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ABSTRACT

Logistic regression analysis is the most p opular r egression t echniques a vailable
for modeling dichotomous dependent variables. Logistic regression is a mathematical
modeling approach that is used to describe the relationship of several predictor

(independent) variables X, X,,...,X_ to a dichotomous dependent variable Y,

p
where Y is typically coded as 0 or 1 for its two possible categories. Here, a set of
independent variables may be continuous, discrete, dichotomous (binary) or a

mixture of any of these.

In this study, a logistic regression model is concerned. In other words, this study
investigates the simple and multiple logistic regression model forms and several of
their key features, particulary how an odds ratio can be estimated from them.
Maximum likelihood procedures are used to estimate the model parameters of a
logistic model. Interpretation of the coefficients is explained by using odds ratio
values. When the model includes more variables than needed, the greater estimated
standard errors become. For this reason, there are some methods to find the best
fitting through variables for the model. The final model equations of these methods

can be different from each others. Here, the aim is to determine the “best” model.

A logistic regression model is developed by using a database of 1200 patients
with lung cancer in Izmir. In order to obtain a solution, univariate analysis, forward
selection and backward elimination methods are applied to cancer data. The SPSS

software package is used and results are evaluated.

Keywords: Binary Variable, Stepwise Logistic Regression (Forward, Backward),
Odds Ratio, Likelihood Ratio Test (G).



OZET

Lojistik regresyon analizi ikili bagimli degiskenleri modellemek igin
uygulanabilen en popiiler regresyon tekniklerinden biridir. Lojistik regresyon
X,,X,,..., X, gibi bagimsiz degiskenleri ile iki olasi kategori i¢in O veya 1 gibi
kodlanmis Y ikili bagimli degiskeni arasindaki iligkiyi tanimlamakta kullamlan
matematiksel modelleme yaklasimidir. Burada bagimsiz degiskenler seti stirekli,

kesikli, ikili veya bunlarin karisimi olabilir.

Bu ¢aligmada, lojistik regresyon ile ilgilenilmektedir. Baska bir deyisle, bu
calismada basit ve goklu lojistik regresyon model yapilar1 ve onlarin baz: anahtar
Ozellikleri Ozellikle de odds oramimin bu modellerden nasil hesaplanabildigi
aragtirlmaktadir. En g¢ok olabilirlik yontemleri lojistik modelin parametrelerini
tahmin etmek icin kullanilir. Katsayilarin yorumu odds oran degerleri kullanilarak
yapilmaktadir. Model gereginden fazla degisken igerdigi zaman, daha biiyiik standart
hatalar elde edilmektedir. Bu nedenle, degiskenler arasindaki en iyi modeli bulmak
icin bazi yontemler kullamilmaktadir. Bu yontemlerin son model denklemleri

birbirinden farklilik gosterebilmektedir. Burada amag “en iyi” modeli bulabilmektir.

Calismada lojistik regresyon modeli, Izmir ilindeki akciger kanserli 1200 hastaya
iliskin veriler kullanarak gelistirilmistir. Caligmada tek degiskenli lojistik regresyon
¢oziimlemesi, ileriye dogru segim ve geriye dogru eleme yontemleri uygulanmustir.
Coziimlemeler SPSS paket programi kullamlarak yapilmis ve elde edilen sonuglar
tartigilmagtir.

Anahtar Kelimeler: Ikili Degisken, Adimsal Lojistik Regresyon (Ileriye Dogru,
Geriye Dogru), Odds Orani, Olabilirlik Oran Testi (G).
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CHAPTER ONE
INTRODUCTION

There are many statistical approaches in predictive probability modeling. Five
popular techniques of predictive modeling are examined in literature. These are the
density transfer, the density regression, the significance regression, the discriminant
function analysis and the logistic regression analysis, respectively. The most popular
of these is known as the logistic regression analysis. It can be said that the use of
logistic regression is easier than the others. Because, its assumptions are less
constrained. Researchers are often interested in performing regression when the
response variable (outcome, dependent) is categorical. The logistic regression is used
when the response variable has only two categories. When the response variable has
more than two categoties, methods that extend the technique of logistic regression
are available. The choice of method depends on whether the response variable is

measured on an ordinal or nominal scale.

A nominal scale has categories that are not ordered. For example, an education
researcher may be interested in a nominal response variable such as what each
student decides to do after high school: attend collage, find a job, join the military or
something else. Logistic regression for a nominal response variable is called

nominal, multinominal, or polytomous logistic regression.

An ordinal scale has categories that are ordered. Letter grades for a particular
class (A, B, C, or D) and academic tracks (remedical, regular, or advanced

placement) are examples of ordinal variables.



In logistic regression, the odds ratio values of variables are examined to interpret

of the coefficients. This procedure is so easy in logistic model.

In addition, there are three statistical methods that are often employed in
determining which variables to include in a model: the univariate method, the
stepwise logistic regression method and the best subsets logistic regression method.
The stepwise logistic regression method contains two analyses: the forward selection
and the backward elimination. In stepwise logistic regression, selection or
elimination of variables from the model is based on a statistical algorithm that checks
for “importance” of variables, and either includes or excludes them on the basis of a
fixed decision rule. The likelihood ratio (chi-square) test, G, is used to assess
significance in logistic regression since the errors are assumed to follow a binomial
distribution. This test assigns a p-value to each variable to assess significance.
Therefore, the most important variable is the one with the smallest p-value. So, the

final model with appropriate variables is stated.

After fitting the model, three tests are used to determine the fit of the model.

These are the Pearson chi-square test, Deviance test and Hosmer-Lemeshow test.

This study contains five chapters. In chapter one, whole study is summarized
shortly. In chapter two, basic features of a logistic regression model is examined. The
general informations and the interpretation of coefficients of simple and multiple
logistic regression models are given. In chapter three, model building strategies and
methods for logistic regression model are given. In addition, some diagnostic
measures are used to look at the fit of the model. In chapter four, the univariate
analysis and two commonly used variable selection methods are examined and the
differences between them and their procedure steps are presented in the tables. In

chapter five, the conclusion of this study is given.



CHAPTER TWO

GENERAL INFORMATION ON LOGISTIC
REGRESSION

2.1 Regression Models with Binary Response Variable

In a variety of regression applications, the response variable has only two possible
outcomes, and it can be represented by a binary indicator variable taking on values 0
and 1. Binary response variables are known as binary responses or dichotomous
responses. These response variables are measured on a binary scale. For example, the
responses may be alive or dead, or present or absent. These outcomes can be coded 0

and 1, respectively. ( Freund and Wilson, 1996 )
2.2 Meaning of Response Function When Response Variable is Binary
The simple linear regression model is written as:

Y, =B, +B,X, +¢,, i=12,...,n 2.1)

where the outcome Y; is binary taking on the value of either 0 or 1. The expected

response E{Y,} has a special meaning in this case. Since Efe,}=0, it can be written

as:

E{Yi}=[30 +B,X; (2.2)



When Y, is a Bernoulli random variable, then its the probability distribution can

be written as follows:

Table 2.1 : The Probability
Distribution of Y;

Y; Probability
1 P(Y; =D =m;

0 | P(Y,=0)=1-m,

Thus, =, is the probability that Y,=1 and (1—=;) is the probability that Y,=0.

Expected value of a Bemoulli random variable is
E{Y,}=1(n;)+0(1-=,) =, (2.3)
So, E{Y, } is found as follows:
E{Y; }=B, +B,X; ==, 2.4)

As seen , when the response variable is O or 1 indicator variable, the mean

response always represents the probability that Y;=1 for the given level of the

independent (predictor) variable (X ). ( Neter and Kutner, 1996 )

The mean value of the response variable is called the conditional mean and it can

be expressed as “E(Y|x) ”. Here, Y denotes the response variable and x denotes a

value of the independent (predictor) variable. E(le) is called the expected value of

Y for given a value of X =x. In linear regression this mean may be expressed as an

equation linear in X, such as

E(Y[x) =B, +B,X 2.5)



This expression can take any value between —o and . Here X, B,, B,and Y

are called independent variable, intercept, regression coefficient and response
(dependent, outcome) variable respectively. On the other hand, since the response
variable is binary (dichotomous), the mean value of the response variable is greater

than or equal to 0 and less than or equal to 1 in the logistic regression. This can be

expressed as 0<E(Y[x)<1. The change in the E(Y|x) per unit change in x

becomes smaller as the conditional mean gets closer to 0 or 1. In the logistic
regression, the relationship between the independent (predictor) and response
variable is not a linear function. This can be seen in Figure 2.1 and this shape of the
curve is said to be S shaped and resembles the plot of a cumulative distribution

function of a random variable.

Figure 2.1 : Logistic Regression Function ( a: increasing, b: decreasing )

A A

E(Y) E(Y)

v

0 X 0 X

a: Incréasing b: Decreasing
2.3 Special Problems When Response Variable is Binary

There is no doubt, there are some special problems when the response variable is
binary (dichotomous). The error terms in linear regression model are assumed to
have a normal distribution with a constant variance for all levels of X. However,
when the response variable is 0 or 1 indicater variable, error terms are not only
distributed normal but also they don’t have constant variance. The error term

g; =Y, —(B, +B,X;) can take on only two values. If Y;=1, then the error term takes



the value as €, =1-n(x,)=1-B, —B,X; with the probability n(x,). On the other
hand, if Y,;=0, then the error term takes the value as ¢, = —n(x;) =B, ~ B, X, with
probability 1-n(x;). Thus, the assumption of normality does not hold for this

model. It is not appropriate.

Another problem with the error terms (¢;) is that they do not have equal variances
when the response variable is 0 or 1 indicator variable. The variance of Y, for the

simple linear regression model can be determined as follows: ( Neter and Kutner,

1996 )
V(Y,) =E(Y, -E(Y,)))> =(1-n,)’m, +(0-n,)2(1-m)=m (-7, (2.6)

Also, the variance of the error terms (€, ) is the same as that of Y,, because g, is
equal to (Y; —=;) and =, is a constant. So, it can be determined in a similar manner

as follows:
V(e;) =E(Y,)( - E(Y; )) ==, (1 - ;) @7

As seen from the equations (2.4) and (2.7), V(g;) depends on x;. The error

variances will differ at different levels of X.

The last problem is related with constraints on response function. Since the
response function represents probabilities, the mean responses should be constrained

as follows:

0<E(Y,)=nr, <1 2.8)



2.4 Introduction to Logistic Response Function

The conditional mean, denoted by n(x,), is expressed as follows:

_ _exp(B, +B:x;)
) = B ) = T B, + By @2

This specific form is called logistic response function. A transformation of n(x;)
is the logit transformation. This transformation is expressed by Hosmer and

Lemeshow, as follows:

o) =In| {1 BY=1x) (2.10)
= 1-n(x;) E(Y =0[x;) ‘
1-n(x,)=1- exp(B, +Bix;) _ 1 @.11)

1+exp(B, +B,x;) 1+exp(B, +B,x;)

Hence

exp(B0+ﬁlxiy
gxp) = nf———— L ORCo T RIM_yyghotny g, g, 212)
/(1+exP(Bo +PB,x;))

n(x;)

1-m(x;)

1

Here, the ratio in the logit transformation is called odds.

The importance of this transformation is that g(x;) has many of the desirable
properties of a linear regression model. The logit transformation is linear in its
parameters and it may be continuous. In addition, the logit may have range from —

to o, depending on the range of x;.



2.5 Fitting of Simple Logistic Regression Model

There is a sample of n independent observations and it is expressed as (Xx;,y;).
Here y, denotes the value of a binary response variable and x; is the value of the
independent variable for the ith subject. In simple logistic regression model, there is
only one independent variable. The unknown parameters which are B, and P, for

fitting the logistic regression model in the equation (2.9) are estimated.

In linear regression model, the least squares method is used to estimate the

unknown parameters (3, and f,). This method is based on minimizing the sum of

squared deviations of the observed values of the response variable from the predicted

values based upon the model.

In logistic regression model, when the method of the least squares is applied to the
model with a dichotomous outcome, the estimators do not have the same properties
in linear regression model. ( Hosmer and Lemeshow, 1989 ) The general methods of
estimation in logistic regression are investigated in three main concepts. These are

given below.

1. The Maximum Likelihood Method.
2. Tteratively Reweighted Least Squares Method.
3. The Minimum Logit Chi-Square Method.

In this study, the maximum likelihood estimation method will be used. Firstly, the
likelihood function is constructed in order to apply this method. This likelihood
function express the probability of the observed data as a function of the unknown
parameters. The maximum likelihood estimates of these parameters are chosen to be
those values which maximize likelihood function. As a result of this, the resulting

estimators are those which agree most closely with the observed data.



2.5.1 Likelihood Function

The parameters B, and B, are estimated through the method of maximum
likelihood. For pairs (x;,y;), since y; =1, the contribution to the likelihood
function is m(x;). Since y, =0, the contribution to the likelihood function is
1-m(x;). The pairs (x;,y;) the contribution to the likelihood function is shown in
equation (2.13). In addition, this method isolates the values of parameters that
maximize the likelihood function, where the likelihood function L(B,,B,) is defined

as the joint probability distribution for all of the data points. Since Y,’s have a

Bernoulli distribution, the probability density function can be defined as:
P(Y =y;) =f,(y;) =n(x;)" (1 - n(x,))"™ (2.13)
where y, =0 or y; =1 fori=12,...,n

Since the observations Y; are assumed to be independent, the likelihood function

can be defined as follows:

L(ﬁoaﬁl) = g(ylaan-ayn)'
[T (2.14)

[Tt Q- nx, )

i=]

Il

Il

In order to maximize this function, the derivative must be taken with respect to
each of the parameters. Then, the resulting equations would be set equal to zero and
solved simultaneously. This process can be simplified by performing the same
analysis on the natural log of the likelihood function, being that maximizing the
natural log of the function would result in the same value as maximizing the

likelihood function itself. Obtaining the log-likelihood function is expressed as:
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InL(B,.B,) =11L11£Iﬂ:(xi)”i ( ~7t(xi))"”f

i=t

n

= {infrx)7 (- mix ) |}

i=1

{ln[n(x )’*]+1n{(1 - (X ))Hi]}

™=

1]

i

{ ¥i h‘[ﬂ(xi)]“‘ a “")’i)lnh ””(Xi)]}

ﬁo“'ﬁxxi I eﬁa"‘ﬁlxi
LI TP ™ S A,
m e | T A=) L+ oPoBr

{1:[Bo +Bux, = ne PPl 1=yl Int+ 0% ]}

3
3

ll i i

—

1=

=3 {7:(B + Bxp) - In(l+ &> | @.15)

Mn

-
kR

Now taking the derivative, first with respect to B, and then with respect to §, and

setting each equal to zero, the following likelihood equations are formed as follows:

6]30 = 1 + eBa*Bx‘n

an(ﬁo,B) zn:{y Porbuni }:0

2,.: - a(x;)]= i[Yi"(BO+lei)]=0 (2.16)

z] i=1

einL(B,.B,) =i{ VX, — Xgeﬂwﬂm }z()

BBI P 1+ eﬂo‘*ﬁlx
=¥ x, [y ~nx)]= 3, [y; - B +Bix)]=0 @.17)
i=1 i=

Because the likelihood equations are not linear, solving these equations
simultaneously requires an iterative procedure that is normally left to a software

package.
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2.5.2 Maximum Likelihood Estimation Method

Maximum likelihood estimation method is used to calculate the logit coefficients.
The value of $=(B,,B,) given by the solution to likelihood equations (2.16) and
(2.17) is called the maximum likelihood estimate and is denoted as [3=([§0,[§1).
fi(x;) is the maximum likelihood estimate of m(x;) and it estimates the conditional
probability that Y; is equal to 1, given X =x;. In addition, the sum of the observed
values of y; is equal to the sum of the expected values and it is expressed as follows:

( Hosmer and Lemeshow, 1989 )

=Y Ax,) 2.18)

i=1

If these estimated values are substituted into the response function (in equation

2.9), the fitted response function is obtained. The fitted value for the ithcase is

expressed as #(X;).

Also, fitted simple logistic response function for the ith case is follows:

i(x,) = — B *Bix,) (2.19)
1+exp(B, +B,;x;)

2.5.3 Testing for the Significance of the Coefficients

After estimating the coefficients, an assessment of significance of the variable in
the fitted model is concemed. This involves formulation and testing of statistical
hypothesis to determine whether the independent variable in the model is

significantly related to the response variable. ( Hosmer and Lemeshow, 1989 )
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The approach in testing for the significance of the coefficient of a variable in the
model is related with the following question. Does the model which includes the
variable in question tell us more informations about the response variable than does a
model which does not include that variable? This question is answered by comparing
the observed values of the response variable to those predicted by each of two
models. If the predicted values with the variable in the model are better or clearer,
than when the variable is not in the model, then the variable in question is said to be
significant. The comparison is based on the log-likelihood. In addition, it is not
important question of whether the predicted values that are obtained from saturated
model have accurate relation or representation o fthe observed v alues o f response

variable in an absolute sense or not. This is concerned in goodness of fit.

In logistic regression model, there are three commonly used tests for hypothesis

testing,

1. Likelihood Ratio Test (G Statistic).
2. Wald Test.
3. Score Test.

2.5.3.1 Likelihood Ratio Test

Comparison of observed to predicted values is based on the log-likelihood
function in logistié regression. The model which includes all possible terms
(including interactions) is called as saturated model. In addition, a saturated model is
one that contains as many parameters as there are data points. The current model is
the subset of the saturated model. The current model does not include the variable
investigated by the researcher. The likelihood ratio test statistic is —2 times of the
difference between the log-likelihoods of saturated and current model. The
distribution of the likelihood ratio test statistic is closely approximated by the chi-
square distribution for large sample sizes. The degress of freedom (df) of the
approximating chi-square distribution is equal to the difference in the number of

regression coefficients in the two models. (NCSS )
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The comparison of observed to predicted values using the likelihood function is

based on the following expression:

De— ‘hke.hhood of the current model (2.20)
likelihood of the saturated model

D= —2[1n(1ikelihood of the current model) — In(likelihood of the saturated model)]

This expression is called likelihood ratio. Using minus twice its log is necessary to
obtain a quantity whose distribution is known. Also, this procedure can be used for
hypothesis testing purposes. This test is called likelihood ratio test. Recalling the log-
likelihood function is necessary to obtain deviance statistic. This equation is written

as follows:

InL(B,.By) =ln] [(x,)" (- nx, )

i=1

= > {y; Infn(x)]+ @ -y Infl - m(x,)] @21

i=]

This equation can be substituted into the formula for the deviance and then

manipulated in order to get the following equations:

i=1 i=1

D= —2{[2 (v, In((x,)) + (L - y;) In(l - fn(xi)))} - [z (v: In(y;) + (1 - y;) Il - y,))

D= —2{[2 (y; In((x;)) - y; In(y;) + 1 - y;) In(l - *(x;)) - (1 ~ y; ) In(1 ~ y; ))]}

=25y, X2 -y 282 e

i —

i

)



14

These equations are called the deviance. The last equation is usually used more
than the others. The deviance for logistic regression model plays the same role as

SSE in linear regression.

In order to determine whether the parameter is significant to the model or not, the
deviance of the model containing the independent variable is compared with the
deviance of the model without the independent variable. This change in D is called G
statistic. This statistic in logistic regression plays the same role as the numerator of
the partial F test in linear regression. Therefore, the test statistic, G, is expressed as

follows:

G = D(for the model without the variable) — D(for the model with the variable)

G=

ol likelihood of current model without f3,
likelihood of saturated model

likelihood of current model with f3,
likelihood of saturated model B,

likelihood of current model without B, )

G=-2In| —— -
likelihood of current model with f3,

G = -2 In(likelihood of current model without B, )
+ 2 In(likelihood of current model with 3, ) (2.23)

The likelihood of the saturated model is common to both values of the D. It is

different computation of G.
G=—2In hk.ehh.ood w1tl.10ut the va.u'lable (2.24)
likelihood with the variable
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It is easy to determine the maximum likelihood estimate of B, when the single

independent variable is not in the model. The maximum likelihood estimate of B, is
In(n, /n,) where n, =Y y;and n, =) (1-y;). The predicted value is constant
i=1 i=1

and it is expressed as n, /n. G is written as follows:

B16)
G=-2In| —~27 \T : (2.25)
)

G= Z{X [y, In(&,) + (1 - y;) In(1 = #;)] - [n, In(n, ) + n, In(n,) - nln(n)]} (2.26)

i=1

In checking the significance of the coefficient, the following null and alternative

hypotheses are written as follows:
H,:B,=0 H,:B, #0 (2.27)

The statistic G has a chi-square distribution with 1 degrees of freedom under
H, :p, =0. The p-value associated with this test is P(y*@r-y > G). If this p-value is

less than given o -level, then the null hypothesis is rejected. This is a statement of
the s tatistical e vidence for the independent v ariable. B ut this i ndependent v ariable

must be found important by the researcher too.
2.5.3.2 Wald Test

The other test for significance of a variable is Wald test. Wald test is based on the

comparision between maximum likelihood estimate of the slope parameter fi, and an

estimate of its standard error. Standard error of [31 is provided by the square root of
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the corresponding daigonal element of the covariance matrix V(f}) . This test for the

logistic regression model is as follows:

W=—bL (2.28)
SE(B,)

Under the hypothesis that B, =0, W is a standard normal distribution. Two tailed p-
value is evaluated by P(IZI > W). Here, Z denotes a random variable following the

standard normal distribution. If this p-value is less than given a-value, then the null
hypothesis is rejected. Generally, this a -value is taken on 0.05. In addition, p-value

can be defined as follows:

p-value=P(Z| > the observed test statistic) or

p-value= 2P(Z > the observed test statistic) (2.29)

This test also can be written in an alternative manner. Because the squaring a
normal random variable will result in a chi-square random variable with 1 degrees of

freedom. So, the Wald test statistic can be written as follows:

(B )
(SE(BI)J ¢

Where W2~%2u-an. In accordance with this equation, the decision rule must be
adjusted such that the null hypothesis is rejected when p-value that is evaluated by

P(Ile > W?) is less than given a-value.

For a single variable model, using the Wald test is so easy. But the iterative
computation needed to obtain the maximum likelihood estimates can be considerable

for large data sets with many variables.( Hosmer and Lemeshow, 1989 )
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2.5.3.3 Score Test

The score test is the another test for the significance of a coefficient. The most
important advantage of this test is to reduce computational effort to the other tests.
The score test is based on the conditional distribution theory of the derivatives of the

likelihood equations. The test statistic for the score test (ST) is calculated as follows:

ixi(Yi -y)
ST= il =
\E(l—?)Z(Xi -%)°

i=l

(2.31)

Under the hypothesis that B, is equal to zero, the two tailed p-value is evaluated

by P(|Z] > ST) < a -level and this test statistic has a standard normal distribution.

2.6 Fitting of Multiple Logistic Regression Model

Here, multiple logistic regression model for the case of more than one

independent variable is fitted. Also, this model is called “the multivariate case”.

In this setting, the vector X=(x;,X,,...,X,) represents the collection of p

independent variables for this model. The equations for the probability and the logit

transformation can be expressed as follows:

2(E) = exp(B, +Byx, +B,x, +-+B X)) exp(g())
1+exp(B, +B,x, +P,X, ++++B,x,) 1+exp(g(¥))

2.32)
8(®) =B +PB,X, +B,X, +...+B X, (2.33)

There is a sample of n independent observations and it is expressed as (X,,y;).

Where y; denotes the value of a dichotomous response variable and X; is the value
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of the independent variables for the ith subject. As in the univariate case, the

maximum likelihood estimates of the parameters are used and it is shown as:

E=(BO’B1""’Bp)’

The likelihood function for the multiple logistic regression model is expressed as:

L@ =] [#&,)" (- ()" 2.34)

i=1

In this case, there are p+1 likelihood equations which are obtained by
differentiating the log-likelihood function with respect to the p+1 coefficients. The

likelihood equations which result are expressed as follows:

, ly; -nx)]=0 (2.35)

i=1

o

Yxly -n@)l=0  j=12,..,p (2.36)

i=]

As in the univariate model, the solution of the likelihood equations requires
special package programs. Maximum likelihood estimates of the parameters can be
found in many packages (SPSS, Minitab, SAS).

Let ﬁ denote the solution to these likelihood equations. Here, the fitted values for

the multiple logistic regression model are the #(X,), the value of

A(,) = —ZPEE)) (2.37)
1+exp(E(X;)

is computed using  and X..
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Standard errors for the coefficients, Sﬁ(ﬁj), are given along with the f ;

(j=L2,...,p).

The method of estimating the variances and covariances of the estimated
coefficients follows from theory of maximum likelihood estimation. This theory
states which estimators are obtained from the matrix of second partial derivatives of

the log-likelihood functions.

If we let
boxy o xy,
X=|: ¢ " and (2.38)
1 X1 X np nx{p+1)
7, (1-7) 0 0
0 A,1-%,) ... 0
v=| . 2(: 2) : ; = diag|f; (1~ #;)] (2.39)
0 0 o Ry (-R,) ]

then f(ﬁ)= [X'VX](MMM) is called information matrix. The variances and

covariances of the estimated coefficients are obtained from the inverse of this matrix.

The estimated variance and the confidence interval of the estimated coefficients

are denoted as follows:
var(B) =[x'vx[* (2.40)

B, +Z,_,,SE®,) SE =+/Var (2.41)
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P 2
The estimated logit is §(§)=ZBJ.X ; and the estimate of its variance is
=0

var[g(%)]=x' {Vﬁr(ﬁ)} x . Hence the confidence interval for the logit is evaluated

as follows:
E®)*Z, ,, SEER) (2.42)

This is used to obtain a confidence interval for the fitted value or estimated

logistic probability as follows:

expla(®) £ Z,_,SE@()}

= Ay (2.43)
1+ exp{g(x) gl Z,_a/st(g(x))}

2.6.1 Design Variable

If some of the independent variables are discreate, ordinal or nominal scaled
variable (categorical variable) with more than two levels, then the model differs from
general formula in equation (2.33). For example, race, sex, regions of Turkey,
number of treatment groups and so on... If the number of variable categories is equal
to k, then k-1 design variables must be created. For example, one of the independent
variables is race and that is coded as “white”, “black” or “other”. Here, two design
variables are necessary. When the respondent is “white”, the two design variables,

D, and D,, would both be set equal to zero; when the respondent is “black”, D,
would be set equal to 1 while D, would still equal 0; when the respondent is “other”,
D, would be set equal to 1 while D, would still equal 0. ( Hosmer and Lemeshow,

1989 ). It is shown in Table 2.2.
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Table 2.2 : The Coding of the Design Variables for

Race
Design Variable
Race D, D,
White 0 0
Black 1 0
Other 0 1

The notation to indicate design variables is more different than the logistic

regression model. Suppose that the jth independent variable x; has k; levels. The
k; —1 design variables are needed and they are denoted as D, . In addition, the
coefficients for these design variables are denoted as f ms m=1,2,...,k, —1. The

logit for a model with p independent variables and the jth independent variable

being discrete is expressed as:

k;-1
g®) =By +B.X, +.oot Y BmDjm +B,X, (2.44)

m=]
2.6.2 Testing for the Significance of the Model

The analysis of the test of significance in multiple logistic regression model
(multivariate c ase) is similar to simple logistic regression m odel (univariate c ase).
Three tests are used for the hypothesis testing. These tests are the same as univariate

case.
2.6.2.1 Likelihood Ratio Test

The parameters in the multiple setting are once again determined through
maximum likelihood estimation method, because Y is still a Bernoulli random
variable with the same probability distribution. In addition, the derivation of the

maximum likelihood estimators remains the same, with the expection of the
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inclusion o f m ore p arameters. T hus, the 1og-likelihood e quation t akes the form as

follows:

ImL(B,,B,s-...B,) = InL(B)
=3 {5 (Bo +Buxy +.oot By x,) ~ In(l+ exP(B, +ByXy; +... + B, x )} (2.45)

i=1

In the same manner as before, the equations resulting from taking the derivative of
the log-likelihood equation with respect to each of the parameters and then setting
each derivative equal to zero are solved simultaneously in order to obtain the

estimates.

The likelihood ratio test is used for overall significance of the p-coefficients for

the independent variables in the model. The test is based on the G statistic. “The only

difference is that the fitted values, %, under the model are based on the vector

containing p+1 parameters, ﬁ Under the null hypothesis that p “slope” coefficients
Jor the covariates in the model are equal to zero, the distribution of G will be chi-
square with p degrees of freedom.”’( Hosmer, D. W. & Lemeshow S., 1989, Applied
Logistic Regression, John Wiley & Sons p:31 )

In order to determine whether the model is significant or not, the log-likelihood of

the model without the variable(s) must be compared with the log-likelihood of the
model with the variable(s). The test statistic, G, is calculated as follows:

(2.46)

G=_2 ln[ likelihood without the variable (s)]

likelihood with the variable (s)

In addition, G may be calculated in other ways as follows:

G =2{ 2“;[31i In(®;) + (1 - y;)In(1 ~ %,)]~ [n, In(n,) + n, In(n,) —nln(n)]}

i=1
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G =2{log - likelihood with the variable(s) - [n, In(n, ) + n, In(n,) - nIn(m)] }

G = -2{(log - likelihood for reduced model) - (log - likelihood for full model)}
(2.47)

In checking the significance of the model, the following null and alternative

hypotheses are written as follows:

H,:p,=B,=...=p,=0
H, :Atleastoneof the =0 (2.48)

The statistic G has a chi-square distribution with (v, —v,) degrees of freedom.
Here, v, equals to the number of variables in the full model +1 and v, equals to the
number of variables in the reduced model +1. For this test, the decision rule requires
that p-value is P{x.z(l-u,di‘:(vz-—v,)) >G} . If this p-value is less than o-value, H, is
rejected. This means that the model would be deemed significant. Here, any or all of
the coefficients are nonzero. a -value is usually accepted as 0.05. For this reason, p-
value is compared with a =0.05 level. On the other hand, if p-value is greater than

a -value, then the reduced model is as good as the full model and the null hypothesis
(H,) is failed to reject. In addition, if the statistic G is greater than % ’(-a.if=(v,-v,)),

then H,, is rejected. The model is accepted as significant.

2.6.2.2 Wald Test

After testing the significance of the model, at least one or perhaps all p
coefficients can be different from zero. The Wald test statistics are used to see which
variables are significant. These statistics have the standard normal distribution and

they are evaluated as follows:
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A~

[5.
W, =—2—~Z(a/2 2.49
= SEG) (a/2) (2.49)

Under the hypothesis that B, =0, two tailed p — value is evaluated by P(jZI >W).

Here, Z denotes a random variable following the standard normal distribution. If this
p-value is less than given a-value, then the null hypothesis is rejected. Generally

this o -value is taken as 0.05. For this test, p-value can be defined by equation (2.29).

For multivariate case, Wald test is used in statistical package programs. This W
value is then squared, yielding a Wald statistic with a chi-square distribution.
However, several authors have identified problems with use of the Wald statistics.
Menard warns that for large coefficients, standard error is inflated, lowering the
Wald statistic (chi-square) value ( Menard, Scott and Stanley Lemeshow, 1996,
Applied Logistic Regression Analysis, Sage Publications Series: Quantitative
Applications in the Social Sciences, M0:106). Agresti states that the likelihood ratio
test is more reliable for large sample sizes than the Wald test. ( Agresti, Alan, 1996,
An Introduction to Categorical Data Analysis, Jhon Wiley and Sons, Inc ) The Wald

test is obtained from the following vector-matrix calculation.
[T—2T1"2
Mk (2.50)

W has a chi-square distribution with p+1 degrees of freedom under the hypothesis
that each of the p+1 coefficients are equal to zero. A similar situation can be done
with excluding 3, from the analysis, then W will be distributed as chi-square with p

degrees of freedom.

As said, the model containing all the variables is called the full model and the
model containing some variables thought to be significant is called the reduced
model. The next step is to compare reduced and full model. The comparision of two

models is evaluated by G statistic. After the analysis, if it is found that the reduced
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model is not equivalent to the full model (if we reject H,), then the variables

excluded in the reduced model are considered necessary. In this case the full model is

used.

2.6.2.3 Score Test

Score test is based on the conditional distribution of the p derivatives of L(E)

with respect to E The computation of the score test is as complicated as the Wald

test.
2.7 Interpretation of the Coefficients

The estimated coefficients for the independent variables give the slope or rate of
change of a function of the dependent variable per unit of change in the independent
variable. Interpretation requires two issues. First issue is to determine the functional
relationship between dependent variable and the independent variable(s). The second
issue is to define of the unit of change for the independent variable. The function of
the dependent variable yields a linear function of the independent variables. This is
called a link function. In linear regression model, it is the identity function. y is

linear in the parameters and it is shown as y=f, + B,x . In logistic regression model,

the link function is the logit transformation and its expression is shown in equations

(2.10 and 2.12).

In linear regression model, the slope coefficient, B,, is equal to the difference

between the value of the dependent variable at x +1 and the dependent variable at

X, for any value of x. It is expressed as follows:

B, =ly(x =x+1)-y(x =x)| 2.51)
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Let y(x)=B,+B;x then y(x+1)=B,+p,(x+1)=p,+p,x+p, 50
yx+1)-y(x)=B, +B,x)+B, -(B, +B,x)=p,. Hence, B, is equal to change in y

for a unit change in x.

In logistic regression model, g(x + 1) is expressed as follows:
g(x + 1) =Infr(x + 1)/( - n(x + 1))} =B, +B,(x +1) =B, + B,x + B, (2.52)
so g(x+D)-gx)=gx+D)-(B, - B, (x)) =P, . The logit difference is equal to B, .

To interpret the coefficient B,, the meaning on the difference between logits in

logistic regression model must be investigated. This depends on the nature of the
independent  variable. Independent variable 1is investigated in three

issues.(binary=dichotomous, polytomous, continuous)
2.7.1 Dichotomous Independent Variable

In this case, independent variable (x) can take only two values and it is coded as

0,1. In logistic regression model, there are two values of n(x) and two valuesof

1-n(x). These are shown in Table 2.3.

Table 2.3 : Values of the Logistic Regression Model When the Independent Variable is

Dichotomous
Independent Variable X
x=1 x=0
y=1 a=1‘t(l)= exp(BO + Bl) b =7t(0) = exp(Bo)
Outcome 1+exp(B, +B,) 1+exp(B,)
Variable { (1) 1 d<1 ©) 1
. C=1—Tl)= =]l-7 = —
y | 77 T+ exp(B, +B,) 1+exp(B,)
Total 1 0
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The odds of the outcome being present among individuals with x =1 is expressed

as;

P(y=Ix=1) _ =(1) 2.53)
P(y=0x=1) 1-n(l) '

The odds of the outcome being present among individuals with x =0 is exy -essed

as:

P(y=1x=0) _ #(0) 2.54)
P(y=0x=0) 1-m(0) '

The logit is defined to be the logarithm (natural exponential) of the odds. In other
words, “log of the odds” or “log odds” is called logit. The logit is expressed as
In(n(x)/(1 - (x))). They are defined by g(1) and g(0) for dichotomous indepgndent

variable and shown as follows:

g(1)=1n(1 fiil)) g(0)=1n(1 f(no()O)] (2.55)

The “odds ratio” is defined as the ratio of the odds for x =1 to the odds for x=0

and it is expressed as follows:

n(y

_ (1-n(1))

OR == (2.56)
(1-n(0))

The log of the odds ratio is called logit difference (log odds ratio) and it is

expressed as:

In(OR) = Infr(1)/(1 - =(1))] - In[r(0)/(1 - ~(0))] = g(1) - (0) (2.57)
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OR and log odds ratio (logit difference) are expressed for a dichotomous

independent variable in below respectively,

OR = [F¥PB0 + B1)/( + exp(By + B )]/ + exp(B, )l + exp(B, ))]
[exp(Bo)/(1 + exp(Bo )][1/(1 + exp(B, +B,))]

=w=exp(ﬁl)=e”‘ (2.58)
exp(B, )
In(OR) =B, (2.59)

OR can take any value between 0 and . The odds ratio gives us the effect of a
one-unit change in X on the probability that Y =1. If the odds ratio equals 1, the

effect is estimated to equal 0. If the odds ratio is greater than 1, for example OR
equals 1.3, a one-unit increase in X raises the probability of Y =1 by 0.3, or 30%.

On the other hand, If the odds ratio is less than 1, for example OR equals 0.7, the
effect of X on Y is negative: a one-unit increase in x leads to a 30% reduction in the

probability of Y =1.

The variance is evaluated in the case when X is dichotomous as follows:

Var(@,) =E+%+%+ﬂ (2.60)

a,b,c,d are cell frequencies in the 2x 2 table of Yx X.

In addition, ﬁ, and OR are evaluated without using MLE in logistic regression
model as follows:
~ afc

OR = v B, =In(OR) (2.61)
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The distribution of the estimate of OR tends to be skewed to the right; it is clearly
not normally distributed. OR istakentobenormal for large sa mple sizes. Thus,

confidence interval is usually based on fil which is closer to being normally

distributed. f,~N(B,, Var(B,))
The confidence interval for the odds ratio is given by
expP, £ 2, SEB))) (2.62)

2.7.2 Polytomous Independent Variable

In this case, if the independent variable takes three or more levels, then, it is called
polytomous independent variable. The design variables to represent the categories of
the polytomous independent variable are created. For example, nominal scale
variable X is coded at 4 levels. Thus, (4-1)=3 design variables are created and they

are shown in Table 2.4.

Table 2.4 : The Coding of the Design

Variables for Independent Variables

Coded Four Levels
Design Variables
X Dy D, D;
AQD) 0 0 0
B(2) 1 0 0
c®3) 0 1 0
D (4) 0 0 1

Here, A is called the reference group. The design variable D, gives the
comparison of group B to the reference group A and D, gives the comparison of
group C to the reference group A and also D, gives the comparison of group D to

the reference group A. This procedure continues to k groups for any variable and

k-1 design variables are created.
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The unknown parameters and the odds ratio values are determined through
maximum likelihood estimation in logistic regression. But the odds ratio values can

be evaluated without using logistic regression. They are shown in Table 2.5.

Table 2.5 : Cross-Classification of Independent Variables and Status for 95

Subjects
A B C D Total
Present 5 15 5 5 45
Absent 10 15 20 15 50
Total 30 30 15 20 95
Odds Ratio (OR) 1.0 2.0 0.5 0.67
In(OR) 0.0 0.69 -0.69 -0.40

For B the estimated odds ratio is (15x10)/(15x5)=2 with using A as the

reference group. The log of the odds ratios are given in the last row of this table.

When the logistic regression model to the data using design variables is obtained,
the same solution for the coefficients is found. This does not happen by chance. The
calculation of the logit difference is shown simply. For the comparison of C to A this

is as fallows:

In{OR(C, A)}=2(C) - §(A)
={éo "'[311 x (D, =O)+l§12 x(D, =1)+[§‘13 x (D, =O)}

~ B +Bu x (D, =0)+ B, x(D, =0)+ B, x (D, =0)}

=B, (2.63)

The estimated standard error of the estimated coefficient for design variables is
found by using the cell frequencies from the contingency table. This is expressed as

follows:

12
LI 1:| (2.64)

SE@,)=|=+—+=+—
®x) [5 20 5 10
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After these computations, 100 (1 - a) % confidence interval for the coefficient can

be obtained using the following formula.
By £Z,.., SBGB,)} (2.65)

Here, i refers to the reference group subscript, and j is the subscript of the group
which is compared to the referent group (j=1,2,....,k-1). 100(1-a)%

confidence interval for the odds ratio is obtained as follows:
explf; £ Z,_o, SEG,)) (2.66)

2.7.3 Continuous Independent Variable

In this case, when there is an independent continuous variable in the model, the
unit of this variable should be defined. Under the assumption that the logit is linear in

the continuous variable, X, then it is expressed as: g(x)=f, +B,x. Here, B,

represents the change in log odds ratio for an increase of 1 unit in X and it is shown

as follows:
gx+D) =B, +B;(x+1) =B, +B,x +P, (2.67)
g(x +1) —g(x) =B, for any value of X.

Most often the value of “1” is not biologically very interesting. For example,
increased risk for 1 additional year of age or mmHg in systolic blood pressure or
mg/100 ml of cholesterol are not very interesting. But, A change of 10 years or 5
mmHg or 25 mg/lbO ml may be more meaningful. For this reason, the unit of

independent variable is very important.

The log odds ratio for a change of ¢ units in X, odds ratio and variance of the

variable are expressed respectively as follows:
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x=g(x +c¢) —g(x) =B, (2.68)
OR(x +¢,x)=¢e® (2.69)
Varfin(OR (x + ¢, x))}=c?VarB,) (2.70)

100% confidence interval is evaluated as:
exp(c B, — Z, ,, cSE(B,)) <OR <exp(cP, +Z,, cSE(B,)) @.71)

2.7.4 Multivariate Case

In general, there are more than one independent variable in logistic regression
models. To statistically adjust the estimated effects of each variable in the model for
differences in the distributions and associations among the other independent
variables is the goal of multivariate case. Applying this situation to a multivariate
logistic regression model, each estimated coefficient provides an estimate of the log

odds adjusting for all other variables included in the model.

The model which includes two independent variables is assumed. One of them is
continuous and the other is dichotomous variable. Primary interest is focused on the
effect of the dichotomous variable. The logistic regression model with two variables

is expressed as follows:
Y =B, +B,X, +B,X, (2.72)

X,, X, are continuous and dichotomous variables, respectively. Here, B,
explains the difference of Y between two different groups (X, =0,X, =1) and B,
explains the rate of change in Y per 1 unit of change in X,. The mean of continuous

variable (X,) for each of two groups are written as a,, a,, respectively. y, is the
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mean value of Y for group 1 (i=1, 2). Comparison of the mean value of Y for two

groups is expressed by the following difference:
Y2~ Y, =B, +B,(a, —a,) (2.73)

Here, the value of Y for two groups of X, with the adjustment for X, are
compared. Then, the log odds ratio obtained that is expressed as exp(B,) is called the

'X," adjusted odds ratio.

For example, the data summarized below show the basis for an example of
evaluating the estimated logistic regression coefficient for a dichotomous variable
when the coefficient is adjusted for a continuous variable. In addition, results of

logistic regression model are shown in Table 2.7.

Table 2.6 : Descriptive Statistics for Two Groups of 70

Variable Group 1 Group 2

Mean Sd. Mean Sd.
Cancer 0.30 0.46 0.80 0.40
Age 40.18 5.34 48.45 5.02

Table 2.7 : Results of Fitting the Logistic

Regression Model
Variable: Estimated Coefficient | Standard Error
Group 1.559 0.557
Age 0.096 0.048
Constant -4.739 1.998

According to Table 2.6, the univariate log odds ratio for group 2 versus group 1 is

In(OR) = 1n(0.80/0.20) - In(0.30/0.70)= 2.234, and the unadjusted odds ratio is

OR =9.34.

There is a considerable difference age distribution of two groups, with women in

group 2 being on average nearly 8 years older than group 1. It is also easy to
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determine in logistic regression with logit difference. An approximation to the

unadjusted odds ratio is obtained by exponentiating the difference y, —y,.

y, =¥, =[-4.739 +1.559 + 0.096(48.45)] - [- 4.739 + 0.096(40.18)]
=1.559 + 0.096(48.45 — 40.18) = 2.35292
OR =2.35292=10.52

The discrepancy between 10.52 and the actual unadjusted odds ratio, 9.34, is due

to the fact that the above comparison is based on the difference in the average logit.



CHAPTER THREE
MODEL BUILDING STRATEGIES

3.1 Model Building Procedures

If there are more variables included in the model, then estimates of standard errors
become greater. While there are many independent variables in the model, model
building and devoloping include more complex situations. Determining a strategy
and a method are very necessary for handling these more complex situations. For this
reason, to select less variables is very important. There are different ways used for

variable selection in logistic regression model, such as:

1. The Univariate Analysis.
2. The Multivariate Analysis.
a) Stepwise Logistic Regression Methods.
i) Forward Selection.
i) Backward Elimination.

b) Best Subset Logistic Regression Method.

Stepwise logistic regression method is most often used in situations where the
“important” independent variables are not known and the associations with the
outcome is not understood well (AIDS, Cancer etc...). For this reason, it is not known
whether variable is significant or not in the model. Stepwise logistic regression
method offers a fast and effective means of screening a large number of variables

and simultaneously fit a number of logistic regression equations. The selection
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process becomes harder as the number of variables increases, because of the rapid
increase in possible associations and interactions ( Agresti, 1990 ). For this reason,
the selection of any variable is very important. In this study, the univariate analysis
and the stepwise logistic regression method from multivariate analysis will be used

for variable selection.
3.1.1 The Univariate Analysis

The v ariable se lection process begins with univariate analysis o f each v ariable.
For categorical (nominal or ordinal) and continuous variables with few integer
values, the univariate analysis is done with a contingency table of outcome (y=0,1)
versus the k levels of the independent variable. The value of the likelihood ratio test
for the significance o f the c oefficients for the k-1 d esign v ariables in a univariate
logistic regression model that contains single independent variable is exactly equal to
the likelihood ratio chi-square test with k-1 degrees of freedom. In addition, it is a
good method to estimate the individual odds ratios and their confidence limits using
one of the levels as a reference group for the variables exhibiting at least a moderate

level of association.

If a cell contains no observation, this cell is called “the zero cell” and this
situation should be paid extra attention. The zero cell yields a univariate point
estimate for one of the odds ratios of either zero or infinity. The observations should
be designed before making a univariate analysis. Some methods are used. For this
situation, one of them is to eliminate the category completely, another one is to
collapse the categories of the independent variable in some sensible fashion to
eliminate the zero cell and the last is to model as if it were continuous in the case that

the variable is ordinal.

The univariate analysis involves estimation of slope coefficient for the univariate
logistic regression model containing only one variable, estimation of standard error

of the estimated slope coefficient, the Wald test, the likelihood ratio test (G) for the
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significance of the coefficient, the individual odds ratio, the p-value of the

coefficient, the 95% CI for the odds ratio and the p-value of the likelihood ratio test.

The variables are selected for the multivariate analysis after fitting the univariate
analysis. Any variable whose univariate test has a p-value <£0.25 is considered as
candidate for the multivariate model along with all variables of known clinical
importance. Otherwise, if any variable’s p-value is greater than 0.25, then this
variable is excluded from the model. Here, the confidence interval estimate of odds
ratios of selected variables should contain 1 value ( Ryan and Thomas, 1997 ). Why
is the p-value less than 0.25? The emprical evidences are represented by Bendel and
Afifi (1977) for linear regression and by Mickey and Greenland (1989) for logistic
regression. If we set the threshold too low, we often fail to identify variable known to
be important. If we set the threshold too high, then the model consists of variables
that are of questionable importance. For this reason, it is important to determine

variables added to model before a decision making to the final model.

The importance of each variable included in the multivariate logistic regression
model should be verified. This includes an examination of the Wald statistic for each
variable and a comparison that should made between each estimated coefficient with
the coefficient from the univariate model based on that variable only. How will it be
investigated for this situation? Variables that do not contribute to the model are
eliminated from new model. The new model are compared to the old model through
the likelihood ratio test. Also, the estimated coefficients for the remaining variables
are compared to those from the full model. Variables whose coefficients have
changed markedly in magnitude are concerned. Thus, the value of these statistics
may give us an indication of which variables in the model may or may not be
significant. According to Wald statistic, it is taken that the reference value is equal to
2. If the independent variable is coded as 3 levels using the design variables, then
there would be 2 design variables. If the Wald statistics values for both coefficients
exceed 2, then it is concluded that the design variables are significant. But, if one of
the coefficients is equal to 4.0 (it is greater than 2) and the other is equal to 0.4 (it is

less than 2), then we can not be sure about the contribution of the variable to the
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model. In this case, the likelihood ratio test (G) is used. “The likelihood ratio test
statistic for a particular regressor is the difference between two deviance statistics:
the deviance without the regressor in the model minus the deviance with the

regressor in the model” ( Ryan and Thomas, 1997 ). 1t is expressed as follows:

G = D(for the model without the regressor) — D(for the model with the regressor)

Here, the statistic G has a chi-square distribution with v degrees of freedom and

the calculation of v is shown as follows;

v = the number of [3 in the full model - the number of f in the reduced model

Using this notation, the p-value associated with this test is P()(v2 >(G)<0.05,

thus there is a strong evidence that the investigated variable is a significant variable
in predicting Y. This is the statistical evidence for this variable. In other words, any
variable with corresponding p-value>0.05 in the multivariate logistic regression
model should be considered for removing from the model. The variables that do not
contribute to the model should be eliminated. Here, likelihood ratio chi-square test is
used. The aim for this test is to determine the difference between two deviance

statistics.

The new model (after removing the variables with large p-value) should be
compared to the old model. The regression coefficients are checked in the new
model. If some of them are remarkably changed in magnitude, it implies that the
excluded variables may be important as confounding variables. Finally, any variable
deselected for the multivariate logistic regression model should be added back into
the model to identify potential confounding variables. For example, AGE is not

significant variable; but this variable is required or found necessary by researcher.
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“If the univariate analysis yields an extremely large number of possible variables
then it may be employed a stepwise or best subsets method.” ( Hosmer & Lemeshow,

1989, p:87 ) The stepwise logistic regression will be investigated in the forward

topics.

The question of the appropriate categories for discrete variables should have been
addressed at the univariate stage. ‘The linearity in the logit for continuous scalled
variables should has been checked. How will we do this check procedure? Three of
them are commonly employed. These are lowess (locally weighted squares
regression), dummy (design) variable method and fractional polynomials. Here,
dummy variable method will be used. The stages of the dummy variable method are

as follows:

1. Obtain the quartiles of the designed variable.

2. Create a categorical variable with 4 levels using the 3 quartile values as the
cutt-off points.

3. Create 3 design variables with the lowest quartile serving as the reference
group. |

4. Fit the multiple logistic regression using the dummy variables.

5. Plot the odds ratio values of the estimated coefficients according to groups.

Because, it is necessary to transform them to logits in logistic regression, a
coefficient must be equal to zero (0) for the first group. In addition, the odds ratio is
equal to 1 for the first group. The four plotted points are connected in order to inspect
the most logical functional form for the scale of selected variable. It may be linear,
quadratic, binary or other nonlinear function. At the end of these steps, the model
using the possible functional form of the variable suggested by the graph is refitted.
The odds ratio values are plotted according to the groups. If there is no linear
relationship that can be increasing or decreasing between them, then dummy variable

method is used.
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An alternative procedure for scale identification in logistic regression is the Box-
Tidwell transformation ( Box and Tidwell, 1962 ). Box and Tidwell approach adds a

term of the form xIn(x) to the model. If the coefficient for this variable is

significant, there is an evidence for non-linearity in the logit. But, this procedure has

low power in detecting small departures from linearity.

After determining that each of the continuous variables is in the correct scale,
interactions are need to be checked in the model. An interaction between two
variables in any model implies that the effect of one of the variables is not constant
over levels o f the others. F or example, an interaction b etween a ge and sex would
imply that the slope coefficient for age is different for males and females. After
including interaction terms in a model, their significance is then decided using a
likelihood ratio chi-square test. “By significance we mean interactions must
contribute to the model. For example, inclusion of an interaction term in the model
whose sole effect is to increase the estimated standard errors without changing the
point estimate would not be helpful. In general, for an interaction term to alter both
point and interval estimates, the estimated coefficient for the interaction term must
attain at least a moderate level of statistical significance. The final decision as to
whether an interaction term should be based on statistical as well as practical
considerations. That is, the interaction term should also make sense form a biologic

perspective.”( Hosmer and Lemeshow, 1989, p:91 )
3.1.2 The Stepwise Logistic Regression Method

Stepwise logistic regression is an extremely popular method for model building.
Why do we use this method? Because, many possible covariates are collected and
employing a stepwise selection procedure provides a fast and effective means to
eliminate a large number of variables. Stepwise procedure for selection or deletion of
variables from a model is based on a statistical algorithm. This algorithm checks for
the importance of variables.
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There are two procedures for model building in the stepwise logistic regression
method. The forward selection process adds variables sequentially to the model until
further additions do not improve the fit. At each stage, the variable giving the
greatest improvement in the fit is selected. The maximum p-value for the final model
is a sensible criterion. A stepwise variation of this procedure retests, at each stage,
variables added at previous stages to see if they are still needed. The backward
elimination process begins with a complex model and sequentially removes
variables. At each stage, the variable with least damaging effect on the model is
removed. The process stops when any further deletion leads to a significantly poorer-

fitting model.

In stepwise linear regression an F-test is used since the errors are assumed to be
normally distributed. In logistic regression the errors are assumed to follow a
Binomial distribution, and significance is assessed with respect to the likelihood ratio
(chi-square) test. So, the variable that produces the greatest change in the log-
likelihood at any step in the procedure will be most important variable in statistical
terms. There are k-1 design variables for discrete variables with k levels. The
importance of G depends on its degrees of freedom. Possible differences in degrees
of freedom between variables are accounted at any procedure based on the likelihood
ratio test statistic. Assessing significance for G is done by p-value. Here, description
and illustration algorithm for forward selection and backward elimination procedures

will be investigated.

The stepwise logistic regression begins with a base model containing only the
intercept parameter. It then adds variables significant to the model until there are no
remaining significant variables left to be added. The nice feature of this procedure is
that at each step after a variable has been added to the model, all of the variables
included in previous steps are retested in order to see whether they are still
significant or not. The inclusion and extraction of variables from the model in the
stepwise logistic regression method is based upon the likelihood ratio (chi-square)
test. Normally, for likelihood ratio (chi-square) test accepted o -level such as 0.05 or

0.10 is chosen as the critical value for the entry of variables into the model. For this
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model building process, this cutoff value for the entry or removal of a variable can be
increased to around 0.20. T his will help in avoiding p ossibly significant v ariables

from being overlooked or removed unnecesssarily from the model.

This method will be described by considering the statistical computations that the
computer must perform at each step of the procedure. Before starting a procedure, it

is necessary to give some informations and abbreviations where possible.

Py : The probability value for enter to a model.
Py : The probability value for removal from a model.

j : The number of independent variables. j=1,2,...,p

Step (0):

1) Fit a model with intercept only and evaluate the value of its log-likelihood,

L,.

2) Fiteachofthe p possible univariate l ogistic regression m odels, d enote the
log-likelihood value by L(f) for j=1,2,...,p and compare their respective log-

likelihoods.

L :Log-likelihood statistic.
L(Jf’) : The subscript j refers to that variable which has been added to the model

and the subscript 0 refers to the step.

3) Evaluate the value of likelihood ratio statistic for the model containing x|
versus the intercept only, denote the likelihood ratio statistic by G{” =2(L - L,)

and compute the p-value by p{” =Pr(y2 >G{").

]
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G : Likelihood ratio statistic.

G§°) : The subscript j refers to that variable which has been added to the model

and the subscript 0 refers to the step.

a) v=1if x; is continuous.

b) v=k-1if x; is a categorical variable with k levels.

4) Find the variable with smallest p-value, denote this variable by x, and find

minimum p-value by p{ =min(p{”).

The subscript e, is used to denote that the variable is a candidate for entry at Step
1. For example, if variable x, had the smallest p-value, then p{” =min(p{”) and

e, =3.

)

€

5) Determine whether this variable will enter or not into the model, compare p

with a pre-specified significance level pg.

a) If p‘e:’) <pg , move on the next step.

b) If pi‘:’ >, stop the procedure.

It is different from the hypothesis test where the pre-specified significance level is
commonly selected as 0.05, 0.10 or 0.25.

Step (1)

Fit the logistic regression model containing the variable x,, denote the log-

likelihood of this model by LY.
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1) Determine whether any of the remaining p-1 variables are important once the

variable x, is in the model. Fit p-1 logistic regression models which contain only

the Xe, and one other variable X;, j=L2,...,p and j#e,. Denote the

corresponding log-likelihood value by L{);. Compute the likelihood ratio statistic by

G{" =2(LY, — L) and its corresponding p-value by p{® =Pr(y} > G{").
J € p v J
2) Let x,, corresponds p{) =min(p{").

a) If p{) <pg, grow the model by including x,, and move on the next step.

b) Otherwise, stop the procedure.
Step (2)
Backward elimination and forward variable selection.

1) Fit a model containing both x, and x,,

2) Remove variable Xe, from the model just established in Step 2, j=1,2 and
denote the log-likelihood value for the reduced model by L(_ze’j and evaluate the

corresponding log-likelihood ratio statistic by G% =2(L),, ~L2).

"ej

3) Calculate p-valueby p‘z’ =Pr(x? > G‘z’ ) and select the variable x, with

2 2 2
pﬁ’-—max(p“ ())

-6 ? p‘ez

The subscript r, is used to denote that the variable is a candidate for removal at

Step 2. For example, if variable x, had the largest p-value, then

2) _ 2) @
pi? =max(p? ,p% ) and r, =3.
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4) For a pre-specified significance level py, if p, > pg, the variable x, should

be removed from the model against the situation that the variable just being added is

possibly eliminated, pp >p; should be selected. If excluding any variables once

they have entered is not required, then p, =0.90 is chosen.

5) Fit p—2 logistic regression models containing x,,x, and x; for

i=L2,...,p, j#e,,¢e,.

6) Evaluate the likelihood ratio statistic and its corresponding p-value by

@y _ (2)
G? =2(L

€1.€3,]

-L?, ), and p{? =Pr(yl >GP) for j=1,2,...,p, j#e,e,.

J

7) Denote p{ =min(p{”).

€3

a) If p? < p,, enter variable X., into the model.

€3

b) Otherwise, stop the procedure.
Step (3)

Continue the cycle backward elimination followed by forward selection identical

to the procedure in Step 2 until the last step.

Step (F)

There are possibly a few scenarios.

a) All variables have entered the model.

b) All variables in the model have p-values that are less than p, to remove, and

the variables not included in the model have p-values that are larger than p to enter.
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The variables at the Step F are only important relative to criterias of p, and p,.
The final model may or may not the best model. It depends on the researcher and the

status of data.

“Disadvantege of this procedure is that the maximum likelihood estimates for the
coefficients of all variables not in the model must be calculated at each step. For
large data files with large numbers of variables this can be quite costly both in terms

of time and money.” ( Hosmer and Lemeshow, 1989, p:111 )
3.1.3 The Best Subsets Logistic Regression Method

The other selection method of variables for a model is the best subsets selection.
A parallel theory has been worked out for nonnormal errors models for this method.
A number of models containing one, two, three and so on... variables which are
considered the “best” with respect to some predetermined criterias are examined.
Here, likelihood ratio test is used to select the variables. Also, this method is used in
linear regression models. But, its useage is more difficult because the logistic

regression includes more iteration procedures.

Stepwise and best subsets logistic regression methods are criticized because they
can yield a biologically implausible model and they can select irrelevant variables.
The problem is not the fact that the computer can select such model. The main
problem is that the analysist fails to carefully scrutinize the resulting model and

reports that the final model is as the best model.

3.2 Goodness of Fit Tests

After fitting the logistic regression model, it is useful to test its effectiveness by
using goodness of fit tests. In addition, it is decided whether the fit of the model is
adequate by using goodness of fit tests or not. One of them is deviance test and the
other is Hosmer-Lemoshow test. Here, the null hypothesis is that the model of

interest fits well.
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The observed values of the outcome variable in vector form is denoted as y
where y* = (¥1»¥3s---»Y,) and the fitted values of the outcome variable in vector
form as § where " =(¥,,¥,,...,¥,). If summary measures of the distance

between y and § are small or each pair (y;, §;) to these summary measures is not
systematic and it is small relative to the error structure of the model, the fitted model

is accepted well. (y, —¥) is defined to be residual and its value must be small

(i=1,2,...,n). The fitted model contains p independent variables
x" =(x,, ) SU x?, )) and J denotes the number of distinct observed values of x. If
some subjects have the same value of x then J<n. Here, the number of subjects
with x =x; is denoted by m; and it is accepted as ij =n (j=L2,....,]). y; is
denoted the number of positive responses, y=1, among the m; subjects with

x=X;. The total number of subjects with y=1 is denoted by Z y;=n,. The
J

distribution of the goodness of fit statistics is obtained by assumption that n becomes

large.

3.2.1 Pearson Chi-Square Test and Deviance Test

(v, —§;) is called residual. The fitted values are calculated for each covariate
pattern in logistic regression and depend on the estimated probability for that
covariate pattern. The fitted value is denoted by ¥;.

m#, =m | PEE) 3.1)
P T exp(B(x5))

where §(x ) is the estimated logit function.

Two measures of the difference between the observed and the fitted values are
investigated. These are the Pearson residual and the deviance residual. The Pearson

residual and the Pearson chi-square statistic are defined as follows:
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r(y,-,fr,-)=—r—(y"._ mE) i=12,...,7 (2)
: A N2
=1y, &) (3.3)

=

Otherwise, the deviance residual is defined as follows:

%
d(y,-n‘t,-)=t{2[yj ln[l%—}(mj —yJIn{MH} 3.4)
m.f%. m. (1 —1T.

177

where the sign is the same as the sign of (y; —m;&;). For covariate patterns with

y; =0, the deviance residual is defined as follows:

d(y;»#;) =—\/2mj|1n(mj(1—ﬁj))| (3.5)

In addition, for covariate patterns with y ; =m;, the deviance residual is defined as

follows:
d(y; #;) = /2m;[In(m ) (3.6)

The summary statistic based on the deviance residuals is the deviance and it is

shown as follows:

J
D= d(y;, %)’ (3.7

=1

The distribution of the statistics %> and D is chi-square with J —(p +1) degrees
of freedom.
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3.2.2 The Hosmer-Lemeshow Test

The aim of the Hosmer-Lemeshow test is to make a group of the values of the
estimated probabilities. Here, J is equal to n. Two grouping strategies are proposed

as follows:

a) Grouping based on the percentiles of the estimated probabilities.

b) Grouping based on the fixed values of the estimated probablilities.

Here the first strategy will be used. In this grouping method, 10 groups are created

(g=10). The first group contains n; =n/10 subjects having the smallest estimated
probabilities. Also, the last group contains n,, =n/10 subjects having the largest

estimated probabilities. The each group’s n, equals to n/10 (k=1,2,...,10). For
the y=1 row, the estimates of the expected values are found by summing the
estimated probabilities over all subjects in a group. In addition, for y=0 row, the

estimates of the expected values are found by subtracting from 1 (1-the estimated

probabilities over all subjects in a group).

The Hosmer-Lemeshow goodness of fit statistic is denoted by C and it is
obtained by calculating the Pearson chi-square statistic from the 2xg table of

observed and estimated expected frequencies. The calculation of this test is given as

follows:

A & -n.7%,)?
¢=y o mm) (3.8)
i 0, 7 (1-7, )

where n, is the number of covariate patterns in the kth group.

0, =Yy, (3.9)

=1
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where o, is the number of responses among n, covariate patterns. In addition, %, is

the average estimated probability and it is calculated as

5% m.f.
=) (3.10)

Dy

The distribution of the statistic C is well approximated by the chi-square
distribution with g—2 degrees of freedom, when J is equal to n and the fitted
logistic regression model is the correct model. If the value of the Hosmer-Lemeshow
goodness of fit statistic computed from “deciles of risk” table is less than the
corresponding p-value computed from the chi-square distribution with 8 degrees of

freedom, then the model is accepted to fit quite well.

The Hosmer-Lemeshow goodness of fit statistic is easily interpretable and it can

be easily applied to data. It is illustrated as follows:

Table 3.1: Observed and Estimated Expected Frequencies

Decile of Risk
Y 1 2 .o 10 Total

Obs 0oy 0y, 010

=1 n,
Exp T T2 o Mo
Obs Og 0¢ 0410

Y=0 To
Exp Tor Mo . Toto

Total /10 /10 /10 n




CHAPTER FOUR
APPLICATION

4.1 General Information on the Data

This study contains 1200 patients and these data include the statement of the
absence or presence of lung cancer. For this reason, response variable is observed
into two categories. The number of patients who have lung cancer (Ca) is 600. The
reference group is the control group (Co) that patients in this group do not have lung
cancer. There are many factors for patients with lung cancer to have this disease. The
factors that are obtained from clinical trials or observations increase the number of
patients who have lung cancer. These factors should be controlled for this reason.
Nowadays, some of them can be controlled. But majority of them can not be
controlled. Because, the details of disease are not known or predicted. The risk
factors affected to Jung cancer should be known to decrease or to stop effects of
disease. Also, in which level that is affected should be obtained. The ratio of
cancerous patients can be reduced to lower levels. How can we reduce this? Here,
fitting the “best” model is important. The variable selection is very important to find
the “best” model. In addition, it is an important criteria to have the number of less
variable. In this chapter, the logistic regression method was used to find the ratio of
cancerous patients and the “best” model. The univariate analysis and the stepwise
variable selection procedure were applied to cancer data. The data set was obtained

from Ege University Faculty of Medicine Department of Chest Diseases in Izmir.
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Here, there are seven independent variables. These are sex (SEX), education
(EDU), age (AGE), years of smoking (YOS), age of initial smoking (AOIS), number
of packages per year (NOPPY) and duration of giving up smoking (DOGUS),
respectively. AGE variable is continuous and the others are categoric variables. They

are illustrated in Table 4.1.

Table 4.1 ; Categorical Variable Coding

1 2 3 4
SEX Male (0) 0.000
Female (1) 1.000
EDU Hliterate(1) 1.000 0.000 0.000
Primary (2) 0.000 1.000 0.000
Secondary (3) 0.000 0.000 1.000
High+Unv. (0) 0.000 0.000 0.000
YOS Non-Smoker (0) 0.000 0.000 0.000 0.000
<=20(1) 1.000 0.000 0.000 0.000
21-30(2) 0.000 1.000 0.000 0.000
3140 (3) 0.000 0.000 1.000 0.000
>40 (4) 0.000 0.000 0.000 1.000
AOIS Non-Smoker (0) 0.000 0.000 0.000 0.000
<=10 (1) 1.000 0.000 0.000 0.000
11-15 (2) 0.000 1.000 0.000 0.000
16-19 (3) 0.000 0.000 1.000 0.000
=>20 (4) 0.000 0.000 0.000 1.000
NOPPY Non-Smoker (0) 0.000 0.000 0.000 0.000
01-10 (1) 1.000 0.000 0.000 0.000
11-20 (2) 0.000 1.000 0.000 0.000
21-30(3) 0.000 0.000 1.000 0.000
>30 (4) 0.000 0.000 0.000 1.000
DOGUS Smoker (1) 1.000 0.000 0.000 0.000
01-05 (2) 0.000 1.000 0.000 0.000
06-11 (3) 0.000 0.000 1.000 0.000
=>11(4) 0.000 0.000 0.000 1.000
Non-Smoker (0) 0.000 0.000 0.000 0.000
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These independent variables according to patients who have lung cancer and
patients who become control group are presented in Tables 4.2 - 4.3 -4.4-4.5-4.6 -
4.7 and 4.8.

Table 4.2 : Y * SEX Cross
Tabulation Count
SEX
Y |Male|Female| Total
Co 567 33 600
Ca 576 24 600
Total | 1143 57 1200

Table 4.3 : Y * EDU Cross Tabulation Count

EDU
Y |Illiterate | Primary | Secondary |High+Unv.| Total
Co 166 327 48 59 600
Ca 202 361 29 8 600
Total 368 688 77 67 1200,

Table 4.4 : Y * YOS Cross Tabulation Count

YOS
Y |Non-Smoker|<=20} 21-30 | 3140 | >40 | Total
Co 193 61 117, 113; 116 600,
Ca 23 16 91 192 278 600]
Total 216 77 208, 305 394 1200
Table 4.5 : Y * AOIS Cross Tabulation Count
AOQIS
Y [Non-Smoker| <=10] 11-15 | 16-19 |=>20| Total
Co 193] 34 122 78 173 600
Ca 23 85 209 103} 180 600
Total 216 119 331 181} 353 1200
Table 4.6 : Y * NOPPY Cross Tabulation Count
NOPPY
Y [Non-Smoker| 01-10 | 11-20 | 21-30 | >30 | Total
Co 193 37 62 109 199 600
Ca 23| 11 18 77 471 600
Total 216 48 80 186/ 670 1200
Table 4.7 : Y * DOGUS Cross Tabulation Count
DOGUS
Y |Smoke| 01-05 | 06-11 |=>11|Non-Smoker| Total
Co 263 51 31 62| 193 600
Ca 437 74 260 400 23 600
Total 700 125 571 102 216 1200
Table 4.8 : AGE Situation

N  |Minimum] Maximum | Mean |Std. Deviation
Age (year) | 1200 30.00 90.00{ 58.9583 9.8190
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4.2 The Univariate Analysis

The application of the logistic regression model is started with a univariate
analysis of each variable by using SPSS. This analysis will be used for setting

multivariate models after finding candidates with univariate analysis.

The results of fitting the univariate logistic regression models to data are given in
Table 4.9. In this table, the following informations for each variable listed in the first

column are presented.

(1) the estimated slope coefficient for the univariate logistic regression model
containing only this variable.

(2) the estimated standard error of the estimated slope coefficient.

(3) the Wald statistic.

(4) the degrees of freedom.

(5) the p-value of the coefficient.

(6) the estimated odds ratio.

(7) the 95% confidence interval (CI) for the odds ratio.

(8) the likelihood ratio test statistic (G).

(9) the p-value of the G statistic.

The candidate variables with using these informations are decided easily. If the p-
value of the variable is less than 0.25, then this variable is found to be significant.
Otherwise, this variable is not significant and it is excluded from the model. This
situation is not seen in these data. For this reason, all of the variables are found to be
significant. In addition, the Wald statistic values of these variables are so high and
the confidence interval of odds ratios does not contain value 1. These are some

evidences that they are significant.
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Table 4.9 : Univariate Logistic Regression Models for Case to Have or Don’t Have Ca

. A 2y | CIfor Exp(B) p-
E Id | df | p-value G

Variable | [ S Wa p Exp (B) Tower | Usper value

SEX (1) | -0334[ 0.275 1480 1| 0.224* 0.716| 0418 1.227 1.498 | 0.221
EDU 37420 3| 0.000 * 8.958 53.819| 0.000
1 2.193| 0391 31477 1 0.000 8.127| 4.165| 19.270

2 2.095| 0384 29.746| 1 0.001 4448 3.828| 17.256

3 1492 0444 11302 1 0.000 1.050| 1.863| 10.617

AGE 0.049]| 0.006] 59.434| 1| 0.000* 1.050| 1.037| 1.063| 65.135]| 0.000
YOS 196.073| 4| 0.000* 273.580| 0.000
1 0.789| 0.357 4879 1 0.027 2.201| 1.093| 4.432

2 1.876( 0.261| 51.600| 1 0.000 6.527| 3.912| 10.888

3 2,657 0250} 112.588] 1 0.000 14258 | 8.727| 23.293

4 3.001{ 0.247) 147.959; 1 0.000 20.110| 12.399 | 32.616

AOIS ‘ 134.226| 4| 0.000 * 202.272| 0.000
1 3.043| 0300} 103.108| 1 0.000 20978 | 11.658 | 37.748

2 2.666| 0.248| 115263 1 0.000 14.375| 8.831| 23.385

3 2.405] 0.267| 81.264| 1 0.000 11.081] 6.568| 18.693

4 2.167] 0.245| 78.261| 1 0.000 8.731| 5.402] 14.111

NOPPY 231.148( 4| 0.000* 312.626 | 0.000
1 0914 0.408 5016 1 0.025 2495| 1.121| 5.552

2 0.890( 0.347 6.588| 1 0.010 2.436| 1234 4.808

3 1.780| 0.266] 44.721| 1 0.000 5928 3.519| 9.987

4 2.989| 0.236] 160.060| 1 0.000 19.861 | 12.500 | 31.556

DOGUS 138993| 4/ 0.000* 206.137| 0.000
1 2.635| 0234} 126.814] 1 0.000 13.943| 8.814| 22.056

2 2499| 0.286| 76389 1 0.000 12.176 | 6.951 | 21.326

3 1.951| 0.346] 31.895| 1 0.000 7.038| 3.576] 13.853

4 1.689] 0.300] 92.992( 1 0.000 5414| 3.009]| 9.740

Under the null hypothesis, the slope coefficients are zero, G follows the chi-
square distribution with 1 degrees of freedom for SEX and AGE variables, except for
the variables YOS, AOIS, NOPPY, and DOGUS where they have 4 degrees of
freedom and the variable EDU where it has 3 degrees of freedom. The p-values all of
the variables are less than 0.25 value. For this reason, they are found to be
significant. If we select the p-value as 0.10, then the variable SEX is excluded from
the model. In addition, this situation can be seen from the confidence interval of odds

ratio. The value of odds ratio includes value 1.
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The multivariate logistic regression analysis will be done by using the variables

found to be significant in the univariate case. The results of fitting this model are

given in Table 4.10.

Table 4.10 : Multivariate Model Containing Variables Identified in the Univariate Analysis

. A Ay | CIforExp (f3) p-
E Wald | df value G
Variable | B S p- Exp () Lower | oper value
SEX(1) 1.892| 0.407| 21.568| 1 0.000 6.631| 2.984| 14.735] 411.411| 0.000
EDU 15.255| 3 0.002
1 1.557( 0.439] 12.566] 1 0.000 4.747| 2.006) 11.230
2 1.660 | 0.426| 15.194) 1 0.000 5.258 | 2.282] 12.112
3 1.576| 0.500 9.926| 1 0.000 4.834| 1.814 12.882
AGE 0.060( 0.11]| 29.223 1 0.000 1.062 | 1.039| 1.086
YOS 4 0.000
1 2,605 0.567| 21.071 1 0.000 13.527 | 4.448| 41.132
2 3.0541 0471 41979 1 0.000 21.203| 8.417| 53.413
3 22371 0421} 28.232| 1 0.000 9.367| 4.104| 21.378
4 1.857] 0465| 15918 1 0.000 64021 2.572} 15.939
AOIS 8.755| 3 0.033
1 0.711} 0.272 6864 1 0.009 2.037| 1.196| 3.469
2 0437 0.187 5464 1 0.019 1.549( 1.073| 2.235
3 0.289] 0214 1.822*| 1| 0.177* 1.335] 0.877] 2.032
NOPPY 39350 3 0.000
1 -1.907| 0.492| 15.028; 1 0.000 0.149| 0.057] 0.390
2 -1.805| 0.366| 24.382] 1 0.000 0.164| 0.080| 0.337
3 -1.524| 0.301] 25.609| 1 0.000 0.2181 0.121{ 0.393
DOGUS 29468! 3 0.000
1 1.374| 0293 | 21918} 1 0.000 3.949| 22221 7.019
2 1.059] 0.331| 10.273 1 0.000 2.884| 1.509| 5.513
3 0.246] 0.386| 0.406*| 1| 0.524* 1.279] 0.600] 2.723
Constant | -7.960| 0.853| 87.070| 1 0.000 0.000
-2L1.=1252.142

On the basis of the output displayed in Table 4.10, it appears that all of the
variables except for AOIS and DOGUS demonstrate considerable importance in the

multivariate model. Here, p-values of both of them are greater than 0.05. These p-
values are denoted by 0.177 and 0.524. For this reason, these variables should be
investigated. If the Wald statistic values are greater than 2, then the variable is

significant. Here, the Wald statistic values of both of them are less than 2. They are

denoted by 1.822 and 0.406. For this reason, they are not found significant. First of

all, a new model which does not contain the variable AQIS is fitted. The results of

fitting this model are given in Table 4.11.
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. A Ay | CI for Exp (B) p-
Wald f | p-value G
Variable | [ SE a df | p-v Exp (B) Tower | Uoper value
SEX(1) 1.866| 0406[ 21.104| 1 0.000 6.463| 2.915( 14.330 402.575| 0.000
EDU 15.080| 3| 0.002
1 1.568| 0.437) 12.842] 1 0.000 4.796| 2.035] 11.306
2 1.651] 0.425] 15.069! 1 0.000 5.210| 2.264| 11.990
3 1.559| 0.500| 9.718! 1 0.002 4.754| 1.7841 12.669
AGE 0.051| 0.010] 23.622| 1 0.000 1.052§ 1.031| 1.074
YOS 53404 4| 0.000
1 2736 0.563] 23.635] 1 0.000 15.430| 5.120] 46.503
2 3.261] 0462| 49.835] 1 0.000{ 26.065| 10.542 | 64.449
3 2.546| 0.404| 39.614| 1 0.000 12.751 5.771} 28.171
4 2369 04301 30394 1 0.000 10.691| 4.605 | 24.821
NOPPY 40473 3| 0.000
1 -1.967] 0490 16.090; 1 0.000 0.140( 0.054| 0.366
2 -1.854] 0.366) 25.653]| 1 0.000 0.157| 0.076( 0.321
3 -1.520] 0.300| 25.654| 1 0.000 0.219| 0.121| 0.394
DOGUS 26347 3| 0.000
1 1.248; 0.285] 19.162 1 0.000 3.483| 1.992| 6.091
2 0.925| 0.325 8.117] 1 0.004 2.523| 1.335| 4.768
3 0.186]| 0.384| 0.236*| 1 0.627 1.205] 0.568| 2.556
Constant | -7.342| 0.806| 82.947| 1 0.000 0.001

~2L.1=1260.978

The likelihood ratio test statistic (G) for the hypothesis that the slope coefficient is

zero is obtained as minus twice the difference between the log-likelihoods for all

variables in the model and the model containing all variables except for the variable

AOIS. Under the null hypothesis, G value follows the chi-square distribution with 3
degrees of freedom. This is denoted by (Vg — Viequeea) =19 —16 = 3. The likelihood

ratio test for the difference between the models in Tables 4.10 and 4.11 (a test for the
significance of AOIS) yields a value of G= [1 260.978 —1252. 142] =8.836.

Comparing this value to a chi-square distribution with 3 degrees of freedom yields a

value of 7.81 (xi,o‘gs =7.81). Here, 8.836 is greater than 7.81. For this reason, the

variable AOIS is significant in this model.
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Now, an another new model which does not contain the variable DOGUS is fitted.

The results of this model are given in Table 4.12.

Table 4.12 : Multivariate Model without DOGUS

. A Ay | CI for Exp (B) p-
1 SE Wald | df value G
Variable | f3 p- Exp (B) Tower | Uper value
SEX(1) 1.848] 0401 21.218] 1 0.000 6.348| 2.891| 13.937] 381.068| 0.000
EDU 17120 3 0.001 ,
1 1.605| 0.433| 13.761 1 0.000 4979 2.132| 11.627
2 1.729| 0.420| 16.986( 1 0.000 5.635| 2.476| 12.822
3 1.615| 0494 10704 1 0.001 5.026| 1.910} 13.221
AGE 0.033] 0.009| 12375 1 0.000 1.034{ 1.015| 1.053
YOS 101.927| 4 0.000
1 3.010] 0.540] 31.104} 1 0.000 20.294 | 7.046| 58.456
2 3.739| 0.433| 74479| 1 0.000 42.073| 17.996 | 98.456
3 3273} 0341 92.320f 1 0.000 26.391| 13.536] 51.453
4 3.208| 0.353| 82.451 1 0.000 24.730( 12.374 | 49.426
AOQIS 5329 3 0.149
1 0.553| 0.264 4377 1 0.036 1.738| 1.036| 2.916
2 0.294 1 0.182 2.623 1 0.105 1.342) 0.940] 1.915
3 0.285{ 0.211 1824 1 0.177 1.330| 0.879| 2.012
NOPPY 34.079] 3 0.000 0.164| 0.063| 0.426
1 -1.809| 0488| 13.756| 1 0.000 0.1871 0.093 0.377
2 -1.6761 0358 21983 1 0.000 0.260| 0.146| 0.466
3 -1.346| 0.297| 20.579| 1 0.000 1.034| 1.015( 1.053
Constant | -6.315| 0.746| 71.584| 1 0.000 0.002

-2LL=1282.485

Here, the same procedure is applied as in above. The likelihood ratio test for the

difference between the models in Tables 4.10 and 4.12 (a test for the significance of
DOGUS) yields a value of G = [1282.485 -1252.142] = 30.343 . Comparing G value

to a chi-square distribution with 3 degrees of freedom yields a value of 7.81

()(j,ol95 = 7.81). Here, 30.343 is greater than 7.81. The variable DOGUS is found to

be significant for this model with respect to this result.

After the model is complicated, the examination of the variable AGE that has

been modeled as continuous to obtain the correct scale in the logit will be needed. To

examine this situation, three design variables based on the quartiles of AGE are

formed and they are replaced as variable AGE (continuous) in the model. The lowest

quartile or the variable that has the lowest risk as the reference group is usually
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selected. So, Table 4.13 is obtained. The new model with design variables is shown

in Table 4.14.
Table 4.13 : Results of the Quartile Analysis of AGE
Quartile 1 2 3 4
Interval =<51] [52,59] [60,66] >=67
Estimated Coefficient 0 1.120 1.449 1.331
Odds Ratio 1 3.063 4.259 3,786
95 % CI -| 1.986-4.724 | 2.576-7.041 | 2.171-6.603
Table 4.14 : Multivariate Model of Linearity for AGE
. A Ay | CI for Exp () p-
Variable SE Wald | df value G
P i Exp () Lower | Upper value
SEX (1) 1.740| 0.408| 18.198( 1 0.000 5.697] 2.561! 12,670 | 418.023{ 0.000
EDU 17.003] 3 0.001
1 1.763 | 0.442| 15936| 1 0.000 5.830] 2.453| 13.854
2 1.7541 0429} 16714 1 0.000 5776 2.492| 13.390
3 1.620| 0.505| 10307} 1 0.001 5.054| 1.880] 13.590
AGE 36.168] 3 0.000
1 1120} 0221} 25.651| 1 0.000 3.063| 1.986| 4.724
2 1.449| 0.256 31.99| 1 0.000 4.259| 2.576| 7.041
3 1.331] 0.284| 21999} 1 0.000 3.786] 2.171| 6.603
YOS 47.106| 4 0.000
1 2.537| 0.566| 20.089| 1 0.000 12.640| 4.168) 38.327
2 3.097| 0.468| 43.726! 1 0.000 22.130| 8.837| 55.415
3 22241 0.420| 28.009; 1 0.000 9.243| 4.056| 21.063
4 1.976| 0467 17.921| 1 0.000 7.217| 2.890]| 18.019
AOIS 8.726] 3 0.033
1 0.716] 0.269 7.080) 1 0.008 2.047| 1.208| 3.470
2 0420 0.186 50721 1 0.024 1.521] 1.056| 2.192
3 0.303| 0.217 1.948| 1 0.163 1.354] 0.885]| 2.071
NOPPY 36454 3 0.000
1 -1.909) 0492 15.031| 1 0.000 0.148| 0.056! 0.389
2 -1.711] 0367 21.748| 1 0.000 0.181] 0.088} 0.371
3 -1.444| 0.299| 23.263{ 1 0.000 0.236] 0.131( 0.424
DOGUS 25453 3 0.000
1 1.213| 0.284| 18.268] 1 0.000 3364 1.929| 5.867
2 0.920] 0.324 8062 1 0.005 2.5091 1.330| 4.735
3 0.135} 0.382 0.125] 1 0.723 1.145] 0.542| 2.420
Constant {-5.428 | 0.556| 95.449] 1 0.000 0.004

-2L1~=1245.530
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If the variable AGE is as linear in the logit, then it is expected to show either a
linear incresing or decreasing trend in the estimated coefficient. But, the statistical
evidence of linearity for variable AGE is not obtained in Tables 4.13 or 4.14. For this
reason, the statement that the variable AGE is not linear in the logit is supported.
This variable is used as continuous. If the estimated odds ratio values are less than 1

or near to each others, then they are combined and formed as reference group.

After these processes, the final model is accepted in Table 4.10. The logit function

of this model is expressed as follows:

g(X) =BO +BllD11 +[321D21 +B22D22 +B23D23 +B3X3 +B41D41 +B42D42 +B43D43+
BMDM +BSID51 +ﬁ52D52 +B53D53 +l361D61 +B62D62 +B63D63 +B71D71 +

B72D72 + B73D73

8(x) =~7.960+1.892D,, +1.557D,, +1.660D,, +1.576D,, +0.060x, + 2.605D,,
+3.054D,, +2.237D,, +1.857D,, +0.711D,, +0.437D,, +0.289D,

~1.907D,, —1.805D,, —1,524D,, +1.374D,, +1.059D,, +0.246D .,

For example, we can calculate the probability of being Ca of any person with

respect to his characteristic features. Some special features are shown as follows:

SEX: woman

EDU: primary

AGE: 50 years old
YOS: 25 years
AOIS: 25 years old
NOPPY:: 35 packages
DOGUS: smoker
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According to these features, logit function and logistic regression function are

evaluated as follows:

é(x) =-7.960+1.892 +1.660*1+ 0.060*50 +3.054*1+ 0.289*1-1.805*1+1.374*1
=1.504

A(x) = _exp((x)) _ 0.82
1+exp(§(x))

If logistic regression function value is greater than 0.50, then we conclude that

patient is being lung cancerous.

The estimated odds ratios and the confidence intervals for the variables SEX,
EDU, YOS, AOIS, NOPPY and DOGUS are given in Table 4.10. These confidence
interval values show whether the variables have an important effect in the model or
not. In case, NOPPY variable contains value 1. For this reason, this variable is found
to be insignificant. But, this variable is significant for p-values at design variables of
different levels. According to these odds ratio values, being a female has 6.631 times
more risk factor than being a male. Here, being a male is the reference group. In
addition, the value of the Wald test is too high. For this reason, p-value is quite small
(0.000). For EDU variable, high school and university are combined and it is called
the reference group. Illiterates (in category 1), people graduated from primary school
(in category 2) and people graduated from secondary school (in category 3) have
respectively 4.747 times, 5.258 times, 4.834 times more risk of being lung cancer
with respect to reference group. For AGE variable, a one unit increase in age raises
the probability of having lung cancer by 0.06 or 6%. For YOS variable, one unit
increase in year of smoking rises risk of having lung cancer with respect to non-
smokers. But this rise is more until 30 years of smoking (in categories 1 and 2) and
less after 30 years of smoking (in categories 3 and 4). For example, smokers, who are
less than 21 years of smoking, in category 1 have 13.527 times more risk of having
lung cancer with respect to non-smokers, smokers, who are between 21 and 30 years
of smoking, in category 2 have 21.203 times more risk of having lung cancer with

respect to non-smokers. But smokers, who are between 31 and 40 years of smoking,
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in category 3 and smokers, who are greater than 40, in category 4 have 9.367 times
and 6.402 times respectively more risk of having lung cancer with respect to non-
smokers. For AOIS variable, an increase in age of initial smoking decreases the risk
of having lung cancer. In other words, smokers, who are less than 11 age of initial
smoking, in category 1 have more risk of having lung cancer with respect to smokers
in category 2 and 3. This situation can be seen from decrease of odds ratio from
2.037 to 1.335. For NOPPY variable, it can not be determined that the increase in
number of packages per year rises risk of having lung cancer with respect to non-
smokers. This can be shown in odds ratio values of being very similar related to each
other. For DOGUS variable, smokers have more risk of having lung cancer with

respect to non-smokers.
4.3 The Stepwise Analysis

Most of the statistical software packages contain of the stepwise analysis method.
In this study, SPSS statistical software will be used to build a model. Here, two sub-
methods will be used. One of them is the forward selection and the other is the

backward elimination. Finally, these two methods will be compared.
4.3.1 The Forward Selection

Forward selection procedure will be applied to the data. The results of this process
are presented in Tables that will be shown below in terms of the p-values to enter and

remove calculated at each step. The program is run by using p; =0.15 and

pr =0.20.
Step (0):
At Step (0) the program selects as a candidate for entry at Step (1) the variable

with the smallest p-value. In addition, the largest value of the score statistic should
be chosen. The variable NOPPY with a p-value of 0.000 is selected and the score
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statistic value is 288.009. These are shown in Tables 4.15.a and 4.15.b. Since this p-

value is less than 0.15, the program proceeds to Step (1).

Table 4.15.a : Variables in the Model (Only Constant)

A

Variable B

S.E.

Wald

df

p-value | Exp (ﬁ)

Constant 0.000

0.058

0.000

1

1.000 1.000

Table 4.15.b : Variables not in the Model
(SEX, EDU, AGE, YOS, AOIS, NOPPY, DOGUS)

Variables Score df p-value

SEX (1) 1.492 1 0.222
EDU 48.711 3 0.000
1 5.079 1 0.024
2 3.938 1 0.047
3 5.010 1 0.025
AGE 63.718 1 0.000
YOS 250416 4 0.000

28.102 1 0.000
2 3.931 1 0.047

27.435 1 0.000

99.170 1 0.000
AOIS 182.112 4 0.000
1 24.263 1 0.000
2 31.577 1 0.000
3 4.066 1 0.044
4 0.197 1 0.657
NOPPY 288.009 4 0.000 *
1 14.670 1 0.000
2 25.929 1 0.000
3 6.515 1 0.011
4 250.016 1 0.000
DOGUS 186.463 4 0.000
1 103.803 1 0.000
2 4.724 1 0.030
3 0.460 1 0.497
4 5.186 1 0.023
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At Step (1) the program will not remove the variable just entered since py > p;

and the p-value to remove at Step (1) is equal to the p-value to enter at Step (0). The

variable with the smallest p-value to enter at Step (1) is SEX with a value of 0.000

among the variables that are not in the model. This p-value is less than 0.15. In

addition, the largest value of the score statistic is for the variable SEX with a value of

25.245. So the program proceeds to Step (2). These are shown in Tables 4.16.a and

4.16.b.
Table 4.16.a : Variables in the Model
(Constant, NOPPY)
Variables | B | SE. | Waid |ar| pvaie | Exp@) | OO P ®)
Lower | Upper

NOPPY 231.148| 4 0.000

1 0.914| 0.408 5016 1 0.025 2.495 1.121 5.552
2 0.890( 0.347 6.588| 1 0.010 2.436 1.234} 4.808
3 1380 0.266 4721 1 0.000 5.928 3.519 9.987
4 2.989| 0.236| 160.060| 1 0.000 19.861 | 12.500| 31.556
Constant -2.127| 0.221 92.9921 1 0.000 0.119

~2LL=1350.927
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Table 4.16.b : Variables not in the Model
(SEX, EDU, AGE, YOS, AOIS, DOGUS)

Variables Score df p-value

SEX (1) 25.245 1 0.000 *
EDU 23.645 3 0.000
1 2.526 1 0.112
2 0.807 1 0.369
3 0.532 1 0.466
AGE 17.909 1 0.000
YOS 5.304 3 0.151
1 1.673 1 0.196
2 0.501 1 0.479
3 2.759 1 0.097
AOIS 3.177 3 0.365
1 2.666 1 0.102
2 0.036 1 0.849
3 0.185 1 0.668
DOGUS 11.421 3 0.010
1 7.803 1 0.005
2 0.056 1 0.812
3 4.965 1 0.026

92.950 14 0.000

Step (2):

There are two variables in the model at this step. One of them is NOPPY and the
other is SEX. At Step (2) the largest p-value to remove is 0.000 and this p-value does
not exceed 0.20, thus the program moves to the variable selection phase. These are
shown in Table 4.17.a. The smallest p-value to enter among the remaining variables
that are not in the model is for the variable EDU and this value is 0.000. In addition,
the largest value of the score statistic is for the variable EDU with a value of 22.799.
These are shown in Table 4.17.b.



Table 4.17.a : Variables in the Model

(Constant, NOPPY, SEX)
Variables | B | SE. | waa | af | pvae | Exp@) | <N ®)
Lower | Upper
SEX (1) 1.840| 0.389 223771 1 0.000 6.299 2,939 13.504
NOPPY 212976 4 0.000
1 1.254| 0.444 7.993 1 0.005 3.505 1.469 8.361
2 1.426| 0.393 13.141 1 0.000 4.162 1.925 8.997
3 2.376| 0.329 52.262 1 0.000 10.763 5.651| 20.498
4 3.572 034 137.823 1 0.000 35.578 | 19.598| 64.588
Constant | -2.724| 0293| 86389] 1]  0000]  0.066
-2LL~=1327.927
Table 4.17.b : Variables not in the Model
(EDU, AGE, YOS, AOIS,DOGUS)
Variables Score df p-value
EDU 22.799 3 0.000 *
1 0.880 1 0.348
2 1.770 1 0.183
3 0.191 1 0.662
AGE 15.844 1 0.000
YOS 5571 3 0.134
1 1.839 1 0.175
0.585 1 0.444
3 2.838 1 0.092
AOIS 3.243 3 0.356
1 2.659 1 0.103
2 0.033 1 0.856
3 0.078 1 0.780
DOGUS 12.146 3 0.007
1 8.229 1 0.004
2 0.082 1 0.775
3 6.018 1 0.014
71.667 13 0.000
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Step (3):
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At Step (3) the largest p-value to remove is 0.000 and this p-value does not exceed

0.20, thus the program moves to the variable selection phase. This is shown in Table

4.18.a. The smallest p-value to enter at Step (4) is for the variable AGE with a value

of 0.001 among the variables not in the model. The largest value of the score statistic
is for the variable DOGUS with a value of 13.303. But the p-value for the variable
DOGUS is larger than the variable AGE with a value of 0.004. For this reason, the
variable AGE for the model is prefered. These are shown in Table 4.18.b.

Table 4.18.a : Variables in the Model
(Constant, NOPPY, SEX, EDU)

Variables ﬁ SE. | Wald | df | p-value | Exp (fi) Clfor Exp (B)
Lower | Upper

SEX (1) 1.834| 0.400 21.025( 1 0.000 6.261 2.358| 13.714
EDU 19476 3 0.000

1 1.815| 0.423 18.404| 1 0.000 6.138 2.679| 14.063
2 1.792| 0414 18.694| 1 0.000 6.002 2.664| 13.525
3 1.592| 0.488 10.626| 1 0.001 4914 1.887| 12.799
NOPPY 194601 4 0.000

1 1.329; 0451 86741 1 0.003 3.779 1.560| 9.153
2 1.550| 0.402 14.866( 1 0.000 4714 2.143[ 10.367
3 2.370| 0.337 49.614) 1 0.000 10.703 5.534] 20.699
4 3.553] 0313 129181 1 0.000 34930 18.927| 64.464
Constant -4.439| 0.508 76229 1 0.000 0.012

-2LL=1303.281
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Table 4.18.b : Variables not in the Model

(AGE, YOS, AOIS, DOGUS)
Variables Score daf p-value

AGE 11.783 1 0.001 *
YOS 5.876 3 0.118
1 2.531 1 0.112
2 0.842 1 0.359
3 2.426 1 0.119
AOIS 3.445 3 0.328
1 1.945 1 0.163
2 0.226 1 0.635
3 0.012 1 0.914
DOGUS 13.303 3 0.004
1 8.827 1 0.003
2 0.049 1 0.825
3 6.024 1 0.014

49.648 10 0.000

Step (4):

At this step, there are four variables in the model. The largest p-value to remove is
0.000, which does not exceed 0.20, thus the program moves to the variable selection
phase. This is shown in Table 4.19.a. The smallest p-value among the variables not
in the model is for the variable DOGUS and with a value of 0.000. In addition, the
largest value of the score statistic is for the variable DOGUS with a value of 23.483.
These are shown in Table 4.19.b.



Table 4.19.a : Variables in the Meodel
(Constant, NOPPY, SEX, EDU, AGE)
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Variables | B | SE | wad | ar | pvame | mxp(d) | TP ®)
Lower | Upper
SEX (1) 1.8291 0.403 20.596| 1 0.000 6.227 2.826| 13.718
EDU 16.631| 3 0.001
1 1.590| 0.431 13.637| 1 0.000 4.905 2.109| 11.406
1.703| 0.418 16551 1 0.000 5.488 2417( 12.463
3 1.617] 0.494 10723 1 0.001 5.040 1.914| 13.269
AGE 0.027 | 0.008 11.676| 1 0.001 1.028 1.012 1.044
NOPPY 171.564| 4 0.000
1 1.430| 0.457 9.764] 1 0.002 4.177 1.704 | 10.239
2 1.663 | 0.406 16777 1 0.000 5.277 2381 11.698
3 2.442| 0.339 51.882| 1 0.000 11.497 5.916| 22.345
4 3491 0313 124.169] 1 0.000 32.804 | 17.754| 60.613
Constant -5916| 0.679 75998 | 1 0.000 0.003
-2LL=1291.443
Tables 4.19.b : Variables not in the Model
(YOS, AOIS, DOGUS)
Variables Score df p-value
YOS 3.627 3 0.305
1 1.827 1 0.177
2 2.721 1 0.099
3 0.222 1 0.637
AOIS 4.752 3 0.191
1 1.936 1 0.164
2 0.363 1 0.547
3 0.230 1 0.632
DOGUS 23.483 3 0.000 *
1 16.124 1 0.000
2 0.163 1 0.686
3 7.430 1 0.006
39.093 9 0.000
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Step (F):

At Step (F) the program finds that the maximum p-value to remove is 0.001 for
the variable EDU. This value is less than 0.20. So, the variable EDU is not removed
from the model. This is shown in Table 4.20.a. There is no smallest p-value to enter
among the remaining variables not in the model. In addition, there is no largest score
statistic value to enter among the remaining variables not in the model. These are

shown in Table 4.20.b.

Table 4.20.a : Variables in the Model
(Constant, NOPPY, SEX, EDU, AGE, DOGUS)

Variables | B | SE. | Wald |df| pvalue | Exp(B) | O O P ®
Lower | Upper

SEX (1) 1852] 0405| 20.903| 1| 0.000| 6372| 2.881| 14.09
EDU 15814 3|  0.001

1 1597| 0436 13429] 1| 0000]  4940| 2.102| 11.607
2 1663 0423| 15801 1| 0000  5383| 2347| 12344
3 1595| 0499| 10228] 1|  0001|  4.928| 1.854] 13.098
o 0.039] 0.039] 21.177| 1] 0000  1.040| 1.023| 1038
NOPPY ' 83.099| 4|  0.000

1 0955] 0489|  3.808] 1| 0051|  2.598| 0996| 6.776
) T028| 0459]  5009] 1| 0025| 2.796| 1.136] 6878
3 1738 0397] 1927 1| 0000|  5687| 2.610] 12.392
2 2.686| 0392| 47.056| 1| 0000] 14.675| 6812| 31.614
DOGUS 22771 3| 0.000

1 0998] 0255| 15271 1| 0000  2.713| 1.644| 4474
2 0.710] 0.305| 5438| 1| 0020  2.034| 1.120| 3.695
3 0004 0372| 0.000| 1| 0992 1.004| 0484 2081
Comstant | -6.659| 0.715| 86.624| 1|  0000]  0.001

-2LL- 1268.458
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Table 4.20.b : Variables not in the Model

(YOS, AOIS)
Variables Score df p-value

YOS 3

1 0.000 1 1.000
2 . 0.000 1 1.000
3 18.394 1 0.000
AOIS 3

1 0.000 1 1.000
2 0.000 1 1.000
3 0.000 1 1.000

But the p-value of the design variable is for the variable DOGUS with a value of
0.992. This is shown in Table 4.20.a. This value is large. For this reason, this
variable will be investigated. The likelihood ratio test statistic (G) is used. This is
obtained as minus twice the difference between the log-likelihoods for the model that
has be obtained at ‘Step (F) and the model that does not contain for the variable
DOGUS. Under the null hypothesis, G value follows the chi-square distribution with
3 degrees of freedom. The likelihood ratio test for the difference between the models
in Tables 4.20.a. and 4.21.a. (a test for the significance of DOGUS) yields a value of
G= [1 291.443 —1268.458] = 22.985 . Comparing G value to a chi-square distribution

with 3 degrees of freedom yields a value of 7.81 ()3, = 7.81). Here, 22.985 is

greater thén 7.81. For this reason, the variable DOGUS is significant for this model.
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Table 4.21.a : Variables in the Model without DOGUS

Variables B S.E. Wald | df | p-value | Exp (ﬁ) CI for Exp (B)
Lower | Upper

SEX (1) 1.829( 0403| 20.596| 1 0.000 6.227| 2.826| 13.718
EDU 16.631| 3 0.001

1 1590 0431] 13.637| 1 0.000 4.905| 2.109] 11.406
2 1.703| 0.418] 16.551| 1 0.000 5488 2.417| 12.463
3 1.617] 0.494| 10.723] 1 0.001 5.040| 1914 13.269
AGE 0.027( 0.008| 11.676| 1 0.001 1.028| 1.012| 1.044
NOPPY 17.564| 4 0.000

1 1.430| 0.457 9.764| 1 0.002 4177 1.704| 10.239
2 1.663| 0.406| 16.777| 1 0.000 5277 2.381| 11.698
3 2442] 0339 51.882] 1 0.000| 11.497| 5916| 22.345
4 3.491] 0313 124.169] 1 0.000| 32.804| 17.754| 60.613
Constant 5916( 0.679| 75998| 1 0.000 0.003

-2LL=1291.443

Table 4.21.b ; Variables not in the Model without DOGUS

Variables Score df p-value
YOS 3.627 3 0.305
1 1.827 1 0.177
2 ' 2.721 1 0.099
3 0.222 1 0.637
AOIS 4.752 3 0.191
1 1.936 1 0.164
2 0.363 1 0.547
3 0.230 1 0.632

After fitting the model, the variable AGE that has been modeled as continuous to
obtain the correct scale in the logit is needed to be examined. Three design variables
based on the quartiles of age are formed and replaced as AGE (continuous) with

these design variables in the model. It is shown in Table 4.13 as before.



The new model with design variables is shown in Tables 4.22.a and 4.22.b.

Table 4.22.a : Variables in the Multivariate Model of Linearity for AGE

Variables B S.E. Wald | df | p-value | Exp (ﬁ) Cl for Exp (B)

Lower | Upper
SEX (1) 1.716| 0.395 18.850| 1 0.000 5.562| 2.563| 12.067
AGE 32.794| 3 0.000
1 0.883| 0.203| 18.996| 1 0.000 2419| 1.626] 3.599
2 1.145| 0.214| 28.562| 1 0.000 3.143| 2.065| 4.784
3 0.980| 0.214; 20931 1 0.000 2.665| 1751 4.056
NOPPY 84.783| 4 0.000
1 0.867| 0.482 3.235| 1 0.072 2380 0925| 6.121
2 1.009 | 0.449 5.051| 1 0.025 2742 1.138] 6.609
3 1.858| 0391 22.569| 1 0.000 6.412| 2.979| 13.803
4 2.704| 0.384| 49.607( 1 0.000( 14.943| 7.041| 31.713
DOGUS 21437 3 0.000
1 0.915| 0248 13.587| 1 0.000 2.496| 1.535| 4.059
2 0.620| 0.298 4324| 1 0.038 1.858] 1.036| 3.333
3 -0.075| 0.365 0.042| 1 0.837 0.928| 0.453| 1.898
Constant -3465| 0331 109.810 1 0.000 0.031

-2LL~1282.588

Table 4.22.b : Variables not in the Multivariate Model of Linearity

for AGE
Variables Score df p-value

EDU 3
1 0.000 1 1.000

0.000 1 1.000
3 0.000 1 1.000
YOS 3
1 0.000 1 1.000
2 0.000 1 1.000
3 30.195 1 0.000
AOIS : 3
1 0.000 1 1.000
2 0.000 1 1.000
3 0.000 1 1.000
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If the variable AGE is linear in logit, then it is seen to be either a linear incresing
or decreasing trend in the estimated coefficient. But there is no evidence of linearity

for AGE. It is shown as in Table 4.22.a. So, this variable is used as continuous. The

final model is given in Table 4.20.a.

The logit function of this model is expressed as follows:

B(x)=Bo + B, Dy, +ByuDy + B Dy +BDys +B3%; +B4 Dy +B,Dyy +BuDyst

BMDM +BSIDSI +BSZD52 +BSSD53

8(x) = —6.659+1.852D,, +1.597D,, +1.663D,, +1.595D,, +0.039x, +0.955D,,
+1.028D,, +1.738D,, +2.686D,, +0.998D;, +0.710D,, +0.004D,

For exaniple, we can calculate the probability of being Ca of any person with

respect to his characteristic features. Some special features are shown as follows:

SEX: woman

EDU: primary

AGE: 50 years old
NOPPY: 35 packages
DOGUS: smoker

According to these features, logit function and logistic regression function are

evaluated as follows:

g(x) =—6.659+1.852*1+1.663*1+0.039*50+2.686*1+0.998*1 =2.49

f(x) = —XPEE)
1+exp((x))
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The probability of having lung cancer is so high according to these features.

Because 0.92 value is greater than 0.50 value.

SEX is the important risk factor for patients with lung Ca. For SEX variable,
being a female has 6.372 times more risk factor than being a male. For EDU
variable, the risk of having lung cancer varies according to education status.
Illiterates, people graduated from primary school and people graduated from
secondary school have respectively 4.940 times, 5.383 times and 4.928 times more
risk of having cancer with respect to reference group. Here, people graduated from
high school or university are the reference group. For AGE variable, a one unit
increase in age raises the probability of having lung cancer by 0.04 or 4%. For
NOPPY variable, when the number of packages of cigarattes consumption per year
increases, the risk of having lung cancer also increases with respect to non-smokers.
When the number of packages of cigarattes consumption per year is less than 11, this
category contains the value of 2.598 times more risk of having lung cancer with
respect to non-smokers. According to this situation, when the number of packages of
cigarattes consumption per year is greater than 31, this category contains the value of
14.675 times more risk of having lung cancer with respect to non-smokers. For
DOGUS variable, smokers have more risk of having lung cancer. Smokers have
2.713 times more risk of having lung cancer with respect to non-smokers. In
addition, the c onfidence interval o f o dds ratio for e very variable d oes n ot ¢ ontain

value 1.
4.3.2 The Backward Elimination

Backward elimination procedure was applied too. At Step (0) the program selects
as a candidate for remove at Step (1) the variable that has the 1argest p-value. In
addition, the smallest value of the score statistic should be chosen. But there is no
available variable to these criterias. For this reason, all variables take place in the

model. These are shown in the following tables.



Step (0):

Table 4.23.a : Variables in the Model (Only Constant)
Variable ﬁ S.E. Wald | df | p-value | Exp (B)
Constant 0.000] 0.058 0.000] 1 1.000 1.000
Table 4.23.b : Variables not in the Model
(SEX, EDU, AGE, YOS, AOIS, NOPPY, DOGUS)

Variables Score df p-value
SEX (1) 1.492 1 0.222
EDU 48.711 3 0.000
1 5.079 1 0.024
2 3.938 1 0.047
3 5.010 1 0.025
AGE 63.718 1 0.000
YOS 250416 4 0.000
1 28.102 1 0.000
2 3.931 1 0.047
3 27.435 1 0.000
4 99.170 1 0.000
AOIS 182.112 4 0.000
1 24.263 1 0.000
2 31.577 1 0.000
3 4.066 1 0.044
4 0.197 1 0.657
NOPPY 288.009 4 0.000
1 14.670 1 0.000
2 25.929 1 0.000
3 6.515 1 0.011
4 250.016 1 0.000
DOGUS 186.463 4 0.000
1 103.803 1 0.000
2 4.724 1 0.030
3 0.460 1 0.497
4 5.186 1 0.023
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Step (1):

At Step (1) the model includes all variables. That is shown in Table 4.10 as
before. All values of the model are the same as the univariate analysis. Interpretation

of them have been explained as before.

The logit function and logistic regression function of this model is expressed as

follows:

g(X) = BO +B11Dll +621D21 +I322D22 +B23D23 +B3X3 +B41D41 +B42D42 +B43D43+
BMDM +B51D5] +BS2D52 +BS3D53 +B61D61 +B62D62 +BGBD63 +B71D71 +

B72D72 + B73D73

B(x) = —7.960+1.892D,, +1.557D,, +1.660D,, +1.576D,, +0.060x, +2.605D,,
+3.054D,, +2.237D,, +1.857D,, +0.711D,, +0.437D,, +0.289D,

~1.907D,, —1.805D,, —1,524D,, +1.374D,, +1.059D,, +0.246D,,

<y = _SPE()
T+ exp(3(x)

4.4 Goodness of Fit Test

The values of the Hosmer-Lemeshow goodness of fit test statistic computed from
the frequencies in Tables 4.24 and 4.25 are 13.590 and 15.769 and the corresponding
p-values computed from the chi-square distribution with 8 degrees of freedom are
0.093 and 0.046, respectively. This indicates that the model obtained from forward
selection method seems better than the model obtained from backward elimination
method. Here, any computation is made to form risk group that contains 10 subjects.
This computation is expressed as 1200/10 =120. But, the values in Tables are
different from the value of 120. Because, predicted probability values for each

subject is listed to ascending from descending order.
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Table 4.24 : Observed and Estimated Expected Frequencies (Forward Selection)

Y 1 2 3 4 5 6 7 8 9 10 | Total
1 Obs 5 11 32 46 69 76 83 101 96 81 600
Exp 4.582| 13.405(32.445|47.027)63.935|77.606 | 86.562 |90.118 |93.195|91.135
Obs 115 109 88 75 51 44 41 22 25 30
Y=0 600
.Exp | 115.418106.597 | 87.555|73.973 [ 56.065 | 42.394 | 37.438 | 32.882 | 27.805 | 19.865
Total 120 120 120 121 120 120 124 123 121 1111} 1200
~  (5-4.582)° 81-91.135)> (115-115.418)° 30-19.865)2
C=( ) +....|.( 9 ) +( ) +...+(—_L
4.582 91.135 115.418 19.865
C=13.590
C=13.590< X005 =15.507. For this reason, the final model obtained from
forward selection method fits data.
The lbgit function is shown as follows:
g(x) =-6.659 +1.852D,, +1.597D,, +1.663D,, + 1.595D,, +0.039x%, +0.955D
+1.028D,, +1.738D,, +2.686D ,, + 0.998D,, +0.710D 5 +0.004D,,
Table 4.25 : Observed and Estimated Expected Frequencies (Backward Elimination)
Y 1 2 3 4 5 6 7 8 9 10 |[Total
- Obs 5 9 33 47 62 75 87 926 100 86 600
Exp 3.683| 13.282|31.712147.370|64.467 | 78.636 | 82.614 | 88.191 | 93.437 | 96.620
Obs 115 111 87 75 58 47 33 25 21 28
Y=0 600
Exp {116.317]106.718 | 88.288 | 74.630 | 55.533 { 43.364 | 37.386 | 32.809 | 27.563 | 17.380
Total 120 120 120 122 120 122 120 121 121 114 1200
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~  (5-3.683) (86-96.620)> (115-116.317)* (28 -17.380)°

C=X" 1 = 4t + e 7
3.683 96.620 116.317 17.380

C =15.769

C=15.769 > 12,05 =15.507. For this reason, the final model obtained from

backward elimination method does not fit data.
The logit function is shown as follows:

8(x) = ~7.960+1.892D,, +1.557D,, +1.660D,, +1.576D,, +0.060x, +2.605D,,
+3.054D,, +2.237D,; +1.857D,, +0.711D,, + 0.437D, +0.289D,,

~1.907D,, —1.805D,, —1,524D, +1.374D,, +1.059D,, +0.246D,,



CHAPTER FIVE
CONCLUSION

5.1 Conclusion

There are many statistical approaches to predictive probability modeling. In this
study, a logistic regression model was investigated. Because the logistic regression
model is used to explain the relationship between the response variable and
independent variables, when the response variable was observed into two or more
categories. Here, the response variable is observed into two categories. These
categories were being lung cancer (Ca) or control group (Co). To find “best” model
is very important. At the same time, this “best” model should explain the relationship
between response and independent variables. This “best” model is found by using
variable selection methods. In this study, univariate case and multivariate case were
investigated. The risks of being lung cancer were determined by using variable

selection methods. These methods are forward selection and backward elimination.

To describe the application of logistic regression method, it was studied on
clinical data to determine important risk factors of being lung cancer. Stepwise
logistic regression method was applied to these data with this aim. Some results
between forward selection method and backward elimination method varied. For
example, being a female has more risk factor than being a male for every two
methods. Their risk are almost the same. The value of 6.631 obtained from backward
elimination method is greater than the value of 6.372 obtained from forward

selection method. The risk of being lung cancer according to education status
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obtained from forward selection method is almost the same risk of being lung cancer
according to education status obtained from backward elimination method. For AGE
variable, a one unit increase in age raises the probability of being lung cancerby 0.06
or 6% in backward elimination method. This risk decreases to 4% from 6% in
forward selection method. In this phase, forward selection method can be better than
backward elimination method. For NOPPY variable, when the number of packets of
cigarettes consumption per year increases, there is no evidence the risk about being
lung cancer in backward elimination method. But the risk of being lung cancer
increases with respect to non-smokers in forward selection method. The values of
odds ratio for backward elimination are denoted by 0.149, 0.164, 0.218. The values
of odds ratio for forward selection are denoted by 2.598, 2.796, 5.687 and 14.675.
Here, forward selection method can be better than backward elimination method. In
addition, the number of variables in backward elimination method are more than
forward selection method. The logistic regression model obtained from forward
selection method does not include YOS and AOIS variables. Duration of giving up
smoking for patients is important. Giving up smoking early is more a dvantageous
with respect to smokers. This situation is valid for every two methods. Forward
selection method is better than backward elimination method with respect to

goodness of fit tests.

Finally, the final model o f forward s election m ethod is biologically acceptable,
this model can be used for determining risk factors. For this reason, the model
obtained from forward selection method is called “best” model. Nowadays, the
differences between final model and best model are accepted by researchers. Model
fitting is based on science, experimentations and statistical methods. They can not be

separated from each other.
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5.2 Further Research

Assessing goodness of fit in logistic regression model can be problematic.
Deviance and Pearson chi-square statistics do not have approximate chi-square
distributions, under the null hypothesis of no lack of fit, when continuous covariates
are modelled. In addition, Hosmer-Lemeshow test is used mostly. What is the main
difference between Hosmer-Lemeshow test and Deviance or Pearson chi-square
statistics? F or this reason, further r esearch ¢ an be d one about differences b etween
goodness of fit tests or goodness of fit tests with continuous covariates. Another
further research can be done about outliers or zero cells. When data consist on many
zero cells, which procedures can be done? These zero cells can be ignore, combine or

anything else.
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