tools

In this thesis we have used two kinds of tools, one is MatLLAB other is Visual

Studio Program Development Environment'® * 1%,

MatLLAB is an environment where the user only writes the function formulas and
use predefined functions or commands to simulate the representation of that function
under different sized spaces. It is easy to use and doesn’t require knowledge about
programming. With limited training, every person can easily write his function
which’s syntax is very close to mathematical notation style. Visual Studio is also a
development environment. It supports several programming language to write
programs. One of these languages is C++. It is difficult to write programs with this
language. Because it is low level language it requires some basic knowledge. In this
thesis we have used both of these tools for modeling. MatLLAB is used to take a
snapshot view of any function under any condition. This is preferred because the
code written in MatLLAB can be understandable. It is the easiest way to develop
models rapidly. Once you write the functions that you want to model, it takes time to
do computations. It is the main limitation of the MatLLAB. Because of computation

time limitation we don’t use MatLAB for animations.



We preferred Visual Studio with C++ because the code that you write is compiled
and standalone executable generated. Because this executable doesn’t contain any
debug information and consist of machine level code, it is very fast in computations.
Disadvantages are writing code is very difficult so one can easily make syntactic or
logical errors. Because graphic output required, some initialization process required.
And other disadvantage is compilation time. It takes time to generate a single

executable but not much as computation.

1.5 The Structure of This Thesis

Thesis consists of five main chapters. In the first chapter brief description of
Maxwell and Hertz theories are given. And electromagnetic wave propagation under
different conditions is mentioned. In the second chapter, propagation under isotropic
homogeneous medium is mentioned. Also programs and their outputs are given. In
the third chapter propagation under anisotropic medium explored. In this chapter
medium constants kept as simple as possible. In the forth chapter, propagation under
anisotropic medium with complex medium constants are explored. In the last chapter
analyses of modeling and future works mentioned. Appendix contains tutorial like
documentation. It describes step by step, how to prepare a C++ application with

OpenGL support from the beginning.



CHAPTER TWO

SIMULATION METHODS

In this chapter terms, symbols, methods that are used in the former chapters will

be described.

2.1 Legend of graphics

21.1 az el:

The azimuth, az, is the horizontal rotation about the z-axis as measured in degrees
from the negative y-axis. Positive values indicate counterclockwise rotation of the

viewpoint.

el is the vertical elevation of the viewpoint in degrees. Positive values of elevation
correspond to moving above the object; negative values correspond to moving below

the object.

21.2 Eps:

Epsilon parameter used in Dirac Delta function

2.1.3 Frequency:

One of the modeling methods for any two or three dimensional function is to take
a sample data interval and generate corresponding values for each sample data. Then
for each tupple draw a point. At the end connect these points with lines to generate

the final graph.

Let us consider for example the following two functions:



y=s(9=x .

z=f(x,y)=x2+y2 (2.2)

=

For the function (2.1) above, we can generate two dimensional graphic, for the
second function we can generate three dimensional graphic. In the first case we must
take a data interval for x axis and find the corresponding y values for this data

interval. Say that data interval for x axis is [-5,5]. Defining interval is not enough
we must determine a set of data within this interval. Le. all integers in this interval
such as (— 5,—4,—3,—2,—1,0,1,2,3,4,5). In this data interval set, we have 11 sample
points on x axis. Drawing within this method is taking same steps for three

dimensional cases.

From this point, frequency is the number of points used to model the function. By
increasing the frequency we get smoother graphics. In three dimensional cases we
must take two distinct data samples. In formula (2.2) we take one interval for x axis
and other interval for y axis. Generally these two different axis’s data interval is
same. So the frequency of these two axes is the same and then only one frequency

term is used for these two distinct axes.

To generate some sample graphics and show the differences with different
frequency values we use a function of two variables, obtained by translating and

scaling Gaussian distributions.



frequency =5 frequency =10

= x|

e G e ot o e tob
DGES YAr, PR

o G e o Lk e cob,
CEEB NAA/ 2O

frequency =15 frequency =20

= x| L
¥y s
DEAS rAr/, pROD DESES& AL/ PR

frequency =40 frequency =100

! - Ao

DEES xAr/s 2D DEE& kA2 / 2P

Figure 2.1: Gaussian distributions as sample graphics with different
frequency values

As seen in figure 2.1, greater the frequency value, smoother the graphic that we

can generate.
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2.2 Problem of the frequency

Drawing graph of any function is not as simple as described above. In some
generalized functions like Dirac Delta function we encounter with problems. Before

making any discussion about these problems lets take a look at Dirac Delta function.

The Dirac Delta function is not a classical function and it is impossible to define

this function by point wise manner.

There are many classical functions which are regularizations of the Dirac Delta

function. For example,

1 x
=——exp| — = | e +0 ,
8. (x) 2\/”_gexp[ 46]5 + (2.3)

is the regularization of the Dirac Delta function. This function for sufficiently
small £ >0 may be used instead of the Dirac Delta function as an approximation of
it. We will draw this function like the Dirac Delta function. In this function we use a
special seed, epsilon, which makes our final graph more realistic, if we choose small

epsilon values.

As described above, now we can draw the graph of Dirac Delta regularization

defined in formula (2.3) by using the steps explained before.

; : |
Below, figure 2.2 is the graph of Dirac Delta regularization with epsilon =— and
53

within the interval [-5, 5] on x axis. Frequency of the graphic is ~20000.



<) Figure No. 1 i =0l %]

File Edit Yiew Insert Tools Window Help

lcsaa var/ppn

Figure 2.2: Dirac Delta regularization sample with large frequency value
equal to ~20000
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+) Figure No. 1 § =10l x|

File Edit View Insert Tools ‘Window Help

lpsma yar/ [ pp0

Figure 2.3: Dirac Delta regularization sample with small frequency value
equal to 20

In figure 2.3 we select the frequency equal to 20 and resulting graph gets very

rough.
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<) Figure No. 1 ¢ & =10l x|

File Edit Yiew Insert Tools Window Help

Figure 2.4: Dirac Delta regularization sample with very small frequency
value equal to 3

In figure 2.4 we select the frequency equal to 3.

According to the graphs above we must select the correct density value to get the
smother and correct graph. Here there is a threshold. Smaller the density value
slower the graph generation, and memory consumption. Larger the density value

faster the graph generation but rough graph.



2.3 2D modeling of the Dirac Delta regularization for the frequency problem

To show the frequency problem in another perspective we take a part of the

function with its parameters that we planned to use in our future experiments.

Dirac delta function defined in formula 2.3 is used, and the related MatLAB code

segment is below.

Code Segment 2.1: DiracDelta.m file

function y = DiracDelta(eps, x)
y = (1/(2*sqrt(pi*eps))) * exp(-x."2/(4*eps))

= 6{1 —Hj (2.4)

a

In formula 2.4 we use the same parameter that we planned to use in future
experiments. According to these definitions, final code segment that we will use is
below. Only we need to set density and epsilon parameters in the code below. Data
interval of x axis is in [-20, 20]. This code generates 5 pick sets for 5 distinct time

values in the specified properties.

Code Segment 2.2: Program that uses Dirac Delta function
X =10.3,/0:1, 0.71;
a=[2.0,5.0, 8.0;

x = linspace(-20,20, Frequency);
pTime=linspace(1,5,5);

for i = 1:length(pTime)
ParameterRange = pTime(i)-(sqrt(x.2+X(2)"2+X(3)*2)/a(1));
y = DiracDelta(eps, ParameterRange)
hold on

1.C. YOKSEXOGRETIM KURULD
POXUMANTASYON MERKEZA
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plot(x.y)
drawnow;

end

) Figure No. 1 3 =10f x|

File Edit ¥iew Insert Tools Window Help

IDsda rar/ 2o
N
| S e -
[ AR SR L
LA TR 1 1111 N -
- I N A R —
R e
D i L] —_—
-20 -15 -10 5 0 5 10 15 20

Figure 2.5: Dirac Delta regularization sample with large frequency and
epsilon value

Frequency 100000

Epsilon 1
27

In figure 2.5, frequency on X axis is 100000 point in [-20, 20] range and epsilon is
1/2°15. To generate this graphic we set frequency parameter of line 4 of code

segment 2 to 100000. With this parameter for 5 distinct time values, we get 5 distinct
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pick on each side of the origin (Totally 10 picks). When we draw a horizontal line at

the highest value of the picks we see that all are same length.

In figure 2.1, density is 100000. This is time consuming process to calculate the y
values of 100000 distinct x values. For generating this graph it’s not so complex to
generate these much number of points. But this Dirac Delta function is used in other
formulas such as assumptions. In such formulas if we use these much points, it will
take very long time to generate simple time frame of a graph. So we make some
optimization and decrease the number of points or decrease the frequency, to make

calculation faster then before.

Decreasing frequency or number of points makes the graphic to be unrealistic. In
figure 2.5 frequency is 100000. Now we decrease the density to 10000 points. Here

is the result:



<) Figure No. 1 : i 10| x|

File Edit View Insert Tools Window Help s

Dsd& NA~2/ PpPD
50" """"
- TRREPR PR S -
PNl R -
- SR - -
R RS -
i e

I I i I i i

-20 -15 -10 5 0 5 10 15 20

Figure 2.6: Dirac Delta regularization sample with small frequency w.r.t

Figure 2.5
Frequency 10000
Epsilon 1

ZT

When we draw the same line, we see that there are some small length differences

between picks.
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Figure 2.7: Dirac Delta regularization sample with small epsilon w.r.t Figure
2.6

Frequency 10000

Epsilon 1
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Figure 2.8: Dirac Delta regularization sample with smaller epsilon w.r.t

Figure 2.7
Frequency 10000
Epsilon 1
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Figure 2.10: Dirac Delta regularization sample with small epsilon w.r.t
Figure 2.5

Frequency 100000

Epsilon 1
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When we compare the figures between 2.6 and 2.10 we saw that there are big
differences between them. When we look at the function or program segment we saw
that everything is same only the number of points used in predefined interval is

decreasing.

Another point is epsilon value. When we make comparison between figure 2.5
and 2.10 the frequency is same but the epsilon value is different. Resulting graphic

also has differences.
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To conclude, it’s clear that to generate realistic graphics we must use greater

density values, and we must work with high resolution data values which can hold

F like values.

There is a threshold in such decision point. When we use large density and small
data values it takes much time to finish calculation. It requires more powerful
computers or special programming techniques such as parallel programming or
optimization in the code for its algorithm or for platform specific mathematical

processors.

2.4 3D modeling of the Dirac Delta regularization for the frequency problem

Problems explained above is also continuing on three dimensional modeling. In
three dimensional model of the Dirac Delta function we expect to see a cylinder with
an infinite height. Because the frequency value is not large enough we will encounter
with a cylinder which is constructed with different height picks. Below there are
three different snapshot of Dirac Delta function modeled under three dimensional

space.
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Figure 2.11: Dirac Delta regularization sample in 3D space

Frequency 100 in x and z axis
Epsilon 1

2?
Time 3

As explained above, in the figure 2.11 we see a cylinder like object which is
constructed by different height picks. There are some holes around the cylinder again
because of frequency problem. This makes the model unrealistic. To generate more
realistic we need larger frequency values or we will look closer to the model as in
figure 2.12. In the former figure the largest value on y axis is ~60, in the latter figure

the largest value is 1 because of looking very closer to the same figure.
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Figure 2.12: Dirac Delta regularization sample in 3D space (with closer look)

In figure 2.12, we see more realistic model because all picks has the same height.
This makes the model look like a cylinder. But there are also some holes between
picks. To prevent this unrealistic behavior we increase the frequency value and
decrease the performance of model generation. In figure 2.13, frequency value is
250; there is no hole between the picks and as a result complete cylinder looking

model generated.

In two dimensional modeling, increasing the frequency value linearly decrease the
performance linearly too. But in three dimensional modeling, increasing the
frequency means there is an increase in both x and z axis so performance will

decrease square times the frequency.



So generating more realistic models in three dimensional space costs too much
computation time.

<) Figure No. 1
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Figure 2.13: Dirac Delta regularization sample in 3D space (with larger

frequency)
Frequency 250 in x and z axis
Epsilon 1
215
Time 3

Related MatLAB code segment with the above experiment is as below.



Code Segment 2.3: Dirac Delta regularization sample in 3D

clear;

% Define constant vectors
X = T0:3; 0.1, 0.71:

x1 = linspace(-5,5, Frequency) ;
x2 = linspace(-5,5, Frequency) ;
Y = zeros(length(xl));

%epsilon parameter used in DiracDelta
éps =i, L 2%15;

pTime=3;

for i = 1:length(xl)
for j = 1:length(x2)
X(1) = x1(4i);
X(2) = x2(3);
Parameter = pTime-norm(X);
y(i, j) = DiracDelta(eps, Parameter);
end
end

set (gek, iGeler', [1,0:450. 61)

suwf (x1, %2, Vi

axis([min(x1l) max(x1l) min(x2) max(x2) -1.0 Lo07)
drawnow;

26



2.5 Summary

f(x)

Figure 2.14: Frequency effect

In figure 2.14, expected graphic of the function f(x) is shown with curve. Data
interval of the graph is [-20, 20]. Assume that in the first attempt we take the

frequency equal to 5. The resulting graph will be similar to the one in figure 2.15.

f(x)

20

Figure 2.15: Frequency effect

As shown in figure 2.15, the frequency is 5 so we have 5 sample points to draw

the function. Problem is by using these 5 points with their corresponding y values to
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draw the function; we get the curve which is constructed with straight lines. It looks

like our expected graph but not same or similar. This is the first problem that why we

take greater frequency values.

f(x)

Figure 2.16: Frequency effect

20

Assume that the expected graph of f(x) is shown in figure 2.16. We take the

frequency equal to 4. And start to draw the function with these four sample data

point tupples.
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f(x)

— —- ¢

Figure 2.17: Frequency effect

With these four sample data points we find their corresponding y values. The
problem is we don’t take the frequency value as large enough to fit in the support
interval of the original curve. So for four points in figure 2.17, their corresponding
values are zero in f(x) function. Then resulting graph is a horizontal line on x axis.
But in the reality there is a pick in a very small x axis data interval. This is the
second important point that we must take into account while doing further function

modeling.



CHAPTER THREE

THE CAUCHY PROBLEM FOR MAXWELL’S
FOR THE ISOTROPIC MEDIUM

The explicit formulas for the solution of the Cauchy problem for the Maxwell

system in the isotropic case are given in this chapter.

Analysis of these formulas and the simulation of the solution for the Cauchy

problem are given in details.

3.1 Assumptions

In this chapter we will assume that £, [l are positive constant, O = 0, ] is

defined one of the following rules

(A j=eeS(0)6,0),
(A2)  j=eeS(0)00),

(A3)  j=eed()S@),

(A4  j= §5<x>f(r>.

Here,

5(x)=6(x,)8(x,)8(x,) is the Dirac Delta function with the support at

x, =0,x, =0,x, =0;
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1) (t) is the Dirac Delta function with the support at 1 =0;

0(t) is the Heaviside function which is defined by

o(t) = LLt=0 31

T 10.t<0 (3-1a)
0,(t) =16(t) (3.1b)
Remark:

The cases (Al), (A2), (A4) related to the point source with the amplitudes 6, (t),
O(t), f(¢) respectively. The case (A3) is connected with the pulse point source. All

these sources have the direction e and concentrate at the point x =0.

These four types of the current density will be used as a generator of

electromagnetic wave simulator.
We seek the solution of (1.15)-(1.18) in the form

H="cuwiA, E=——aaé+V(p (3.2)

Y7, t

Substituting (3.2) into (1.15) we have

w2 T,

+e0(Vo)+ j

i 3.3
Curl[lcurlA] =g 9°A - ang_‘ a(v(”) (3.3)
U

Using the formula curlcurlA = VdivA — VA we find from (3.3)
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2
L via- g oA 504, V) (3.4)
U yz or? ot ot

+e0(Vo)+ j

We will find V¢ such that

oV 1. ..
s%wa(w):;vmm, Vgl =0 (3.5a)

We have from (3.4), (3.5)

0’A 1 0A
__64 + - =7 35b
o u T T (3:3)

Therefore the problem of finding E, H satisfying (1.15)-(3.1) may be reduced to

the solution of the Cauchy problem for the vector wave equation.

azA 3 aA 1 2 1
or’ PP UE (3.6)
A, =0 (3.7)

and then the solution of (3.5).

Let G(x,t) be a fundamental solution of the Cauchy problem for the vector wave

operator, this means that G(x,t) satisfies

2
%tf =a’AG+16(0)d(), Gl _ =0

<0~ 7

and is given by the formula
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. W M
e)o| t* ——— M
() [f e §(t a] (3.8)
I > =10(1) ———2

where I is the matrix.

G(x,1)=

The solution of (3.6), (3.7) may be found by

A:G*(ljj, (3.9

&

The explicit formulas for the solution of the Cauchy problem (1.13), (1.14) for the

current density j = ced (x)6,(r) will be obtained in this section.

3.1.1 Case (Al)

We have for the case (A1) the following formula

A=G *(é J') =Gy, *[es(x)o, (1)l =

=—1——591(t -HJ. (3.10)




The solution @ = V¢ of the problem (22) may be found by

D(x,1) = 6(1), * a’V div, A =

+ 1 V. div, [i]@ (t - If—’j
47 A a (3.11)

34
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Remark: Here we used the formulas

o0),, 00, Lz ] ’_X.’J _ Tl 2l Lz _ _sz _

—o0

Using (3.11), (3.12) we find the electric and magnetic intensity vectors E, H by

E=—_1 Egt_’_x_’ PR S P i@t—-‘ﬂ (3.12a)
47’ |A] a | 4m’|y] | \xl a
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A= Leel [z _‘ilj H = curl(A), (3.12b)

and using the similar reasoning (or differentiation w.r.t. t formulas

(3.10),(3.11),(3.12) we find for (A2) case (i.e. j= & S(x)6(t)) formulas.

3.1.2 Case (A2)

A= 5 el t—— (3.13)
4ma lx‘ a

PN R | (3.14a)
) zwm Iz }“ )

! a
A= eOlt-—|,  H=curl(A), (3.14b)
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Applying the operator 5—2 to formulas (3.10), (3.11), (3.12) we obtain for the
t

case (A3):

3.1.3 Case (A3)

Alx,t)= H(? é&[z—‘—x—q

4dma 'x‘

(3.15)

(3.16)

(3.17)

Now we rearrange all the formulas above to generate the explicit form of the first

component of vector E. Following are the three distinct explicit formulas for first

three assumptions.
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3.2 Modeling and Analysis
3.21  Assumption 1, E1
In assumption 1 we used the following approach j = ged (x)6,(¢) . In the formula

(3.12) we have the raw calculations for assumption 1.

In explicit form of the formula (3.12), for the first component of vector F is the

following:

E, = AlE,P1+ (ALE,P2* AlE, P3) 18
+ (ALE, P4* A1E, P5) + (ALE, P6 * A1E, PT)’ (3.18)

AIEP2=—1 3[)“151}&,
4ma’|xf 53\ o] JJx

AlE,P3= 9[: —l—x—‘],
al

AlE P4 = - 1 [_ (ex +e, +e3x3)ﬁ
1

3
47, B I
2 2
el‘x] -2x¢
4
3

_2xxe,  2xxe,
4 4 ’
I
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AlEPSze(t—HJ
1 1 k4

a

ALE,P6 =

- ellxl3 + 3xl\xt (ex, +e,x, +e,x;)
4z

6
[

ALE,P7 = e{z —’—xq

aq
Above we separate the formula (3.18) in to seven distinct parts. Each of these
parts is examined respectively to generate its graph.

3.2.1.1 Drawing AlE Pl:

Consider the task to draw the graph of the function

f(x)=AlE P1_1*AlE P1_2%*AlE Pl1_3 (3.19)
AIEPI_1=-—1,

47,
AlElpl—zzli’ ,where

X

AlE Pl1_3= H[t ——!i‘]
PL_ [
a,

x=(x1,x2,x3)e R,

r=1,
x,=0.7,
a =20,

e, =1.0,e, =2.0,e; =4.0

Analysis:

The graph (figure 3.1) below belongs to part 1 of the formula (3.18) above which
is the function on (3.19). It’s a frame at specific time point where f =1. Because
there is a Heaviside function multiplication used in the formula, we observe that

every point is zero outside the front of the wave.
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Figure 3.1: Modelling AIEIPI

b (5, 0

t=1,

a =20,
e, =1.0,
e, =20,
e, =4.0

x, =07,

Je RS,
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Conclusion:

In the formula (3.19), AlE P1_1 is constant, ALE,P1_3 is Heaviside function.
As explained before outside the front is zero because of ALEP1_3. AlE PL_2 is

variadic, for small values of x we get bigger peaks.

3212 Drawing AlE P2:

Consider the task to draw the graph of the function

f(x)= ALE,P2_1%ALE,P2_2%ALE,P2_3, (3.20)

AEPL T —

4ma,” \1 i

AIE,P2_2

[

i g
= X
- \QI
\'—/

X,

AE P2 3="L.
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Figure 3.2: Modeling A]E]PZ

x:(xl.xz,x3)e 1

x, =07,
a, =20,
g =1.0,

e;=2.0,:

e; =4.0
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Analysis:
In the formula (3.20) of the function we can simplify the components to the

following two distinct representations

flx)= P (3.21)
Fla)=1t 3.22
N -

In the former formula (3.21) graph is a conical in the positive y axis, But in the
latter formula (3.22), nominator is X, and this variable is changing in negative to
positive range of values. So the resulting graph includes 2 distinct conical one in

positive y axis other in negative y axis.

Conclusion:

Without their constants AIE,P2_1, AIEP2_2 and AlE P2_3 parts of the
formula (3.20) can be represented any one of the formula (3.21) or (3.22). Because
these parts are in multiplication we can summarize them in the form of formula

(3.22). And the resulting graph will be as in (figure 3.1) as expected.
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3213 Drawing Part A1E P2 & AlE,P3 together:

) Figure No. 1 =10 x|

File Edit Yiew Insert Tools Window Help

DsEa@ rA 2/ 2P0

Figure 3.3: Modelling A1E P2 & AlE P3

Parameters same as in Fig 1 and Fig 2

Conclusion:

Above is the graph of A1E P2 and AlE,P3 of the formula (3.18) together. In the
graph above outside the front is zero. This is because Heaviside function generates 0
values for outside of the front and A1£ P2 and AIE,P3 are multiplied together as a

result from the point of the front of the wave everywhere is zero. N



3.2.14 Drawing AlE P4:

/«(X):“_L _("l-“x t+e,x, +e}x;)x_|+81 Xl: _lelel 25
’ dna, | 5 |A| M
C2xxe,  2xpxsey
) o
<) Figure No. 1 : =10/ x|
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Figure 3.4: Modelling A1E1P4

x=(x|,x3,x3)e R?,

x,=0.7,
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a, =20,
e, =10,
e, =20,
ey, =40

Analysis:
In the formula (3.23) above, there is no special function call (like Dirac Delta or
Heaviside) made and this formula can be reduced to formula (3.22) where the similar

operation applied in Part 2 of formula (3.28).

Conclusion:

As explained in 3.2.2 reduced formula is similar to formula (3.22). Denominator
of the reduced formula is constant. Because the absolute value of the denominator is
taken, result of the reduction is positive. But nominator is summation of some
constant values and some combination of X, X,,X,. Because X,,X, ranges from

positive to negative values the resulting graph has two cones. One’s top is in negative

region others in positive. As a result figure 3.4 is expected graph that we observed.

3.2.1.5 Drawing AlE P5:
Consider the task to draw the graph of the function

¥

()I[t ——J, where the definition of the function is defined in formula
1

(3.24)
(3.1a), (3.1b)
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Flle Edt View Insert Tools Window Help
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Figure 3.5: Modelling AIETPS

x=(x1,xz,x‘;)eR3,
t=1,
a, =20

Analysis:

In the formula (3.23) variable t is constant and its value is set to 1. [x| has dynamic
value where x1 and x2 are in the range of [-2, 2] but x3 is constant and has the value
of 0.7. And also al has the value of 2.0. According to these constants and value
range resulting value of the parameter of Heaviside function is always positive and
for large values of x vector components, result get smaller, for smaller values it gets

larger.
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Conclusion:
From the perspective of the analysis above, resulting picture figure 3.5 is as

expected. There is only one cone in the origin.

3.2.1.6 Drawing Part A1E P4 & ALE PS5 together:

) Figure No. 1
File Edit View Insert Tools Window Help

DEsE& NAA2A/ 2LT

02

1! PR

Figure 3.6: Modelling A1E P4 & ALE, PS5

Conclusion:

In the figure 3.6 above multiplication of part 4 and part 5 can be observed. In part
5 there is a cone inside the front, elsewhere is zero. Value of largest part of the cone
is near to 0.4 so the values inside the front ranges between 0 and 0.4 then the
multiplication of part 4 and part 5 produces same type of graphic as in part 4 but the

scale at part 4 in ) axis becomes smaller then before as we see in the figure above.
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<) Figure No. 1 : -0l x|
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Figure 3.7: Modelling Part6 of Assumtionl (E1)

Conclusion:
In the figure above part 6 generates approximately the some type of graph as in

part 4. So the expected graph is similar to the one in figure 4.



32.1.7 Drawing AlE P7:

+) Figure No. 1

Figure 3.8: Modelling A1E P7

=0, onx e R
f=l,
a, =20

Conclusion:

2

0,() :9(]‘)% is the explicit form of part 7. Graph of 0, is similar to 0,

except the scalar value that we multiplied is larger then the one that we used in 6.

So the peak inside the front is sharper.



3.2.1.8 Drawing Part A1E,P6 & AIE P7 together:

<} Figure No. 1
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Figure 3.9: Modeling A1E, P6 & ALE P7

Conclusion:
Combination of part 6 and part 7 is similar to part 4 and part 5. When we reduce
the formulas without constants we will get the formulas like multiplication of

formula (3.22) and part 5. So the resulting figure is as we expected.

32,19 Drawing All Parts Together:
Following is the graph of all parts that we draw separately up to now. We don’t
have any hesitation about the correctness of the distinct parts that we have
investigated above. From the point of those analyses of distinct parts we can assume

that combination all those parts are with resulting figure (10) is correct.
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Figure 3.10: Modeling Assumtionl E component

3.2.2  Assumption 1, H1
In formula (3.12b) we have found the value of 4 and H . Now we will observe

the first component of  , where

o4, o4,

H, = =
ox, ox,

From the definition of A and Hl we get the following formula
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Now we translate the formula above, to the following explicit one. Without any

derivations included, we can draw the graph for the first component Hl of H.

H, = AlH,Pl- AlH P2, (3.25)
0[,_H}—_%_X_:OI(,MJ
2 ay ) |x a;
AlH Pl=—5 .
477(13_ ’,\‘ i
il
a a, X da,
ALH P2 =—2 22 2
47, |4

3221 Drawing AlH Pl:
We will analyze only the part 1 of the formula (3.25). Because when we take the
X, equal to 0, part 2 will be zero for all other range of variables. From this point,

there is no need to analyze part 2.

Analysis:

Following is the part 1 of the formula (3.25):
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When we reduce the constants and simplify the similar variable operations to

uniform, it will be easier to make some estimation about the resulting graph.

Conclusion:

Resulting simplified formula will look like as the function below:
- X5 x|
f(x)= 49,[1 *H]
\x! a,

This formula is the combination of the formulas that we draw in (figure 3.2) and
(figure 3.5). So the resulting graph is as in (figure 3.11) that we can guess from the

simplified version above.

) Figure No. 1 R =101 x|

File Edit View Insert Tools Window Help

Ded& "AA2A/ PP

Figure 3.11: Modeling AlH Pl
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=1,
fs: =804
e, =80

3.2.3  Assumption 2, E1
In formula (3.14a) we have the formula in raw format. Explicit form of this
formula is:
E; =((A2E,P1*A2E,P2* A2E, P3) e
—=(A2E,P4* A2E P5)+(A2E,P6* A2E,PT)’

A2E,P3= 5[1 —MJ
a,
A2E, P4 = 1 wi
T, |\| M

s c,‘x‘z —;2x,2e,
A
_2xxe, 2.le‘e3}

W

A2E P5= 0[1 —‘A—‘]
1 g
a

A2E,P6 = 8 —afif +3x, M("w:l +epx, +ey,) .
an |

a,

A2E,PT= 6,[r —MJ
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Now we will draw the pieces of assumption 2 separately. In the following
headings each of these parts will be drawn except the ones which are very similar to

the formulas that we draw in assumption 1.

3.2.3.1 Drawing A2F,P1:

) Figure No. 1 ; =10f x|

File Edit View Insert Tools Window Help

D@ rAA/ £OD

Figure 3.12: Modeling A2F P1

Time 1

Epsilon 1
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3232 Drawing A2E P2:

) Figure No. 1 : =10l x|

File Edit View Insert Tools Window Help
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Figure 3.13: Modeling 42F, P2

Time 1

Epsilon 1




3233 Drawing A2E Pl & A2E P2:

wn

) Figure No. 1 : 1ol x|
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Figure 3.14: Modeling A2E P1 & A2E P2

Time 1

Epsilon

2]5




3.24  Assumption 2, H1
From the formula (3.14b) we have
0A, 04,

H, == -
Ofy 0%y

When we make substitution and rewrite the formula we get

e[,_,‘i"] a[,_ﬂl
- e, 0 sy e, 0 a,

Tamon| M| ami oy

We will rewrite the formula above in the explicit form and divide it into two
pieces. These will simplify the controlling mechanism of formulas and we will be
sure that error proof formulas generated. Below is the explicit form with distinct

parts and their corresponding modeling.

H, = A2H Pl - A2H P,

o‘[r—l""J_‘” %5 [, \-\'\J
A2H Pl=—23 e S

4y




3.24.1 Drawing A2H Pl:

) Figure No. 1 =101

File Edt Yiew Insert Tools Window Help
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Figure 3.15: Modeling A2H Pl

Time 1

Epsilon 1
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3.2.5  Assumption 3, E1

From the formula (3.16a) we have the explicit form as:

E,(x,t) = (A3E,P1* A3E,P2) - A3E, P3 + A3E, P4,

il JH}

47m,
A3E,P2= [ J"J
I

[— (e,x, FHes%, +eix, ) %

A3E,PL=

X

1

3 XJ

| «\'fz -2x'e, 2xxe, 2xme | | f]
3 = G o1~ ’

FH P P
g 3, ‘,\‘J(c,x, e, x, He )Jg[f 4 u]

o

A3E P3=

47,

B

4

X

I [ =5
A3E P4 = —[
4

As we did in the previous assumptions, we divide the whole formula into small
picces. Below we will explore each of these pieces separately. Their related

modeling and parameters are given in the headings below.



3251 Drawing A3E,P2:

+) Figure No. 1
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Figure 3.16: Modeling A3FE, P2

Time 1

Epsilon 1




3.25.2 Drawing A3E Pl & A3E P2 together:

) Figure No. 1 = =101 %]
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Figure 3.17: Modeling A3E,P1 & A3E P2

Time 1

Epsilon 1
27




3.2.6

Assumption 3, H1

From the formula (3.16b) we have

H = aﬁ = 94,
"oy, ax,

J[r—li!] 5[:
e; 0 a, e, 0

K
a,
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H, = A3H,P1- A3H,P2,

47[(12" ox,

A

As we did in previous headings we rewrite the formula in explicit form and divide

the formula into more manageable pieces.

A3H,Pl=—
dma "

A3H P2=—22
47,




St M
“)xn x o M
‘Xl a, | a,
AH 2= “ :
4ma,” |x“

Here we don’t take second part in consideration because we take the constant x,

equal to zero. These make the second part also zero for all conditions of other

variables.



3.2.6.1 Drawing A3H Pl a

J Figure No. 1 3 =3 x|
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Figure 3.18: Modeling A3H,P1

[ Time 1

Epsilon 1
215




3.2.6.2 Drawing A3H P1 b:

<) Figure No. 1

File Edit Yiew Insert Tool

DESE& NAA/|[2PD
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=101 x|

Figure 3.19: Modeling A3H P1

Time

0,5

Epsilon

1
215




CHAPTER FOUR

THE CAUCHY PROBLEM FOR MAXWELL’S
FOR THE ANISOTROPIC MEDIUM

4.3 Anisotropic Simple Case

In anisotropic simple case we take the electromagnetic constant £ as diagonal

matrix. Other constants and assumptions that we used in this case are defined below.

gl

0
01, 0=0,j=e6x)), f@) =0

&

o o
o . o

Equations (1.8) and (1.8a) may be written as

9% A, 0A,
——t-a M a0, —L=pa’j, A =0, i=123
ot ot <0

=0, i=123




for j=&8(x)f(t) ,0 =0 we have

0°A
or®

—a’AA, =e,0(x)f (), i=123, Al =0

ilrco0 —
The solution of this problem is given by the formula
4, = [[[fe,(x~ &1~ 2)6(&)f (1)diaé

R4

=,1£8,. (x,0 =7)f(t)de

- E%;%)eia[t 7~ ‘ai'j F)dz

)

i

Let,

f(t) _ sin(a)t),t >0 ] =.le5(x)f(t)
0,t <0 £

then

, wcos(wt),t >0 ” —*sin(wt),t =0
= s t=
) {0,t<0 77) {O,t<0

We have for div A and aidiva

X

Here we can calculate the



Here we can calculate the

OSSN O [t_ﬁ}ﬂf_ {,_\xﬂ
div A 4 ;{axj[aﬂxl}f a, ajalxlzf a,

sy

o2 i 2

J

We find

¢i (X,[) = 0(t)(t) *aiz 'a—leXA
ox,

1

= T ot — T)aiz idiva(x, T)dr
= ox,

i

el 24
a4

Explicit form of the function above has two different form according to the
possibility of the value of 7 and J .



First form, where I = ]

, e. X 1 (X (x 11
G J p—t [ A (A I Pl
¢ —Méﬁg( aj]{‘”a;[ux\}(\xdrxl

i 1
— | ——cosy w| t ——
w { ( a;

A x5
aj2 ‘xl

L |
—

X
+aj2(‘x\

71

(4.2)
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When we make substitution in the above formula, we get:

94 __ & et—M sin t—M 4.3
ot - 47m[2‘x‘ a, a, (4.3)

Here H is defined as usual as the following way,

H= —1—curlA

We omit the modeling of H because of the similarity between the previous ones.

Now we will model the formulas separately. First we will explore the formula ¢, .
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43.1 Modeling formula (4.2):

<) Figure No. 1
Flle Edtt Vlew Insert Tools Wlndow Help

Ipsda/rar/ 200

%10

Figure 4.1: Modelling formula (4.2)

Time 1
Epsilon AL
215
X [x: %x,0:7]
a [2.0, 5.0, 8.0]
e [1.0,2.0,4.0]
Frequency 100
w 1

Here because the formula contains Heaviside function multiplied with a

combination of trigonomeric functions results the figure in 4.1.
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<) Figure No. 1

Modeling formula (4.3):

File Edit view Insert Tools ‘Window Help

DEES NAA/ | PPD

0.015 4

0014

0.005
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=101

Figure 4.2: Modelling formula (4.3)

Time 1
Epsilon Sl
215
X [x. x,.0:7]
a [2.0, 5.0, 8.0]
e [1.0, 2.0, 4.0]
Frequency 100
w 1

In modeling of formula 4.3 because of Heaviside function there is a strict circle

around the graph which is the cut off point of the Heaviside function. And also



because multiplication with trigonometric function sinus, we also get a pick which’s

center is at the origin where the sin function gets its largest value.

4.3.3 Modeling formula (4.2) & (4.3) together:
) Figure No. 1 - -10] x|

File Edit View Insert Tools Window Help

nsEa/"Ar/ 200

g s
! %l(w}}t\\““‘\
it

Figure 4.3: Modelling formula (4.2) & (4.3) together

Time 1
Epsilon L
o
X [ = 0271
a [2.0, 5.0, 8.0]
e [1.0, 2.0, 4.0]
Frequency 100
w 1

Combination of these two distinct parts 4.2 and 4.3, results in the figure 4.3.
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4.4 Anisotropic Complex Case

Modeling Maxwell’s equations under anisotropic medium with material constant

&, which is arbitrary is more complex and time consuming operation. To overcome

this problem first we will observe initial value problem for the vector A and then

diagonalization problem of arbitrary matrix & .

4.4.1 Initial Value Problem for the Vector A

For finding A, we consider the following initial boundary problem

d°A | 0A

+0—-KA=F, xeG, 4.1
or? ¢ ot @)

0A
=0, — =0, :
o el (42)
where Q = 470w, K = ia), F =4rnwj and G is the given bounded domain
Y7,

in R® with smooth boundary 9G .

Assume that @ is symmetric matrix, that is W; =@ Since @ is symmetric, K

is symmetric also.

4.4.2 Diagonalization of the Matrix K

To solve the problem (4.1), (4.2) we will use the following theorem of

diagonalization of a symmetric transformation:

Theorem: Let K a symmetric transformation of the space L,. Then the matrix K
of K can always be reduced to diagonal form by transforming to a new orthonormal
basis e,,¢e,,¢e;.

Before proving this theorem, we need some information about basis

transformation:
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Let e, e,,e, be an orthonormal basis in the space L, and let ¢;,e,,e, be another
orthonormal basis in L,. Clearly, the vectors of the “new” basis ¢,,e,,e; can be
expressed as linear combinations of the vectors of the “old” basis e,,e,,e;. Let 7,
denote the coefficent of e, in the expension of e, with respect to the old basis

vector. Then, the expansion of the new basis vectors with respect to the old basis

vectors, take the form:

€ =Vl t Vit T Y136
€y = V€t Yo T Vo8,

€y = V36 1 V326 1 V3385

or more concisely, e, = y,e

Y APEN
L

The numbers ¥,, can be written in the form of a matrix, called 7 :

You Y2 Vi
T=|¥y, Vy 7Yy |Ormoreconcisely, T = (}/,i )
Yyi Vy2 Vs
Vie Vi Viy
T = Yar  Yar Vay | Or more concisely, T'= (7/,.,)
Var Vs Vay

Proof: A symmetric linear transformation K of the space L, has three (pairwise)
orthogonal eigenvectors. Using this, we assume that a,,a,,a, are eigenvectors of
K, such that (K - A1 )Ezi =0. Suppose we normalize these vectors, by setting

a.

i

T =€
ja]
Then vectors e,,e,,e, make up an orthonormal basis, and are also eigenvectors of

K.
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Since Ke, =Ae,, Ke, =A,ey, Ke, =Ase,, the transformation K has the

matrix form:

N

1

o O

0
/12
0

A=

)
N

3

in this basis. Since the original basis e,,e,,e, and new basis e, e, ,e; are both
orthonormal, the transformation

ey =Vue;

from the former to the latter is described by an orthogonal matrix

T= (yi’i )

we then have

A=TAT

where K is the matrix of K in the old basis and A is its matrix in the new basis.

4.4.3 Reduction the Problem (4.4.1)-(4.4.2)
Using this theorem, we say that there exists 7 such that
T™'KT = A,
where A is the diagonal matrix.

The solution of the problem (4.4.1), (4.4.2) we seek in the form
A=T7'Y,

where Y is the unknown function and T~ =(y,, ) is the matrix which we found

before.

To find the formula for TKA A:
Substituting A=T"'Y into TKA A, we get
TKA A=TKA (I'Y)=TKT (A Y)=AA Y

Hence we obtain

TKA ,A=AA Y .

Multiplying by T equation (4.4.1) and substituting A=7""Y, we get
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9 ([ 9 (1
T—(T"'Y)+TQ—\T"'Y}-AA Y =TF
at2( ) Qat( ) X
2
T J Y+TQT"1a—Y—AAXY=TF
ot’ ot

setting ~ TQT ™ =M = (m, )
TF = §

the equation (4.4.1), (4.4.2) will be written in the terms of Y, as follows:

o, 5 N Ay G 43
~+>m, ——-AAY. =g., x€G, .
o a7 oot (B8 (@3

aY,
f :O’ —L :0, xe G, o
5l | (4.4)
for i=1,2,3.

4.4.4 Sample Modeling for Anisotropic Complex Case

After now most of the operational steps are similar to the anisotropic simple case.

As a sample modeling we assume the current density function j as j = £e§(x)¢9(t)

0A,
and to find E we know that the formula E(x,?)= ——a—‘ + ¢,, will be used. To find E
t

we will do the same things as we did in anisotropic simple case. After all we will

have the resulting explicit form of E as below.

First form, where i = j



ﬁ(t) & Xx.e ‘x‘ (4.5a)
E, L -
= R [ }
el {I_M]
4
o 1\
_ 2 e} xi_')_CL i l'x’ _2'xi2 5 _M
= a, Ix‘ ’xl W |X|4 a;
3e —x2+3xl.x X
e R (G
=t e j

Second form, where i # j

> NiXie; X 4.5b

3
45 =l ’x‘ a, a.

J
__elX_Lé{l_,M)
o\

) ft__x_ti.k —2xl.xj} Q(Z—MJ
h _‘x‘ ‘x[ }XF [ \xr } a;
+ie_j2 —Bx;xj 0 t_’_x_‘

j=1d; M a;
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with this formulas we havent finished the modeling prerequisites. We must find

the matrix K that we mentioned in the heading 4.4.2.

K="w

7,

Here u and c are electromagnetic constants and also @ is constant represented

as matrix. To make our modeling we must find the value of K. @ can be any

arbitrary matrix, first we must transform this matrix into symetric one. This will

make our modeling process very simple.

To generate a symetric matrix from an arbitrary one, we use MatLAB to make the

operations quicker. In MatLLAB there are predefined functions which help us to find
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the Eigen value and Eigen matrix of any arbitrary square matrix. Assume the

following arbitrary square matrix

1.0 34 6.0
K=|6.1 37 4.0
72 55 87

To find the symetric form of the matrix above, we trace the following operations

in MatLLAB.

Code Segment 4.1: Step of Operations from MatLLAB Command Window

()>>K=[13.46;613.74;7.2558.7]

K=
1.0000 3.4000 6.0000
6.1000 3.7000 4.0000
7.2000 5.5000 8.7000

(2)>> [E, EV] = eig(K)

E=

-0.4204 -0.7860 0.1197
-0.4661 0.5821 -0.8670
-0.7785 0.2082 0.4838

EV =
15.8813 0 0
0 -3.1069 0
0 0 0.6256

(3)>>IE =inv (E)
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IE=
-0.5377 -0.4715 -0.7119
-1.0477 0.1282 0.4390
-0.4143 -0.8139 0.7111

(4)>>IE*K*E

ans =
15.8813  0.0000 0

-0.0000 -3.1069 -0.0000
-0.0000 0.0000 0.6256

>>

In the above code segment, we numerate the user inputs of MatLLAB. In the first
input (1), we initialize the arbitrary matrix and give it the name K. In the second
command (2) we find the Eigen values and Eigen vectors of K. To check the
correctness of resulting matrix and vector we take the inverse of Eigen vector and do

the following formulation

A=T7'AT

As in the formula above, multiplication of Eigen vectors inverse, the matrix itself

and its Eigen vector results into the Eigen values of the vector.

By this way we find the value of matrix K and from this point a,,a,,a, are
eigenvectors of K. Notice that «,,a,,a, are constants that we used in vector-

function E defined in (4.5a) and (4.5b).

Now we can model the formula in (4.5). We translate this formula in to MatlLAB

and generate a screenshot with specific parameters given belove.



4.4.4.1 Modeling formula (4.5) - 1

<) Figure No. 1 ; =-10] x|

File Edit View Insert Tools Window Help

NEEHS NAA/ | POD

Figure 4.4: Modeling formula 4.5 with the first component of vector E

Time 1
Epsilon i

215
X [x, %,0.7]
a [2.0, 5.0, 8.0]
€ [1.0,2.0,4.0]
Frequency 100

(o8]
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4.4.4.2 Modeling formula (4.5) - 2

<) Figure No. 1 :
File Edit Yiew Insert Tools Window Help

IDsE& NA2A/|2PLD

Figure 4.5: Modeling formula 4.5 with the second component of vector E

Same parameters used as in

figure(4.4)
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4.4.4.3 Modeling formula (4.5) - 3

) Figure No. 1
File Edt Yiew Insert Tools Window Help

DEE& NAA/ | PED

Figure 4.6: Modeling formula 4.5 with the third component of vector E

Same parameters used as in

figure(4.4)

In figure 4.4, 4.5, 4.6 we represent the snapshot of the wave propagation under
anisotropic complex case. These three snapshot represents three different

components of the electromagnetic vector-function E.



CHAPTER FIVE

CONCLUSION & FUTURE
WORKS

The main results of this thesis are the following
e Explicit formulas for the solutions of the Cauchy problem for the
Maxwell system of anisotropic electrodynamics were obtained for the case
when dielectric permeability is a symmetrical positive defined matrix, the
magnetic permeability is a positive constant, the conductivity vanishes,
density of the current is one of the following electric sources:
o A point pulse source;
o A point source with a constant amplitude with respect to time;
o A point source with function amplitude depending on time.
o Special techniques for animation of wave propagations are developed.
e Graphics and animations were generated by MatLAB and C++
programming language. It gave opportunity to make very fast running

applications.

In the future of this study, we will use matrices to define all the medium
properties. This will require more complex explicit solutions. Again with these

solutions we can generate animations in low frequency values.

Combining the vector components in one graphic representation is another aim. In
the current study, each component of electromagnetic wave vector represented

explicitly.
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Also technological development in computer graphic hardware is very
simultaneous. We can use the graphic cards special futures to decrease the animation

building process time.
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APPENDICES

Appendix A: Development under Microsoft Visual C++

In this chapter we will talk about preparing the OpenGL ‘programming
environment by means of MFC (The Microsoft Foundation Class Library). MFC
encapsulates the Windows API and is a set of thin C++ wrapper around the API. The
set of wizards that come along with Visual C++ ease the creation of a MFC
Windows application development by providing the basic framework required. Thus
we can focus on just adding OpenGL support to this instead of creating a Windows

application from scratch.

With this brief introduction to the OpenGL extension for Windows it is time

to write our first OpenGL program using MFC.

Do the followings step by step

Run Visual C++ IDE (Integrated Development Environment).

From the “File” menu create a new workspace by choosing “New” option.
Choose “MFC AppWizard (exe)” as the project type.

Enter project name as “Examplel” and Choose an appropriate location

In the wizard, choose the option “Single Document” and remove “Printing
and Print Preview” and accept all other defaults.

e Compile and Execute the code.
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#he Untitled - Example1 LT e o
Eile . Edit- Wew Help

DS e T

——— .

‘Ready = NoM

Figure A.1: Result window after operations above
We have the basic stuff to start programming OpenGL code. After this initial
step we will use the same user interface to do coding. As we know, it is the View
class that is responsible for drawing to the Window. So we will make most of the

modifications over View Class.

»  Open ClassWizard and select COpenGLView class. Add message handlers to
the following messages - WM_CREATE (for OnCreate), WM_DESTROY
(for OnDestroy), WM_SIZE (for OnSize), WM_ERASEBACKGROUND
(for OnEraseBkground).

e Add the include statements for the OpenGL header files to the precompiled
header file stdafx.h so that they would not be processed every time we
compile.

Stdafx.h is project specific include files that are used frequently, but are

changed Infrequently

//OpenGL Headers

#include <ghgl.h> //OpenGL Main Library Header
#include <gh\glu.h>  //OpenGL Utility Library Header
#include <gh\glaux.h> //OpenGL Auxiliary Library Header
#include <gNglut.h>  //OpenGL GLUT Library Header

After adding necessary library files you should compile it for testing your

work.



Project Saettings
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Category: l General

OQutput file'name:
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IV Link jncvenﬁen!ally ™ Generate mapfile

I Enable profiling

Project Options:

opengl32.lib glu32.lib glut32.lib glaux.lib /nolago il
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/pdb: "Debug/E zamplel.pdb' /debug /machine: 386 Lj
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Figure A.2: Adding Library Files while linking

A.1 Editing PreCreateWindow()

ample] classes
Chboullg
CEvample1pp
5-## CEwample!Doc
=% CEyampleView
L § Asseilvalid)
" Y CExarplsT¥izn(}
- § “CExampleTView])
& Dump{COumpContest &dc)
- § GetDacument()
o OnDraw(CDC *pDC)

o B

e §{PreCreateWindow[CREATESTRUCT bes)l |-

M2 CMairFrame
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BOOL CExamplelView:: PreCreateWindow{CREATESTRUCT& cs) j
A

ow class or styles heve by w

return CView: :PreCreateWindow{cs);
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- yoid CExamplelView: :OnDraw(CDC* .pDC)
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CExamplelloc* ploc = GetDocument ()
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A0 TO0: add desow oode for pative dats hers _'J

W ; of

Figure A.3: Editing the PreCreateWindow thru ClassView Panel
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Add the WS_CLIPCHILDREN and WS_CLIPSIBLINGS flags to the windows
create structure. “WS_CLIPCHILDREN” excludes the area occupied by child

windows when drawing occurs within the parent window. “WS_CLIPSIBLINGS”

clips child windows relative to each other; that is, when a particular child window

receives a WM_PAINT message, the WS_CLIPSIBLINGS style clips all other

overlapping child windows out of the region of the child window to be updated.
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A.2 Editing OnCreate() and Setting up a Pixel Format and Rendering Context

When we receive WM_CREATE message in our CExamplelView class it is
time to setup Pixel format and initialize the rendering context. Now Open the
OpenGLView.h header file and add the following lines in the public section of the

class:

HGLRC m_hRC; //Rendering Context
CDC*m_pDC;  //Device Context

These variables will be used to set up the rendering context of the window

and its device context.

To capture the WM_CREATE message we will add the OnCreate method to

our class. To add OnCreate message handler do the following:

e Right click over the CExamplel View on the ClassView panel.
e Select the Add “Windows Message Handler...” option.
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Figure A.4: Adding OnCreate Message Handler

In the following step you will see the menu window below. Select the

WM_CREATE then click on the “Add and Edit” button.



95
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Figure A.5: Using WM_CREATE method

Skeleton of OnCreate method will be like this

int CExamplelView::OnCreate(LPCREATESTRUCT IpCreateStruct)

{
if (CView::OnCreate(lpCreateStruct) == -1)
return -1;
// TODO: Add your specialized creation code here
return 0;
}

Instead of writing all the code in OnCreate method we just call
InitializeOpenGL function in OnCreate method. And also we call another function

named SetupPixelFormat in InitializeOpenGL function.

Now again right click over CExamplelView class as shown in Picture Mvc4

and click over the “Add Member Function...” you will see the menu below
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Add Me'mbr Function

K

Lancel |

Furiction Declaratiay;

initislizelpen
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bie .Ei{atected (" Private

I stefic I Wit

Figure A.6: Add Member Function

Type BOOL in the Function Type edit box. It means that our function will return
Boolean value as a result. And type InitializeOpenGL in the Function Decleration

edit box. It is the name of our function.

After clicking the OK button the skeleton of our InitializeOpenGL function is

created as below

BOOL CExamplelView::InitializeOpenGL()

[
/

Now type the code below in InitializeOpenGL function

//Get a DC for the Client Area
m_pDC = new CClientDC(this);

/fFailure to Get DC
iftm_pDC == NULL)
{

MessageBox("Error Obtaining DC");
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return FALSE;
/
//Failure to set the pixel format
if(!SetupPixelFormat())
{
return FALSE;
J
//Create Rendering Context
m_hRC = ::wglCreateContext (m_pDC->GetSafeHdc ());

//Failure to Create Rendering Context

iftm_hRC == 0)
{
MessageBox("Error Creating RC");
return FALSE;
}
//Make the RC Current
if(::wglMakeCurrent (m_pDC->GetSafeHdc (), m_hRC)==FALSL)
{
MessageBox("Error making RC Current");
return FALSE;
/

//Specify Black as the clear color
::glClearColor(0.0f,0.0£,0.0£,0.0f);

//Specify the back of the buffer as clear depth
::glClearDepth(1.0f);

//Enable Depth Testing
::glEnable(GL_DEPTH_TEST);

return TRUE;

Now place a call to InitializeOpenGL function in OnCreateMethod as shown

below.

int CExamplelView::OnCreate(LPCREATESTRUCT IpCreateStruct)
{
if (CView::OnCreate(lpCreateStruct) == -1}
return -1;

// TODO: Add your specialized creation code here
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/nitialize OpenGL Here
InitializeOpenGL();

return 0;

Up to now we prepare the OnCreate method and InitializeOpenGL function.
But SetupPixelFormat function is not ready yet, and also there is a call to
SetupPixelFormat function in InitializeOpenGL function. Now we must prepare the
SetupPixelFormat function. To do so do the same operations described in Picture
Mvc6 but in the Function Decleration edit box write SetupPixelFormat then click

OK. Now skeleton of SetupPixelFormat function is ready as below.

BOOL CExamplelView::SetupPixelFormat()

{
J

Now write the following code in SetupPixelFormat function.

static PIXELFORMATDESCRIPTOR pfd =

{
sizeoff PIXELFORMATDESCRIPTOR), // size of this pfd

1, // version number
PFD_DRAW_TO_WINDOW | // support window
PFD_SUPPORT_OPENGL | // support OpenGL
PFD_DOUBLEBUFFER, // double buffered
PFD_TYPE_RGBA, // RGBA type

24, // 24-bit color depth
000000, // color bits ignored

0, // no alpha buffer

0, // shift bit ignored

0, // no accumulation buffer
0,000, // accwm bits ignored
16, // 16-bit z-buffer

0, // no stencil buffer

0, // no auxiliary buffer
PFD MAIN_PLANE, // main layer

0, // reserved
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0,00 // layer masks ignored

int m_nPixelFormat = ::ChoosePixelFormat(m_pDC->GetSafeHdc(), &pfd);

if ( m_nPixelFormat == 0 )

{
return FALSE;

/

if ( ::SetPixelFormat(m_pDC->GetSafeHdc(), m_nPixelFormat, &pfd) == FALSE)

[
return FALSE;

J

return TRUE;

Let us examine the code step by step. In InitializeOpenGL function first we
get a Device Context for the client area of our drawing panel. For more information
about Device Context refer to the GDI subject in this book. Then we setup the pixel
format of our device context according to our needs. After having a device Context
with the specified pixel format we create a rendering context over this context. For
initial screen font color we use black. We specify the back of the buffer as clear

depth and we enable the depth test for drawn objects on the rendering context.

In SetupPixelFormat function we specify the properties of the rendering
context. To do this we use a PixelFormatDescripter structure. First we fill the
structure with our desired values, and make a call to ChoosePixelFormat function.
Operating System looks for the desired pixel format and if the device capability
supports our needs nothing changed in the structure. If device capability doesn’t
support the desired values then structure is filled with the nearest best values. After
choosing the format we set the pixel format of our rendering context by calling

SetPixelFormat function.
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A.3 Editing OnSize()

Viewport and Viewing Frustum of the scene depends on the size of window
that we will use to draw on. So we must take care about the sizing operation over the
window. In the initial size operation (when the window created) and every other
resize operation occurred by user must be captured and Viewport and Viewing

Frustum must be reinitialized.

The basic operations that occur are setting up the viewport, selecting the
Projection matrix, initializing it and setting up the viewing frustum. The last
operations are selecting the Modelview matrix, initializing it and setting up the

viewing transformations.

As described in Picture Mvc5 add and edit the WM_SIZE message handler to
our CExamplelView class. Skeleton of the OnSize method to handle the WM_SIZE

message will be like this.

void CExamplelView::OnSize(UINT nType, int cX, int cy)

{
CView::OnSize(nType, cx, cy);
// TODO: Add your message handler code here

}
Now add the following code to OnSize method:

GLdouble aspect_ratio; // width/height ratio

f(0>=cxl|0>=cy)
{

return;

// select the full client area

::glViewport(0, 0, cx, cy);



101

// compute the aspect ratio
// this will keep all dimension scales equal

aspect_ratio = (GLdouble )cx/(GLdouble)cy;

// select the projection matrix and clear it
sglMatrixMode(GL_PROJECTION);
::glloadldentity();

// select the viewing volume

2:gluPerspective(45.0f, aspect_ratio, .01f, 200.0f);

// switch back to the modelview matrix and clear it
;glMatrixMode(GL_MODELVIEW);
::glLoadldentity();

In the code we declare a variable to store the aspect ratio i.e the width to
height ratio of the Window as the viewing frustum depends on this. We exit from the
method if the either the width or the height of the window is 0. One reason is to
handle the division by zero error when calculating the aspect ratio. The glViewport
function sets the viewport. Then we compute the aspect ratio, select the projection
matrix and clear it. Setting the Viewing Volume. This means that all further
commands will affect the projection matrix. No we select the Modelview matrix and

initialize it. This means that all further commands will affect the Modelview matrix.

A4 Editing OnDraw()

Most important part of the program is where all rendering operations
performed. Click the OnDraw method name on the Class View Panel. This code
already added by the MFC wizard. This method is called by the framework to render
an image of the document. The framework calls this method to perform screen
display, printing, and print preview, and it passes a different device context in each

case.
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There is a clear sequence of events that occurs in OpenGL programs when it

is time to rerender the scene. These are:

Clear the buffers

Render the scene

Flush the rendering pipeline

Swap the contents of the back buffer if double buffering is being used.

To do the steps described above we add the following code in to the OnDraw

event :

// Clear out the color & depth buffers
::glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

RenderScene();

// Tell OpenGL to flush its pipeline
::glFinish();

// Now Swap the buffers
::SwapBuffers( m_pDC->GetSafeHdc() );

In the code we place a call to the RenderScene method. This method is the
place where all rendering operations takes place i.e. drawing circle, lines, triangles

etc.

Now it is time to add the RenderScene method. As described before in

Picture Mvc6 we add a member function

void COpenGLView::RenderScene ()
{
/

Type of the function is void and name is RenderScene. Just now we don’t write

any code in it.
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A.S5 Editing OnEraseBkgnd() and OnDestroy()

If we have done everything in the right way our program can be compiled and
executed. After executing the program try resizing the window, you will see a very
irritating flicker. Close the application and you will see that there is a memory leak
reported by VC++ debugger in the output window. So we have two problems left to
solve. The flicker occurs because Windows paints the background first and then
OpenGL next. Since we have OpenGL doing the job of clearing the background,
we'll turn off Windows from clearing the background. This can be done by editing

OnEraseBkgnd() member function appropriately.

We do this by returning true from the function.

BOOL COpenGLView::OnEraseBkgnd(CDC* pDC)
{
// TODO: Add your message handler code here and/or call default
//comment out the original call
/return CView::OnEraseBkgnd(pDC);
//Tell Windows not to erase the background

return TRUE;

You can add the OnEraseBkgnd function as described in Picture Mvc5. Just

select the WM_ERASEBKGND and click Add & Edit button.

The next problem of memory leak occurs because we have used the new

operator to allocate memory for the CClientDC object in the SetupPixelFormat
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function. So we have to explicitly de-allocate this memory by using the delete

operator.

In OnDestroy() first make RC non-current, then delete the RC and then delete
the DC. To add OnDelete Event we follow the same steps described above as in the
OnFEraseBkgnd. We just select the WM_DESTROY message instead of
WM_ERASEBKGND. Code will be as below:

void CExamplelView::OnDestroy()

{
CView::OnDestroy();

// TODO: Add your message handler code here

//Make the RC non-current
if{::wglMakeCurrent (0,0) == FALSE)
{

MessageBox("Could not make RC non-current");

//Delete the rendering context
ifl:-wglDeleteContext (m_hRC)==FALSE)

{
MessageBox("Could not delete RC");

//Delete the DC
ifftm_pDC)
{

delete m_pDC;
/
//Set it to NULL
m_pDC = NULL;
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Build and execute the application. It should work fine now without any
memory leaks or flickering. You can find the full code of the program in

EXAMPLEI].

Up to now we prepare the base code of the application. After now we can
modify the RenderScene method to draw objects in the scene. To get more abstract

visual feedbacks from our program we modify the RenderScene method as below

void CExamplelView::RenderScene()

{
//Replace the current matrix with Identity Matrix
glLoadldentity();
glTranslaref{0.01,0.0f,-5.0f);
glRotatef(-30.01,1.0f,1.01,0.0f);

glutWireTeapot(1.0f);



