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ABSTRACT

In vibrations of continuous system, types of support conditions are important and
have direct effect on the solutions and natural frequencies. In this thesis, the
transverse vibrations of pipes conveying fluid with non-ideal boundary conditions
are analyzed. Two different types of support conditions are considered: fixed-fixed
and clamped-clamped. The flow velocity is assumed to be constant and the pipes are
considered as Euler-Bernoulli. The equation of motion is derived using Hamilton’s
principle and then it is rewritten in non-dimensionalized form. It is solved
analytically by direct application of the method of multiple time scales (a
perturbation technique). It is also calculated numerically by the finite difference
method (FDM). It is found that the types of support conditions have effect on the
solutions. Non-ideal boundary conditions alter natural frequencies, stability
boundaries and displacements. The non-ideal boundary conditions are assumed that
they are moving harmonically with time and their frequencies are equal to natural
frequencies of the system. The natural frequencies are found that they are changing
with the non-ideal boundary conditions. Increasing amplitudes of displacements or
slopes of non-ideal boundary conditions cause a decrease of stable areas of the
system. Graphical results in the forms of natural frequencies and stability boundaries
are presented for the first and second mode. It is showed that the results obtained by
the multiple times scale are agree with the numerical results computed by using
FDM. The time histories of displacement calculated by FDM are given for some

specific examples.

Keywords: Pipe, vibrations, non-ideal boundary conditions, marine pipeline,

finite difference, the method of Multiple Time Scale, perturbations



OZET

Siirekli ortamlar titresimde mesnet tipleri ¢ok Onemlidir ve sistemin ¢oéziimi ile
dogal frekanslan iizerinde direk etkisi vardir. Bu tezde akiskan tasiyan borularin
enine titresimi ideal olmiyan smir sartlan altinda ¢éziildii. ki farkli mesnetlenme
sekli g6z Oniine alindi: sabit-sabit ve ankastre-ankastre. Akigkan hiz1 sabit kabul
edildi. Borunun Euler-Bernoulli oldugu diisiiniildii. Hareket denklemi Hamilton
prensibi kullanilarak ¢ikarildi ve boyutsuz formda tekrar yazildi. Analitik olarak ¢ok
zaman Olcekli metot ( bir perturbasyon teknigi) ile ¢oziildi. Ayrica sonlu farklar
metotuyla hesaplandi. Mesnetlenme seklinin ¢oziim lizerinde etkisi oldugu bulundu.
Ideal olmiyan sinir gart;, dogal frekansi, stabilite sinirlarmi degistirir. Ideal olmiyan
sinir sartinin zamanla sistemin dogal frekansina esit frekansla harmonik olarak
haraket ettigi kabul edilmistir. Dogal frekansin, ideal olmiyan sinir sartiyla degistigi
bulunmugtur. Dénme veya yerdegistirme seklindeki ideal olmiyan sinir sarti
genlifinin artmas1 sistemin stabil alamin kii¢lilmesine yol agar. Birinci ve ikinci
modlar igin, dogal frekans ve stabil bolgeler grafik formda sunulmustur. Cok zaman
olgekli metotdan elde edilen sonuglarla sonlu farklar metotuyla elde edilen sayisal
degerlerin uyustugu goOsterilmistir. Sonlu farklarla hesaplanan zamanla yer

degistirme grafikleri bir kag sembolik Ornek i¢in verilmigtir.

Anahtar kelimeler: Boru, titresim, ideal olmiyan sinir sarti, deniz boru hatlari,

sonlu farklar, ¢ok zaman 6lgekli metot, perturbasyon.
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CHAPTER ONE
INTRODUCTION

1.1 Literature Review

The subject of pipes conveying fluid has been studied extensively in the literature
due to its technical importance. T he dynamic of pipe is important problem in a lot of
engineering areas such as wastewater discharges, nuclear power plants etc. Of all the
studies, information of the natural frequencies and mode shapes of the system is most
important and it is the basis of vibration analyses. Furthermore, the stability of a fluid
conveying pipe is of practical importance since the natural frequencies of a pipe

generally decrease with increasing fluid velocity.

The flow-induced vibration has been studied widely since it always contains a
possibility of severe accidents by the several types of vibrations related to a fluid-
structure interaction. A fluid flowing through a pipe can impose pressure on the pipe
walls and deflect the pipe. It can be seen easily and understood physically that, with
increasing flow velocity, the effective stiffness of the system is diminished; for
sufficiently large velocity, some events may occur such as, divergence, buckling and
pitchfork bifurcation. The study on the flow-induced vibrations has focused both on
design and maintenance. The main aims are (1) to supply proper supports to reduce
deflection of a system and (2) to find out the fluid velocities that cause system

instability.

The paper presented by Paidoussis and Li (1993) reviews the dynamic of pipes

conveying fluid and presents a selective review of the undertaken on it. In their



paper, the dynamics of pipes with supported ends, cantilevered pipes or with unusual
boundary conditions; continuously flexible pipes or articulated ones; pipe conveying
incompressible or compressible fluid, with steady or unsteady flow velocity; pipes
thin enough to be treated as thin shells; linear, nonlinear and chaotic dynamics;
theses and many more are some of the aspects of the problem considered. An
Appendix is provided for those unfamiliar with the modern methods of nonlinear

analysis.

The selection of the support locations is closely related to the analysis on the
natural frequencies and mode shapes of a system. Once proper points are selected,
the occurrence of fatigue-related pipe failures due to vibration can be reduced. While
the large deflection of a pipe can be main source of the long-term fatigue failures, the
system instabilities directly related to the rapid pipe break in a relatively short time
duration. If a piping system reach a critical fluid velocity, pipes broken suddenly and
discharge fluid of high pressure. Furthermore, broken parts can cause secondary pipe
failure due to pipe whipping. These kinds of failure always have the possibility of
damaging staff and relevént piping system. [Kang (2000)]

In a cantilevered fluid-conveying pipe the Coriolis force always acts as a damping
mechanism that will be referred to as fluid damping [Langthjem and Sugiyama
(1999) and Semercigil et al (1997)]. The reaction force due to the momentum flux
out of the free end, acts as a follower load, as in Beck’s column [Langthjem and

Sugiyama (1999)].

Kang (2000) proposed the effect of rotary inertia of concentrated masses attached
on the fluid-conveying pipe. The paper written by Koo and Park (1998) shows that is
the dominant frequency contents in the excitation loads are known, a proper design

of periodic supports for reducing the vibration in those frequency bands is possible.

Numerous investigators concentrates on the effect of foundations on dynamic
behaviors of pipes: Impollonia and Elishakoff (2000); Elishakoff and Impollonia
(2001); Doare and Langre (2002); De Langre and Ouvrard (1999)



For nonlinear vibration analysis of pipes conveying fluid and for nonlinear fluid-
structure problems, many articles have been reported in the literature: Lin and Tsai
(1997)(1997), Lam et al. (2002); Gorman et al. (2000), Jensen (1997)

Dynamic behavior of compressed fluid conveying pipe is also analyzed recently

by some authors: Guran and Atanackovic (1998); Gaul and Wenzel (2002).

Wu and Shih (2001) determined the lowest natural frequencies and associated

normal mode shapes of non-periodic multispan pipe with external load.

Some authors (Zhu 1995, Price et al. 1998) presented motions of thin shells

conveying fluid.

In their paper, Wang And Bloom (1999) formulated a mathematical model to
study the dynamic of submerged and inclined concentric pipes with different lengths
and identified a few critical parameters pertaining to the proper design of such pipe

systems.

Vendhan et al (1997) give very good and simple analytic solution technique

conveying fluid flexible cylinder.

A lot of reports on the topic have been published, including the three well-
recognized texts on flow induced vibrations of pipe by Blevins (1990), Chen (1987)
and Suimer & Fredsoe (1997).

Oz & Boyaci (2000) solved transverse vibrations of tensioned pipes conveying
fluid with time-dependent velocity. Oz & Pakdemirli (1999); Oz, Pakdemirli, Boyaci
(2001); Oz, Pakdemirli, Ozkaya (1998); gave a good solution technique, multiple
time scale perturbation method, for axially moving beam. The numerical solution of
the mathematical model ‘using finite differences was calculated by Semercigil, Turan

& Lu (1997). Those both solution techniques are used extensively in this thesis.



1.2 Marine Pipelines.

Pipeline stability in critical areas of unstable and/or rapidly developing
morphology is a problem of vital importance not to be unnoticed in every pipeline
project. Various environmental and natural hazards with potential risks of important
damage to submarine pipelines may exist along a selected pipeline route. A
considerable number of pipeline damages have occurred because of unforeseen and

sudden changes of the original morphology of the sea floor on which they lay.

Environmental and natural hazards can be classified into two main categories:
hazards that pre-exist and can be encountered during the pipeline installation on the
seabed and during its planned operational life. The specific hazards and severity of
these hazards depend on the pipeline-site location, while the protection works to be
performed and the corrective actions to be taken depend mainly on the water depth
and on the type of hazard. The pipeline may be exposed to mud slides and turbidity
currents as well as to potential severe storm consequences induced under water and
other major bottom instabilities. In the near shore areas, the pipeline normally
exposed to high hydrodynamic forces and actions if it is just established on the
seabed without any protective trenching. In other areas, depending on local situations
and conditions, pipelines may have to be designed and installed considering
earthquakes as well as active faulting which may occur in the area. When installed
across straits, channels and narrow seas communicating with larger basins, pipelines
may be subject to strong bottom currents, migration and collapse of dunes and sand
waves, slumps and other slope instabilities. When laid across wide areas of shallow
or relatively shallow waters, the pipeline is very likely to rest across a sequence of
aggradation bedforms and sedimentary rhythmic mounded obstruction and parallel
depressions that may cause unsupported free spans to the possible extent. Sand
waves, dunes and other large, current generated bedforms with a ripple shape may
become a major problem in the stability and protection of pipelines crossing wide

seabed arcas where these structures are presented and subject to current induced



migration. One of the most critical and still uncertain questions to geotechnical and
construction engineers is the stability of these larger bedforms in relationship with

the pipelines and the related offshore installation they support.

Basic criteria for the choice of the most proper and safest pipeline route across
unstable areas also include the following concepts: minimize pipe length in unstable
seafloors and route the pipeline in a relatively more stable area. In mud-flow areas,
minimize any soil movement and slump risks of damage to the pipeline by routing
the pipe in such a way that in runs in the same direction as the ascertained or most
probable mud flow. This can normally be achieved by having the pipeline routed in a

direction perpendicular to the bottom depth contours in the area.

To reduce potential risk of damage to the pipeline, the environmental threats must
first be identified in the specific site, then measures be taken to protect the pipeline
from these threats. The protection methods include trenching the pipeline below the
seabed, anchoring of the pipeline, increased concrete coating, installation of supports
installation of load/ protection mattress, gravel dumping and strengthening the
pipeline. In the selection and the application of the most adequate and effective

protection method, water depth plays a relevant role as a determining factor.

For stability and protection against mechanical damages, most offshore pipelines
depend on the application of concrete coating of variable thickness. The design
thickness of the concrete coating based on factors such as seabed currents, pipeline,
size, buoyancy, concrete density, required corrosion protection and resistance to
mechanical damage and spanning. Natural irregularities in the seabed topography,
geomorphic discontinuities or scour under the pipeline during service normally result
in substantial free lengths of unsupported pipeline which con not be tolerated, as the
concrete coating turns into overstressed and spans leading to loss of protection and
instability and eventually to lasting damages to the pipeline structure. In common
practice freespan reduction and correction is attained by providing intermediate

supports, augmented where necessary by additional weight and perimeter protection.



Melegari&Bressan (1990) presented some pipeline support types in their paper.

Sandbags: Sandbagging is carry out to support free spans of cover exposed
pipelines. It is very often the simplest and most cost valuable method for depths

down to 50 mt.

Experiences and tests have shown that the conventional sandbags give a rather
low level of protection against mechanical damage, while using sand/cement

mixtures has been effective.



Figure 1.1 Sandbagging [Melegari&Bressan (1990)]

Grouting (support): This engineering solution is installed by hyperbaric divers
under normal and technical conditions. It is based on a well-proven flexible fabric
that is constructed to form bags or mattresses when filled with cement grout. The
formwork is made from a purposewoven polypropylene fabric, the support/underpin
form being based on several interconnected compartments with vent pipes to ensure
proper filing and maintenance of contact with the underside of the pipeline for a
standard distance/clearance. The system is modified to inflate the pipeline and the

bags can be adapted to accommodate varying heights of undercut beneath the



pipeline. The filling grout is pumped from the surface support vessel through a grout
umbilical consisting of two pressure hoses that provide a return line to the surface in

order that the grout can be recirculated when necessary.

Figure 1.2 Grouting (support) [Melegari&Bressan (1990)]



Jack-ups (mechanical supports): In numerous cases specially designed active
supports have been utilized to reduce the length of free spans with variable bottom
clearance. The supports can adapt themselves perfectly to unevenness of the seabed
by means of releasable legs. They are equipped with hydraulic jacks and compressed
air cylinders that allow the pipe to be jacked-up so that it has an optimal
configuration and stress position. In this case these supports become active supports.

These types of supports are today suitable for installation at depths exceeding 500m.



Figure 1.3 Jack ups (mechanical supports) [Melegari&Bressan (1990)]

Gravel dumping (backfilling): This method extensively used for correcting free
spans. In this method a free span can be covered along its total length or only at
certain points by forming heaps of material. Gravel backfilling can also be employed

in combination with pipeline steel supports. The practice is to cover the supports

10



after installation so as to supply more stability and protection from erosion under

supports themselves.

One important factor for the engineered backfilling is to determine the correct
mixture and grain size of the backfill material. The backfill material must remain in
place during the distinct environmental conditions that may occur. Also, it must not

prevent fishing with seafloor towed fishing gears in the area.

Grouting (protection): The fabric formwork used for the installation of grouted
supports can also be customized in the form of a saddlebag to provide additional
weight coating or protection over the pipeline. In such conditions the same fabric
material is tailored and adapted to suit the pipeline size, height from the seabed and

definite weight.

Figure 1.4 Grouting (protection) [Melegari&Bressan (1990)]

Bitumen mattresses: Bitumen mattresses are considered more suitable for the
protection/stabilization of exposed parts of pipelines in deep water. Whenever an
unsupported span is of considerable length and its clearance from the seabed is very
little (centimeters), increasing the pipe’s negative buoyancy on condition that it is
maintained within the allowable stress limits can attain its correction. These
mattresses can also be used in combination with other techniques, whenever negative
reactions in the pipeline are necessary. Bitumen mattresses, to be wholly effective,

need to be appropriately sized in relation to pipeline diameter. They are exceptionally

11



heavy for their size and with their flexibility; they can provide a very successful cure
to difficult stabilization problems. The bituminous filler together with dense
aggregates is used to provide weight, flexibility and long fixed protection to the

pipeline.

Figure 1.5 Bitumen mattress [Melegari&Bressan (1990)]

Concrete mattresses: These mattresses are constructed from reinforced concrete
bars interconnected by steel are polypropylene ropes that give flexibility and
capability to cope with an uneven seabed profile. This type of protection is
appropriate for multiple applications in remedial works of pipelines and in the

prevention of scour.

Figure 1.6 Concrete mattress [Melegari&Bressan (1990)]

12



Concrete saddles: Concrete saddles can be employed instead of sub mattresses to
ensure added weight coating and protection on the pipeline and to protect it from
local mechanical damages. These saddles are appropriate for repair of weight coating
and local scour prevention. They clearly provide good mechanical protection to a

pipeline and can be easily installed by divers or remotely controlled vehicle.

Figure 1.7 Concrete saddle [Melegari&Bressan (1990)]

Anchoring systems: In critical regions of pipeline, such as a shore approach or
close to platforms, it may be necessary to anchor the pipeline by physically fixing it
to the seabed to eliminate longitudiﬁal or lateral movements. Two piles are driven
into the bottom, one on each side of the pipeline, and a clamp is fitted around the top

of the pipe and to the piles. This system is independent of the seabed soil because the

13



anchors can be pilled, drilled or screwed to the depth required to satisfy adequate

restraint.

Pipes can today be generally grouped into two fundamental constrictions: The
“Bounded” and “Non-Bounded”. Bounded pipes are those in which layers are
applied and are chemically bonded to each other using bonding agents and special
adhesive. “Non-Bounded” pipes are constructed using alternating layers of polymers,

steel and flat wire reinforcement surrounded by tape or textile materials.

In the past five decades, pipes have been employed extensively in numerous
offshore engineering applications. The most vital functions of them is to transport
fluids drilled from underneath ocean floor such as oil, gas, hydrocarbon and their
crude resources, up to the production platform or drilling ship and to discharge
wastewater into sea, for examples, Hansen and Nedergaard (1982); Hansen & Fines

(1982); Chucheepsakul, Monprapussorn and Huang (2003).

It is the objective of the paper [Chucheepsakul, Monprapussorn and Huang
(2003)]: first to introduce mathematical principles for large strain analysis of
extensible flexible marine pipes conveying fluid, second to show how to formulate
large strain models of marine pipes in Cartesian and natural coordinates, and finally
to illustrate versatile and sophisticated models suitable for two dimensional large

strain analysis of extensible marine pipes conveying fluid.

1.3. Statement of the Problem

For the design of a piping system, the pipe supports have very important design
features in consideration of resisting system load such as dead weights, thermal
expansion, pump pulsation, water hammering and earthquakes. Piping systems such
as the steam generator heat exchanger tubes, the main steam pipes and hot/cold leg
pipes in a nuclear steam supply system, oil pipe lines, pump discharge lines, and

marine risers, are supported in various ways, depending on environmental conditions

14



and individual requirements. Generally, the steam generator heat exchanger tubes

and oil pipelines are planned with periodic support patterns.

Pakdemirli firstly used the non-ideal boundary conditions term in the literature.
Types of support conditions in analysis of vibration of continuous systems such as
beam, pipe, etc. are important and have direct effect on the solutions and natural
frequency of system. Boundary conditions of real system are idealized with some
assumptions by different type of supports. The real system is modeled by choosing
one of the most suitable ideal boundary conditions. It is always assumed that those
chosen ideal conditions satisfy the real system exactly. However, some small
deviations from ideal conditions occur indeed in real systems. For example, a pipe
connected at its ends to rigid supports by pins is modeled using simply supported
boundary conditions that require deflections and moments to be zero. However, the
hole and pin assembly may have small gaps and/or friction which may introduce
small deflections and/or moments at the ends. Similarly, a real built-in beam may
have very small variations in deflection and/or slope. These types of boundary
conditions with small deviations from the ideal conditions are defined as non-ideal

boundary conditions, Pakdemirli & Boyac1 (2001and 2002).

In this study, vibrations of the pipe having non-ideal boundary conditions with
constant internal flow velocity for two different types of supported systems were
analyzed. Using the perturbations (the Multiple Time Scale technique), the non-ideal
boundary conditions are modeled. The idea is applied to two pipe vibration
problems; fixed-fixed and clamped-clamped pipe. Effect of non-ideal boundary
conditions on the natural frequencies and mode shapes are examined for each case
using the Multiple Time Scale technique (MTST). The solution of this technique is

compared with the finite difference method.

In this study, the equation of motion is derived using Hamilton’s principle and
then it is rewritten in non-dimensionalized form in Chapter 2. The flow velocity in
the pipe is considered as constant and two types supported systems are analyzed with

using MTST in Chapter 3. The non-ideal conditions introduce a type of non-linearity.
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Therefore, to obtain solutions, some assumptions on non-ideal conditions have to be
considered. The method of MTST is applied to the equation of motion in search of
approximate solutions. In Chapter 4, the equation of motion is computed by the

FDM. For some specific situation chosen among infinity problems are calculated by
FDM.
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CHAPTER TWO
THE EQUATION OF MOTIONS

2.1. The Equation of Motions

For the clamped-clamped and fixed-fixed pipes conveying fluid, x and y’ are the
spatial co-ordinates, so y~ shows transverse displacements. v" is the constant fluid
velocity, pr is the fluid density, A, and A are the cross-sectional areas of the pipe
and fluid and assumed to be constant. The length is L. The module of elasticity of the
pipe is E,. The transverse displacement is assumed to be small compared with the
span L. The extensional stiffness of pipes is sufficiently large so that the longitudinal
deformation is negligible. Variation of cross-sectional dimensions during vibrations
of pipe is not considered. The gravity and fluid friction effects are neglected. Let us
denote the time by t’, the dot denotes differentiation with respect to time and the

prime denotes differentiation with respect to the spatial variable x .

Yy, t)

?

—» v(x,t)

Figure 2.1 Schematics of translating continua in a pipe with fixed-fixed

supports
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Figure 2.2 Schematics of translating continua in a pipe with clamped-

clamped supports

The kinetic energy of the fluid is

l & .* *,‘ 2 %
szapfAf.([(y +y v]dx 2.1

The kinetic energy of the pipe is

I (AR N
T, =—2-ppApI(y ) dx 2.2)

The total kinetic energy of the system is

r-1pa ff[y+y v)zdx-k p,A j[ ] 23)

where the first term denotes the kinetic energies of the fluid in the y* direction, the
last term is the kinetic energy of the pipe in the y~ direction. The elastic energy of

the system
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U=—[EI(y "V dx" 2.4)

The Lagrangian of the system is
£=T-U (2.5)

Hamilton’s principle is

5 j £dr* =0 (2.6)

3
4

Substituting Equations (2.3) and (2.4) into Equation (2.5) and applying
Hamilton’s principle, Eq. (2.6), we can find

6L 2 53
f 1 % %y 1 ¥ 1 * Koy %
5JHEPfAf(y +y V) +§PpAp)’ —EEI}’ z}dx dr =0 2.7)

f
Equation (2.7) can be rewritten in this form

L R
I :SHF(JC*,t*,y,y‘,y",y)dx*dt* =0 (2.8)

40

where F [x*,t*,y,y',y",y) is a known real function F of the real arguments

X"y ,t". The value of the integral depends on the choice of y* =y’ (x*,t*). We use

the term functional to describe functions defined by integrals whose arguments

themselves are functions.
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OF 0(0F) d*(0F) d|oF
KA. ey U . iy ) 2.9
dy ax(ay')-l—axz(ay"] : 9)

is a necessary condition that the integral, Equation(2.8), be minimized by
y=y(x",t"). Equation (2.9) is the Buler equation associated with the variational

problems for two independent and a dependent variables.

oF oF . oF
L0, L =p Ay y+yv| Z=-Eb",
ettt B o
(2.10)
aF . , .
—.=pfAfv ytyv +ppApy
dy /

Substituting above derivations into equation (2.9), we can find equation of motion

of pipes conveying fluid without viscous damping term and foundation modules.

9y’ 0%y %y | 9%y
EI—*+ Ay ‘—*+2 AV — +tm—
o PtV T TP AV T

=0 (2.11)

wheremis p A, +p,A,.

The various terms in Equation (2.11) may be identified, sequentially, as the
flexural restoring force, a centrifugal term, a Coriolis term, and the inertia term. It is
clear that the centrifugal force in Equation (2.11) acts as a compressive load. “In this
way, it is easy to see and understand physically that, with increasing v, the effective
stiffness of the system is diminished; for sufficiently large v, the destabilizing
centrifugal force may overcome the restoring flexural force, resulting divergence,
vulgarly known as buckling, and is some other circles as a pitchfork (static cusp)

bifurcation.” Paidoussis and Li (1993).
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When we consider adding viscous damping, foundation modules and force terms,

Equation (2.11) transforms

a'y" ,0%y %y . .0y 9%y
El —+p AV —=+2p A v——r+ +A —tm—
ot TP A sty t A s tmas

=f (212

2.2. Non-dimensionalized of the Equation
The equation of motion will be non-dimensionalized since we can solve the

problem in a way that is independent from size and type of material. The equation

can be non-dimensionalized by substituting

y=y'/L x=x"/L,t=t'NEI I mI* (2.13)

we can write:

?y_*:a_(_)ﬂi_ /_E_I__al (2.14)

or* or of \mI* o

bellow terms can be find in similar way

0°y"  EI 0%y

*r ml o @.15)
d’y" _ [EI 9%y 2.16)
ox"or" ‘\/mz‘* oxdr '
" 0

a)yc _ =a—i’ 2.17)
9°y" 19%

o? Lo (2.18)
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a*y" 19
o @19

substituting equations from (2.13) to (2.18) into equation (2.12), we obtain

2
35 Vza y+2J_V—+Ky HsﬁJr%_f: F (2.20)
) t Vil

(1) un ) (V) (VI)

—

L4
where B =pA/m, V=vL1/pfAf/EI, K=kE, u=AL%I\mEI

L3
F=f I
Terms (I) and (VI) constitute the simple beam equation, while (II) and (IIT) are the
curvature term (or the centrifugal term) and the Coriolis force term, respectively.
Term (IV) represents linear elastic foundations. The structural damping is
represented with term (V) in Equation (2.20). V is the non-dimensional flow velocity

term and the effect of the flow is reflected by parameters V and B. (Semercigil et al.,

1997)
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CHAPTER THREE
SOLUTIONS OF THE EQUATION OF MOTION

FOR NON-IDEAL BOUNDARY CONDITIONS

3.1 Introduction

In this chapter we will solve Equation (2.20.) without foundation terms (IV) under
the nonlinear boundary conditions, which is called non-ideal boundary conditions. It
means that the pipes are not lying on elastic foundations. The viscous damping
coefficient in the term (V) assumed to be so small. So we will consider this term in

below form

SM%);—

and we accept no external force acting on pipes. Now, Equation (2.20) changes into

below form
8y+V28 Y, \/—V e ?_2y 0 3.1)
& 7

(€3] un uin W) (VI)
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3.2 Solution for Fixed-Fixed Pipes

Here one may assume that both of the boundary conditions are non-ideal or only
one is non-ideal. Now here both side boundary conditions will be taken as non-ideal.

Hence, the non-ideal boundary conditions for the fixed- fixed pipe are

y (X, 0

—» V(x,1)

Figure 3.1 Schematics of translating continua in a pipe with fixed-fixed

supports
y(0,r)=¢a(r), y(Lr)=eb(r) (3.2)
and the other conditions are
y'(0,6)=0, y"(L.t)=0 (3.3)
Contrary to the pipe problems with ideal boundaries, variations in the

displacements at the boundaries affect frequencies as well as amplitudes. The method

of Multiple Time Scales is employed in search of approximate solutions.

The following expansion is assumed

y(x.:8)= 3, (T, T )+ £y, (x.T,,Ty) (3.4)
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where Tg=t is the fast time scale and Ti=¢t is the slow time scale. Time derivatives

are defined as

2
% =D, +¢&D, +..., % = D02 +2eD,D, +..., (3.5)

where D,=0/dT,. Substituting Equations (3.4) and (3.5) into Equation (3.1)

Yo + €3 +V (3, + y;)+ 2,/BV [(yo +&y,)(Dy+£D, ):|

(3.6)
+8,u|:(y0 +&y,)(D, +£D1)]+(y0 +sy1)(Do2 +2£D0D1)= 0

now, separating terms at each order of €, one obtains

o(1):
y(l)v -I-sz(; + Z—JEVDO}I(') + D()2y0 =0 (37)
yO(O’TO’T'l)= yo(l,To,Tl):O

O(e):
y+Viy, +2\/—ﬁ_VD0y; +Dgy, = —2\/—BVD1}’(I) = UDyy, —2D,Dyy, (3.8)
% (05, ;)=a(T, 1), 3, (LT ;) =b (T, T)

The solution at order 1 can be written as follows:
Yo (x, 7}),7‘1;8) = A, (T;)e™™Y, (x)+ An (T, )™ Y » (x) (3.9)

substituting Equation (3.9) into the equation at order 1, the spatial functions Y,(x)

satisfy the equation
Y" +V2Y, +2iw,\[BVY, -0,Y, =0 (3.10)

with the boundary conditions
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Y1(0)=0, Ya(1)=0, Y”’2(0)=0, Y”n(1)=0 (3.11)
The solution of Y,(x) is
Y (x)_cln( 0% +C ezao,,x +C eza;,,x +C eza4,,x) (312)

substituting this equation into Eq. (3.10)

cl,,{[afn—vza; -20,\/BVa,, -] J o

+|:a;‘n ~Via? ~20,,/BVa,, -0 }Cz,, O

(3.13)
+[a§‘,, %02, ~20,\[BV ey, - }C3ne‘“f’"
+[ajn— 2 2w BV, o }C‘tne""“‘}:O

one obtain the dispersive relation
af Va2 —20,\BVa, -0l =0 i=1,23..., n=1,2,3...(3.14)

The «,, satisfy Equation (3.14). Applying boundary conditions (3.11) to

dispersive relation, one obtain four equations those are

From Y, (0)=0,
¢, (1+ C,tG, +C4n)=0 (3.15)
from ¥, (0)=0,

a, (0, + C0, +Co 05, + Coty, ) =0 (3.16)
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from Y, (1)=0,

Gy (€% +Cppe™ +Cy\ ™ +C, e ) =0 (3.17)
from ¥, (1)=0,

c, (g™ +C,,05,6% +C,,00,6™ +C,00,£% ) =0 (3.18)

now, applying the boundary conditions to the solution, the matrix equation is

obtained as follows

1 1 1 1 1 0
2 2 2
al O‘z (X3 (X4 CZn c = 0 (3 19)
eia, eior,z ei% eia:4 C3,, 1n 0 .
2 i 2 zoz7 iy 2 i,
ale™ o™ ale™ ale™ ||C, 0

for non-trivial solutions, the determinant of the coefficient matrix must be zero,

which yields the support condition;

[ei(ann+w) ¢/ :| (0‘ i~ O )(%Zn ~ O, )

-+

¢ (Cy+ 03, w,, +ay, :| o, _a4n )( —o? ) (3.20)

In

[ (o
[e o) 4 gllCntou ](al )( *sn _a3n) 0

<+

Numerical values of w, as well as ¢, can be calculated by using Equations (3.14)

and (3.20).

Now, to obtain C,,, C,,, C,, coefficients, Equation (3.15) is multiplied with c},

and then subtracted from Equation (3.16)
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Cin [(aZn —alzn )+ CZn (ajn _a22.n ) + C3n (ajn —affn ):I =0 (321)

in similar way, Equation (3.17) is multiplying with @ and obtained term is

subtracted from Equation ( 3.18)
Cin [(afn _alzn )eial” + CZn ((an _a22n )ei%” * C3n (ajn —a;n )eia3" __J =0 (322)

using (3.21) and (3.22), C,,, C,,can be obtained. Firstly Equation (3.21) is

multiplied ¢ and than equation (3.22) is subtracted from this obtained term
n P

c, [(af ol )(ei“’" — )+ C,, (afn - )(e“”’" — e ):I =0 (3.23)

C,, can be driven from above equation

(3.24)

Now again same operations is applied same equations but multiplying ¢
6| (02—, )(e = )+ G, (a2, -2, ) (e =™ )]=0 (3.25)

and then

c, = _ (3.26)

The last coefficient is
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c,, =-1-C, —C, (3.27)

Now those coefficients are substituting into (3.12)

(o, —oczzn)(ei"‘3" e“”’") (o, ~ a3,
[ () -e) (g ) -en))
) Cme M ey ey
(3.27)

To find the solution at second order of approximation, one substitutes Equation

(3.9) into the right-hand side of Equation (3.7). The result is

" +V2yl" + ZJB_VDOyi + D(fy1 = ZJ—BV}?DlAneinTo r [/Li(l)nYnA"eiw"T”

, (3.28)
~2iw, Y DA " +c.c.

where c.c. stands for complex conjugate of the preceding term. Assuming a solution

of the following form:
y =y, (xT)e"" +ce. (3.29)

and substituting into Equation (3.28) and boundary conditions in Equation (3.8), one

has

Wy VY, +2i0,BVY, 0y, ==2,/BVY,D,A, - pio,Y,A,

(3.30)
~2i0,Y,D,A,

and
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¥ (0.7, 1) =w (0,1, )™ +c.c.= aA(T; ) "™ +c.c.,

) ) (3.31)
¥ (LT, 1) =w (LT,)e"™ +ce.=hA(T, )e™™ +cc.,
and then
0,TY=a,A(T,),
v(0.1)=a,A(L) (3.32)

v (LT,)=bA(T;)

The homogeneous part of Equation (3.30) has a non-trivial solution. For the non-

homogenous problem, to have a solution, a solvability condition should be satisfied.

To find this condition multiply the equation by an unknown function u, (x) and

integrate over the domain.

© t—y

(1/1’”+V1// +2iw J—Vw wu/) Ju( 2\/_VYDA,,)dx
—f u(uico, ¥, A, Jdx— f u(2i0,Y,D,A, Yix

(3.33)

The right hand side of the equation is assumed zero. To transfer the

differentiability from ¥, to u,, one use the integration-by-parts formula

1 1

[, udx =yl ~ [w,u,dx (3.34a)
0 0

f‘/f VA ATS +Iw (3.34b)
L w - wil !

'[I[ln'vud.x =W, WU, YU, W, | +fwnun’”dx (3.34c)
0 0

Substituting Equations (3.34) into Equation (3.30)
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m P F— w[l
VAT VAR VAT
(3.35)

1
)=

(ur +V2u, ~ 2100, BV, —wzun)l//ndx+(

O Sy

2 1 .
+V = 2iw, \[BV

l//n un - lllnun

Wnun

Applying boundary conditions for the second order, one can find form of “u,

unknown” function. Now looking at integration parts of above equation, one can say

0, () =7, (%)

It means u, (x) is equal to conjugate of ¥, (x). Applying boundary conditions of

(3.32) and using above terms Equation (3.30) can be rewritten below form:

Y, (16,4, (T)-VT, (1)byA, (T,)+7, (0)ap4, (T,)+V?Y, (0)ayA, (T;)=
o [ o (3.36)
~2JBVDA, (L) [V, - pio, A, (1) [ 1,7, - 2i0,D,A, (1) [ 1,7,

Rearranging (3.36), one can write an ordinary differential equation

by (E7 (0472, (1)~ (%7 (0)+ VT, (0)) - i ¥, T
DA= : 1 0 A (3.37)
2BV [ Y,Y,dx+2i0[Y,¥,dx
0 0

Z=7,+iZ,
whose solution is

A(T) = Ce™ = ce ) (3.38)

where C=ce”is a complex constant. & and care constants to be determined by

initial conditions. For the ideal boundary conditions, a, =b, =0, term Z is;
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1
—io [ ¥,Y,dx
zZ= 2

— — (3.39)
2BV [¥,Y,dx+2io Y, Y,dx
0 0

when there is no damping in the system, the solution of the system is transformed
into at one order solution (€ =0). Substituting back Equation (3.38) into Equation

(3.9), returning to the original time variable
Yo (x, T,T; 8) = ceP P iy (x)+ce e algmely, (x) (3.40)
and considering T, = €7} and rearranging this term,

Yo (x, To_;S) = ce” (ei[(wn+£Zz)To+9]'Yn (x)+ e—i[(w”+ezz)7‘o+e]?" (x)) (3.41)

where Z, is modifier frequency term due to the non-ideal boundary conditions and

6 is phase angle. Returning to the original time, one finally obtains the approximate

response as follows:
Yo (%,2)=ce” (ei[(w”+szl)t+9]Kl (x)+ o lonet ) oly (x)) (3.42)
The frequency due to non-ideal boundary condition is
@, =0, +Z, (343)
Non-ideal boundary condition is

y(0,2)=gae™, y(l,t)=ebe™ (3.44)
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3.2.1 Numerical Results

The equation of motion and amplitude of vibration A(T)) term is rewritten as

a'y 2a y dy 0%y
+v* 2240 /B V COMPILAP AR,

ot T o

—— %_/ %{_z

) un €3] (V) (Vl)

b (¥ (1)+VY, (1))~ (¥, (0)+V*X,(0))- uiijnde
DA= 0

1 1
2BV [Y,¥,dx+2i0 [ ¥,7,dx
V] 0

Z=Z,+iZ,

Some parameters are present in these equations. Numerical results of equation of
motion depend on parameters V, ag, bg, §, W. In this section numerical results are
given with respect to V, ag, bg in graphics form. Therefore, effects of these

parameters on numerical results will be seen in below figures.

Square root of § parameter in range of O to 1 is in equation of motion and
amplitude of vibration. Therefore, § has a small effect on numerical results. So,

effect of variation of B is not illustrated in figures.

Effect of external damping coefficient on numerical results are plotted in Figures
(3.4)-3.5).

In Figures (3.2)-(3.3), y-axis represents the natural circular frequency of the
vibration. It is customarily measured in radians per unit time. The natural frequency,

o, has varied through 27 radians. Hence, one can write

1=Period of vibration=2n/®
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The natural frequency, which is the reciprocal, is defined as
1 o

f=—=—m (h2)
T 2

Where, time is in dimensionless form. To compute time in dimensional form

Equation (2.11) can be used.

y=y' /L x=x/L,t=t'\NEI ImL* 2.11)

In figures, x-axis reflects non-dimensional flow velocity, V. Non-dimensional
form of velocity can be obtained from the equation below. Also, if the non-
dimensional velocity (V) is known and then its dimensional form can be calculated

using the equation;

V =vL|p,A, [ EI

In this section, the numerical examples will be given for the vibrations of pipes
conveying fluid with non-ideal boundary conditions. In Figures (3.1-3.2), natural
frequencies for fixed-fixed are given depending on velocity of fluid and amplitude of

non-ideal boundary conditions for the first and second modes.
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Frequency of the pipe

Ideal BC
— - — Non-ldeal BC for a=0.5, p=0.0
————— Non-ldeal BC for a=0.5, b=0.5

[ ! | ' I ‘ I ! ]
0 1 2 3 4
Flow velocity, v

Figure 3.2 Comparisons of the first natural frequencies for different non-

ideal boundary conditions for fixed-fixed supports (f=0.8, €=0.1, p=1.0)

Depending on the mode numbers and flow velocities, the frequencies, altered by
non-ideal boundary conditions, may increase, decrease or remain unchanged. The
natural frequencies decrease with increasing of the velocity. Variation of the ratio of
fluid masses (fluid to pipe ratio) has small effect on the natural frequencies due to
square root of it in the equation of motion. On the other hand, at higher modes, the
natural frequency values increase. The ideal and non-ideal frequencies are drawn as a

function of the flow velocity.
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Frequency of the pipe

Ideal BC \
~~~~~ Non-ideal BC tor a=0.5, b=0.0 \
~— - — Non-ideal BC for a=0.5, b=0.5

Flow velocity, v

Figure 3.3 Comparisons of the second natural frequencies for different non-

ideal boundary conditions for fixed-fixed supports (§=0.8, £=0.1, u=1.0).

Another interesting feature of the non-ideal boundary conditions is growth or
decay of the amplitudes depending on the argument of the exponential term in Eq.
(3.40). It is an expected result because the non-ideal boundary conditions are chosen
in a secular term form. Therefore, non-ideal boundary conditions change the stability
of system. New stability situations, changing with non-ideal boundary conditions,
can be found from Eq. (3.37). If Z; term equals to zero, then the system is bounded.

The system is stable in case of negative value of Z;, otherwise unstable.
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Figure 3.4 Variation of stability boundaries for constant amplitude of right-

hand side for the first mode ($=0.8, £=0.1, p=1.0).

Decrease of the value of u, external damping coefficient, cause to reduce the

stabile area. Variations of p change the location of the mentioned point (detailed

information is going to be given later).
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Figure 3.5 Variation of stability boundaries for constant amplitude of right-

hand side for the first mode (f=0.8, £=0.1, u=0.5).




It doesn’t change the value of flow velocity at this point. But it is acting only on
along y-axis; it means the amplitude of non-ideal boundary conditions varies due to

the changing value of .

In Figures (3.4-3.6), for first and second modes, stable and unstable regions are
plotted for constant value of by (amplitude of the displacement at the right support)
and v (flow velocity). For constant by values, stability boundaries are illustrated in
Figures (3.4)-(3.6) (The by values are demonstrated with the letter “b” in figures).
The regions between x-axis and those lines are stable for each constant by. While the
value of by is increasing, corresponding stable area becomes smaller in the first
mode. On the contrary to the first mode, the stable area becomes larger in the second
mode according to increasing by value. In Figure 3.6, stable and unstable regions are

shown at the second mode.

An interesting case is bg equal to zero. Then the system has a non-ideal boundary
condition only at the left-hand side support. It means right-hand side condition is
ideal. For ideal right-hand side condition, the stable boundary regions begin under
the lines about ag=0.3 and ay=0.2 in the first mode and in the second mode,
respectively. The remarkable intersection points seen from figures 3.4 and 3.5 are
about v=2.3 and ag=0.17 for the first mode and about v=3.0 and ag=0.15 for the
second mode. All stability boundary lines intersect or passed through these points.
These points may have practical importance in engineering applications. If one can
allow dimensionless displacement amplitude smaller than about 0.17 on one support
and dimensionless flow velocity equal to 2.3, then the system is always stable at the
first mode. It may be notable point for designer, who uses the boundary conditions

exactly explained in this study.

Another remarkable case for designer is that the fluid velocity can be used as a
controller mechanism for the system. Numerical results show that the velocities
higher than the notable point allow higher amplitudes of non-ideal conditions. Then,

it may be suggested that pipes can be employed in high fluid velocities for stability.
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At the second mode, the location of remarkable point has small deviations from
the first mode. In this case the V=3 point defines this intersection point. A notable
situation that the designer should take into account is that the regions are stable at

first and second modes for the small amplitude values.

0.5 i | [ 1 1 1
b=0.4 b=0.5
b=0.3
< 0.4+ -
g
= b=0.2
< 0.3 =
=
2
© b=0.1
7 0.2- -
o
[ =
=
2= b=0.0
2 0.1+ L
0 | T T | 1 ==
0 1 2 3 4 5 6

Flow velocity, v

Figure 3.6 Variation of stability boundaries for constant amplitude of right-
hand side for the second mode ($=0.8, €=0.1, u=1.0).

To see how the magnitude of non-ideal boundary conditions impose on stability
conditions, the plots are drown for different flow velocities (Figures 3.5 and 3.6). In
the figures y and x axes show amplitude of non-ideal boundary conditions. The
regions between y-axis and the constant flow velocity lines are considered as stable

regions.

There are intersection points for the first and the second modes. The values ag and
by are equal to each other about 0.15 for the first mode (Figure 3.5) and about ay=0.
and bp=0.13 for the second mode (Figure 3.6). With increasing flow velocity except
v=(0.5, stability boundary lines are rotating in a clock-wise direction around the point
(ap=bp=0.15) for the first mode. This rotation occurs in an opposite way for the

second mode around ag=0. and by=0.13 in Figure (3.6).
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Figure 3.7 Variation of stability boundaries for constant flow velocities for

the first mode ($=0.8, e=0.1, pu=1.0).
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Figure 3.8 Variation of stability boundaries for constant flow velocities for

the second mode ($=0.8, £=0.1, u=1.0).
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3.3. Solution for Clamped-Clamped Pipes

Both of the boundary conditions can be accepted as non-ideal or only one is non-
ideal. Now, the boundary conditions will be taken as non-ideal for both side

supports. Hence, the non-ideal boundary conditions for clamped-clamped pipe are

f y(x, 1)
— V (x, t)

AMANANAN
4

< >

Figure 3.9 Schematics of translating continua in a pipe with clamped-

clamped supports

y(0,0)=¢ea(t), y(Lt)=eb(z) (3.45a)
and the other conditions are
y(0,6)=£d(t), y'(Lt) = £e(r) (3.45b)

Similar to the fixed-fixed pipe problems, variations in the displacements at the
boundaries affect frequencies as well as amplitudes. The method of Multiple Time
Scales is applied in search of approximate solutions. Employing the perturbation
technique, separating each order, and assuming the solution is identical with fixed-

fixed pipe problem in Section 3.2. Equations (3.4)-(3.10) satisfy the clamped-

clamped pipe problem. The spatial function ¥, (x) differs from previous problem. In

spite of unchanged dispersive relation, the matrix form is changed due to the

different boundary conditions (clamped- clamped), Equations 3.45a,b.
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We know from previous solution that Y,(x) satisfy Equation (3.10) with below

boundary conditions for clamped-clamped pipe;
Y:(0)=0, Y,(1)=0, Y’5(0)=0, Y’5(1)=0 (3.46)

These boundary conditions change only the matrix. To find the matrix, the

boundary conditions are applied on the spatial functions, ¥, (x). Equations (3.15)

and (3.17) can be used for ¥, (0)=0 and ¥, (1)=0, respectively.
from ¥, (0)=0,
Gy (i, + Cyicty, + Cypicty, +Cpicty, ) =0 (3.47)
from ¥, (1)=0,
Cy (106,65 + Co iy, € + Cy ity € +C, i, )= 0 (3.48)

above equations can be rewritten in matrix form,

1 1 1 1 1 0

o io, io, i, ||C,, o - 0 (3.49)
eia, ei% eiag eioz4 C3n 1n 0 .
i ™ ia,e™  ie™  iae™ ||C,, 0

for non-trivial solutions, the determinant of the coefficient matrix must be zero,

which yields the support condition

(eia" —e" )(ei%" —e )(0‘4,1 -0y, )(a4n — 0, )
+ (eia?,n L )(eiaan — % )(a‘m — 0, ) (@ — 1, ) (3.50)

i 3 iall .a'l .a" —
+(e“”2 —e™ )(e" —e™ )(a4n—a2n)(a4n—a3n)—0
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numerical values of @, as well as ¢, can be calculated by using Equations (3.14)

and (3.50).

Now, to obtain C,,, C,,, C,, coefficients, Equation (3.15) is multiplied with o,

and then subtracted from Equation (3.47)
Cin I:(aéln _aln ) + CZn (ad,n - aZn ) + C3n (ad,n —a3n )] =0 (35 1)

in similar way, Equation (3.17) is multiplying with &}, and the obtained term is

subtracted from Equation ( 3.48)
Cir l:(a4n —o, )eial" +Gy, (a4n —Qy, )ei% +G, (a4n — &, )ei%" ] =0 (3.52)

using (3.51) and (3.52), C,,, C,,can be obtained. Firstly Equation (3.51) is

multiplied " and than Equation (3.42) is subtracted from this obtained term
| (@ =01, ) (€ =€ )+ G, (0, — 013, ) —e ) | =0 (3.53)

C,, can be driven from above equation

(3.54)

Gy

(a4n —a, ) ( &% — g% )
—e )

(0r =00, ) (e
Now again same operations is applied same equations but multiplying ¢

in | (0n =01, ) (€ - ¢ )+ Cyp (0 — 5, ) (€% =€) ] =0 (3.55)
and then
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C, =- (a4n —ay, )(el:% B e‘:am ) (3.56)
(O‘4n —0, )(e%" —e™ )

The last coefficient, C,,, is can be found using Equation (3.27)

Now those coefficients are substituting into (3.12)

o () ) o () e)
Y,, (JC) — Cln[ezal,,x _ n n : l exa,_"x _ n n l : eta;,,x
(aA-n "azrz)(em@" e ) (a4n "053n)('ea2 —-e” )
()™ ) (oo o)),
H -l /L |
(O‘4n — 0y, )(el " —e ) (a4n —0, )(el - )
(3.57)

The non-homogeneous problem at order € will have a solution only if a

solvability condition is satisfied. To determine this condition, steps from (3.28) to

(3.36) in Section 3.2 can be followed for the clamped-clamped pipe system.

Boundary conditions in Equations (3.45a and 3.45b) are

3 (0.7,,T,) =y (0,T; )™ +c.c.= a)A(T; )™ +cc.,

. ‘ (3.58a)
Y (I,TO,T1 ) =y (I,Tl )e””"T" +cc.=bA (T1 )e“""T° +c.c.,
and
yl '(O’T;)’Ti ) = W '(07Tl )eiﬂ’nTo Tee.= a’IA(Tl )eiﬂ),,To + cc., (358b)

y' (LT, T)=y"(LT,)e"™ +cc.=hA(T;)e™™ +cc.,

condition requires
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T OnAE) T, (D54 ()4, Ot (R)-F, ()4, (7)=
—piw, A, ( T)J.YY ~2/BVDA, (T;) jYY ~2iw,D,A, ( jy?

n-n

Rearranging (3.59), one can write an ordinary differential equation

1
boY, (1), (1)-a¥, (0)+a, (0)- ioo| ¥, T
DA= : : 0 A (3.60)
2BV [¥,Y,dx+2iw[Y,Y,dx
0 0

Z=Z,+iZ,

Above differential equation has a solution like (3.38) but, here,Z term is in

different form. For the ideal boundary conditions, a,; =b,, =0, term Z remains

same as (3.39).

3.3.1 Numerical Results

The equation of motion and amplitude of vibration A(T;) term is rewritten as

9* g9y 2 a Yy ay 0° dy
+V —+2B V =0
ox* at o, x>
—— E,_/ [}
M an (i » o on

by (B ()4 V7T, (1))~ (E7 (0)+ V°T; (0)) - oo 1, T

D A= T T
2BV [Y,¥,dx+ 2i0[ ¥, ¥, dx
0 0

v
Z=7,+iZ,

Some parameters are present in these equations. Numerical results of equation of

motion depend on parameters V, ag, by, B, U. In this section numerical results are
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given with respect to V, ag, by in graphics form. Therefore, effects of these

parameters on numerical results will be seen in below figures.

Square root of f parameter in range of O to 1 is in equation of motion and
amplitude of vibration. Therefore, 3 has a small effect on numerical results. So,

effect of variation of B is not illustrated in figures.

Effect of external damping coefficient on numerical results are plotted in Figures
3.12-3.13.

In Figures 3.10-3.11, y-axis represents the natural circular frequency of the
vibration. It is customarily measured in radians per unit time. The natural frequency,
o, has varied through 27 radians. Hence, one can write

1=Period of vibration=2m/m®

The natural frequency, which is the reciprocal, is defined as
1 o

f===—=(h)
T 2

Where, time is in dimensionless form. To compute time in dimensional form

Equation (2.11) can be used.

y=y' /L x=x"1L,t=tNEI ImL* 2.11)

In figures, x-axis reflects non-dimensional flow velocity, V. Non-dimensional
form of velocity can be obtained from the equation below. Also, if the non-
dimensional velocity (V) is known and then its dimensional form can be calculated

using the equation;
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V=vLJp,A, IEI

In this section, the numerical examples will be given for the vibrations of pipes
conveying fluid with non-ideal boundary conditions for clamped-clamped supported
ends. In clamped-clamped supported ends, non-ideal boundaries are examined by
varying displacement and slope at € order. In Figures (3.10-3.11), natural frequencies
are plotted depending on velocity of fluid and amplitude of non-ideal boundary

conditions for the first and second modes.

25 —

20 —

Frequency of the pipe

] 1deal BC
- - - Non-ldea! BC for a=0.5 b=0.5, a1=0.5, b130.5
5 — ~—— Non-ldea! BC for a=0.5, b=0.5, a1=0, b1=0

- — Non-Ildeal BC for a=0.2, b=0.2, a1=0, b1=0

N

Flow velocily, ¥

Figure 3.10 Comparisons of first natural frequencies for different non-ideal

boundary conditions for clamped-clamped supports ($=0.8, €=0.1, u=1.0)

Depending on the mode numbers and flow velocities, the frequencies may alter in
case of non-ideal boundary conditions, it may increase, decrease or remain
unchanged. Increasing the velocity, the natural frequencies decrease. Varying of the
ratio of fluid mass has small effect on natural frequencies due to square root of the
ratio in equation of motions. At higher modes, the natural frequency values increase.

The ideal and non-ideal frequencies are drawn as a function of the flow velocity.
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— - — Non-ideal BC for a=0.5, b=0.5, a1=0.5, b1=0.5
- | — —— Non-ideal BC for a=0.5, b=0.5, a1=0.0, b1=0.0

R B I D

Flow velocity, v

Figure 3.11 Comparisons of second natural frequencies for different non-

ideal boundary conditions for clamped-clamped supports (§=0.8, e=0.1, u=1.0)

An interesting feature of the non-ideal boundary conditions is growth or decay of
the amplitudes depending on Z argument of Eq. (3.60). It is an expected result
because the non-ideal boundary conditions are chosen in a secular term form.
Therefore, non-ideal boundary conditions change stability conditions. New stability
conditions, changing with non-ideal boundary conditions, can be found from Eq.

(3.60). If Z, term has a positive value, then the associated pipe is unstable.

There are two different types of non-ideal boundaries for clamped-clamped
supported ends, with respect to variation displacement and slope. Both of them are in
¢ order. To show effects of the non-ideal slope on stability of pipe, three different
amplitudes of the slope are considered (0.0, 0.2, 0.5). Stable and unstable regions are
plotted for constant value of by and v (flow velocity) for first and second modes in
Figures (3.12)-(3.22). For each constant non-ideal displacement amplitude, new
stability boundary is determined considering there different slope amplitudes,
choosing x axis as flow velocity and y axis as amplitudes of right-hand side
displacement at € order in Figures (3.12-3.18). In those graphics, by value is

represented by letter “b”. The regions between x-axis and those lines are stable for
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each constant by. When the value of by is increased, corresponding stable arca
becomes smaller. Contrary toy the first mode, the stable area becomes larger in the
second mode in case of increasing by. To show the effect of non-ideal slopes on
stability boundaries, the figures are plotted for different amplitudes of slope. The
region of stability becomes smaller, when the non-ideal amplitudes of slopes
increase. As before there are some remarkable intersection pdints. When the non-
ideal amplitude of slopes increases, the points approach to x-axis. Stable and

unstable regions are shown for the second mode in Figures (3.16) and (3.18).

0.5 [ i ] | |

o
T

(=)
w
1

0.2+

Left-hand side non-ideal BC, a0

o
1

0 T T ] T i

Flow velocity, v
Figure 3.12 Variation of stability boundaries for constant amplitude of right-
hand side for the first mode ($=0.8, €=0.1, u=1.0, a;=0, b;=0).

Decrease of the value of u, external damping coefficient, cause to reduce the
stabile area. Variations of u change the location of the mentioned point (detailed
information is going to be given later). It doesn’t change the value of flow velocity at
this point. But it is acting only on along y-axis; it means the amplitude of non-ideal

boundary conditions varies due to the éhanging value of W.
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Figure 3.13 Variation of stability boundaries for constant amplitude of right-
hand side for the first mode ($=0.8, e=0.1, u=0.5, a;=0, b;=0).

o o o
> & ®

Left-hand side non-ideal BC, a0

o
-
|

Flow velocity, v
Figure 3.14 Variation of stability boundaries for constant amplitude of right-
hand side for the first mode ($=0.8, €=0.1, u=1.0, a;=0.2, b;=0.2).

An interesting case is bg; equal to zero. Then the system has a non-ideal boundary
condition only at the left-hand side support. It means right-hand side condition is

ideal. The remarkable intersection points are seen from figures (3.12)-(3.16), for
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example, a5=0.02 and V=5.0 in Figure (3.12). All stability boundary lines intersect or
passed through these points. These points may have practical importance in
engineering applications. If one can allow dimensionless displacement amplitude
smaller than about 0.02 on one support and dimensionless flow velocity equal to 5.0,
then the system is always stable at the first mode. It may be notable point for

designer, who uses the boundary conditions exactly explained in this study.

Another remarkable case for designer is that the fluid velocity can be used as a
controller mechanism for the system. Numerical results show that the velocities
higher than the notable point allow higher amplitudes of non-ideal conditions. Then,

it may be suggested that pipes can be employed in high fluid velocities for stability.

At the second mode, the location of remarkable point has small deviations from
the first mode. In this case the V=5.2 point defines this intersection point. A notable
situation that the designer should take into account is that the regions are stable at

first and second modes for the small amplitude values.

o
w
I

o
i

Left-hand side non-ideal BC, a0

o
-
{

b=0.0

0 1 ] 1
0 1 2 3 4 5

Flow velocity, v

c»J>

Figure 3.15 Variation of stability boundaries for constant amplitude of right-
hand side for the first mode (=0.8, €=0.1, u=1.0, a;=0.5, b;=0.5).
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At the second mode, the remarkable point location has small deviations from the
first mode at V, flow velocity axis. Here, the V=5.3 point defines remarkable point.
A notable situation for designer is that for so small left-hand side amplitudes, regions
are stable at first and second modes. A notable situation for designer is that for so
small left-hand side amplitudes, regions are stable at first and second modes.
Therefore, stability boundary line for by=0 at second mode has a specific importance.

The all cases under the line are stable.

0.5 [ | | { | | 1 | |
b=0.3 \p=0.4 b=0.5
S 0.4 -
@ b=0.2
=
S 0.3 B
=
o
[ g
[}
5 0.2- b -
o
f =g
[+ 1
<
® 0.1 L
b=0.0
0 I T T T T T | | T
0 1 2 3 4 5 6 7 8 9

Flow velocity, v

Figure 3.16 Variation of stability boundaries for constant amplitude of right-
hand side for the second mode (B=0.8, £=0.1, p=1.0, a;=0.0, b;=0.0).
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Figure 3.17 Variation of stability boundaries for constant amplitude of right-
hand side for the second mode (§=0.8, €=0.1, u=1.0, a;=0.2, b;=0.2).
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Figure 3.18 Variation of stabilitj boundaries for constant amplitude of right-
hand side for the second mode (=0.8, e=0.1, u=1.0, a;=0.5, b;=0.5)
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To see how the magnitude of amplitude of non-ideal boundary conditions impose
on stability conditions, the plots are drawn for different flow shown below figures. In
the figures y and x axes show amplitude of non-ideal boundary conditions. The

regions between y-axis and the constant flow velocity lines are stable.

There are intersection points for the first and the second modes. The points on x-
axis close to y-axis with increasing amplitude of non-ideal slopes The values by are
equal to about 0.15 for the first mode (Figure (3.19)) and about ay=0. and by=0.1
without non-ideal slope for the second mode (Figure 3.20)). With increasing flow
velocity, stability boundary lines are rotating in a clock-wise direction around the
point (ag=0.15, be=0.0) for the first mode. Variation on amplitude of non-ideal slope
has no effect on stability lines for v=0.0 at the first mode. This‘rotation occurs in an
opposite way for the second mode around ayp=0. and by=0.1 for no non-ideal slope in
Figure (3.20).

0.45+ P

0.354 F

Right-hand side non-ideal BC, a0
N\

U T T T T T T T T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Left-hand side non-ideal BC, b0

Figure 3.19 Variation of stability boundaries for constant flow velocities for
the first mode ($=0.8; €=0.1; (—) a=0.0, b=0.0; (—) a=0.2, b=0.2; (---) a=0.5,
b=0.5, u=1.0).
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In Figures (3.19-3.22) y and x axes show the amplitude of non-ideal displacement
boundary conditions. Stability boundary lines are drawn for constant flow velocity.
Regions between y-axis and the lines are considered as stabile regions. To show
effect of non-ideal slope, lines, which have different amplitudes of non-ideal slopes,

in different forms are drawn in Figure (3.19) for the first mode.
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Figure 3.20 Variation of stability boundaries for constant flow velocities for

the second mode (B#-O.S, £=0.1, p=1.0, a;=0.0 b;=0.0)

For the second mode, effect of magnitude of non-ideal slopes is illustrated in
Figures (3.20-3.22). With increasing flow velocity, the stable regions become smaller

except v=6.0 for the first mode.
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Figure 3.21 Variation of stability boundaries for constant flow velocities for

the second mode (B=0.8, €=0.1, u=1.0, a;=0.2 b,=0.2)
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Figure 3.22 Variation of stability boundaries for constant flow velocities for
the second mode (f=0.8, £=0.1, u=1.0, a;=0.5 b;=0.5)
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CHAPTER FOUR
FINITE DIFFERENCE SOLUTION OF THE

EQUATION OF MOTIONS

4.1 Finite Difference Solution of the Equation of Motions.

One rewrites the equation of motion of pipes conveying fluid at constant velocity

in non-dimensional form,

'y 0% ay ay
2 V =0 4.1
TV e TP axa o o @1

Boundary conditions to complement the equation of motion for simply supported

pipe are

0,t)=a(r Lt)=b(t),
y(0)=a(r). »(11)=b(r) )
y"(0,1)=y"(L2)=0
One can also write boundary conditions for clamped-clamped pipe
0,t)=a(t), Lt)=b(t),
y(0)=a(t). ¥(Lr)=b(:) s
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We assume the non-homogeneous boundary conditions are changing with

e%'cosQt, than Eq.(4.2) and Eq.(4.3) become

for fixed-fixed pipes

y(0,1)=ae™ cosQr, y(l,t)=he” cosQt,

(4.4)
y"(0,£)=y"(L,z)=0
for clamped-clamped pipes
¥(0,1)=a,e” cosQt, y(Lt) =bh,e” cosQt, 45

y'(0,t)=ae” cosQr y'(1,t)=be” cosQt

As it can be seen in above equations, there are non-homogeneous boundary
conditions. Those boundary conditions, depending on the time, occur due to some
events such as, installation difficulties, non-ideal manufacturing, human failure etc.

Those events can be seen sharply on marine pipeline because of installation and

working area conditions on seabed.

Here, a finite difference method is applied directly to the equation (4.1), (4.4) and
(4.5). Terms in the equation of motion involving only the time or spatial derivatives

with even order are approximated with central difference

[ 8“y) _ =4 6 =4V Vas

ox* Ax*

c C (4.6)
Y _ Yo =29 Yo Oy _ -2y v,
ox* | At o’ ), Ar?

for simplicity, backward difference with respect to time is used of the others.
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(9_}1]' - yi [ 0%y )i (Yfm = Yp )" ()’;ll - Yf:l) @4.7)

o ), A7 ot ) 2AxAt

n

A subscript indicates spatial node and a superscript indicates time step in the
discretized forms. Substituting those finite difference schemes into equation (4.4)

yields the discretized equation at the ith time and nth spatial node as

¥ =2y}~ (A1 ARP) (hy —45i + 63 —4YE, +3L,)
—V?(At/ Ax) (h, -2y, + ¥,y )- DAt (ys - i) (4.8)
~ BV (801 Ax) (s~ Yhos = Yih + 312

In addition, the discretized boundary conditions given by Equations (4.4) and
(4.5) becomes

For fixed-fixed, central difference scheme is used to calculate second order

differential boundary conditions in FDM solutions

yi =ae™ cosQt', ¥, =be” cosQr',
v, =2y -y = 2aoe‘ﬂ' cos Q' — y/ 4.9)

Yo =2V =Y = 2b,e™ cosQt' ~ ', |

For clamped-clamped, forward difference scheme on right-hand and backward
difference scheme on left-hand side are applied for the first order differential

boundary conditions

Yo =ae™ cosQi', Yl =he” cosQt',
= (y=ds*a)e™ cos @10

You = (by +dx*b; e cos Q'
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where N is the total number of short segments into discretized pipe. In the
calculations, N=20 is used. This simple explicit method is stable when AVAX*<0.5
for the simple beam eqﬁation (Ames, 1969). Due to the two additional fluid terms
and backward differencing with respect to time, At/Ax=0.005 is used during

computations to ensure numerical stability.

“To initiate oscillations, an initial distributed velocity was imposed, starting from
the position of rest.” (Semercigil et al.1997). The position of rest must satisfy the

non-ideal boundary conditions.

4.2. Numerical Results

In this thesis, a finite difference approximation used by Semercigil etc. (1997) is
employed. They gave a direct finite difference scheme to compute equations of
motion of pipes conveying fluid. The finite difference scheme used in this thesis is
almost same as Semercigil’s approximation; furthermore the scheme is verified with
analytical results for well-known case (simple beam case). In this case,
dimensionless flow velocity (V) and damping coefficient (D) are considered as zero
in Equation (4.1). The analytical solutions with both ideal and non-ideal conditions
are given in the paper presented by Pakdemirli&Boyaci (2002). In the paper, solution

of simple beam equation with non-ideal condition is
y(x.1)=2sin(nmx)(Acos(n’n’t)+ Bsin (n'm’t)) n=123,...  (4.11)

where A and B are constant. The solution for non-ideal conditions in this paper is
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(an27z:2 -l-b)

AT sinh (n7rx)+
y(xt)=| V2 sin (mx)+ £ 27 sinh (n7)
C—;)Z%ﬂz—l(anzﬂz —b)xcos (nmx) -
A 27Z2+GM ‘n*a-b) |t |+
) cos| | n T (n a )
Bsin|| n’n® + S—C%/i%(nzﬂza —b) t
For simple beam equations, the finite difference scheme is
Yo =29, =, _(AZ/AXZ )2 (3’;+2 ~ 4y, +6Y, —4y,  + }’i—z) (4.13)

Numerical results obtained by FDM is compared with the analytically solutions to

verify this finite difference equation. The figures below shows these results:
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Figure 4.1. The displacement histories of fixed-fixed supports for simple

beam with ideal conditions.
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Figure 4.2. The displacement histories of fixed-fixed supports for simple

beam with non-ideal conditions.

In the Figures 4.1 and 4.2, there is small difference between FDM and analytical
results. Therefore one can say that this finite difference approximation shows

agreement with the analytical solution.

The finite difference technique is computational solution technique but the
perturbation is a semi-analytical method. The solutions found by using the
perturbation method must agree with the results calculated by finite difference
method (FDM). In this thesis, to show this agreement, some results obtained by
perturbation technique are compared with the results calculated by FDM. The time-
dependent solutions of finite differences method (FDM) are able to give

displacement histories.

FDM solutions are given to show an agreement with the perturbation solutions for

stable and unstable situations. The time dependent functions of non-ideal boundaries
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must be known before .to make computation with FDM. In multiple time scale

technique, non-ideal boundary conditions are given in below form,

a(t)=a,A(et)e"™ +cc., (4.14)
Expanding form A(gt) is
A(et) = Ce™ = Celn) (4.15)

where C is constant and Z term can be calculated in Eq(3.37) for fixed-fixed and
in Eq (3.60 ) for clamped-clamped. The Eq (4.14) turns into this form:

a(t)= aoez‘“e(w” enr e (4.16)

where w, +Z, is natural frequencies, variable depending on non-ideal boundaries

and Z, is the real part of A term.

To make computation with FMD, natural frequencies and Z; must be known
priory. These values are taken from the perturbation solutions and given in tables for
some specific examples. Table 4.1-4.4 show some values obtained from the

perturbation technique.

In this thesis two different types of support conditions are analyzed: fixed-fixed
and clamped-clamped. For each type support conditions, there are two cases. The
first case is the problem of pipes conveying fluid. The second case is the beam
problem, which is a specific form of pipe problem. In this case flow velocity

vanishes.

The values below in the tables are taken from the perturbation solutions for

clamped-clamped and fixed-fixed.
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Table 4.1 The values obtained by using the Multiple Time Scale for clamped-
clamped supports (a0=b0=0.1, v=5.0, ¢=0.025, 0=0.0, e=0.1, u=1.0)

a;=b; Natural frequency, Q Z, term, G Situation
0.00 11.603280555 0.4974974 Unstable
0.02 11.608727265 0.521611635 - Unstable

Table 4.2 The values obtained by using the Multiple Time Scale for fixed-

fixed supports (a¢=0.2, v=2.4, c=0.04, 0=0.0, £=0.1, u=1.0)

Non-ideal BC, b Natural frequency, Q Z, term, © Situation
0.00 6.081953776 0.157866652 Unstable
0.05 6.066215701 0.142189064 Unstable

The values given in the Table 4.1 and 4.2 calculated with help of the Multiple

Time Scale method (MTSM) are able to determine whether the system is stable or

unstable. These unstable situations are also obtained by FDM using the values of

columns in the tables. In the below graphics, the results obtained by using FDM and

MTSM are given in a form of time histories.
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0.4 0.8 1.2
Time, t
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Figure 4.1. The displacement histories of clamped-clamped supports, for

a1=b1=0.

Displacement, y

Time, t

Figure 4.2. The displacement histories of clamped-clamped supports, for
a1=b1=0.02.

Increasing displacement with respect to time means that the system is unstable. If
the displacement is decreasing or unchanged with the time, then the system is known
as stable or bounded respectively. In all Figures (4.1-4.4), the system for the pipes
conveying fluid is unstable for both supports types. These results found by FDM are
in agreement with the perturbation solutions. The examples in Figures (4.1-4.4), It
can be seen a harmony between FDM and MTSM outcomes but there is a phase
angle between them. Figures (4.4) illustrate the line obtained using FDM is fitting
perfectly the line obtained using MTSM. One can see easily from the curves that the

results obtained FDM agree well with the results of perturbation solutions.
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Figure 4.3. The displacement histories of fixed-fixed supports for by=0.0.
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Figure 4.4. The displacement histories of fixed-fixed supports for b0=0.05.
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In finite difference approximation, y displacement values with regard to time are
only obtained. It is called displacement histories. This graphics can be obtained just
for known a fluid velocity (V), a fluid mass ratio (8) and an external damping
coefficient (D). For variation of V parameter or any of them, one must recompute
same finite difference scheme. And also, periods of motion are implicit form in
numerical results. Spectrum analyses are required to obtain the periods. Therefore,
obtaining the period of motion, displacement of the pipe with respect to time and
stability conditions of the system in FDM takes too time and has too much costs. So

these demanding parameters are calculated using MTSM.
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CONCLUSION

Pipeline stability in critical areas of unstable and/or rapidly developing
morphology is a problem of vital importance not to be unnoticed in every pipeline
project. Various environmental and natural hazards with potential risks of important
damage to submarine pipelines may exist along a selected pipeline route. A
considerable number of i)ipeline damages have occurred because of unforeseen and

sudden changes of the original morphology of the sea floor on which they lay.

To reduce potential risk of damage to the pipeline, the environmental threats must
first be identified in the specific site, then measures be taken to protect the pipeline
from these threats. The protection methods include trenching the pipeline below the
seabed, anchoring of the pipeline, increased concrete coating, installation of supports
installation of load/ protection mattress, gravel dumping and strengthening the
pipeline. All these methods may be a kind of supports. They may have non-ideal

boundary conditions.

In this study, effects of non- ideal boundary conditions on dynamic of pipes
conveying fluid are investigated. The non-ideal boundary conditions are defined and
formulated using perturbation theory. The results obtained by the perturbation
method have agreements with the results computed with using FDM. To obtain
solutions, some assumptions on non-ideal conditions have to be considered. The
method of multiple time scales is applied to the equation of motion in search of
approximate solutions. In solutions, two kinds of supported system are treated. Two
different cases of pipe vibration problems (beam, pipe) are analyzed by using the

multiple time scale and FDM.
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It is shown that non-ideal boundary conditions may affect the frequencies,
amplitudes of vibration as well as stability boundaries. Depending on small variation
of non-ideal support conditions, amplitude of vibrations may grow or decay in time.
The obtained outcomes illustrate that the fixed-fixed support conditions allow bigger
amplitude of non-ideal displacement than the clamped-clamped one. The influence of
small amplitude fluctuations of non-ideal boundaries on the stability of the system is
investigated. The stable regions are more restricted in the case of non-ideal boundary

conditions compared to the case of ideal boundary conditions.

In graphics given for constant by values, there is a remarkable point. All stability
boundary lines intersect or passed through this point. This point may have a practical
importance in engineering applications. If one allows amplitude of displacement
smaller than the amplitude at the remarkable point on one support and the value of
flow velocity greater than the velocity at the remarkable point, then the system is
always stable for the first mode. Hence, it could be a point for designer that they

should take it into account in their engineering applications.

Another remarkable case for designer is that the fluid velocity can be used as a
controller mechanism for the system. Numerical results show that the velocity higher
than velocity at the mentioned point allows higher amplitude of non-ideal conditions.
Then, it may be suggested that the pipes can be employed in high fluid velocity for
stability. The amplitude of boundary condition on the left hand-side of the
remarkable point become smaller with increasing amplitudes of slope but the

corresponding fluid velocity remains unchanged.

In this thesis the velocity of flow is assumed to be constant. Similar study may be
analyzed for the case the velocity varies harmonically about mean value. The
equation of motions will be modified when the system has a periodic mass or
existing stratified fluid in the pipe. The all pipe problems involving the ideal
boundary conditions can be solved considering the non-ideal boundary conditions

explained in this study.
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