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ABSTRACT

Early biological treatment studies with the raw leachate did not yield high COD
and nitrogen removals. In order to mmprove biological treatability, the landfill
leachate was subjected to pretreatment by chemical coagulation-flocculation
followed by air stripping of ammonia at pH =12. Three different chemical
coagulants, alum (AL(S0;); ), FeCl; and lime (CaO) were used in different
concentrations for COD and nitrogen removal by coagulation-flocculation. COD
concentrations of the three coagulants at low doses (0.5-1.0 g/L) were comparable.
Considering the problems associated with the use of high coagulant doses such as
more shudge formation and high cost of coagulation, low doses of coagulgmts such as
1 g/L were preferred. Percent COD removals for the three coagulants at the dose of 1
g/L. were almost the same as 45%. Supernatant solution after coagulation with 1g/L
lime at pH =12 was subjected to air stripping at different pH levels to remove excess
ammonia from the leachate. Ammonium concentration was reduced to nearly 700

mg/L from 1200 mg/L after 45 minutes of air stripping at pH=12.

The pretreated leachate was subjected to aerobic biological treatment in an
aeration tank by fed-batch operation. The effects of the feed wastewater COD
content and flow rate on COD and ammonium ions removal were investigated.

Nearly 76% COD and 23% NH,4-N removals were obtained with a flow rate of 0.21
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L/h and the feed COD content of 7,000 mgCOD/L. COD removal efficiency
decreased with increasing COD loading rates. A kinetic model for COD removal was

developed and the kinetic constants were determined by using the experimental data.

In order to improve the extent of COD and ammonium nitrogen removals,
pretreated leachate was subjected to adsorbent supplemented biological treatment in
an aeration tank operated in fed-batch mode by using powdered zeolite (PZ) and
powdered activated carbon (PAC) as adsorbents. Adsorbent concentrations were
varied between 0 g/L and 5 g/L. Percent COD and ammonium-N removals increased
with increasing adsorbent concentrations. COD removals with PAC addition were
significantly higher than those obtained with zeolite. However, zeolite performed
better than the PAC in ammonium-N removal from the leachate. Nearly 87% and
77% COD removals were achieved with PAC and zeolite concentrations above 2
g/L., respectively. Ammonium-N removals were 30% and 40% with PAC and zeolite
concentrations of 5 g/L, respectively at the end of 30 hours of fed-batch operation.
An empirical equation was developed to describe the contribution of adsorption over

biological treatment as a function of PAC and zeolite concentrations.

To further decrease effluent COD and ammonium concentrations, two sets of
repeated fed-batch experiments with different operation times (3x10 h and 5x6 h)
were performed with and without PAC addition When the operation time was
divided to 3x10 hours and 5x6 hours, better results were obtained than that of the 30
hours single cycle operation with and without PAC addition. The effluent COD and

NH4-N concentrations were 365 mg/L and 360 mg/L in the repeated fed-batch



operations of 5x6 hours with 2 g/L. PAC addition. To observe system performance at
longer operation times, a three-cycle operation with 30 hours durations was used
(3x30 h) in repeated fed-batch mode in the presence of 2g/L PAC. At the end of 90
hours repeated fed-batch operation (3x30 h), the effluent COD and NH4-N
concentrations were 285 mg/L and 224 mg/L, respectively which are considerably
lower than those obtained with 5x6h operation. Apparently, longer operation times in

repeated fed-batch operation resulted in better effluent water quality.

Effects of N/COD ratio in the fed wastewater on COD and ammonium removal
in PAC added biological treatment were investigated. Percent COD removals
increased and the final COD contents decreased with increasing Lyn.n/Leop ratio.
Lnnsn/Lcop=0.05-0.08 ratio was optimum resulting in 85% COD and 44 % NHy-N
removal. Percent COD removal decreased to 78%, when Lyp,n/Lcop was reduced.

to 0.03.

Chemical oxidation was used to further reduce COD content of landfill leachate
after PAC added biological treatment. Three oxidizing agents (H,O,, Fenton’s
reagent, NaOCl) were used in different concentrations for chemical oxidation.
Chemical oxidation by Fenton reagent resulted in higher COD removals as
compared to H,O, and NaOCL Nearly, %68 COD removal, 95 mg/L effluent COD

and 2 mg/L NH;-N have been obtained with 150/250 mg/I. H,O,/FeSO; ratio.



OZET

Yiiksek miktarlarda KOI, amonyum azotu ve toksik madde varhigindan dolayi,
deponi alanlar sizint1 suyunun biyolojik arstimi 6nemli zorluklar arzeder ve diisiik
giderme verimi ilé gerceklesir. Sizint1 suyunun biyolojik olarak artilabilirliligini
arttrrmak i¢in 6n arttim olarak koagiilasyon-flokiilasyon ve pH=12 de amonyumun
havalandirma ile giderimi uygulanmgtir. Koagiilasyon-flokiilasyon yontemiyle KOI
ve amonyum giderimini saglamak i¢in farkh dozlarda AL(SO,); , FeCl; ve kireg
(Ca0)’ den olusan 3 kimyasal kogiilant kullanilmigtrr. Bu #i¢ koagiilantm KOI
giderim verimleri diisiik dozlarda karsilastrilabilir (0.5 — 1 g/L). Yiksek miktarda
kullamilan koagiilantin daha fazla ¢amur olugturmasi ve koagiilantlarm yiiksek
fiyatlan diiginildiiginde, 1 g/L gibi diigik koagulant dozlar: tercih edilmigtir. Bu
i koagulantin 1 g/L derisiminde KOI giderme verimleri yaklagik olarak %45
olarak bulunmustur. 1 g/L kire¢ dozn ve pH=12" de uygulanan koagiilasyondan
sonra iist sjvidaki asmm amonyumu gidermek icin farkh pH® larda havalandirma
uygulanmmstor. pH=12" de 45 dakika somrasinda bavalandmmayla amonyum

konsantrasyonu 1200 mg/L" den yaklagik 700 mg/L* ye disiiriilmigtiir.

On armilmus szt suyu havalandirma tankmda yan sirekli (fed-batch)
isletmeyle aerobik biyolojik aritima tabii tutulmustur. Giris suyundaki KOJ derisimi
ve debismin KOI ve amonyum iyonlarmm giderimleri Gizerine etkisi arastmilmistrr.

Ginisteki 7000 mg KOI/L ve 0.21 L/sa debide yaklagik olarak %76 KOI ve %23
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NH4-N giderim verimlerine ulagitmigtrr. KOI giderim verimleri KOl yiikleme
oranlarimin artmasiyla azalmigtr. KOI giderimi igin bir kinetik model gelistirilmis

ve deneysel veriler kullanilarak kinetik sabitler bulunmustur.

KOI ve amonyum azotu giderimlerini arttirmak igin 6n artilmis sizinti suyuna
yan siirekli (fed-batch) isletilen bir havalandirma tankmnda zeolit ve aktif karbon
ilavesiyle adsorpsiyonlu biyolojik aritim uygulanmigtir. Adsorban konsantrasyonlari
0-5 g/ arasinda degistirilmistir. KOI ve amonyum giderimleri adsorban
konsantrasyonu artmastyla birlikte artmgtir. PAC eklenmesiyle elde edilen KOI
giderimleri zeolit eklenmesiyle elde edilenlerden daha yﬁksek cikmustr. Buna
ragmen zeolit, sizint1 suyunda amonyum-N giderimleri acisindan PAC’ tan daha iyi
sonug vermistir. 2 g/L’” nin {izerindeki zeolit ve PAC ilavelerinde yaklagik olarak
strastyla %87 ve %77 KOI giderim verimlerine ulagilmigtr. Yarn siirekli isletmede
30 saatin sonunda 5g/. PAC ve zeolit konsantrasyonlarinda amonyum azotu
giderim verimleri swastyla %30 ve %40 olarak bulunmustur. PAC ve zeolit
konsantrasyonlarnm bir fonksiyonu olarak, biyolojik aritimm {izerine adsorpsiyon

etkilermm belirlemek amaciyla empirik bir esitlik gelistirilmigtir.

Cikistaki KOI ve amonyum konsantrasyonlarmm azaltmak icin, 6o arttilms sizant1
suyunun yar: siirekli biyolojik armtimi ardisik olarak farkli operasyon zamanlarmda
(30 sa, 3x10 sa, 5x6 sa) PAC varhgmda ve yoklugunda uygulanmistrr. Ardigik yan
siirekli isletmede isletme zamam 6 saat olarak bes defa tekrarlandigmda, 30 saatlik
tek igletmeye gore daha yiiksek KOI giderimleri saglanmigtir. Ardisik yan sirekli

isletmede (PAC=2 g/L) isletme zamam 6 saat olarak bes defa tekrarlandiginda,



toplam 30 saatlik peryodun sonunda ¢ikis KOI and NH4-N konsantrasyonlari 365
mg/L. ve 360 mg/L olarak bulunmustur. Sistemin uzun zamanda performansini
gbrmek igin ardigik yari siirekli isletmede (PAC=2 g/L) isletme zamani 30 saat
olarak 3 kez tekrarlanmigtir. Toplam 90 saatlik siirenin sonunda ¢ikis KOI and NH,-
N konsantrasyonlar: 285 mg/L. ve 224 mg/L olarak bulunmustur. Bu degerler 5x6
saatlik isletmede elde edilenlerden daha diistiktiir. Ardisik yar1 stirekli isletmede

isletme sliresi artiginda ¢ikis suyu kalitesi de yiikselmektedir.

PAC ilaveli biyolojik arttunda giris suyundaki N/KOI oranmin KOI ve
amonyum giderme verimlerine etkisi aragtirilmgtir. Lypsn/Lxkor  Oranmin
artmasiyla, KOI giderim verimleri artmus ve ¢ikis konsantrasyonlar1 azalmustir.
Daha yliksek KOI giderim verimlerini saglamak i¢in optimum Lypsn/Lkor oram
olan 0.05-0.08 arasinda %85 COD ve %44 NH,4-N giderim verimlerine ulagilmisitir.

Lxran/Lxor oram 0.03 oldufunda, KOI giderim verimi %78’ e diismektedir.

Cikss suyu KOI derigimlerini kabul edilebilir seviyeye diigiirmek icin ileri aritim
olarak kimyasal oksidasyon kullamlmistrr. Bu amagla biyolojik artimdan sonra
toplanan sizmti suyu Gi¢ degisik oksidant kullanilarak (H,O,, Fenton’s oksidant,
NaOCl) kimyasal oksidasyona tabii tutulmustur. Fenton oksidasyon deneylerinde
150/250 mg/L. H,O,/FeSO, oraninda %68 giderim verimi, 95 mg/L ¢ikis KOI ve 2

mg/L. NH¢-N derisimi ile HO» ve NaOC] deneylerinden daha iyi sonuglar elde

edilmigtir.
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CHAPTER ONE
INTRODUCTION

1.1. INTRODUCTION

Because of high COD (6,000 — 15,000 mg/L) and ammonium ion (500 - 3000
mg/L) contents, high COD/BOD ratio and also due to the presence of toxic
compounds such as metal ions, COD removals by direct biological treatment of
municipal landfill leachates are usually low (Sletten et al, 1995; Amakrane et
al.,1997; Irene and Lo, 1997; Chiang et al., 2001; Park et al., 2001).

Landfill leachate treatment has been given significant attention in recent years
especially for municipal areas (Diamadopoulos et al., 1997; Bohdziewicz et al,
2001; Ding et al, 2001; Geenens et al., 2001; Abn et al., 2002). Depending on the
nature of the land-filled solid wastes, the active microbial flora, characteristics of the
soil, the rainfall patterns and the age of the landfill the composition of the landfill
leachates present variations (Chen, 1996). Young landfill leachates are usually
treated more easily as compared to the old ones. For this reason, the treatment
strategy mainly depends on the characteristics of the leachate.

Methods developed for treatment of landfill leachates can be classified as
physical, chemical and biological methods. Since it is difficult to obtain satisfactory
treatment efficiencies and effluent water quality by using anyone of those methods
alone, usually a combination of physico-chemical and biological methods are used.
Among the physical methods used for leachate treatment sedimentation, air-
stripping, adsorption, membrane filtration are the major ones (Amakrene et al., 1997,
Bohdziewicz et al., 2001; Morawe et al..1995; Trebouet et al., 2001). These methods
are usually used in combination with chemical and biological methods. Coagulation-
ﬂocculatioﬁ (Amakrane et al.1997; Ahn et al, 2002), chemical precipitation,
chemical-electrochemical oxidations (Chiang et al, 2001; Lin and Chang, 2000;



Steensen, 1997; Marttinnen et al., 2002) have been the major chemical method used
for the landfill leachate treatment. Bio logical treatment methods used for the leachate
treatment can be classified as aerobic, anaerobic and anoxic processes which are
widely used for the removal of biodegradable compounds. Physical-chemical
methods are usually used along with the biological methods mainly to remove non-
biodegradable compounds from the leachate (Bohdziewicz et al., 2001; Ahn et al,
2002; Geenens et al.,2001; Trebouet et al., 2001).

A number of physical-chemical methods such as nanofiltration. air-stripping and
ozonation have been tested for their efficiency in COD, ammonium and toxicity
removal by Martinnen et al (2002). Nearly, 66% COD and 50% ammonia have been
removed by nanofiltration. Air-stripping at pH =11 resulted in 89% ammonia
removal at 20 °C within 24 hours. Ozonation increased the concentration of rapidly
biodegradable COD. However, none of the tested methods were effective in toxicity
removal. Physicochemical methods have been used in combination with
nanofiltration for treatment of landfill leachate by Trebouet et al (2001). pH
modifications and coagulation with FeCl; have been tested to remove foulants from
the surface of the membranes. Nanofiltration has been found satisfactory for removal
of refractory COD from the leachate used.

In ammonia stripping by 2 hours of aeration, ammonia removal was 72% at |
pH=12 while the removals were around 20% at pH=10 and pH=11. Ammonium
nitrogen removals by air stripping were 45%, 80% and 85% for 6 hours, 12 hours
and 17 hours aeration at pH = 11, respectively.(Oztiirk 1. et al.,2002)

Air stripping of landfill leachate bas also been studied by Kabdash et al.,(2002)
Young leachate sample used in this study had COD and ammonia concentrations of
22.255 and 2,410 mg/L. respectively. Ammonia removal by stripping was found
more effective at alkaline pH as expected. Air stripping of leachate provided COD

removals over 80%.



Ammonium removal from landfill leachate by chemical precipitation was
investigated by Li et al (Li et al.,1999; Li and Zhao, 2001). Ammonium ions were
precipitated as magnesium ammonium phosphate (MAP) with the addition of
MgCh.6H,0 and Na,HPO4.12 H,O with a Mg/NHy/ PO, ratio of 1/1/1 at pH of 8.5-
9. Ammonium ion concentration was reduced from 5,600 mg/L to 110 mg/L within
15 minutes by this method.

Chemical oxidation methods have been applied to biologically pretreated landfill
leachate by Steenson (1997). Non-biodegradable compounds were removed by H,0,/

UV, ozone and ozone/fixed bed catalyst methods to achieve desired effluent water

quality.

Struvite (MAP) precipitation was investigated by Oztirk 1. at al.(2002).
Ammonium content of anaerobically pretreated raw landfill leachate effluent with an
ammonium concentration of 2,240 mg/L was reduced to 250 mg/L by struvite (MAP)
precipitation. Maximum ammonium removal observed was 8%% at pH of 9.2
indicating high ammonium removals from anaerobically pre-treated leachate

Amokrane A. et al. used coagulation-flocculation as pretreatment of stabilized
landfill leachates. Although their optimal doses were identical (0.035 mol/L of Fe or
Al), Ferric chloride has produced better results than aluminium sulfate in the removal
of turbidity (95% on 87%) and COD (55% on 42%). The optimal pH values obtained
at the optimal coagulant dose were 5 for ferric chloride and 5.5 for aluminium
sulphate(Amokrane A. et al., 1997)

The oxidation of organics resisting to biological decomposition process in
leachate by means of hyvdrogen peroxide with ferrous ions in the medium (Fenton's
;eactions) was investigated experimentally. It is illustrated that some amount of non
biodegradable organic substances in leachate can be removed by Fenton’s reactions.

(Kurt U. et al, 2002)



Pressure driven membrane techniques have been applied to biological treatment
of landfill leachate (Bohdziewicz et al, 2001). Several hybrid processes such as
activated sludge-chemical oxidation, activated sludge-ultrafiltration-chemical
oxidation and activated sludge-ultrafiltration-reverse osmosis have been tested for
landfill leachate treatment. Activated carbon adsorption process has been used along
with biological treatment for effective treatment of landfill leachate (Morawe et al.,
1995; Cecen et al., 2002). Non-biodegradable organics, inert COD and the colour
have been reduced to acceptable levels by activated carbon column treatment of
biologically treated landfill leachate.

Giilgen, H. et al. (2002) carried out studies on leachate treatment by combined
anaerobic and chemical oxidation methods. Anaerobic treatability studies have been
carried out, by an anaerobic fluidized bed reactor (AFBR). The effluents from the
AFBR were additionally treated by Fenton’s oxidation to remove inert COD. In the
AFBR, COD removals of 88-90% were achieved for organic loading rates of 4-15 kg
COD/m’.d. Maximum COD removal by Fenton’s oxidation was obtained at pH of
2.5. For the first sample containing 2 kg COD/ m’, optimum H,O, dosage
maximizing the COD removal was found to be 1200 mg/L for 1800 mg/L. Fe'%.
Under these conditions maximum COD removal of 85% was achieved.

Anaerobic treatment is usually more advantageous as compared to aerobic
treatment due to high COD content and high COD/BOD ratio of the landfill leachate.
Anacrobic biological treatment of landfill leachate has been investigated by many
investigators (Timur and Ozturk, 1999; Im et al, 2001; Kennedy et al, 2000;
Kettumen et al., 1996). Up to 92 % COD removals have been obtained by using
upflow anaerobic sludge blanket reactors (Kennedy et al, 2000). Anaerobic and
sequential anaerobic-aerobic reactors have been used for landfill leachate treatment
at different temperatures such as 11 °C and 24 °C (Kettunen et al, 1996). Nearly
75% COD remowvals have been achieved by anaerobic treatment at 24 °C with a 10
hour HRT. Aerobic treatment following the anaerobic process removed 45-75% of
the COD left afier the anaerobic treatment resulting in effluent COD of less than 380



mg/L. The overall COD removal in the sequential process was 80-90% with nearly

80% ammonium removal.

Aerobic biological treatment of landfill leachate has been studied by using both
suspension and biofilm cultures (Diamadopoulos et al, 1997; Loukidou and
Zoubatis, 2001; Maehlum, 1995; Shiskowski and Mavinic, 1998). Maehlum (1995)
used on site anaerobic-aerobic lagoons and constructed wetlands for biological
treatment of landfill leachate. Overall N, P and Fe removals obtained in this system
were above 70% for diluted leachate. Aerobic treatment of domestic leachates in a
sequencing batch reactor (SBR) with a residence time of 20-40 days resulted in
nearly 99% NH4-N removal (Irene and Lo, 1997). Combined treatment of landfill
leachate and domestic sewage was investigated by using an SBR consisting of filling,
anoxic, oxic and settling phases (Diamadopoulos et al., 1997). When the ratio of
sewage to leachate was 9/1, nearly 95% BOD and 50% nitrogen removals have been
obtained at the end of the daily cycles. Loukidou & Zouboulis (Loukidou and
Zoubalis, 2001) have used moving bed biofilm processes by using polyurethane and
granular activated carbon (GAC) support particles in an SBR reactor. Nearly
complete removal of nitrogen and satisfactory removals of COD, colour and turbidity
have been achieved. A combination of anaerobic-aerobic and rotating biological
contact (RBC) processes has been used for leachate treatment by Park et al (2001).
The effluent of the RBC process was subjected to flocculation-sedimentation;
adsorption and finally reverse osmosis processes and nearly 98% of the organic

materials of low MW have been removed.

Autotrophic denitrification of landfill leachate by using elemental sulfur packed
bed columns have been achieved by Koenig and Liu (1996). Nitrate ions produced in
nitrification process have been removed effectively by using Thibacillus denitrificans
in the column reactor. Imai et al (1993) used activated carbon fludized bed reactors
for removal of refractory organics from landfill leachate. Nearly, 60% and 70%
Areﬁactory organics and nitrogen have been removed by adsorption coupled
biological treatment in activated carbon fluidized beds.



Zouboulis et al., (2001) used enzymatic degradation and optimized the
performance, especially for the removal of nitrogen compounds and of biodegradable
organic matter in leachate. It was found that the enzymatic process was able to
remove organic matter effectively (expressed as BODs and COD), nitrogen content,

color and turbidity.

Combined chemical and biological treatment of landfill leachate has also been
investigated. Geenens et al (2001) used ozone pre-treatment before biological
treatment of landfill leachate in an activated sludge unit. COD/BOD ratio was
decreased from 16 to 6 by ozonation which improved the efficiency of the activated
sludge treatment. Coagulation by FeCl; and zeolite treatment for ammonium removal
before biological treatment has been shown to improve biological treatability of
landfill leachate by Ahn et al (2002). Chemical precipitation of ammonium present in
landfill leachate by addition of MgCl, and Na,HPO, and formation of magnesium
ammonium phosphate (MAP) has also improved biological treatment efficiency (Li
and Zhao, 2001).

In neither one of the aforementioned studies, different adsorbents were tested in
adsorbent added biological treatment of pre-treated landfill leachate in a fed-batch
operated aeration tank. Therefore, it is the major objective of this study to investigate
the adsorbent added biological treatment of landfill leachate by using different
adsorbents such as powdered activated carbon (PAC) and powdered zeolite (PZ).
Flocculation-sedimentation of inert organic compounds by lime addition followed by
ammonia stripping by air have been used as pretreatment to improve the biological
treatability of the leachate. Pre-treated leachate was subjected to adsorbent added
aerobic biological treatment by fed-batch operation in an aeration tank. Biological
treatment of pretreated landfill leachate was investigated in the absence and presence
of adsorbents. In biological treatment experiments feed COD content and flow rate
were changed as variables. In adsorbent added biological treatment feed flow rate
and COD content were kept constant while the tvpe and concentration of adsorbents
were changed. COD and ammonium-N removals were quantified as a function of the

concentrations of the adsorbents. Control experiments devoid of organisms and



adsorbents were carried out in order to quantify the rate and extent of COD and NH;-

N removal.

1.2. Theoretical Background

Fed-batch operation of an aeration tank involves slow addition of highly
concentrated wastewater or nutrient media into aeration tank with no effluent removal
until the tank is full Aeration tank contains highly active and dense organisms at the
beginning of operation. Concentrated or toxic wastewater is diluted inside the reactor by
slow feeding resulting in low inhibition and relatively high COD removal rates as
compared to claésical continuous operations such as the activated sludge process.

Fed-batch operation is different from sequencing batch reactor (SBR) operation.
Concentrated feed wastewater is added slowly or intermittently into the aeration tank
without effluent removal in fed-batch operation. However, filling, aeration,
sedimentation and effluent removal phases are applied in sequence in a batch operated
reactor in sequencing batch operation. Certam amount of sludge was removed from the
reactor everyday to adjust the sludge age. Theory of fed-batch operation is presented in
many texts (Shuler and Kargi, 2002; Pirt, 1975) and is briefly summarized below.

As the feed wastewater is added slowly, the liquid volume in the reactor increases
with time linearly according to the following equation since no effluent is removed.

V=V,+Qt (1.2.1)

When the system was operated with feed-back controlled addition of the feed, the
substrate (COD or BOD) concentration remains constant at a low level or nearly zero
which is called the 'Quasi Steadv-State' at which dS/ dt=0 and dX/ dt =0
At quasi steady-state.




KD
(123)

or S=
Hm-D

where D is the dilution rate (Q/ V = 1/ 6y).

As a result of increase in reaction volume, dilution rate (D= Q/V) decreases with
time in this type of operation resulting in a decrease in specific growth rate (u).
Biomass concentration (X) remains almost constant; however, total amount of biomass

(Xt = X V) in the reactor increases as a function of time according to the following

equation.
Xr=X1o+QY (S,-S) t (124)

where Y is the growth yield coefficient (gX/gS), and S, is the feed substrate (BOD or
COD) concentration (gS/L) and Q is the flow rate ( m*/h).

1.2. Objectives and Scope

Major objectives of this thesis can be summarized as follows;

e 1o select an effective and low-cost adsorbent for use in landfill

leachate treatment by adsorption

. to select an effective microbial culture for biological treatment of
leachate.

. to enhance biological treatability of landfill leachate by pretreatment

. to investigate COD and ammonium removal performance of
adsorptive biological treatment by fed-batch operation.

. to investigate the performance of repeated fed-batch experiments for
COD and ammonium nitrogen removal

. to explore the effects of feed COD/N ratio on COD and ammonium

removal in PAC added biological treatment



. to investigate COD removals from biologically treated leachate by
chemical oxidation
. to determine kinetic constants by using experimental data.

In the first part of the thesis, compositions of the landfill leachate obtained from
the Harmandah Landfill area in Izmir, Turkey were determined. Adsorption capacity
of low cost adsorbents like zeolite, bentonite, kaoline, clay, wood ash. and wood chip
in addition to PAC (powdered activated carbon) were investigated. Activated sludge
cultures obtained from Izmir Pak-Maya Yeast Industry, Izmir Domestic Wastewater
Treatment Plant, [zmir Pmar Meat Industry were tested for biological treatment in
order to select a suitable microbial culture. Early biological treatment studies with
the raw leachate did not yield high COD and nitrogen removals, for this reason the
leachate was subjected to pretreatment by chemical coagulation-flocculation
followed by air stripping of ammonia at pH =12. Three different chemical
coagulants, alum (AL(SO4);), FeCl; and lime (CaO) were used in different
concentrations for COD and nitrogen removal by coagulation-flocculation. COD and
NH4-N contents of the leachate were reduced to desired levels by pre-treatment.

In the second part of the thesis, two sets of experiments were performed for the
fed-batch biological treatment of the pre-treated landfill leachate. In biological
treatment studies, effects of different COD loading rates on the reactor performance
were investigated. Kinetic constants were determined by using experimental data. In
order to increase COD and ammonium removal rate, pretreated leachate was
subjected to adsorbent supplemented biological treatment in an aeration tank
operated in fed-batch mode by using powdered zeolite (PZ) and powdered activated
carbon (PAC) as adsorbents. Empirical models were developed to quantify the
contribution of adsorption.

" In the third part. repeated fed-batch experiments were performed in order to
decrease effluent COD and ammonium concentrations. Two sets of repeated fed-
batch experiments were performed with and without PAC addition with different
cvcle times (3x10 h and 5x6 h) and total operation time of 30 hours. Afier these
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experiments, effects of the feed N/COD ratio on COD and ammonium removal in
PAC added biological treatment by fed-batch operation were investigated.

In the final part of the thesis, chemical oxidation experiments were carried out
afier biological treatment by using H>O», Fenton’s reagent and NaOC] as oxidizing
agents. Different dosages were used in chemical oxidation experiments to obtain low

effluent COD and ammonium concentrations.
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CHAPTER TWO
MATERIALS AND METHODS

2.1 Experimental setup

Figure 2.1.1 depicts a schematic of the experimental setup. The system consists of
a feed reservoir, a fed-batch aeration tank, pipes, wastewater and air pumps and
diffusers. Feed reservoir was placed in a deep refrigerator to keep the temperature
below 5 °C in order to avoid any decomposition. A plexiglass aeration tank of 20 cm
diameter and 60 cm height with a total volume of 18.8 liter was used throughout the
studies. Wastewater in the tank was aerated with the aid of an air pump and diffusers.
Wastewater was fed to the reactor by using a peristaltic pump with adjusted flow rates
varying between 0.05-0.6 L/h.
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2.2. Wastewater Composition

Synthetic wastewater used throughout the studies was composed of pre-treated
leachate and KH,PO,. Total nitrogen and phosphorous concentrations in the feed
wastewater were adjusted to vield COD/N/P ratio in the feed as 100/10/1.5. Powdered
activated carbon (PAC) and zeolite (-200 mesh) were added to the tank every hour
during the course of operation in desired amounts. Feed COD concentration was varied
in biological treatment experiments. However, the feed COD content and the flow rate
were kept constant at CODo = 7,000 mg/L and Q = 0.15 L/h during adsorptive
biological treatment while the concentrations of the adsorbents were changed. Typical
waste water composition after pre-treatment was COD = 7,000 mg/L and NH;-N = 700
mg/L. KH,PO, was added to the pre-treated leachate externally to adjust phosphate-P
concentration to the desired level

2.3. Organisms

Activated sludge culture was obtained from the wastewater treatment plant of PAK-
MAYA Bakers Yeast Company (Izmir, TURKEY). The activated sludge culture was
adapted to the leachate by cultivating the organisms in the diluted leachate in aeration
tanks. Adaptation and cultivation medium had COD/N/P ratio of 100/10/1.5 with
CODo = 4000 mg/L. Some stock cultures were preserved in the freezer in frozen form.
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2.4. Experimental Procedure
2.4.1. Experiments with Erlenmeyer Flasks

2.4.1.1. Selection of Adsorbent

The adsorbents used for adsorption were powdered activated carbon (PAC),
zeolite, bentonite, kaoline, clay, wood ash, wood chips. The particle diameters of
adsorbents were -200 mesh (D,<74 pm).

Experiments were carried out on a gyratory shaker in 250 mL flasks with 200 mL
reaction volume at T=2511 °C, pH=710.5 and 200 rpm. Adsorbent concentration was
kept constant at 1 g/200 mL. Control flasks contained only landfill leachate without
any adsorbent. Samples withdrawn were centrifuged at 6000 rpm for 30 minutes.

2.4.1.2. Selection of Microbial Culture

Activated shudge cultures were obtained from Izmir Pak-Maya Yeast Industry,
Izmir Domestic Wastewater Treatment Plant and Izmir Pmar Meat Industry. The
flasks contained with 180 mL wastewater and 20 mL culture and were incubated in
an incubator shaker for 54 hours at T=25+1 °C and rotational speed of 200 rpm. A
control flask with no inoculation was also used. Samples were removed and
centrifuged at 6000 rpm for 30 minutes to remove organisms.

2.4.2. Pretreatment Experiments

Pre-treatment of the landfill leachate consisted of coagulation-sedimentation
followed by air stripping of ammonia at pH=12. Coagulation-sedimentation
experiments were carried out by using a jar-test apparatus. Different coagulants (FeCl,
lime and alum) were added in desired concentrations onto the raw leachate in 1 liter
beakers. The contents were mixed fast at 200 rpm for 2 minutes followed by a slow
mixing at 20 rpm for about 30 minutes and were sedimented for about 1 hour. The
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effluent of the flocculation step was subjected to air stripping at different pH for a

desired period to remove ammonia.
2.4.3. Experiments with Fed — Batch Operation

Biological treatment experiments were started batch wise. About 5 liter of pretreated
leachate was placed in the aeration tank and inoculated with the activated sludge culture
pre-adapted to the leachate. Reactor content was acrated for several days to obtain a
dense culture. At the end of batch operation, reactor contents were sedimented and two
liters of the supernatant was withdrawn before continuous feeding of the medium was
started without any effluent removal.

Powdered activated carbon (PAC) and powdered zeolite (PZ) of -200 mesh were
added manually to the aeration tank every hour to adjust the adsorbent concentrations to
the desired level. Temperature, pH and dissolved oxygen of the medium during
operation were T=20+2 C, pH = 8.0 + 0.5 and DO = 3 £ 0.5 mg/L. The reactor liquid
volume increased linearly with time depending on the flow rate. Experiments continued
for thirty hours and were run twice to test the reproducibility of the results. Since the
results of the replicates were almost the same, no further triplicates were run. A control
experiment devoid of organisms and adsorbent (C) was run under the same conditions
for each experiment and COD concentrations were quantified. Simultaneous
experiments were conducted by using only adsorbents without the organisms for
adsorption alone (A) and only with the organisms without any adsorbents for biological
oxidation alone (B) under the same conditions along with the adsorbent added
biological treatment (AB). Sludge age (©.) was arranged as 10 days in all fed-batch
experiments.

2.4.4. Chemical Oxidation Experiments

Post-treatment of the landfill leachate was accomplished by chemical oxidation. -
Different oxidizing agents (H,O,, Fenton’s Reagent and NaOC]) were used in desired
concentrations for chemical oxidation of biologically treated landfill leachate. COD
measurements were made to quantify the extent of COD removals.
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2.4.4.1. Chemical Oxidation Experiments using H,O,

The efficiency of this oxidizing agent was examined for further treatment of
biologically treated landfill leachate. 250 mL volume wastewater sample was
prepared in beakers; pH value of leachate was adjusted to 3 with the addition of
H,S0,. Calculated H,O, dosages were added into each beaker. H,O, oxidation
experiments were carried out by aeration using an air pump. Different aeration times
were tested. Finally, COD concentrations of treated leachate were determined and
percent COD removals were calculated.

2.4.4.2. Chemical Oxidation Experiments using Fenton’s Reagent

250 ml leachate samples were placed in the jar test apparatus and pH’s were
adjusted to 3 with the addition of H,SOs. Proper amounts of hydrogen peroxide
(35%) and ferrous sulfate (FeSO4.7H,0) were added to the wastewater samples. The
contents were mixed fast at 200 rpm for 2 minutes followed by a slow mixing at 20 rpm
for about 30 minutes and were sedimented for about 1 hour. The upper liquid was
removed and pH adjusted to 7 with the addition of NaOH solution and stood still for 4
hours. The supernatant was removed and COD content was measured.

2.4.43. Chemical Oxidation Experiments using NaOCl

pH values of leachate was adjusted to 9 with the addition of 0.1 N NaOH and
samples (250 mL) were placed in the jar test apparatus. Proper amounts of NaOCl
(50%) were added to the wastewater samples. The contents were mixed fast at 200
rpm for 2 minutes followed by a slow mixing at 20 rpm for about 30 minutes and were
sedimented for about 2 hours. The supernatant was removed and COD contents were
measured.
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2.5. Analytical Methods

Samples were removed from the experimental and the control reactor every hour and
were centrifuged at 6000 rpm for 0.5 hour to remove the organisms. The supernatant
was analyzed for COD and ammonium nitrogen. Samples were preserved at
refrigerator.

2.5.1. Chemical Oxygen Demand (COD) Analysis

COD measurements were carried out according to Standard methods (APHA,
1989). Closed reflux colorimetric methods were used.

In closed reflux colorimetric method, borosilicate culture tubes with 10 ml
capacity were used. A visible spectrophotometer was used to measure absorbance at
600 nm. Digestion solution was prepared by adding 10.216 g K,Cr,0;, 167 ml
concentrated H>SO4 and 33.3 g HgSO, into distilled water to be 1000 ml and the
solution was cooled to room temperature. Sulfuric acid reagent and potassium
hydrogen phthalate (KHP) standard were used. KHP was used for preparation of the
calibration curve. KHP was lightly crushed and then dried to constant weight at
120 °C. Then different initial KHP concentrations were dissolved in distilled water
for different concentrations. KHP solution had a theoretical COD of 900 mg/L for
0.765 g KHP/L. 16 standards of KHP were prepared to obtain COD concentration of
10 — 900 mg COD/L. The calibration curve was used for determination of COD
contents of samples. The absorbencies of samples are placed to the equation for
calculating the COD concentration. (Greenberg A.E, 1989, pp.5, 9-10).

2.5.2. Ammonium nitrogen analysis (NH;-N")
Ammonium ion concentrations were determined by using the test kits (Merck No

14572 and Aqualytic spectroquant No 500) and a spectrometer. Samples were diluted
properly before measurements.
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2.5.3. Mixed Liquor Suspended Solid Measurements (MLSS)

Biomass (MLSS) concentrations were determinated by filtering the samples
through milipore filters (45 pm) and drying until constant weight in an oven at
105 °C. The calculations were made by using the following equation (Greenberg
A.E, 1989).

M = (A - B) x1000/V

Where, (A) is the weight of filter and residue after drying: (B) is the weight of
filter after drying and (V) is the volume (ml) of sample.

2.5.4. Dissolved Oxygen Measurements

Dissolved oxygen (DO) measurements were made by using a WTW DO Analyzer
and a DO probe. The analyzer was calibrated properly before use.
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CHAPTER THREE
RESULTS AND DISCUSSION

3.1. Characterization of the Landfill Leachate

Composition of the landfill leachate obtained from the Harmandal Landfill area
in Izmir, Turkey is presented in Table 3.1.1.

Table 3.1.1. Composition of the Iandfill leachate obtained from the
Harmandal: Landfill area in Izmir, Turkey

Parameters Values
PH 8.15-8.65
COD (mg /L) 9500-14000
TOC (mg /L) 3750-5500
TN (mng/L) 1450
NH,—-N(mg/L) 1270-2780
NO; —~N(mg/L) 73
TP (mg/L) 33-121
PO, —-P (mg/L) 31-110
T — Sulfur (mg /L) 160
SO 4“(mg/L) 140
TS (mg/L) 20400-21000
SS (mg/L) 1350
Salinity (%00) 0.0105
Conductivity { uMhos / am ) 21000
Mn (mg/L) 0.079
Ni(mg/L) 0.066
Zn (mg/L) 0.160
Cu(mg/L) 0.665
Cd(mg/L) Non — Detectable
Cr(mg/L) 0.191
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Table 3.1.2. Composition of the landfill leachate obtained from the Harmandah
Landfill area in Izmir, Turkey as used in experiments

Parameters Values
PH 8.15
COD (mg/L) 9500
TOC (mg /L) 3750
TN (mg/L) 1450
NH;-N(mg/L) 1270
NO; -N{mg/L) 7.3
TP (mg /L) 33
PO,—P(mg/L) 31
T — Sulfur (mg /L) . 160
SO ;“(mg/L) 140
TS(mg/L) 21000
Ni(mg/L) 0.066
Zn(mg/L) 0.160
Cu(mg/L) 0.665
Cr(mg/L) 0.191

The landfill leachate has a typical high COD and NH;-N content and is also
phosphate deficient. Ammonium-N content should be reduced and phosphate-P
content should be increased to satisfy COD/N/P ratio of 100/6/1 for effective
biological treatment. Heavy metal concentrations are not at toxic levels; however,
may be inhibitory. Heavy metal removal is also recommended before biological
treatment.

3.2. Selection of Adsorbent

~ In the selection of adsorbent material, in addition to powdered activated carbon
(PAC), several low cost adsorbents such as zeolite, bertonite, kaoline, klay, wood
ash and wood chips were used. Adsorption experiments were conducted in shake
flasks at 150 rpm, pH = 7.0 £ 0.5 and at room temperature (20 °C). Initial COD
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concentration was adjusted to 7500 mg/L.. The experiments were conducted for 24
hours until adsorption reached equilibrium.

Figure 3.2.1 depicts variations of COD concentrations with time in adsorption
experiments for different adsorbents. COD concentration decreased from 7500 mg/L
to 4800 mg/L within 1 hour when PAC was used as adsorbent. At the end of the 24
hours, adsorption was completed with the effluent COD concentration of 3980 mg/L..
When zeolite was used as adsorbent, COD concentration decreased from 7500 mg/L
to 6450 mg/L at the end of four hours. No adsorption was observed afterwards.

Wood chips resulted in low adsorption capacity in adsorption of COD compounds
of landfill leachate. Bentonite, kaoline, clay and wood ash did not result in
satisfactory COD removals by adsorption.
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Figure 3.2.1 Variation of COD concentration with time in adsorption experiments.
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Variations of percent COD removals with time for different adsorbents are shown
in Figure 3.2.2. Percent COD removal within 1 hour was 36% when PAC was used
as adsorbent. At the end of the 24 hours, adsorption was completed with the 47%
COD removal efficiency. When zeolite was used as adsorbent, percent COD removal
was found 16% at the end of 4 hours. No adsorption was observed afterwards.

Wood chips resulted in low adsorption capacity in adsorption of COD compounds
of landfill leachate. Bentonite, kaoline, clay and wood ash did not perform well in
adsorption experiments. These adsorbents were found inefficient and therefore, were

not used in the further experiments.
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Figure 3.2.2 Variation of percent COD removals with time for different adsorbents
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In summery, PAC and zeolite were the most efficient adsorbents among the tested
adsorbents resulting in 47% and 16% COD removal efficiency within 24 hours,
respectively. PAC and zeolite were used in further experiments.

3.3. Selection of Microbial Culture

Biotreatment efficiencies of different activated sludge cultures such as Izmir Pak-
Maya Yeast Industry, Pinar Meat Industry and Cigli Domestic Wastewater Treatment
activated sludges were examined in this study. The experiments were carried out in a
gyratory shaker. To prevent shock loadings, landfill leachate was diluted with tap
water and COD content was adjusted to 2200 mg/L. Control flasks contained landfill
leachate without microbial culture.

Figure 3.3.1. depicts biodegradation of COD concentration of landfill leachate for
different activated sludge cultures. As seen from the figure, COD concentration
decreased from 2200 mg/L to 775 mg/L. with a removal efficiency of 65% at the end
of 54 hours, when Pak-Maya activated sludge culture were used.. There was no
biodegradation in the control flasks. When Pmar-Meat activated sludge culture was
used, COD concentration decreased from 2200 mg/L. to 825 mg/I. with a removal
efficiency of 62 % at the end of 54 hours. COD concentration decreased from 2200
mg/L to 990 mg/L with a removal efficiency of 55% at the end of 54 hours, when
Cigli Domestic Wastewater Treatment activated studge was used.

When the mixed activated sludge culture was used, COD concentration decreased
from 2200 mg/L to 1700 mg/L at the end of 24 hours. The resulting COD removal
efficiency was 65%. No significant COD removal was observed in the contro] flasks.
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Figure 3.3.1. Variation of COD concentration with time for different activated
sludge cultures.

In summary, Pak-Maya activated sludge was the most effective activated sludge
culture among the tested cultures resulting in 65 % COD removal efficiency within
54 hours. Pak-Maya activated shudge culture was used in further experiments.

3.4. Pretreatment of Landfill Leachate

Early biological treatment studies with the raw leachate did not yield high COD
and nitrogen removals, for this reason the leachate was subjected to pretreatment by
chemical coagulation-flocculation followed by air stripping of ammonia at pH =12.
Three different chemical coagulants, alum (Al(SO4)3), FeCl; and lime (CaO) were
used in different concentrations for COD and nitrogen removal by coagulation-
flocculation.
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3.4.1. Coagulation and Floeculation

Coagulation-flocculation experiments were conducted in a jar-test apparatus using
1 liter beakers. The pH of the leachate was adjusted by sulfuric acid (H,SO4) and
sodium hydroxide (NaOH) to pH=6 for alum and ferric chloride and to pH=12 for
lime addition, respectively. Concentrations of the coagulants varied between 0 and
3.5 g/L. The contents of the jars were mixed fast at 200 rpm for 2 minutes, then
slowly at 20 rpm for 30 minutes and then allowed for settling for one hour. Samples
were removed from the clear supernatant after settling and were analyzed for COD

contents.

Figure 3.4.1. shows that COD concentration as a function of coagulant doses for
the three coagulants tested. COD concentrations decreased with increasing coagulant
doses for alum and ferric chloride. However, COD concentration with lime addition
increased with the increasing lime dose. High lime dosages may cause dissolution of
some COD compounds. Final COD concentrations of 2140 mg/L, 2620 mg/l. and
3670 mg/L were obtained with 3 g/L ferric chloride, alum and lime additions,
respectively. As clearly seen from the figure, COD concentrations of the three
coagulants at low doses (0.5-1.0 g/L) are comparable. Considering the problems
associated with the use of high coagulant doses such as more shidge formation and
higher cost of coagulation, low doses of coagulants such as 1 g/I. were preferred.
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Figure 3.4.1. Variation of COD concentration with coagulant dose for different

coagulating agents.
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Figure 3.4.2. depicts COD removal efficiency as a function of coagulant doses for
the three coagulants tested. Percent COD removals increased with increasing
coagulant doses for alum and ferric chloride. However, COD removal with lime
addition decreased with the increasing lime dose. High lime dosages may cause
dissolution of some COD compounds. The highest COD removal (60%) was
obtained with 3 g/L. ferric chloride addition. COD removal performances of the three
coagulants at low doses (0.5-1.0 g/L) were comparable. Considering the problems
associated with the use of high coagulant doses such as more sludge formation and
higher cost of coagulation, low doses of coagulants such as 1 g/L. were preferred.
Percent COD removals for the three coagulants at the dose of 1 g/ were almost the
same as 45%. Since lime coagulation was realized at pH =12 which was the most
suitable pH for air stripping of ammonia used after the coagulation and also because
of lime’s disinfection affects, lime was selected as the most suitable coagulant for
use in further studies.
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COD and ammonium-N contents of the leachate dropped from COD, = 9500
mg/L and NH,-N, = 1270 mg/L to COD = 7250 mg/L and NH4-N = 1200 mg/L,
respectively after coagulation with 1 g/L lime.
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Figure 3.4.2. Variation of COD removal efficiency with coagulant dose for

different coagulating agents.
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3.4.2. Air Stripping of Ammonia

Figure 3.4.3 depicts variation of NH4-N concentration of landfill leachate with
time at different pH values during air stripping. Supernatant solution after
coagulation at pH =12 with lime of 1g/l. dose was subjected to air stripping at
different pH to remove excess ammoma from the leachate. Ammonium concentration
afier 45 minutes of air stripping at pH=12 was reduced to nearly 700 mg/L from
1200 mg/I.. Ammonium concentration decreased to 820 mg/L, 410 mg/L and 400
mg/L at pH values of 9, 10 and 11, respectively.
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Figure 3.4.3. Variation of NH4-N concentration with time as a function of pH during
air stripping of ammonia.

Variation of percent NH;-N removal with time as a function of pH is depicted in
Figure 3.4.4. Percent COD removals for pH= 9, 10, 11 and 12 were nearly 32%,
66%, 67% and 77% at the end of the 2 hours, respectively. Ammonium concentration
in air stripping at pH=12 was reduced to nearly 5 mg/L from 1200 mg/L with a.
removal efficiency of 99% at the end of 6 hours.

The pH of the leachate was adjusted to pH=7 by alkaline addition (1 M NaOH)
afier air stripping of ammonia and was used for biological treatment in an aeration
tank operated in fed-batch mode. COD and NH;-N contents of the pretreated leachate
after air stripping was approximately, COD = 7,000 mg/L and NH,-N = 700 mg/L,
respectively. Required amount of KH,PO,; was added to the pretreated leachate to
adjust COD/N/P ratio to 100/10/1.5 before biological treatment.
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Figure 3.4.4. Variation of percent NH,4-N removal with time as a function of pH in
air stripping of ammonia.

3.5. Biological Treatment of Landfill Leachate by Fed—Batch
Operation

3.5.1. Experiments with Different Feed COD Concentrations

In the first set of experiments, the feed flow rate was kept constant at Q = 0.18 L/h
and COD contents of the feed were varied between 1,000 mg/L. and 7,000 mg/L. The
COD loading rate (Lcop) varied between 180 mg COD/h and 1260 mg COD/h with
30 hours of operation time, in this set of experiments. The landfill leachate was
diluted with tap water to reduce the COD contents to the desired level.

The initial COD content in the aeration tank was nearly 300 mg/L. and the initial
Siomass concentration was nearly 4200200 mg biomass/L, on dry weight basis.
Temperature and pH were 20 °C and pH=8-8.5, throughout the experiments.
Vigorous aeration was supplied to the aeration tank to keep the dissolved oxygen
(DO) above 2 mg/l.. Temperature, pH and DO were monitored and manually
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controlled during the experiments. A control experiment devoid of microorganisms
was run in parallel to the biological treatment experiment for every experimental
condition. Percent COD removals in control experiments were considered to be zero

and COD content of the control experiments were used as the base in calculation of

COD removal efficiencies.

Variation of COD concentration and percent COD removal with time (Q=0.18
L/h, S=978 mg/L, V=3 L) is depicted in Figure 3.5.1. COD concentration in the
control tank increased with time due to accumulation of COD. COD in the
experimental tank remained constant around 300 mg/L, because of low loading rate,
throughout the experiment as a result of biobxidation Percent COD removal based
on the difference in COD concentrations in the control and the experimental tanks
increased with time because of increased total biomass in the aeration tank. Percent
COD removal was 58% at the end of the operation.

Variation of COD concentration and percent COD removal with COD loading rate is
shown in Figure 3.5.2. COD content in the aeration tank increased while percent COD

removals (E) decreased with the increasing COD loading rates.

Variation of wastewater volume with time is depicted in Figure 3.5.3. Starting
from a 3.0 L of initial volume, wastewater volume in the tank increased linearly with

time as expected.

In Figure 3.5.4 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume

Variation of COD removal rate with COD loading rate (QS1/V) is depicted in
Figure 3.5.5. COD removal rate decreased with increasing COD loading rate because
of high COD levels in the tank at high loading rates.



31

Variation of COD removal rate (R; = Q (S-S) V) with COD concentration is
presented in Figure 3.5.6. COD removal rate decreased with increasing COD

concentration.

The growth yield coefficient for microbial culture was found to be Yyxs=0.60
gX/gS for 978 mg/L feed COD concentration.

Percent COD removal
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Time (h)
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Figure 3.5.1. Variation of COD concentration and percent COD removal with time
(S=978 mg/L, Q=0.18 L/h, V=3L)
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Figure 3.5.2. Variation of COD concentration and percent COD removal with COD
loading rate (S=978 mg/L, Q=0.18 L/h, V=3 L)
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Figure 3.5.3. Variation of reactor volumne with time (57978 mg/L., Q=0,18 L/h, V=3 L)
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Figure 3.5.4. Variation of total amount of biomass with time
(S=978 mg/L, Q=0.18 L/h, V=3 L)
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Figure 3.5.5. Variation of COD removal rate with COD loading rate
(S7978 mg/L. Q=0.18 L/h, V=3 L)
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Figure 3.5.6. Variation of COD removal rate with COD concentration
(S=978 mg/L, Q=0.18 L/h, V=3 L)

Variation of COD concentration and percent COD removal with time (Q=0.18
L/h, S=1840 mg/L, V=3 L) is shown in Figure 3.5.7. COD concentration in the
control tank increased with time due to accumulation of COD. COD in the
experimental tank remained constant around 340 mg/L throughout the experiment as
a result of bio-oxidation. Percent COD removal based on the difference in COD
concentrations in the control and the experimental tanks increased with time because
of increased total biomass in the aeration tank. Percent COD removal was 73% at the
end of the operation.

Variation of COD concentration and percent COD removal with COD loading rate
is shown in Figure 3.5.8. Both COD content in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

In Figure 3.5.9 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume
with time. Wastewater volume in the tank increased with time linearly as expected.
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The growth yield coefficient for microbial culture was found to be Yx;s=0.49

gX/gS for 1840 mg/L feed COD concentration.
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Figure 3.5.7. Variation of COD concentration and percent COD removal with time
(S=1840 mg/L, Q=0.18 L/h, V=3 L)
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Figure 3.5.8. Variation of COD concentration and percent COD removal with COD

loading rate (S=1840 mg/L. Q=0.18 L/h. V=3 L)
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Figure 3.5.9. Variation of total amount of biomass with time
(S=1840 mg/L, Q=0.18 L/h, V=3 L)

Variation of COD concentration and percent COD removal with time (Q=0.18
L/h, S;=2815 mg/L, V,=3 L) is depicted in Figure 3.5.10. COD concentration in the
control tank increased with time due to accumulation of COD. COD in the
experimental tank remained constant around 500 mg/L throughout the experiment
because of bio-oxidation. Percent COD removal based on the difference in COD
concentrations in the control and the experimental tanks increased with time as a
result of increased total biomass in the aeration tank. Percent COD removal was 73
% at the end of the operation.

Variation of COD concentration and percent COD removal with COD loading rate
is shown in Figure 3.5.11. Both COD content in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

In Figure 3.5.12 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume

with time. Wastewater volume in the tank increased with time linearly as expected.
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The growth yield coefficient for microbial culture was found to be Yx5=0.58
gX/gS for 2815 mg/L feed COD concentration.
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Figure 3.5.10. Variation of COD concentration and percent COD removal with time
(572815 mg/L, Q=0.18 L/h, V=3 L)
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Figure 3.5.11. Variation of COD concentration and percent COD removal with COD
loading rate (S;=2815 mg/L, Q=0.18 L/h, V,=3 L)
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Figure 3.5.12. Variation of total amount of biomass with time
(S~2815 mg/L, Q=0.18 L/h, V=3 L)
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Variation of COD' concentration and percent COD removal with time (Q=0.18
L/h, S=4171 mg/L, V=3 L) is depicted in Figure 3.5.13. COD concentration in the
control tank increased with time due to accumulation of .COD. COD in the
experimental tank was nearly 675 mg/L at the end of 30 hours. Percent COD removal
based on the difference in COD concentrations in the control and the experimental
tanks increased with time because of increased total biomass in the aeration tank.

Percent COD removal was 76 % at the end of the operation.

Variation of COD concentration and percent COD removal with COD loading rate
is shown in Figure 3.5.14. Both COD content in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

In Figure 3.5.15 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly as a result of increasing reactor
volume with time. Wastewater volume in the tank increased with time linearly as
expected.

The growth yield coefficient for microbial culture was found to be Yxs=0.55
gX/gS for 4171 mg/L feed COD concentration.
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Figure 3.5.13. Variation of COD concentration and percent COD removal with time
(S=4171 mg/L, Q=0.18 L/h, V=3 L)
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Figure 3.5.14. Variation of COD concentration and percent COD removal with COD
loading rate (S=4171 mg/L. Q=0.18 L/h, V=3 L)
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Figure 3.5.15. Variation of total amount of biomass with time
(S74171 mg/L, Q=0.18 L/h, V.=3 L)

Variation of COD concentration and percent COD removal with time (Q=0.18 ,
L/h, Si=5115 mg/L., V=3 L) is depicted in Figure 3.5.16. COD concentration in the
control tank increased with time due to accumulation of COD. COD in the
experimental tank was 970 mg/l. at the end of the operation time. Percent COD
removal based on the difference in COD concentrations in the control and the
experimental tanks increased with time as a result of increased total biomass in the
aeration tank. Percent COD removal was 73% at the end of the operation.

Variation of COD concentration and percent COD removal with COD loading rate
is depicted in Figure 3.5.17. Both COD content in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

* In Figure 3.5.18 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume
with time. Wastewater volume in the tank increased with time linearly as expected.
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The growth yield coefficient for microbial culture was found to be Yx5=0.37
gX/gS for 5115 mg/L feed COD concentration.
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Figure 3.5.16. Variation of COD concentration and percent COD removal with time
(Si=5115 mg/L, Q=0.18 L/h, V=3 L)
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Figure 3.5.17. Variation of COD concentration and percent COD removal with COD
loading rate (S=5115 mg/L., Q=0.18 L/h, V=3 L)
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Figure 3.5.18. Variation of total amount of biomass with time
(S=5115mg/L, Q=0.18 L/h, V=3 L)

Variation of COD concentration and percent COD removal with time (Q=0.18
L/h, S&75980 mg/L., V,=3 L) is depicted in Figure 3.5.19. COD concentration in the
control tank increased with time due to accumulation of COD. COD in the
experimental tank was nearly 1025 mg/l. at the end of t=30 hours. Percent COD
removal based on the difference in COD concentrations in the control and the
experimental tanks increased with time because of increased total biomass in the
aeration tank. Percent COD removal was 74% at the end of the operation.

Variation of COD concentration and percent COD removal with COD loading rate
is shown in Figure 3.5.20. Both COD content in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

" In Figure 3.5.21 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly as a result of increasing reactor
volume with time. Wastewater volume in the tank increased with time linearly as
expected.




The growth yield coefficient for microbial culture was found to be Yxs=0.39
gX/gS for 5980 mg/L feed COD concentration.
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Figure 3.5.19. Variation of COD concentration and percent COD removal with time
(S=5980 mg/L, Q=0.18 L/h, V=3 L)
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Figure 3.5.20. Variation of COD concentration and percent COD removal with COD
loading rate (S;=5980 mg/L, Q=0.18 L/h, V=3 L)
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Figure 3.5.21. Variation of total amount of biomass with time
(5=5980 mg/L, Q=0.18 L/h, V,=3 L)

Variation of COD concentration and percent COD removal with time (Q=0.18
L/h, Si=7050 mg/L, V,=3 L) is depicted in Figure 3.5.22. COD concentration in the
control tank increased with time due to accumulation of COD. COD concentration in
the experimental tank was nearly 1250 mg/L at the end of the operation time. Percent
COD removal based on the difference in COD concentrations in the control and the
experimental tanks increased with time because of increased total biomass in the
acration tank. Percent COD removal was 73% at the end of the operation.

Variation of COD concentration and percent COD removal with COD loading rate
is shown in Figure 3.5.23. Both COD content in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

* In Figure 3.5.24 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume

with time. Wastewater volume in the tank increased with time linearly as expected.
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The growth yield coefficient for microbial culture was found to be Yy;=0.51

gX/gS for 7050 mg/L feed COD concentration.
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Figure 3.5.22. Variation of COD concentration and percent COD removal with time

(S=7050 mg/L, Q=0.18 L/h, V;=3 L)
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Figure 3.5.23. Variation of COD concentration and percent COD removal with COD
loading rate (Si=7050 mg/L, Q=0.18 L/h, V,=3 L)
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Figure 3.5.24. Variation of total amount of biomass with time
(577050 mg/L, Q=0.18 L/’h, Vi=3 L)

3.5.2. Experiments with Different Feed Flow Rates

The COD content of the feed wastewater was kep'; constant at 7,000 mg/L, while
the flow rate of the feed was varied between 0.05 L/h and 0.6 L/h, in the second set
of experiments. The COD loading rate varied between 350 mg COD/h and 4200 mg
COD/h with 10 hours of operation time.

The initial COD content in the aeration tank was nearly 300 mg/L and the initial
biomass concentration was nearly 4200200 mg biomass/I. on dry weight basis.
Temperature and pH were 20°C and pH=8-8.5, throughout the experiments. Vigorous
aeration was supplied to the aeration tank to keep the dissolved oxygen (DO) above 2
mg/L. Temperature, pH and DO wefe monitored and manually controlled during the
experiments. A control experiment devoid of microorganisms was run in paralle] to
the biological treatment experiment for every experimental condition. Percent COD
removals in control experiments were considered to be zero and COD content of the
control experiments were used as the base in calculation of COD removal

efficiencies.
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Variation of COD concentration and percent COD removal with time for Q=0.05
L/h and S=7000 mg/L is depicted in Figure 3.5.25. COD concentration in the control
tank increased with time due to accumulation of COD. COD in the experimental tank
remained constant around 720 mg/L, because of balanced loading rate and bio-
oxidation, throughout the experiment. Percent COD removal based on the difference
in COD concentrations in the control and the experimental tanks increased with time
because of increased total biomass in the aeration tank. Percent COD removal was
73% at the end of 10h fed-batch operation.

Variation of COD concentration and percent COD removal with COD loading rate
is shown in Figure 3.5.26. Both COD content in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

Variation of wastewater volume with time is shown in Figure 3.5.27. Starting
from a 3.0 L of initial volume, wastewater volume in the tank increased linearly with
time as expected.

In Figure 3.5.28 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume

Variation of COD removal rate with COD loading rate is depicted in Figure
3.5.29. COD removal rate decreased with increasing COD loading rate.

The growth yield coefficient for microbial culture was found to be Yx5=0.32
gX/gS for 0.05 L/h feed flow rate.
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Figure 3.5.25. Variation of COD concentration and percent COD removal with time
(S=7000 mg/L, Q=0.05 L/h, V=3 L)
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Figure 3.5.26. Variation of COD concentration and percent COD removal with COD
loading rate (§=7,000 mg/L. Q= 0.05 L/h, V=3 L)
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Figure 3.5.27. Variation of reactor volume with time (S=7000 mg/L, Q=0.05 L/h, V=3 L)
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Figure 3.5.28. Variation of total amount of biomass with time
(§=7000 mg/L, Q=0.05 L/h, V=3 L)
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Figure 3.5.29. Variation of COD removal rate with COD loading rate
(S=7000 mg/L, Q=0.05 L/h, V=3 L)

Variation of COD concentration and percent COD removal with time for Q=0.10
L/h and S=7000 mg/L is depicted in Figure 3.5.30. COD concentration in the control
tank increased with time due to accumulation of COD. COD in the experimental tank
remained constant around 520 mg/L., because of balanced COD removal and loading
rates throughout the experiment. Percent COD removal based on the difference in
COD concentrations in the control and the experimental tanks increased with time
because of increased total biomass in the aeration tank. Percent COD removal was 72
% at the end of the 10 h fed-batch operation.

Variation of COD concentration and percent COD removal with COD loading rate
are shown in Figure 3.5.31. Both COD comntent in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

1n Figure 3.5.32 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume
with time.
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The growth yield coefficient for microbial culture was found to be Yxs=0.39
gX/gS for 0.10 L/h feed flow rate.
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Figure 3.5.30. Variation of COD concentration and percent COD removal with time
(87000 mg/L, Q=0.10 L/h, V=3 L)
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Figure 3.5.31. Variation of COD concentration and percent COD removal with COD
loading rate (S=7000 mg/L, Q=0.10 L/h, V=3 L)
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Figure 3.5.32. Variation of total amount of biomass with time
(S=7000 mg/L, Q=0.10L/h, V=3 L)

Variation of COD concentration and percent COD removal with time for Q=0.21
L/h and S=7000 mg/L are depicted in Figure 3.5.33. COD concentration in the
contro] tank increased with time due to accummulation of COD in the absence of
organisms. COD in the experimental tank was nearly 710 mg/L at the end of ten
hours. Percent COD removal based on the difference in COD concentrations in the
control and the experimental tanks increased with time because of increased total
biomass in the aeration tank. Percent COD removal was 76 % at the end of 10 h

operation.

Variation of COD concentration and percent COD removal with COD loading rate
are shown in Figure 3.5.34. Both COD content in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

In Figure 3.5.35 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume
with time.
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The growth yield coefficient for microbial culture was found to be Yxs=0.26
gX/gS for 0.21 L/h feed flow rate.
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Figure 3.5.33. Variation of COD concentration and percent COD removal with time
(S=7000 mg/L, Q=0.21 L/h, V=3 L)
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Figure 3.5.34. Variation of COD concentration and percent COD removal with COD
loading rate (S;=7000 mg/L, Q=021 L/h, V=3 L)
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Figure 3.5.35. Variation of total amount of biomass with time
(S=7000 mg/L, Q=0.21 L/h, V=3 L)

Variation of COD concentration and percent COD removal with time for Q=0.36
L/h and S;i=7000 mg/L. are depicted in Figure 3.5.36. COD concentration in the
control tank increased with time due to accumulation of COD. COD in the
experimental tank was 1225 mg/L at the end of the operation time. Percent COD
removal based on the difference in COD concentrations in the control and the
experimental tanks increased with time because of increased total biomass in the
acration tank. Percent COD removal was 69% at the end of 10 h operation.

Variations of COD concentration and percent COD removal with COD loading
rate are shown in Figure 3.5.37. Both COD content in the aeration tank and percent
COD removals (E) decreased with the increasing COD loading rates.

* In Figure 3.5.38, variation of total amount of biomass with time is presented.
Total amount of biomass increased with time linearly because of increasing reactor
volume with time.
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The growth yield coefficient for microbial culture was found to be Yxs=0.44
gX/gS for 0.36 L/h feed flow rate.
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Figure 3.5.36. Variation of COD concentration and percent COD removal with time
(87000 mg/L, Q=0.36 L/h, V=3 L)
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Figure 3.5.37. Variation of COD concentration and percent COD removal with COD
loading rate (S=7000 mg/L, Q=0.36 L/h, V=3 L)
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Figure 3.5.38. Variation of total amount of biomass with time
(87000 mg/L, Q=0.36 L/h, V=3 L)

Variations of COD concentration and percent COD removal with time for Q=0.45
L/h and Si=7000 mg/L are depicted in Figure 3.5.39. COD concentration in the
control tank increased with time due to accumulation of COD. COD in the
experimental tank was nearly 1300 mg/L at the end of 10 hours operation time.
Percent COD removal based on the difference in COD concentrations in the control
and the experimental tanks increased with time because of increased total biomass in
the aeration tank. Percent COD removal was 70 % at the end of the operation time.

Variations of COD concentration and percent COD removal with COD loading
rate are depicted in Figure 3.5.40. Both COD content in the aeration tank and percent
COD removals (E) decreased with the increasing COD loading rates.

" In Figure 3.5.41, variation of total amount of biomass with time is presented.
Total amount of biomass increased with time linearly because of increasing reactor
volume with time.
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The growth yield coefficient for microbial culture was found to be Yxs=0.58
gX/gS for 0.45 L/h feed flow rate.
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Figure 3.5.39. Variation of COD concentration and percent COD removal with time
(S=7000 mg/L, Q=0.45L/h, V=3 L)
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Figure 3.5.40. Variation of COD concentration and percent COD removal with COD
loading rate (S=7000 mg/L. Q=0.45 L/h, V=3 L)



59

X; ()

Time (h)

Figure 3.5.41. Variation of total amount of biomass with time
- (S&7000 mg/L, Q=0.45 L/h, V=3 L)

Variations of COD concentration and percent COD removal with time for Q=0.60
L/h and §=7000 mg/L are depicted in Figure 3.5.42. COD concentration in the
contro] tank increased with time due to accumulation of COD in the absence of
organisms. COD in the experimental tank at the end of the operation was around
1500 mg/L, because of high COD loading and relatively low removal rate. Percent
COD removal based on the difference in COD concentrations in the control and the
experimental tanks increased with time because of increased total biomass in the
aeration tank. Percent COD removal was 68% at the end of 10h operation.

Variation of COD concentration and percent COD removal with COD loading rate
is shown in Figure 3.5.43. Both COD content in the aeration tank and percent COD
removals (E) decreased with the increasing COD loading rates.

In Figure 3.5.44 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume
with time.
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The growth yield coefficient for microbial culture was found to be Yx5=0.52
gX/gS for 0.60 L/h feed flow rate.
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Figure 3.5.42. Variation of COD concentration and percent COD removal with time
(S#=7000 mg/L, Q=0.60 L/h, V=3 L)
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Figure 3.5.43. Variation of COD concentration and percent COD removal with COD
loading rate (S=7000 mg/L, Q=0.60 L/h, V=3 L)
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Figure 3.5.44. Variation of total amount of biomass with time
(S=7000 mg/L, Q=0.60 L/h, V=3 L)

3.5.3. Effect of COD Loading Rate on the Reactor Performance

COD loading rate was varied by varying both the feed COD and the feed flow
rate. The effects of COD loading rates (L = Q Si) on the final COD levels and COD
removal efficiencies are depicted in Figure 3.5.45. Final COD content in the aeration
tank at the end of operation increased while percent COD removals (E) decreased
with the increasing COD loading rates. At low COD loading rates, the effluent COD
levels increased and percent COD removals decreased more steeply. However,
changes in both parameters slowed down at high COD loadings and levelled off at
COD loadings above 3.5 g COD/h. In order to achieve high COD removal
efficiencies the COD loading rate should be kept below 1 gCOD/h.

The effects of ammonium loading rates (L; = Q S,) on the final ammonium levels
and ammonium removal efficiencies are depicted in Figure 3.5.46. Similarly, effluent
ammonium-N concentrations at the end of operation increased and percent removals
decreased with increasing NH4-N loading rate. Changes in those parameters with the
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NH,-N loading rate were steeper at low loading rates and slowed down as the
loading rate increased. Percent NH,-N removals decreased from 26% to 18 % as the
ammonium-N loading rate increased from 35 mg N/h to 420 mg N/h.
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Figure 3.5.45. Variations of the effluent concentrations and percent removals for
COD with COD loading rates at the end of the operation
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Figure 3.5.46. Variations of the effluent concentrations and percent removals for
NH,-N with NH4-N loading rates at the end of the operation
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3.5.4. Kinetic Analysis and Determination of Kinetic Constants

The following kinetic model was used in the analysis of data obtained at the end
of 30 hours of operation. The system was assumed to be at quasi steady-state at the
end of operation as seen from the previous figures.

Q(S.—S) kXS R, S
R,= = = (3.5.1)
Vo+Qt Ki+S Ki+S

where, Q is the feed flow rate (L/h); S, is the control COD concentration (mg/L); § is
the actual COD content in the tank after 30 hours of operation (mg/L); V, is the
initial wastewater volume in the tank (3 iter); t is the operating time (h); k is the
maximum COD removal rate constant (h™); X is the biomass concentration in the
acration tank at any time during operation (mg/L); K, is the saturation constant



(mg/L) and Ry, is the maximum rate of COD removal (mg COD/L.h) which is equal
tok X

In double reciprocal form, the eqn.3.5.1. takes the following form,

1 (Vo+Q1) 1 K, 1
= = + (3.5.2.)

R« Q@G-S Ran Rn S

A double reciprocal plot of 1/R; versus 1/S yields a line with a slope of K¢/Ry, and
intercept of 1/ Ry,

Experimental data with variable feed COD obtained at the end of 30 hours of
operation (i.e., at the quasi steady-state) were plotted in form of 1/R versus 1/S as
shown in Figure 3.5.47. From the slope and the intercept of the best-fit line, the
following values found for the kinetic constants.

R,=81.7mg COD/Lh, K,=377 mg/L (& =0.90)

By using the equation of R,=kX and considering the average biomass
concentration in the aeration tank as X=2200 mg/L, the rate constant was found to be
in the order of k =0.037 b’ = 0.89 d for the biological system used.

The rate constant (k) was found to be lower and the saturation constant (K)
higher than those of the conventional activated sludge systems probably due to the
presence of inhibitory compounds in the leachate used.
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Figure 3.5.47. Double reciprocal plot of 1/R; versus 1/S. at the quasi steady-state for
determination of kinetic constants for COD removal.

3.6. Adsorbent Added Biological Treatment of Landfill Leachate by
Fed-Batch Operation

In this set of experiments, pre-treated landfill leachate was subjected to adsorbent
supplemented biological treatment in an aeration tank operated in fed-batch mode by
using powdered activated carbon (PAC) and powdered zeolite (PZ) as adsorbents.

3.6.1. Powdered Activated Carbon (PAC) added Biological Treatment

A set of experiments with different activated carbon concentrations (0-5 g/L)
were carried out in an aeration tank operated in fed-batch mode by using the
pretreated leachate. Each set of experiments consisted of four simultaneous
experiments. Control (C) experiments were performed without any microorganisms
and any adsorbent. Biological ﬁeaﬁnem (B) experiments were performed only by
using the activated sludge culture without any adsorbent addition. Only adsorbent
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(PAC) was added to the aeration tank devoid of microorganisms in adsorption
experiments(A). Simultaneous adsorption and biological treatment (AB) experiments
were performed by addition of adsorbent to the aeration tank containing activated
sludge organisms. Four simultaneous experiments were performed under the same
initial and operating conditions. Percent COD removals were based on control

experiment’s COD contents, since no COD removal was realized in the control tank.

Variation of COD concentration with time for the activated carbon concentration
0f 0.25 g/L is depicted in Figure 3.6.1. COD concentration in the control experiment
(®) increased steadily because of accumulation of COD compounds in the absence of
adsorbents and the organisms, resulting in a COD of nearly 4300 mg/L at the end of
30 h operation period. Similar trend was observed in the adsorption experiment (A)
where COD in the aeration tank increased steadily with time. However, COD levels
were lower than those of the control experiments because of COD removal by
adsorption resulting in a COD content of nearly 3550 mg/L at the end of 30 h of
operation. COD profiles in biological oxidation (B) and adsorbent added biological
treatment (AB) were almost the same, slightly increasing within the first 10 hours
and levelling off afterwards. The final COD contents in those experiments were
nearly 1100 mg/L for only biological treatment (B) and 1050 mg/L for adsorptive
biological treatment (AB). Because of low activated carbon concentration (0.25 g/L),
adsorption was not significant and the major mechanism for COD removal was
biological oxidation in this case.

Variations of percent COD removal with time in fed-batch operation when PAC is
025 g/L is presented in Figure 3.6.2. Percent COD removals in adsorption
experiment was nearly 17%; whereas, nearly 74% and 76% COD removals were
obtained with the biological treatment (B) and adsorptive-biological treatment (AB),
respectively at the end of operation. COD removals in the control experiment were
aSsumed to be zero by definition. Again, due to low activated carbon concentration,
the difference in COD removal performances of the bio-treatment (B) and
adsorption-biodegradation (AB) experiments was negligible.
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Variation of wastewater volurne with time is shown in Figure 3.6.3. Starting from
a 3.0 L of initial volume, wastewater volume in the tank increased with time linearly
as expected.

In Figure 3.6.4 variation of total amount of biomass with time is presented. Total
amount of biomass increased with time linearly because of increasing reactor volume

with time.

Variation of COD removal rate with COD loading rate is depicted in Figure 3.6.5.
COD removal rate decreased with increasing COD loading rate.

The growth yield coefficient for microbial culture was found to be Yxs=0.57
gX/gS for 0.25 g/LL PAC concentration.

0 10 20 30
Time (h)

- Figure 3.6.1. Variations of COD with time in fed-batch operation (0.25 g/L. PAC)
e control (C), A adsorption (A). © biological treatment (B),
A adsorption and biological treatment (AB).
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Figure 3.6.2. Variations of percent COD removal with time in fed-batch operation
(0.25 g/L PAC) A adsorption (A), O biological treatment (B), A
adsorption and biological treatment (AB).

I i 1

5 10 15 20 25 30
Time (h)

Figure 3.6.3. Variations of reactor volume with time (0.25 g/I. PAC)
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Figure 3.6.4. Variations of total amount of biomass with time (0.25 g/L PAC)
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Figure 3.6.5. Variations of COD removal rate with COD loading rate (0.25 g/L PAC)

In Figure 3.6.6 variation of COD concentration with time for the activated carbon
concentration of 0.50 g/L is depicted. COD concentration in the control experiment
(®) increased steadily because of accumulation of COD compounds in the absence of
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adsorbents and the organisms, resulting in a COD of nearly 4200 mg/L at the end of
30 h operation period. Similar trend was observed in the adsorption experiment (A)
where COD in the aeration tank increased steadily with time. However, COD levels
were lower than those of the control experiments because of COD removal by
adsorption resulting in a COD content of nearly 3300 mg/L at the end of 30 h of
operation. COD profiles in biological oxidation (B) and adsorbent added biological
treatment (AB) showed a slightly increasing trend within the first 10 hours and
levelling off afterwards. The final COD contents in those experiments were nearly
935 mg/L for only biological treatment (B) and 1050 mg/L for adsorptive biological
treatment (AB). Because of low activated carbon concentration (0.50 g/L),
adsorption was not significant and the major mechanism for COD removal was

biological oxidation in this case.

Variation of percent COD removal with time in fed-batch operation when PAC is
0.50 g/L is presented in Figure 3.6.7. Percent COD removals in adsorption
experiment was nearly 21%; whereas, nearly 74% and 78% COD removals were
obtained with the biological treatment (B) and adsorptive biological treatment (AB),
respectively at the end of operation. COD removals in the control experiment were
assumed to be zero by definition. Again, due to low activated carbon concentration
the difference in COD removal - performances of the biodegradation (B) and
adsorption-biodegradation (AB) experiments was negligible.

The growth yield coefficient for microbial culture was found to be Yxi=0.46
gX/gS for 0.50 g/L. PAC concentration.
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Figure 3.6.6. Variation of COD conqentrétion with time in fed-batch operation
(0.50 g/LL PAC) e control (C), A adsorption (A), © biological
treatment (B), A adsorption and biological treatment (AB).
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Figure 3.6.7. Variation of percent COD removal with time in fed-batch operation
(0.50 g/L PAC) A adsorption (A), © biological treatment (B)
A adsorption and biological treatment (AB).
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Figure 3.6.8 depicts variations of COD concentrations with time for the four
simultaneous experiments when the PAC concentration was 1 g/L. Similar trends
were observed in these experiments; however, contribution of adsorption was more
pronounced due to higher PAC concentration (1 g/L). Effluent COD’ s at the end of
30 hours of fed-batch operation were 4200 mg/L, 2840 mg/L., 1100 mg/L and 750
mg/L for the control (C), adsorption (A), biodegradation (B) and adsorption-
biodegradation (AB) experiments, respectively. Due to more pronounced
contribution of adsorption, the effluent COD was reduced from 1100 mg/L (B) to
750 mg/L. (AB) at the end of 30 h operation.

Variations of percent COD removals with time are shown in Figure 3.6.9. Percent
COD removal also increased significantly by addition of 1 g/L. PAC to the biological
treatment tank. COD removal for only adsorption (A) was nearly 32%. However,
COD removals of 74% and 82% were obtained with biodegradation (o)
and adsorption-biodegradation (A) experiments, respectively at the end of 30 h

operation

The growth yield coefficient for microbial culture was found to be Yx5=0.54
gX/gS for 1.0 g/I. PAC concentration.



73

COD ( mg/L )

0= : — ,
0 5 10 15 20 25 30

Time (h)

Figure 3.6.8. Variations of COD with time in fed-batch operation (1.0 g/L. PAC)
e control (C), A adsorption (A), © biological treatment (B),
A adsorption and biological treatment (AB).
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Figure 3.6.9. Variation of percent COD removal with time in fed-batch operation
(1.0 g/L PAC) A adsorption (A), © biological treatment (B),
A adsorption and biological treatment (AB).
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Figure 3.6.10. depicts variations of COD concentrations with time for the four
simultaneous experiments when the PAC concentration was 2 g/L. Similar trends
were observed in these experiments; however, contribution of adsorption was more
pronounced due to higher PAC concentration (2 g/L). Effluent COD” s at the end of
30 hours of fed-batch operation were 4240 mg/L, 2600 mg/L, 1100 mg/L and 610
mg/L. for the control (C), adsorption (A), biodegradation (B) and adsorption-
biodegradation (AB) experiments, respectively. Due to more pronounced
contribution of adsorption, the effluent COD was reduced from 1100 mg/L (B) to 610
mg/L (AB) at the end of operation.

Percent COD removals with time are shown in Figure 3.6.11. Percent COD
removal also increased significantly by addition of 2 g/l PAC to the biological
treatment tank. COD removal for only adsorption (A) was nearly 38%. However,
COD removals of 74% and 86% were obtained with biodegradation (©)
and adsorption-biodegradation (A) experiments, respectively at the end of 30 h
operation

The growth yield coefficient for microbial culture was found to be Yx5=0.46
gX/gS for 2.0 g/L PAC concentration.
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Figure 3.6.10. Variation of COD with time in fed-batch operation (2.0 g/L PAC)
e control (C), A adsorption (A), © biological treatment (B),

A adsorption and biological treatment (AB).
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Figure 3.6.11. Variation of percent COD removal with time in fed-batch operation
(2.0 g/L PAC)
e control (C). A adsorption (A), O biological treatment (B).
A adsorption and biological treatment (AB).
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When activated carbon concentrations were increased, COD removals were more
effective. Figure 3.6.12. depicts variations of COD contents with time for 3 g/ PAC
concentration. Effluent COD contents for the control and the adsorption experiments
were 4250 mg/L and 2540 mg/L, respectively. Whereas, effluent COD’s were nearly
1100 mg/L and 575 mg/L for the biodegradation (B) and adsorption-biodegradation
(AB) experiments.

In Figure 3.6.13 variation of percent COD removal with time is presented. Similar
trends were observed in COD removal efficiencies. Nearly 40% COD was removed
by only adsorption (A); whereas percent COD removals were 74% and 86% for
biodegradation (B) and adsorptive-biodegradation (AB), respectively. Again, percent
COD removal was zero for the control experiment. Apparently, percent COD
removals increased significantly due to contribution of adsorption at a high PAC
concentration of 3 g/L.

The growth yield coefficient for microbial culture was found to be Yyxs=0.46
gX/gS for 3.0 g/L. PAC concentration.
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Figure 3.6.12. Variation of COD with time in fed-batch operation (3.0 g/L. PAC)

e control (C), A adsorption (A), © biological treatment (B),
A adsorption and biological treatment (AB).
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Figure 3.6.13. Variation of percent COD removal with time in fed-batch operation

(3.0 g/L PAC) A adsorption (A), O biological treatment (B),
A adsorption and biological treatment (AB).
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Increased activated carbon concentrations resulted in more effective COD
removals. Figure 3.6.14 depicts variations of COD contents with time for 5 g/LL PAC
concentration. Effluent COD contents for the control and the adsorption experiments
were 4300 mg/L and 2200 mg/L, respectively. Whereas, effluent COD’s were nearly
1100 mg/L and 540 mg/L for the biodegradation (B) and adsorption-biodegradation
(AB) experiments.

Variation of percent COD removal with time is presented in Figure 3.6.15.
Similar trends were observed in COD removal efficiencies. Nearly 50% COD was
removed by only adsorption (A); whereas percent COD removals were 74% and 87%
for biodegradation (B) and adsorptive-biodegradation (AB), respectively. Again,
percent COD removal was zero for the control experiment. Apparently, percent COD
removals increased significantly due to contribution of adsorption at a high PAC

concentration of 5 g/L.

The growth yield coefficient for microbial culture was found to be Yx=0.40
gX/gS for 5.0 g/L PAC concentration.

0 5 10 15 20 25 30
Time (h)

Figure 3.6.14. Variation of COD with time in fed-batch operation (5.0 g/L PAC)
e contro] (C), A adsorption (A), © biological treatment (B).
A adsorption and biological treatment (AB).
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Figure 3.6.15. Variation of percent COD removal with time in fed-batch operation
(5.0 g/ PAC) A adsorption (A), © biological treatment (B),
A adsorption and biological treatment (AB).

Collected results of effluent COD contents and percent COD removals at the end
of 30 h operation with different activated carbon concentrations (0-5 g/L) are
depicted in Figure 3.6.16. Effluent COD decreased and percent COD removal
increased with the increasing PAC concentration for both adsorption (A) and
adsorption-biodegradation (AB) experiments. Effluent COD of nearly 2200 mg/L
was obtained with only adsorption corresponding nearly 50% removal with 5 g/L
PAC addition. However, the effluent COD for adsorption-biodegradation (AB)
experiment was nearly 540 mg/L corresponding to 87% COD removal under the
same conditions. COD removal efficiencies increased steeply with the PAC
concentration up to 2 g/I. and remained almost constant for higher PAC
concentrations. PAC concentration of 2 g/L yielded (86%) nearly the same percent
COD removal as that of the 5 g/ PAC (87%). Considering the cost of activated
carbon, 2 g/L PAC was selected as the most suitable concentration for future use.



80

3400 - — 85
2900 75 =
| 2
- 65 g
% 2400 - @
E o
~ 1900
a ©
Q G
O 1400 - ©
C e
900 -
-0
400 - i 1 T T 15
0 1 2 3 4 5
PAC (g/L )

Figure 3.6.16. Variations of the effluent COD and percent COD removals at the end
of 30 h fed-batch operation with the adsorbent (PAC) concentration

A, A adsorption (A); O, ® adsorption and biological treatment (AB)

Similar plots were made for ammonium-N removal as shown in Figure 3.6.17.
Again, percent NH;-N removal increased with increasing PAC concentration in both
adsorptive biological treatment (AB) and only adsorption (A) experiments. In PAC
added biodegradation experiments, 26% and 30% NH4-N removals were obtained
with 2 g/L and 5 g/I. PAC, respectively. Ammonium-N removal in adsorption
experiments (A) were considerably lower than those of the PAC added biological
treatment (AB) resulting in only 12 % and 16 % COD removals with 2 g/I. and 5

g/L PAC, respectively.
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Figure 3.6.17. Variations of the effluent NHy-N and percent NH4-N removals at the end
of 30 h fed-batch operation with the adsorbent (PAC) concentration.

A, A adsorption (A); ©, ® adsorption and biological treatment (AB)

3.6.2. Kinetic Analysis and Determination of Kinetic Constants

An empirical model was developed to quantify the effect of adsorbent addition
onto the biological treatment process. The empirical equation has the following form,

Eap — Es=a (PAC)® (3.6.1)

where Exp and Ep are percent COD removals at the end of 30 hour operation, for
PAC-added biological treatment (AB) and PAC-free biological treatment (B),
respectively; PAC is the concentration of powdered activated carbon added (g/L) ; a
and b are empirical constants.
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In logarithmic form, eqn 3.6.1 becomes,
Ln (Eag - Eg) =Lna+bLn(PAC) (3.6.2)

A plot of Ln (Eag —Eg) versus Ln (PAC) would yield a line with a slope of (b) and
an intercept of Ln a.

Experimental data for percent COD removal obtained at the end of 30 hours of
fed-batch operation with different PAC concentrations (data in Figure 3.6.18) were
plotted in form of Ln(Eag—Eg) versus Ln(PAC) in Figure 3.6.18. From the slope and
the intercept of the best-fit line the following values were obtained for (a) and (b).

a=0.0584 and b=0.6174 *=0.93)

Therefore, eqn 3.6.1. for COD removal efficiency in the presence of PAC takes

the following form,
Eas—Es= 0.0584 (PAC)*¢!™ (3.6.3.)
-1.5 -
2 - ®

Ln (Exg-Eg)
LX)

o y=0.6174x - 2.841
4 - R?=0.9257

15 05 0.5 15
Ln (PAC)

Figure 3.6.18. A plot of Ln (Eg- Ep) versus Ln (PAC) for determination of the
constants of the empirical equation for COD removal.
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Experimental data for percent NH4-N removal obtained at the end of 30 hours of
fed-batch operation with different PAC concentrations (data in Figure 3.6.19) were
plotted in form of Ln (Eap — Es) versus Ln (PAC) in Figure 3.6.18. From the slope
and the intercept of the best-fit line the following values were obtained for (a) and

(b).
a’=0.0362 and b’ =0.7143 (= 0.94)

Therefore, eqn 3.6.1 for ammonium-N removal efficiency in the presence of PAC

takes the following form,
Eag — Es = 0.0362 (PAC)* "4 (3.6.4.)
..2 !
® !
2.5 -
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y =0.7143x - 3.3194
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Figure 3.6.19. A plot of Ln (Esg- Eg) versus Ln (PAC) for determination of the
constants of the empirical equation for NH4-N removal.

3.6.3. Powdered Zeolite (PZ) added Biological Treatment
A set of experiments with different zeolite (Z) concentrations (0-5 g/L) were

conducted in an aeration tank operated in fed-batch mode by using the pretreated

leachate. Each set of experiments consisted of four simultaneous experiments.
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Control (C) experiments were performed without any microorganisms and adsorbent.
Biological. treatment (B) experiments were performed only by using the activated
sludge culture without any adsorbent addition. Only adsorbent (Z) was added to the
aeration tank devoid of microorganisms in adsorption experiments (A). Simultaneous
adsorption and biological treatment (AB) experiments were performed by addition of
adsorbent to the aeration tank containing activated sludge organisms. Four
simultaneous experiments were performed under the same initial and operating
conditions. Percent COD removals were based on control experiment’s COD

contents since no COD removal was realized in the control tank (E = 1- S/ S,).

Variation of COD concentration with time for the zeolite concentration of 0.25
g/L is depicted in Figure 3.6.20. COD concentration in the control experiment (o)
increased steadily because of accumulation of COD compounds in the absence of
adsorbents and the organisms, resulting in a COD of nearly 4300 mg/L at the end of
30 h operation period. Similar trend was observed in the adsorption experiment (A)
where COD in the aeration tank increased steadily with time. However, COD levels
were lower than those of the control experiments because of COD removal by
adsorption resulting in a COD content of nearly 4050 mg/L at the end of 30 h of
operation. COD profiles in biological oxidation (B) and adsorbent added biological
treatment (AB) were almost the same, slightly increasing within the first 10 hours
and levelling off afterwards. The final COD contents. in those experiments were
nearly 1110 mg/L for only biological treatment (B) and 1100 mg/L for adsorptive
biological treatment (AB). Because of low zeolite concentration (0.25 g/L),
adsorption was not significant and the major mechanism for COD removal was

biological oxidation in this case.

Variations of percent COD removal with time in fed-batch operation when zeolite
is 0.25 g/L is presented in Figure 3.6.21. Percent COD removals in adsorption
experiment was nearly 6%; whereas, nearly 74% and 74% COD removals were
obtained with the biological treatment (B) and adsorptive biological treatment (AB).
respectively at the end of operation. COD removals in the control experiment were

assumed to be zero by definition. Again. due to low activated carbon concentration
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the difference in COD removal performances of the biodegradation (B) and
adsorption-biodegradation (AB) experiments was negligible.

Variation of wastewater volume with time is shown in Figure 3.6.22. Starting
from a 3.0 L of initial volume, wastewater volume in the tank increased with time

linearly as expected.

In Figure 3.6.23. variation of total amount of biomass with time is presented.
Total amount of biomass increased with time linearly because of increasing reactor

volume with time.

Variation of COD removal rate with COD loading rate is depicted in Figure
3.6.24. COD removal rate decreased with increasing COD loading rate.

The growth yield coefficient for microbial culture was found to be Yx=0.60 gX/gS
for 0.25 g/L zeolite concentration.

—O RO

0 5 10 15 20 25 30
Time (h)

Figure 3.6.20. Variations of COD with time in fed-batch operation (0.25 g/L Zeolite)
e control (C). A adsorption (A). © biological treatment (B).
A adsorption and biological treatment (AB).
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Figure 3.6.21. Variations of percent COD removal with time in fed-batch operation (0.25 g/L. Zeolite)
A adsorption (A), O biological treatment (B), A adsorption and biological
treatment(AB).
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Figure 3.6.22. Variation of reactor volume with time (0.25 g/L Zeolite)
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Figure 3.6.23. Variations of total amount of biomass with time (0.25 g/L Zeolite)
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Figure 3.6.24. Variations of COD removal rate with COD loading rate
(0.25 g/L Zeolite)
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In Figure 3.6.25 variation of COD concentration with time for the zeolite
concentration of 0.50 g/L is depicted. COD concentration in the control experiment
(®) increased steadily because of accumulation of COD compounds in the absence of
adsorbents and the organisms, resulting in a COD of nearly 4340 mg/L at the end of
30 h operation period. Similar trend was observed in the adsorption experiment (A)
where COD in the aeration tank increased steadily with time. However, COD levels
were lower than those of the control experiments because of COD removal by
adsorption resulting in a COD content of nearly 3905 mg/L at the end of 30 h of
operation. COD profiles in biological oxidation (B) and adsorbent added biological
treatment (AB) showed a similar trend, slightly increasing within the first 10 hours
and levelling off afterwards. The final COD contents in those experiments were
nearly 1110 mg/L for only biological treatment (B) and 1065 mg/L for adsorptive
biological treatment (AB). Because of low zeolite concentration (0.50 g/L),
adsorption was not significant and the major mechanism for COD removal was

biological oxidation in this case.

Variation of percent COD removal with time in fed-batch operation when zeolite
is 0.50 g/L is presented in Figure 3.6.26. Percent COD removals in adsorption
experiment was nearly 10%; whereas, nearly 74% and 75% COD removals were
obtained with the biological treatment (B) and adsorptive biological treatment (AB),
respectively at the end of operation. COD removals in the control experiment were
assumed to be zero by definition. Again, due to low (0.5 g/L) zeolite concentration
the difference in COD removal performances of the biodegradation (B) and
adsorption-biodegradation (AB) experiments was negligible. '

The growth yield coefficient for microbial culture was found to be Yyx=0.57
gX/gS for 0.50 g/L zeolite concentration.
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Figure 3.6.25. Variation of COD concentration with time in fed-batch operation
(0.50 g/L Zeolite)® control (C), A adsorption (A), O biological treatment
(B), A adsorption and biological treatment (AB).
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-Figure 3.6.26. Variation of percent COD removal with time in fed-batch operation
(0.50 g/L Zeolite) A adsorption (A), © biological treatment (B),
A adsorption and biological treatment (AB).
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Figure 3.6.27 depicts variations of COD concentrations with time for the four
simultaneous experiments when the zeolite concentration was 1 g/L. Similar trends
were observed in these experiments. Effluent COD’ s at the end of 30 hours of fed-
batch operation were 4300 mg/L, 3725 mg/L, 1100 mg/L and 1040 mg/L for the
control (C), adsorption (A), biodegradation (B) and adsorption-biodegradation (AB)
experiments, respectively. Despite a relatively high concentration of zeolite (1 g/L),
the effluent COD was reduced from 1100 mg/L (B) to 1040 mg/L (AB) at the end of

operation.

Percent COD removals with time are shown in Figure 3.6.28. COD removal for
only adsorption (A) was nearly 14%. Howeifer, COD removals of 74% and 76%
were obtained with biodegradation ¢) and adsorption -biodegradation (A)
experiments, respectively at the end of 30 h operation

The growth yield coefficient for microbial culture was found to be Yxs=0.59
gX/gS for 1.0 g/L zeolite concentration.

Time (h)

Figure 3.6.27. Variations of COD with time in fed-batch operation (1.0 g/L zeolite)
e contro] (C). A adsorption (A), © biological treatment (B),
A adsorption and biological treatment (AB).
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Figure 3.6.28. Variation of percent COD removal with time in fed-batch operation
(1.0 g/L zeolite) A adsorption (A), © biological treatment (B),
‘A adsorption and biological treatment (AB).

Figure 3.6.29 depicts variations of COD concentrations with time for the four
simultaneous experiments when the zeolite concentration was 2 g/L. Similar trends
were observed in these experiments. Effluent COD’ s at the end of 30 hours of fed-
batch operation were 4300 mg/L, 3575 mg/L, 1100 mg/L-and 1010 mg/L for the
control (C), adsorption (A), biodegradation (B) and adsorption-biodegradation (AB)
experiments, respectively. In spite of high concentration of zeolite (2 g/L), the
effluent COD was reduced from 1100 mg/L (B) to 1010 mg/L (AB) at the end of
operation.

Percent COD removals with time are shown in Figure 3.6.30. Percent COD
removal also increased insignificantly by addition of 2 g/L zeolite to the biological
treatment tank. COD removal for only adsorption (A) was nearly 17%. COD
removals of 74% and 76% were obtained with biodegradation (o) and adsorption-
biodegradation ( A ) experiments, respectively at the end of 30 h operation

The growth yield coefficient for microbial culture was found to be Yy5=0.60

gX/gS for 2.0 g/L zeolite concentration.
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Figure 3.6.29. Variation of COD with time in fed-batch operation (2.0 g/L zeolite)
e control (C), A adsorption (A), O biological treatment (B),
A adsorption and biological treatment (AB).
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. Figure 3.6.30. Variation of percent COD removal with time in fed-batch operation
(2.0 g/L zeolite) A adsorption (A), © biological treatment (B),
A adsorption and biological treatment (AB).
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Percent COD removals were not affected sigm'ﬁcantly'by zeolite addition even at
higher zeolite concentrations. Figure 3.6.31 depicts variations of COD contents with
time for 3 g/L zeolite concentration. Effluent COD contents for the control and the
adsorption experiments were 4300 mg/L and 3500 mg/L, respectively. Efffuent
COD’s were nearly 1100 mg/L. and 1005 mg/L for the biodegradation (B) and
adsorption-biodegradation (AB) experiments.

In Figure 3.6.32 variation of percent COD removal with time is presented. Similar
trends were observed in COD removal efficiencies. Nearly 18% COD was removed
by only adsorption (A), percent COD removals were 74% and 77% for
biodegradation (B) and adsorptive-biodegradation (AB), respectively. Again, percent
COD removal was zero for the control experiment.

The growth yield coefficient for microbial culture was found to be Yx=0.57
gX/gS for 3.0 g/L zeolite concentration.

0 5 10 15 20 25 30
Time(h)

‘Figure 3.6.31. Variation of COD with time in fed-batch operation (3.0 g/L zeolite)
e contro] (C), A adsorption (A), O biological treatment (B).

A adsorption and biological treatment (AB).
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Figure 3.6.32. Variation of percent COD removal with time in fed-batch operation
(3.0 g/L zeolite) A adsorption (A), © biological treatment (B),
A adsorption and biological treatment (AB).

Figure 3.6.33 depicts variation of COD contents with time for 5 g/ zeolite
concentration. Effluent COD contents for the control and the adsorption experiments
were 4300 mg/L and 3550 mg/L, respectively. Effluent COD’s were nearly 1100
mg/L and 995 mg/L for the biodegradation (B) and adsorption-biodegradation (AB)
experiments.

Variation of percent COD removal with time is presented in Figure 3.6.34.
Similar trends were observed in COD removal efficiencies. Nearly 18% COD was
removed by only adsorption (A), percent COD removals were 74% and 77% for
biodegradation (B) and adsorptive-biodegradation (AB), respectively. Again, percent
COD removal was zero for the control experiment.

" The growth yield coefficient for microbial culture was found to be Yy5=0.56
gX/gS for 5.0 g/L. zeolite concentration.
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- Figure 3.6.34. Variation of percent COD removal with time in fed-batch operation
(5.0 g/L zeolite) A adsorption (A), O biological treatment (B),
A adsorption and biological treatment (AB).
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Collected results of effluent COD contents and percent COD removals at the end
of 30 h operation with different zeolite concentrations (0-5 g/L) are depicted in
Figure 3.6.35. Effluent COD decreased and percent COD removal increased with the
increasing zeolite concentration for both adsorption (A) and adsorption-
biodegradation (AB) experiments. Effluent COD of nearly 3550 mg/L. was obtained
with only adsorption corresponding nearly 18% COD removal with 5 g/L zeolite
addition. However, the effluent COD for adsorption-biodegradation (AB) experiment
was nearly 995 mg/L corresponding to 77% COD removal under the same
conditions. COD removal efficiencies did not increase significantly, when the zeolite

concentration increased up to 5 g/L.
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Figure 3.6.35. Variations of the effluent COD and percent COD removals at the end
of 30 h fed-batch operation with the adsorbent (Z) concentration

A, A adsorption (A); ©, ® adsorption and biological treatment (AB)

Variations of the effluent NH;-N and percent NH,-N removals at the end of 30 h
fed-batch operation with the adsorbent (zeolite) concentration are shown in Figure

3.6.36. Again. percent NH,-N removal increased with Increasing zeolite
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concentration in both adsorptive biological treatment (AB) and only adsorption (A)
experiments. In zeolite added biotreatment experiments, 34% and 40% NH,-N
removals were obtained with 2 g/I. and 5 g/ PAC, respectively. Ammonium-N
removal in adsorption experiments (A) were considerably lower than those of the
zeolite added biological treatment (AB) resulting in only 21% and 28% NH,-N
removals with 2 g/I. and 5g/L zeolite, respectively.

Adsorption capacity of zeolite for COD was lower than that of the PAC.
However, zeolite was proven to be a better adsorbent for NHs-N removal as
compared to PAC. Considering the low adsorption capacity of zeolite for COD
removal, this adsorbent was not used in future experiments.
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Figure 3.6.36. Variations of the effluent NH4-N and percent NH4-N removals at the end
of 30 h fed-batch operation with the adsorbent (Z) concentration.

A. A adsorption (A); O, @ adsorption and biological treatment (AB)
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3.6.4. Kinetic Analysis and Determination of Kinetic Constants

An empirical model was developed to quantify the effect of adsorbent addition
onto the biological treatment process. The empirical equation has the following form,

Exg—Ez=a (Z)° (3.6.5)

where Exp and Ep are percent COD removals at the end of 30 hour operation, for
zeolite-added biological treatment (AB) and zeolite-free biological treatment (B),
respectively; Z is the concentration of zeolite added (g/L) ; a and b are empirical

constants.
In logarithmic form, eqn 3.6.5 becomes,
Ln(Exs—Eg)=Lna+bLn(Z) (3.6.6.)

A plot of Ln (Eag —Eg) versus Ln (Z) would yield a line with a slope of (b) and an
intercept of Ln a.

Experimental data for percent COD removal obtained at the end of 30 hours of
fed-batch operation with different zeolite concentrations (data in Figure 3.6.37) were
plotted in form of Ln (Exg — Eg) versus Ln (Z) m Figure 3.6.40. From the slope and
the intercept of the best-fit line the following values were obtained for (a) and (b).

a=0.0496 and b=058 (=0.91)

Therefore, eqn 3.6.5 for COD removal efficiency in the presence of zeolite takes
the following form,

Eas—Eg= 0.0496 (Z)*® (3.6.7.)
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Figure 3.6.37. A plot of Ln (Eag-Eg) versus Ln (Z) for determination of the
constants of the empirical equation for COD removal.

Experimental data for percent NH4-N removal obtained at the end of 30 hours of
fed-batch operation with different zeolite concentrations (data in Figure 3.6.38) were
plotted in form of Ln (Esg — Eg) versus Ln (Z) in Figure 3.6.41. From the slope and
the intercept of the best-fit line the following values were obtained for (a) and (b).

a’=0.0849 and b =0.6244 (7 = 0.96)

Therefore, eqn 3.6.5 for ammonium-N removal efficiency in the presence of

zeolite takes the following form,

Eap—Ep= 0.0849 (2)%5%% (3.6.8.)
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Figure 3.6.38. A plot of Ln (Eag-Eg) versus Ln (Z) for determination of the
constants of the empirical equation for NH4-N removal.

3.6.5. Comparison of Zeolite(Z) and Powdered Activated Carbon (PAC) Added
Biological Treatment

Time course of COD concentrations in the aeration tank operated in fed-batch
mode are depicted in Figure 3.6.39 for both PAC and zeolite when the adsorbent
concentration was 2 g/L in adsorbent added biological treatment (AB). Percent COD
removals increased with time for the first 10 hours of operation and remained nearly
constant for both adsorbents. COD content in the control experiment increased
steadily with time due to accumulation of COD in the absence of any adsorbents and
organisms. Percent COD removal in the control experiment was considered to be
zero and COD removals in other experiments were based on the COD content of the
control experiment. Percent COD removals at the end of 30 hours of operation were
86% and 76% resulting in final COD contents of 610 mg/L and 1010 mg/L for the
PAC and zeolite, respectively. Effluent COD contents increased with time for both
adsorbents, since COD loading rate was much higher than COD removal rates by
adsorption and biological treatment. However, the increases in COD in the
experimental tanks were much lower than those obtained in the control tank,
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indicating effective removal of COD by adsorption and biological oxidation. COD
removal with the PAC as adsorbent was much better than zeolite in adsorbent added
biological oxidation as clearly shown in Figure 3.6.41.
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Figure 3.6.39. Variations of percent COD removal and the effluent COD with
time in adsorbent added biological treatment of pre-treated landfill
leachate by fed-batch operation, (A)=2 g/L.
o Control ; o e PAC; A A Zeolite.

Effluent COD contents and percent COD removals are presented in Figure 3.6.40
and 3.6.41 for adsorption (A) and adsorbent added biological treatment (AB) with
PAC and zeolite at the end of 30 hours of fed-batch operation. Adsorbent
concentrations were varied between 1g/L. and 5 g/L.. COD removal in the control
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experiment was considered to be zero and all percent removals were based upon

control experiment COD values (E=1-S/S).

Figure 3.6.40 depicts variation of effluent COD and percent COD removal with
adsorbent concentrations at the end of 30 h of operation for only adsorption (A)
without biological treatment. Percent COD removals increased and the final COD
contents decreased with increasing adsorbent concentration for both PAC and zeolite.
Nearly, 49% and 18% COD removals resulting in 2180 mg/L and 3550 mg/L final
COD concentrations were obtained with 5 g/l PAC and zeolite, respectively at the
end of 30 hours operation. Obviously, PAC has performed much better than zeolite
as an adsorbent for the removal of COD by adsorption. Variations of effluent COD
contents and percent COD removals for adsorbent added biological treatment (AB)
are depicted in Figure 3.6.41. Similar to Figure 3.6.40, percent COD removals
increased and final COD contents decreased with increasing adsorbent concentration.
Nearly, 87% and 77% COD removals with the final COD contents of 540 mg/L. and
1000 mg/L were obtained with PAC and zeolite concentrations of above 2 g/L,
respectively. Since the adsorbent concentrations above 2 g/L did not improve COD
removals significantly for both adsorbents, adsorbent concentration of 2 g/L is
recommended for practical use.

It is quite clear from the comparison of Figure 3.6.40 and 3.6.41. that, adsorbent
added biological treatment (AB) is superior to adsorption (A) and biological
treatment (B) alone, in terms of COD removal from the leachate.
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Figure 3.6.40. Variation of the effluent COD at the end of 30 h operation with the
adsorbent concentration for only adsorption experiments (A)
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Figure 3.6.41. Variation of percent COD removal at the end of 30 h operation with
the adsorbent concentration for adsorbent added biological treatment
(AB) o e PAC; A A Zeolite.
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Since the ammonium-N content of the leachate was prohibitively high, removal of
NH4-N was also considered as another criterion in comparing PAC with zeolite as
adsorbent. Figure 3.6.42 and 3.6.43 depict variations of NH4-N removal efficiencies
and final NH4-N contents with the adsorbent concentrations at the end of 30 h of fed-

batch operation.

Figure 3.6.42 depicts variations of final NHs-N content and NHy-N removal
efficiency with adsorbent (PAC and zeolite) concentrations for only adsorption (A)
without any biological treatment. Percent ammonium-N removals increased and final
NH.,-N contents decreased with increasing adsorbent concentrations for both zeolite
and PAC. Zeolite has performed significantly better than PAC for ammonium-N
removal because of its high capacity for ammonium ion adsorption. Nearly 28% and
16% NH4-N removals were obtained with the final NH4-N concentrations of 310
mg/L and 370 mg/L with 5 g/L zeolite and PAC, respectively at the end of 30 hours
operation. Variations of percent NHy-N removal and the effluent NH4-N contents
with the adsorbent concentrations are depicted in Figure 3.6.43. for adsorbent added
biological treatment (AB). Similar to Figure 3.6.42., percent NH4-N removals
obtained with zeolite are much better than those obtained with the PAC. Percent
NH4-N removals increased and the final NHy-N contents decreased with increasing
adsorbent concentrations. Nearly, 40% and 30% NH;-N removals with final NH;-N
concentrations of 290 mg/L and 340 mg/L were obtained with 5 g/L zeolite and PAC
concentrétions, respectively at the end of 30 h fed-batch operation.

Again adsorbent added biological treatment (AB) resulted in much higher percent
NH4-N removals as compared to adsorption (A) alone, no matter what kind of
adsorbent was used. Percent NH4-N removal increased from 28% for only by
adsorption to 40% for adsorbent added biological treatment with zeolite as adsorbent,
whereas this increase was from 16% to 30% when PAC was used.
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Figure 3.6.42. Variation of the effluent NHs-N at the end of 30h operation with the
adsorbent concentration for only adsorption(A)
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Figure 3.6.43. Variation of percent ammonium-N removal at the end of 30h
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In addition to these experiments, to observe effect of COD and NH4-N removals,
PAC and zeolite were used together in Fed-Batch biological treatment operation
mode. PAC and zeolite concentration were kept 1 g/L. through the operation time.
Figure 3.6.44 depict variations of COD contents with time for 1 g/L PAC and 1 g/L
zeolite concentrations. Effluent COD contents for the control and the adsorption
experiments were 4300 mg/L and 3300 mg/L, respectively. Whereas, effluent COD’s
were nearly 1100 mg/L and 992 mg/L for the biodegradation (B) and adsorption-
biodegradation (AB) experiments.

Variation of percent COD removal with time is presented in Figure 3.6.45.
Similar trends were observed in COD removal efficiencies. Nearly 23% COD was
removed by only adsorption (A); whereas percent COD removals were 74% and 79%
for biodegradation (B) and adsorptive-biodegradation (AB), respectively. Again,

percent COD removal was zero for the control experiment.

Effluent NH4-N concentration and ammonium nitrogen removal were nearly 336

mg/L and 27%, respectively

When PAC and zeolite were used together, significant COD and NH,-N removals

were not achieved.
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Figure 3.6.44. Variation of COD with time in fed-batch operation (1.0 g/L PAC + 1.0
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Figure 3.6.45. Variation of percent COD removal with time in fed-batch operation

(1.0 /L PAC + 1 g/L Zeolite)
A adsorption (A), © biological treatment (B).
A adsorption and biological treatment (AB).
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3.7. Repeated Fed — Batch Experiments

The aim of these studies was to decrease effluent COD and ammonium
concentrations. Two set of experiments were performed with and without PAC
addition with different cycle times, but the same total operation time of 30 h (3x10 h,
5x6 h) for the repeated fed-batch biological treatment of the pre-treated landfill
leachate. In these experiments, the feed flow rate and COD content of the feed were
kept constant at 0.15 L/h and 7,000 mg/L, respectively. C/N/P ratio in the feed
wastewater was adjusted to 100/10/1.5. The feed wastewater ammonium
concentration was nearly 700 mg/L. The initial COD content in the aeration tank was
nearly 300 mg/L and the initial biomass concentration was 4200200 mg biomass/L,
on dry weight basis. Powdered activated carbon (PAC) concentration was constant at
2 g/L. Temperature and pH were 20 °C and pH = 8-8.5, throughout the experiments.
Vigorous aeration was supplied to the aeration tank to keep the dissolved oxygen
(DO) above 2 mg/L. Temperature, pH and DO were monitored and manually
controlled during the experiments. A control experiment devoid of microorganisms
was run in parallel to the biological treatment experiment for every experimental
condition. Percent COD removals in control experiments were considered to be zero
and COD content of the control experiments were used as the base in calculation of

COD removal efficiencies.
3.7.1. Repeated Fed-Batch Biological treatment without PAC Addition

Time course of COD concentrations in the aeration tank operated in repeated fed-
batch mode with different cycle times are depicted in Figure 3.7.1. COD content in
the control experiment increased steadily with time due to accumulation of COD in
the absence of any adsorbents and organisms.

When a single cycle with an operation time of 30 hours was used in fed-batch
mode as used in previous experiments. effluent COD concentration of 1120 mg/L
was obtained. COD concentration in the control experiment (®) increased steadily

because of accumulation of COD compounds in the absence of adsorbents and the
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organisms, resulting in a COD of nearly 4260 mg/L at the end of 30 h operation
period. Percent COD removal in the single cycle fed-batch experiment of 30 h was
74% based on the control experiment. Percent ammonium-N removal and effluent
ammonium concentrations were 21% and 360 mg/L, respectively at the end of the 30

hours.

When the three-cycle operation with ten hours each was applied (3x10h) in
repeated fed-batch mode, effluent COD concentration was reduced to 924 mg/L at
the end of 30 hours of total operation time. COD concentration in the control
experiment @) increased steadily because of accumulation of COD compounds in
the absence of adsorbents and the organisms, resulting in COD of nearly 4260 mg/L
at the end of 30 h operation period. Percent COD removal was 78% based on the
control experiment. Percent ammonium-N removal and effluent ammonium

concentration were 21% and 360 mg/L, respectively at the end of the 30 hours.

Effluent COD concentration was reduced to 875 mg/L, when five cycle operation
of 6 hours each (5x6h) was used in repeated fed-batch mode. COD concentration in
the control experiment (®) increased steadily because of accumulation of COD
compounds in the absence of adsorbents and the organisms, resulting in a COD of
nearly 4260 mg/L. at the end of 30 h operation period. Percent COD removal was
79% based on the control experiment. Percent ammonium-N removal and effluent
ammonium concentration were 10% and 410 mg/L, respectively at the end of the 30
hours. Effluent ammonium-N concentration was higher than the other operations
because of accumulation of the ammonium-N in the aeration tank during repeated
fed-batch operation.

In summary, when repeated fed-batch operation was used with cycle lengths of
3x10 hours and 5x6 hours, better COD removals were obtained as compared to
single cycle fed-batch operation of 30 hours.
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Figure 3.7.1.Variation of COD concentrations with time in the aeration tank operated
in repeated fed-batch mode with different cycle lengths.

Variation of initial and final biomass concentrations with different cycle lengths
in the aeration tank operated in repeated fed-batch mode are shown in Figure 3.7.2.
As clearly seen from the figure, final biomass concentration increased from 5340
mg/L to 5750 mg/L when the cvcle length was changed from 3x10 to 5x6 hours.
Final biomass concentration in 1x30 h fed-batch operation was 3650 mg/L with

initial biomass concentration of nearly 4200 mg/L in all experiments.



111

6000

5000+

4000+
3000-
2000+

1000

Biomass cons.(X) (mg/L)

1x30 3x10 5x6
Cycle length (h)

Initial biomass cons. [ Final biomass cons.

Figure 3.7.2. Variation of initial and final biomass concentration with different cycle
lengths in the aeration tank operated in repeated fed-batch mode

3.7.2. Repeated Fed-Batch Biological treatment with PAC Addition

Variations of COD concentration with time in the aeration tank operated in
repeated fed-batch mode with different cycle times and PC concentration of 2 g/L are
depicted in Figure 3.7.3. COD content in the control experiment increased steadily
with time due to accumulation of COD in the absence of amy adsorbents and

organisms.

When a single cycle operation with 30 hours of total operation period was used in
fed-batch mode, the final COD contents in these experiments were nearly 2635 mg/L
for only adsoi‘ption (A) and 632 mg/L for adsorptive biological treatment (AB). COD
concentration in the control experiment () increased steadily because of
accumulation of COD compounds in the absence of adsorbents and the organisms,
resulting in a COD of nearly 4260 mg/L at the end of 30 h operation period. Percent
COD removal was 85% based on the control experiment. Percent ammonium-N
removal and effluent ammonium concentration were 25% and 352 mg/L.

respectively at the end of the 30 hours.
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When a three-cycle operation with10 hours each was used (3x10 h) in repeated
fed-batch mode, the final COD contents were nearly 1710 mg/L for only adsorption
(A) and 398 mg/L for adsorptive-biological treatment (AB). A significant decrease
was observed in effluent COD concentration by using repeated fed-batch operation
of 3x10 hours as compared to the single cycle operation of 30 hours. COD
concentration in the control experiment (®) increased steadily because of
accumulation of COD compounds in the absence of adsorbents and the organisms,
resulting in a COD of nearly 4260 mg/L at the end of 30 h operation period. Percent
COD removal was 91% based on the control experiment. Percent ammonium-N
removal and effluent ammonium concentration were 22% and 370 mg/L,
respecﬁver at the end of the 30 hours. Apparently, ammonium-N removal was not
affected by the repeated fed-batch operation.

Effluent COD concentration was reduced to 365 mg/L, when the five-cycle
operation of 6 hours each was used in repeated fed-batch operation. COD
concentration in the control experiment (®) increased steadily because of
accumulation of COD compounds in the absence of adsorbents and the organisms,
resulting in a COD of nearly 4260 mg/L at the end of 30 h operation period. Percent
COD removal was approximately 91.5% based on the control experiment. Percent
ammonium-N removal and effluent ammonium concentration were 22% and 365

mg/L, respectively at the end of the 30 hours.

In summary, when the repeated fed-batch operation with 3x10 hours and 5x6
hours were used, better COD removals were obtained as compared to the single-
cycle fed-batch operation of 30 hours duration in the presence of 2 g/l PAC. COD
removal results of 3x10 h operation were not that different from that of the 5x6h
operation. Therefore, a repeated fed-batch operation of 3x10 h (total 30 h) should be
preferred to a single cycle operation of 30 h.
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Figure 3.7.3.Variation of COD concentrations with time in the aeration tank operated
in repeated fed-batch mode with different cycle times for2 g/L PAC.

Variation of initial and final biomass concentrations with different cycle lengths
in repeated fed-batch operation are shown in Figure 3.7.4. As clearly seen from the
figure, final biomass concentration increased from 5450 mg/L to 5700 mg/L when
the cycle length was changed from 3x10h to 5x6 hours. Final biomass concentration
in 1x30 h fed-batch operation was 3450 mg/L and the initial biomass concentrations

were nearly 4200 mg/L in all experiments.
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Figure 3.7.4. Variation of initial and final biomass concentration with different cycle
lengths in the aeration tank operated in repeated fed-batch
mode for 2 g/L PAC.

In addition to these experiments, to observe the system’s performance at longer
operation times, a three-cycle operation with 30 hours cycle length was used (3x30
h) in repeated fed-batch mode. The final COD contents were nearly 3440 mg/L for
only adsorption (A) and 285 mg/L. for adsorptive-biological treatment (AB). A
significant decrease was observed in effluent COD concentration by using repeated
fed-batch operation of 3x30 hours as compared to the five-cycle operation with 6
hours cycle length (5x6 h). Percent COD removals were 91.5% and 93.5% for 5x6 h
and 3x30b operations. Percent ammonium-N removal and effluent ammonium
concentration were 30% and 224 mg/L., respectively in 3x30 h repeated fed-batch
experiment. Whereas, percent ammonium-N removal and effluent ammonium
concentration were 22% and 365 mg/L, respectively in 5x6 h repeated fed-batch
operation. Apparently, increasing the operation time of the repeated fed-batch
treatment reduced final ammonium-N concentration.
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Figure 3.7.5.Variation of COD concentrations with time in the acration tank operated
in repeated fed-batch mode with 3x30 hour cycle length for 2 g/L PAC.
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3.8. Effects of Feed N/COD Ratio on Performance of PAC added
Fed-Batch Biological Treatment

The objective of these experiments was to investigate effects of N/COD ratio in
the feed wastewater on COD and ammonium removal in PAC added fed-batch
treatment. Feed flow rate and COD content of the feed were kept constant at
Q = 0.15 L/h and 7,000 mg/L. Feed wastewater N/COD ratio was adjusted to
different levels by adjusting the NH,4-N level by air stripping of ammonia. The initial
COD content in the aeration tank was nearly 300 mg/L and the initial biomass

concentration was nearly 4200200 mg biomass/L. on dry weight basis. Powdered
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activated carbon (PAC) concentration was kept 2 g/L.. Temperature and pH were 20
°C and pH = 8-8.5, throughout the experiments. Vigorous aeration was supplied to
the aeration tank to keep the dissolved oxygen (DO) above 2 mg/L. pH and DO were
monitored and manually controlled during the experiments. A control experiment
devoid of microorganisms was run parallel to the biological treatment experiment for
every experimental condition. Percent COD removals in control experiments were
considered to be zero and COD content of the control experiments were used as the

base in calculation of COD removal efficiencies.

Variations of COD concentration with time as a function of feed N/COD ratio are
depicted in Figure 3.8.1. COD content in the control experiment increased steadily

with time due to accumulation of COD in the absence of any adsorbents and

organisms.

When the N/COD ratio was 0.11 (11%) in fed-batch mode, the final COD
contents in this experiment was nearly 2635 mg/L and 632 mg/L for only adsorption
(A) and adsorptive biological treatment (AB), respectively. COD concentration in the
control experiment (®) increased steadily because of accumulation of COD
compounds in the absence of adsorbents and the organisms, resulting in a COD of
nearly 4260 mg/L at the end of 30 h operation period. Percent COD removal was
85% based on the control experiment. Percent ammonium-N removal and effluent
ammonium concentration were 25% and 352 mg/L, respectively at the end of the 30

hours.

When the feed N/COD ratio was 0.093 (9.3%) in fed-batch operation, final COD
contents were approximately 2655 mg/L for only adsorption (A) and 640 mg/L for
adsorptive biological treatment (AB). Almost no improvement was obtained in the
final COD levels when the feed N/COD was reduced to 9.3% from 11%. COD
concentration in the control experiment @) increased steadily because of
accumulation of COD compounds in the absence of adsorbents and the organisms,
resulting in a COD of nearly 4260 mg/L at the end of 30 h operation period. Percent

COD removal was 85% based on the control experiment. Percent ammonium-N
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removal and effluent ammonium concentration were 28% and 284 mg/L,
respectively at the end of the 30 hours indicating an improvement in NH4-N removal
by reducing the feed N/COD ratio.

When the N/COD ratio was 0.068 (6.8%) in the feed wastewater, the final COD
contents were nearly 2675 mg/l. and 649 mg/l. for only adsorption (A) and
adsorptive biological treatment (AB), respectively. Again, no significant
improvement was observed in COD removal by reducing the feed N/COD ratio.
COD concentration in the control experiment (®) increased steadily because of
accumulation of COD compounds in the absence of adsorbents and the organisms,
resulting in a COD of nearly 4260 mg/L at the end of 30 h operation period. Percent
COD removal was 85% based on the control experiment. Percent ammonium-N
removal and effluent ammonium concentration were 33% and 195 mg/L,
respectively at the end of the 30 hours. Apparently, percent NH;-N removal
increased and final NH;-N level decreased by reducing the feed N/COD ratio.

Further reductions in the feed N/COD ratio did not reduce the final COD level,
which were nearly 2685 mg/L for only adsorption (A) and 705 mg/L for adsorptive
biological treatment (AB), when the N/COD ratio was 0.038(3.8%) in the feed
wastewater. COD concentration in the control experiment (e) increased steadily
because of accumulation of COD compounds in the absence of adsorbents and the
organisms, resulting in a COD of nearly 4260 mg/L at the end of 30 h operation
period. Percent COD removal was 83% based on the control experiment. Percent
ammonium-N removal and effluent ammonium concentration were 39% and 124
mg/L, respectively at the end of the 30 hours. Reductions in the feed N/COD ratio
resulted in significant reductions in NH4-N content of the effluent.

When the feed N/COD ratio was 0.031 (3.1%), the final COD contents were
nearly 2905 mg/L for only adsorption (A) and 945 mg/L for adsorptive-biological
treatment (AB). Effluent COD level has increased because of reductions in NH;-N
content of the feed wastewater. This is probably because of nitrogen limitations at
low feed N/COD ratios, especially when N/COD< 4%. COD concentration in the
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control experiment @) increased steadily because of accumulation of COD
compounds in the absence of adsorbents and the organisms, resulting in a COD of
nearly 4260 mg/L at the end of 30 h operation period. Percent COD removal was
78% based on the control experiment, which is much lower that those obtained at
higher N/COD ratios. Percent ammonium-N removal and effluent ammonium
concentration were 44% and 74 mg/L, respectively at the end of the 30 hours.
Apparently, effluent NHs-N level decreased to considerable low levels when the feed

N/COD ratio dropped to 3%.
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Figure 3.8.1.Variation of COD concentration with time as a function of N/COD ratios

Variation of percent COD removals and the effluent COD’s at the end of 30 h
operation time with the ratio of nitrogen and COD loading rates (Lxu.n/Lcop) are

presented in Figure 3.8.2. COD removal in the control experiment was considered
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to be zero and all percent removals were based upon control experiment COD
values (E= 1-S/S.). Percent COD removals increased and the final COD contents
decreased with increasing Lnus.n/Leop ratio. As seen from the figure, Lnu.n/Leop
=(0.05-0.08 ratio was optimum level to prpvide high percent COD removals. Percent

COD removal decreased to 78%, when Lau..~n/Lcop ratio is 0.03.
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Figure 3.8.2. Variation of percent COD removals and the effluent COD’s at the end
of 30 h with the Lau.n/Lcop ratio.

Variation of percent NH;-N removals and the effluent NH4-N’s at the end of 30 h
operation time with the Lnp.n/Lcop are presented in Figure 3.8.3. Percent
ammonium-N removals increased and final NHs-N contents decreased with
decreasing Lau.~n/Lcop ratio. Final NHy-N concentrations decreased, when
Lnuen/Leop ratio decreased, because feed NH4-N contents decreased.
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Figure 3.8.3. Variation of percent NH4-N removals and the effluent NH4-N’s at the
end of 30 h operation time with the Lnn.~/Lcop.

3.9. Chemical Oxidation Experiments

Adsorbent supplemented (2 g/LL PAC) aerobic biological treatment by repeated
fed-batch operation with 3x 10 h cycle length was performed with 100/6/1.5
COD/N/P ratio in the feed. At the end of 30 hour operation time, clear supernatant
was removed after settling and centrifuged at 6000 rpm, 30 min to remove PAC and
organisms. Collected leachate was subjected to air-stripping for 3 hours at pH=12 to
decrease ammonium concentration. Ammonium nitrogen concentration was reduced
from 224 mg/L to 2 mg/L. COD concentration was 300 mg/L. and did not change
after air-stripping. Chemical oxidation experiments were carried out with this landfill
leachate and by using H,O,, Fenton’s reagent and NaOCl as oxidizing agents.

3.9.1. Chemical Oxidation Experiments using H,O;

H,0, dosages were varied between 50-250 mg/L, stepwise. Variation of percent -
COD removal with time for different H,O» dosages is depicted in Figure 3.9.1. As

seen from the figure significant COD reductions were achieved at the end of the 2
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hours. The COD concentration of leachate decreased from 300 mg/L to 190 mg/L
with a %40 removal efficiency with 150 mg/L H,O,. However, when H,O, dosages
were increased to 200 and 250 mg/L, percent removals were %41 and 42%,
respectively. Since no important improvements were obtained in COD removal by
increasing H,O, concentration, 150 mg/L. H,O, was considered as the optimum

dosage in chemical oxidation by H,O,.

Percent COD removal

Time (h)

—8—50 —A— 100 —— 150 —0—200 —— 250 (H202 dosage, mg/L)

Figure 3.9.1. Variation of percent COD removal with time for different H,O, dosages
3.9.2. Chemical Oxidation Experiments using Fenton’s Reagent

In chemical oxidation experiments using H>O, optimum dosage was 150 mg/L. In
this set of experiments, HO, dosage was kept constant at 150 mg/L and FéSO4
dosages were varied between 50-350 mg/L, stepwise. Variation of COD
concentration and percent COD removal for different H.O./FeSO, dosages is
depicted in Figure 3.9.2. As can be seen from the figure COD concentration of
leachate decreased from 300 mg/L to 95 mg/L with %68 COD removal efficiency
for150/250 mg/l. H,0,/FeSOs ratio. However, when H.0,/FeSO; ratio was
decreased to 150/300 and 150/350 mg/L. percent COD removals were 69% and 70%.
respectively. When H.0,/FeSO, ratio was 150/50. 150/100,150’150 and 150/200.
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COD removal efficiency decreased to 26%, 37%, 43%, and 63%, respectively. Since
the highest percent COD removal (68%) was obtained with HyO,/FeSO4~150/250

ratio this combination is recommended for future use.
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Figure 3.9.2.Variation of COD concentration and percent COD removal with
different H,0,/FeSO, ratios.

3.9.3. Chemical Oxidation Experiments using NaOCl

NaOCl concentrations were varied between 50 and 300 mg/L. Variations of COD
concentration and percent COD removal with different NaOCl dosages are depicted
in Figure 3.9.3. As seen from the figure COD concentration of leachate decreased
from 300 mg/L to 170 mg/L with a 43% removal efficiency for 200 mg/I. NaOCl
dosage. When NaOC] dosage was increased to 250 and 300 mg/L, percent COD
removals were 44% and 45%. respectively. For lower NaOCl dosages such as 50,
100, 150 mg/L. removal efficiencies decreased to 16%, 23% and 35%, respectively.
Since the highest percent COD removal was obtained with 200 mg/L NaOCl dosage,
this dosage is recommended for future use.
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Figure 3.9.3. Varnation of COD concentration and percent COD removal with
different NaOCl dosages

In summary, Fenton’s reagent was the most efficient oxidizing agent among the
tested oxidizing agents in chemical oxidation of biologically treated landfill leachate
resulting in %68 removal efficiency with 150/250 mg/L H,0,/FeSO; ratio.
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CHAPTER FOUR
CONCLUSIONS

Due to high COD and ammonium-N content, direct biological treatment of
landfill leachate is difficult and can be realized only with low COD removals. In
order to reduce the COD and NH4-N contents to the treatable levels, the landfill
leachate was subjected to preliminary treatment by coagulation-flocculation and air
stripping of ammonia. COD and NH4-N contents of the leachate were reduced to
desired levels (COD = 7.000 mg/LL and NHs-N = 700 mg/L) by coagulation-
flocculation with lime followed by air stripping of ammonia at pH=12 as
pretreatment.

Pretreated leachate was biologically treated in an aeration tank by fed-batch
operation. The effects of the feed COD content (S,) and feed flow rate (Q) on COD
removals were investigated. COD removal efficiency (E) decreased and the final
COD levels in the tank increased with the increasing feed COD content. Increasing
COD loading rates (Lcop = Q S,) resulted in decreases in final COD removals. The
system should be operated at COD loading rates of below 1 g COD/h in order to
obtain high percent COD removals after 30 hours of operation. Percent COD
removals of 76% and ammonium-N removals of nearly 23% were obtained by fed-

batch biological treatment of pre-treated leachate.

Kinetic constants of the system were determined by using the quasi steady-state
experimental data obtained at the end of 30 hours of operation and the following

values were determined for the k and K.

k=0.037h"=089d", K,=377mglL
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In order to improve COD and ammonium nitrogen removals, pretreated landfill
leachate was subjected to biological treatment in an aeration tank operated in fed-
batch mode in the presence and absence of powdered activated carbon (PAC) and

zeolite as adsorbent.

Percent COD removals in adsorbent added biodegradation experiments (AB) were
higher than those of biological treatment (B) and adsorption (A) experiments alone.
Percent COD removals at the end of 30 hours of fed-batch operation increased with
increasing PAC and zeolite concentrations from 0.25 g/L to 2 g/L and levelled off for
adsorbent concentrations above 2 g/L. Nearly, 87% and 77% COD removals were
achieved with PAC and zeolite concentrations above 2 g/L, respectively at the end of
30 hours of operation time in adsorbent added biological treatment (AB). COD
removals in adsorbent-free biological treatment (B) and adsorption alone (A) with
2 g/L adsorbent concentration were 76% and 40% for PAC; 76% and 17% for
zeolite, respectively. Ammonium-N removals were 40% and 30% for 5 g/L zeolite
and PAC, respectively at the end of 30 hours operation.

PAC has performed better than zeolite for COD removal, whereas ammonium-N
removal performance of zeolite was superior to the PAC used. Since, ammonium-N
removal can easily be achieved by air stripping at pH > 10, use of zeolite for NH;-N
removal has very little advantage. However, PAC is much more effective than zeolite
in COD removal and therefore, should be preferred to zeolite as adsorbent at a
concentration of 2 g/L.. A mixture of PAC and zeolite may also be used for effective
removal of COD and ammonium-N in adsorbent added biological treatment of
landfill leachate.

An empirical equation was developed to describe the contribution of adsorption
over biological treatment in COD and NH4-N removals as a function of both PAC
and zeolite concentrations. Constants of the empirical equation were determined by
using the experimental data.
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In order to obtain lower effluent COD and ammonium concentrations, two sets of
repeated fed-batch experiments were performed with and without PAC addition with
different cycle times and 30 hours of total operation time (3x10 h and 5x6 h). When
the operation time was divided to 3x10 hours and 5x6 hours in repeated fed-batch
operations, improved COD removals were obtained as compared to 30 hours single-

cycle operation with and without PAC addition.

Effects of feed N/COD ratio on COD and ammonium removal in PAC added
biological treatment was investigated. Percent COD removals increased and the final
COD contents decreased with increasing Lypan/Lcop ratio.Lnu.n/Leop=0.05-0.08
ratio was optimum providing highest percent COD removals. Further decreases in
Lanan/Lcop ratio resulted in reductions in COD removal and improvements in NHy-
N removal. Percent COD removal decreased to 78% when Lyp.~n/Lcop was 0.03.

In order to obtain acceptable effluent COD concentrations (< 100 mg/L), chemical
oxidation was applied to landfill leachate after PAC added repeated fed-batch
treatment (3x30 h), by three oxidizing agents (H,O,, Fenton’s reagent and NaOCl).
COD removal obtained by Fenton’s oxidation was much higher than those of H,0,
and NaOCl experiments resulting in 68% COD removal and 95 mg/L effluent COD
concentration for 150/250 mg/L. H,O,/FeSO; ratio.

At the end of pre-treatment, adsorptive biological treatment and chemical
oxidation operations, COD and ammonium nitrogen concentrations of the landfill
leachate were reduced from 9,500 mg/L and 1,270 mg/L to 95 mg/L and 2 mg/L,

respectively.
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RECOMMENDATIONS

Following recommendations can be made for future studies on adsorptive

biological treatment of landfill leachate by fed-batch operation

1. Adsorption capacities of other low-cost adsorbents may be evaluated. New
adsorbents with better adsorption capacity need to be developed and used.

2. Different types of reactors can be used. Performances of sequencing batch reactors
or biofilm systems may be investigated.

3. The system can be operated anaerobically to compare with aerobic biological
treatment by fed-batch operation, in the presence of adsorbents.

4. Other types of microbial flora or special organisms adapted leachate can be used in

order to improve system performance.

5. Continuous experiments such as activated sludge can be carried by considering
important operating variables and using statistical experiment design techniques.
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NOMENCLATURE

Chemical oxygen demand (mg/L)

Percent COD removal (E =1 ~S/S;)
Saturation constant (mg/L)

Maximum COD removal constant (d)
COD loading rate (mg COD/L.h, Q Si/Vy)
NH,-N loading rate (mg NH4-N/L.h)
Ammonium nitrogen concentration (mg/L)
Flow rate of wastewater (L /h)

Powdered activated carbon concentration (g/L.)
COD removal rate (mg COD/ L.h, Q (Si-S¢)/ Vo)
COD in the control tank ( mg/L)

COD in effluent wastewater (mg/L)

COD in feed wastewater (mg/L)

Initial COD in the aeration tank (mg/L)
Volume of reactor (L)

Biomass concentration (g/L)

Total amount of biomass (g)

Growth yield coefficient (kgX/kgS)
Zeolite concentration (g/L)

Maximum specific rate (b™)

Hydraulic residence time (h)
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