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ABSTRACT

Because of the increasing car traffic and the need to improve the environment of
the cities public transport systems have been constructed. Urban public transport
providers have to make attractive the use of transport system for passengers. Most of
the research in urban public transport area has been focused on the evaluation of
system’s performance, traffic management, vehicle planning and scheduling. In this
study, for an underground urban public transport system in Izmir City, the aim is to
find the optimum headways, to minimize the average passenger time spent in the
metro-line with the requirement of fifty percent fullness rate of the carriages. For
solution, first simulation models are constructed for each problem (weekday morning
problem (WMP), weekday afternoon problem (WAP), Saturday problem (S7P), and
Sunday problem (SNP)). The data obtained from the simulation models are used for
fitting metamodels, and then desirability functions are used for finding the optimum
solution. The main contribution of the current study is to solve the optimization
problem confronted in the urban public transport system by using response surface
methodology (RSM), and to provide direction for public transport providers to find

out optimum solutions using RSM.

Keywords: Urban public transport systems, Simulation, Design of experiments,

Metamodelling, Response surface methodology, Desirability functions



OZET

Artan ara¢ trafifi ve sehirlerin ¢evresini iyilestirmek igin kamu tagimacilik
sistemleri insa edilmigtir. Kamu tagimaciligini saglayanlar tasimacilik sisteminin
kullanilmasini  yolcular agisindan ¢ekici hale getirmelidir. Kamu tagimacili
alaninda yapilan galigmalarin birgogu sistem performansinin degerlendirilmesi, trafik
yonetimi, ara¢ planlama ve ¢izelgeleme konularna odaklanmistir. Bu calismada,
Izmir Sehri metro kamu tagimacilik sistemi igin, vagon doluluk oraminin ylizde elli
olmas: gerekliligi ile sistemde gegirilen ortalama yolcu siiresini minimize edecek
optimum tren siklik siirelerinin bulunmasi amaglanmigtir. Coziim i¢in, dncelikle her
bir problem i¢in simiilasyon modeli olusturulmustur (haftai¢i sabah problemi (HSP),
haftaici 6gleden sonra problemi (HOP), Cumartesi problemi (CTP), Pazar problemi
(PZP)). Simiilasyon modellerinden elde edilen veriler ile metamodeller
olusturulduktan sonra optimum ¢6zlim icin istek fonksiyonlari kullanilmistir. Bu
caligmanin ana katkisi, sehiri¢i kamu tasimacilik sisteminde kargilagilan
optimizasyon probleminin ¢6ziimii igin yanit ylizey metodolojisinin (YYM)
kullanilmasi, ve kamu tasimcilik hizmeti saglayanlara YYM ni kullanarak optimum

sonuglar1 bulmalar igin yol gosterici olmasidir.

Anahtar sozciikler: Sehiri¢ci kamu tasimacilik sistemleri, Simiilasyon, Deney

tasarimi, Metamodelleme, Yamt yiizey metodolojisi, Istek fonksiyonlar
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

Because of the increasing car traffic and the need to improve the environment of
the cities public transport systems have been constructed. Urban public transport
providers have to make attractive the use of transport system for passengers. Most of
the research in public transport area has been focused on the evaluation of system’s
performance, traffic management, vehicle planning and scheduling. Numerous
approaches in the literature to tackle the problems of urban public transport have
been proposed. Some of these approaches are algorithmic and can find the global
optimum with respect to the goal function chosen, while the rest are heuristic and can

find good solutions fast.

The literature can be classified by the tools which were used for reaching to the
objective. Chiang et al.(1998) developed a rule-based expert system, Mackett &
Edwards (1998) prepared questionnaire, Li (2000) build a simulation model, Priemus
& Konings (2001) examined the other systems, Durmisevic & Sariyildiz (2001) used
neural network method, and Carey & Carville (2003) developed a heuristic approach

in their studies.

Chiang et al. (1998) described a knowledge-based railway scheduling system
(RSS) for Taiwan Railway Administration’s (TRA4) railway scheduling operations.
Scheduling process was divided into two levels, global scheduling and local
scheduling. Railway scheduling problem was explained as determining the timetable
that optimize a given criteria while satisfying the physical constraints with a given
master scheduling plan (MSP) that included a set of train trips for serving passengers

plan and railway facilities. Physical constraints were classified as running time,



minimum stopover time, single-track-head on, overtaking, minimum headway, level
crossing, and track assignment constrains. The scheduling objectives were in
conflict, optimizing the passenger’s service while minimizing the operation cost. RSS
contained six models as data manager, automatic scheduler, database and knowledge
base, user interface, schedule editor and performance evaluation modules. The global
scheduler first generates an initial schedule for all train trips of current class
according to the MSP without considering conflicts. The conflict finder then finds all
of the conflicts and feeds the conflicts one by one to the local scheduler in time order
(one of the three basic methods to arrange the order) for conflict resolution. Local
scheduler can be viewed as a rule-based expert system. The rules that were used for
resolving the conflicts detected by conflict finder were extracted from domain
experts. Also, it was estimated that the current model saved %60 of the time and
resources used for timetable preparation, and RSS can generate satisfactory, although

not optimal, results in a short time.

Mackett & Edwards (1998) concerned with the way in which decisions are made
about urban public transport systems, in particular the rationale underlying. the
decision-making process and the implications for the city in terms of travel demand.
urban development and the environment. Their analysis was based upon a worldwide
survey carried out as a part of a project to investigate the decision-making process
involving the selection of the most appropriate technology for an urban transport

system.

Li (2000) built a simulation model of a train station for passenger flow study.
Simulation model included the processes, equipments and queues that, a passenger
encounters from entering the station to exiting the station. All these encounters
affected the total passenger travel times. Passenger processing time at various check
points, queue time and queue length at the bottleneck areas, the number of people
missing their first available train due to delays in the queue line, equipment
utilization rate, and elapsed time between the 4ﬁrst and the last passenger passed

through a transfer point were used as evaluation criteria for determining an optimal



solution. The aim was minimizing the total passenger travel times and increasing

service quality.

Priemus & Konings (2001) denoted the needed conditions and strategies for
introducing light rail system in the Netherlands, and focused on the opportunities for
creating synergy between public transport and urban revitalization. They examined
the systems in other developed countries such as France, Germany and Japan, and
tried to learn from these systems. They added that developing a successful system
depends on some factors as; an integrated approach (investment in public transport
should be a part of urban policy), an associated policy (parking policy, road pricing
and planning of park-and-ride areas), system structure of the public transport

network, and last the quality of the urban and urban regional public transport.

Durmisevic & Sariyildiz (2001) realized a need for more systematic approach to
the design and assessment of quality of underground spaces, because underground
space has increasingly become a significant public domain for densely built urban
areas, so that a better quality can be obtained. A detailed conceptual framework
derived from the interviews that were fulfilled with different specialists. The aspects
that determined the overall quality of underground spaces was grouped in three parts
as; functional (accessibility, air quality, light, and temperature), psychological
(safety, comfort, way finding, and attractiveness) and structural (dimensions,
construction and separation walls, signing system) aspects. Two types of data were
necessary, first type were related with the spatial characteristics that were actual and
quantifiable values. Second type of data were obtained from questionnaires, analysis
of data was done using the neural network method. They proposed an approach for a
consistent assessment of these factors so that in future it can be integrated into a
decision support system that can help indicate problem in existing underground

spaces and offer support to architects designing new underground spaces.

Carey & Carville (2003) focused on busy complex rail stations, which were key
components of the busy passenger rail networks, and were the location of most train

conflicts. Train planning for a large busy station included drawing up a schedule to



ensure that there are no conflicts between any trains, while ensuring that all the
requirements and constraints are satisfied and minimizing any deviations or cost of
deviations from desired or preferred times, platforms or lines for each train. An
algorithmic approach was developed for generating a station schedule, which is a
scheduled arrival time, scheduled departure time and platform allocation for each
train. The developed scheduling algorithms can be used for train scheduling for a rail

line or network.

Sinclair & Oudheusden (1997), Wu & Hounsell (1998), Ferrari (1999), Sahin
(1999), Parkes & Ungar (2001), Huisman et al. (2002) developed mathematical

models as a tool.

Sinclair & Oudheusden (1997) proposed a minimum cost network flow model to
deal with the problem of bus trip scheduling in heavily congested cities. They called
the mechanism, which chosen for representing the bus departures from the terminals,
as trip frequency scheduling. Trip frequency scheduling specifies the number of
buses per time period that must leave the terminal during different time intervals in
the day. They constructed a network optimization model for the trip frequency-
scheduling problem and used goal programming to solve the problem. Two
objectives were determined, schedule a number of buses as close as possible to the
number of trips required in each time interval (a measure of the quality of service)
and minimize the total travel time (a measure of the operating cost). Constraints
were, parking space at the terminals, number of buses available at a depot, minimum
service levels and bus capacity. Although in the classic scheduling problem bus
demand must be met unconditionally, in their approach a bus can be cancelled if its

cost is too high.

Wu & Hounsell (1998) illustrated an analytical approach for the pre-
implementation evaluation of pre-signals. Pre-signals concept was a bus priority
strategy which aims to give buses priority access into a bus advanced area of the
main junction stop line for avoiding the traffic queue and also for reducing bus delay

at the signal controlled junction. Traffic signals were installed at or near the end of a



with-flow bus lane to provide buses with priority access to the downstream junction.
Analytical equations were developed for determining optimum pre-signal timings,
signal time settings, delay savings, lengths of the relocated traffic queue, and
required bus advance area for designing pre-signalised junctions and estimations of

delay.

Ferrari (1999) dealt with a bimodal transport system and proposed a new method
for solving the programming problem with equilibrium constraints. Decision
variables were; road pricing, transit ticket price, and service characteristics of transit,
also the constraints were, physical and environmental capacity constraints, and
budget constraints. The aim was choosing the values of decision variables. which
maximize the average user satisfaction with the satisfied budget and capacity

constraints and the system is in equilibrium.

Sahin (1999) dealt with inter-train conflicts problem. An inter-train conflict
(meet/pass) simply occurs when two opposing trains move on a single-track section
between neighbouring meet points, or if a faster train catches a slower one moving in
the same direction. Sahin dealt with analyzing dispatchers’ decision process in inter-
train conflict resolutions and developing a heuristic algorithm for rescheduling trains
by modifying existing meet/pass plans in conflicting situations in a single-track
railway. A zero-one mixed-integer-programming model was built, the mathematical
model of rescheduling process in railway traffic control problem is similar to job-
shop scheduling problem. While the objective was to minimize the sum of job
completion times in the job-shop scheduling, the sum of running times of trains were
minimized in the rescheduling process. Also, a heuristic algorithm was developed in
order to obtain better conflict solutions than train dispatchers and optimal or near
optimal solutions in reasonable length of time. Then, three solution methods; optimal
solution (was found by the software LINDO), dispatcher’s solution and heuristic’s
solution were compared. The comparison criteria were; measure of effectiveness,
total waiting times, computation time. The heuristic gave better solution than
dispatcher’s, also the heuristic algorithm performs almost as well as the optimal

solution method in selecting the better conflicting train to stop.



Parkes & Ungar (2001) presented a computational study of an auction-based
method for decentralized train scheduling, which was well suited to the natural
information and control structure of modern railroads. They assumed separate
network territories, with an autonomous dispatch agent responsible for flowing of the
trains over each territory. Each train was represented by a self-interested agent,
which bids for the right to travel across the network from its source to destination,
submitting bids to multiple dispatch agents along its route as necessary. The used
bidding language allowed trains to bid for the right to enter and exit territories at
particular times, and also to represent indifference over a range of times. The
problem was to compute a robust and safe meet/pass schedule for the movement of
trains over the network to maximize the total cost-adjusted value over all trains. The
global objective was to find a safe schedule that maximizes the total net value (total
value minus cost of delay across all trains that run). In addition, the input was a set of
trains, each with a defined route over a track network, a value for completing its
journey, and an optimal departure and arrival time and cost function for off-schedule
performance. They formulated the winner determination problem as a mixed-integer
program. Computational results on a simple network with straightforward best-
response bidding strategies demonstrated that the auction computed near-optimal

system-wide schedules.

Huisman et al. (2002) developed an analytical tool for railway networks that not
required timetables, only the inputs were train frequencies. Due to absent detailed
train schedules of new railway networks, the performance of them could not be
measured or simulated. The main objective was to develop an analytically tractable
queuing network model for total railway networks, taking into account dependencies
and interaction between the individual components that are stations, junctions and

section tracks.

In addition, some other tools like fuzzy multi-criteria analysis, job shop

scheduling formulation, a local feedback-based travel advanced strategy are used.



Kreuger et al. (1997) described a novel constraint model for scheduling train trips
on a network of tracks used in both directions. They thought scheduling train trips on
a network of tracks is an optimization problem that resembles but also differs in
certain ways from other typical scheduling tasks, therefore this kind of problem can
be modelled as a job-shop scheduling problem. Train trips assumed as jobs to be
scheduled on tracks, tracks as resources, and each ftrain trip traversing a track
represents a task, and also the traversal time was taken as the duration of the task.
The problem is stated as, scheduling a set of train trips over a fixed network of
predetermined paths where trains travel in both directions on single tracks,
connecting nodes where trains can meet and overtake and maintaining reasonable
bounds on waiting and total times. They also noted that although the used simple
solver in the performance tests does not lend itself well to optimization, the founded

schedules are quite close to manually found optima in general.

Yeh et al. (2000) presented an effective fuzzy multi-criteria analysis approach to
performance evaluation for urban public transport systems that involving multiple
criteria of multilevel hierarchies and subjective assessments of decision alternatives.
Approach provided a structured framework for the decision makers to think and
handle the performance evaluation problem systematically from a wide variety of
viewpoints in addition to the traditional safety and operation criteria. They applied
this approach to a case study of an urban public transport system operated by ten bus
companies, in Taiwan. Five criteria were selected for evaluating the performance of
ten bus companies. The criteria were, safety (sub-criteria were accident rate, average
vehicle age, average vehicle breakdown and traffic offence rate), comfort (air-
conditioned vehicle rate, passenger information, vehicle cleanliness, seat comfort,
driver’s driving skills, driver’s appearance and driver’s friendliness were selected as
sub-criteria), convenience (the selected sub-criteria were punctuality of the bus
service, route transferability, terminal space and service reliability), and operation

social duty (cost effectiveness and service efficiency were sub-criteria).

Dorfman & Medanic (2003) developed a local feedback-based travel advanced

strategy (T4S) by using a discrete event model of train advances along lines of the



railway. TAS, which was used for scheduling trains in a railway network, was a
service discipline at each meet and pass node determining, which of the trains in the
vicinity should continue to travel, and which should be stopped at the meet and pass
node. TAS has some computational advantages as computing more information then
other approaches, can be used to quickly develop schedules for perturbed cases (as
change in a particular departure time, existence of a behind the schedule train), also
operating way is similar to train dispatchers approach. The three performance criteria
that related to measuring the performance of a 74S were; time to clear the line (the
efficiency ratio), delay of all trains, and the maximal delay. Time to clear the line
was particularly appropriate to assess the degree of optimality of a schedule when the
TAS was employed. In addition, generally 74S does not generate mathematically
optimal solutions, TAS develops suboptimal schedules that closely approach the
optimal in practical situations. Also, TAS can be used to develop an energy-efficient

schedule for a railway network.

In addition, a review paper Cordeau et al. (1998) classified the optimization
models for transportation problems. The problems were categorized in two main

classes, routing problems and scheduling problems.

The briefly mentioned papers are shown in Table 1.1 with the used tools, problem

type and the objective of studies.

Because of its public structure, the major goal of the Izmir Metro company is to
give satisfactory, cheap and fast service to passengers. Thus, minimizing the time

that a passenger spends in the line is very important.

In this study, the problem is to find the headways (input factors), for each ten-time
interval in five days between Monday and Friday, for each four-time interval in

Saturday, and for each three-time interval for Sunday.



Table 1.1 Objectives, problem types and the used tools in literature

Paper Tool Objective Problem type
(S;Sgﬁa:;s%en mathematical prog. to schedule bus trips and to minimum cost
(1997) (goal prog.) minimize the total travel time network flow model
Kreuger et al. | job shop scheduling - novel constraint model
(1997) formulation to schedule train trips on a network of tracks
Mackett & uestionnaire to prepare a decision support evaluation of
Edwards (1998) d system expectations
Chiang et al. a rule-based expert to optimize the service (?f knowledge-based
passenger and to minimize the . .
(1998) system operation cost railway scheduling
to determine optimum pre-signal re-implementati
Wu & Hounsell . timings, signal time settings, p P nation
analytical model . evaluation of pre-
(1998) delay savings, lengths of the sionals
relocated traffic queue. &
to analyze dispatchers’ decision
Sahin mathematical prog. procle S8 1n mte;-tra(ljn conflict inter-train conflict
(1999) (mixed-integer prog.) reso 'utfons and to develope a resolutions
"/ | heuristic algorithm for
rescheduling trains
Ferrari to maximize the average user programming problem
(1999) mathematical prog. satisfaction with the satisfied with equilibrium
budget and capacity constraints | constraints
. to minimize the total passenger
Li imulati [ times and to i flow stud
(2000) simulation travel times and to increase passenger flow study
service quality
Yeh et al. fuzzy multi-criteria to evaluate the performance of Es:;z:?i:c;f ba
(2000) analysis bus companies ] uroan

public transport

Durmisevic &

to prepare a decision support

design and assessment

Sariyildiz neural networks o of quality of
(2001) 4 underground spaces
Priemus & examination of the to fogus on thiop;)portumtlest:"]qr introducing light rail
Konings (2001) | other systems creating synergy etwec?n publIC system

transport and urban revitalization
Parkes & Ungar | mathematical prog. to find a safe schedule that ?3:22;;:3_?[{1 n:jeiho‘g
(2001) {mixed-integer prog.) | maximizes the total net value lzed trat

scheduling

Huisman et al.

analytical model

to develop an analytically
tractable queuing network model

performance
evaluation of railway

strategy

(2002) for total railway networks for etwork

performance evaluation networks
g:;%f: (2003) heuristic approach to generate a station schedule train conflicts
Dorfinan & a local feedback-based a local feedback-based
Medanic (2003) travel advanced to schedule trains travel advanced

strategy
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The objective is to minimize the average passenger time spent in the metro-line
(the first response) with the requirement that the fullness rate of the carriages as fifty
percent (the second response). We solve this problem by integrating Response
Surface Methodology (RSM) into simulation. To the best of our knowledge, this is
the first study that uses RSM and simulation integration for solving a urban public

transport problem.

The thesis is organized as follows. In chapter two, after explaining the response
surface methodology a related literature review is given. Problem in Izmir Metro is
defined in detail and the system is introduced in chapter three. In chapter four,
working logics of the system and simulation model are explained. Also. input data
for model, assumptions before coding phase of the simulation model, flowcharts for
occurred events, some important attributes and variables that are used in the
simulation model are given in chapter four. In addition, a flowchart that denotes
modelling logic of the Halkapinar station is demonstrated. At the end of the chapter
four, the verification and validation techniques that are used for simulation model are
denoted. In chapter five, first RSM study is explained, then the optimization points
are searched for four problems, which are weekday morning (WMP). weekday
afternoon (WAP), Saturday (STP) and Sunday (SNP) problems. After developing
validated metamodels Derringer-Suich multi-response optimization procedure is used

for these four problems.
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CHAPTER TWO
RESPONSE SURFACE METHODOLOGY

2.1 Introduction to Response Surface Methodology

Response surface methodology (RSM) is a collection of mathematical and statistical
techniques, which are useful for developing, improving, and optimizing processes. It
also has important applications in the design, development, and formulation/ of new
products, as well as in the improvement of existing product designs. and it is an

effective tool for constructing optimization models (Myers & Montgomery, 1995,
p.1).

RSM consists of the experimental strategy for exploring the space of the process
or input factors, empirical statistical modelling to develop an appropriate
approximating relationship between the yield and the process variables, and
optimization methods for finding the levels or values of the process variables that

produce desirable values of the response outputs (Myers & Montgomery, 1995, p.3).

RSM was proposed by Box and Wilson in 1951 for finding the input combination
that minimizes the output of a real, non-simulated system. Then, it was generally

used for random simulation models (Angiin et al., 2002, p.377).

Box and Wilson (1951) laid the foundations for RSM. That paper was important
not only because it described what became an entire field of research for the next
fifty years but also because it changed dramatically the way that engineers, scientists,
and statisticians approached industrial experimentation. They outlined a sequential
philosophy of experimentation that encompasses experiments for screening, region
seeking (such as steepest ascent), process/product characterization, and

process/product optimization. Clearly, RSM includes much more than second order
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model fitting and analysis. Indeed, RSM, broadly understood, has become the core of

industrial experimentation (Myers et al., 2004, p.53).

RSM is generally used for optimizing the performance (or a model) of an
unknown system, which is subject to controllable, uncontrollable and unknown
variables. RSM can be applied to any system that has key elements like a criterion of
effectiveness known as the response of the system, which is measurable on
continuous scale, and quantifiable independent variables that affect the system’s
performance. At these conditions, RSM is a group of techniques for finding the
optimum response of the system in an optimum fashion. Although from a historical
viewpoint RSM has been applied primarily to Operations Management, its greatest
value to decision scientists is its potential application to simulation studies
(Brightman, 1978, p.481).

There are two distinct phases in RSM. If the values of the decision variables are
thought to produce a level of the system performance far below the maximum
(minimum) , the method of steepest ascent (descent) is employed to reach the
optimum region quickly. The second phase employs canonical analysis to determine
the exact values for decision variables that ensure optimum system performance
(Brightman, 1978, p.482).

Graphical view of a response surface and contour plot for a maxima problem with
two independent variables is shown in Figure 2.1. In addition, current operating

condition and maximum response point are denoted on contour plot.



13

Current
operating

Expected yield E{y) =
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Figure 2.1 A three dimensional response surface
2.2 Approximating Response Functions

For example, if the objective is to find the levels of independent variables

(¢1, 95 ..., #) that maximize the response (y) of a specific process, the process should

be identified as a function of independent variables, which is;

y=f60...) +¢ 2.1)

where ¢ represents the noise or error that is observed in the response (y). Since the
error term should be normally, identically and independently distributed with zero

mean and constant variance (¢°), the expected response is;

E(y) = E[f(p1¢s... 8] + E(8) = 1 (2.2)

and then the surface represented by;

n=fe16... 0 ~ (2.3)
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is called a response surface. The variables ¢, ¢, ..., in equation (2.3) are called
natural variables, because they are expressed in the natural units of measurement. In
much RSM work it is convenient to trénsform the natural variables to coded variables
x5,%2 ..., where these coded variables are usually defined to be dimensionless with
mean zero and the same spread or standard deviation, and also fall between —1 and -
+1. The formulation, which is used for transforming natural variables to coded

variables is;

_ ¢, —[max(g,) + min(g,)]/2

x, = . (2.4)
“7 [max(g,) - min(g,))/2
and the response surface in terms of coded variables is;

n = flxrxz ... xp) (2.5)

(Myers & Montgomery, 1995, p.3).

In most RSM problems, the form of the relationship between the independent
variables and the response is unknown, it is approximated. Thus, the first step in
RSM is to find an appropriate approximation for the true functional relationship
between response and the set of independent variables. Usually, a low-order
polynomial in some region of the independent variables is employed. If the response
is well modelled by a linear function of the independent variables, then the

approximating function is the first order model;

y=B+Bix + Byx, +ot Bix, tE (2.6)

If there is curvature in the system, then a polynomial of higher degree must be

used, such as the second order model;

k k k-1 k
y=p0 +Z,Bjxj +Zﬂﬂxj2 +z Z’,B,.jx,.xj +& 2.7)
=1 Jj=1 i

where i = 1,2,...,k-1 andj = 1,2,...,k also i<j.
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Almost all RSM problems utilize one or both of the approximating polynomials
mentioned above. However, it is not the case that a polynomial model will be a
reasonable approximation of the true functional relationship over the entire space of
the independent variables. These models usually work quite well only for a relatively
small region. The method of least squares is used to estimate the parameters in the

approximating polynomials.

The response surface analysis is then performed using the fitted surface. If the
fitted surface is an adequate approximation of the true response function. then the
analysis of fitted surface will be approximately equivalent to analysis of the actual
system. This type of model is called as metamodel. The model parameters can be
estimated most effectively if proper experimental designs are used to collect the data.
Designs for fitting response surfaces are called response surface designs. The
response surface design used for fitting response surface directly affects the quality

of the estimate (Montgomery, 2001, pp.427-429).

The second order models are widely used in RSM because; it has a flexible
structure that means it can take on a wide variety of functional forms, so it will often
work well as an approximation to the true response surface, and estimating the
regression parameters in the second order model is easy, also there is considerable
practical experience indicating that second order models work well in solving real

response surface problems (Myers & Montgomery, 1995, p.7).

2.2.1 The Metamodel Concept

Metamodelling is a process of developing a mathematical relationship between a
response measure of interest and a set of input variables (Batmaz & Tunali, 2003,

p.455).

Metamodel first described by Blanning (1975) as a mathematical relationship
between one or more sets of sensitivity measures of interest and the sets of input to

the metamodel (Aytug et al., 1996, p.24).
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Let J; denote a factor j influencing the outputs of the real-word system (j =
1,2,...,5), and let W, denote the system response vector (¢ = 1,2,...,w). Without loss
of generality, the discussion can be simplified by considering a system with a single
response W, since a multiple response system can be considered as a set of single
response systems. The relationship between the response variable /7 and the inputs J;

of the system is represented by;

W = £1(31,02 ..., 05) (2.8)

A simulation model is then an abstraction of the real system, in which it is
considered only a selected subset of the input variables {J; | j = 1,2,...,r} where ris
significantly smaller then the unknown s. the response of the simulation /7" is then
defined as a function f; of this subset and a vector of random numbers v representing

the effect of the excluded inputs;

W’ =fé(51:52: --~»§r,v) (29)

A metamodel is a further abstraction, in which a subset of the simulation input

variables are selected {J; | j = 1,2,...,m, m<r} and the system described as;

W = f3(31,02 ....0m) + € (2.10)

where ¢ denotes a fitting error, which has an expected value of zero. These levels of

abstraction are shown in Figure 2.2 (Yu & Popplewell, 1994, p.788).

The simulation model is leaner than the real-word system, it contains fewer
variables and these are all under the control of the experimenter. The simulation
model, although simpler than the real-word system, is still a very complex way of
relating input to output. A simpler analytical model may be used as an auxiliary to
the simulation model in order to better understand the more complex model and to
provide a framework for testing hypotheses about it. This auxiliary model is referred

to as a metamodel (Friedman, 1995, pp.15-20).
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Figure 2.2 Metamodel concept

Metamodelling provides one apprdach to statistical summarization of simulation
results, allowing some extrapolation from the simulated range of system conditions
and therefore potentially offering some assistance in optimization. While simulation
model] is an abstraction of the real system, metamodel is an abstraction of simulation
model; so metamodel is a further abstraction of the real system (Yu & Popplewell,
1994, p.778).

The objective of building a metamodel is to determine a (relatively simple)
functional relationship between the system response and selected decision variables.
Thus, it becomes much easier (cheaper) not only analyzing the simulation output, but
also predicting how the real system will react to specify combinations of the set of
controllable input variables. It is also straightforward to perform sensitivity analysis
of the simulation model parameters and “what-if” questions without having to

perform additional simulation runs (Santos & Nova, 1999, p.502).

The purpose of a metamodel is to estimate or approximate the response surface. A
metamodel is often specified to be a regression mode!l where the independent
variables for the regression are the simulation input parameters and the dependent
variable is the response of interest. Then the metamodel, instead of the actual

simulation model, can be used economically to learn about how the response surface
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would behave over various regions of input-factor space and thus to estimate how the

response would change at a particular point of the input factors are changed slightly

or perhaps to find approximately optimal settings of the input factors (Sridharan &
Babu, 1998, p.592).

Some of the benefits of the metamodel are;

Simulation models are flexible and solve real problems without making too
many restricting assumptions as in most analytical models. By using
metamodels in post simulation analysis a good approximation to reality is
provided.

Through the use of experimental design the number of simulation runs required
to generate a metamodel is drastically reduced. This also reduces the amount of
time and effort that is spent in conducting simulation. Thus simulation becomes
an attractive technique to use.

The use of metamodels allows some generalizations to simulation output.
However, these generalizations have to be within the defined boundaries of the
problem. Sensitivity analysis on model parameters can also be easily carried out
without re-running costly simulation programs.

The model is valid and yields satisfactory solutions that are comparable to
simulation results.

Regression metamodels are usually simpler and easier to use than most

analytical models (Madu, 1990, p.388).

2.3 The Followed Steps by a RSM Study

A typical RSM study consists of the following steps;

A) Estimation Process

a) The Studies Before Estimating the Metamodel

Determining the objectives of developing a metamodel for the simulation

model.
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Identifying all of the decision variables and their characteristics such as being
discrete or continuous, and the performance measure(s).

Identifying the operability regions of all the decision variables. The developed
and validated simulation model that represents the behaviour of real system is
used for this purpose.

Identifying the accuracy of the metamodel with respect to the selected
performance measure(s).

Determining the validity measure(s) of the metamodel.

Applying the factor screening. In this phase, the important decision variables
(i.e., the decision variables which have statistically more effects on the

performance measures) are determined.

b) The Studies for Estimating the Metamode!

According to the factor screening results, build a 2% fall factorial or 2%°
fractional factorial with centre points design for estimating the metamodel.
Determining the low and the high levels for each decision variable. The
operability region of the related decision variable should cover the low and high
level of the related decision variable. The low and the high levels for the
decision variables are coded as —1, +1 respectively.

Making tactical decisions on executing the simulation model such as specifying
the number of replications at each design point, the length of the replication, and
the variance reduction technique which will be used.

After executing the model at each design point, applying the least square
estimation procedure for fitting the response to a first order model.

Analyzing significance of the model parameters, main and interaction effects,
lack-of-fit, and curvature effects. If the first order model is proper according to
the results, the optimization process starts. If it is not proper, the first order

model with interaction or second order model is fitted.

B) Optimization Process

Determining the gradient vector of the performance measure, if the first order
model is proper. This gradient vector is used in one of the process improvement

techniques such as Steepest Ascent/Descent. In these methods, the centre of the
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design is changed to increase the performance of the system. If there is no
improvement, the method stops for estimating a new first order model in new
ranges, then, same procedure which was explained will be followed. This
process continues until the new design has the interaction or curvature effects. If
it is so, the interaction or second order model is fitted.

o After fitting second order model, applying the canonical analysis for calculating

the optimal levels of the decision variables (Yildiz, 2003, pp.41-43).
2.4 The Sequential Nature of RSM

Most applications of response surface methodology are sequential in nature. That
means, at first, some ideas are generated concerning which factors or variables are
likely to be important in the response surface study. This usually leads to an
experiment designed to investigate these factors with a view toward eliminating the
unimportant ones. This type of experiment is usually called a screening experiment.
The objective of factor screening is to reduce the list of candidate variables to a relatively
few, so that subsequent experiments will be more efficient and require fewer runs or

tests. A screening experiment is referred as phase zero of a response surface study.

After identifying important independent variables phase one of the response
surface study begins. In phase one, the objective is to determine if the current levels
or settings of the independent variables result in a value of the response that is near
the optimum, or if the process is operating in some other region that is (possibly) remote
from the optimum. If the current settiﬁgs or levels of the independent variables are not
consistent with optimum performance, then the experimenter must determine a set of
adjustments to the process variables that will move the process toward the optimum.
Phase one of response surface methodology makes considerable use of the first order

model and an optimization technique called the method of steepest ascent/descent.

Phase two of a response surface study begins when the process is near the optimum.
At this point the experimenter usually wants a model that will accurately approximate

the true response function within a relatively small region around the optimum.
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Because the true response surface usually exhibits curvature near the optimum, a
second order model (or perhaps some higher order polynomial) will be used. Once
an appropriate approximated model has been obtained, this model may be analyzed

to determine the optimum conditions for the process (Myers & Montgomery, 1995,
pp-10-11).

This sequential experimental process is usually performed within some region of

the independent variable space called the operability region. This sequential nature is

denoted in Figure 2.3.
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Figure 2.3 The sequential nature of RSM

2.5 The Method of Steepest Ascent/Descent

RSM is hill climbing (for a maxima objective), and the objective is locating the
mountain summit. As in most mountain-climbing expeditions, the base camp is far

below the summit. The objective of the method of steepest ascent is to move swithly
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up the mountain without stopping for exploring the lower peaks (Brightman, 1978,
p.482).

Frequently, the initial estimate of the optimum operating conditions for the system
will be far from the actual optimum. At this situation, the objective is to move
rapidly to the general vicinity of the optimum. The method of steepest ascent is a
procedure for moving sequentially along the path of steepest ascent, that is, in the
direction of the maximum increase in the response. If minimization is desired, then

this technique is called as the method of steepest descent method.

As an example, the region of fitted first order response surface and the path of
steepest ascent for a response with two independent variables (x; and x,) is shown in
Figure 2.4. The fitted first order model is as;

~ k ry
J=By+ Y. Bx, @2.11)

and the contours of p is a series of parallel lines as denoted in Figure 2.4.

The direction of steepest ascent is the direction in which response increases most
rapidly. This direction is parallel to the normal to the fitted first order response
surface. The coordinates along the path of steepest ascent depend on the nature of the

regression coefficients in the fitted first order model (Montgomery, 2001, p.430).

The method of steepest ascent contains the following steps;
o Fitting a first order model by using an orthogonal design. Two-level designs will

be quite appropriate, although centre runs are recommended.

Consider a situation in which N experimental runs are conducted on k design

variables x;,x;, ..., X, and a single response y. A model is postulated of the types;

y=0+pBx,+Bx,+..+Bx, +e ,(i=12..,N) (2.12)
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and the fitted model is given by;

y=by+bx,+bx,+...+bx, (2.13)

where b; are found by the method of least squares. For the first order model
and a fixed sample N, if x; € [-1,+1] forj = 12,....k then Var(p, /52 ) for i =

1,2,...,k is minimized if the design is orthogonal and all x; levels in the design are

+1fori=1,2,...,k Myers & Montgomery, 1995, pp.283-284).

Computing a path of steepest ascent (descent) if maximizing (minimizing)
response is required.

Conducting experimental runs along the path. That is, doing single or replicated
runs and observing the response value. The results will normally show
improving values of response. At some region along the path, the improvement

will decline and eventually disappear. This stems from the deterioration of the
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simple first-order model once one strays too far from the initial experimental
region.

e Choosing a base at some location for a second experiment, where an
approximation of the maximum (or minimum) response is located on the path.
Again, the design should be a first order design. It is quite likely that centre runs
for testing curvature, and degrees of freedom for interaction-type lack-of-fit are
important at this point.

e Conducting a second experiment and fitting another first order model. Making
a test for lack-of-fit. Computing a second path based on the new model, if lack-
of-fit is not stétistically significant. Conducting single or replicated experiments
along this second path. It is quite likely that the improvement will not be as strong
as that in the first path. After improvement is diminished, one has a base for
conducting a more elaborate experiment and a more sophisticated process

optimization (Myers & Montgomery, 1995, p.184).

A general algorithm for determining the coordinates of a point on the path of
steepest ascent (with the assumption that the points x; are the base or origin point,
namely x;=x;=,..., = x; = 0) is as follows;

» Choosing a step size in one of the variables, say Ax;. Usually, the variable that is

known most about or has the largest absolute regression coefﬁcient' ﬁ,‘ is

selected.
e The step sizes in the other variables are;
B,

Ax, = —
B,/ Ax,

i

2.14)

o Converting the Ax; from coded variables to the natural variables (Montgomery,

2001, pp.435-436).

As the experimental region moves near the region of optimum conditions, it is
certainly expected that curvature would be more prevalent. If a test for curvature
finds significant quadratic terms, it would be suspected that the steepest ascent

(descent) methodology would became effective. At this point, the investigators will
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surely be interested in finding optimum conditions through the use of a fitted second
order model (Myers & Montgomery, 1995, pp.188-189).

2.6 Analysis of Second Order Response Surface
2.6.1 Central Composite Designs (CCDs)

When the experimenter is relatively close to the optimum, a model which includes
curvature is usually required to approximate the response. In most cases, the second order

model is adequate.

Second order models cannot be fitted with two-level designs plus centre points. The
minimum conditions to fit a second order model are, (a) at least 1+2k+k(k-1)/2 distinct design
points, where % is the number of design variables, and (b) at least three level of each design
variable. In the case of first order designs the dominant property is orthogonality. In the case
of second order designs, orthogonality ceases to be such an important issue; and estimation of

individual coefficients, while still important, becomes secondary to the scaled prediction
variance (N Var jz(x)/ o) Myers & Montgomery, 1995, p.297).

For fitting a second-order model there is a class of designs, central composite designs
(CCDs) are common. CCDs are two-level full or fractional factorial designs that have been
augmented with a small number of carefully chosen treatments to permit estimation of the
second order response surface models (Neter et al., 1996, p.1281).

CCDs are obtained from resolution V, full or fractional factorial designs by the adding of
star points and perhaps more centre points. Star points are points where one of the x; takes on
the values + o while the remaining x; are all zero (Hood & Welch, 1993, p.117).

Resolution V designs are designs in which no main effect or two-factor interaction is
aliased with any other main effect or two-factor interaction, but two-factor interactions are

aliased with three-factor interactions (Myers & Montgomery, 1995, p.139).
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The total number of experimental trials planned, that is indicated by nris;

nr= 2.+ 2ng+ n, (2.15)

and the a that generates a rotatable design is given by;

., 174
a{ﬂ(&)] (2.16)

n

§

where £ is the number of factors, fis the level of fractional in the two-level factorial design
selected, . is the number of replications at each design point, #; is the number of replications
at each star points, 7, is the number of replications at the centre point, and « is the axial
distance.

A rotatable design is one for which N Var j/(x)/ o’ has the same value at any two
locations that are the same distance from the design centre. In other words, N

Var $(x)/ a* is constant on spheres (Myers & Montgomery, 1995, p.306).

While rotatability is a desirable property of a CCD, it should not be the sole basis for
making the choice of @, in some situations it may be physically impossible or difficult to
extent the star points beyond the experimental region defined by the upper and lower limits of
each factor, where a must not exceed 1 (a = 1 is often called a face-centered design). In this
circumstance the resulting lack of rotatability may not be considered a serious disadvantage
(Neter et al., 1996, pp.1283-1287).

The three components of CCD play important roles in building second order models:

o The resolution V fraction contributes in a major way in estimation of linear terms and
two factor interactions. It is variance-optimal for these terms. The factorial points are the
only points that contribute to the estimation of the interaction terms.

 The axial points contribute in a large way to estimation of quadratic terms, and do not
contribute to the estimation of interaction terms.

« The centre runs provide an internal estimate of error (pure error) and contribute toward

the estimation of quadratic terms (Myers & Montgomery, 1995, p.298).
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The natural competitor for the CCD is three-level (3%) factorial design. Actually, 3* design
is a face centre cube, thus a CCD. But when £ becomes large, the 3¥ factorial design includes
an excessive number of design points. For k>3 the number of design points for the 3* design
is usually considered impracticable for most applications, due to that CCD is the most
popular class of second order designs (Myers & Montgomery, 1995, p.318).

2.6.2 Location of the Stationary Point

The aim is to find the levels of x;,x; ... x that optimize the predicted response. This point,

if it exists will be the set of x;,x5,....,x¢ for which partial derivates are zero, namely;

oylox, =0p/ox, =...=09/0x, =0 (2.17)

This point, say x; Xz ..., Xs is called the stationary point (Montgomery, 2001, p.439).

The fitted second order model in matrix notation is;
J=by+x'b+x'Bx (2.18)

where b, contains estimate of the intercept, b contains estimate of the linear, and B

contains estimate of the second order coefficients. Actually;
x =[x,% 0%, ] (2.19)
b =[b,b,,....5,] (2.20)

b, by,l2 .. b,/2

A b e by 12
Ao 2 2k 2.21)
sym. by
If yis differentiated respect to x,
op/ox=b+2Bx (2.22)

and this derivative is set to 0, the stationary point will be found as;
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X, =-B"b/2 (2.23)

X; is the stationary point of the system. The predicted response at the stationary point
can be found by substituting equation (2.23) in to equation (2.18), it is;

Y, =b, +xb/2 _ (2.24)

(Myers & Montgomery, 1995, p.218).

After finding stationary point, we determine whether the stationary point is a point
of maximum response (Figure 2.5) or minimum response (Figure 2.6) or a saddle
point (Figure 2.7). The most straightforward way to do this is to examine a contour
plot of the fitted model. If there are only two or three process variables, the

construction and interpretation of this contour plot is relatively easy.

x1

*1.0

.0 X2

Figure 2.5 Stationary point is a point of maximum response
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X3

*1.0

x2

Figure 2.6 Stationary point is a point of minimum response
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Figure 2.7 Stationary point is a saddle point

However, even when there are relatively few variables, a more formal analysis,
called the canonical analysis, can be useful. It is helpful first to transform the model
into a new coordinate system with the origin at the stationary point X; and then to
rotate the axes of this system until they are parallel to the principal axes of the fitted

response surface. Results in the fitted model that is called canonical form of the

model is;

k
P=9, 42 4w/ (2.25)
i=1
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where p_is the estimated response at the stationary point, 4; are the eigenvalues of

Band w; are canonical variables (transformed independent variables). Canonical
form of the second-order model with two independent variables is denoted in Figure
2.8 (Montgomery, 2001, p.440).

Equation (2.25) nicely describes the nature of the stationary point and the nature
of the system around stationary point. The nature of X, (stationary point) is
determined by the sings of the A’s;

o If J; are all negative, the stationary point is a point of maximum response.

o If 4; are all positive, the stationary point is a point of minimum response.

e If 4, are mixed in sign, the stationary point is a saddle point (Myers &

Montgomery, 1995, p.219). |

X2

Wy

Tpf——————

|

|

| w

[ 2

1,0 X4

Figure 2.8 Canonical form of the second order model

It is not unusual to encounter variations of the pure maximum, minimum, or
saddle point response surfaces, that system is called ridge system. The two type of

ridge system are the stationary ridge system and the rising ridge system.
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If the stationary point is in the region of the experimental design and one (or
more) A; is near zero, the system is a stationary ridge system. As an example in
Figure 2.9, a contour plot of a stationary ridge system with two independent variables
is shown, and maximization is the objective of response. For this example 1,<0 and

A5<0 but 4;=0, the canonical model for this response surface is theoretically;

y=P + 4w’ (2.26)

clearly the stationary point is a point of maximum response, but there is essentially a

line maximum. The response variable is very insensitive to the variable w, multiplied

by the small 4;. Optimum may be taken anywhere along w, axis.

Xq

Figure 2.9 A contour plot of a stationary ridge system

If the stationary point is far outside the region of exploration for fitting the second
order model and one (or more) 4, is near zero, then the surface may be a rising ridge.
In this type of ridge system, inferences about the true surface or the stationary point

cannot be drawn because X; is outside the region where the model fitted.

As an example in Figure 2.10, a contour plot of a rising ridge system with two
independent variables is demonstrated, and again maximization is the objective of

response.
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X2

%

Figure 2.10 A contour plot of a rising ridge system

Again, A;<0 and 4,<0 but 4;=0, the canonical model for this response surface is
same as in equation (2.26). Also it is seen that, further exploration is warranted in the
w; direction. Indeed the rising ridge often is a signal to the researcher that he/she has
perhaps made a faulty or premature selection of the experimental design region

(Myers & Montgomery, 1995, pp.210-221) and (Montgomery, 2001, pp. 436-441).
2.7 Response Surface Analysis with Multiple Responses

Up to now, it is focused on modelling a measured response or a function of design
variables and letting the analysis indicate areas in the design region where the
process is likely to give desirable results, the term “desirable” being a function of the
predicted response. However, in many instances the term desirable is a function of

more than one response (Myers & Montgomery, 1995, pp.244).

Multiple response optimization is a method that allows for compromise among the
various responses. Simultaneous consideration of multiple responses involves first

building an appropriate response surface model for each response and then trying to
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find a set of operating conditions that in some sense optimizes all responses or at

least keeps them in desired ranges.

A relatively straightforward approach to optimizing several responses that works
well when there are only a few process variables is to overlay the contour plots for
each response. The experimenter can visually examine the contour plot to determine

appropriate operating conditions (Montgomery, 2001, pp. 448-450).
2.7.1 The Desirability Function

The overlaying of contour plots along with separate response surface analyses
often give the user workable solutions for product improvement as long as the
number of responses is not too great. However, when the problem involves four or
more responses or design variables, then contour overlay methodology becomes
unruly. Derringer & Suich (1980) developed an interesting procedure, which can be
very useful when several responses are involved. The method makes use of a
desirability function in which the researchers own priorities and desires on the
response values are built into one optimization procedure (Myers & Montgomery,
1995, pp.247-248).

Engineers design products or processes by selecting x;, x5 ..., x, that will result in a
desirable combination of properties or quality criteria, Y}, Y5,...,Y, Functions that
transform a set of properties into a single objective are called “desirability” functions

and are written as D(Y},Y>,...,Y,) (Ribardo & Allen, 2003, p.227).

The desirability function approach is one of the most widely used methods in
industry for the optimization of multiple response processes. It is based on the idea
that the “quality” of a product or process that has multiple quality characteristics,
with one of them outside of some “desired” limits, is completely unacceptable. The
method finds operating conditions that provide the “most desirable” response values.
The desirability approach is a popular method that assigns a “score” to set of

responses and chooses factor settings that maximize that score (WEB_1, 2004).
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The basic idea of the desirability function approach is to transform a multiple
response problem in to a single response problem by means of mathematical

transformations (Castillo et al., 1996, p.337).

First, Harrington (1965) introduced the concept of a “desirability function” for
determining input parameter settings, which optimize the tradeoffs among multiple
process measurements. Then, the procedure refined by Derringer & Suich (1980). In
addition, a recent article by Castillo et al. (1996) suggested a slight modification to
the procedure so that it can be easily implemented using the “Solver” function of
Microsoft Excel (Fuller & Scherer, 1998, p.4016).

In Harrington (1965) exponential functional forms were selected to calculate the
desirabilities associated with individual criteria, ¥;, and the use of the geometric
mean for weighting these criteria together to calculate overall desirability. Derringer
& Suich (1980) criticized the functional forms and weighting scheme in Harrington
for being overly rigid. As an alternative, they suggested a family of functions that
permitted the target value to be anywhere in the region between product
specifications. Castillo et al. (1996) improved the individual criteria desirabilities of
Derringer (1994) in order to achieve greater smoothness and differentiability. This
smoothness is useful because it can improve the performance of gradient-based
solvers in optimizing the derived desirability functions (Ribardo & Allen, 2003,
p.228).

2.7.1.1 The Desirability Function of Harrington

Harrington used two steps to calculate the desirability function. The first step
concentrated on each criterion/response to assign an individual desirability. Criteria
divided into two types: ‘two-sided’ criteria whose acceptable values were bounded
by both an upper specification limit (USL) and a lower specification limit (LSL) and
‘one-sided’ criteria whose acceptable values were bound by a single specification
limit. For two-sided criteria, the process of assigning desirability by calculating the

scaled response value Y/(x) was performed using;
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2¥,(x) - (USL + LSL)
Yi(x)=
! USL - LSL

2.27)

Then, the user would need to input a single scaled criterion value for criterion j,
Yo, and its assumed desirability dy (somehow independently of the values of other
criteria), e.g. when Y/, =—0.1 then dy = 0.63. This would be appropriate if —0.1
(slightly lower than the midpoint between the specification limits) corresponded to a

‘good’ system. This pair of numbers ( Yj”o, dy) was used to calculate the parameter n

using the following formula;

- a0/, -
lnle,ol

Next, the desirability for the two-sided characteristic was obtained using;

4,(¥,(x))=expl-| 7)) '] (2.29)

For single-sided criteria, the individual desirability measures or ‘desirabilities’
were calculated as follows. The engineer had to input two pairs (Y}, d;) and (Y5, do)
with the criteria values, Y;; and Y;,, given in actual response units and it was
assumed, without loss of generality, that ¥;; >Y;,. Each of the response values was

then scaled using the formula;
Y, = —ln[— ln(dl )] and T}, = —hl[—- 1n(d2 )] (2.30)

Then, the scaled criteria value, Y[ (x), corresponding to the actual response Y, (x)

was found through the following linear transformation;
V() =[(;(x) =Y, ) /(Y = ¥, DI} (%) = Y}, (%)) + 1, (%) (2.31)

Next, the desirability for the one-sided characteristic was estimated using;

d,(¥,(x))= expl-exp(~¥; (x))] (2.32)
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In the second stage to estimate the system desirability, individual criteria
desirabilities were combined using the following formula involving subjective

weights of each of the criteria, w;;

18

D) =|d, (%) dy (1, 0))" ., (X, (1)) | (2.33)

where S=%; w;.

In its original formulation, it was argued that w; = 1 for all responses i was
sufficient for most cases of interest. In subsequent research, several advantages for
considering unequal weights were described in Derringer (1994). These included that
weighting provides a more direct method to adjust the relative importance of
alternative criteria than changing the other desirability parameters, e.g. Y, and dj.

Harrington’s rating system for interpreting the desirability is denoted in Table 2.1.

Table 2.1 Harrington’s rating system for interpreting the desirability, d

Rating Description
1.00 The ultimate in satisfaction and quality (an improvement beyond this point
would have no appreciable value)
1.00-0.80 Acceptable and excellent (represents unusual quality or performance well
beyond anything commercially available)
0.80-0.63 Acceptable and good (represents an improvement over the best commercial
quality)
0.63-0.40 Acceptable but poor (quality is acceptable to the specification limits but
improvement is desired)
0.40-0.30 Borderline (if specification exists, then some of the product quality lies exactly
on the specification maximum or minimum)
0.30-0.00 Unacceptable (materials of this quality would lead to failure)
0.00 Completely unacceptable

2.7.1.2 The Desirability Function of Derringer-Suich

One and two-sided desirability functions are used depending on whether the
response is to be maximized or minimized or has an assigned target value. For a
response with target value level, 4, B, and C are assigned so that 4 < B < C. A

product is considered unacceptable if y <A orp>C. The value B is the “most

desirable value” (target). The quantity d}, the desirability, is defined as;



37

d = (2.34)

1) A !
(gj ,B<p<C
B-C

with d being 0 if y >C or j < A. One can then use Figure 2.11 to allocate power

values s and ¢ according to one’s subjective impression about the role of this

response in the total desirability of the product.
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Figure 2.11 Desirability function for target value B

In the case where a response should be maximized, one chooses a value B such

that d=1 for any y > B. However, we assume that the product is unacceptable (d =

0)if y < 4. Here, B = C, then the desirability function is given by;

j\)-—A & .
d, = ,A<)<B 235
j {[B_Aj y (2.35)

In the case where a response is to be minimized, a value B is chosen such that

y < B is quite desirable and produces a d = 1. A value for y>C is considered
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unacceptable and therefore results in a d = 0. In this case, 4 = B. The desirability

function is given by;

A {
a’,:{(;:g),BsﬁSC (2.36)

In most applications, values 4, B, and C are chosen according to the researcher’s
priorities. Choices for s and # may be more difficult. Choice of s and ¢ are determined
by how important it is for y to be close to the target B. Using small values for s and ¢
essentially does not require the response to be close to target, but a choice of s and ¢
as large as implies that the desirability value is very low unless p gets very close to

target For this reason, it can be tried for various levels of s and ¢ (Myers &
Montgomery, 1995, pp.250-251).

The general approach is to first convert each response y; into an individual
desirability function d; that varies over the range 0 <d, <1, where if the response y;

is at its goal or target, then d; = 1, and if the response is outside an acceptable region,

d; = 0. Then the design variables are chosen to maximize the overall desirability;

D=(d, *d,*..xd, )" (2.37)

where there are m responses (Montgomery, 2001, pp. 451).

Although a given increase in y does not necessarily result in a uniform increase in

the decision maker’s preference, in the transformed desirability space, however, each
increment in d; represents the same marginal return to the decision maker (Fuller &

Scherer, 1998, p.4017).

The overall desirability, D, is the geometric mean of the individual desirability
values. This provides an overall assessment of the combined response functions
levels. Maximizing D enables the simultaneous optimization of the geometric mean
of the transformed response functions. The value of D that close to 1 implies that, all

responses are in a desirable range simultaneously (Osborne; et al., 1997, p.3834).
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The rationale behind using the geometric mean in formula (2.33) and (2.37) is that
if any quality characteristics has an undesirable value (i.e., d; = 0) at some operating
conditions, then the overall result is usually a product which is wholly unacceptable,

regardless of the values taken on by the other responses (Castillo et al., 1996, p.337).

After the “optimum” or desirable condition on x has been determined, the
researcher should do confirmatory runs at that condition to be sure that all responses

are in a satisfactory region (Myers & Montgomery, 1995, p.252).

The appearance of the desirability function for the maximum y case, the impact of

various s values are shown in Figure 2.12.
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Figure 2.12 Desirability function for a response to be maximized

The decision maker may consider gains in the i response to be of constant,
increasing or decreasing marginal worth. The rate of the marginal desirability of
increases in the i response is controlled by the variable “s” in the transformation
equation (2.35). If the marginal desirability is constant then there is a linear

relationship between y and d; and as such the value of s is set to 1. If additional units



40

of y above the minimum acceptable value 4 are of decreasing marginal worth, then
there is a concave relationship between y and d; and as such the value of s is less than
1. Finally, if additional units of Jabove the minimum acceptable value 4 are of
increasing marginal worth, then there is a convex relationship between y and d; and

as such the value of s is greater than 1. In the case that any value above the minimum
is acceptable, a small value s would be selected (e.g. s = 0.2). In the case where
approaching the process maximum, B, is considered highly desirable, then a large

value of s would be selected (Fuller & Scherer, 1998, p.4017).

2.8 Literature Review on RSM

The literature can be divided into two main parts, first building a response surface

metamodel and second optimizing the metamodel.

Building a Metamodel

Yu & Popplewell (1994) and Barton (1994) reviewed the literature and classified

papers from different point of view. Yu & Popplewell (1994), reviewed the
published development of metamodelling techniques, with particular emphasis on
their relevance to manufacturing. They surveyed and categorized the papers which
were published in from 1975 to 1993. They classified the papers into five class; case
studies (that reported the application of metamodels), genmeral (that exercised
metamodelling techniques in hypothetical cases), survey (that surveyed the
metamodelling tools or statistical tools associated with metamodelling). technical
(that considered construction, implementation and validation of metamodels), and
others (that were discussion papers or responses to previous reports). 'Also, Barton
(1994) reviewed the literature and classified the metamodels from a different point of
view such as, response surface metamodels, spline metamodels, radial basis function
metamodels, kernel smoothing metamodels, and spatial correlation metamodels, and

he mentioned mathematical form and experimental designs for these metamodels.

Some papers [Madu (1990), Sargent (1991), Groenendaal & Kleijnen (1996)]

dealt with the technical points of metamodels such as, building phases of metamodel,
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and benefits obtained from metamodels. Madu (1990) illustrated the application of
regression metamodels to simulation outputs on a maintenance float problem. He
used the metamodel to conduct sensitivity analysis, also optimization and validation
of the metamodel were demonstrated. He proposed a series of steps to be used in
metamodel development and also explained common benefits of the metamodel.
Also, Sargent (1991) after giving an overview of the metamodelling process,
identified and discussed some of the research issues in metamodelling of simulation
models. As an example, metamodelling of the M/M/1 queues is used for illustrating
some of these issues. In addition, Groenendaal & Kleijnen (1996) thought that design
of experiments in combination with regression metamodelling can be a fruitful
method for problems with uncertainties that do not fit into the standard uncertainty
models and that have no reliable information on the joint probability distribution.
They also illustrated design of experiments and regression analysis by a large

practical investment problem.

Some authors focused on validation of metamodels as Kleijnen & Sargent (2000),
who derived a methodology for developing metamodels that considers validation of a
metamodel with respect to both the underlying simulation model and the problem
entity. In methodology they distinguished between fitting and validating, emphasized
the role of the problem entity, and also distinguished four types of goals such as
understanding, prediction, optimization, and verification & validation. They also
gave a detailed procedure for validating linear-regression metamodels in random
simulation, suitable to all four goals. Also, Santos & Nova (1999) proposed a
methodology for identifying a tentative functional relationship, estimating the

nonlinear simulation metamodel coefficients and validating the metamodel.

Some studies aimed to build decision support systems by using metamodels.
McHaney & Douglas (1997) demonstrated how a representational decision support
system (DSS) can be simplified into a suggestion model DSS without a loss of
accuracy. This transformation was accomplished by using a multivariate regression
metamodel developed from a discrete event simulation model to a linear equation.

They used simulation metamodel in an automotive assembly plant environment to



42

assist management in determining automated guided vehicle requirements.
Production management has the ability’ to answer resource allocation -question
rapidly and efficiently by placing the resulting equation into a small computer

program.

In addition, metamodels were used for supporting the evaluation of the
manufacturing systems. Sridharan & Babu (1998) pertained to a detailed simulation
study conducted on a typical flexible manufacturing system (FMS). Simulation
models had been developed for two types of FMSs, a failure free and a failure prone
and the simulation results used to develop metamodels. These metamodels were used
to evaluate various multi-level scheduling decisions in the FMS. And, Jothiskankar &
Wang (1993) demonstrated application of simulation metamodelling for a just-in-
time (JIT) manufacturing environment. They illustrated that satisfactory prediction
for throughput time can be obtained through regression metamodels. In addition,
Aytug et al. (1996) analyzed a pull production system by using simulation
metamodel in order to determine the number of kanbans. A relationship between the
number of kanbans and the average time to fill a customer order was established by
the metamodelling process. They used the relationship in a cost function to determine

the number of kanbans while minimizing cost.

Optimizing the Metamodel

The literature about RSM can be classified as surveys, technical papers that dealt
with the theory of methodology and designed experiments, case studies that
explained the applications of methodology in manufacturing environmental, and also

studies that dealt with multiple responses.

The newest survey study is Myers et al. (2004) which reviewed the RSM studies
that had been published since 1989, and also discussed current areas of research and

mentioned some areas for future research.

Two papers [Brightman (1978), Hood & Welch (1993)] were aimed to present the
methodology in detail. Brightman (1978) presented the all phases of the RSM with a
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numerical example in order to explain all aspects of the methodology. And, Hood &
Welch (1993) presented an outline of the response surface methodology and gave an
example of its application to a two variable optimization problem. Another technical
paper is Angiin et al. (2002) which derived adopted steepest descent (4SD) which is
scale independent and corrects for the covariance of the estimated gradient
components because of the scale dependence nature of steepest descent (SD). Also,
Batmaz & Tunali (2003) aimed to provide guidarice on how to use small designs for
metamodel estimation especially when cost effectiveness is a concern. Their study
was carried out in three phases: First, a group of second order small designs were
evaluated with respect to various criteria. Second, the metamodel of a time-shared
computer system was estimated using these designs. Third, the predictive capabilities
of these small designs in giving the best metamodel fits were investigated, and also,
the performance of small designs were compared with two large size standard

designs.

The following papers dealt with the applications of methodology in manufacturing
environmental. Mahadeevan & Narendran (1993) addressed the issues involved in
the choice of material handling systems and the buffer capacity of FMSs with
medium and high congestion. In order to determine the capacities of local and central
buffer that minimize the throughput time in two environments, they employed
simulation and RSM. Another paper relevant to FMS D’Angelo et al. (1998), which
focused on the typical job-shop plant configuration for the semiautomatic
manufacturing of parts produced in limited quantities. The treatment consists of
quantitative evaluation of the technological performance of a FMS with particular
reference to the printed circuit board assembly sector. RSM is applied for balancing
the capacities of the work centres of a printed circuit board assembly leading
industry. In addition, Gharbi & Kenne (2000) presented a production control
approach for manufacturing systems that is based on simulation experiment. The
objective of the control problem was finding the production and preventive
maintenance rates of the machines so as to minimize the total cost of inventory. By
combining analytical formalism and simulation based statistical tools such as

experimental design and RSM an approximation of the optimal control policy is
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obtained. And, Irizarry et al. (200la) presented a general manufacturing-cell
simulation model for evaluating the effects of world-class manufacturing practices
on expected cell performance. The modular structure of the simulation model
provided the flexibility to analyze a wide variety of manufacturing cells. They
formulated a comprehensive annualized cost function for evaluation and comparison
of alternative cell configurations. In addition, a case study involving assembly of
printed circuit boards illustrated the potential benefits of using this tool for cell
design and analysis. The simulation model was intended for use in a two-phase
approach to cell design that is based on simulated experimentation and response
surface analysis as detailed in Irizarry et al. (2001b). In the companion paper, Irizarry
et al. (2001b) constructed simulation (response surface) metamodels to describe the
relationship between the significant cell design operational factors (the controllable
input parameters) and the resulting simulation-based estimate of expected annual cell
cost (the output response). They used canonical and ridge analyses of the estimated
response surface to estimate the levelé of the quantitative input factors that minimize
the cell’s expected annual cost. And, Horng & Cochran (2001) presented a decision
support methodology called project surface regions (PSR). The methodology
developed via discrete event simulation and RSM and utilized the usage of PSRs to
assist production manager in determining the appropriate number of multitasking
workers and the corresponding dynamic dispatching rule-pair when JIT system’s

behaviour changes.

In some circumstances the response can be affected by both qualitative and
quantitative factors as in Wu & Ding (1998), Irizarry et al. (2001b), and Tunali &
Batmaz (2003). Wu & Ding (1998) proposed a general approach for constructing
response surface designs of economical size for qualitative and quantitative factors.
Algorithm starts with an efficient design for the quantitative factors and then
partitions the design points into groups corresponding to different level combinations
of the qualitative factors. Also, Tunali & Batmaz (2003) suggested a methodology
for developing a simulation metamodel involving both quantitative and qualitative
factors. The methodology dealt with various strategic issues involved in metamodel

estimation, analysis, comparison, and validation. To illustrate how to apply the
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methodology, a regression metamodel is developed for a client-server computer

system.

Some papers dealt with multiple responses and also desirability functions.
Mollaghasemi et al. (1991) reviewed some available techniques for solving multi-
response simulation model, and also proposed a new method that was based on the
gradient search technique. Osborne et al. (1997), described the available methods for
optimizing multiple response variables using RSM, and several schemes for
categorizing the methodologies were delineated. The applications of multiple
response surface methodologies (MRSM) in the area of product development, and
also the use of simulation to assist in the applications of MRSM in the product
development context were described. Another study was Leon & Cabrera (1997),
which dealt with the effective use of experimental design techniques for assessing
and optimizing process capability in the manufacturing of electrical igniters. A
factorial design was used to assess the effects that four factors have on five
responses. An approach harmonizing traditional specification limits with current
notions of loss functions was used for settings that simultaneously optimize the
response variables. And, Myers et al. (2004) classified the approaches about multiple
response optimization into four classes such as, contour plots approach, formulating
the multi response problem as a constrained optimization problem approach,
simultaneously optimizing all m responses approach, and the desirability function

approach.

The desirability function concept was first introduced by Harrington (1965) for
determining input parameter settings, which optimize the tradeoffs among multiple
process measurements. Then, the procedure refined by Derringer & Suich (1980).
Also, Derringer (1994) dealt with balance problems that arise because as one
property is improved, it is often at the expense of one or more other properties, and
also declared balance problems can be solved by using a modified formula of
Harrington’s desirability function and combining it with RSM to form a methodology
called desirability optimization methodology. Computer implementation of

desirability optimization methodology further enhances its power. Because the
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original formulation of desirability functions contain non-differentiable points, only
search methods can be used to optimize the overall desirability response, thus
Castillo et al. (1996) presented modified desirability functions which were
everywhere differentiable, so that more efficient gradient-based optimization
methods can be used. In addition, they suggested a slight modification to the
procedure so that it can be easily implemented by using the “Solver” function of
Microsoft Excel. And also, Fuller & Scherer (1998) thought that little attention had
been paid to the underlying assumptions of decision theory on which the desirability
function procedure is based. Therefore, they demonstrated critical issues that can
arise from this procedure. Another study that used desirability functions were Dabbas
et al. (2001) that validated a modified dispatching approach, which is proposed in
Dabbas & Fowler (1999), and which combines multiple dispatching criteria into a
single rule with the objective of simultaneously optimizing multiple objectives.
Dabbas et al. (2001) used the Derringer & Suich’s desirability function for
optimizing multiple responses. In addition, Ribardo & Allen (2003) proposed a new
desirability function to aid in multi-criterion optimization. They declared the
advantages of the proposed function as; first, its value has the simple interpretation
of being the yield under conservative assumptions that are standard in the six sigma
literature. Second, because the proposed function is expressed explicitly as a function
of the mean and standard deviation of the associated criteria or quality
characteristics, the settings derived using this function are more likely to correspond
to the true preferences of engineers than if existing alternative desirability functions

are used.
2.9 Conclusion

RSM is the body of techniques by which one seeks on optimum set of operating
conditions. For a single response model, the methodology generally consists of
constructing an appropriate first order experimental design such as 2" factorial or 2%
fractional factorial designs around an initial feasible point x*. A simulation trial is
then performed at each design point and the observations are recorded. At the initial

stages, since the point selected is very likely to be far from the optimal solution, a
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first order model is fit through the points by method of least squares. The method of
steepest ascent can then be employéd to search for a better solution along the
direction of steepest increase of the response. The search continues until the first
order equation can no longer improve the response function. This condition can be
detected by a lack-of-fit test. When this situation is encountered, the search process is
probably close to an optimal point. At this point a second order experimental design
such as central composite design is constructed and a second order response equation
is generated by regression analysis. Once this second order regression equation is
estimated, canonical analysis can be employed to obtain an optimal solution
(Mollaghasemi et al., 1991,p.201).

When multiple responses are considered simultaneously, it is first built an
appropriate response surface model for each response and then, tried to find a set of
operating conditions that in some sense optimizes all responses or at least keeps them

in desired ranges (Montgomery, 2001, p. 448).
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CHAPTER THREE
PROBLEM DEFINITION

3.1 Introduction

Because of the increasing car traffic and the need to improve the environment of
the Izmir, Turkey, a public metro-line has been constructed. This underground
metro-line, began working full time in August 26, 2000. On the line, there are ten
stations that trains running. Four of them; Ucyol, Konak, Cankaya and Basmane are
under ground, two of them; Hilal and Stadyum are on viaduct, three of them;
Halkapinar, Sanayi and Bolge are on the ground, and Bornova is in unroofed slot
tunnel. Ucyol, Hilal and Stadyum stations are side type, and the others are land type
stations. The map of Izmir City centre and the present metro line is shown in Figure
3.1

There are ten working time periods in a week from Monday to Friday, four
working time periods in Saturday and three working time periods in Sunday. The

starting and ending time of the periods, and related headways are shown in Table 3.1.

Each time period has its own headway that is the time period between the
departure times of two consecutive trains, and is fixed in a certain time period.
Headway determines the number of trains in a certain period, and the number of trips

in a day depends on headways.

The metro company has to make attractive the use of transport system for
passengers. Therefore, the problem is to find the headways (input factors), for each
ten time interval in five days between Monday and Friday, for each four time interval
in Saturday, and for each three time interval for Sunday. The objective is to minimize

the average passenger time spent in the metro-line (the first response) with the
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requirement that the fullness rate of the carriages as fifty percent (the second

response). We solve this problem by integrating RSM into simulation.

Figure 3.1 Izmir City centre map and present metro line with stations

Table 3.1 Time periods and current headways

Monday-Friday Saturday

Time Headway Time Headway

period (minute) | (second) period (minute) | (second)
06:00 - 07:00 10 600 ]06:00-11:00 10 600
07:00 - 07:30 7.5 450 §11:00-19:00 7,5 450
07:30 - 09:00 5 300 | 19:00-22:00 10 600
09:00 - 09:30 7,5 450 122:00-00:00 15 900
09:30 - 11:30 10 600 ' Sunday
11:30 - 17:00 7,5 450 Time Headway
17:00 - 18:30 5 300 period (minute) | (second)
18:30 - 19:00 7,5 450 ]06:00 - 09:00 15 900
19:00 - 22:00 10 600 | 09:00 - 20:00 10 600
22:00 - 00:00 15 900 | 20:00 - 00:00 15 900
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It is obvious that the time spent in the system by a passenger directly depends on
headways. However, while headways in a certain time period are decreased the
number of empty carriages increases. Due to this fact, fullness rate of the carriages
must be taken into consideration. Fullness rate is calculated by the following

formula, and it is expected to be 50% by the company engineers.

_ INTP
2% (TNT *564)

(3.1)

where FR is the fullness rate, TNTP is the total number of travelled person in a day,
TNT is the total number of trips in a day, 564 is the full capacity of a train that has 3
carriages, and 2 indicates there are two end stations. We assumed that all trains have

3 carriages.

3.2 System Definition

Borova and Ucyol stations are the end stations, where trains begin to trip, and the
other eight stations are the middle stations, where passengers wait train. Also, each
day, when the metro system begin to serve, some middle stations behave as end
station according to the number of trains (beginning trains) needed by the first time

period. The distances between train stations are given in Table 3.2.

Table 3.2 The distances (in meter) between stations

Station Bornova | Bolge | Sanayi | Stadyum | Halkapinar
Bornova 0 919 | 1989 2930 4157
Bolge 919 0 1070 2011 3238
Sanayi 1989 | 1070 0 941 2168
Stadyum 2930 | 2011 | 941 0 1227
Halkapinar| 4157 | 3238 | 2168 1227 0
Hilal 5652 | 4733 | 3663 2722 1495
Basmane 6552 | 5633 | 4563 3622 2395
Cankaya 7132 | 6213 | 5143 4202 2975
Konak 8102 | 7183 | 6113 5172 3945
Ucyol 9509 | 8590 | 7520 6579 5352




Table 3.2 (Continued)

Station Hilal | Basmane | Cankaya | Konak | Ucyol
Bornova 5652 | 6552 7132 8102 | 9509
Bolge 4733 | 5633 6213 7183 | 8590
Sanayi 3663 | 4563 5143 6113 | 7520
Stadyum 2722 3622 4202 5172 | 6579
Halkapinar | 1495 | 2395 2975 3945 | 5352
Hilal 0 900 1480 2450 | 3857
Basmane 900 0 580 1550 | 2957
Cankaya 1480 580 0 970 | 2377
Konak 2450 | 1550 970 0 1407
Ucyol 3857 2957 2377 1407 0

Each station, except Halkapinar, has two platforms, one of them is for train going
from Ucyol to Bornova, and the other one is for train going from Bornova to Ucyol.
In this thesis we let platform denote a segment of track on which a train stops at a
station and only one train at a time is permitted. Halkapinar station wherein trains

arrive and depart the system has three platforms. In Table 3.3 the platform lengths

for each station are demonstrated.

Table 3.3 Platform lengths (in meter)

Station | Platform length | Station | Platform length |
Bornova 135 Hilal 135
Bolge 135 Basmane 135
Sanayi 135 Cankaya 139
Stadyum 135 Konak 137
Halkapinar 135 Ucyol 137

There are two tracks between the two end stations, one of them is for travelling
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from Bornova to Ucyol and the other one is for travelling from Ucyol to Bornova.

These two tracks are parallel to each other, and at some points they are connected to

each other by switches. Thus, trains can change the track while they are travelling

between stations.
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Also there is a park area near Halkapinar station for empty carriages. For each
time period the number of trains in the system changes due to headway. Thus. the
number of carriages changes due to the number of trains in the system. Unused
carriages wait at the park area, and when a new train is needed by the system, they

are connected to each other to form a train.

Since the traffic flow is managed by the computer in the metro company. the
tracks and switches that trains will follow are determined automatically. Interlocking
and Automatic Train Protection (47P) systems guarantee the travel safety.
Electronically interlocking systems check and direct line-along equipments such as
switches, signals, line circuits that facilitate remote control of trains for safely

working.

Signalization system in Izmir Metro based on static block logic. Static block
system separates a track into independent parts. Only one train may be in a part of
track. Lengths and the number of blocks were determined by engineers related to

traffic capacity of the system and speed of the trains.

3.3 Stations

In an end station, the train waits until the departure time. If there is no train at
departure time passengers go on waiting train, and when the train arrives. passenger

board and trip begins without losing any time.

In the middle stations, passengers wait for train. When the train arrives passenger
board and trip goes on. It only waits for a period (dwell time) less than one minute
for passengers alighting or boarding. In Table 3.4 dwell times, waiting times of trains

in the middle stations, are given.

Halkapinar station, which is nearly at the middle of the metro-line, is somewhat
different from other middle stations. Although it is a middle station it behaves as an

end station at the beginning of each day, and trains both arriving and departing the
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system use this station. Another difference is that this station has three platforms
although the other stations have two platforms. Because of these dissimilarities and
more complex structure, Halkapinar station is explained in detail in the latter

sections.

Table 3.4 Dwell times of trains at stations (in second)

Station | Dwell time| Station | Dwell time
Bolge 20 Hilal 20
Sanayi 20 Basmane 30
Stadyum 20 Cankaya 30
Halkapinar 20 Konak 40

3.4 Carriages

Carriages are designed as light rail vehicle type, and are in an accordion coupling
unit shape with six axles and three bogies. There are forty-five carriages in the
vehicle fleet. Thirty of them are with driver cabinet (MD), and the other fifteen are
without driver cabinet (M). A train consists of three (MD-M-MD) or five (MD-M-M-
M-MD) combinations of carriages. A carriage includes 44 seats and 36 square meter
empty spaces where passengers can stand. The allowed number of standing
passenger per meter square is four. A’ carriage has eight doors which are 1.4 meters

in width.

The train’s speed is limited. On the control panel, driver can see the speed limit on
the current line, speed limit on the next line, status of signals, and status of switches.
The ATP system warns the driver when permitted speed limit is exceeded, and also

stops train if a risky situation occurs.
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CHAPTER FOUR
SIMULATION STUDY

4.1 Features of the System

The system is a terminating system; it is opened at 05:45:00 a.m. and closed at
60:40:00 a.m.. thus, the system works totally 18 hours and 55 minutes (68100
seconds) in a day. But the first trip is at 06:00:00 a.m. and the last trip is at 24:00:00
a.m. Namely, the system is prepared before the first time period and it takes fifteen
minutes. In a day between Monday and Friday, there are ten-time periods, which
have their own headways. The number of time periods is four on Saturday, and is
three on Sunday. Company engineers determine the lengths of these periods. At the
beginning of a day, the trains (beginning trains) waiting in the park area enter the
system from Halkapinar station, 15 minutes before the first time period begins. They
go suitable stations, locate on determined platforms and waits for the starting time of

the first time period.
4.1.1 Calculation of the Number of Trains Needed

Though the number of trains in the system is static in each time period, it is
dynamic through a day. The number of trains needed for a time period depends on
the headway in that time period, and is calculated by using formula (4.1).

RTT

NONT = ———— 4.1
Headway

where NONT is the number of trains needed for a time period, R77T is Round Trip
Time, and Headway is the headway of related time period. RTT means the duration

needed for a whole tour in the system, and it was as 40 minutes.
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Since the headways can take values between 5 minutes and 15 minutes, according
to the formula (4.1) the number of trains can be 3, 4, 5, 6, 7, and 8. For instance, if in
a time period headway is 5 minutes then 8 trains (40 / 5 = 8) are needed, or if

headway is 15 minutes then 3 trains (40 / 15 = 2.67) are needed.

As mentioned before, trains take certain positions on the platforms before the first
time period begins. After that these trains will be called beginning trains. These
positions are determined by this logic; if the number of initial trains is 3, a train will
be located in Ucyol-Bornova direction (on platform 2), and the others in Bornova-
Ucyol direction (on platform 1), and in Halkapinar- Ucyol direction (on platform 1),
respectively. If the number of trains is 4, the three trains’ locations are like the three
trains’ explained before. The fourth one will be in Halkapinar-Bornova direction (on
platform 2). If 5 trains are needed, in addition to the previous locations, the fifth train
will be in Konak- Ucyol direction (on platform 1). Using the same logic. location,

platform number and direction of the initial trains are displayed in Table 4.1.

Table 4.1 Location, platform no and direction of the beginning trains

The bfeginning Location Platform no Direction
trains no
1 Ucyol 2 Bornova
2 Bormmova 1 Ucyol
3 Halkapinar 1 Ucyol
4 Halkapinar 2 Bornova
5 Konak 1 Ucyol
6 Bolge 2 Bornova
7 Basmane 1 Ucyol
8 Stadyum 2 Bornova

4.1.2 Passenger Arrivals and Departures

The passengers arrive the system 5 minutes before the first time period begins. At
06:00 o’clock the beginning trains start to run. Passengers may enter the system until
23:59:30, that is 30 seconds before the last time period finishes. After that time no
passenger is allowed to enter the system. Last trips begin at 24:00 and trains go on

travelling until they reach the end station on their travelling direction. After
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passengers’ departure, they turn to Halkapinar station without stopping, depart the

system, and then locate on the park area.

4.1.3 Changing the Number of Travelling Trains

In the system, the number of running trains is adjusted due to the changes in
headways. Therefore, the number of trains required in the next time period is

calculated 10 minutes before the current time period finishes.

If the next time period has longer headway, the number of trains must be
decreased. Therefore, the unneeded trains leave the system from Halkapinar station.
Leaving action begins by the beginning of next period. For instance, an extreme
condition may cause an increase in headway to 15 minutes by 10. That means the
number of trains will be decreased to 3 by 5. That is, 5 trains will leave the system.
Thus, the first train coming to the Halkapinar station, whatever direction it has,
unloads its passengers, and leaves the system by using switches and then parks at the
park area. This action goes on until 5 trains leave the system. Unloaded passengers
wait a new train to go on their trip. If Halkapinar station is an unloaded passenger’s

destination he/she leaves the system without any delay.

If the next time period has shorter headway, the number of trains will be
increased. New trains enter the system from Halkapinar station. For instance, if an
extreme condition causes a decrease in headway to 5 minutes by 10 minutes, the
number of trains will be increased to 8 by 5 for the next time period. 10 minutes
before the current time period finishes, 2 trains enter the system from Halkapinar
station. One of them is in Ucyol direction, and the other one is in Bornova direction.
At that time the number of trains is increased to 5 by 2. But the system still needs 3
trains. 5 minutes later, that is the next period’s headway, again 2 trains enter the
system, towards Ucyol and Bornova, respectively. Now the number of trains is 7, yet
less than 8, and then 5 minutes later the last needed train enters the system towards
the Ucyol station. Passengers waiting a train at Halkapinar station may board these

new ftrains.
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4.2 Inputs of the Simulation Model
4.2.1 Passenger Arrivals to the Stations

Input Analyser module of Arena V2.2 simulation software package is used to find
the distributions of passenger arrivals to each station for each time period. We used
5% (o = 0.05) significance level for chi-squared goodness of fit tests for arrivals.
Observations on arrivals were given by the metro company, and are related to the last
week of February 2004.

The distributions of arrivals in weekdays are given in Tables 4.2 - 4.6. The

distribution values are in second unit.

Table 4.2 Arrivals to Bornova and Bolge on weekdays

Time period

Bornova

Bolge

05:55:00 - 06:00:00

-0.001 + WEIB(23, 0.679)

0.999 + WEIB(50.1, 0.752)

06:00:00 - 07:00:00

-0.001 + WEIB(23, 0.679)

0.999 + WEIB(50.1, 0.752)

07:00:00 - 07:30:00

-0.5 + EXPO(8.86)

-0.001 + WEIB(16.8, 0.861)

07:30:00 - 09:00:00

-0.5 + WEIB(3.69, 1.57)

-0.5 + WEIB(8.02, 1.35)

09:00:00 - 09:30:00

-0.5 + WEIB(4.25, 1.4)

-0.5 + WEIB(10.3, 1.35)

09:30:00 - 11:30:00

-0.5 + WEIB(5.24, 1.4)

-0.5 + WEIB(13.1, 1.25)

11:30:00 - 17:00:00

-0.5 + WEIB(4.01, 1.39)

-0.5 + EXPO(15.2)

17:00:00 - 18:30:00

-0.5 + WEIB(2.42, 1.38)

-0.5 + EXPO(14.1)

18:30:00 - 19:00:00

0.5 + EXPO(3.88)

-0.001 + EXPO(11.7)

19:00:00 - 22:00:00

-0.5 + WEIB(5.66, 1.3)

-0.001 + EXPO(19.8)

22:00:00 - 23:59:30

-0.5 + EXPO(13.8)

-0.001 + WEIB(50.1, 0.73)

Table 4.3 Arrivals to Sanayi and Stadyum on weekdays

Time period Sanayi Stadyum
05:55:00 - 06:00:00 2 + EXPO(376)| -0.001 + WEIB(71.6, 0.846)
06:00:00 - 07:00:00 2 + EXPO(376) | -0.001 + WEIB(71.6, 0.846)
07:00:00 - 07:30:00 2 + EXPO(82.7) -0.001 + EXPO(24.8)
07:30:00 - 09:00:00 -0.001 + EXPO(27.1) -0.5 + EXPO(9.22)
09:00:00 - 09:30:00 -0.001 + EXPO(34.2) -0.5 + EXPO(11.5)
09:30:00 - 11:30:00 -0.001 + WEIB(38.2, 0.873) -0.5 + EXPO(14.6)
11:30:00 - 17:00:00 0.999 + EXPO(34) -0.5 + EXPO(6.73)
17:00:00 - 18:30:00 -0.5 + EXPO(17.9) -0.5 + EXPO(7.32)
18:30:00 - 19:00:00 -0.001 + EXPO(14.7) -0.5 + WEIB(7.7, 1.16)
19:00:00 - 22:00:00 -0.001 + WEIB(28.1, 0.791) -0.5 + EXPO(10.6)

22:00:00 - 23:59:30

-0.001 + WEIB(118, 0.731)

-0.001 + WEIB(70, 0.763)




Table 4.4 Arrivals to Halkapinar and Hilal on weekdays

Time period Halkapinar Hilal
05:55:00 - 06:00:00 2 + WEIB(102, 0.652) 0.999 + EXPO(248)
06:00:00 - 07:00:00 2 + WEIB(102, 0.652) 0.999 + EXPO(248)

07:00:00 - 07:30:00

0.999 + WEIB(70.9, 0.775)

0.999 + EXPO(87.1)

07:30:00 - 09:00:00

-0.5 + EXPO(15.5)

-0.001 + WEIB(31.1, 0.893)

09:00:00 - 09:30:00

-0.001 + WEIB(27.9, 0.862)

-0.001 + EXPO(58.2)

09:30:00 - 11:30:00

-0.001 + WEIB(30.9, 0.791)

-0.001 + EXPO(74)

11:30:00 - 17:00:00

0.999 + WEIB(21.9, 0.751)

-0.001 + EXPO(47.3)

17:00:00 - 18:30:00

-0.001 + WEIB(10.1, 0.716)

-0.001 + WEIB(33.8, 0.676)

18:30:00 - 19:00:00 -0.5 + WEIB(6.62, 1.23) 2 + EXPO(62.4)
19:00:00 - 22:00:00 -0.001 + WEIB(17.6, 0.669) | -0.001 + WEIB(117, 0.675)
22:00:00 - 23:59:30 0.999 + WEIB(155, 0.692) 18 + EXPO(461)

Table 4.5 Arrivals to Basmane and Cankaya on weekdays

Time period

Basmane

Cankaya

05:55:00 - 06:00:00

-0.001 + WEIB(58.1, 0.765)

-0.001 + WEIB(69.3, 0.704)

06:00:00 -~ 07:00:00

-0.001 + WEIB(58.1, 0.765)

-0.001 + WEIB(69.3, 0.704)

07:00:00 - 07:30:00

-0.001 + WEIB(23.7, 0.868)

-0.001 + WEIB(29.6, 0.852)

07:30:00 - 09:00:00

-0.001 + WEIB(7.94, 0.729)

-0.001 + WEIB(14.7, 0.898)

09:00:00 - 09:30:00

-0.001 + EXPO(22.8)

-0.001 + EXPO(13.2)

09:30:00 - 11:30:00

-0.001 + WEIB(20.3, 0.878)

-0.5 + EXPO(13)

11:30:00 - 17:00:00

0.999 + EXPO(20.9)

-0.5 + WEIB(8.26, 1.27)

17:00:00 - 18:30:00

-0.001 + WEIB(8.72, 0.847)

-0.5 + WEIB(3.14, 1.51)

18:30:00 - 19:00:00

-0.001 + WEIB(10.8, 0.923)

-0.5 + WEIB(2.68, 1.56)

19:00:00 - 22:00:00

-0.001 + WEIB(12.2, 0.78)

EXPO(5.68)

22:00:00 - 23:59:30

-0.001 + WEIB(53.4, 0.656)

-0.001 + WEIB(37.9, 0.784)

Table 4.6 Arrivals to Konak and Ucyol on weekdays

Time period

Konak

Ucyol

05:55:00 - 06:00:00

-0.001 + WEIB(49.4, 0.678)

-0.001 + WEIB(8.08, 0.722)

06:00:00 - 07:00:00

-0.001 + WEIB(494, 0.678)

-0.001 + WEIB(8.08, 0.722)

07:00:00 - 07:30:00

-0.001 + WEIB(13, 0.831)

-0.5 + EXPO(2.59)

07:30:00 - 09:00:00

-0.5 + EXPO(7)

-0.5 + EXPO(1.66)

09:00:00 - 09:30:00

-0.5 + WEIB(7.15, 1.13)

-0.5 + WEIB(2.57, 1.12)

09:30:00 - 11:30:00

-0.5 + WEIB(6.1, 1.27)

_ -0.5 + WEIB(2.89, 1.26)

11:30:00 - 17:00:00

-0.5 + EXPO(4.13)

-0.5 + EXPO(4.37)

17:00:00 - 18:30:00

-0.5 + WEIB(3.29, 1.37)

-0.5 + WEIB(5.94, 1.13)

18:30:00 - 19:00:00

-0.5 + WEIB(3.45, 1.37)

-0.5 + WEIB(6.86, 1.17)

19:00:00 - 22:00:00

-0.5 + EXPO(6.06)

-0.001 + EXPO(13)

22:00:00 - 23:59:30

-0.001 + WEIB(13.5, 0.652)

-0.001 + EXPO(24.2)

The distributions of passenger arrivals to stations on Saturday are given in Table

4.7-4.11.




Table 4.7 Arrivals to Bornova and Bolge on Saturday

Time period Bornova Bolge
05:55:00 - 06:00:00 -0.5 + EXPO(4.53) -0.5 + EXPO(10.6)
06:00:00 - 11:00:00 -0.5 + EXPO(4.53) -0.5 + EXPO(10.6)
11:00:00 - 19:00:00 -0.5 + EXPO(3.14) -0.5 + EXPO(7.85)

19:00:00 - 22:00:00

-0.5 + EXPO(8.17)

-0.001 + EXPO(20.6)

22:00:00 - 23:59:30

-0.001 + WEIB(11, 0.738)

0.999 + WEIB(38.1, 0.688)

Table 4.8 Arrivals to Sanayi and Stadyum on Saturday
Time period Sanayi Stadyum
05:55:00 - 06:00:00 -0.001 + EXPO(52) -0.5 + EXPO(18)
06:00:00 - 11:00:00 -0.001 + EXPO(52) -0.5 + EXPO(18)

11:00:00 - 19:00:00

-0.001 + EXPO(23.5)

-0.5 + EXPO(8.96)

19:00:00 - 22:00:00

0.999 + WEIB(50.1, 0.689)

-0.001 + WEIB(22.3, 0.77)

22:00:00 - 23:59:30

2 + EXPO(83.4)

-0.001 + EXPO(57.2)

Table 4.9 Arrivals to Halkapinar and Hilal on Saturday

Time period

Halkapinar

Hilal

05:55:00 - 06:00:00

-0.001 + WEIB(48.1, 0.727)

-0.001 + WEIB(60.1, 0.654)

06:00:00 - 11:00:00

-0.001 + WEIB(48.1, 0.727)

-0.001 + WEIB(60.1, 0.654)

11:00:00 - 19:00:00

-0.5 + EXPO(13.5)

-0.001 + EXPO(57.9)

19:00:00 - 22:00:00

-0.001 + WEIB(54.8, 0.67)

-0.001 + EXPO(147)

22:00:00 - 23:59:30

3 + WEIB(159, 0.329)

5+ EXPO(311)

Table 4.10 Arrivals to Basmane and Cankaya on Saturday

Time period

Basmane

Cankaya

05:55:00 - 06:00:00

-0.001 + WEIB(25, 0.775)

-0.001 + EXPO(21.5)

06:00:00 - 11:00:00

-0.001 + WEIB(25, 0.775)

-0.001 + EXPO(21.5)

11:00:00 - 19:00:00

-0.5 + EXPO(13.7)

-0.5 + EXPO(3.22)

19:00:00 - 22:00:00

-0.001 + WEIB(17.9, 0.707)

-0.5 + EXPO(8.3)

22:00:00 - 23:59:30

-0.001 + EXPO(46.2)

-0.001 + WEIB(30.7, 0.804)

Table 4.11 Arrivals to Konak and Ucyol on Saturday

Time period Konak Ucyol
05:55:00 - 06:00:00 -0.5 + EXPO(19.8) -0.5 + EXPO(2.74)
06:00:00 - 11:00:00 -0.5 + EXPO(19.8) -0.5 + EXPO(2.74)
11:00:00 - 19:00:00 -0.5 + EXPO(3.45) -0.5 + EXPO(3.71)

19:00:00 - 22:00:00

-0.5 + EXPO(5.17)

-0.5 + EXPO(9.16)

22:00:00 - 23:59:30

-0.5 + EXPO(17.9)

-0.5 + EXPO(11.7)
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The distributions of passenger arrivals to stations on Sunday are given in Table

4.12 - 4.16.



Table 4.12 Arrivals to Bornova and Bolge on Sunday

Time period Bornova Bolge
05:55:00 - 06:00:00 -0.5 + EXPO(11) -0.001 + EXPO(19.9)
06:00:00 - 09:00:00 -0.5 + EXPO(11) -0.001 + EXPO(19.9)
09:00:00 - 20:00:00 -0.5 + EXPO(4.4) -0.5 + EXPO(13.4)
20:00:00 - 23:59:30 -0.5 + EXPO(12.9) -0.001 + EXPO(48.2)

Table 4.13 Arrivals to Sanayi and Stadyum on Sunday

Time period Sanayi Stadyum
05:55:00 - 06:00:00 2 +EXPO(110) -0.001 + EXPO(65.2)
06:00:00 - 09:00:00 2+ EXPO(110) -0.001 + EXPO(65.2)
09:00:00 - 20:00:00 -0.001 + WEIB(44.7, 0.7) -0.001 + EXPO(18.3)
20:00:00 - 23:59:30 0.999 + EXPO(191) -0.001 + WEIB(56, 0.762)

Table 4.14 Arrivals to Halkapinar and Hilal on Sunday

Time period

Halkapinar

Hilal

05:55:00 - 06:00:00

2+ EXPO(214)

-0.001 + EXPO(245)

06:00:00 - 09:00:00

2 +EXPO(214)

-0.001 + EXPO(245)

09:00:00 - 20:00:00

-0.001 + EXPO(56.2)

-0.001 + EXPO(39.8)

20:00:00 - 23:59:30

0.999 + EXPO(175)

0.999 + EXPO(335)

Table 4.15 Arrivals to Basmane and Cankaya on Sunday

Time period Basmane Cankaya
05:55:00 - 06:00:00 0.999 + EXPO(76) 2 + EXPO(83)
06:00:00 - 09:00:00 0.999 + EXPO(76) 2 + EXPO(83)

09:00:00 - 20:00:00

-0.001 + EXPO(19.9)

-0.5 + EXPO(6.83)

20:00:00 - 23:59:30

-0.001 + EXPO(45.8)

-0.001 + EXPO(30)

Table 4.16 Arrivals to Konak and Ucyol on Sunday

Time period

Konak

Ucyol

05:55:00 - 06:00:00

-0.001 + WEIB(44.9, 0.654)

-0.001 + EXPO(15.1)

06:00:00 - 09:00:00

-0.001 + WEIB(44.9, 0.654)

-0.001 + EXPO(15.1)

09:00:00 - 20:00:00

-0.5 + EXPO(5.13)

-0.001 + EXPO(71.7)

20:00:00 - 23:59:30

-0.5 + EXPO(11.8)

-0.001 + EXPO(95)
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The EXPO(mean) and WEIB(scale,shape) that are shown in Table 4.2 - 4.16 are

distributions are smoothing factor.

exponential and weibull distributions respectively, and the value in front of
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The exponential distribution is often used to model random arrival and breakdown
processes (Pedgen et al., 1990, p.561). The weibull distribution is widely used in
reliability models to represent the life time of a device, is also used to represent non-

negative task times that are skewed to the left (Pedgen et al., 1990, p.568).
4.2.2 Passenger Destination Probabilities

Passenger destination probability is one of the inputs of the simulation model. The
probabilities based on the questionnaire conducted by the metro company with 7500
passengers between 03/12/2001 and 09/12/2001 dates are given in Table 4.17 - 4.26.
For instance, in Table 4.17 and in period 06:00:00 and 07:00:00, destination
probability for Bolge is 0.07. It means that a passenger boards the train at Bornova
station between 06:00:00 and 07:00:00 alights the train in Bolge station with a

probability of 0.07. The other probabilities are interpreted in the same manner.

Table 4.17 Destination probabilities for Bornova

Time interval |Bolge|Sanayi|Stadyum |Halkapinar Hilal| Basmane|Cankaya|Konak | Ucyol
05:55:00 - 06:00:00} 0.07 | 0.06 | 0.06 0.09 0.10] 0.10 0.16 | 0.15 |0.21
06:00:00 - 07:00:00f 0.07 | 0.06 | 0.06 0.09 0.10; 0.10 0.16 | 0.15 [0.21
07:00:00 - 08:00:00}0.02{ 0.05 | 0.10 0.07 0.05{ 0.06 025 [ 022 ]0.18
08:00:00 - 09:00:000.03 | 0.05 | 0.11 0.06 0.02| 0.05 029 ] 0.26 |0.13
09:00:00 - 10:00:00} 0.04 | 0.04 | 0.07 0.03 0.06| 0.04 023 | 027 ]0.22
10:00:00 - 11:00:00} 0.03 | 0.03 | 0.06 0.01 0.09| 0.05 0.21 0.34 | 0.18
11:00:00 - 12:00:00] 0.05 | 0.04 | 0.07 0.03 0.08| 0.02 0.21 0.32 |0.18
12:00:00 - 13:00:00] 0.05| 0.02 | 0.07 0.06 0.04| 0.05 022 | 027|022
13:00:00 - 14:00:00§0.06 { 0.03 | 0.07 0.02 0.05| 0.07 0.19 | 029 |0.22
14:00:00 - 15:00:00]0.06 | 0.02 | 0.06 0.06 0.10| 0.04 020 | 0.18 {0.28
15:00:00 - 16:00:00{0.07 | 0.03 | 0.04 |- 0.07 0.01| 0.06 0.12 | 0.27 | 0.33
16:00:00 - 17:00:00{0.04 | 0.03 | 0.05 0.04 0.08{ 0.04 0.16 | 0.16 {0.40
17:00:00 - 18:00:00]0.04 { 0.02 | 0.03 0.05 0.09{ 0.06 0.12 | 0.16 {0.43
18:00:00 - 19:00:00] 0.06 | 0.03 [ 0.05 0.04 0.04| 0.06 0.13 | 0.18 [0.41
19:00:00 - 20:00:00§ 0.09 | 0.02 | 0.07 0.06 0.11] 0.06 0.09 | 0.13 |0.37
20:00:00 - 21:00:00| 0.03 | 0.04 | 0.04 0.10 0.09] 0.04 0.09 | 0.15 1042
21:00:00 - 22:00:00§0.08 | 0.04 | 0.09 0.02 0.09| 0.07 0.06 | 0.12 | 0.43
22:00:00 - 23:00:00] 0.09 ) 0.04 | 0.04 0.09 0.07| 0.08 0.07 | 0.14 [ 0.38
23:00:00 - 23:59:30] 0.16 | 0.01 | 0.09 0.10 0.04} 0.07 0.10 | 0.05 | 0.38




Table 4.18 Destination probabilities for Bolge
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Time interval |Bornova|Sanayi|Stadyum|Halkapinar|Hilal| Basmane|Cankaya|Konak|Ucyol
05:55:00 - 06:00:00] 0.26 | 0.04 | 0.04 0.07 0.08| 0.08 0.13 | 0.12 1 0.18
06:00:00 - 07:00:00f 0.26 | 0.04 | 0.04 0.07 0.08] 0.08 0.13 [ 0.12 [0.18
07:00:00 - 08:00:00] 0.32 | 0.03 | 0.07 0.05 0.04| 0.04 0.17 | 0.16 | 0.12
08:00:00 - 09:00:00| 0.32 | 0.03 | 0.07 0.04 0.02| 0.03 020 | 0.18 | 0.11
09:00:00 - 10:00:00] 0.26 | 0.03 | 0.05 0.03 0.05| 0.03 0.18 | 0.21 |0.16
10:00:00 - 11:00:00| 0.26 | 0.03 | 0.04 0.01 0.07) 0.04 0.16 | 0.26 | 0.13
11:00:00 - 12:00:00] 0.27 | 0.03 | 0.05 0.02 0.07} 0.02 0.16 | 0.25 |0.13
12:00:00 - 13:00:00§ 0.28 | 0.01 | 0.05 0.04 0.03] 0.04 0.16 | 021 ;0.18
13:00:00 - 14:00:00f 0.27 | 0.02 | 0.05 0.02 0.04| 0.05 0.15 1023 |0.17
14:00:00 - 15:00:00] 0.24 | 0.02 | 0.05 0.05 0.08} 0.03 0.16 | 0.15 ]0.22
15:00:00 - 16:00:00{ 0.23 | 0.02 | 0.03 0.06 0.01{ 0.05 0.10 | 0.23 |0.27
16:00:00 - 17:00:00{ 0.19 | 0.02 | 0.04 0.03 0.07| 0.03 0.14 | 0.13 | 0.35
17:00:00 - 18:00:00f 0.23 | 0.02 | 0.02 0.04 0.07] 0.04 0.09 | 0.13 {0.36
18:00:00 - 19:00:00] 0.21 | 0.03 | 0.04 0.03 0.04| 0.05 0.11 0.15 1 0.34
19:00:00 - 20:00:00{ 0.25 | 0.02 | 0.06 0.05 0.09| 0.05 0.08 | 0.10 | 0.30
20:00:00 - 21:00:00] 0.28 | 0.03 | 0.03 0.07 0.07| 0.03 0.06 | 0.11 [0.32
21:00:00 - 22:00:00] 0.25 | 0.04 | 0.08 0.02 0.08] 0.06 0.05 | 0.10 | 0.32
22:00:00 - 23:00:00] 0.29 | 0.03 | 0.03 0.07 0.06| 0.06 0.06 | 0.11 |0.29
23:00:00 - 23:59:30{ 0.29 | 0.01 | 0.07 0.08 0.04| 0.06 0.08 | 0.04 | 0.33

Table 4.19 Destination probabilities for Sanayi

Time interval |Bornova|Bolge|Stadyum |Halkapinar|Hilal| Basmane| Cankaya|Konak|Ucyol
05:55:00 - 06:00:00] 0.26 |0.05| 0.04 0.07 0.07| 0.07 0.13 | 0.12 [ 0.19
06:00:00 - 07:00:00] 0.26 |0.05| 0.04 0.07 0.07| 0.07 0.13 | 0.12 10.19
07.00:00 - 08:00:00] 0.33 |0.01} 0.07 0.05 0.04| 0.04 0.17 | 0.16 | 0.13
08:00:00 - 09:00:00] 033 [0.02| 0.08 0.04 0.02| 0.03 0.21 0.18 | 0.09
09:00:00 - 10:00:00f 0.26 (0.03} 0.05 0.03 0.05{ 0.03 0.18 | 0.21 {0.16
10:00:00 - 11:00:00] 0.26 |0.03| 0.04 0.01 0.07| 0.04 0.16 | 0.26 [ 0.13
11:00:00 - 12:00:00] 0.27 |[0.04| 0.05 0.02 0.06| 0.02 0.16 | 025 ]0.13
12:00:00 - 13:00:00f 0.27 |0.04| 0.05 0.04 0.03| 0.03 0.16 | 0.20 | 0.18
13:00:00 - 14:00:00] 0.26 |[0.04| 0.05 0.02 0.04| 0.05 0.15 | 022 {0.17
14:00:00 - 15:00:001 0.23 [0.05| 0.05 0.05 0.08| 0.03 0.16 | 0.1510.20
15:00:00 - 16:00:00] 0.22 [0.05| 0.03 0.06 0.01; 0.05 0.10 | 0.22 | 0.26
16:00:00 - 17:00:00f 0.19 0.04| 0.04 0.03 0.07| 0.03 0.14 | 0.13 10.33
17:00:00 - 18:00:00] 0.23 |0.03| 0.02 0.04 0.07| 0.04 0.09 | 0.12 | 0.36
18:00:00 - 19:00:00] 0.20 }0.05, 0.04 0.03 0.03| 0.05 0.11 0.14 {0.35
19:00:00 - 20:00:00{ 0.23 {0.07| 0.05 0.05 0.08| 0.05 0.07 | 0.10 | 0.30
20:00:00 - 21:00:00] 0.28 0.02| 0.03 0.07 0.07| 0.03 0.07 '} 0.11 {0.32
21:00:00 - 22:00:00] 0.24 (0.07| 0.08 0.02 0.08| 0.06 0.05 | 0.10 [ 0.30
22:00:00 - 23:00:00f 0.28 |0.07| 0.03 0.07 0.06| 0.06 006 [ 0.11 |0.26
23:00:00 - 23:59:30] 0.26 }0.12) 0.06 0.07 0.03| 0.06 0.07 | 0.04 | 0.29




Table 4.20 Destination probabilities for Stadyum

Time interval |Bornova|Bolge|Sanayi|Halkapinar|Hilal| Basmane|Cankaya|Konak| Ucyol
05:55:00 - 06:00:00f 0.26 |0.05| 0.04 0.07 0.07| 0.07 0.13 0.12 1 0.19
06:00:00 - 07:00:00] 0.26 {0.05| 0.04 0.07 0.07| 0.07 0.13 0.12 {1 0.19
07:00:00 - 08:00:00) 0.34 |0.01) 0.04 0.05 0.04! 0.05 0.18 | 0.17 ]0.12
08:00:00 - 09:00:00] 0.34 ]0.02| 0.03 0.04 0.02| 0.03 022 | 0.19 | 0.11
09:00:00 - 10:00:00] 0.27 |0.03 0.03 0.03 0.05] 0.03 0.18 | 0.21 |0.17
10:00:00 - 11:00:00] 0.26 [0.03| 0.03 0.01 0.07| 0.04 0.16 | 0.26 | 0.14
11:00:00 - 12:00:00f 0.27 |0.04| 0.03 0.02 0.07| 0.02 0.16 | 0.25 |0.14
12:00:00 - 13:00:00{ 0.29 |0.04!| 0.01 0.04 0.03| 0.04 0.17 | 0.21 |0.17
13:00:00 - 14:00:00] 0.27 10.04 | 0.02 0.02 0.04| 0.05 0.15 0.23 | 0.18
14:00:00 - 15:00:00f 0.24 |0.05] 0.02 0.05 0.08| 0.03 0.16 | 0.15]0.22
15:00:00 - 16:00:00] 0.22 {0.05| 0.02 0.06 0.01] 0.05 0.10 | 0.22 {0.27
16:00:00 - 17:00:00f 0.19 |0.04 0.02 0.03 0.07| 0.03 0.14 | 0.14 | 0.34
17:00:00 - 18:00:00] 0.23 {0.03| 0.02 0.04 0.07} 0.04 0.09 | 0.13 10.35
18:00:00 - 19:00:00f 0.21 ]0.05{ 0.02 0.03 0.04| 0.05 0.11 0.15 10.34
19:00:00 - 20:00:00{ 0.24 |0.08 ! 0.02 0.05 0.09| 0.05 0.08 | 0.10 | 0.29
20:00:00 -21:00:00] 0.28 }0.02( 0.03 0.07 0.07] 0.03 0.07 | 0.11 {0.32
21:00:00 - 22:00:00] 0.25 |0.07{ 0.04 0.02 0.08| 0.06 0.05 0.10 | 0.33
22:00:00 - 23:00:00] 0.28 |0.07 | 0.03 0.07 0.06| 0.06 0.06 | 0.11 |0.26
23:00:00 - 23:59:30] 0.28 ]0.13| 0.01 0.08 0.03| 0.06 0.08 | 0.04 | 0.29

Table 4.21 Destination probabilities for Halkapinar

Time interval |Bornova|Bolge|Sanayi|Stadyum |Hilal| Basmane|Cankaya|Konak | Ucyol
05:55:00 - 06:00:00f 0.27 0.06| 0.05 | 0.05 |0.08] 0.08 0.13 0.12 | 0.16
06:00:00 - 07:00:00] 0.27 {0.06| 0.05 | 0.05 |0.08| 0.08 0.13 0.12 | 0.16
07:00:00 - 08:00:00} 0.33 [0.01| 0.04 | 0.07 |0.04| 0.05 0.18 [ 0.16 |0.12
08:00:00 - 09:00:00] 0.33 |0.02| 0.03 | 0.08 |0.02( 0.03 0.21 0.18 | 0.10
09:00:00 - 10:00:00] 026 }0.03] 0.03 | 0.05 |[0.05| 0.03 0.18 | 021 |0.16
10:00:00 - 11:00:00] 0.25 [0.03| 0.03 | 0.04 |0.07] 0.04 0.16 | 0.26 |0.12
11:00:00 - 12:00:00f 0.27 ]0.04| 0.03 | 0.05 |0.06| 0.02 0.16 | 0.24 |0.13
12:00:00 - 13:00:00] 0.28 |0.04]} 0.01 0.05 (0.03] 0.04 0.16 | 0.21 | 0.18
13:00:00 - 14:00:00f 0.26 [0.04| 0.02 | 0.05 {0.04| 0.05 0.15 022 |0.17
14:00:00 - 15:00:00] 0.24 |0.05]| 0.02 | 0.05 |0.08] 0.03 0.16 | 0.15 ]0.22
15:00:00 - 16:00:00{ 0.23 (0.06 0.02 | 0.03 ]0.01} 0.05 0.10 | 0.23 | 0.27
16:00:00 - 17:00:001 0.19 10.04| 0.02 | 0.04 |0.07} 0.03 0.14 | 0.13 | 0.34
17:00:00 - 18:00:00] 0.23 (0.03] 0.02 } 0.02 |0.07, 0.04 0.09 | 0.13 | 0.37
18:00:00 - 19:00:00f 0.21 |0.05| 0.02 | 0.04 |0.04! 0.05 0.11 0.15 1 0.33
19:00:00 - 20:00:00{ 0.24 [0.08| 0.02 | 0.05 }0.09| 0.05 0.08 | 0.10 1 0.29
20:00:00 - 21:00:00f 0.29 0.02| 0.03 { 0.03 |[0.07] 0.03 0.07 | 0.12 | 0.34
21:00:00 - 22:00:00] 0.24 |0.07| 0.03 | 0.07 |0.07| 0.05 0.05 | 0.10 ]0.32
22:00:00 - 23:00:00] 0.29 0.07| 0.03 | 0.03 [0.06] 006 | 006 | 0.11 [0.29
23:00:00 - 23:59:30|] 0.28 |0.13| 0.01 0.07 |0.03| 0.06 0.08 | 0.04 |0.30
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Table 4.22 Destination probabilities for Hilal
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Time interval |Bornova|Bolge|Sanayi|Stadyum |Halkapinar|Basmane|Cankaya|Konak|Ucyol
05:55:00 - 06:00:00f 0.27 |0.06} 0.05 { 0.05 0.07 0.08 0.13 0.12 | 0.17
06:00:00 - 07:00:00] 0.27 [0.06| 0.05 | 0.05 0.07 0.08 0.13 0.12 |1 0.17
07:00:00 - 08:00:00] 0.33 |0.01| 0.04 | 0.07 0.05 0.04 0.18 | 0.16 | 0.12
08:00:00 - 09:00:00; 0.32 |0.02| 0.03 0.07 0.04 0.03 0.20 | 0.18 | 0.11
09:00:00 - 10:00:00] 0.27 [0.03| 0.03 | 0.05 0.03 0.03 0.18 | 0.21 {0.17
10:00:00 - 11:00:00] 0.27 |0.03| 0.03 | 0.05 0.01 0.04 0.17 | 0.27 | 0.13
11:00:00 - 12:00:00] 0.28 [0.04| 0.03 | 0.05 0.02 0.02 0.17 [ 0625 |0.14
12:00:00 - 13:00:00] 0.28 |0.04 0.01 0.05 0.04 0.04 0.16 | 0.20 |0.18
13:00:00 - 14:00:00f 0.26 |0.04( 0.02 | 0.05 0.02 0.05 0.15 0.22 {0.19
14:00:00 - 15:00:00] 0.24 |0.05{ 0.02 | 0.05 0.05 0.03 0.17 | 0.15 [0.24
15:00:00 - 16:00:00] 0.22 [0.05{ 0.02 | 0.03 0.06 0.05 0.09 | 0.22 | 0.26
16:00:00 - 17:00:001 0.20 [0.04| 0.02 | 0.05 0.03 0.03 0.14 | 0.14 | 0.35
17:00:00 - 18:00:00] 0.24 [0.03| 0.02 | 0.02 0.04 0.05 0.10 | 0.13 {0.37
18:00:00 - 19:00:00] 0.21 {0.05] 0.02 | 0.04 0.03 0.05 0.11 0.15 [ 0.34
19:00:00 - 20:00:00f 0.25 |0.08! 0.02 | 0.06 0.05 0.05 0.08 | 0.11 [0.30
20:00:00 - 21:00:00] 0.29 }0.02( 0.03 | 0.03 0.08 0.03 0.07 | 0.12 | 0.33
21:00:00 - 22:00:00] 0.25 }0.07] 0.04 | 0.08 0.02 0.06 0.05 0.10 | 0.33
22:00:00 -23:00:00] 0.29 |0.07} 0.03 | 0.03 0.07 0.06 0.06 | 0.11 {0.28
23:00:00 - 23:59:30] 0.27 0.12| 0.01 0.07 0.07 0.06 0.07 | 0.04 | 0.29

Table 4.23 Destination probabilities for Basmane

Time interval |Bornova|Bolge|Sanayi|Stadyum |Halkapinar |Hilal| Cankaya |Konak|Ucyol
05:55:00 - 06:00:00] 0.27 [0.06| 0.05 | 0.05 0.07 0.08| 0.13 0.12 {0.17
06:00:00 - 07:00:00] 0.27 [0.06} 0.05 | 0.05 0.07 0.08| 0.13 0.12 | 0.17
07:00:00 - 08:00:00} 0.33 (0.01]| 0.04 | 0.07 0.05 0.04| 0.18 | 0.16 |0.12
08:00:00 - 09:00:00] 0.33 |[0.02§ 0.03 | 0.08 0.04 0.02| 0.21 0.18 | 0.09
09:00:00 - 10:00:00f 0.26 [0.03; 0.03 | 0.05 0.03 0.05{ 0.18 0.21 |0.16
10:00:00 - 11:00:00] 0.26 |0.03| 0.03 | 0.04 0.01 0.07| 0.16 | 0.26 {0.14
11:00:00 - 12:00:00{ 0.27 [0.04| 0.03 | 0.05 0.02 0.06| 0.16 | 0.24 |0.13
12:00:00 - 13:00:00f 0.28 |[0.04| 0.01 0.05 0.04 0.03] 0.16 | 0.20 | 0.19
13:00:00 - 14:00:00f 0.27 [0.04{ 0.02 | 0.05 0.02 0.04| 0.15 0.23 0.18
14:00:00 - 15:00:00f 0.23 [0.05] 0.02 | 0.05 0.05 0.08| 0.16 | 0.15 |0.21
15:00:00 - 16:00:00] 0.22 [0.06| 0.02 | 0.03 0.06 0.01| 0.10 | 0.22 |0.28
16:00:00 - 17:00:00] 0.19 ;0.04| 0.02 | 0.04 0.03 0.07} 0.14 | 0.13 | 0.34
17:00:00 - 18:00:00] 0.23 |0.03] 0.02 | 0.02 0.04 0.07} 0.09 | 0.13 | 0.37
18:00:00 - 19:00:00{ 0.21 [0.05{ 0.03 | 0.04 0.03 0.04| 0.11 0.15 [ 0.34
19:00:00 - 20:00:00} 0.24 [0.08] 0.02 | 0.05 0.05 0.091 0.08 | 0.10 |0.29
20:00:00 - 21:00:00] 0.28 [0.02| 0.03 | 0.03 0.07 0.07) 0.07 | 0.11 [0.32
21:00:00 - 22:00:00] 0.25 {0.07| 0.04 | 0.08 0.02 0.08| 0.05 0.10 ] 0.31
22:00:00 - 23:00:00] 0.29 |0.07] 0.03 0.03 0.07 0.06f 0.06 | 0.11 ]0.28
23:00:00 - 23:59:30{ 0.27 |0.12] 0.01 0.07 0.08 0.03| 0.08 | 0.04 | 0.30




Table 4.24 Destination probabilities for Cankaya

Time interval |Bornova|Bolge|Sanayi|Stadyum |Halkapinar|Hilal| Basmane|Konak|Ucyol
05:55:00 - 06:00:00] 0.28 | 0.06} 0.05 [ 0.05 0.07 0.08; 0.08 | 0.13 |0.20
06:00:00 - 07:00:00f 0.28 [0.06]| 0.05 | 0.05 0.07 0.08; 0.08 | 0.13 ;0.20
07:00:00 - 08:00:00] 0.38 |0.02| 0.04 | 0.08 0.06 0.04| 0.05 0.19 | 0.14
08:00:00 - 09:00:00] 0.40 |0.02| 0.04 | 0.09 0.05 0.02! 0.04 | 022 0.12
09:00:00 - 10:00:00f 0.31 |0.03] 0.03 [ 0.06 0.03 0.05| 0.03 0.24 | 0.22
10:00:00 - 11:00:00] 0.30 |0.03] 0.03 | 0.05 0.01 0.08( 0.05 0.30 | 0.15
11:00:00 - 12:00:00] 0.31 |0.05| 0.04 | 0.06 0.02 0.07| 0.02 | 0.28 |0.15
12:00:00 - 13:00:00] 0.32 |0.04| 0.02 | 0.06 0.05 0.03| 0.04 0.23 10.21
13:00:00 - 14:00:00] 0.30 [0.05| 0.02 | 0.06 0.02 0.04] 0.06 | 0.2510.20
14:00:00 - 15:00:00f 0.27 |0.06 0.02 | 0.06 0.06 0.09| 0.04 | 0.17 }0.23
15:00:00 - 16:00:00f 0.24 |0.06| 0.02 | 0.03 0.06 0.01] 0.05 0.24 1 0.29
16:00:00 - 17:00:00] 0.21 |[0.04| 0.03 [ 0.05 0.04 0.08} 0.04 ] 0.15]0.36
17:00:00 - 18:00:00{ 0.25 |0.03| 0.02 | 0.02 0.04 0.08| 0.05 0.13 {0.38
18:00:00 - 19:00:00] 0.22 0.05| 0.03 | 0.04 0.04 0.04; 0.05 0.16 [ 0.37
19:00:00 - 20:00:00|] 0.25 |0.08] 0.02 | 0.06 0.05 0.09| 0.05 0.10 | 0.30
20:00:00 - 21:00:00{ 0.29 |0.02( 0.03 0.03 0.08 0.07| 0.03 0.12 10.33
21:00:00 - 22:00:00] 0.24 10.07| 0.04 | 0.08 0.02 0.08; 0.06 | 0.10 ;0.31
22:00:00 - 23:00:00f 0.29 {0.07} 0.03 | 0.03 0.07 0.06| 0.06 0.11 [ 0.28
23:00:00 - 23:59:30] 0.28 |0.13| 0.01 0.07 0.08 0.03; 0.06 | 0.04 | 0.30

Table 4.25 Destination probabilities for Konak

Time interval |Bornova|Bolge|Sanayi|Stadyum |Halkapinar | Hilal| Basmane|Cankaya| Ucyol
05:55:00 - 06:00:00] 0.28 |0.06| 0.05 | 0.05 0.07 0.08| 0.08 0.14 |[0.19
06:00:00 - 07:00:00] 0.28 |0.06| 0.05 |. 0.05 0.07 0.08} 0.08 0.14 [0.19
07:00:00 - 08:00:00} 0.37 [0.02| 0.04 | 0.08 0.06 0.04| 0.05 020 |0.14
08:00:00 - 09:00:00] 0.39 (0.02]| 0.04 | 0.09 0.05 0.02| 0.04 024 (0.11
09:00:00 - 10:00:00] 0.32 |0.03| 0.03 | 0.06 0.03 0.06| 0.03 022 1022
10:00:00 - 11:00:00] 0.34 [0.03| 0.03 | 0.06 0.01 0.09| 0.05 0.21 {0.18
11:00:00 - 12:00:00f 0.34 |0.05| 0.04 | 0.06 0.03 0.08] 0.02 0.21 |0.17
12:00:00 - 13:00:00] 0.34 (0.05} 0.02 | 0.07 0.05 0.04; 0.04 0.20 [0.19
13:00:00 - 14:00:00] 0.33 0.05{ 0.03 | 0.06 0.02 0.05; 0.06 0.18 [0.22
14:00:00 - 15:00:00] 0.26 |0.06| 0.02 | 0.06 0.06 0.09] 0.04 0.18 [0.23
15:00:00 - 16:00:00{ 0.27 [0.07| 0.03 | 0.04 0.07 0.01| 0.06 0.12 {0.33
16:00:00 - 17:00:001 0.21 |[0.04( 0.03 | 0.05 0.04 0.08| 0.04 0.15 10.36
17:00:00 - 18:00:00] 0.25 (0.03| 0.02 | 0.03 0.04 0.08] 0.05 0.10 {040
18:00:00 - 19:00:00] 0.23 [0.06] 0.03 | 0.04 0.04 0.04{ 0.06 0.12 [0.38
19:00:00 - 20:00:00f 0.25 |0.08] 0.02 | 0.06 0.05 0.09| 0.05 0.08 |0.32
20:00:00 - 21:00:00|] 0.31 {0.03]| 0.03 | 0.03 0.08 0.08| 0.03 0.07 (034
21:00:00 - 22:00:00] 0.26 |0.07| 0.04 | 0.08 0.02 0.08| 0.06 0.05 [0.34
22:00:00 - 23:00:00f 0.30 |0.07| 0.03 | 0.03 0.07 0.06| 0.06 0.06 |0.32
23:00:00 - 23:59:30] 0.27 |0.12| 0.01 0.07 0.07 0.03] 0.06 0.07 ]0.30
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Table 4.26 Destination probabilities: for Ucyol

66

Time interval ]|Bornova|Bolge|Sanayi|Stadyum |Halkapinar|Hilal| Basmane|Cankaya|Konak
05:55:00 - 06:00:00f 0.30 |[0.06| 0.05 | 0.05 0.08 0.09{ 0.09 0.15 | 0.13
06:00:00 - 07:00:00] 0.30 [0.06| 0.05 | 0.05 0.08 0.09( 0.09 0.15 | 0.13
07:00:00 - 08:00:00] 0.35 |0.02| 0.04 | 0.08 0.06 0.04, 0.05 0.19 | 0.17
08:00:00 - 09:00:00] 0.34 |0.02| 0.04 | 0.08 0.04 0.02] 0.04 022 | 020
09:00:00 - 10:00:00f 0.32 |0.03| 0.03 | 0.06 0.03 0.05{ 0.03 0.21 0.24
10:00:00 - 11:00:00} 0.28 (0.03| 0.03 | 0.05 0.01 0.08| 0.05 0.18 | 0.29
11:00:00 - 12:00:00] 0.29 |0.05| 0.04 | 0.06 0.02 0.07] 0.02 0.18 | 0.27
12:00:00 - 13:00:00] 0.33 [0.04| 0.02 | 0.06 0.05 0.03; 0.04 0.19 | 0.24
13:00:00 - 14:00:00} 032 {0.05| 0.02 | 0.06 0.02 0.04| 0.06 0.17 | 0.26
14:00:00 - 15:00:00] 0.28 [0.06| 0.02 | 0.06 0.06 0.10{ 0.04 020 | 0.18
15:00:00 - 16:00:00] 0.28 |0.07| 0.03 | 0.04 0.08 0.01| 0.07 0.13 | 0.29
16:00:00 - 17:00:00] 0.27 [0.05{ 0.03 | 0.06 0.05 0.10| 0.05 020 | 0.19
17:00:00 - 18:00:00] 0.34 [0.05] 0.02 | 0.03 0.05 0.11| 0.07 0.14 | 0.19
18:00:00 - 19:00:00f 0.30 |0.07] 0.04 | 0.05 0.05 0.05] 0.07 0.16 | 0.21
19:00:00 - 20:00:00] 0.32 |0.10] 0.02 | 0.07 0.07 0.11] 0.07 0.10 | 0.14
20:00:00 - 21:00:00] 0.40 |0.03| 0.04 | 0.04 0.10 0.10| 0.04 0.09 | 0.16
21:00:00 - 22:00:00f 0.35 10.09| 0.05 | 0.10 0.02 0.10{ 0.08 0.07 | 0.14
22:00:00 - 23:00:00| 0.38 |0.09] 0.04 | 0.04 0.09 0.07| 0.08 0.07 | 0.14
23:00:00 - 23:59:30] 0.37 |0.16| 0.01 { 0.09 0.10 0.04; 0.08 0.10 | 0.05

4.2.3 Failure and Repair Time Distributions

The trains may change the current track by using switches for some reasons. For

instance, there may be a failure in a part of track (block) between two sequential

stations, or another train that has opposite direction may running on the next part of

the current track.

If a train changes its current track, the new track will be closed to trains in

opposite direction. Input Analyser module of Arena V2.2 is also used for chi-squared

goodness of fit tests (o = 0.05) for failure time between two consecutive failures in

blocks, and repair times.

Table 4.27 shows the distributions of failure times and repair times according to

blocks.



Table 4.27 Distributions of failure time and repair time

Block name Probability of failure Probability of repair time
BOL11 1.3e-+005 + WEIB(3.26¢+006, 0.569) 120 + WEIB(612, 0.517)
SANI11 1.75¢+006 + WEIB(3.98e+006, 0.356) 180 + EXPO(2.11e+003)
STAIll 2.59e+005 + WEIB(1.98e+006, 0.259) 120 + EXPO(960)
HAL13 5.1e+003 + WEIB(2.066+006, 0.586) 60 + EXPO(1.2e+003)
HIL11 2.6e+004 + WEIB(3.05e+006, 0.443) 120 + EXPO(1.59e+003)
CAN11 1.36e+006 + WEIB(4.21e+006, 0.409) 120 + EXPO(852)
KONI1 4.54e+005 + WEIB(1.99e+004, 0.136) 420 + EXPO(662)
UCY11 1.3e+005 + WEIB(2.2¢+006, 0.449) 120 + EXPO(931)
UCY24 6.48¢+004 + WEIB(2.2¢+006, 0.666) 60 + EXPO(1.3e+003)
KON22 1.94e+005 + WEIB(2.98e+006, 0.484) 120 + EXPO(1.15e+003)
CAN22 3.05¢+006 + WEIB(5.22¢+006, 0.297) 300 + EXPO(523)
BAS22 1.94e+005 + WEIB(3.28e+006, 0.296) 180 + EXPO(1.7e+003)
HIL22 1.07e+004 + WEIB(3.51e+006, 0.466) | 180 + WEIB(1.44e+003, 0.495)
HAL24 3.05e+006 + WEIB(4.2e+006, 0.287) 180 + EXPO(2.39¢+003)
HALA42 6.48e+004 + WEIB(2.85e+006, 0.377) 180 + EXPO(3.27e+003)
SAN22 1.04e+006 + WEIB(3.71e+006, 0.365) 120 + EXPO(1.37¢+003)
BOL22 1.3e+006 + WEIB(4.4e+006, 0.212) 120 + EXPO(636)

4.3 Assumptions
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e The first passenger is allowed to enter the system 5 minutes before the first

train’s departure time. Also, last passenger is allowed to leave the system 0.5

minutes before the last train’s departure time.

o Arrival time distributions and destination station probabilities for passengers who

get into the system between 05:55:00 and 06:00:00 are same as first time period’s

values.

e The train, which leaves system to cause a decrease in the number of running

trains, unloads its passengers at Halkapinar station. While a part of the unloaded

passengers wait a new train to go on their trip, another part may leave the system

without any delay if Halkapinar station is their destination.

e Train speed can be different at different parts of tracks, but it does not change

during a trip between two successive stations. The train speeds between

consecutive stations are given in Table 4.28.



Table 4.28 Train speeds between stations

Stations Speed
Departure Destination (km/h) | (m/sec)
End point Bornova 80 22.22
Bornova Bolge 80 22.22
Bolge Sanayi 80 22.22
Sanayi Stadyum 80 22.22
Stadyum Halkapinar 80 22.22
Halkapinar Hilal 80 22.22
Hilal Basmane 80 22.22
Basmane Cankaya 80 22.22
Cankaya Konak 80 22.22
Konak Ucyol 80 2222
Ucyol End point 40 11.11
End point Ucyol 40 1111
Ucyol Konak 60 16.67
Konak Cankaya 80 22.22
Cankaya Basmane 80 22.22
Basmane Hilal 80 22.22
Hilal Halkapinar 80 2222
Halkapinar Stadyum 80 22.22
Stadyum Sanayi 80 22.22
Sanayi Bolge 80 22.22
Bolge Bornova 80 22.22
Bornova End point 20 5.56
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e Train dwell times are static and are given in Table 3.4.

e Only one train can locate on a platform. Therefore, except Halkapinar station,
which has three platforms, there can be only two trains in a station at the same

time. At Halkapinar station, there can be only three trains at the same time.

e All the trains have 3 carriages, and a carriage includes 44 seats and 36 square
meter empty. spaces where passengers can stand. The desirable number of
passengers per square meter is 4. Base on that information, we assume that a
carriage can take maximum (44+36*4=188) 188 passengers at a time. In other
words, the full capacity of each carriage is 188 passengers. and the full capacity

of a train is 564 passengers.

o The decision on which blocks and switches will be used at the next trip is made

during dwell time, and it does not change until the next station.
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e If there is more than one train at the end station, the train, which comes first,

leaves first.

¢ At stations, queue discipline is FIFO (first in first out). If the train is full and

some passengers can not board the train, they have priority for the next train.

e In the simulation model, the metrics used for length is meter, and for time is

second.

e Because of some extraordinary causes, in one of the end stations if there is no
train to board at departure time, passengers go on waiting for a train, and when a-

train arrives, passengers get on and trip begins without losing any time.
4.4 Flowcharts for Events

The followings are the six main events;
e Passenger's arrival to the station
e Train's arrival to the station
e Train's departure time
¢ Alighting the train
e Boarding the train

e Train's departure from the station

There are also other events like System opening and System closing occurring only

once during a day. Figures 4.1 - 4.5 display the flow diagrams of the main events.

Four types of entities flow between Arena Blocks. First type represents passenger,
and is created until the system is closed for passenger arrivals. The next type captures
a train when needed and does not release until the train leaves the system. Type three
is used for calculating the number of trains needed for the first time period, moving
the trains to scheduled stations before the first time period begins, and also

calculating the fullness rate of the carriages. In addition, it is used for adjusting the
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Passenger's arrival to the
station event

Enter the queue

Is this station an
end station?

Run the required activities for

Train's departure time event No—»

Run the required activitics for |
Train's arrival to the station event

1

> Return <

AN

Figure 4.1 Flowchart for Passenger's arrival to the station event
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I

Is there any
passenger who wants
to get off at this

Yes-»
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Run the required activities for
Alighting the train event

Is there any
passenger who

Run the required activities for e Yes

A

|
|

waits in queue at
station?

Boarding the train event

Train's departure from the station
event

Figure 4.2 Flowchart for Train's arrival to the station event and Train's

departure from the station event
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number of trains at transition between two consecutive time periods, determining the
departure times due to headways, and ordering the trains to departure. Fourth type is
used for failures that occur at blocks, it prevents the use of failured parts, and causes

a delay during repair action.

Train's departure time event\

y

Run the required activities for
Passenger gets on train event

A
{ Return )

Figure 4.3 Flowchart for Train's departure time event

@ghting the train ev@

Is this station the
destination station of
passenger?

Alight the train < Yes

No—»  Goontrip }

e
» Return \‘,ﬁ |

Figure 4.4 Flowchart for Alighting the train event
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Yes
v y
Get on train  Wait 5
—
A
Decrease the empty capacity
of train by one

( Return |2

Figure 4.5 Flowchart for Boarding the train event

4.5 Flowcharts Related to Halkapinar Station

For simulation modelling, the number of Arena Blocks used is more than 3000.
On/ly a part of the flow diagram related to Halkapinar station is given in Figures 4.6 -
4.13 for the sake of simplicity. These figures show the train scheduling procedure at
Halkapinar station. This station is the most complex one. It behaves like an end
station at the beginning of the first period, and also like a middle station during a

day. In addition, trains use this station when they enter or leave the system. Also,



there exist three platforms in Halkapinar station. In flowcharts platform number is

denoted with p.
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\ / N

Figure 4.6 The flowchart of the train scheduling procedure (sp) in Halkapinar

station (part 1) (p=1,2,3)
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Figure 4.7 The flowchart of the fsp in Halkapinar station (part 2) (p=1,2,3)
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Y
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Figure 4.8 The flowchart of the #sp in Halkapinar station (part 3) (p=1,2,3)
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Figure 4.9 The flowchart of the train #sp in Halkapinar station (part 4) (p=1,2,3)
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Wait until the track is
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to Halkapinar station
platform 3

Yes
v

Move to Halkapimnar
station platform 3

l

i

Train left Halkapinar
station platform p

Figure 4.10 The flowchart of the #sp in Halkapinar station (part 5) (p=1,2,3)

As it can be seen from flowcharts, train which uses Halkapinar station may be a
beginning train, a new one that has just entered the system, a running train that will

exit the system, or a train running in Bornova or Ucyol direction.
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4.6 Attributes and Variables
The attributes and variables that are used in simulation model are given below.
4.6.1 Attributes

Trigger: If an entity is a trigger entity its value for this attribute is 1, and for other

entities its value is 0.

Timein: All the entities that represent passenger have this attribute. This attribute

indicates the created time of an entity.

Dep_station: The value of this attribute indicates the station number that train

comes from.

Empty_capacity: Indicates the empty capacity of a train. Its maximum value can
be 564.

Train_close: This attribute takes values 0 and 1. The 1 indicates that train will
depart the system from Halkapinar station because the system has closed. Otherwise,

the value of attribute is 0.

Train_begin_no: This attribute ranges from 0 to 8. While 0 indicates that the train
is not a beginning train, the values from 1 to 8 indicate that train is a beginning train.
According to these values, trains’ locations are determined before the first time

period begins.
Direction_travel: This attribute has two values; -1 and 1. The value 1 indicates
that train run towards the Ucyol station, and the value -1 indicates that train is in

Bornova direction.

Des_station: Shows the station number that passenger travels to.
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Train#: There can be maximum 8 trains in the system, because the minimum
headway is 5 minutes. Therefore, this attribute denoting the train number ranges
from 1 to 8.

4.6.2 Variables

The variables which control the blocks are shown in Table 4.29.

Table 4.29 Variables that control the blocks

Variable Controlled block Value interval
uball UCY03 [-8,8]
uba02 UCYS51, UCYO01 [-8,8]
uba03 UCY11, UCY13, KONOI [-8.8]
uba4 KONS51, KON11, CANO1, CAN11, [-8,8]
uba05 BASS51, BAS11, HILO1, HIL11 [-8.8]
uba06 HALSI1, HALO1 [-8,8]
uba07 HALSS, HAL13 [-8,8]
uba08 HALS59, HAL41, STAO1, STA11 [-8,8]
uba09 SANS51, SANO1 [-8,8]
ubal0 SANIIL, BOLO1, BOL11 [-8,8]
uball BORS1, BORO1 [-8,8]
ubal2 BORO3 [-8.8]
bua0l BORO4 . [-8,8]
bua02 BORO02 [-8,8]
bua03 BORS52, BOL22, BOL02, SAN22, [-8,8]
buat4 SANS2, STA22, STA02, HALA42 [-8,8]
bua0s HALS8, HAL24 [-8.8]
bual6 HALS56, HALO2 [-8,8]
bua07 HALS2, HIL22, HIL02, BAS22 [-8,8]
bua08 BAS52, BAS02 [-8.8]
bua09 CAN22, CANO2, KON22 [-8,8]
bual0 KONS52, KON02 [-8.8]
buall UCY24, UCY22, UCY02 [-8.8]
bual2 UCYS2, UCY04 [-8,8]

The first column indicates the variable name and the second column the blocks
that controlled by the related variable. For instance, the variable uba0l controls
UCYO03 block, and take negative values if this block is occupied or allocated by a
train (or trains) in Bornova direction, or positive values if the block is occupied or

allocated by a train (or trains) in Ucyol direction. This variable is zero when the
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block is empty and is not allocated to any train. The last column is the value interval
for this variable. For instance, if the number of trains that occupied or allocated the
KON11 block is z train and their direction is Bornova uba04’s value will be —n, from

the same view point it will be +# if the trains’ direction is Ucyol.

Train_direction_(station name)_(platform no): This variable controls platforms
of station and can get negative values, positive values, and 0. The negative values
between -8 and -1 indicate that the platforms are occupied or allocated by a train (or
trains) in Bornova direction. The positive values between 1 and 8 point out that the
platforms are occupied or allocated by a train (or trains) in Ucyol direction. The 0,

means the platform is empty and not allocated to any train.

Train_arrive_(station name)_(platform no): This variable shows the arrival
simulation time of a train to the platform. For Halkapinar station platform number

can be 1, 2, or 3, but for other stations it can be 1 or 2.

m_(switch no): This variable controls a switch that links two parallel tracks, and
can take negative values between -8 and -1, positive values between | and 8, and 0.
The negative values indicate that the switch is occupied or allocated by a train (or
trains) in Bornova direction. The positive values point outs that the switch is
occupied or allocated by a train (or trains) in Ucyol direction. The 0, means the
switch is empty and not allocated to any train. There are ten switches in the system.

Therefore, switch no can take values from 1 to 10.

Failure (block number): This variable denotes the situation of block. Its value
may be 0 or 1. The 0 means the block is suitable for travelling. The value 1 indicates

that the block is not convenient for travelling.

Train_num_getoutof: This variable demonstrates the number of trains that will

leave the system after next time period begins.
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Train_num_getinto: This variable denotes the number of trains that will enter the

system after next time period begins.

Train_num_exist: This variable shows the number of trains that are currently in

the system.

Train_num_begin: This variable demonstrates the number of trains that system

needs for the first time period.

Train_num_next_period: This variable shows the number of trains that will be in

the system in the next time period.

Headway (beginning time) (ending time): This variable indicates the headway
of related time period in second. Beginning time and ending time show the time
period’s beginning and ending times. There are 10 time periods in weekdays, 4 time

periods on Saturday, and 3 time periods on Sunday.

Carriage_number_(beginning time) (ending time): This variable indicates the

number of carriages that a train includes in related time period. Its value is always 3.

Duration_(beginning time) (ending time): This variable indicates the duration of

the related time period in second.

(station name) getoff: This variable shows the number of passengers that alight

the train at related station and leave the system.

Geton_(station name) 1: This variable denotes the number of passengers who

board the train at relevant station and travel to Ucyol.

Geton_(station name) 2: This variable denotes the number of passengers who

board the train at relevant station and travel to Bornova.
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Waiting (station name) 1: This variable demonstrates the number of passengers,

in a certain station, waiting for the train in Ucyol direction.

Waiting (station name) 2: This variable demonstrates the number of passengers,

in a certain station, waiting for the train in Bornova direction.
RoundTripTime: It denotes the duration of a full tour, and tallies 40 minutes.

Train_waiting time _(station name): It denotes the waiting time of the train for

loading and unloading at the related station.

Preparing time: The value of variable is 15 minutes (900 seconds), the time

duration for systems preparing before the first time period.
System_open: This variable indicates that the first time period begins.
System_close: This variable indicates that the last time period ends.
Train_capacity: The value of the, variable denotes the capacity of a train. We
mentioned that a train consists of 3 carriages for all time periods, and a carriage has

188 passenger capacity. Thus, the capacity of a train is 564 passengers.

Train_departure_time (end station name): This variable indicates the next

departure time at an end station.

Train_ready_(end station name): The values that this variable can get are 0 and

1. The value 1 means, a train is available for departure from an end station.

Trip_number_period: This variable gives the total trips number in a time period,

and calculated by a formula;

Trip_number _period =2* [Duration _(beginningtime) (endingtime) } 42)

Headway (beginningtime) (endingtime)
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The coefficient 2 is used, because at the same time two trip begin, first is from

Bornova to Ucyol, second is From Ucyol to Bornova.

Carriage_number_period: This variable denotes the total carriage number that is

used for transportation for each time period, and calculated by a formula;

Carriage number_period = 3*(Trip_number_period) (4.3)

The coefficient 3 indicates, each train consist of 3 carriages.

Tot carriage_number: The value of this variable is calculating by summing up
the carriage number_period variable values for each time period, and gives the total

carriage numbers that are used for transportation during a day.

Tot _passenger number: The value of this variable demonstrates the total number

of passengers who used metro for travelling during a day.

Fullness_rate: This variable indicates the fullness rate of the carriages, and

calculated by a formula (3.1).

4.7 Verification and Validation of Simulation Model

After the development of the simulation model the question “does it work?”
arises. The answer is found through verification and validation. Verification seeks to
show that the computer program performs as expected and intended, thus providing a
correct logical representation of the model. Validation on the other hand, establishes
that model behaviour validly represents that of the real-word system being simulated.
Both processes involve system testing that demonstrates different aspects of model

accuracy (Pedgen et al., 1990, p.20).

Verification techniques such as; developing the program in a modular manner,

using interactive debuggers, substituting constants for random variables and
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manually checking the results and animating the system are used for verifying the

simulation model.

The simulation model is built in a stép-by-step approach. First, the network that
includes the tracks, switches and stations are modelled. Then, important functions
such as; controlling the track part between departure station and destination station,
beginning the trip from an end station and ending at the other end station, in addition
changing the tracks are modelled. After this model is checked to see whether it works
as intended, the failures and passenger arrivals to stations, train departure times from
an end station, headway and number of train changes due to transition between to

consecutive time periods are inserted in the model.

Interactive debugger and trace tools of Arena V2.2 software package, such as
Command, Break, Trace and Watch are used for checking the status of the model,

also for checking the variations in attribute and variable values.

Passenger arrivals, passenger’s destination station, failure occurrence, repair times
are random variables. We substitute constants for these random variables and check
if passenger goes to intended destination stations, if train has limited capacity logic

works, if train changes track by a switch due to failure occurrence.

Animation of the system is built by using Animate Tool of Arena V2.2 software

package. In addition, the simulation model checked if it works as intended.

For validation of the model, we compare the model’s performance under known
conditions with the performance of the real system. As it is mentioned before, there
are two responses; the average passenger time that is spent in the metro-line and the
fullness rate of the carriages. There is no data about the average passenger time, but

the fullness rate of the carriages is calculated as 49.5 percent.

Confidence interval is calculated for the mean value of fullness rate of carriages

per week. The fullness rates of carriages per day that are obtained by simulation
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model, are shown in Table 4.30. The average values are indicated in last row, and are

related to a week.

Table 4.30 The fullness rate of carriages per day

Weekno| 1 2 3 4 5 6 7 8 9 10
Monday 49.7] 49.5| 49.6] 49.6] 49.7| 49.1| 494 49.6| 49.5| 494
Tuesday 49.4| 4941 49.7| 49.8| 49.5] 49.5| 49.8] 49.5| 49.6| 49.6
Wednesday | 49.7] 49.5] 49.6] 49.6] 49.3| 49.1| 494 49.4| 49.7| 49.5
Thursday 49.3| 49.5| 49.7| 494 49.7| 49.5| 49.5]| 49.6] 49.5| 49.8
Friday 49.2| 49.6| 49.5] 49.6| 50.1| 49.4| 50.1] 494 49.6] 494
Saturday 60.0) 59.7| 59.6| 594 60.0| 59.9| 60.1! 59.6] 59.7| 59.8
Sunday 39.3[ 39.3| 394 39.1| 39.2f 39.1] 39.3| 38.8] 39.6| 39.5
Average 49.51]49.50149.59149.50]49.64 | 49.37]49.66 [49.41{49.60| 49.57

Average fullness rate values are used for calculating confidence interval. Two-

side confidence interval is found by the formula;

J?—fa,z’n_ls/\/;ﬁ,u _<_J“c+ta,2,,,~]s/\/;

(4.4)

Where the X and s are mean and standard deviation of sample data, » is sample

size, and f,»,.; is the upper 100072 percentage point of the ¢ distribution with rn-/

degrees of freedom. The related values are found as X = 49.54 and s = 0.096609, and

with 5% (o = 0.05) significance level #,5, 9 = 2.262. The lower and upper limits of

confidence interval are 49.47089 and 49.60911 respectively. As it can be seen the
49.5 value is in this confidence interval (49.47089 £ 49.5 <49.60911) that means

simulation model is valid.
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CHAPTER FIVE
RSM STUDY

The simulation model of the system is built by using Arena V2.2 software
package. It is a generic model that easily changes to suit the changes in headways, in

the length of time periods, and in the number of carriages.

MINITAB Release 13.20 software package is used for building two-level full
factorial designs, constructing normal probability plot of the residuals, residuals
versus predicted response plot and autocorrelation diagram, analysing variance,
obtaining first order regression models, building CCDs, obtaining second order
regression models, and running Derringer-Suich multi-response optimization

procedure.

Because of software limitation (MINITAB can only build a CCD and analyze a
second order model with maximum 6 independent factors), the model which is for
weekdays from Monday to Friday is divided into two parts. Therefore, there are four
models, the first one is for weekdays morning with five time periods, second is for
weekdays afternoon with five time periods, the next is for Saturday with four time
periods, and the last one is for Sunday with three time periods. The beginning and

ending times of each time period are denoted in Table 5.1.

Table 5.1 Related time periods for four separate models

Monday-Friday Saturday Sunday
Morning Afternoon
06:00 - 07:00 11:30 - 17:00 06:00 - 11:00 06:00 - 09:00
07:00 - 07:30 . 17:00 - 18:30 11:00 - 19:00 09:00 - 20:00
07:30 - 09:00 18:30 - 19:00 19:00 - 22:00 20:00-- 00:00
09:00 — 09:30 19:00 - 22:00 22:00 - 00:00
09:30-11:30 22:00 - 00:00
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As mentioned before, the aim of this study is to find the headways (input factors)
minimizing the average passenger time spent in the metro-line (first response) with

the requirement as the fullness rate (second response), fifty percent, of the carriages.
5.1 Weekday Morning Problem (WMP)
5.1.1 Estimation Process
5.1.1.1 Phase Zero

The objective of WMP is to find the levels of 5 input factors that related to the 5
time periods from 06:00 a.m. to 11:30 am. and which minimize the average
passenger time spent in the metro-line with the requirement as the fifty percent

fullness rate of the carriages. The built simulation model is explained in chapter four.

Generally at phase zero, a screening experiment is made for investigating
potential input factors, which are thought to be important in the response surface
study, and for determining important factors. Because the input factors are 5

headways and none of them can be eliminated we skip factor screening processes.

The input factors are respectively;
X;: The headway for the first time period from 06:00 a.m. to 07:00 a.m.
X>: The headway for the second time period from 07:00 a.m. to 07:30 a.m.
X3: The headway for the third time period from 07:30 a.m. to 09:00 a.m.
Xy The headway for the fourth time period from 09:00 a.m. to 09:30 a.m.
X;s: The headway for the fifth time period from 09:30 a.m. to 11:30 a.m.

The responses are respectively;
¥;: The average passenger time that is spent in the metro-line (in second)

¥>: The fullness rate of the carriages (in percentage)
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5.1.1.2 Phase One

Low and high level of input factors for WMP, time period durations, and the
natural values are given in Table 5.2. Coded values are found by using formula (2.4),

as an example the low-level of Xj is calculated as;

_300-[600+300)/2
' [600-300/2

Table 5.2 Low and high level of input factors for WMP

Input Time Duration Low level High level

factor period (hour) | (second) | Coded (I: :ct:;z)l Coded (I: jct:;;
X, 06:00 - 07:00 1,0 3600 -1 300 1 600
X, 07:00 - 07:30 0,5 1800 -1 300 1 600
X3 07:30 - 09:00 1,5 5400 -1 300 1 600
X, 09:00 - 09:30 0,5 1800f -1 300 1 600
X 09:30-11:30 2,0 7200) -1 300 1 600

The first order regression models (form) with two-factor interactions are assumed

to be;

Yi = Bo+ BiXi + BoXo + BsXs + BeXy + BsXs + BiraXiXo + BisXiXs + [ralXiXe +
BisXi X5 + P23XoXs + BosdoXy + BosXoXs + BeaXaXy + P3sX3X5 + PusXyXs + &

Y=00+ 60X + 86X + 5Xz + 6 Xy + 85Xs + 0pXiXo + 613X X3 + 61X X, +
O15X1 X5 + 023X2X3 + 020X0Xy + 625X0Xs + 034Xy + 535X X5 + OsXyXs + € (5.1)

where f) and & are constant, and S, S B Pu Bs 61, &, & & and &5 are
coefficients corresponding to main effects, and By Bis Bis Bis, Pz Poa P Pos
Bss, Pas, 012, O13, O1a, O1s5, O23, S24, O2s, 834, O35 and &ys are coefficients corresponding
to two-factor interaction effects and ¢ is statistical error that have a normal

distribution with mean zero and variance o®.
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5.1.1.2.1 Two-level Full Factorial Design

For fitting a first order regression model a two-level full factorial design (2°) with
central runs is designed and then the simulation model is run 10 times at each design

point, and response values for each design points are found.
Although the values for two-level full factorial design points, which are denoted
in Table 5.3, are average of 10 replications, the values related to the central points

are obtained by one replication.

Table 5.3 Simulation results for WMP (2° design with 5 central runs)

X | Xo | X3 | Xe ) Xs| ¥ | Yo X )Xo | Xs| Xe) Xs| Yi ] Vs
1{-1]-1|-1|-1]-1]525|31,1) §20) 1| 1|-1}-1| 1)608|45,3
21 1| -1-1|-1]|-1}531134,00 J21)-1|-1| 1]|-1{ 1]1663}45,1
30-1| 1|-1[-1]-1]537(32,4) §22| 1}-1| 1]-1| 1}]668]52,0
41 1| 1}-1|-1|-1]542({36,0§ §23)-1| 1| 1]-1| 1]670,48,3
SP-11-1] 1|-11-14595]13598 124 t{ 1| 1|{-1| 1|672(56,4
6| 1|-1| 1|-1]-1]602;40,1§ §25}-1|-1|-1} 1| 11611|39,9
T1-1) 1] 1]-1y-1]1603|37,70 §26) 1|-1|-1] 1| 1]|617|45,0
8) 1] 1] 1]-1|-11605|424) §27]-1| 1]|-1] 1| 1]1623]42,5
91-1-1-1] 1|-1]555132,3 428) 1| 1|-1| 1| 1]627|48,7

101 1]-1|-1| 1)-1]561|358 129¢)-1|-1{ 1| 1| 1}666(48,3
11]-1) 1]-1| 1| -131567|34,1§ §30] 1{-1| 1| 1] 1]671}56,2
12) 1 1|-1} 1|-1}571({37,8) §31)-1| 1| 1} 1| 1}672|51,9
13)-1(-1] 1) 1|-1|611|37,8)432f 1} 1| 1, 1| 1]|674]61,2
141 1]-1| 1| 1}-1]1617|42,61 33| 0} O O] O} O]|611{46,2
15) -1} 1| 1| 1}|-1}615[40,0} 134| O O O 0f 0]611]46,1
16} 1| 1} 1{ 1|-1|619|45,3)§35] 0] O 0| 0| 0]|611]464
17 -1 -1 -1|-1] 115923794 136| 0} O| O| 0] 0]610|46,0
18] 1]-1|-1|-1] 11597]|42,4]137| 0| 0| Oy 0| 0}j611|46,4
19-1] 1{-1]-1| 1]604}40,0

For verifying that the least squares regression assumptions are not violated, the
residuals from the least squares fit are checked to see whether they are normally,

identically and independently distributed with zero mean and constant variance.

The residuals are shown in Table 5.4, are calculated by the formula;

e =Y,-7, (5.2)
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A

where Y, is predicted response.

Table 5.4 Residuals for ¥; response for WMP

1 2 3 4 5 6 7 8 9 10
0,27/-0,29-0,54| 0,27]-1,29] 0,02 0,52|-0,79|-0,29|-0,98
11 12 13 14 15 16 17 | 18 19 | 20
0,02/-0,29| 0,27| 0,46(-0,79{-0,23| 0,21]-0,48 [ -0,98 | -0,29
21 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30
-0,231-0,04| 0,21]-0,23{-0,23[-0,04-0,29( 0,27]-0,54 | -0,48
31 32 | 33 | 34 | 35 | 36 | 37
0,02/-0,54| 1,68)| 1,68 1,68/ 0,68] 1,68

In this study, we use a normal probability plot of the residuals to check normality
assumption. The normal probability plot of the residuals for ¥; response is shown in
Figure 5.1. As can be seen, the residuals plot is approximately along a straight line.

Thus we conclude that the normality assumption is satisfied.

Normal Probability Plot of the Residuals

(response is Y1)

Normal Score

-1

I T { I
-1 0

Residua]

Figure 5.1 Normal probability plot of the residuals for ¥; response for WMP

The plot of the residuals versus predicted response is also demonstrated in Figure
5.2. As can be seen, the residuals scatter randomly on the plot that indicates the

variance is constant for all values of the response.
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Residuals Versus the Fitted Values
(response is Y1)
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Figure 5.2 Residuals versus predicted response plot for ¥; response for WMP

The assumption that the residuals are independent is controlled by autocorrelation

diagram. As can be seen from the Figure 5.3, the assumption is not violated.
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Figure 5.3 Autocorrelation diagram for Y; response for WMP

For the zero mean assumption a hypothesis test on the mean of the residuals with

unknown variance is built. The null and alternative hypotheses are respectively;

Hy: p=po
Hy: 5 g (5.3)
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To test the Hy : 1 =y, the value of the test statistic ¢ is calculated by the formula;

__Y‘/”o

foo=
0 s/\/};

(5.4)

where X is the sample mean, s is the sample standard deviation, and » is the sample

size. Hy is rejected if £y >¢,,,,, or £, <—t,,,,., where f yand —f,,,,_, are the

al2.n-

upper and lower 1000/2 percentage points of the ¢ with n-/ degrees of freedom.

The values for the calculation are X = 0.00032, pp =0, s = 0.73389, and n = 37,
and with 5% (o = 0.05) significance level g5 36 = 2,0294 , -tg25 36 = -2.0294.
Substituting the values in formula (5.4) ¢, is found as 0.002652.

Since f is between -2.0294 and 2.0294 we can not reject that the mean of the

residuals is zero hypothesis.

After verifying that the residuals are normally, identically and independently
distributed with zero mean and constant variance for the Y, response, Variance
Analysis is used to see if the main effects, two-factor interactions, curvature and
lack-of-fit are statistically significant. Table 5.5 is the Analysis of Variance Table
(ANOVA) for the first response Y;, and Table 5.6 for the second response Y,. In
addition, estimated effects and coefficients (EEC) for two responses are given in

Table 5.7 and 5.8, respectively.

In Table 5.5, DF denotes degrees of freedom, Seq SS; sequential sum of squares,
Adj SS; adjusted sum of squares, Adj MS; adjusted mean square, F;is the statistic F,
and P; the P-value, S; standard deviation, R-sg; and R-sq(adj); adjusted coefficient of

determination.



Table 5.5 ANOVA table for Y; response for form for WMP

Source DF | Seq SS AdjSS | Adj MS F P

Main Effects 5| 612842 61284,2| 12256,8| 10000,00| 0,000
2-Way Interactions 10 872,6 872,6 87,3 94,50 0,000
Residual Error 21 19,4 19,4 0,9

Curvature 1 12,6 12,6 12,6 37,03 | 0,000
Lack of Fit 16 6,0 6,0 0,4 1,87| 0,287
Pure Error 4 0,8 0,8 0,2

Total 36| 62176,1

$=5364 R-Sq=98,6% R-Sq(adj)=98,3%
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The null and alternative hypotheses related to main effects (5.5), two-way

interactions (5.6), curvature (5.7) and lack-of-fit (5.8) for Variance Analysis are;

Hy: p1=po=ps=p=F5=0

H;: Bi#0 for at least one i (i=1,2,3,4,5)

Hy: B12=L13=P14=L15=P23=Po4=P25=P34=P35=P45=0
H;: By#0for at least one §j (i=1,2,3,4 and j=2,3,4,5)

Hyp : B11=P22=P33=Paa=P55=0
H;: By#0 for at least one i (i=1,2,3,4,5)

Hy: The regression model is correct

H;j : The regression model is not correct

(5.5)

(5.6)

(5.7)

(5.8)

where 8;, B s B and fs are coefficients corresponding to main effects, and S5,

B3, Bia Bis, Bos, Boa Bos, B3s Pis and Bus are coefficients corresponding to two-factor

interaction effects, [, B2z, P33 Pus and Bss are coefficients corresponding to square

effects.

In Table 5.5, since the P-value for the lack-of-fit test is greater than the

significance level (o = 0.05), the lack-of-fit is not statistically significant [H, (5.8) is

not rejected], that is, the first order regression model for ¥; response for WMP is

adequate. The main effects [H (5.5) is rejected], two-way interactions [y (5.6) is
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rejected] and curvature [Hp (5.7) is rejected] are statistically significant (P-
value<0.05).

Table 5.6 ANOVA table for Y response for form for WMP

Source DF | SeqSS | AdjSS | Adj MS F P

Main Effects 5 1701,9 1701,9 3404 108,95 0,000
2-Way Interactions 10 62,3 62,3 6,2 1,99 0,088
Residual Error 21 65,6 65,6 3,1

Curvature 1 63,5 63,5 63,5 607,30 0,000
Lack of Fit 16 2,0 2,0 0,1 3,84( 0,101
Pure Error 4 0,1 0,1 0,0

Total 36 1829,8

$=2,031 R-Sq=93,026 R-Sq(adj)=91,9%

Table 5.6 shows that the lack-of-fit and the two-way interactions are not
statistically significant (P>0.05), curvature and main effects are statistically
significant (P<0.05).

In Table 5.7, SE Coef is standard error of coefficient, T is the statistic T, and P is

the P-value.

Table 5.7 EEC table for Y; response for form for WMP

Term Effect Coef SE Coef T P
Constant 609,324 0,1580| 3857,25 0,000
Xi 4,562 2,281 0,1699 13,43 0,000
X2 7,937 3,969 0,1699 23,36 0,000
X3 59,687 29,844 0,1699 175,69 0,000
X4 16,437 8,219 0,1699 48,38 0,000
X5 61,188 30,594 0,1699 180,11 0,000
X1*X2 -1,188 -0,594 0,1699 -3,50 0,002
X1*X3 -0,438 -0,219 0,1699 -1,29 0,212
X1*X4 0,063 0,031 0,1699 0,18 0,856
XI1*X5 -0,438 -0,219 0,1699 -1,29 0,212
X2*X3 -3,313 -1,656 0,1699 9,75 0,000
X2*X4 -0,562 -0,281 0,1699 -1,66 0,113
X2*X5 0,188 0,094 0,1699 0,55 0,587
X3*X4 -8,063 -4,031 0,1699 -23,73 0,000
X3*X5 -0,063 -0,031 0,1699 -0,18 0,856
X4*X5 -5,563 -2,781 0,1699 -16,37 0,000




Table 5.8 EEC table for Y, response for form for WMP

Term Effect Coef SE Coef T P
Constant 42,905 0,2906 147,65 0,000
X1 5,375 2,688 0,3125 8,60 0,000
X2 2,725 1,363 0,3125 4,36 0,000
X3 7,875 3,938 0,3125 12,60 0,000
X4 2,650 1,325 0,3125 4,24 0,000
X5 10,363 5,181 0,3125 16,58 0,000
XI1*X2 0,400 0,200 0,3125 0,64 0,529
X1*X3 1,025 0,513 0,3125 1,64 0,116
X1*X4 0,350 0,175 0,3125 0,56 0,581
X1*X5 1,288 0,644 0,3125 2,06 0,052
X2*X3 0,425 0,213 0,3125 0,68 0,504
X2*X4 0,225 0,113 0,3125 0,36 0,722
X2*X5 0,713 0,356 0,3125 1,14 0,267
X3*X4 0,525 0,263 0,3125 0,84 0,410
X3*X5 1,838 0,919 0,3125 2,94 0,008
X4*X5 0,638 0,319 0,3125 1,02 0,319

As a result, the fitted first order models for both responses are as follows;
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Y, = 609,324 + 2,281 x; + 3,969 x, + 29,844 x3 + 8219 x; + 30,594 x5 - 0,594
X%z - 0,219 x1x3 + 0,031 xpes- 0,219 xyx5 - 1,656 xax3 - 0,281 xpx4 + 0,094 x2%5 -
4,031 x3x4 - 0,031 x3x5 - 2,781 x4%5

Y, =42905 + 2,688 x; + 1,363 x5 + 3,938 x3 + 1,325 x4 + 5,181 x5 + 0,200 xx;
+ 0,513 x;x3+ 0,175 xixq4 + 0,644 x;x5 + 0,213 xpx3 + 0,113 xox4 + 0,356 xox5 +
0,263 x3x4 + 0,919 x3x5 + 0,319 x4x5

(5.9)

Because the true response surface usually exhibits curvature near the optimum, it

is understood that the determined region of experimentation is near the region of

optimum. As mentioned in chapter two, the second phase of RSM begins. Therefore,

second order models can be built.
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5.1.2 Optimization Process
5.1.2.1 Phase Two
5.1.2.1.1 CCD and Development of Metamodels for WMP

The second-order regression models (sorm) are assumed to be;

Y) = Bo+ BiXi + BoXo + BsXs + By + BsXs + BuXi + PoaXd + PsXy + BuaXi
+ BssXs? + BiaXiXo + BrsXiXs + BraXiXe+ BisXiXs + BosXoXs + PrXoXy + PosXoXs +
B3aXsXy + P3sXaXs + PysXeXs + €

Yo =8 + 0Xi + 8Xo + 83X + SiXy + 85X + 81X + 60X’ + S33X5h + Sl +
85sXs® + S12XiXo + S13XiXs + 814 XXy + 615X Xs + 63XoXs + 5uXoXy + 6p5XoXs +
034X3Xy + 035X3X5 + 045Xy X5 + & (5.10)

where f¢ and &y are constant, and Bi, Bz, B3, P4, Bs, 01, Oz, 03, 84 and 35 are
coefficients corresponding to main effects, and Bia, P13, B1a, Bis, B23s B2y Bas, Paas
B3s, Bas, 012, O13, O14, O15, 023, O24, O2s, O34, O35 and 845 are coefficients corresponding
to two-factor interaction effects, Bi1, P2z, B33, Pas, Pss, O11, 822, 833, 8as and 8ss are
coefficients corresponding to square effects, and € is statistical error that have a

normal distribution with mean zero and variance o°.

For fitting second order models a CCD is built by augmenting the two-level full
factorial design with central runs and axial runs (0 = 1, means design is face-
centered). In Table 5.9, the CCD used for fitting second order models for two
responses is given. The values for two-level full factorial design points and axial
points are the average of 10 replications, and the values related to the central points

are obtained by one replication.

After verifying that the residuals of the second order regression models fitted for
Y; and Y, are normally, identically and independently distributed with zero mean and

constant variance, the ANOVA tables are given in Table 5.10 and Table 5.11. Also
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estimated effects and coefficients (EEC) for two responses are denoted in Table 5.12

and 5.13 respectively.

Table 5.9 Simulation results for WMP (CCD)

X | Xo| X | Xo| Xs| Yo | Yo Xi| Xo} Xl Xe| Xs) Vi | ¥
1{-1|-1[-1[-1|-1]525|31,1 |27}-1| 1]-1] 1} 1]623|42,5
21 1i-1}-11{-1-1|531|34,00 128) 1| 1|-1| 1| 1]|627|48,7
31-1( 1|-1]-1(-1]1537|32,4f }29]-1|-1| 1] 1] 1}666{48,3
41 1) 14-1(-1]-1]1542]36,04 §30| 1{-1| 1| 1] 1}671|56,2
51-1]-1| t|-1]-11595|359 }31¢-1| ¥{ 1| 1| 1]672|51,9
6] 11-1[ 1({-11-11602;40,1§ 432] 1| 1| 1| 1| 1{67461,2
7i-1 1| 1|-1(-1}1603(37,7] 133]-1| 0, O] O] 0]607|42,4
81 1] 1 1]-1{-1]1605|424)434] 1| 0| 0] O 0]612|48,5
9f-1]-1(-1] 1]-1]555|32,3) |35] 0}-1| 0| 0; 0]606|44,1

10) 1(-1]-1{ 1{-1]561{358136] 0| 1] Of 0| 0}615[47,4
11]-1| 1]-1] 1|-1]567|34,1) }37] 0} O(-1| O] 0]57940,8
12) 1 1-1) 1]-1|571{37,8F 138]) 0| 0] 1| 0] 0]641[494
13]-1]-1| t] 1|-1]611|37,8] §39] 0| 0| O|-1| 0]607 (44,3
14 11-1] 11 1]-1]617}42,64 |40] 0| 0| Of 1} 0]625|47,3
150-1| 1| 1| 1|-1}1615|40,0) J41] 0| 0| O] 0|-1]579]39,3
16) 1{ 1| 1} 11-1|619{45,3§142] 0( 0| O! 0} 1]640(50,8
17¢-1(-1|-1(-1| 1]592|37,9] 1431 0| 0| O| 0| 0]610|46,5
18| 11-11-1}-1] 1}597)42,4§ §44| 0| 0| 0| 0] 0]607 46,1
1990-1| 1|-1|-1| 1]|604|40,0] 145§ 0| 0| O] 0| 0]611|46,8
200 1| 1|-1|-1| 1}608(453]146] 0| 0| O 0| 01609 46,5
211-1]-1) 1|-1} 11663451} §47] 0{ 0| O} 0} 0]610(45,5
221 1|-1| 1}-1| 1]668|52,00 148} 0| 0] O] 0| 0|608(45,8
234-1) 1| 1|-1| 116701483 J49] O0; 0| 0| 0| 0}610[45,7
24V 1| 1| 1]-1| 11672|56,4} 150] 0{ 0| O} 0] 0]612{46,2
25-1)-1}-1] 1{ 1]611{39,9{ 1511 0| 0; O| O} G|614|459
26| 1{-1|-17 1| 1]617{45,00152]1 0| 0| O 0| 0}610(46,2

Table 5.10 ANOVA table for Y, reslionse for sorm for WMP

Source DF | SeqSS | AdjSS | Adj MS F P
Regression 20] 66235,5| 66235,5 3311,8 2000,00 | 0,000
Linear 5| 652774 652774} 130555 8000,00| 0,000
Square 5 85,6 85,6 17,1 9,84 | 0,000
Interaction 10 872,6 872,6 87,3 50,15 0,000
Residual Error 31 53,9 53,9 1,7
Lack-of-Fit 22 19,0 19,0 0,9 0,22} 0,998
Pure Error 9 34,9 34,9 3,9
Total 51| 66289,4

§$=1,319 R-Sq=99,9% R-Sq(adj) =99,9%




Table 5.11 ANOVA table for Y response for sorm for WMP
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Source DF | SeqSS | AdjSS | Adj MS F P
Regression 20| 20391 2039,1 102,0 662,00 0,000
Linear 5 1832,2 1832,2 366,4 2000,00 [ 0,000
Square 5 144,6 144,6 28,9 187,69 | 0,000
Interaction 10 62,3 62,3 6,2 40,44 0,000
Residual Error 31 4.8 4.8 0,2
Lack-of-Fit 22 3,3 3,3 0,2 0,91 0,594
Pure Error 9 1,5 1,5 0,2
Total 51 2043,9

$=0,3925 R-Sq=99,8% R-Sq(adj)=99,6%

In Table 5.10 and Table 5.11, we see that linear, quadratic and two-way
interaction effects are statistically significant (P<0.05), and the second order

regression models are statistically significant (7>0.05) for both responses.

As a result, the second order regression models (metamodels) for ¥; and Y> are

respectively;

Y; = 610,682 + 2,294 x; + 4,000 x, + 29,912 x3 + 8,265 x4 + 30,588 x5 - 1,908 x°
- 0,908 x5 - 1,408 x5* + 4,592 x - 1,908 x5° - 0,594 x5 - 0,219 x;x3 + 0,031 x4 -
0,219 x1x5 - 1,656 x3x3 - 0,281 x4 + 0,094 x3x5 - 4,031 x3%4 - 0,031 x3%5 - 2,781 x4%5

Y, =46,147 + 2,709 x; + 1,379 x5 + 3,959 x5 + 1,335 x4 + 5,215 x5 - 0,732 x/° -
0,432 x5° - 1,082 x5* -0,382 x> - 1,132 x5* + 0,200 x 32 + 0,513 x;x3 + 0,175 x4 +
0,644 xx5 + 0,213 x5 + 0,113 x4 + 0,356 x2x5 + 0,263 x34 + 0,919 x3x5 + 0,319

X4X5 (5.1D)



Table 5.12 EEC table for Y; response for sorm for WMP

Term Coef SE Coef T P
Constant 610,682 0,327| 1870,3860 0,000
X1 2,294 0,226 10,1410 0,000
X2 4,000 0,226 17,6820 0,000
X3 29912 0,226 132,2280 0,000
X4 8,265 0,226 36,5350 0,000
X5 30,588 0,226 135,2190 0,000
XI1*X1 -1,908 0,838 -2,2770 0,030
X2*X2 -0,908 0,838 -1,0840 0,287
X3*X3 -1,408 0,838 -1,6800 0,103
X4*X4 4,592 0,838 5,4770 0,000
X5*X5 -1,908 0,838 -2,2770 0,030
X1*X2 -0,594 0,233 -2,5460 0,016
XI1*X3 -0,219 0,233 -0,9380 0,355
X1*X4 0,031 0,233 0,1340 0,894
X1*X5 -0,219 0,233 -0,9380 0,355
X2*X3 -1,656 0,233 -7,1030 0,000
X2*X4 -0,281 0,233 -1,2060 0,237
X2*X5 0,094 0,233 0,4020 0,690
X3*X4 -4,031 0,233 -17,2890 0,000
X3*X5 -0,031 0,233 -0,1340 0,894
X4*X5 -2,781 0,233 -11,9280 0,000

Table 5.13 EEC table for Y, response for sorm for WMP

Term Coef SE Coef T P
Constant 46,147 0,097 474,9770 0,000
X1 2,709 0,067 40,2410 0,000
X2 1,379 0,067 20,4920 0,000
X3 3,959 0,067 58,8110 0,000
X4 1,335 0,067 19,8370 0,000
X5 5,215 0,067 77,4680 0,000
XI1*X1 -0,732 0,249 -2,9320 0,006
X2*X2 -0,432 0,249 -1,7300 0,094
X3*X3 -1,082 0,249 -4,3360 0,000
X4*X4 -0,382 0,249 -1,5290 0,136
X5*X5 -1,132 0,249 -4,5360 0,000
X1*¥X2 0,200 0,069 2,8820 0,007
XI1*X3 0,513 0,069 7,3860 0,000
X1*X4 0,175 0,069 2,5220 0,017
XI1*X5 0,644 0,069 9,2780 0,000
X2*X3 0,213 0,069 3,0630 0,005
X2*X4 0,113 0,069 1,6210 0,115
X2*X5 0,356 0,069 5,1340 0,000
X3*X4 0,263 0,069 3,7830 0,001
X3%X5 0,919 0,069 13,2410 0,000
X4*X5 0,319 0,069 4,5940 0,000

101
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After building regression metamodels for both responses, they are verified and

validated.
5.1.2.1.2 Verification and Validation of WMP Metamodels

For verification, lack-of-fit tests are applied for both metamodels. As can be seen
from Table 5.10 and Table 5.11, the metamodels have no statistically significant
lack-of-fit (P>0.05) for both responses with 5% significance level (a = 0.05). R? is
99,9%, and R’-adjusted is 99.9% for response Y;, and R? is 99.8%, and R*-adjusted is
99.6% for response Y.

For validation, 32 (2°) points (because there are 5 input factors with 2 level and
we want to see if metamodel is valid in the entire experimentation region) that
selected randomly in experimentation region, and from different design points, are
used. These 32 points are shown in Table 5.14. The simulation model is run at these
randomly selected points with 10 replications for each point. The values that are
denoted in the Simulation Model column of Table 5.14 are the average of these 10
replications. Also the values denoted in Metamodel column are predicted by fitted

second order regression metamodels.

The Absolute Relative Error (ARE) is selected as a criterion, ARE value (1) is
calculated by the following formula;

r=lor=5)o c12)

where simulation output is denoted by w, and metamodel output is denoted by y. In
addition, a threshold (r,4) is quantified as 3% (Kleijnen & Sargent, 2000, p.20).

Since the entire ARE values are smaller than 3% the second order metamodels can

be used for prediction.
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Table 5.14 Metamodels validation for WMP

Input factors Simulation model | Metamodel | ARE (%)

Xi | Xo | X5 | Xe | X5 Y; Y, Y; , | Y| Y
1]1-0,6/-0,2]|-0,6|-0,2(-0,6] 564,0 38,10 |567,6|38,3210,63 0,57
21 02(-0,2(-0,2{-0,6|-0,6] 574,0 41,00 1580,3|41,2511,10| 0,61
3]-0,6] 0,2]-0,6|-0,21-0,6] 568,0 38,30 |569,7|38,68]0,300,98
41 0,6] 0,6/-0,2{-0,6|-02] 592,0 45,30 |597,2{45,19]|0,88]0,25
51-0,21-0,2] 0,6-0,6|-0,6] 609,0 42,50 ]605,0]142,56]0,65|0,14
6]102|-0,6]| 0,6]|-0,2[-0,6] 602,0 43,60 |606,1|43,54]0,68|0,14
71-0,2} 0,64 0,2|-0,6{-0,2] 626,0 44,90 |608,8]44,88]2,750,03
81021 02| 02[-02/-0,6] 596,0 43,60 |597,0]43,6710,17|0,16
9]1-0,6/-0,6{-0,2| 0,6-0,6] 597,0 39,70 1588,5(39,95]1,420,62
101 0,6(-0,6{-0,6]| 0,2(-0,2] 583,0 | 42,80 }|586,2|42,78]0,55 0,04
11§-0,2] 0,2]|-0,6| 0,6|-0,2] 598,0 42,60 |594,8|42,6610,53|0,13
121 0,21 0,2]-0,2| 0,6]-0,6] 590,0 43,00 1594,9]43,07]0,83{0,16
13]1-0,2/-0,2]| 0,2} 0,6|-0,6] 605,0 42,90 |603,4]43,0310,27|0,30
14] 0,2(-0,2} 0,6| 0,2/-0,6] 607,0 44,80 |610,6|44,7310,59|0,16
15§-0,6| 0,6] 06| 0,2/-0,2] 619,0 45,90 1623,0]45,84}0,65|0,14
16106 06{ 0,6] 0,2/-0,6] 610,0 | 46,60 |612,7|46,55/0,44|0,10
171-0,6 [-0,6|-0,2{-0,6]| 0,2] 604,0 42,60 ]601,9]42,60]0,34|0,00
181 0,6 -0,2{-0,6-0,6| 0,61 600,0 45,60 |605,8|45,84|0,97|0,53
191-0,2| 0,61-0,6!-0,2] 0,2] 606,0 44,00 1598,744,08]1,21(0,18
201 0,2} 0,2]-0,2]1-0,6| 0,6] 6150 47,80 |620,7|47,7410,93|0,13
211-0,6-0,2] 0,6{-0,2{ 0,2] 6330 46,50 |630,646,48|0,38|0,04
221 0,6]-0,6]| 0,2!-0,2} 0,6] 634,0 50,10 }1631,5]49,84]0,40] 0,53
231-02| 06| 0,6|-0,6| 0,2] 631,0 | 48,50 |633,8|48,26|0,44|0,50
241 0,6| 0,6] 0,2(-0,2| 0,2] 629,0 50,10 ]623,8{49,9010,83 0,39
251-0,6/-0,21-0,6] 0,6} 0,6] 6050 | 44,10 1613,8|44,16|1,460,13
26] 0,6]-0,2]-02] 0,2} 0,2] 612,0 47,70 1612,4|47,60]0,07 0,21
271-0,2| 0,2|-0,6| 0,6| 0,6] 619,0 46,20 1617,4|46,1310,26|0,15
28] 02| 0,2|-0,2] 0,6| 02| 617,0 48,20 1618,6|47,7710,260,90
291-0,21-0,6| 0,61 0,2} 0,2} 632,0 | 48,00 }632,7{47,78|0,11|0,46
30§ 0,21-0,6] 0,6| 0,2] 0,6] 639,0 51,40 |645,1(50,94}0,95/0,89
311-0,6] 0,6] 0,2] 0,2] 0,6] 635, 48,70 ]635,7148,59]0,12]0,22
321 0,64 0,2] 0,2] 0,2] 0,6] 6350 52,20 |636,8(52,04]0,29]0,30

After verification and validation of regression metamodels, Derringer-Suich

multi-response optimization procedure is used for optimization.
5.1.2.1.3 Derringer-Suich Multi-Response Optimization Procedure for WMP
As mentioned in chapter two, Derringer-Suich method uses a desirability function

in which the researcher’s priorities and desires on the response values are built into

one optimization procedure. Firstly, researcher must make a decision about upper
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limit, lower limit and target values of each response. In the current problem, since the
target value for the fullness rate of the carriages response (¥>) is 50%, the lower and
upper limits are determined as 45% and 55%, respectively. To decide the upper and
lower limits on the average passenger time spent in the metro-line response (¥;) the
simulation model is run 20 times at the low levels of all input factors. The lower limit
is defined as the average of these 20 values, and is found as 525 seconds. To
determine the upper limit, the simulation model is run 20 times at the high levels of

all input factors, and the average value, 675 seconds, is found as upper limit.

Also the ¢, and s weight values must be determined. We will use three values 0.1,
1 and 10 for ¢ and s. Therefore, nine situations (combination of weights) appear to be

evaluated.

The individual desirability ;/alues and the composite desirability values for each
design point are given in Table 5.15. The individual desirability values are found by
using the formulas (2.34) and (2.36), gnd the composite desirability values are found
by using the formula (2.37). The response values are predicted by using related
second order regression metamodels. Response Optimiser tool of MINITAB
software package is used for finding global optimum points for each combination of

weights.

For each combination of weights, the lower, target, upper values and weights for
two responses, and the optimum conditions with coded variables, and also
corresponding predicted responses at these coded values which are calculated from
the fitted models, in addition the individual desirability values and the composite

desirability values at optimum conditions are shown in Table 5.16.
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Table 5.15 Individual and composite desirability values for WMP (s =¢=0.1)

Simulation Individual Composite
Input factors model Metamodel desirability desirability
X 1 X% X 1 X ] X Y, Y, Y; Y, d, d, D

1y -1 -1| -1 -1| -1 525 31,1 5244 | 31,51 1,00000 0,00000 0,00000
2 1] -1] -1| -1| -11 531 34,0 | 531,0 | 33,86 | 0,99594 0,00000 0,00000
31 -1 1 -1] -1| -1] 537 32,4 | 537,3 § 32,50 | 0,99150 0,00000 0,00000
4 1 1{ -1 -1] -1] 542 36,0 | 541,5 | 35,66 | 0,98843 0,00000 0,00000
S| -1 -1 1y -1 -1} 595 35,9 | 596,1 | 35,61 0,93778 0,00000 0,00000
6 1{ -1 1] -1 -1] 602 40,1 601,8 | 40,02 | 0,93076 0,00000 0,00000
71 -1 1 1] -1 -1} 603 37,7 | 602,3 | 37,46 | 0,93008 0,00000 0,00000

- 8 1 1 11 -1| -1] 605 42,4 | 605,7 | 42,66 | 0,92571 0,00000 0,00000
9] -1 -1} -1 1| -1] 555 32,3 | 5550 | 32,44 | 0,97789 0,00000 0,00000
10 1{ -1] -1 1{ -1] 561 35,8 561,8 | 35,49 | 0,97228 0,00000 0,00000
11} -1 1] -1 1] -1 567 34,1 ] 566,8 | 33,88 § 0,96786 0,00000 0,00000
12 1 1| -1 1 -1] 571 37,8 | 571,1 | 37,74 | 0,96391 0,00000 0,00000
13] -1 -1 1 1] -1] 611 37,8 | 610,6 | 37,59 | 0,91889 0,00000 0,00000
14 1) -1 1 11 -1} 617 42,6 | 616,5 | 42,70 | 0,91020 0,00000 0,00000
151 -1 1 1 1{ -11 615 40,0 | 615,7 | 39,89 1 0,91130 0,00000 0,00000
16 1 1 1 1{ -1] 619 45,3 | 6192 | 45,79 | 0,90583 0,83201 0,86814
17 -1} -1{ -1| -1 1] 592 37,9 | 5914 | 37,46 | 094317 0,00000 0,00000
18 1( -1 -1{ -1 1] 597 42,4 | 597,2 | 42,39 | 0,93651 0,00000 0,00000
19] -1 1] -1 -1 1] 604 40,0 | 604,7 | 39,88 | 0,92702 0,00000 0,00000
20 1 11 -1 -1 1] 608 45,3 | 608,0 | 45,61 0,92252 0,81042 0,86465
211 -1 -1 1] -1 1] 663 45,1 663,0 | 45,24 | 0,77668 0,73802 0,75711
22 1| -1 1] -1 1] 668 52,0 | 6679 | 52,22 | 0,73753 0,94300 0,83396
23] -1 1 1] -1 1{ 670 48,3 | 6696 | 48,51 | 0,71661 0,96526 0,83169
24 1 1 1 -1 1] 672 56,4 | 672,1 | 56,29 | 0,67380 0,00000 0,00000
251 -1 -1 -1 1 1| 611 399 | 611,0 | 39,67 | 0,91839 0,00000 0,00000
26 11 -1] -1 1 11 617 45,0 | 616,8 | 45,30 | 0,90965 0,75421 0,82829
271 -1 1] -1 1 1] 623 42,5 623,1 | 42,54 1 0,89931 0,00000 0,00000
28 1 1] -1 1 11 627 48,7 | 626,6 | 48,97 | 0,89312 0,97717 0,93420
291 -1] -1 1 1 1| 666 48,3 6664 | 48,50 | 0,75115 0,96490 0,85134
30 1{ -1 1 1 1| 671 56,2 '§ 6714 | 56,18 | 0,68895 0,00000 0,00000
31] -1 1 1 1 1] 672 51,9 | 671,9 | 52,22 | 0,67797 0,94302 0,79958
32 1 1 1 1 1| 674 61,2 | 674,5 | 60,70 | 0,56406 0,00000 0,00000
331 -1 0| 0f 0| 0] 607 42,4 | 606,5 | 42,71 | 0,92464 0,00000 0,00000
34 1 0 0 0 0] 612 48,5 | 611,1 | 48,12 | 0,91825 0,95408 0,93599
35 0| -1 0 0| O} 606 44,1 | 605,8 | 44,34 | 0,92559 0,00000 0,00000
36 0 1 0 0 0] 615 47,4 | 613,8 | 47,10 | 0,91429 0,91670 0,91549
37 0 0f -1 0] 0] 579 40,8 | 5794 | 41,11 | 0,95599 0,00000 0,00000
38 0 0 1 0| 0} 641 49,4 | 639,2 | 49,02 | 0,86656 0,97853 0,92085
39 0 0 0f -1 0] 607 443 607,0 | 4443 | 0,92392 0,00000 0,00000
40 0 0 0 1 0] 625 47,3 | 623,5 | 47,10 | 0,89854 0,91696 0,90770
41 0 0! O 0Of -1] 579 39,3 | 578,2 | 39,80 | 0,95716 0,00000 0,00000
42 0 0 0 0 1] 640 50,8 § 6394 | 50,23 | 0,86613 0,99529 0,92847
43 0 0 0 0| 0] 610 46,5 | 610,7 | 46,15 | 0,91881 0,86313 0,89053
44 0 0/ 0| 0] 0} 607 46,1 | 610,7 | 46,15 | 0,91881 0,86313 0,89053
45 0} 0O 0 0| 0] 611 46,8 | 610,7 | 46,15 ] 0,91881 0,86313 0,89053
46 0 0 0| 0| 0] 609 46,5 | 610,7 | 46,15 | 0,91881 0,86313 0,89053
47 0 0 0 0 0| 610 45,5 610,7 | 46,15 0,91881 0,86313 0,89053
48 0] 0 0 o 0] 608 45,8 | 610,7 | 46,15 | 0,91881 0,86313 0,89053
49 0 0 0{ 0 0] 610 45,7 :| 610,7 | 46,15 | 0,91881 0,86313 0,89053
50 0! 0 0 0 0] 612 46,2 | 610,7 | 46,15 | 0,91881 0,86313 0,89053
si| o] o] o] o] o] 614 | 459 | 610,7 | 46,15 | 091881 | 0,86313 | 0,89053
52 0f 0| 0| 0] 0] 610 46,2 | 610,7 | 46,15 | 0,91881 0,86313 0,89053
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Table 5.16 Derringer-Suich optimization method results for WMP

Parameters

Goal Lower Target Upper Weight Import
Y1 Minimum 525 525 675 0,1 1
Y2 Target 45 50 55 0,1 1
Global Sclution
X1 = 1,00000
X2 = 1,00000
X3 = -0,13177
X4 = -0,819%4
X5 = 0,41504

Predicted Responses

Y1 = 619,189; desirability = 0,90586
Y2 = 49,304; desirability = 0,98511
Composite Desirability = 0,94466
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 525 55 675 0,1 1
Y2 Target 45 50 55 1,0 1
Global Solution
X1 = 1,00000
X2 = 1,00000
X3 = -0,65316
X4 = -0,15499
X5 = 1,00000
Predicted Responses
Y1 = 622,118; desirability = 0,90099
Y2 = 49,951; desirability = 0,99027
Composite Desirability = 0,94458
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 525 525 675 0,1 1
Y2 Target 45 50 55 10,0 1
Global Solution
X1 = 1,00000
X2 = 1,00000
X3 = -0,56958
X4 = -0,41295
X5 = 1,00000

Predicted Responses
Y1

623,385; desirability = 0,89881

Y2 50,009; desirability = 0,98294

Composite Desirability = 0,93994




Table 5.16 (Continued)
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Composite Desirability = 0,60599

Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 525 525 675 1,0 1
Y2 Target 45 50 55 0,1 1
Global Soclution
X1 = 1,00000
X2 = 1,00000
X3 = -0,66751
X4 = 0,74528
X5 = -0,03172
Predicted Responses
Y1l = 603,848; desirability = 0,47434
Y2 = 46,345; desirability = 0,87693
Composite Desirability = 0,64495
Parameters
Goal Lowex Target Upper Weight Import
Y1 Minimum 525 525 675 1 1
Y2 Target 45 50 55 1 1
Global Solution
X1 = 1,00000
X2 = 1,00000
X3 = -0,65816
X4 = -0,12933
X5 = 1,00000
Predicted Responses
Y1 = 622,134; desirability = 0,35244
Y2 = 49,965; desirability = 0,99293
Composite Desirability = 0,5%156
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 525 525 675 1 1
Y2 Target 45 50 55 10 1
Global Solution
X1 = 0,939%46
X2 = 0,97824
X3 = ~-0,14255
X4 = 0,60680
X5 = 0,11530
Predicted Responses
Yi = 619,817; desirability = 0,36788
Y2 = 49,999; desirability = 0,99821
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Composite Desirability = 0,00845

Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 525 525 675 10,0 1
Y2 Target 45 50 55 0,1 1
Global Solution
X1 = 1,00000
X2 = 0,97809
X3 = -0,56765
X4 = -0,23697
X5 = -0,13090 '
Predicted Responses
Y1 = 590,846; desirability = 0,00309
Y2 = 45,128; desirability = 0,69322
Composite Desirability = 0,04628
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 525 525 675 10 1
Y2 Target 45 50 55 1 1
Global Solution '
X1 = 0,88775
X2 = 0,959%07
X3 = -0,47202
X4 = 0,15499
X5 = 0,23145
Predicted Responses
Y1 = 608,624; desirability = 0,0m29
Y2 = 48,139; desirability = 0,62790
Composite Desirability = 0,01344
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 525 525 675 10 1
Y2 Target l 45 50 55 10 1
Global Sclution
X1 = 1,00000
X2 = 1,00000
X3 = -0,00500
X4 = 0,13920
X5 = 0,08555
Predicted Responses
Y1 = 617,191; desirability = 0,00007
Y2 = 49,994; desirability = 0,98842
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Since the optimum levels of input factors are found by using the metamodels,
confirmatory simulation runs are needed at optimum input levels. The simulation

model responses shown in Table 5.17 are the average values of 10 replications.

Table 5.17 Results of the confirmatory runs for WMP

Weight | Composite Natural variables Metamodel | Simulation
Y, | Y; |desirability} X; | X, | X3 | Xy | Xs | ¥ L\llY¥Yi Y
0,1[0,1] 0,94466 |600|600([430]|327|5121619,2{49,30] 622 | 49,4
0,1 1] 094458 §600|600|352|427|600{622,1[49,95] 712! 49,6
0,1 10| 0,93994 |600|600|365|388|600]623,4|50,01] 628 | 50,1
1[0,11 0,64495 600|600 |350(562|445]603,8|46,35| 677 | 46,1

N |WIN -~

1| 1] 0,59156 |600|600)351(431]600]622,1(49,97] 711 | 49,7

10 | Current

In this table, first nine rows reflect the global optimum solutions found by
Derringer-Suich multi-response optimization method according to weight

combinations, and the last row belongs to current situation.

Table 5.18 Factor values of confirmatory runs for WMP

Coded Values Natural values (second) | Natural values (minutes)
X 1 X | Xs | Xo | X5 | X | X X | Xe | X5 | X0 ) X5 | X6 | Xy | X5
1]1,00]|1,00|-0,13{-0,82| 0,42]600]600!430|327|512]10,0|10,0|7,2(5,5| 8,5
2]1,00]1,00]-0,65]-0,15| 1,00]600]|600]352|427|600]10,0|10,0{5,9|7,1]10,0
3]1,00(1,00]-0,57|-0,41{ 1,00]600|600|365|388]600]10,0!10,0{6,1]6,5|10,0
4
5

-0,67| 0,75 600600350 | 562 | 445 58194
-0,66 600 | 600|351 (431 | 600 5972

450|600 10,0| 7,5

In Table 5.18 Factor values of confirmatory runs for WAMP are given in the first

nine rows and the last row belongs to current situation.
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First, the fullness rate of the carriages response (¥>) is checked. In Table 5.17, we
see that the fullness rate requirement 50% is provided by the second, third, fifth,
sixth and ninth rows. After determining the natural factor levels providing the
fullness rate requirement, the minimum value for the average passenger time spent in
the metro-line (Y;) is searched, and it is seen that the minimum Y; (625 seconds) is
obtained with the natural factor levels in the 6™ and 9" rows. As a result, two
optimum points exist. For X; = 9.8, X, = 9.9, X3 = 7.1, X, = 9.0, X5 = 7.8 factor
levels and X; = 10.0, X; = 10.0, X3 = 7.5, X, = 7.8, X5 = 7.7 factor levels the
obtained values for the average passenger time spent in the metro-line (Y;), and for
the fullness rate of carriages (Y>) responses are respectively 625 seconds and 50,3

percent. These factor levels are demonstrated in grey colour in Tables 5.17 and 5.18.

As can be seen from Table 5.17 after optimization study the fullness rate of
carriages (Y>) is increased by 4.1 percent and the average passenger time spent in the
metro-line (Y;) is increased by 12 seconds (1.96 percent) respect to current values.
Although the current average passenger time spent in the metro-line (¥;) value is less

than optimum result, it violates the fullness rate of carriages requirement (50%).

5.2 Weekday Afternoon Problem (WAP)

5.2.1 Estimation Process

5.2.1.1 Phase Zero

The objective of WAP is to find the levels of 5 input factors that related to the 5
time periods from 11:30 a.m. to 00:00 am. and which minimize the average
passenger time spent in the metro-line with the requirement as the fifty percent

fullness rate of the carriages. The built simulation model is explained in chapter four.

Generally at phase zero, a screening experiment is made for investigating

potential input factors, which are thought to be important in the response surface
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study, and for determining important factors. Because the input factors are 5

headways and none of them can be eliminated we skip factor screening processes.

The input factors are respectively;
X7: The headway for the first time period from 11:30 a.m. to 17:00 p.m.
X3: The headway for the second time period from 17:00 p.m. to 18:30 p.m.
X3: The headway for the third time period from 18:30 p.m. to 19:00 p.m.
Xy: The headway for the fourth time ﬁeriod from 19:00 p.m. to 22:00 p.m.
X5: The headway for the fifth time period from 22:00 p.m. to 00:0 a.m.

The output responses are respectively;
Y;: The average passenger time that is spent in the metro-line (in second)
Y,: The fullness rate of the carriages (in percentage)

5.2.1.2 Phase One

Low and high level of input factors for WAP, time period durations, and the

natural values are given in Table 5.19.

Table 5.19 Low and high level of input factors for WAP

Input Time Duration Low level High level
factor |  Period | (hour) | (second) | Coded gfff,’;ﬁ; Coded g:;:ﬁ;
X; 11:30 - 17:00 5,5 19800 -1 300 1 600
X5 17:00 - 18:30 1,5 5400 -1 300 1 600
X; 18:30 - 19:00 0,5 1800 -1 300 1 600
X, 19:00 - 22:00 3,0 10800 -1 300 1 600
X5 22:00 - 00:00 2,0 7200] -1 600 1 900

The first-order regression models with two-factor interactions are assumed to be

as in equation (5.1).
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5.2.1.2.1 Two-level Full Factorial Design

For fitting a first order regression model a two-level full factorial design (2°) with
central runs is designed and then the simulation model is run 10 times at each design

point, and response values for each design points are found.
Although the values for two-level full factorial design points, which are denoted
in Table 5.20, are average of 10 replications, the values related to the central points

are obtained by one replication.

Table 5.20 Simulation results for WAP (2° design with 5 central runs)

X | XXX Xs| Vi | X X | X | X1 XX | 1
I{-1]-1]-1]-1]-1]523|34,1] J20| 1] 1{-1|-1] 1]637]|50,8
21 1]-1|-1]-1]-1])598]44,8) {21]-1|-1] 1]-1]| 1]550]|36,0
3p-1) 1{-1]-1]-1]560|36,50 [22] 1!-1] 1|-1]| 1]|626|47,9
4y 1] 1|-1]-1]-1]629]48,9]) 123]|-1| 1| 1|-1| 1]575]38,6
5[-1]-1] 1]-1]-1]545|34,9}) J24] 1| 1| 1]|-1| 1]645]|52,8
6 17-1] 1|-1|-1)618|46,0f §25]-1]-1|-1| 1| 1]|564]40,5
70-10 1] 1]|-1|-1|569|37,4) 126] 1]|-1]-1| 1| 1]639|56,4
8| 1| 1} 1]-1{-1|638]50,50 |27 -1 1]-1| 1| 1]602(43,9
9f-1]-1]-1] 1]-1|555[392] |28| 1| 1]|-1] 1| 1}669]63,1
10] 1|-1]-1] 1}-1]631{53,90 }29]-1[-1| 1| 1| 1]|576|41,7
11]-1] 1]-1] 1]-1]1592{424f §30] 1[-1] 1| 1| 1]|651|58,5
12] 1| 1]-1] 1{-1]663|60,1] §31}-1| 1] 1] 1] 1]602|452
13)-1|-1] 1] 1]-1]568|402} 32| 1] 1] 1] 1| 1]672{659
14] 1|-1] 1] 1]-1]644|558F ]33] 0| 0] 0] 0| 0]609]|50,6
15)-1) 1] 1] 1]-1]|594{43,5] |34] 0| 0] 0] 0] 0]612]504
16] 1] 1] 1| 1]|-1}663]|62,4] |35] 0] 0{ 0] 0| 0]608]50,1
17]-1|-1]-1]-1] 1]531(35,1]|36] 0| 0| 0} 0| 0]610[50,2
18] 1[-1]-1]-1] 1]604]464] 37| 0] 0] 0] 0] 0]609]50,1
19]-1] 1]-1]|-1| 1]566]37,6

After verifying that the residuals are normally, identically and independently
distributed with zero mean and constant variance for the Y; and Y, responses,
Variance Analysis is used to see if the main effects, two-factor interactions,
curvature and lack-of-fit are statistically significant. Table 5.21 is the Analysis of
Variance Table (ANOVA) for the first response Y;, and Table 5.22 for the second
response Y>. In addition, estimated effects and coefficients (FEC) for two responses

are given in Table 5.23 and 5.24, respéctively,



Table 5.21 ANOVA table for ¥; response for form for WAP

Source DF | Seq SS Adj SS | Adj MS F P

Main Effects 5| 564114 56411,4| 112823 1000,00| 0,000
2-Way Interactions 10 457,3 457,3 45,7 4,70 0,001
Residual Error 21 204,3 204,3 9,7

Curvature 1 183,1 183,1 183,1 172,69 0,000
Lack of Fit 16 12,0 12,0 0,8 0,33 0,953
Pure Error 4 9,2 9,2 2,3

Total 36 570730

S=4,620 R-Sq=98,8% R-Sq(adj)=98,7%
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In Table 5.21, since the P-value for the lack-of-fit test is greater than the

significance level (0. = 0.05), the lack-of-fit is not statistically significant, that is, the

first order regression model for ¥; response for WAP is adequate. The main effects,

two-way interactions and curvature are statistically significant (P-value<0.05).

Table 5.22 ANOVA table for ¥ response for form for WAP

Source DF | SeqSS | AdjSS | Adj MS P

Main Effects 51 25162 25162 503,2 174,931 0,000
2-Way Interactions 10 79,3 79,3 7,9 2,76 | 0,024
Residual Error 21 60,4 60,4 2,9

Curvature 1 58,8 58,8 58,8 710,96 | 0,000
Lack of Fit 16 1,5 1,5 0,1 1,95] 0,273
Pure Error 4 0,2 0,2 0,0

Total 36| 26559

§=2,123 R-8q=94,7% R-Sq(adj) =93,9%

Table 5.22 shows that the lack-of-fit is not statically significant (P>0.05),

curvature, main effects and the two-way interactions are statically significant

(P<0.05).

As a result, the fitted first order models for both responses are respectively;

Y; = 603,973 + 36,094 x; + 14,156 x5 + 5,406 x3 + 14,719 x4 + 3,719 x5 - 1,344
xxy + 0,031 xyx3 + 0,094 x5x4- 0,031 x)x5 - 2,906 x2x3 + 0,156 x2¢4 + 0,031 x3x5 -
1,969 x3x4 - 0,094 x3x5 + 0,344 x4x5
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Y, =47,092 + 7,419 x; + 2,131 x5 + 0,738 x3 + 4,200 x4 + 0,931 x5 + 0,669 x;x
+ 0,225 xx3 + 1,300 xxq4 + 0,281 x3x5 + 0,075 x3x3 + 0,388 x4 + 0,081 xox5 +
0,119 x3x4 + 0,063 x3x5 + 0,175 xpx5

Table 5.23 EEC table for Y; response for form for WAP

Term Effect Coef SE Coef T P
Constant 603,973 0,5127| 1177,99 0,000
X1 72,188 36,094 0,5513 65,47 0,000
X2 28,312 14,156 0,5513 25,68 0,000
X3 10,812 5,406 0,5513 9,81 0,000
X4 29,437 14,719 0,5513 26,70 0,000
X5 7,438 3,719 0,5513 6,75 0,000
X1*X2 -2,687 -1,344 0,5513 -2,44 0,024
X1*X3 0,062 0,031 0,5513 0,06 0,955
X1*X4 0,188 0,094 0,5513 0,17 0,867
X1*X5 -0,062 -0,031 0,5513 -0,06 0,955
X2*X3 -5,812 -2,906 0,5513 -5,27 0,000
X2*%X4 0,313 0,156 0,5513 0,28 0,780
X2*X5 0,063 0,031 0,5513 0,06 0,955
X3*X4 -3,937 -1,969 0,5513 -3,57 0,002
X3*X5 -0,188 -0,094 0,5513 -0,17 0,867
X4*X5 0,688 0,344 0,5513 0,62 0,540

Table 5.24 EEC table for Y, response for form for WAP

Term Effect Coef SE Coef T P
Constant 47,092 0,2788 168,88 0,000
Xl 14,838 7,419 0,2998 24,74 0,000
X2 4,263 2,131 0,2998 7,11 0,000
X3 1,475 0,738 0,2998 2,46 0,023
X4 8,400 4,200 0,2998 14,01 0,000
X5 1,863 0,931 0,2998 3,11 0,005
X1*%X2 1,338 0,669 0,2998 2,23 0,037
XI1*X3 0,450 0,225 0,2998 0,75 0,461
X1*X4 2,600 1,300 0,2998 4,34 0,000
X1*X5 0,563 0,281 0,2998 0,94 0,359
X2*X3 0,150 0,075 0,2998 0,25 0,805
X2*X4 0,775 0,388 0,2998 1,29 0,210
X2*X5 0,163 0,081 0,2998 0,27 0,789
X3%X4 0,238 0,119 0,2998 0,40 0,696
X3*X5 0,125 0,063 10,2998 0,21 0,837
X4*X5 0,350 0,175 0,2998 0,58 0,566

(5.13)
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Because the true response surface usually exhibits curvature near the optimum, it
is understood that the determined region of experimentation is near the region of
optimum. As mentioned in chapter two, the second phase of RSM begins. Therefore,

second order models can be built.
5.2.2 Optimization Process
5.2.2.1 Phase Two
5.2.2.1.1 CCD and Development of Metamodels for WAP
The second order regression models are assumed to be as in equation (5.10).

For fitting second order models a CCD is built by augmenting the two-level full
factorial design with central runs and axial runs (o = 1, means design is face-
centered). In Table 5.25, the CCD used for fitting second order models for two
responses is given. The values for two-level full factorial design points and axial
points are average of 10 replications, and the values related to the central points are

obtained by one replication.

After verifying that the residuals o‘f the second order regression models fitted for
Y; and Y, are normally, identically and independently distributed with zero mean and
constant variance, the ANOVA tables are given in Table 5.26 and Table 5.27. Also
estimated effects and coefficients (EEC) for two responses are denoted in Table 5.28

and 5.29 respectively.



Table 5.25 Simulation results for WAP (CCD)

x| xix:1x\x| v, | v x|x|x|x|x| v. | v
1]-1]-1]-1]-1]-1]523]34,1] f27]-1] 1]-1] 1] 1]e02]43.9
2 1]a]-1]-1]-1]s98aa8) [28] 1] 1]-1] 1] 1]669]63,1
sl-1] a]-1]-1]-1]560]36,5) [29)-1]-1] 1] 1] 1]576]41,7
4l 1] 1] ]-1]-1]629]as0f [30] 1]-1] 1] 1] 1]651]585
sl-t]-1] 1]-1]-1]sa5]3a0] [31]-1] 1] 1] 1] 1|602]452
6l 111 1]-1]-1]e18]4s,0] I32] 1] 1] 1] 1] 1]672]65,9
7111 1] 1]-1]-1]569]37,4] 133]-1] 0] o] o] o s67]40.7
gl 1] 1] 1]-1{-1]638]50,5) [34] 1] o] o] o] o]640]56.7
of-1]-1]-1] 1]-1]ss55]392] [35] 0o]-1] o] 0] 0] s95]472
10 1[-1]-1] 1]-1]631]53,9] |36] o] 1] o] o] ofe25]51,8
-1 1[-1] 1]-1]592[42,4] [37] 0] o[-1] 0] o]e07]49,1
2] 1] 1]-1] 1]-1]e63|60,1} [38] 0] o 1] o] ofe21]50,6
13[-1]-1] 1] 1]-1]568]40.2] [39] o] o] o]-1] 0]593]44.5
14| 1]-1] 1] 1]-1]e44]558] J40] o] o] o] 1] of623]53,6
15(-1] 1] 1] 1]-1]s94]43,5] {41} o] o] o] o]-1|606]48,9
16 1] 1] 1] 1]-1]e63]62,4] 142} 0] o] o] o] 1|614]50,0
17f-1]-1[-1]-1] 1]s31]35.1} [43] o] o] o] o] o]e10]50,0
18] 1[-1[-1]-1] t]e04 464} [44] o] 0] 0] o] ofe10]50,5
19[-1] 1]-1]-1] 1]s66]37,6] J45] 0] 0] o] o] o|e08]49,
20f 1] 1]-1]-1] 1]637]50,8] [46] o o] o] of ofe08]49,0
21]-1]-1] 1]-1] 1]550]36,0] [47] 0] o] o] o] 0]610]50,0
22| 1]-1] 1]-1{ 11626]47,9] 48] 0] o] o] o] 0]s08]50,1
23[-1] 1] 1]-1] 1]575]38,6] {49] 0] o] o] o] ofe12{50.5
24 1] 1] 1[-1] 1]e4s5]52,8] I50] o] 0o} o] o] o]s10]50.4
25]-1]-1]-1] 1] 1{s64[405] |51] 0] o] o] o] o] 60850,
26) 1]-1]-1] 1] 1]639]56,4] {52] 0] 0] o] o] ofe11]{50,0

Table 5.26 ANOVA table for ¥; response for sorm for WAP

Source DF | SeqSS | AdjSS | Adj MS F P
Regression 20| 61143,1| 611431 30572 2000,00 | 0,000
Linear 5| 60099,2| 60099,2] 12019,8 9000,00 | 0,000
Square 5 586,6 586,6 117,3 86,73 | 0,000
Interaction 10 457,3 457,3 45,7 33,81 ] 0,000
Residual Error 31 41,9 41,9 1,4
Lack-of-Fit 22 23,4 23,4 1,1 0,52 0,900
Pure Error 9 18,5 18,5 2,1
Total 51| 61185,0

S=1,163 R-Sq=99,9% R-Sq(adj) =99,9%
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Table 5.27 ANOVA table for Y, response for sorm for WAP

Source DF | SeqSS | AdjSS | Adj MS F P
Regression 20| 29072 29072 145.4 2000,00| 0,000
Linear 5| 26984| 26984 539,7 6000,00 [ 0,000
Square 5 129,5 129,5 25,9 276,08 0,000
Interaction 10 79,3 79,3 7,9 84,52| 0,000
Residual Error 31 2,9 2,9 0,1
Lack-of-Fit 22 2,4 2,4 0,1 1,95] 0,151
Pure Error 9 0,5 0,5 0,1
Total 51 2910,1

§$=0,3063 - R-Sg=99,9% R-Sq(adj) =99,8%

In Table 5.26 and Table 5.27, we see that linear, quadratic and two-way
interaction effects are statistically significant (P<0.05), and the second order

regression models are statistically significant (7>0.05) for both responses.

Table 5.28 EEC table for Y; response for sorm for WAP

Term Coef SE Coef T P
Constant 609,927 0,288 | 2118,7160 0,000
Xi 36,118 0200 181,0840 0,000
X2 14,206 0,200 71,2250 0,000
X3 5,500 0,200 27,5760 0,000
X4 14,735 0,200 73,8790 0,000
X5 3,735 0,200 18,7280 0,000
XI1*X1 -6,960 0,739 -9,4160 0,000
X2%X2 -0,460 0,739 -0,6220 0,538
X3%X3 3,540 0,739 4,7890 0,000
X4*x4 2,460 0,739 -3,3280 0,002
X5%X5 0,460 0,739 -0,6220 0,538
XI*X2 -1,344 0,206 -6,5360 0,000
X1*X3 0,031 0,206 0,1520 0,380
XI*X4 0,094 0,206 0,4560 0,652
XI1*X5 -0,031 0,206 -0,1520 0,380
X2%X3 -2,906 0206] -14,1360 0,000
X2%X4 0,156 0,206 0,7600 0,453
X2%X5 0,031 0,206 0,1520 0,380
X3%x4 -1,969 0,206 -9,5760 0,000
X3*X5 -0,094 0,206 -0,4560 0,652
X4*X5 0,344 0,206 1,6720 0,105
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Table 5.29 EEC table for Y, response for sorm for WAP

Term Coef SE Coef T P
Constant 50,131 0,076 661,2010 0,000
X1 7,453 0,053 141,8790 0,000
X2 2,141 0,053 40,7610 0,000
X3 0,738 0,053 14,0540 0,000
X4 4,221 0,053 80,3460 0,000
X5 0,935 0,053 17,8050 0,000
XI1*X1 -1,408 0,195 -7,2320 0,000
X2*X2 -0,608 0,195 -3,1220 0,004
X3*X3 -0,258 0,195 -1,3240 0,195
X4*X4 -1,058 0,195 -5,4340 0,000
X5*X5 -0,208 0,195 -1,0670 0,294
XI1*X2 0,669 0,054 12,3510 0,000
X1*X3 0,225 0,054 4,1550 0,000
X1*X4 1,300 0,054 24,0090 0,000
XI1*XS5 0,281 0,054 5,1940 0,000
X2*X3 0,075 0,054 1,3850 0,176
X2*X4 0,388 0,054 7,1560 0,000
X2*X5 0,081 0,054 1,5010 0,144
X3*X4 0,119 0,054 2,1930 0,036
X3*X5 0,063 0,054 1,1540 0,257
X4*X5 0,175 0,054 3,2320 0,003

As a result, the second order regression models (metamodels) for Y; and Y, are

respectively;

Y; = 609,927 + 36,118 x; + 14,206 x; + 5,500 x5 + 14,735 x4 + 3,735 x5 - 6,960
xi2 - 0,460 x5 + 3,540 x5° - 2,460 x° - 0,460 x5 - 1,344 xx; + 0,031 xpx3 + 0,094 -
xxq - 0,031 x5x5 - 2,906 x2x3 + 0,156 x4 + 0,031 xpx5 - 1,969 x3%4 - 0,094 x3%5 +
0,344 x4x5 |

Yy = 50,131 + 7,453 x; + 2,141 x5 + 0,738 x3 + 4,221 x4 + 0,935 x5 - 1,408 x° -
0,608 x5° - 0,258 x5 - 1,058 x/ - 0,208 x5 + 0,669 x;x; + 0,225 x x5 + 1,300 x %4 +
0,281 x;x5 + 0,075 x2x3 + 0,388 x2x4 + 0,081 x5x5 + 0,119 x3x4 + 0,063 x3x5 + 0,175
XX (5.14)

After building regression metamodels for both responses, they are verified and

validated.
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5.2.2.1.2 Verification and Validation of WAP Metamodels

For verification, lack-of-fit tests are applied for both metamodels. As can be seen
from Table 5.26 and Table 5.27, the metamodels have no statistically significant
lack-of-fit (P>0.05) for both responses with %5 significance level (a = 0.05). R is
99.9%, and R*-adjusted is 99.9% for response Y, and R’ is 99.9%, and R*-adjusted is
99.8% for response Y>.

For validation, 32 (2°) points (because there are 5 input factors with 2 level and
we want to see if metamodel is valid in the entire experimentation region) that
selected randomly in experimentation region, and from different design points, are
used. These 32 points are shown in Table 5.30. The simulation model is run at these
randomly selected points with 10 reblications for each point. The values that are
denoted in the Simulation Model column of Table 5.30 are the average these 10
replications. Also the values denoted in Metamodel column are predicted by fitted
second order regression metamodels. Since the entire ARE values are smaller than

3% the second order metamodels can be used for prediction.

After verification and validation of regression metamodels, Derringer-Suich

multi-response optimization procedure is used for optimization.
5.2.2.1.3 Derringer-Suich Multi-Response Optimization Procedure for WAP

In the current problem, since the target value for the fullness rate of the carriages
response (Y>) is 50%, the lower and upper limits are determined as 45% and 55%,
respectively. To decide the upper and lower limits on the average passenger time
spent in the metro-line response (¥;) the simulation model is run 20 times at the low
levels of all input factors. The lower limit is defined as the average of these 20
values, and is found as 523 seconds. To determine the upper limit, the simulation
model is run 20 times at the high levels of all input factors, and the average value,

672 seconds, is found as upper limit.



Table 5.30 Metamodels validation for WAP

Input factors Simulation model | Metamodel { ARE (%)

Xi 1 X | X5 | X | X5 Y; Y, Y; Y | Y, | Y
1{-0,6-0,21-0,6!-02!/-06] 576 42,9 |574,7143,1510,23(0,59
21 02(-0,2|-0,2|-0,6-0,6] 611 474 1600,7/47,32]11,68|0,16
3]-0,6] 0,21-0,6]-0,2]-0,2] 581 44,0 ]583,0(44,1310,35]0,30
4] 06/ 0,6/-02{-0,6{-02] 623 51,4 }625,6|51,49]0,41)0,17
510202 0,6[-0,6!-02] 594 45,3 ]594,7145,55]0,120,56
6] 02(-0,6] 06(-0,2(-0,6] 609 48,8 1608,9(48,78]0,02 0,03
71-0,2] 0,6] 0,2-0,6!-0,2] 596 46,6 ]601,6|46,62]0,94|0,05
810202} 02/[-02|-0,6] 620 50,5 1615,4{50,52]0,74 0,04
9]-0,61-0,6-02| 0,6]-0,6§ 581 44,7 1580,8|44,7410,03 0,08
10 0,6-0,6[-0,6]| 0,2(-0,2] 616 52,5 1620,1152,44]0,67}0,11
11]-0,2] 0,2|-0,6]| 0,6|-0,2] 609 50,3 |611,5|50,24}0,41]0,11
121 0,2| 0,2{-0,2| 0,6[-0,6] 631 53,5 1624,5|53,43]1,03|0,13
13]1-0,2|-0,2| 02| 0,6]-0,6] 609 49,7 ]606,0(49,58]0,49]| 0,23
141 0,21-02| 0,6 0,2(-0,2] 624 52,2 1620,8]52,0910,51(0,21
15]-0,6] 0,6] 0,6] 0,2[-0,2] 595 46,6 ]1600,0/46,79]0,83]0,42
161 0,6 0,6} 0,6] 0,2(-0,6] 642 56,1 |640,7]56,07]0,200,05
17]-0,6 [-0,6 |-0,2|-0,6| 0,2] 563 41,4 |566,1{41,59]0,55|0,45
18] 0,6(-0,2[-0,6(-0,6| 0,2] 615 50,0 |614,3149,8410,12|0,31
191-0,2| 0,6-0,6|-0,2| 0,6] 605 48,8 |608,8|48,61[0,62}0,40
201 02[0,2]-02(-0,6| 06| 622 ‘49,1 1610,8]|49,18]1,81|0,17
21]-0,6(-0,2| 0,6]|-0,2| 0,2} 581 44,2 |585,6144,45]0,7810,57
221 0,6]|-0,6] 0,2]1-0,2} 0,2] 620 52,0 ]620,2]51,70]0,04|0,57
23]-0,21 0,6| 0,6/-0,6| 0,6] 603 47,5 1607,3147,4210,72|0,16
241 06| 0,6] 02({-0,2] 0,2] 635 54,9 1635,6]54,70]10,090,36
251-0,6/-0,21-0,6]| 0,6! 0,2] 586 45,9 ]1589,8]46,08]0,64]0,40
26| 0,61-0,2|-0,2| 0,2] 0,6| 627 35,2 |630,4(54,9110,54 0,52
27]-0,21 0,2{-0,6| 0,6] 0,6] 613 51,1 1614,5150,95]0,25]0,30
28102 02{-02]| 0,6| 02| 637 54,3 1627,8|54,38]1,45|0,14
29]-0,2(-0,6| 0,6]| 0,2} 0,2] 597 48,2 1602,5|48,3510,92(0,30
301 0,21-0,6]| 0,6] 02| 0,6] 621 51,6 |618,6]|51,69]0,3810,17
311-0,61 0,6] 02} 0,2| 0,2] 596 46,8 1599,0/46,96]0,50]0,34
321 0,6] 0,21 0,2] 0,2] 0,2] 638 56,0 }636,4|55,95]0,25|0,09

We will use three values 0.1, 1 and 10 for ¢

(combination of weights) appear to be.evaluated.
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and s. Therefore, nine situations

For each combination of weights, the lower, target, upper values and weights for

two responses, and the optimum conditions with coded variables, and also

corresponding predicted responses at these coded values which are calculated from

the fitted models, in addition the individual desirability values and the composite

desirability values at optimum conditions are shown in Table 5.31.



Table 5.31 Derringer-Suich optimization method results for WAP
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Composite Desirability = 0,95902

Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 523 523 672 0,1 1
Y2 Target 45 50 55 0,1 1
Global Solution
X1 = 0,00000
X2 = 0,00000
X3 = 0,00000
X4 = ~-0,01224
X5 = -0,08355 )
Predicted Responses
Y1 = 609,431; desirability = 0,91689
Y2 = 50,000; desirability = 1,00000
Composite Desirability = 0,95754
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 523 523 672 0,1 1
Y2 Target 45 50 55 1,0 1
Global Solution
X1 = 0,01283
X2 = -0,66928
X3 = -0,21012
X4 = 1,00000
X5 = -1,00000
Predicted Responses
Yi = 607,327; desirability = 0,91993
Y2 = 50,000; desirability = 1,00000
Composite Desirability = 0,985913
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 523 523 672 0,1 1
Y2 Target 45 50 55 10,0 1
Global Solution
X1 = 0,15576
X2 = -0,94380
X3 = -0,18391
X4 = 0,91108
X5 = ~1,00000
Predicted Responses !
Yi = 607,468; desirability = 0,91973
Y2 = 50,000; desirability = 1,00000




Table 5.31 (Continued)
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Predicted Responses

Y1 = 607,444; desirability = 0,43326
Y2 = 50,000; desirability = 1,00000
Composite Desirability = 0,65823

Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 523 523 672 1,0 1
Y2 Target 45 50 55 0,1 1
Global Solution
X1 = -0,27707
X2 = -1,00000
X3 = -0,35656
X4 = 0,31770
X5 = 1,00000
Predicted Responses
Y1 = 589,796; desirability = 0,55170
Y2 = 46,732; desirability = 0,89942
Composite Desirability = 0,70442 ‘
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 523 523 672 1 1
Y2 Target 45 50 55 1 1
Global Solution
X1 = 0,17949
X2 = -1,00000
X3 = ~-0,32685
X4 = 1,00000
X5 = -1,00000
Predicted Responses
Y1 = 607,636; desirability = 0,43197
Y2 = 50,000; desirability = 1,00000
Composite Desirability = 0,65725
Parameters
Goal Lower Target Upper Weght Import
Y1 Minimum 523 523 672 1 1
Y2 Target 45 50 55 10 1
Global Solution
X1 = 0,15576
X2 = ~0,94380
X3 = ~-0,22805
X4 = 0,93086
X5 = -1,00000




Table 5.31 (Continued)
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Composite Desirability = 0,01549

Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 523 523 672 10,0 1
Y2 Target 45 50 55 0,1 1
Global solution
X1 = -0,30829
X2 = -0,86116
X3 = -0,36417
X4 = -0,00083
X5 = -0,10163
Predicted Responses
Y1 = 582,359; desirability = 0,00621
Y2 = 45,247; desirability = 0,74013
Composite Desirability = 0,06780
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 523 523 672 10 1
Y2 Target 45 50 58 1 1
Global Solution
X1 = -0,27707
X2 = -1,00000
X3 = -0,56048
X4 = 0,37586
X5 = 1,00000
Predicted Responses
Yi = 589,724; desirability = 0,00264
Y2 = 46,707; desirability = 0,34133
Composite Desirability = 0,02999
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 523 523 672 10 1
Y2 Target 45 50 55 10 1
Global Solution
X1 = -0,07964
X2 = -0,50059
X3 = ~0,29753
X4 = 1,00000
X5 = -0,78503
Predicted Responses
Y1 = 607,249; desirability = 0,00024
Y2 = 50,000; desirability = 0,99931
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Since the optimum levels of input factors are found by using the metamodels,
confirmatory simulation runs are needed at optimum input levels. The simulation

model responses shown in Table 5.32 are the average values of 10 replications.

Table 5.32 Results of the confirmatory runs for WAP

Weight | Composite Natural variables Metamodel | Simulation
Y; | ¥, |desirability| X; | Xz | X3 | X, | X5 Y, Y, Y, Y,
0,1 0,1] 095754 ]450]|450|450[448|737]609,4|50,00] 608 | 49,9
0,1 1] 095913 |452|350[418/600|600]607,3|50,00] 667 | 50,1
0,1 10] 0,95902 |473(308]422(587(600]607,5)50,00] 612 | 49,9
110,1] 0,70442 ]408|300|397,498]900]589,8|46,73| 628 | 46,4
1] 0,65725 |477]|300{401)600]|600]607,6|50,00] 614 | 50,0
1| 10 0,65823 |473|3081416|590]|600}607,4]50,00] 612 ! 49,9
101 0,1] 0,06780 ]404|321|395[450|735]582,4|45,25] 577 | 45,1
10| 1] 0,02999 |408 366|506 | 900} 589,7 620

[N [WIN]—
—

TCurrent] X |450]300]450]600]900] X | X

In this table, first nine rows reflect the global optimum solutions found by
Derringer-Suich multi-response  optimization method according to weight

combinations, and the last row belongs to current situation.

Table 5.33 Factor values of confirmatory runs for WAP

Coded values Natural values (second) | Natural values (minutes)
Xi | X | X | Xo | X | X | X | X | X | X5 | X | X2 | X5 | X | X5
0,00| 0,00 0,00(-0,01(-0,08]450|450|450|448737)7,5|7,5|7,5} 7.5|12,3
0,01(-0,67(-0,21| 1,00|-1,00|452|350|418{600|600|7,5|5,8|7,0{10,0|10,0
0,16-0,94(-0,18| 0,91]-1,001473|308{422|587{600]|7,915,117,0| 9,8|10,0
-0,28 1-1,00]-0,36| 0,32| 1,00]408)300|397|498[900]16,8(5,0|6,6| 83150
0,181-1,00{-0,33 | 1,00(-1,00]477|300|401600|600])7,9|5,0|6,7] 10,0 10,0
0,16]-0,94-0,23| 0,93}-1,00[473]308|416|590|600|7,9}5,1{6,9| 9,8| 10,0
-0,31{-0,86]-0,36| 0,00|-0,10]4041321|395|450}735}6,7|5,3]|6,6| 7,5|12,2

R QAN | IWIN—

-0,28 [-1,00]-0,56| 0,38 | 1,001408]300|366|506|900]6,8(5,0|6,1| 84|150

In Table 5.33, factor values of confirmatory runs for WAP are given in the first

nine rows and the last row belongs to current situation.
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First, the fullness rate of the carriages response (¥>) is checked. In Table 5.32, we
see that the fullness rate requirement 50% is provided by the first, second, third, fifth,
sixth and ninth rows. After determining the natural factor levels providing the
fullness rate requirement, the minimum value for the average passenger time spent in
the metro-line (¥;) is searched, and it is seen that the minimum ¥; (606 seconds) is
obtained with the natural factor levels in the 9™ row. As a result, one optimum point
exist. For X;=7.3,X;=6.2, X3= 6.8, X,=10.0, X5 = 10.5 factor levels the obtained
values for the average passenger time spent in the metro-line (Y;), and for the
fullness rate of carriages (Y>) responses are respectively 606 seconds and 50,2
percent. This optimum point’s factor levels are demonstrated in grey colour in Tables

5.32 and 5.33.

As can be seen from Table 5.32 after optimization study the fullness rate of
carriages (1) is decreased by 0.7 percent and the average passenger time spent in the

metro-line (¥;) is decreased by 7 seconds (1.14 percent) respect to current values.
5.3 Saturday Problem (S7P)
5.3.1 Estimation Process
5.3.1.1 Phase Zero

The objective of STP is to find the levels of 4 input factors that related to the 4
time periods from 06:00 a.m. to 00:00 a.m. and which minimize the average
passenger time spent in the metro-line with the requirement as the fifty percent

fullness rate of the carriages. The built simulation model is explained in chapter four.

Generally at phase zero, a screening experiment is made for investigating
potential input factors, which are thought to be important in the response surface
study, and for determining important factors. Because the input factors are 4

headways and none of them can be eliminated we skip factor screening processes.
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The input factors are respectively;
X1: The headway for the first time period from 06:00 a.m. to 11:00 a.m.
X5: The headway for the second time period from 11:00 a.m. to 19:00 p.m.
X3: The headway for the third time périod from 19:00 p.m. to 22:00 p.m.
X The headway for the fourth time period from 22:00 pm to 00:00 a.m.

The output responses are respectively;
Y;: The average passenger time that is spent in the metro-line (in second)

¥: The fullness rate of the carriages (in percentage)

5.3.1.2 Phase One

Low and high level of input factors for STP, time period durations, and the natural

values are given in Table 5.34.

Table 5.34 Low and high level of input factors for STP

Input Time Duration Low level High level
factor Period (hour) | (second) | Coded (I: :ct:;:l) Coded g :::;ZI)
X, 06:00 - 11:00 5,0 18000 -1 300 1 600
X 11:00 - 19:00 8,0 28800 -1 300 1 600
X; 19:00 - 22:00 3,0 10800 -1 300 1 600
Xy 22:00 - 00:00 2,0 72001 -1 600 1 900

The first order regression models with two-factor interactions are assumed to be;

Yy = Bo+ BiXi + B + BiXs + BuXy + PraXiXo+ Br3XiXs+ BraXi Xy + BosXoXz +
BodXoXy + P3X3Xy + &

Y, =0+ 0X; + 6Xo + 63X + 8Ky + 612X X5 + 613X1X3 + 61.X1 Xy + 52350X5 +
024X Xy + 034X3Xy + € (5.15)

where £y and & are constant, and f;, B 3 By 61, 05 &3 and & are coefficients

corresponding to main effects, and fis, B13 Bis 523, Bos Pss Si2 613 814 G253 Oaa,
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and J3, are coefficients corresponding to two-factor interaction effects and ¢ is

statistical error that have a normal distribution with mean zero and variance o°.
5.3.1.2.1 Two-level Full Factorial Design

For fitting a first order regression model a two-level full factorial design (2*) with
central runs is designed and then the simulation model is run 10 times at each design

point, and response values for each design points are found.
Although the values for two-level full factorial design points, which are denoted
in Table 5.35, are average of 10 replications, the values related to the central points

are obtained by one replication.

Table 5.35 Simulation results for STP (24 design with 5 central runs)

X | Xo| X3 X} Y | Yo X | Xo| Xs| Xe| ¥i | Vo
Ly-11-1[-1[-1]523|353§ 112 1| 1]|-1| 1]657]|58,9
21 1] -1]-1|-11555{41,4) §13]-1]1-1| 1| 1]545]|39,6
31-1] 1¢-1]-1]621{46,1 14 1]-1} 1] 1§1579147,2
41 1| 1|-1]-1]653{57,2) }15]-11 1| 1| 1}640(53,6
S51-1)-1] 1]-1]540{38,70416) 1| 1| 1| 1}1671|68,9
6| 1]-1| 1]|-11573(46,0] §17} 0{ O| O] 0]605|52,3
T71-1) 1| 1}-1]634]52,0 18§ O 0 0} 0]609|51,8
81 1] 1| 1j-1]665]|66,4] 119y 0! 0| 0] 0]606|52,4
9]-1]-1]-1] 1]526(36,00 |20} 0| O] 0} 0]606|52,5
100 1]-1|-11 1]561[42,3] 21} 0| 0| 0| 0]609|52,6
1] 1]-1] 1]e2s]472

After verifying that the residuals are normally, identically and independently
distributed with zero mean and constant variance for the Y; and Y, responses,
Variance Analysis is used to see if the main effects, two-factor interactions,
curvature and lack-of-fit are statistically significant. Table 5.36 is the Analysis of
Variance Table (ANOVA) for the first response Y;, and Table 5.37 for the second
response Y>. In addition, estimated effects and coefficients (EEC) for two responses

are given in Table 5.38 and 5.39, respectively.



Table 5.36 ANOVA table for Y; response for form for STP

Source DF | Seq SS Adj SS | Adj MS F P

Main Effects 4] 417982 41798,2| 10449,6 321,95] 0,000
2-Way Interactions 6 27,7 27,7 4,6 0,141 0,987
Residual Error 10 324,6 324,6 32,5

Curvature 1 308,6 308,6 308,6 173,571 0,000
Lack of Fit 5 2,0 2,0 0,4 0,11] 0,982
Pure Error 4 14,0 14,0 3,5

Total 20| 42150,6

S=4,693 R-Sq=99,2% R-Sq(adj) = 99,0%
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In Table 5.36, since the P-value for the lack-of-fit test is greater than the

significance level (a = 0.05), the lack-of-fit is not statistically significant, that is, the

first order regression model for Y; response for WAP is adequate. The main effects

and curvature are statistically significant (P-value<0.05), two-way interactions are

not statistically significant (P-value>0.05).

Table 5.37 ANOVA table for Y, response for form for STP

Source DF | SeqSS | AdjSS | Adj MS F

Main Effects 4| 1506,9 1506.,9 376,7 67,45| 0,000
2-Way Interactions 6 60,4 60,4 10,1 1,80 0,196
Residual Error 10 55,9 55,9 5,6

Curvature 1 54,1 54,1 54,1 284,47 0,000
Lack of Fit 5 1,3 1,3 0,3 2,73 | 0,176
Pure Error 4 0,4 0,4 0,1

Total 20| 1623,2

S$=2,695 R-8Sq=92,8% R-Sq(adj) =91,0%

Table 5.37 shows that the lack-of-fit and two-way interactions are not statically

significant (P>0.05), curvature and main effects are statically significant (P<0.05).
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Table 5.38 EEC table for Y; response for form for STP

Term Efféct Coef | SE Coef T P
Constant 600,143 | 1,2430| 482,74 0,000
X1 32,500 16,250  1,4240 11,41 0,000
X2 95,500 47,750  1,4240 33,53 0,000
X3 15,750 7875  1,4240 5,53 0,000
X4 5,000 2,500]  1,4240 1,76 0,110
X1%X2 -1,000]  -0,500| 1,4240 -0,35 0,733
X1*X3 0250 -0,125| 1,4240 -0,09 0,932
X1*X4 0,500 0,250| 1,4240 0,18 0,864
X2%X3 2250 -1,125| 11,4240 -0,79 0,448
X2%x4 0,000 0,000] 1,4240 0,00 1,000
X3*X4 0,750 0375| 14240 0,26 0,798

Table 5.39 EEC table for Y, response for form for STP

Term Effect Coef SE Coef T P
Constant 49,448 0,5157 95,88 0,000
X1 9,975 4,988 0,5909 8,44 0,000
X2 15,475 7,738 0,5909 13,10 0,000
X3 6,000 3,000 0,5909 5,08 0,000
X4 1,325 0,663 0,5909 1,12 0,288
XI1*x2 3,150 1,575 0,5909 2,67 0,024
XI*X3 1,175 0,588 0,5909 0,99 0,344
XI1*X4 0,250 0,125 0,5909 0,21 0,837
X2*X3 1,875 0,938 0,5909 1,59 0,144
X2*X4 0,400 0,200 0,5909 0,34 0,742
X3*X4 0,225 0,113 0,5909 0,19 0,853

As a result, the fitted first order models for both responses are respectively;

Y, = 600,143 + 16,250 x; + 47,750 x5 + 7,875 x3 + 2,500 x4 - 0,500 xx5 - 0,125
xjx3 + 0,250 x3x0 -1,125 x3%5 + 0,375 x3%4 ’

Y, =49448 + 4988 x; + 7,738 x5 + 3,000 x5 + 0,663 x4 + 1,575 x;x> + 0,588
Xix3+ 0,125 xx4 + 0,938 x2x3 + 0,200 x5x4 + 0,113 x3%4 (5.16)

Because the true response surface usually exhibits curvature near the optimum, it
is understood that the determined region of experimentation is near the region of
optimum. As mentioned in chapter two, the second phase of RSM begins. Therefore,

second order models can be built.
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5.3.2 Optimization Process
5.3.2.1 Phase Two
5.3.2.1.1 CCD and Development of Metamodels for STP

The second order regression models are assumed to be;

Yi=Bo+ BXi + BoXo + BiXs + BuXu + BuXi + BuXs® + PuXs® + BuXi +
BiaXi1 X+ BisXiXs + BraXiXe + PasXoXs + BorXoXy + B3 XXy + &

Y2=08 + 6Xi + 8Xo + X3 + 8Xu + SuXi + SpXit + SuXs + SuXi +
012X1X0 + 013X1X3 + 61aXiXy + 023XoXs + 5. XXy + 8534X3X + € (5.17)

where Sy and & are constant, and 81, B, B5 B+ O, &, & and &, are coefficients
corresponding to main effects, and 85, B3 Big Bo3 Bos Bsa 612, 813 014 623, S24and
034 are coefficients corresponding to two-factor interaction effects, B, S B3 Bus,
O11, 022, O33and Oy are coefficients corresponding to square effects, and € is statistical

error that have a normal distribution with mean zero and variance o2

For fitting second order models a CCD is built by augmenting the two-level full
factorial design with central runs and axial runs (o = 1, means design is face-
centered). In Table 5.40, the CCD used for fitting second order models for two
responses is given. The values for two-level full factorial design points and axial
points are average of 10 replications, and the values related to the central points are

obtained by one replication.

After verifying that the residuals o‘f the second order regression models fitted for
Y; and Y; are normally, identically and independently distributed with zero mean and
constant variance, the ANOVA tables are given in Table 5.41 and Table 5.42. Also
estimated effects and coefficients (EEC) for two responses are denoted in Table 5.43

and 5.44 respectively.



Table 5.40 Simulation results for STP (CCD)

X | X2) X5)|Xe) Y, ] Yo X | Xl Xs] Xe]l Yo | Yo
1]-1]-1|-1[-1]523{353 17]-1] 0| O 0§587|45,6
2| H]-1]-1|-1]555(41,41 18] 1] O} 0] 0]621]56,3
3)-1] 1]-1[-11621(46,1 19] 0{-1| 0] 0]553|42,5
41 1] 1]-1{-1]653|572] J20} 0| 1| 0| 0]648]58,9
S1-11-1[ 1]-11546{38,7] |21] 0] O|-1| 0}598]|48,1
6] 11-1| 1]-11573]46,01 §221 0| O 1| 0]614|54,6
71-1] 1] 1{-11634(52,08 |23] 0| 0] 0|-1]1604]51,4
81 1{ 1] 1]|-1]665]|66,4) §24] 0] 0} Of 1]1610{52,9
9Y-1|-1[-1] 1}526]36,0] 125] 0] 0| 0] 0]605}523

10] 1}-1]-1| 1]561]42,3) 3264 0| 0] 0| 01609(51,8
11)-1[ 1]-1{ 1]625[47,24 127] 0| O 0| 0]606]524
121 1} 1|-1] 1]657]|589] 128§ 0| O0{ 0| 0]606]|52,5
130-1(-1] 1| 1]545139,64129] 0| 0] O 0]609]|52,6
141 1|-1] 1| 1]|579]47,2) 130] 0| 0] 0| 0]609|52,4
150-1| 1] 1| 1]1640(53,60 131 0| 0] 0| 0]606]52,6
16 1} 1] 1] 1]671}68,9

Table 5.41 ANOVA table for Y; response for sorm for STP

Source DF | SeqSS | AdjSS | Adj MS F P
Regression 14| 47592,8| 475928 3399,5 2000,00 0,000
Linear 4| 470332| 470332 117583| 8000,00| 0,000
Square 4 531,9 531,9 133,0 90,34 0,000
Interaction 6 27,7 27,7 4,6 3,14 0,031
Residual Error 16 23,6 23,6 1,5
Lack-of-Fit 10 4,7 47 0,5 0,15} 0,995
Pure Error 6 18,9 18,9 3,1
Total 30| 47616,4

S$=1,213 R-Sq=99,9% R-Sg(adj)=99,9%
Table 5.42 ANOVA table for Y, response for sorm for STP

Source DF | SeqSS | AdjSS | AdjMS F P
Regression 14| 1868,7| 18687 133,5 822,39 | 0,000
Linear 41 17202 1720,2 430,0 3000,00| 0,000
Square 4 88,2 88,2 22,0 135,79 | 0,000
Interaction 6 60,4 60,4 10,1 61,99 | 0,000
Residual Error 16 2,6 2,6 0,2
Lack-of-Fit 10 2,1 2,1 0,2 2,83 0,108
Pure Error 6 0,5 0,5 0,1
Total 30/ 1871,3

$=0,4029 R-Sq=99,9% R-Sq(adj)=99,7%

131
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In Table 5.41 and Table 5.42, we see that linear, quadratic and two-way

interaction effects are statistically -significant (P<0.05), and the second order

regression models are statistically significant (P>0.05) for both responses.

Table 5.43 EEC table for Y; response for sorm for STP

Term Coef SE Coef T P
Constant 606,896 0,360 | 1686,2620 0,000
Xl 16,333 0,286 57,1170 0,000
X2 47,722 0,286 166,8820 0,000
X3 7,889 0,286 27,5870 0,000
X4 2,556 0,286 8,9370 0,000
XI1*X] -2,608 0,753 -3,4630 0,003
X2*X2 -6,108 0,753 -8,1100 0,000
X3*X3 -0,608 0,753 -0,8070 0,431
X4*X4 0,392 0,753 0,5200 0,610
XI1*X2 -0,500 0,303 -1,6480 0,119
XI1*X3 -0,125 0,303 -0,4120 0,686
X1*X4 0,250 0,303 0,8240 0,422
X2*X3 -1,125 0,303 -3,7090 0,002
X2*X4 0,000 0,303 0,0000 1,000
X3*X4 0,375 0,303 1,2360 0,234

Table 5.44 EEC table for Y, response for sorm for STP

Term Coef SE Coef T P

Constant 52,306 0,120 437,6630 0,000
X] 5,028 0,095 52,9470 0,000
X2 7,789 0,095 82,0250 0,000
X3 3,028 0,095 31,8860 0,000
X4 0,672 0,095 7,0790 0,000
XI1*X] -1,279 0,250 -5,1130 0,000
X2*X2 -1,529 0,250 -6,1130 0,000
X3*X3 -0,879 0,250 -3,5140 0,003
X4*X4 -0,079 0,250 -0,3150 0,757
X1*X2 1,575 0,101 15,6380 0,000
X1*%X3 0,588 0,101 5,8330 0,000
XI1*X4 0,125 0,101 1,2410 0,232
X2*X3 0,938 0,101 9,3080 0,000
X2%X4 0,200 0,101 1,9860 0,064
X3*X4 0,113 0,101 1,1170 0,280

The second order regression models are respectively;

Y; = 606,896 + 16,333 x; + 47,722 x2 + 7,889 x3 + 2,556 x4 - 2,608 x,° - 6,108 x5
- 0,608 x5° + 0,392 x[? -0500x1x2- 0,125 xx3 + 0,250 x1%x4-1,125 xx3 + 0,375 x3%4
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Yo =52306 + 5028 x; + 7,789 x5 + 3,028 x3 + 0,672 x4 - 1,279 x;° - 1,529 x5 -
0,879 x5° - 0,079 x4 + 1,575 x;x2 + 0,588 xx3 + 0,125 x 304 + 0,938 x3%3 + 0,200 x%4
+ 0,113 x3x4 (5.18)

After building regression metamodels for both responses, they are verified and

validated.
5.3.2.1.2 Verification and Validation of STP Metamodels

For verification, lack-of-fit tests are applied for both metamodels. As can be seen
from Table 5.41 and Table 5.42, the metamodels have no statistically significant
lack-of-fit (P>0.05) for both responses with 5% significance level (o = 0.05). R’ is
99.9%, and Rz-adjusted is 99.9% for response Y;, and R?is 99.9%, and Rz-aaﬁusted is
99.7% for response Y.

Table 5.45 Metamodels validation for STP

Input factors Simulation model | Metamodel | ARE (%)

X 1 X5 | X5 | X, Y, Y, Y, Y, | ¥, | Y,
11-0,6[-0,2}-0,2(-0,6] 578 46,5 |583,4146,52]0,93|0,04
21 0,2(-0,2({-0,2/{-0,6] 590 50,5 1597,3]|50,54]1,23}0,08
31-0,2( 0,2]-0,6[-02} 602 50,4 1607,6]50,38]0,93]0,04
41021 0,61-0,6!-0,2] 627 54,9 ]631,4]54,8810,71{0,04
51-0,21-0,2] 0,6]|-0,6{1 592 50,5 1596,9150,58]0,82|0,15
6] 0,61-0,6| 02]|-0,2] 583 49,2 1586,2149,47]0,56 (0,54
71-0,2) 0,6] 0,6|-0,6] 626 56,4 1632,6]56,42]1,06|0,04
81 02| 02| 02]-0,6] 626 55,3 1619,4154,97]1,06{0,60
91-0,61-0,2]-0,2] 0,6] 580 47,1 586,2147,16]1,07(0,12
10] 0,6 |-0,6 [-0,6| 0,6] 575 47,3 |581,4147,37]1,12{0,15
11§-0,2] 0,6(-0,2 0,2} 623 54,7 1629,0]54,6010,97|0,18
121 0,6 0,6]|-0,6| 0,6] 635 57,4 }1639,1157,3210,65|0,14
131-0,6[-0,6] 0,6{ 0,2] 565 45,2 }1570,7145,23]11,00/0,06
14] 0,6(-0,2| 0,2} 0,2] 602 53,8 ' 1608,2{53,80]1,03|0,00
151-0,2] 0,6] 0,6 0,6] 629 57,5 1635,9(57,42]11,1010,13
161 0,2] 0,2 0,6] 0,2] 629 56,6 |624,3]56,66]0,75{0,11

For validation, 16 (2*) points (because there are 4 input factors with 2 level and
we want to see if metamodel] is valid in the entire experimentation region) that
selected randomly in experimentation region, and from different design points, are

used. These 16 points are shown in Table 5.45. The simulation model is run at these
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randomly selected points with 10 replications for each point. The values that are
denoted in the Simulation Model column of Table 5.45 are the average of these 10
replications. Also the values denoted in Metamodel column are predicted by fitted
second order regression metamodels. Since the entire ARE values are smaller than

3% the second order metamodels can be used for prediction.

After verification and validation of regression metamodels, Derringer-Suich

multi-response optimization procedure is used for optimization.
5.3.2.1.3 Derringer-Suich Multi-Response Optimization Procedure for STP

In the current problem, since the target value for the fullness rate of the carriages
response (1) is 50%, the lower and upper limits are determined as 45% and 55%,
respectively. To decide the upper and lower limits on the average passenger time
spent in the metro-line response (1;) the simulation model is run 20 times at the low
levels of all input factors. The lower limit is defined as the average of these 20
values, and is found as 522 seconds. To determine the upper limit, simulation model
is run 20 times at the high levels of all input factors, and the average value, 671

seconds, is found as upper limit.

We will use three values 0.1, 1 and 10 for ¢ and s. Therefore, nine situations

(combination of weights) appear to be evaluated.

For each combination of weights, the lower, target, upper values and weights for
two responses, and the optimum conditions with coded variables, and also
corresponding predicted responses at these coded values which are calculated from
the fitted models, in addition the individual desirability values and the composite

desirability values at optimum conditions are shown in Table 5.46.



Table 5.46 Derringer-Suich optimization method results for STP
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Predicted Responses
Y1
Y2

1
i

]

Composite Desirability = 0,96367

588,951; desirability = 0,94208
50,007; desirability = 0,98574

Parameters
Goal Lower Target Uppexr Weight Iport
Y1 Minimum 522 522 671 0,1 1
Y2 Target 45 50 55 0,1 1
Global Solution
X1 = 0,99568
X2 = -0,82360
X3 = 0,99671
X4 = 0,99825
Predicted Responses
Y1 = 589,158; desirability = 0,94184
Y2 = 49,923; desirability = 0,99845
Composite Desirability = 0,96973
Parameters
Ggal Lower Target Upper Weight mport
Y1 Minimum 522 522 671 c,1 1
Y2 Target 45 50 55 1,0 1
Glcbal Solution
X1 = 0,99790
X2 = -0,81820
X3 = 0,99840
X4 = 0,99915
Predicted Responses
Y1 = 589,504; desirability = 0,94145
Y2 = 50,000; desirability = 0,99997
Composite Desirability = 0,97027
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 522 522 671 0,1 1
Y2 Target 45 50 55 10,0 1
Global Solution
X1 = 1,00000
X2 = -0,75472
X3 = 1,00000
X4 = -0,17914




Table 5.46 (Continued)
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Predicted Responses
Y1
Y2

]

589,504; desirability = 0,54696

Hl

50,000; desirability = 0,99972
Composite Desirability = 0,73%46

Parameters
Goal Lower Targe: Upper Weight Import
Y1 Minimum 522 522 671 1,0 1
Y2 Target 45 | 50 55 0,1 1
Global Solution
X1 = 0,63587
X2 = -1,00000
X3 = 0,65441
X4 = 0,90807
Predicted Responses
Y1 = 571,313; desirability = 0,66904
Y2 = 46,405; desirability = 0,88080
Composite Desirability = 0,76766
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 522 522 671 1 1
Y2 Target 45 50 55 1 1
Global Solution
X1 = 1,00000 ‘
X2 = -0,75656
X3 = 1,00000
X4 = ~0,13414
Predicted Responses
Y1 = 588,986; desirability = 0,55043
Y2 = 50,019; desirability = 0,99615
Composite Desirability = 0,74048
Parameters
Goal Lower Tamet Upper Weight Import
Y1 Minimum 522 522 671 1 1
Y2 Target 45 50 55 10 1
Global Solution
X1 = 0,99790
X2 = -0,81820 '
X3 = 0,99840
X4 = 0,99915




Table 5.46 (Continued)
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Compogite Desirability = 0,05027

Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 522 522 671 10,0 1
Y2 Target 45 50 55 0,1 1
Global Solution
X1 = 0,39478
X2 = ~-1,00000
X3 = 1,00000
X4 = -0,11385
Predicted Responses
Y1 = 567,322; desirability = 0,02661
Y2 = 45,522; desirability = 0,79774
Composite Desirability = 0,14569
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 522 522 671 10 1
Y2 Target 45 50 55 1 1
Global Solution
X1l = 1,00000
X2 = -1,00000
X3 = 0,65333
X4 = 0,66578
Predicted Responses
Y1 = 575,044; desirability = 0,01227
Y2 =  46,948; desirability = 0,38957
Compogite Desirability = 0,06914
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 522 522 671 10 1
¥2 Target 45 50 55 10 1
Global Solution
X1 = 1,00000
X2 = -0,75457
X3 = 1,00000
X4 = -0,18159
Predicted Responses
Y1 = 588,951; desirability = 0,00256
Y2 = 50,007; desirability = 0,98584
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Since the optimum levels of input factors are found by using the metamodels,
confirmatory simulation runs are needed at optimum input levels. The simulation

model responses shown in Table 5.47 are the average values of 10 replications.
In this table, first nine rows reflect the global optimum solutions found by
Derringer-Suich multi-response optimization method according to weight

combinations, and the Jast row belongs to current situation.

Table 5.47 Results of the confirmatory runs for S7P

Weight | Composite | Natural variables | Metamodel | Simulation
Yl Yz desirability XI Xz Xg s X4 Y1 Yz Y1 Yg
1]0,1/0,1] 0,96973 599326 600]900]589,2|49,92] 592 | 49,6

0,1] 10] 0,96367 |600]337}600]723]589,0!50,01] 593 | 50,0
110,1] 0,76766 |545]300|548|886]571,3]|46,41] 571 | 45,8
1| 1] 0,74048 ]600]337]|600}730(589,0|50,02| 594 | 50,2
101 0,73946 |600)327[600{900f589,5]50,00] 592 | 49,9
10 0,1] 0,14569 |509]300|600|733)567,3]45,52] 571 | 45,2
10 1] 0,06914 [600]300)548]850|575,0]|46,95| 575 | 46,7
10| 10} 0,05027 |600[337]600]723}589,0|50,01] 593 | 50,1
10 | Current X 6001450]600]900] X X 632598

Ol Q|Nhin | s W
—

Table 5.48 Factor values of confirmatory runs for STP

Coded values Natural values (second) | Natural values (minutes)
X | X [ X% | X | X | X% | X% | XX |X%] X5 | X
1]1,00(-0,8211,00| 1,00] 599 326| 600} 900| 10,0} 54| 10,0] 15,0

i
1,00[-0,75 [ 1,00]-0,18] 600 337] 600 723] 10,0{ 5,6] 10,0] 12,1
0,64[-1,00]0,65] 0,91 545] 300] 548| 886] 9,1] 50| 9,1] 148
1,00]-0,76]1,00]-0,13] 600| 337] 600] 730] 10,0] 56] 10,0] 122
1,00]-0,82]1,00] 1,00] 600 327] 600| 900] 10,0] 55| 10,0] 15,0
0,39]-1,00]1,00]-0,11] 509] 300} 600] 733] 85| 50] 10,0] 122
1,00[-1,00[0,65] 0,67] 600[ 300] 548| 850] 10,0] 50] 9,1] 142
1,00 [-0,751,00]-0,18| 600| 337] 600 723]| 10,0{ 56| 10,0] 12,0
10] 1,00/ 0,00] 1,00] 1,00] 600] 450] 600] 900] 10,0] 7,5] 10,0] 15,0

D [0 ||| |~ W

In Table 5.48, factor values of confirmatory runs for STP are given in the first

nine rows and the last row belongs to current situation.
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First, the fullness rate of the carriages response () is checked. In Table 5.47, we
see that the fullness rate requirement 50% is provided by the first, second, third, fifth,
sixth and ninth rows. After determining the natural factor levels providing the
fullness rate requirement, the minimuim value for the average passenger time spent in
the metro-line (¥;) is searched, and it is seen that the minimum Y; (590 seconds) is
obtained with the natural factor levels in the 2™ row. As a result, one optimum point
exist. For X; = 10.0, X;= 5.5, X3 = 10.0, X, = 15.0 factor levels the obtained values
for the average passenger time spent in the metro-line (Y;), and for the fullness rate
of carriages (¥>) responses are respectively 590 seconds and 49.9 percent. This
optimum point’s factor levels are demonstrated in grey colour in Tables 5.47 and
5.48.

As can be seen from Table 5.47 after optimization study. the fullness rate of
carriages (Y>) is decreased by 9.9 percent and the average passenger time spent in the
metro-line (¥;) is decreased by 42 seconds (6.65 percentage) respect to current

values.

5.4 Sunday Problem (SNP)
5.4.1 Estimation Process
5.4.1.1 Phase Zero

The objective of SNP is to find the levels of 3 input factors that related to the 3
time periods from 06:00 am. to 00:00 a.m. and which minimize the average
passenger time spent in the metro-line with the requirement as the fifty percent

fullness rate of the carriages. The built simulation model is explained in chapter four.

Generally at phase zero, a screening experiment is made for investigating
potential input factors, which are thought to be important in the response surface
study, and for determining important factors. Because the input factors are 3

headways and none of them can be eliminated we skip factor screening processes.
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The input factors are respectively;
X;: The headway for the first time period from 06:00 a.m. to 09:00 a.m.
X>2: The headway for the second time period from 09:00 a.m. to 20:00 p.m.
X3: The headway for the third time period from 20:00 p.m. to 00:00 a.m.

The output responses are respectively;
¥;: The average passenger time that is spent in the metro-line (in second)

Y>: The fullness rate of the carriages (in percentage)

5.4.1.2 Phase One

Low and high level of input factors for SNP, time period durations, and the natural

values are given in Table 5.49.

Table 5.49 Low and high level of input factors for SIVP

Input Time Duration Low level High level
. Natural Natural
factor Period (hour) | (second) | Coded (second) Coded (second)
X; 06:00 - 09:00 3,0 10800) -1 600 1 900
X, 09:00 - 20:00 11,0 39600] -1 600 1 900
X 20:00 - 00:00 4,0 14400 -1 600 1 900

The first order regression models with two-factor interactions are assumed to be;
Yy = Bo+ BiXy + BoXo + BsXs + BroXiXo + fisXiXs + BosXoXs + &
Y;=0+ 06X+ 6Xs + 85X + 612X + 613X X + 623505 + € (5.19)

where f) and & are constant, and £, f» B3 61, & and &; are coefficients
corresponding to main effects, and B2 Bi3 o3 612 813 and &; are coefficients
corresponding to two-factor interaction effects and ¢ is statistical error that have a

normal distribution with mean zero and variance c>.
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5.4.1.2.1 Two-level Full Factorial Design

For fitting a first order regression model a two-level full factorial design (2*) with
central runs is designed and then the simulation model is run 10 times at each design

point, and response values for each design points are found.

Although the values for two-level full factorial design points, which are denoted
in Table 5.50, are average of 10 replications, the values related to the central points

are obtained by one replication.

Table 5.50 Simulation results for SNP (2° design with 5 central runs)

LPARARARS X | X | Xs) Vi | X,
11-1]-1]-1]665]|342 8f 1| 1] 11813]51,1
21 11-1|-1]1675]36,3 9] 0f 0| 0]738(424
31-1] 1{-1]788|43,0 10] O O} 0]739(42,6
41 1] 1|-1)7991462) J11] 0} 0| 0]735}42,9
51-1|-1| 1]681|36,8¢ §12] 0 0} 0}735([42,3
6] 1|-1| 1]1693]392] J13] 0} 0| 0]736143,0
70-1] 1] 1}803]472

After verifying that the residuals are normally, identically and independently
distributed with zero mean and constant variance for the Y; and Y, responses,
Variance Analysis is used to see if the main effects, two-factor interactions,
curvature and lack-of-fit are statistically significant. Table 5.51 is the Analysis of
Variance Table (ANOVA) for the first response Y;, and Table 5.52 for the second
response Y,. In addition, estimated effects and coefficients (EEC) for two responses

are given in Table 5.53 and 5.54, respectively.

Table 5.51 ANOVA table for Y; response for form for SNP

Source DF | Seq SS AdjSS | Adj MS F P

Main Effects 3] 30617,4] 306174 10205,8 1000,00 | 0,000
2-Way Interactions 3 3,4 34 1,1 0,16 0,920
Residual Error 6 42,5 42.5 7,1

Curvature 1 28,2 28,2 28,2 9,83| 0,026
Lack of Fit 1 1,1 1,1 1,1 0,34| 0,591
Pure Error 4 13,2 13,2 3,3

Total 12| 30663,2| .

§$=2257 R-Sq=99,9% R-Sq(adj)=99,8%




142

In Table 5.51, since the P-value for the lack-of-fit test is greater than the
significance level (a = 0.05), the lack-of-fit is not statistically significant, that is, the
first order regression model for Y; response for WAP is adequate. The main effects
and curvature are statically signiﬁcan’t (P-value<0.05), two-way interactions are not

statistically significant (P-value>0.05).

Table 5.52 ANOVA table for Y: response for form for SNP

Source DF | SeqSS | AdjSS | Adj MS F P

Main Effects 3 253,6 253,6 84,5 179,26 | 0,000
2-Way Interactions 3 2,6 2,6 0,9 1,83] 0,242
Residual Error 6 2,8 2,8 0,5

Curvature 1 2.4 2.4 2,4 31,09 0,003
Lack of Fit 1 0,0 0,0 0,0 0,22 0,667
Pure Error 4 0.4 0,4 0,1

Total 12 259,0

$=0,7760 R-8q=97,9% R-Sq(adj)=97,2%

Table 5.52 shows that the lack-of-fit and two-way interactions are not statically
significant (P>0.05), curvature and main effects are statistically significant (P<0.05).

Table 5.53 EEC table for Y, response for form for SNP

Term Effect Coef SE Coef T P
Constant 738,462 0,7380| 1000,64 0,000
X! 10,750 5,375 0,9408 5,71 0,001
X2 122,250 61,125 0,9408 64,97 0,000
X3 15,750 7,875 0,9408 8,37 0,000
XI1*%X2 -0,250 -0,125 0,9408 -0,13 0,899
X1*%X3 0,250 0,125 0,9408 0,13 0,899
X2*X3 -1,250 -0,625 0,9408 -0,66 0,531

Table 5.54 EEC table for Y- response for form for SNP

Term Effect Coef SE Coef T P
Constant 42,092 0,1905 221,01 0,000
XI 2,900 1,450 0,2428 5,97 0,001
X2 10,250 5,125 0,2428 21,11 0,000
X3 3,650 1,825 0,2428 7,52 0,000
XI1*X2 0,650 0,325 0,2428 1,34 0,229
XI1*X3 0,250 0,125 0,2428 0,51 0,625
X2*X3 0,900 0,450 0,2428 1,85 0,113
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As aresult, the fitted first order models for both responses are respectively;

Y; =738462 + 5,375 x; + 61,125 x3 + 7,875 x3- 0,125 xx; + 0,125 x;x3 - 0,625

XoX3

Yy =42,092 + 1,450 x; + 5,125 x + 1,825 x3 + 0,325x;x + 0,125 x;x3 + 0,450
X2X3 (5.20)

Because the true response surface usually exhibits curvature near the optimum, it
is understood that the determined region of experimentation is near the region of
optimum. As mentioned in chapter two, the second of RSM begins. Therefore,

second order models can be built.

5.4.2 Optimization Process

5.4.2.1 Phase Two

5.4.2.1.1 CCD and Development of Metamodels for SNP

The second order regression models are assumed to be;

Yi =B+ BiXs + BoXo + BsXs + BuXi + BuXd + PesXi + LiaXiXo + BisXiXs +
Pa3XoX3 + &

Yy = + 6 X1 + 6:Xs + 85Xz + 61 X7 + 5Xs + S3X5 + X1 Ko + 613X X5 +
03X X3 + € (5.21)

where [ and & are constant, and f), fo fs 6, & and & are coefficients
corresponding to main effects, and B, 13 F23 012 &3 and &3 are coefficients
corresponding to two-factor interaction effects, S5, S5, B33 611, &7 and &3 are
coefficients corresponding to square effects, and € is statistical error that have a

normal distribution with mean zero and variance o°.

For fitting second order models a CCD is built by augmenting the two-level full

factorial design with central runs and axial runs (o =1, means design is face-



144

centered). In Table 5.55, the CCD used for fitting second order models for two
responses is given. The values for two-level full factorial design points and axial
points are average of 10 replications, and the values related to the central points are

obtained by one replication.

Table 5.55 Simulation results for SNP (CCD)

1X XX Y | Y XA X)X Y | ¥s
1]-1]-1]-11665|34,2] 111]0]-1{ 0]676]37,1
21 1(-11-11675(36,3) 112]0] 1| 0]801(47,5
3)-1{ 1]-1]788]143,001 413]0| 0]-1}730]40,5
41 1] 1]-1]1799|462F 11410 0] 1]748{44,3
5[-1(-1] 1]681[36,8) J15]0| 0| 0]735(42,7
6| 1[-11 116933921 116]0| 0| 0]738/424
71-1] 1] 1]803(47,2} §17)0( 0] 0]739|42,6
8] 1| 1} 1]813(51,1 1810 0| 01735[42,9
9|-1] 0| 0]1732]41,1 1910 0] 0]735]42,3
10) 1| O] 0]745]|43,8F [20]0f 0 0]736|43,0

After verifying that the residuals of the second order regression models fitted for
Y; and Y; are normally, identically and independently distributed with zero mean and
constant variance, the ANOVA tables are given in Table 5.56 and Table 5.57. Also
estimated effects and coefficients (EEC) for two responses are denoted in Table 5.58
and 5.59 respectively.

Table 5.56 ANOVA table for Y; response for sorm for SNP

Source DF | Seqss | adjss | adjms F P
Regression 9| 38705,0| 38705,0 4300,6 1000,00 [ 0,000
Linear 3] 38669,3| 38669,3| 12889,8{ 4000,00( 0,000
Square 3 32,3 32,3 10,8 3,65 0,052
Interaction 3 3.4 3,4 1,1 0,38| 0,769
Residual Error 10 29,5 29.5 3,0
Lack-of-Fit 5 14,2 14,2 2,8 0,93| 0,533
Pure Error 5 15,3 15,3 3,1
Total 19| 38734,5

§$=1719 R-89=99,9% R-Sq(adj)=99,9%

In Table 5.56, we see that linear effect is statistically significant (P<0.05), two-
way interaction and quadratic effects are not statistically significant (P>0.05), also

the second order regression model is statistically significant (P>0.05).



Table 5.57 ANOVA table for Y, response for sorm for SNP

Source DF | SeqSS | AdjSS | Adj MS F P
Regression 9 324,1 324,1 36,0 831,08 | 0,000
Linear 3 318,5 318,5 106,2 2000,00| 0,000
Square 3 3,1 3,1 1,0 23,49 | 0,000
Interaction 3 2,6 2,6 0,9 19,92 | 0,000
Residual Error 10 0,4 0,4 0,0
Lack-of-Fit 5 0,1 0,1 0,0 0,16 0,969
Pure Error 5 0,4 0,4 0,1
Total 19 324,6

$=0,2082 R-89=99,9% R-Sq(adj) =99,7%
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In Table 5.57, we see that linear, quadratic and two-way interaction effects are

statistically significant (P<0.05), and the second order regression model is

statistically significant (7>0.05).

Table 5.58 EEC table for Y; response for sorm for SNP

Term Coef SE Coef T P
Constant 736,873 0,591 | 1247,2550 0,000
X1 5,600 0,544 10,3040 0,000
X2 61,400 0,544 112,9810 0,000
X3 8,100 0,544 14,9050 0,000
XI1*X] 0,818 1,036 0,7900 0,448
X2%X2 0,818 1,036 0,7900 0,448
X3*X3 1,318 1,036 1,2720 0,232
XI1*X2 -0,125 0,608 -0,2060 0,841
X1*X3 0,125 0,608 0,2060 0,841
X2*X3 -0,625 0,608 -1,0290 0,328

Table 5.59 EEC table for Y response for sorm for SNP

Term Coef SE Coef T P
Constant 42,665 0,072 596,1640 0,000
X1 1,430 0,066 21,7220 0,000
X2 5,140 0,066 78,0790 0,000
X3 1,840 0,066 27,9510 0,000
X1*X1 -0,236 0,126 -1,8830 0,089
X2*X2 -0,386 0,126 -3,0780 0,012
X3*X3 -0,286 0,126 -2,2810 0,046
X1*X2 0,325 0,074 4,4160 0,001
XI1*X3 0,125 0,074 1,6980 0,120
X2*X3 0,450 0,074 6,1140 0,000

As a result, the second order regression models are respectively;
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Y; = 736,873 + 5,600 x; + 61,400 x> + 8,100 x3 + 0,818 x;* + 0,818 x5 + 1,318
x52 - 0,125 xpx2 + 0,125 x5x3 - 0,625 x2%3

Y, = 42,665 + 1,430 x; + 5,140 x5 + 1,840 x3 - 0,236 x,° - 0,386 x5° - 0,286 x5* +
0,325 x5 + 0,125 x5 + 0,450 xx3 (5.22)

After building regression metamodels for both responses, they are verified and
validated.

5.4.2.1.2 Verification and Validation of SINP Metamodels

For verification, lack-of-fit tests are applied for both metamodels. As can be seen
from Table 5.56 and Table 5.57, the metamodels have no statistically significant
lack-of-fit (P>0.05) for both responses with 5% significance level (¢ = 0.05). R? is
99.9%, and Rz-aaj'usted is 99.9% for response Y}, and R’is 99.9%, and Rz-aay‘usted is
99.7% for response Y>.

For validation, 8 (2%) points (because there are 3 input factors with 2 level and we
want to see if metamodel is valid in the entire experimentation region) that selected
randomly in experimentation region, and from different design points, are used.
These 8 points are shown in Table 5.60. The simulation model is run at these
randomly selected points with 10 replications for each point. The values that are
denoted in the Simulation Model column of Table 5.60 are the average of these 10
replications. Also the values denoted in Metamodel column are predicted by fitted
second order regression metamodels. Since the entire ARE values are smaller than

3% the second order metamodels can be used for prediction.
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Table 5.60 Metamodels validation for SNP

Input factors Simulation model Metamodel ARE (%)
X | X2 | X; Y, Y, Y, Y, Y, Y,
1{ -02] 02| -0,6 737 40,1 719,1 | 40,20 | 2,43 0,25
21 02] -0,2] -0,2 725 41,4 724,2 | 41,52 ] 0,11 0,29
3] -0,2} 06| -0,2 774 44,9 771,4 | 44,85 ] 0,33 0,12
41 02 0,6] -0,2 774 45,6 773,6 | 4549 | 0,05 0,25
5] 02| -02] 0,6 734 42,2 728,9 | 42,27 ] 0,69 | 0,17
6} 06| -02| 0,2 736 42,6 730,0 | 42,71 | 0,81 0,25
7] 02| 06| 02 792 45,8 774,5 | 45,68 | 2,21 0,26
8] 06| 02| 0,6 758 45,7 758,1 | 45,59 | 0,02 | 0,24

-

After verification and validation of regression metamodels, Derringer-Suich

multi-response optimization procedure is used for optimization.
5.4.2.1.3 Derringer-Suich Multi-Response Optimization Procedure for SNP

In the current problem, since the target value for the fullness rate of the carriages
response (Y,) is 50%, the lower and upper limits are determined as 45% and 55%,
respectively. To decide the upper and lower limits on the average passenger time
spent in the metro-line response (¥;) the simulation model is run 20 times at the low
levels of all input factors. The lower limit is defined as the average of these 20
values, and is found as 663 seconds. To determine the upper limit, simulation model
is run 20 times at the high levels of all input factors, and the average value, 813
seconds, is found as upper limit.

We will use three values 0.1, 1 and 10 for ¢ and s. Therefore, nine situations

(combination of weights) appear to be evaluated.

For each combination of weights, the lower, target, upper values and weights for
two responses, and the optimum conditions with coded variables, and also
corresponding predicted responses at these coded values which are calculated from
the fitted models, in addition the individual desirability values and the composite

desirability values at optimum conditions are shown in Table 5.61.
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148

Composite Desirability = 0,87901

Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 663 663 813 0,1 1
Y2 Target 45 50 55 0,1 1
Global Solution
X1 = 1,00000
X2 = 0,43763
X3 = 1,00000
Predicted Responses
Y1 = 779,533; desirability = 0,86070
Y2 = 48,051; desirability = 0,95182
Composite Desirability = 0,90511
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 663 663 813 0,1 1
Y2 Target 45’ 50 55 1,0 1
Global Solution
X1 = 1,00000
X2 = 0,79593
X3 = 1,00000
Predicted Responses
Y1 = 801,626; desirability = 0,77265
Y2 = 50,000; desirability = 1,00000
Composite Desirability = 0,87900
Parameters
Goal Lower Target Upper Weight Import
Y1 Minimum 663 663 813 0,1 1
Y2 Target 45 50 55 10,0 1
Global Solution
X1 = 1,00000
X2 = 0,79593
X3 = 1,00000
Predicted Responses
Y1 = 801,626; desirability = 0,77265
Y2 = 50,000; desirability = 1,00000
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Table 5.61 (Continued)

Parameters
Goal Lower Target Upper Wdaght Import
Y1 Minimum 663 663 813 1,0 1
Y2 Target 45 50 55 0,1 1
Global Solution
X1 = 1,00000
X2 = ~-0,00147
X3 = 1,00000
Predicted Responses
Y1 = 752,745; desirability = 0,40170
Y2 = 45,528; desirability = 0,79869
Composite Desirability = 0,56642
Parameters
Goal Lower Target Upperx Weight Import
Y1 Minimum 663 663 813 1 1
Y2 Target 45 50 55 1 1
Global Solution
X1 = 1,00000
X2 = 0,43%92
X3 = 1,00000
Predicted Responses
Y1 = 779,674; desirability = 0,22218
Y2 = 48,064; desirability = 0,61284
Composite Desirability = 0,36899
Parameters
Goal Lowexr Target Upper Weight Import
Y1 Minimum 663 663 813 1 1
Y2 Target 45 50 55 10 1
Global Solution
X1 = 1,00000
X2 = 0,79593
X3 = 1,00000
Predicted Responses
Y1 = 801,626; desirability = 0,07583
Y2 = 50,000; desirability = 1,00000

Composite Desirability = 0,27537
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Predicted Responses

Y1 = 776,704; desirability = 0,00000
Y2 = 47,793; desirability = 0,00296
Composite Desirability = 0,00005

Parameters

Goal Lower Target Upper Weight Import
Yi Minimum 663 663 813 10,0 1
Y2 Target 45 50 55 0,1 1
Global Solution
X1 = 1,00000
X2 = (0,00914
X3 = 1,00000
Predicted Responses
Y1 = 753,388; desirability = 0,00010
Y2 =  45,591; desirability = 0,80770
Composite Desirability = 0,00891
Parameters

Goal Lower Target Upper Weight Import
Y1 Minimum 663 663 813 10 1
Y2 Target 45 50 55 1 1
Global Solution
X1 = 1,00000
X2 = 0,52796
X3 = 1,00000
Predicted Responses
Y1 = 785,083; desirability = 0,00000
Y2 = 48,552; desirability = 0,71040
Composite Desirability = 0,00019
Parameters

Goal Lower Target Upper Weight Import
Y1 Minimum 663 663 813 10 1
Y2 Target 45 50 55 10 1
Global Solution
X1 = 1,00000
X2 = 0,39150
X3 = 1,00000

Since the optimum levels of input factors are found by using the metamodels,

confirmatory simulation runs are needed at optimum input levels. The simulation

model responses shown in Table 5.62 are the average values of 10 replications.
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Table 5.62 Results of the confirmatory runs for SNP

Weight | Composite | Natural variables | Metamodel | Simulation
Y) | Y2 |desirability] Xi | X2 | X5 | ¥V, | Y2 | X;
0,90511 | 900 | 816 | 900 }779,5|48,05] 779

10 0,11 0,00891 900 | 751 | 900 | 753,4145,59]| 757 | 45,6
10| 1} 0,00019 | 900 | 829 | 900 ]| 785,1]48,55] 783 | 48,6

7
8

9] 10| 10§ 0,00005 | 900 | 809 | 900 |776,7|47,79] 776 | 47,8
0} Current X 900 | 600 | 900 | X X J694 (393

In this table, first nine rows reflect the global optimum solutions found by
Derringer-Suich multi-response optimization method aecording to weight

combinations, and the last row belongs to current situation.

Table 5.63 Factor values of confirmatory runs for SNP

Coded values | Natural values (second) | Natural values (minutes)
Xl Xz X3 X1 Xz X3 X] XZ X3
9 9

1,001 0,01 900 751 900 15,0 12,5 15,0
1,00] 0,53 |1,00 900 829 '900 15,0 13,8 15,0
1,00( 0,39 1,00 900 809 900 15,0 13,5 15,0
10]1,00]-1,00] 1,00 900 600 900 15,0 10,0 15,0

O 00 (|

In Table 5.63, factor values of confirmatory runs for SNP are given in the first

nine rows and the last row belongs to current situation.

First, the fullness rate of the carriages response (Y3) is checked. In Table 5.62, we
see that the fullness rate requirement 50% is provided by the second, third and sixth
rows. After determining the natural factor levels that provides the fullness rate

requirement, the minimum value for the average passenger time spent in the metro-
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line (Y;) is searched, and it is seen that the natural factor levels of these three rows

arc same.

The small differences between responses are caused by random numbers, so it
means 30 replications are done at these factor levels. The averages of these 30 values
are used for finding optimum levels. For X; = 15.0, X> = 14.5, X3 = 15.0 factor levels
the obtained values for the average passenger time spent in the metro-line (¥;), and
for the fullness rate of carriages (¥>) responses are respectively 799 seconds and 50.0

percent. This optimum point’s factor levels are demonstrated in grey colour in Tables
5.62 and 5.63.

As can be seen from Table 5.62 after optimization study the fullness rate of
carriages (Y) is increased by 10.7 percent and the average passenger time spent in
the metro-line (¥;) is increased by 105 seconds (15.13 percent). Although the current
average passenger time spent in the metro-line (¥;) value is less than optimum result,

it violates the fullness rate of carriages requirement (50%).



153

CHAPTER SIX
CONCLUSION

In this thesis, for an underground public transport system in Izmir city, the aim is
to find the optimum headways (input factors), to minimize the average passenger
time spent in the metro-line (the first response) with the requirement of fifty percent

(the second response) fullness rate of the carriages.

First, the problem in Izmir Metro is defined in detail. After explaining the
working logics of the system and simulation model, input data for model, made
assumptions before coding phase of the simulation model, flowcharts for occurred
events, some important attributes and variables that are used in model are given.
After that, flowcharts that denote modelling logic of the Halkapinar station are
demonstrated. Then, the verification and validation techniques that are used for

simulation model are given.

The built simulation model is generic model that easily changes to suit the
changes in headways, in the length of time periods, and in the number of carriages.
Simulation model can reply what-if questions as;

o What will be the values of responses if headwéys changes?

e What will be the values of responses if the carriage numbers of trains change?
And also the carriage numbers of trains can be different in two consecutive time
periods. Namely, the carriage numbers must be same for a certain time period,
but can be different through a day.

o What will be the values of respdnses if the lengths and number of time periods

change?

After building the simulation model, the optimization points are searched for four

problems, which are weekday morning (WMP), weekday afternoon (WAP), Saturday
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(STP) and Sunday (SNP) problems. First, metamodels are developed for both
responses for four problems. After verifying and validating the metamodels
Derringer-Suich multi-response optimization procedure is used for searching factor
levels. The developed metamodels are flexible for searching the factor levels for
different fullness rate requirements. Namely, the current fullness rate requirement is
50% for four problems, but it can be changed, also required values can be different

for each problem.

As a result, two optimum points found for WMP. For X;=9.8, X=9.9, X;=17.1,
Xs=9.0, X5 = 7.8 factor levels and X; = 10.0, X>=10.0, X3=7.5,X,= 7.8, Xs=17.7
factor levels the obtained values for the average passenger time spent in the metro-
line (Y;), and for the fullness rate of carriages (Y>) responses are respectively 625
seconds and 50,3 percent. After optimization study the fullness rate of carriages (¥>)
is increased by 4.1 % and the average passenger time spent in the metro-line (Y;) is
increased by 12 seconds (1.96 %) respect to current values. Although the current
average passenger time spent in the metro-line (¥;) value is less than optimum result,

it violates the fullness rate of carriages requirement (50 %).

Then, an optimum point is found for WAP. For X; =73, X; =62, X;= 6.8,
X4 =10.0, X5 = 10.5 factor levels the obtained values for the average passenger time
spent in the metro-line (¥;), and for the fullness rate of carriages (Y>) responses are
respectively 606 seconds and 50,2 percent. After optimization study the fullness rate
of carriages (Y>) is decreased by 0.7 % and the average passenger time spent in the

metro-line (¥;) is decreased by 7 seconds (1.14 %) respect to current values.

Next, an optimum point is found for STP. For X; = 10.0, X; = 5.5, X3 = 10.0,
X, = 15.0 factor levels the obtained values for the average passenger time spent in the
metro-line (Y;), and for the fullness rate of carriages (¥>) responses are respectively
590 seconds and 49.9 percent. After optimization study the fullness rate of carriages
(Y>) is decreased by 9.9 % and the average passenger time spent in the metro-line

(Y7) is decreased by 42 seconds (6.65 %) respect to current values.
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Last, an optimum point is found for SNP. For X; = 15.0, X; = 14.5, X3 = 15.0
factor levels the obtained values for the average passenger time spent in the metro-
line (Y;), and for the fullness rate of carriages (Yz) responses are respectively 799
seconds and 50.0 percent. After optimization study the fullness rate of carriages (¥>)
is increased by 10.7 % and the average passenger time spent in the metro-line (¥)) is
increased by 105 seconds (15.13 %). Although the current average passenger time
spent in the metro-line (¥;) value is less than optimum result, it violates the fullness
rate of carriages requirement (50%)." The current and proposed headways and

responses are shown in Table 6.1

Table 6.1 Current and proposed headways and responses

Current Proposed
X | X! X0 X, X | X | X X | X5
98] 991 7,1 90| 7.8
10,0 10,01 7,5| 7,8 7,7
73| 6,2| 6,8]10,0]10,5
10,0} 5,5{10,0({150] X
1501145150 X | X

Problem

wMpP |10,0| 7,5] 50| 7.5

wAap | 7,5| 50 7,5(10,0
STP 10,01 7,5110,0(15,0
SNP {15,0(10,0]15,0f X

The current and proposed train numbers are shown in Table 6.2. Train numbers

are calculated by using formula (4.1).

Table 6.2 Current (C) and proposed (P) train numbers

Problem

wMP

wAP
STP
SNP

The main contribution of the current study is to (1) solve the optimization
problem confronted in Izmir Metro Company by using RSM. To the best of our
knowledge this is the first study using RSM for a public urban transport system, and
(2) provide direction for public transport providers to find out optimum solutions
using RSM.
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