
 1

A TWO-LEVEL MORPHOLOGICAL ANALYZER
FOR TURKISH LANGUAGE

by
Hülya ÇETİN İÇER

September, 2004

İZMİR

2

A TWO-LEVEL MORPHOLOGICAL ANALYZER
FOR TURKISH LANGUAGE

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of

Dokuz Eylül University

In Partial Fulfillment of the Requirements for

the Degree of Master of Science in Computer Engineering

by

Hülya ÇETİN İÇER

September, 2004

İZMİR

3

M.Sc THESIS EXAMINATION RESULT FORM

We certify that we have read the thesis, entitled “A TWO-LEVEL

MORPHOLOGICAL ANALYZER FOR TURKISH LANGUAGE” completed

by HÜLYA ÇETİN İÇER under supervision of ASSIST PROF. DR. ADİL

ALPKOÇAK and that in our opinion it is fully adequate, in scope and in quality, as

a thesis for the degree of Master of Science.

Assist. Prof. Dr. Adil ALPKOÇAK

Supervisor

Prof. Dr. Tatyana YAKHNO Prof. Dr. Bahar KARAOĞLAN

Committee Member

Committee Member

Approved by the

Graduate School of Natural and Applied Sciences

Prof. Dr. Cahit HELVACI

Director

4

ACKNOWLEDGMENTS

I would like to thank my supervisor Assist. Prof. Dr. Adil Alpkoçak for guidance,

suggestions. He gave me great ideas and concentrate about this thesis.

I also thank to the Committee Members for their efforts and advices.

I am grateful to my family, my father Necdet ÇETİN, my mother Ferhunde

ÇETİN and my brother Cem ÇETİN for their infinite moral support and help

throughout my life.

And I preserved my special thank to my husband Oğuz Kaan İÇER because of

supporting and motivating me on each step of thesis.

Hülya Çetin İÇER

5

ABSTRACT

In this study, a morphological analyzer tool is developed for Turkish language

based on two-level model of morphology. The tool analyses surface forms and

returns all alternations of stems, suffixes and their types by using the two-level rules,

dictionary and morpheme order rules based on nominal and verbal model of the

Turkish language. The project also represents a visual interface to help analyzing and

debugging process. All alternations of results and the steps of processes are shown as

tree structures in XML format as well as all required Turkish rule definitions, words

and suffixes.

Keywords: morphology, morphotactics, morphophonemics, two-level description

of morphology, natural language processing, Turkish morphology

6

ÖZET

Bu tez çalışmasında Türkçe sözcükleri iki düzeyli model kullanılarak

biçimbilimsel çözümleyebilen bir araç geliştirilmiştir. Araç, girilen kelimenin olası

tüm gövdelerini, tüm eklerini ve bunların türlerini bulur. Uygulama temek olarak

ikidüzeyli biçimbilimsel kuralları, sözlüğü ve eklerin sıralanışını ifade eden

kuralları kullanır. Eklerin sıralanışını ifade eden kurallar Türkçe’nin isim ve fiil

modeline dayanmaktadır. Bu tez kelimeleri biçimbilimsel olarak çözümleyebilen ve

bu çözümlemenin adımlarını izlemeye olanak veren bir görsel arabirimle

desteklenmiştir. Uygulamanın kullandığı tüm veriler yanında, çözümleme sonuçları

ve bu sonuçlara ulaşırken izlenen adımlar da XML formatında saklanmıştır.

Anahtar Sözcükler: biçimbilim, biçimdizim, biçimbirim değişmeleri, iki düzeyli

biçimbilimsel model, doğal dil işleme, Türkçe biçimbilim

7

CONTENTS

Page

Contents ..V

List of Tables ...IX

List of Figures ...XI

Chapter One

INTRODUCTION

1.1 Review of Related Works ...2

1.2 Thesis Organization ...3

8

Chapter Two

MORPHOLOGICAL ANALY SIS

2.1 Morphology ..5

2.1.1 Inflectional Morphology ...5

2.1.2 Derivational Morphology ..6

2.2 Two-Level Model of Morphology ...7

2.2.1 History of Two-Level Morphology ...9

2.2.2 The Complexity of Two-Level Morphology ...10

2.2.3 Two-Level Rules ...10

2.2.4 Two-Level Rule Notation ...12

2.2.4.1 Correspondence ...13

2.2.4.2 Rule Operator ..13

2.2.4.2 Rule Operator ..13

2.2.4.3 Environment or Context...14

2.2.5 Rule Types ..14

2.2.5.1 Complex Environments ...19

2.2.5.2 Rules Component ..21

2.2.5.2.1 Alphabetic Characters ..21

2.2.5.2.2 Feasible Pairs ...23

2.2.5.2.3 Subsets ..24

2.2.6 Implementing Two-Level Rules as Finite State Machines24

2.2.6.1 How Two-Level Rules Work ..25

2.2.6.2 How Finite State Machines Work ...28

2.2.6.2.1 Rule Types as a Finite State Machine30

2.2.6.2.2 Regular Expressions and Automata35

2.2.6.2.3 Finite State Automaton ..36

2.2.6.2.4 State Transition Table ..37

2.2.6.2.5 Formal Languages ..39

2.2.6.2.6 Regular Languages and FSA’s39

9

Chapter Three

TURKISH MORPHOLOGY

3.1 Turkish Language ..41

3.1.1 Morphophonemic’s ...42

3.1.1.1 Vowel Harmony ..43

3.1.1.2 Consonant Harmony ...46

3.1.1.3 Root Deformations ..50

3.2 Turkish Morphology ..52

3.2.1 Morphotactics ..52

3.2.1.1 Nominal Paradigm ..52

3.2.1.2 Verbal Paradigm ...55

3.2.1.3 Verbal Nouns ..58

3.2.1.4 Suffix Classification...59

Chapter Four

TURKISH RULE DEFINITIONS

4.1 Rule Definitions for Turkish Language ...61

4.1.1 Alphabetic Characters ...61

4.1.2 Feasible Pairs ..62

4.1.3 Subsets ..63

4.2 Two-Level Rules for Turkish ...63

4.2.1 Default Correspondences for Turkish Language63

4.2.2 Two-Level Rules for Turkish Language ...64

4.2.3 Morpheme Order Rules for Turkish Language79

10

Chapter Five

SOFTWARE DESIGN AND IMPLEMENTATION

5.1 Turkish Rule Definitions ..81

5.2 Implementation of the Project ..90

5.3 Functions in Library ...99

5.4 How Analyzer Works ……………………………………………………….101

5.5 Test Application ……………………………………………………………..104

CONCLUSION ……………………………………………………………………107

REFERENCES…………………………………………………………………….108

APPENDIX A …………………………………………………………………….109

11

LIST OF TABLES

Page

Table 2.1 Diagnostic properties of the four rule types19

Table 2.2 State transition table of an example automaton - I.............................29

Table 2.3 State transition table of an example automaton - II30

Table 2.4 State transition table for rule “a:c => __d”31

Table 2.5 State transition table of default correspondences for rule

 “a:c => __d” ..………………………………………………………31

Table 2.6 State transition table of default correspondences for rule

 “a:c <= __d”…………………………………………………………33

Table 2.7 State transition table of default correspondences for rule

 “a:c <=>__d”…….…………………………………………………..34

Table 2.8 State transition table of default correspondences for rule

 “a:c /<= __d:b” ..35

Table 2.9 State transition table for deterministic finite state automaton that as

 shown Figure 2.13 ...38

Table 2.10 State transition table for non-deterministic finite state automaton that

 as shown Figure 2.14 ..38

Table 3.1 Nominal paradigm’s elements..54

Table 3.2 Verbal paradigm’s elements...55

Table 3.3 Turkish suffixes..60

Table 4.1 State transition table for default correspondences - I63

Table 4.2 State transition table for default correspondences - II........................63

Table 4.3 State transition table for default correspondences - III64

Table 4.4 State transition table for Rule 1 ..64

Table 4.5 State transition table for Rule 2 ...65

Table 4.6 State transition table for Rule 3 ...65

Table 4.7 State transition table for Rule 4 ...66

12

Table 4.8 State transition table for Rule 5 ...67

Table 4.9 State transition table for Rule 6 ...67

Table 4.10 State transition table for Rule 7 ...68

Table 4.11 State transition table for Rule 8 ...69

Table 4.12 State transition table for Rule 9 ..69

Table 4.13 State transition table for Rule 10 ...70

Table 4.14 State transition table for Rule 11 ..71

Table 4.15 State transition table for Rule 12 ..72

Table 4.16 State transition table for Rule 13 ..73

Table 4.17 State transition table for Rule 14 ..73

Table 4.18 State transition table for Rule 15 ..74

Table 4.19 State transition table for Rule 16 ..74

Table 4.20 State transition table for Rule 17 ...75

Table 4.21 State transition table for Rule 18 ..76

Table 4.22 State transition table for Rule 19 ...76

Table 4.23 State transition table for Rule 20 ...77

Table 4.24 State transition table for Rule 21 ...77

Table 4.25 State transition table for Rule 22 ...78

Table 4.26 State transition table for Rule 23 ..79

Table 4.27 State transition table for nominal model ..79

Table 4.28 State transition table for verbal model..80

13

LIST OF FIGURES

Page

Figure 1.1 Parse tree and feature structure for word “enlargements”3

Figure 2.1 Main components of Karttunen’s KIMMO parser9

Figure 2.2 Example of lexical, intermediate and surface tapes11

Figure 2.3 Example of context restriction rule ..15

Figure 2.4 Example of surface coercion rule ...16

Figure 2.5 Example of composite rule...17

Figure 2.6 Example of exclusion rule ..18

Figure 2.7 State diagram of an example automaton – I28

Figure 2.8 State diagram of an example automaton – II29

Figure 2.9 State diagram for rule “a:c => __d” ...31

Figure 2.10 State diagram for rule “a:c <= __d” ...32

Figure 2.11 State diagram for rule “a:c <=> __d” ..33

Figure 2.12 State diagram for rule “a:c /<= __d:b” ...34

Figure 2.13 State diagram for a deterministic finite state automaton37

Figure 2.14 State diagram for a non-deterministic finite state automaton.............37

Figure 3.1 Turkish Nominal Model ..52

Figure 3.2 State diagram for nominal model ...53

Figure 3.3 Turkish Verbal Model ..55

Figure 3.4 State diagram for verbal model ..55

Figure 5.1 ER Diagram..56

Figure 5.2 Part of characters of Turkish language...83

Figure 5.3 All Character types in Turkish language ..83

Figure 5.4 Part of feasible pairs of Turkish language..84

Figure 5.5 All Subsets for Turkish language ...85

Figure 5.6 Part of Subset Content for Turkish language85

Figure 5.7 RULE 19 “g:ğ /<= n_” as in XML document85

14

Figure 5.8 Part of rule content data of Rule 191..87

Figure 5.9 All Suffix categories of Turkish language..87

Figure 5.10 Part of suffixes of Turkish language ..88

Figure 5.11 Part of words of Turkish language ...88

Figure 5.12 All word categories of Turkish language ...89

Figure 5.13 Morpheme order rules ..89

Figure 5.14 Detail contents of the Nominal rule..90

Figure 5.15 One of alternations of input word “ekmeği”94

Figure 5.16 Example of Result_Way.xml document as not detail..........................95

Figure 5.17 Example Situation result - I ..96

Figure 5.18 Example Situation result - II...96

Figure 5.19 Example Situation result - III ...97

Figure 5.20 Example Situation result - IV...97

Figure 5.21 Usage of the “read data” function…………..……………………..104

Figure 5.22 Screen before analyzing operation …………………...……………105

Figure 5.23 Example results of the analyzing operation ……………………….106

15

CHAPTER ONE

INTRODUCTION

Turkish is an agglutinative language and belongs to Altaic languages group. The

number of words in these languages is much more than the number of words in the

vocabularies. Word structures can grow to an unmanageable size so Turkish

morphology is very complex more over there are many exceptional cases in Turkish.

Turkish has been quite popular in linguistics literature but there have been very

few computational studies in the past. The most important methods are Hankamer’s

Keçi Project for Turkish (Hankamer, 1986), PC KIMMO for Finnish (Antworth,

1990) and Ample for Quechua (Weber et al., 1988). The most popular analyzer is

PC Kimmo. It uses the root driven approach. Because of this, PC KIMMO analyzer

can be used for Turkish.

This thesis presents an implementation of a morphological analyzer for Turkish.

This project aims to reach the stem of a word and all suffixes and determine the types

of stem and suffixes. This project implementation is based on PC KIMMO structure.

Turkish rule definitions in this project have been taken from Oflazer’s project.

(Oflazer, 1993)

PC KIMMO analyzer runs under MS-DOS based platforms and UNIX systems in

general. Our thesis is developed by Borland C++ Builder Version 6.0. It aims to

develop a new visual tool for analyzing words and debugging its processes. While

users debugging its processes they understand the wrong rules and right rules or

wrong and right root and suffixes. Additional two rules are developed to analyze the

morpheme order according to nominal and verbal model of the Turkish language.

16

This project consists of two parts: a library to analyze words and an example

application that uses this library. The library is a reusable software tool for analyses

of Turkish text. The application is developed for testing purposes. This library

analyzes the surface form of the word and returns stem and all suffixes and the types

of them. All data are stored in XML documents. All data are stored in the text

documents for PC-KIMMO project. Reading and understanding text documents is

difficult than XML documents. Because of this XML documents are used in this

project to store data.

Some Turkish letters can not be used as original letters in PC-KIMMO project.

For example “S” is used instead of Turkish letter “ş” or “C” is used instead of

Turkish letter “ç”. In this project all Turkish letters are used as original letters. All

letters that can not be used in PC-KIMMO are the following: “O” as “ö”, “U” as

“ü”, “S” as “ş”, “C” as ç”, “I” as “ı”, “G” as “ğ”.

1.1 Review of Related Works

PC KIMMO is an implementation of the two-level model of morphology.

Koskenniemi’s model is “two-level” that a word is represented as a direct, letter for

letter correspondence between lexical and surface form. (Antworth, 1995)

Example:

Surface Form: e k m e ğ 0 i m

Lexical Form: e k m e k + H m

PC KIMMO has two main functions: generator and recognizer. Surface form is

an input to recognizer function and returns a lexical form. Lexical form is the input

to generator function, which returns surface form.

PC KIMMO version 1 is produced in 1990. It is written in C and ran on the

personal computers, Macintosh and UNIX. Version 1 could not directly determine

the part of speech of a word. Example: PC KIMMO could tokenize the word

“enlargements” into the sequence of morphemes “en-large-ment-s”. It can gloss each

morpheme but it could not determine entire word was a plural noun. PC KIMMO

17

version 2 is produced to correct this deficiency in 1993 and a word grammar is added

to version 2. The word grammar provides parse trees and feature structures. Version

2 returns the input’s word parse tree and feature structure shown in Figure 1.1.

(Antworth, 1995)

Figure 1.1 Parse tree and feature structure for word “enlargements”

1.2 Thesis Organization

This thesis includes four chapters except introduction chapter and conclusion. The

thesis is organized as follows:

Chapter two gives information about morphological analysis. Firstly, morphology

is explained. And then it describes two-level model of morphology in detail. And

finally it gives general information about finite state machines, regular expressions,

formal languages and regular languages.

Chapter three gives information about Turkish morphology. Firstly, the

specifications of Turkish language are explained. And then Morphophonemic’s and

Morphotactics of Turkish are explained.

Chapter four gives rule definitions of Turkish language. These Turkish rule

definitions are used in this project.

18

Chapter five gives information about this project, its properties and

implementation details. It describes how analyzer works and the user interfaces.

19

CHAPTER TWO

MORPHOLOGICAL ANALYSIS

2.1 Morphology

In general, morphology is the study of word structure, or meaningful components

of words. The smallest meaningful components are called morphemes. Morphology

is also interested in how morphemes can be combined to form words.

The first question is what meaning bearing units are. We can say that “kuşlar” has

two units. One of them is main meaning of word. In this example “kuş” is the main

meaning of the word. These morphemes are called stems; other morphemes are also

called as affixes. In this example “lar” is an affix.

The second question is how morphemes can be combined to form words. There

are two kinds of processes to combine morphemes to form words: inflection and

derivation. So morphology is generally divided into two types.

2.1.1 Inflectional Morphology

Inflectional morphology covers the variant forms of nouns, verbs, etc. Inflectional

process is adding grammatical affixes to word stem. It doesn’t change the class of

stem. It changes in:

Person (like first, second, etc.)

Tense (like present, future, etc.)

Number (singular or plural)

Gender (Male, female or neuter)

20

Adding a plural affix (“lar”) to a noun stem is an inflectional process.

Stem Affix Word

kuş + -lar = kuşlar

bird + -s = birds

Here “kuş” and “kuşlar” are in the same class which is noun.

English nouns have only two kinds of inflection that are plural and possessive.

But in Turkish, there are more kinds of inflection.

2.1.2 Derivational Morphology

Derivational morphology is the formation of a new word. This process is simply

an affix addition to a word stem. It may change the class of the stem in some cases.

After derivation, the resulting class may be different from the stem. For example, in

the word “kalemlik”, the affix “-lik” is a derivational morpheme. It changes the

meaning of the word while it doesn’t change the class of stem. Because, “kalem” and

“kalemlik” are both noun.

Stem Affix Word

kalem + -lik = kalemlik

Noun Affix Noun

But in the next example, the affix “-iş” is a derivational morpheme in the word

“geliş”. It changes both the meaning of the word and class of the stem. Because

“geliş” is a noun while “gel” is a verb.

Stem Affix Word

gel + -iş = geliş

Verb Affix Noun

21

A very common way of derivation in English is the formation of new nouns from

verbs or adjectives. This process is called nominalization.

Stem Affix Word

computerize -ation computerization

Verb Affix Noun

In Turkish there are many kinds of derivation.

2.2 Two-Level Model of Morphology

Two-level morphology is a general computational model for word-form

recognition and generation. It is used to analyze the morphology of languages.

Kimmo Koskenniemi is a Finnish computer scientist who developed a model for

two-level morphology in his Ph.D. thesis in 1983. It is called KIMMO system. It was

a major breakthrough in the field of morphological parsing. (Antworth, 1995, pp.2).

Two-level morphology was the first general model. According to Koskenniemi’s

studies two-level morphology is based on three ideas:

• Rules are the symbol-to-symbol constraints and rules are applied in

parallel.

• The constraints can refer to the lexical and surface context or to both

contexts at the same time.

• Lexical lookup and morphological analysis are performed in tandem.

Koskenniemi's model is "two-level" in the sense that a word is represented as a

direct, letter-for-letter correspondence between its lexical or underlying form and its

surface form. “The lexical level denotes the structure of the functional components of

a word while the surface level denotes the standard orthographic realization of the

word with the given lexical structure.” (Oflazer, 1993, p.2)

22

For example, the word “ekmeğim” is given in this two-level representation (where

“+” is a morpheme boundary symbol and “0” is a null character):

Lexical form: e k m e k + H m

Intermediate form: e k m e ğ 0 i m

Surface form: e k m e ğ i m

Surface form is an input to recognizer function and returns a lexical form. Lexical

form is the input to generator function which returns surface form.

KIMMO parser has two main components. The one of them is rule component

and the other one is lexical component or lexicon. Rules component consist of two-

level rules. The lexicon lists the all morphemes in their lexical form. All morphemes

consist stems and affixes.

The main components of KIMMO are shown in Figure 2.1. (Antworth, 1995,

pp.2). KIMMO has two processing functions: generator and recognizer.

In this thesis, a recognizer function has been implemented to part the word into

stem and affixes. But the generator function is not implemented in this thesis.

Figure 2.1 Main components of Karttunen’s KIMMO parser

RULES

LEXICON

RECOGNIZER

GENERATOR

Surface Form
ekmeği

Lexical Form
ekmek + i

Surface Form
ekmeği

Lexical Form
ekmek + i

23

2.2.1 History of Two-Level Morphology

Twenty years ago there was no general language-independent method about

morphological analysis. There were some simple cut-and-paste programs to analyze

strings in particular languages. These programs were not reversible. Generative

phonologists who lived in that time described morphological alternations by means

of ordered rewrite rules, but it was not understood how such rules could be used for

analysis. (Oflazer, 1993)

Koskenniemi defined formalism for two-level rules in 1983. The semantics of

two-level rules were well defined. Koskenniemi and practitioners had to compile

rules by hand into finite-state transducers because there was no rule compiler

available at that time. So complex rules take hours of effort to compile and test.

(Karttunen, 2001)

The first two-level rule compiler was written in InterLisp by Koskenniemi and

Karttunen in 1985-87. They used Kaplan's implementation of the finite-state

calculus. Lauri Karttunen, Todd Yampol and Kenneth R. Beesley developed the

current C-version of the compiler, which is based on Karttunen's 1989 Common Lisp

implementation in consultation with Kaplan at Xerox PARC in 1991-92.(Karttunen,

2001)

In 2002, Kemal Oflazer described a full two-level morphological description of

Turkish word structures. The phonetic rules of contemporary Turkish have been

encoded using 22 two-level rules. These rules cover almost all the special cases, and

exceptions about Turkish words. In our study, Oflazer’s rules are applied.

2.2.2 The Complexity of Two-Level Morphology

“The use of finite-state machinery in the ‘two-level’ model by Kimmo

Koskenniemi gives it the appearance of computational efficiency, but closer

examination shows the model doesn’t guarantee efficient processing.” (Barton,

1986, pp 1).

24

In two level systems the general problem is extensive backtracking process.

NULL characters are used to insert and delete process. If NULL characters are

excluded, problems are NP-complete in the worst case. If NULL characters are

completely unrestricted, the problem is harder.

The next subsection presents how two level rules are used.

2.2.3 Two-Level Rules

Two-level model is defined as a set of correspondences between lexical and

surface representation. There is a similarity between two-level rules and the rules of

standard generative phonology. There is a difference in several crucial ways at the

same time.

Rule1 is an example of a generative rule:

 Rule1 a --> c / ___ d

Rule2 is an example of the analogous two-level rule: Rule2 a : c => ___ d

Their meanings and notation are different. Two level rules are declarative and

bidirectional. They state that certain correspondences hold between a lexical (that is,

underlying) form and its surface form. Lexical form represents a simple

concatenation of morphemes making up a word and surface form represents the

spelling of the word. Figure 2.2 shows an example of lexical, intermediate and

surface tapes.

Lexical Form

 Intermediate Form

Surface Form

Figure 2.2 Example of lexical, intermediate and surface tapes

 k i t a p + H m

 k i t a b 0 ı m

 k i t a b ı m

25

Rule2 states that lexical “a” corresponds to surface “c” before “d”; it is not

changed into “c”, and it still exists after the rule is applied. Because two-level rules

express a correspondence rather than rewrite symbols, they apply in parallel rather

than sequentially. Thus no intermediate levels of representation are created as

artifacts of a rewriting process. Only the lexical and surface levels are allowed.

The two-level rules deal with each word as a correspondence between its lexical

representation (LR) and its surface representation (SR).

For example:

Lexical Representation: a b a d

Surface Representation: a b c d

PC-KIMMO uses the notation “lexical character: surface character”, for instance

“a:a”, “b:b” or “k:ğ”. There are two types of correspondences. One of them is

default correspondences like a:a and the other one is special correspondences like

“k:ğ” and “ç:c”. The all of the default and special correspondences make up the set

of feasible pairs. All feasible pairs must be explicitly declared in the description.

Generative rules have three main characteristics:

• They are transformational rules. They convert or rewrite one symbol into

another symbol. Rule Rule1 states that “a” becomes (is changed into) “c”

when it precedes “d”. After rule Rule1 rewrites “a” as “c”, “a” no longer

exists.

• Sequentially applied generative rules convert underlying forms to surface

forms via any number of intermediate levels of representation; that is, the

application of each rule results in the creation of a new intermediate level

of representation.

26

• Generative rules are unidirectional. They can only convert underlying

form to surface form, not vice versa.

2.2.4 Two-Level Rule Notation

A two-level rule is made up of three parts:

1. Correspondence,

2. Rule operator,

3. Environment or context.

2.2.4.1 Correspondence

The correspondence “a : c” is the first part of the rule Rule2. Correspondence is a

pair of lexical and surface characters. Correspondence has the same meaning with

correspondence pair. The first part of rule Rule2 is the correspondence “a : c”. It

specifies a lexical “a” that corresponds to a surface “c”.

If the lexical and surface characters of a correspondence pair are identical, the

correspondence can be written as a single character. “__d” is the short notational

form of “__ d : d”. Rule3 is the full form of Rule2. So Rule2 is equivalent to Rule3.

Rule3 a : c => ___ d:d

Rule4 a:c => d:d ___

Rule3 and Rule4 are different from each other because of notation “___”. In this

notation, “___d” means any character is accepted before character “d”. This notation

“d___” means any character can be after d.

There are two types of correspondences: Default correspondence and special

correspondence. They will be explained in subsection 2.2.5.2.2.

27

2.2.4.2 Rule Operator

The rule operator “=>” is the second part of Rule2. There are four operators: =>,

<=, <=>, /<=. These operators are shaped like an arrow. Rule operators determine the

relationship between the correspondence and the environment.

Semantics of the rule operators:

“=>” means “only but not always”

“<=“ means “always but not only”

“<=>” means “always and only”

“/<=” means “never”

The rule operator specifies the logical relation between the correspondence and

the environment of a two-level rule.

Four different rule types are used to represent the phonetic restrictions:

a:b => LC __RC

a:b <= LC __RC

a:b <=> LC __RC

a:b /<= LC __RC

Here, LC means left context and RC means right context.

2.2.4.3 Environment or Context

The third part of the Rule2 is the environment or context, written as “__d”. As in

standard phonological notation, an underline, called an environment line, denotes the

position of the correspondence in the environment.

2.2.5 Rule Types

28

There are four types of rule:

• The Context Restriction Rule: a:b => LC __RC

 Rule2 a : c => ___ d

Rule2 is written with the rule operator “=>”. The “=>” operator means

the correspondence only occurs in the environment. Rule2 states that

lexical “a” corresponds to surface “c” only preceding “d”, but not

necessarily always in that environment. Thus other realizations of lexical

“a” may be found in that context, including “a:a”. The “=>” operator

means context does not necessarily imply the correspondence. It means

that the “=>” rule is an optional rule. Rule2 would be used if the

occurrence of “a” and “c” freely varies before “d”. If the surface input

form is “abcd” recognizer will produce both lexical form “abcd” and

“abad”. To state it negatively, Rule2 prohibits the occurrence of the

correspondence “a:c” everywhere except preceding “d”.

Figure 2.3 Example of context restriction rule

 Example Rule “g:ğ => _ +:0 (X:0) VOWEL” (Oflazer, 1993)

When a word ending with “g” and certain suffixes are added then the

“g” may become “ğ”.

RECOGNIZER

Rule3
a:c => ___ d:d

Lexicon

Lexical Form
“abad” or
“abcd”

Surface Form
“abcd “

29

 Surface form: dialoğa

 Intermediate form: dialoğ00a

 Lexical form: dialog+yA

• The Surface Coercion Rule: a:b <= LC __RC

The “<=” operator means the correspondence always occurs in the

environment. Rule4 states that lexical “a” always corresponds to surface

“c” proceeding “d”, but not necessarily only in that environment. The

“<=” operator is approximately equivalent to an obligatory rule in

generative phonology. It means that the context implies the

correspondence, but the correspondence doesn’t necessarily imply the

context. To state it negatively, if “a:¬c” (where “¬c” means the logical

negation of “c”) means the correspondence of lexical “a” to surface not-c

(that is, anything except “c”), then Rule4 prohibits the occurrence of

“a:¬c” in the specified context.

Figure 2.4 Example of surface coercion rule

 There is no example rule for this operator in Turkish.

• The Composite Rule a:b <=> LC __RC

Rule5 a : c <=> ___ d:d

RECOGNIZER

Rule4
a:c <= ___ d:d

Lexicon

Lexical Form
“abae”

Surface Form
“abce“

30

The “<=>” operator means the correspondence always and only

occurs in the environment. The “<=>” operator is the combination of the

operators “<=” and “=>”. Rule5 states that lexical “a” corresponds to

surface “c” always and only preceding “d”. If this operator is used when

a correspondence obligatory occurs in a given environment and in no

other environment and the correspondence is allowed if and only if it is

found in the specified context.

Figure 2.5 Example of composite rule

Example Rule “H:0 <=> VOWEL:VOWEL (':') +:0 _” (Oflazer, 1993)

 If the last character of the stem is a vowel and the first

character of the morpheme it is affixed to stem is “H” vowel then “H”

vowel is deleted.

Example:

 Surface form: masam

 Intermediate form: masa00m

Lexical form: masa+Hm

• The Exclusion Rule a:b /<= LC __RC

RECOGNIZER

Rule5
a:c <=>___ d:d

Lexicon

Lexical Form
“abad”

Surface Form
“abcd “

31

The “/<=” operator means the correspondence never occurs in the

environment. This operator forbids the specified correspondence from

occurring in the specified context. This operator explains “exceptions”.

Lexical “a” cannot correspond to surface “c” preceding “d:e”. As the

operator symbol suggests, the “/<=” operator is similar to the “<=”

operator in that it does not prohibit the correspondence from occurring in

other environments.

 Figure 2.6 Example of exclusion rule

 Example rule “g:ğ /<= n_” (Oflazer, 1993)

If foreign words ending with “g” and “g” is preceded by another

consonant then it doesn’t become “ğ”. This consonant may be “n”.

 Example:

 Surface form: brifingim

 Intermediate form: brigfing0im

 Lexical form: brifing+Hm

The diagnostic properties of the four rule types is shown in the Table 2.1

(Antworth, 1995, pp. 5)

Surface Form
“abce”

RECOGNIZER

Rule6
a:c /<= ___ d:e

Lexicon

Lexical Form
“abad “ is false
“abae” is true

32

Table 2.1 Diagnostic properties of the four rule types

Rules Is t:c

allowed

preceding i ?

Is preceding I the only

environment in which t:c

is allowed ?

Must t always correspond to

c before i ?

t:c => __i yes yes no

t:c <= __i yes no yes

t:c __i yes yes yes

t:c /<= __i no - -

2.2.5.1 Complex Environments

Complex environments contain optional elements, repeated elements and

alternative elements. These are elements:

1. “ ‘ ” Symbol:

 “ ’ ” is a stress mark. “As and example we will use a vowel reduction rule,

which states that a vowel followed by some number of consonants followed by

stress (indicated by ‘) is reduced to schwa (e). “(Antworth, 1995, pp.6)

For example: (Antworth, 1995, pp. 5)

LR: bab’a bamb’a

SR: beb’a bemb’a

• “ (“ and “) ” Symbols:

 Parenthesis indicates an optional element.

 Rule a : c => __d(d)’

 This rule requires either one or two “d” characters.

 Rule a : c => (d)(d)’

33

 This rule requires either zero, one or two “d” characters.

• “*” Symbol:

 An asterisk indicates zero or more instances of an element.

 Rule a : c __c*’

 This rule requires either zero, one or more “c” characters.

 Rule a:c __ cc*’

 This rule requires either one or more “c” characters.

• “|” Symbol:

 Vertical bar indicates disjunctive between expressions.

• “[“ and “]” Symbols:

 The square brackets delimit the disjunctive expressions from the rest of the

 environment.

 Rule1 a:e => __C’

 Rule2 a:e => ‘__

 These two rules use the “=>” operator. This operator allows the

correspondence to occur only in the specified environment. “a:e” occurs only in a

pretonic syllable in Rule1 and in a tonic syllable in Rule2. So the two rules conflict

with each other. This type of rule conflict is called an environment conflict. If

we collapse there two rules into one then this conflict can be resolved like

this:

 Rule3 a:e => [__ C’ | ‘ __]

34

 This rule means the “a:e” correspondence is permitted only in either pretonic

or tonic position.

2.2.5.2 Rules Component

2.2.5.2.1 Alphabetic Characters

Alphabet characters are used in lexical and surface forms. Alphabet characters

include all characters and special symbols. The NULL and BOUNDARY symbols

are also considered as alphabetic characters. Alphabet doesn’t include ANY symbol

and subset names.

There are special symbols to write rules like ANY, NULL, BOUNDARY symbol.

These special symbols explained below.

• “@” is an ANY symbol, not ANY character. ANY symbol is said to be a

"wildcard" character. ANY symbols indicate for any alphabetic character

in feasible pairs.

Example:

Feasible Pairs: {a:a, b:b, c:c, d:d, d:e, e:e}

Rule: a:b => __d:@

For this rule, “a” corresponds to “b” before any feasible pair whose

lexical character is “d”. “d:@” means d:d and d:e. Because “@” means for

lexical character “d” is “d” and “e”. “@:i” is simplified to “.:i”. And also

“i:@” is simplified to “i:.”.

• The ANY symbol can also be used on the lexical side of a correspondence

or on the surface side of a correspondence or both of them. These usage

alternatives are “a:@”, “@:a”, “@:@”. “@:@” means all feasible pairs.

35

• “0” (zero) is a NULL symbol. NULL symbol written as zero. There must

be an equal number of characters in both lexical and surface forms. Each

lexical character must map to exactly one surface character, and each

surface character must map to exactly one lexical character.

If necessary, analyzer inserts morpheme boundary character with

NULL symbol.

Lexical Representation: b ı ç a k + ı

Surface Representation: b ı ç a ğ 0 ı

Recognizer function implemented in this project doesn’t show 0’s

(zero) on output form and lexical form. Here recognizer inserts 0 (zero) in

surface form to symbolize “+” as morpheme boundary.

Recognizer can delete or insert characters with NULL symbol. We can

do almost anything with zero. The correspondence “H:0” represents the

deletion of “H”, while “0:H” represents the insertion of x.

Lexical Representation: m a s a + H m

Surface Representation: m a s a 0 0 m

“Without zero, two-level phonology would be limited to the most trivial

phonological processes; with zero, the two-level model has the expressive

power to handle complex phonological or morphological phenomena. “

(Antworth, 1995, pp. 6)

• “+” is a morpheme boundary. This symbol is used only in a lexical form.

Morpheme boundary corresponds to a surface “0” (zero).

36

• “#” is used as word boundary symbol. “#” indicates a word boundary,

either initial or final. It can only correspond to another boundary (like

“#:#”).

Lexical Representation: d o l a p + ı #

Surface Representation: d o l a b 0 ı #

Recognizer doesn’t show “#” symbol on input and output form.

2.2.5.2.2 Feasible Pairs

A feasible pair is a specific correspondence between a lexical alphabetic character

and a surface alphabetic character. The set of all correspondence is called the set of

feasible pairs. Each feasible pair must be declared in rules environment.

• Default Correspondence

Some of correspondences are called default correspondences which lexical

and surface side are identical like “a:a”, “b:b” or “c:c”. But “a:b” is not a

default correspondence because “a” and “b” are not identical. Normally

default correspondences are not included in each rule. Generally default

correspondence can be written in one state table. A table of default

correspondences has only one state and each transition is back to state one.

Default corresponds must include "@:@" as a column header.

• Special Correspondence

If a correspondence is not default then it is called special correspondence.

Generally special correspondence can be written in separate tables. Subsets

can be used in special correspondence. "@:@" indicate special

correspondences like "a:c" not “a:a”.

37

2.2.5.2.3 Subsets

A subset name defines a set of alphabet character. These set of characters indicate

the character classes. These character classes are defined in SUBSET statements in

the rules file.

Example: V is a set of vowels: V = {a, e, ı, i, o, ö, u, ü}

 C is a set of consonants: C = {b, c, d, f, g,

ğ, h, k …z}

SUBSET S1 a e

SUBSET S2 c y z

SUBSET S3 d ı

Rule a:c => __d:d

This rule can be written as “Rule S1:S2 => __S3:S3” or “Rule S1:S2 => __ S3”.

So this means that using the correspondence “S1:S2” as a column header in a rule

does not implicitly declare as feasible pairs all correspondences that match.

2.2.6 Implementing Two-Level Rules as Finite State Machines

How two-level rules work, how they can be implemented as finite state machines

and how the four types of two-level rules can be translated into finite state tables are

presented in this subsection.

2.2.6.1 How Two-Level Rules Work

A two-level description contains rules. These rules must also contain a set of

default correspondences, such as “a:a”, “b:b”, and so on. The sum of the special and

default correspondences is called feasible pairs. The total set of valid

correspondences or feasible pairs that can be used in the description.

38

The recognizer implemented in this thesis requires an input in surface form and it

outputs lexical form of given word. Now, let us see how two-level rules work in an

example:

Rule1 a:c => __ d

Surface form abcd

Feasible Pairs {a:a, b:b, c:c, d:d, a:c }

Recognizer begins with the first character of surface form. Firstly it looks in

feasible pairs for “a:c”. If this correspondence is not exists in feasible pairs then

recognizer skips this correspondence. If this correspondence is exists in feasible pairs

then the recognizer analyze it.

Step 1: Recognizer finds “a” as surface character in feasible pair. There is only

one correspondence “a:a“. So “a” is not converted and to any other character. Then

recognizer moves on to the second character of the input word. (LR: Lexical

Representation, SR: Surface Representation)

SR: a b c d

 |

Rule: |

 |

LR: a

Step 2: Recognizer analyzes “b” as surface character with same operation like step

1.

SR: a b c d

 | |

Rule: | |

 | |

LR: a b

39

Step 3: Recognizer analyzes “c” as surface character with same operation like step

1. But in this case there is a different situation. Because there are two alternatives for

“c” as surface character in feasible pairs. Alternatives are “a:c” and “c:c”.

Recognizer selects one alternative and moves the next character. When recognizer

reaches the final character it decides this alternative correct or not. Sometimes

recognizer reaches the next character to decide if these alternatives are true or false.

If it is false recognizer goes back and tries the second alternative for character “c”.

For first alternative:

SR: a b c d

 | | |

Rule: | | 1

 | | |

LR: a b a

Recognizer moves the second character for “d”. There is only one pair for “d” as

surface character in feasible pair that is “d:d”. Thus, the first alternative “a:c“ is true

because Rule1 means that lexical “a” is realized as surface “c” only (but not always)

in the environment preceding “d:d”. This satisfies the environment of the Rule1 and

exits Rule1. Since there are no more characters in the lexical form, the recognizer

outputs the lexical form “abad”. However the recognizer is not done yet. It will

continue backtracking and try to apply other alternatives.

SR: a b c d

 | | | |

Rule: | | 1 |

 | | | |

LR: a b a d

Recognizer also applies the second alternative “c:c”.

SR: a b c d

 | | |

Rule: | | |

40

 | | |

LR: a b c

And finally recognizer reaches the final character of surface form. Recognizer

finds the “d” character in feasible pairs as surface character again. There is only one

alternative in feasible pair that is “d:d”. So recognizer applies this alternative. Since

there are no more characters in the lexical form, the recognizer outputs the lexical

form “abcd”. Now recognizer is done.

SR: a b c d

 | | | |

Rule: | | | |

 | | | |

LR: a b c d

The procedure is essentially the same when two-level rules are used in generation

mode. In this situation lexical form is input and the corresponding surface forms are

output.

2.2.6.2 How Finite State Machines Work

“The basically mechanical procedure for applying two-level rules makes it

possible to implement the two-level model on a computer by using a formal language

device called a finite state machine.” (Antworth, 1995, pp.11). Finite State

Automaton (FSA) is the simplest finite state machine. It generates the well-formed

strings of a regular language. Regular language is a type of formal language.

“A Finite State Transducer (FST) is like an FSA except that it simultaneously

operates on two input strings. It recognizes whether the two strings are valid

correspondences of each other.” (Antworth, 1995, pp.12).

Two level rules can be implemented as FST, the only difference being that the

column headers are pairs of symbols, such as “a:a” and “b:b” or “b:c”. State-

41

transition tables are occurred after compiling rules. An automaton is represented with

state-transition table. The state-transition table indicates the start state, final and non-

final states and transitions between each state.

Here, we show an example:

Figure 2.7 State diagram of an example automaton - I

Table 2.2 State transition table of an example automaton - I

 Input

State a b c

0 . 1 0 2

1 . 0 2 0

2 : 0 0 0

The graph of automaton is represented in Figure 2.7 as Table 2.2. State 0 is initial

state. State 2 is a final state and marked with “:” of symbol. The “.” indicates non-

final state and “:” indicates final states. “0” indicates an illegal or missing transition.

We can read the first row as “if we are in state 0 and we see the input ‘a’ then we

must go to state 1 or if we see the input ‘b’ then we must go to state 0 or if we see the

input ‘c’ we must go to state 2”.

An FSA operates only on a single input string and a finite state transducer (FST)

operates on two input strings simultaneously. For example, assume the first input

q0 q1 q2
a b

c

42

string to an FST is from language L1 above, and the second input string is from

language L2. Here is an example correspondence of two strings:

L1: abbb

L2: accb

Figure 2.8 State diagram of an example automaton - II

Figure 2.8 shows the FST in diagram form. Note that the only difference from an

FSA is that the arcs are labeled with a correspondence pairs consisting of a symbol

from each of the input languages.

This FST can also be represented as tables like Table 2.3.

Table 2.3 State transition table of an example automaton - II

 Input

State a b b c

a b c c

0 . 1 0 0 2

1 . 0 2 1 0

2 : 0 0 0 0

The upper or lexical language specifies the string “abbb” and the lower or surface

language specifies the string “accb”. However, note that a two-level rule does not

specify the grammar of a full language.

q0 q1 q2
a:a b:b

c:c

b:c

43

I will explain each rule type as a finite state machine in detail.

2.2.6.2.1 Rule Types as a Finite State Machine

• A “=>” Rule as a Finite State Machine

If rule is “a:c => __d” then we can draw this state diagram to represent this

rule.

Figure 2.9 State diagram for rule “a:c => __d”

The column header “@:@” does not match for all feasible pairs. The

“@:@” arc (where @ is the ANY symbol) allows any pairs in feasible pairs

to pass successfully through the FST except “a:c” and “d:d”. Every feasible

pair must belong to one and only one column header. This FST can also be

represented as state transition table like Table 2.4.

Table 2.4 State transition table for rule “a:c => __d”

 Input

State a d @

c d @

1 : 2 1 1

2 . 0 1 0

Default correspondences of the system must be existed in a FST.

q2 q1

a:c

d:d

@:@

44

Table 2.5 State transition table of default correspondences for rule “a:c => __d”

 Input

State a b c d @

a b c d @

1 : 1 1 1 1 1

Default corresponds must include "@:@" as a column header. "@:@"

indicate special correspondences like "a:c". If the correspondence "@:@" is

not exist then the FST would fail for special correspondence like "a:c".

Because all the rules apply in parallel in a two-level description. The

correspondence “a:c” is exists in Table 2.4 but this correspondence is not

exists in Table 2.5. But the correspondence "@:@" is occur in Table 2.5 so

this doesn’t fail.

State tables specify where correspondences must fail. Table 2.4 and Table

2.5 will work together to generate the lexical form of given surface form.

Table 2.4 fails when anything but "d:d" follows "a:c".

• A “<=” Rule as a Finite State Machine

If rule is “a:c <= __d” then we can draw this state diagram to represent this

rule.

 Figure 2.10 State diagram for rule “a:c <= __d”

 This FST can also be represented as state transition table like Table 2.6.

 @:@ , a:c , d:d

q1

a:a

@:@, a:c

q2

a:a

q0
d:d

45

Table 2.6 State transition table of default correspondences for rule “a:c <= __d”

 Input

State a a d @

c a d @

1 : 1 2 1 1

2 : 1 2 0 1

In this state transition table we can see that the zero in the “d:d” column

indicates that the input has failed. State 1 and state 2 are final states. State

zero is a non-final state.

• A “<=>” Rule as a Finite State Machine

If rule is “a:c <=> __d” then we can draw this state diagram to represent

this rule.

Figure 2.11 State diagram for rule “a:c <=> __d”

This FST can also be represented as state transition table like Table 2.7.

q1

a:@

@:@

q2

a:@

q0
d:d

q3

@:@, d:d

a:c
a:c

a:c, a:@,
@:@

d:d

46

Table 2.7 State transition table of default correspondences for rule

“a:c <=> __d”

 Input

State a a d @

c @ d @

1 : 3 2 1 1

2 : 3 2 0 1

3 . 0 0 1 0

 This state transition table is a combination of the “=>” and “<=”

tables.

• A “/<=” Rule as a Finite State Machine

If rule is “a:c /<= __d:b” then we can draw this state diagram to represent

following rule.

Figure 2.12 State diagram for rule “a:c /<= __d:b”

This rule type shares properties of the “<=” type rule. This FST can also be

represented as state transition table like Table 2.8.

Table 2.8 State transition table of default correspondences for rule “a:c

/<= __d:b”

 Input

State a d @

c b @

1 : 2 1 1

2 : 2 0 1

q1

a:c

@:@

q2

a:c

q0
d:b

@:@, d:b

47

2.2.6.2.2 Regular Expressions and Automata

A regular expression is a string that describes a whole set of strings according to

certain syntax rules. A string is a sequence of symbols or it is any sequence of

alphanumeric characters. Alphanumeric characters include letters, numbers, tabs,

spaces and punctuation. Regular expression is a formula for matching strings that

follow some pattern. Many text editors and utilities to search text in information

retrieval applications, word-processing applications and etc use these expressions.

Regular expressions are supported by class libraries such as scripting tools such as

awk, grep, sed, and increasingly in interactive development environments such as

Microsoft's Visual C++. It is used also in UNIX and UNIX-like utilities.

Regular expressions are made up of normal characters and metacharacters.

Normal characters include upper and lower case letters and digits. The

metacharacters have special meanings and are described in detail below.

• Regular expressions are case sensitive so lowercase /a/ is different from

uppercase /A/. The string /exam/ will not match /Exam/ according to this

rule. Square brackets can be used to solve this problem. The pattern /eE/

matches patterns containing e or E.

• Dash “-“ is used in square brackets to specifies any one character in a

range. The pattern /[1-3]/ means one of the characters 1,2 or 3.

• Caret ^ is used to match the start of the line.

• Question mark /?/ is used to preceding character or nothing.

• Kleene * is used to match zero or more occurrences of the immediately

previous character or regular expression.

• Kleene + is used to specify one or more of the previous character.

48

• Period character “.” is used to match any single character.

• $ is used to match the end of a line.

2.2.6.2.3 Finite State Automaton

A finite state machine (FSM) or finite state automaton (FSA) is an abstract

machine that has only a finite, consonant amount of memory. Finite state automata

can be represented using a state diagram or state transition table. An FSA is

composed of states and directed transition arcs. At least there must be existed an

initial state, a final state and an arc between them. Each state has transitions to states.

There is a input string that determines which transition is followed. Finite state

machines are studied in automata theory. An automaton is a self-operating machine.

There two kinds of automata, one of them is deterministic and the other is non-

deterministic. In non-deterministic finite state automaton, each state there might

several possible choices for the next state as in Figure 2.14. So there can be more

than one transition from a given state for a given possible input. In deterministic

automaton, for each state there is at most one transition for each possible input as

shown Figure 2.13.

Figure 2.13 State diagram for a deterministic finite state automaton

q1

b

q0
a

49

Figure 2.14 State diagram for a non-deterministic finite state

automaton

 If current state is q0 and input is “a” character then there are two choices for

next state for Figure 2.14. One choice is q0 and the other one is q1. But if current

state is q0 and the input is “a” character then there is only one choice for Figure 2.13.

This is the difference between deterministic and non-deterministic finite state

automaton.

2.2.6.2.4 State Transition Table

A state transition table is used to describe the transition function. It is used to

represent an automaton. States are indicated horizontally, and events are read

vertically. A state transition table represents the start state and the accepting states.

State transitions and actions are represented in the form of action/new-state.

Final states are represented by “:” symbol and non-final states are represented by

“.” symbol. Final states mean accepted states.

Table 2.9 State transition table for deterministic finite state automaton that as

shown Figure 2.13.

State Input Next State

q0. a q1

q1: b q1

q1

b

q0
a

a

50

Table 2.10 State transition table for non-deterministic finite state automaton

that as shown Figure 2.14.

State Input Next State

q0. a {q0, q1}

q1: b q1

All the possible inputs to the machine are enumerated across the columns of the

table. All the possible states are enumerated across the rows.

NFA (Non-Deterministic Finite State Automaton) is a non-deterministic then a

new input may cause the machine to be in more than one state. In this case,

parentheses {} are used with the list of all legal states in the parentheses like Table

2.13.

If you want, it is possible to draw a state diagram from the state transition table.

We can use these steps to do it. Firstly draw the circles to represent the states given

then for each state, draw an arrow from the source states to the destination states.

Finally determine start state and accept states.

2.2.6.2.5 Formal Languages

The origin of regular expressions lies in automata theory and formal language

theory. These theories are part of theoretical computer science. These fields study

models of computation and ways to describe and classify formal languages. An

automaton implicitly defines a formal language. A formal language is nothing but a

set of strings. Each string composed of symbols from an alphabet. A formal

language is a set of finite length words over some finite alphabet. This description is

used in mathematics, logic and computer science.

A formal language can be specified in variety of ways such as:

1. Some formal grammar produce strings, (Chomsky hierarchy)

2. Regular expression produce strings,

51

3. Some automaton accepted strings (like Turing machine or finite state

automaton)

From a set of related YES / NO questions those ones for which the answer is

YES, (decision problem)

2.2.6.2.6 Regular Languages and FSA’s

Regular language is a type of formal language. Regular languages can be

characterized as languages defined by regular expressions. If the set of all languages

that are regular, then the class of languages called regular languages. A language is

regular if it is accepted by some DFA (Deterministic Finite State Automaton), NFA

(Non-Deterministic Finite State Automaton), regular expression or regular grammar.

A single language is a set of strings over a finite alphabet and is there for

countable. A regular language may have an infinite number of strings. The strings of

a regular language can be enumerated, written down for length 0, length 1, length 2

and so forth.

Regular language is the language associated to a regular grammar. A grammar

G=(N,T, P, σ) in which every production is of the form:

A a or A aB or A λ, where A, B Є N, a Є T.

Regular languages over an alphabet T have the following properties:

(λ = ‘empty string’, αβ = ‘concatenation of α and β’, α^n = ‘α concatenated with

itself n times’):

 Ø, { λ }, and { a } are regular languages for all a Є T.

If L1 and L2 are regular languages over T the following languages also are

regular:

52

 L1 U L2 = { α | α Є L1 or α Є L2 },

 L1L2 = { αβ | α Є L1, β Є L2},

 L1^* = { α1 … αn | αk Є L1, n Є N },

 T^* - L1 = { α Є T^* | α Є L1 },

 L1 п L2 = { α | α Є L1 and α Є L2 }.

Regular languages coincide with the languages accepted by non-deterministic

finite-state automata. Every non-deterministic finite state automaton is equivalent to

some deterministic finite state automaton. A language L is regular if and only if there

exists a finite-state automaton that accepts precisely the strings in L.

Regular languages are closed under operations: concatenation, union, intersection,

complementation, difference, reversal, Kleene star, substitution, homomorphism and

any finite combination of these operations.

53

CHAPTER THREE

TURKISH MORPHOLOGY

3.1 Turkish Language

Turkish is an agglutinative language like Finnish, Hungarian. It belongs to the

southwestern group of Turkic family. Turkic languages are in the Uralic-Altaic

language family. In agglutinative languages, words formed by combined root words

and morphemes. Word structures can grow by addition of morphemes. Morphemes

added to a stem can convert the word from nominal to a verbal structure or vice-

versa.

Turkish has a very productive morphology. There is a root and several suffixes are

combined to this root. It is possible to produce a very high number of words from the

same root with suffixes. The lexicon size may grow to unmanageable size.

A popular example of a Turkish word formation is:

OSMANLILAŞTIRAMAYABİLECEKLERİMİZDENMİŞSİNİZCESİNE

This can be broken down into morphemes:

OSMAN+LI+LAŞ+TIR+AMA+YABİL+ECEK+LER+İMİZ+DEN+MİŞ+SİNİZ

+CESİNE

In this example, one word in Turkish corresponds to a full sentence in English.

This example can be translated into English as “as if you were of those whom we

54

might consider not converting into an Ottoman”. In English, words contain only a

small number of affixes or none at all.

There are 29 letters in Turkish language. The eight of them are vowels and

twenty-one of them are consonants.

Vowel letters: {a, e, ı, i, o, ö, u, ü}

Consonant letters: {b, c, ç, d, f, g, ğ, h, j, k, l, m, n, p, r, s, ş, t, v, y, z}

The number of vowels is more than many languages. Vowels of Turkish can be

classified in three groups according to their articulatory properties:

 Front and back,

 Round and unrounded,

 High or low

We can partition the vowels as below in detail:

 Back vowels: {a, ı, o, u}

 Front vowels: {e, i, ö, ü}

 Front unrounded vowels: {e, i}

 Front rounded vowels: {ö, ü}

 Back unrounded vowels: {a, ı}

 Back rounded vowels: {o, u}

 High vowels: {ı, i u, ü}

 Low unrounded vowels: {a, e}

3.1.1 Morphophonemic’s

Turkish word formation uses a number of phonetic harmony rules. When a suffix

is appended to a stem vowels and consonants change in certain ways.

55

2.1.1.1 Vowel Harmony

 Vowel harmony is the best-known morphophonemic process in Turkish. It is

most interesting and distinctive feature. Vowel harmony is a left-to-right process. It

operates sequentially from syllable to syllable. Vowel harmony processes force

certain vowels in suffixes agree with the last vowel in the stems or roots they are

being affixed to. When vowels are affixed to a stem, they change according to the

vowel harmony rules. The first vowel in the suffix changes according to the last

vowel of the stem. Vowel harmony consists of two assimilations:

 Palatal assimilation (It is called in Turkish as “Büyük Ünlü Uyumu”)

This is called “major vowel harmony” . This vowel harmony is common to

almost Turkic languages. This assimilation is about front/back feature of the

language. Back vowels are the set of {a, ı, o, u} and the front vowels are the

set of {e, i, ö, ü}.

If the vowels of the following morphemes are back then the vowel of the

first morpheme in a word is back.

For example:

Surface Form: askılar

Intermediate Form: askı0lar

Lexical Form: askı+lAr

“lAr” is a plural suffix. “A” is resolved as “a” or “e” in general. But in this

example “A” is resolved as “a” because the vowels of the stem are back

vowels.

If the vowels of the following morphemes are front then the vowel of the

first morpheme in a word is front.

For example:

Surface Form: evler

56

Intermediate Form: ev0ler

Lexical Form: ev+lAr

In this example “A” is resolved as “e” because the vowel of the stem is

front vowel.

If the last vowel is a long vowel then “A” is realized as an “e”. Long

vowels are “â, û, ô”. These vowels are in words of French origin in general.

For example:

Surface Form: saatler

Intermediate Form: saat 0ler

Lexical Form: saât+lAr

Surface Form: goller

Intermediate Form: gol0ler

Lexical Form: gôl+lAr

Surface Form: usuller

Intermediate Form: usul0ler

Lexical Form: usûl+lAr

 Labial assimilation (It is called in Turkish “Küçük Ünlü Uyumu”)

This is called “minor vowel harmony”. This assimilation is about

rounded/unrounded feature of the language. There are four alternatives about

this assimilation:

o “H” is resolved as “ı,i,u,ü” in general .“H” is resolved as “ü” in this

example because the last vowel in the stem is a front-unrounded

vowel.

 For example:

 Surface Form: çölün

57

Intermediate Form: çöl0ün

Lexical Form: çöl+Hn

o “H” is resolved as “ü” if the last vowel in the stem is a long “û” or “ô”

as defined below.

For example:

Surface Form: golün

Intermediate Form: gol0ün

Lexical Form: gôl+Hn

For example:

Surface Form: usulün

Intermediate Form: usul0ün

Lexical Form: usûl+Hn

o “H” is resolved as “ı” if the last vowel of the stem is a back-

unrounded vowel.

For example:

Surface Form: topalın

Intermediate Form: topal0ın

Lexical Form: topal+Hn

o “H” is resolved as “i” if the last vowel in the stem is a front-

unrounded vowel.

For example:

Surface Form: defterim

Intermediate Form: defter0im

Lexical Form: defter+Hm

“H” is resolved as “i” if the last vowel in the stem is a long “â” also.

For example:

58

Surface Form: saatim

Intermediate Form: saat0im

Lexical Form: saât+Hm

There are some two-level rules for vowel harmony. These rules are:

 A:a => [VOWEL:BACKV | Q:0] ':' * CONS * @:0 * +:0 * _

 A:e => [VOWEL:FRONTV | E:0 | %:a | &:u | ^:o] ':' * CONS * @:0 * +:0 *

_

 H:ı => [VOWEL:BKUNRV | Q:0] ':' * CONS * +:0 * @:0 * _

 H:i => [VOWEL:FRUNRV | E:0 | FRUNRV:0 +:0 | %:a] ':' * CONS * +:0 *

@:0 * _

 H:u => VOWEL:BKROV ':' * CONS * +:0 * @:0 * _

 H:ü =>[VOWEL:FRROV | &:u | ^:o] ':' * CONS * +:0 * @:0 * _

These rules will be explained in chapter four.

3.1.1.2 Consonant Harmony

Consonant harmony is another basic aspect of Turkish phonology. Consonants of

Turkish phonology can be classified into two main groups. These are voiceless and

voiced. Voiceless consonants are {“ç”, ”f”, ”h”, ”k”, ”p”, ”s”, ”ş”, ”t”}. Voiced

consonants are {“b”, ”c”, ”d”, ”g”, ”ğ”, ”j”, ”l”, ”m”, ”n”, ”r”, ”v”, ”y”, ”z”}.

Consonant harmony rules doesn’t formulate easily because of irregular character of

borrowed and native words. There are some consonant harmony rules in Turkish:

 If the end of the word is one the voiceless consonants (“p”, ”ç”, ”t”, ”k”) then

it changes to a corresponding voiced consonants (“b”, ”c”, ”d”, ”ğ”).

o “p” changes to “b”.

 For example:

Surface Form: kitabım

Intermediate Form: kitab0ım

59

Lexical Form: kitap+Hm

There are some exceptions to this rule like “soyad”, “hemoroid”,

“önad”, etc.

 For example: “d” doesn’t change in this example.

Surface Form: soyadın

Intermediate Form: soyad0ın

Lexical Form: soyad+Hn

o “d” changes to “t”.

For example:

Surface Form: tattık

Intermediate Form: tat0tık

Lexical Form: tad+DHk

o “k” changes to “ğ”.

For example:

Surface Form: ayağın

Intermediate Form: ayağ00ın

Lexical Form: ayak+nHn

o “ç” changes to “c”.

For example:

Surface Form: ağacın

Intermediate Form: ağac0ın

Lexical Form: ağaç+Hn

There are some exceptions to this rule like “göç”, “aç”, ”iç”, etc.

For example: “ç” doesn’t change in this example.

60

Surface Form: açım

Intermediate Form: aç0ım

Lexical Form: aç+Hm

 Let “D” indicate a suffix initial dental consonant that may resolve as either a

“d or t”. “D” is resolved to a “t” is the last phoneme in the stem is resolved

as one of {“ç”, ”f”, ”h”, ”k”, ”p”, ”s”, ”ş”, ”t”}. In other cases “D” is resolved

as a “d”.

For Examples:

Surface Form: yulaftan

Intermediate Form: yulaf0tan

Lexical Form: yulaf+Dan

Surface Form: masadan

Intermediate Form: masa0dan

Lexical Form: masa+Dan

 If the last consonant of the stem is one of {“ç”, ”f”, “h”, “k”, “p”, “s”, “ş”}

and if the suffix begins with the “c” then “c” is resolved as a “ç”.

For Example:

Surface Form: yaşça

Intermediate Form: yaş0ça

Lexical Form: yaş+cA

There are some exceptions for this rule. These exceptions are “aç”, “iç”,

“haç”, etc.

 If “k” is at the end of the stem and “k” preceded by an “n” then “k” becomes

a “g”.

For Example:

Surface Form: çelenge

61

Intermediate Form: çeleng00e

Lexical Form: çelenk0yA

There are some exceptions for this rule also. One of the exception word is

“bank”.

 If the final character of the stem is “g” and a vowel is beginning of the suffix

then “g” becomes a “ğ” in foreign origin words.

For Example:

Surface Form: analoğa

Intermediate Form: analoğ0a

Lexical Form: analog+yA

There are some exceptions for this rule. Some exceptions are “lig”,

“pedagog”, etc.

 If the final character of the stem is “g” and a consonant is beginning of the

suffix then “g” does not become a “ğ”.

For Example:

Surface Form: bumerangım

Intermediate Form: bumerang0ım

Lexical Form: bumerang+Hm

 There are very number of nominal words in Turkish. Some of these nominal

words ending with “su”. These words don’t obey the standard inflection rules.

When a suffix is starting with a vowel or a vowel-dropping consonant is

affixed then a stem final “y” is inserted to stem.

For Examples:

Surface Form: akarsuyunuz

Intermediate Form: akarsuy00unuz

Lexical Form: akarsuY+yHnHz

62

 Surface form: akarsular

 Intermediate form: akarsu00lar

 Lexical form: akarsuY+lar

 When certain suffixes are affixed last consonant is duplicated in Arabic or

Persian origin words.

For Examples:

Surface Form: zammı

Intermediate Form: zamm00ı

Lexical Form: zam0+yH

Surface Form: zamlar

Intermediate Form: zam0lar

Lexical Form: zam+lAr

 “-sH” can be affixed to Arabic origin words. If these words ending with a

vowel then drops in exception to the general rule.

For Example:

Surface Form: camii

Surface Form: camisi

Intermediate Form: cami0i

Lexical Form: cami+sH

 There are many numbers of words that have this property. Example words are

“mevki”, “cami”, “terfi”, “zayi”, “ikna”, “merci”, etc.

3.1.1.3 Root Deformations

Turkish roots are not flexible in normally. There are some cases about various

deformations. There are three exception cases:

63

 Root is observed in personal pronouns

For examples:

Surface Form: bana

Intermediate Form: ban00a

Lexical Form: ben+yA

Surface Form: sana

Intermediate Form: san00a

Lexical Form: sen+yA

If “ben” and “sen” roots take the plural suffix then their structures

completely change like this:

 ben + lAr biz (not benler)

 sen + lAr siz (not senler)

 Wide vowel at the end of the stem is narrowed when the suffix “Hyor” comes

after the verbs ending with the “A”.

For example:

Surface Form: kapiyor

Intermediate Form: kapi0Hyor

Lexical Form: kapa+Hyor

 When a suffix is beginning with a vowel comes after some nouns, which has

a vowel {I} in its last syllable, this vowel drops. This occurs generally

designating parts of the human body.

For example:

Surface Form: ağzımız

Intermediate Form: ağ0ız0ımız

Lexical Form: ağ$ız+HmHz

64

 Similar with the above rule, when the possessive suffix “Hl” is affixed to

some verbs, and the last vowel of the verb is vowel “I” then this vowel drops.

 ayır + ıl ayrıl (not ayırıl)

 If a plural suffix is affixed to a compound words then this suffix coming

before the possessive suffix at the end of the stem.

 gözyaşı + lAr -> gözyaşları (not gözyaşılar)

3.2 Turkish Morphology

 Turkish has very productive morphology. The lexicon size may grow to

unmanageable size. Because of this the number of words is very high. Turkish is

characterized by certain Morphophonemics, Morphotactics and syntactic features.

3.2.1. Morphotactics

There are two main classes for Turkish roots. These classes are nominal and

verbal. These classes are important for suffixes. If a suffix can be affixed to a

nominal root then this suffix cannot be affixed to a verbal root with the same

semantic function. But there are some suffixes can be affixed to nouns or verbs.

These paradigms will be explained in following subsection in detail. Two rules are

designed for Morphotactics for Turkish in this project: nominal order rule, verbal

order rule. State diagrams of these rules are shown in Figure 3.2 and Figure 3.4.

3.2.1.1 Nominal Paradigm

Nominal paradigm applies to nouns and adjectives. It describes the order of the

inflectional suffixes. It is shown in Figure 3.1.

Nominal

Root

Plural

Suffix

Possessive

Suffix

Case

Suffix

Relative

Suffix

 Figure 3.1 Turkish Nominal Model

 65

66

Table 3.1 Nominal paradigm’s element

Plural Suffix -lAr

Possessive Suffix -Hm, -HmHz, -Hn, - HnHz, -sH, -lArH

Case Suffix -yH, -ylA, -yA, -DA, -DAn, -nHn, -nH, - nA, -nDA, -

nDAn

Relative Suffix -ki

 Nominal root is the base. It may be an adjective or noun. All the elements of

noun paradigm are optional, except the nominal root.

 The plural suffix can be added directly to the nominal root.

 Example: kedi + lAr kediler

 If the possessed noun is plural then plural suffix come before possessive

suffix.

 Example: kedi + lArH kedileri

When the third person plural possessive suffix “-lArH” comes after a

plural noun, one of the “-lArH” drops.

 Example: kedi + lAr + lArH kedileri (not kedilerleri)

Some words have third person singular possessive suffix. If possessive

suffixes come after these words, possessive suffix is removed. Because

possessive suffix is already occur in word structure.

 Example: safrakesesi + sH safrakesesi (not safrakesesisi)

 Case suffixes come after possessive suffix.

 Example: masa + DA masada

67

 The relative suffix “-ki” may be added to two type of case suffixes: One them

is “-nHn” is called genitive case suffixes. The other one is “-DA” is called

locative case suffixes.

 Example: kapı + nHn + ki kapınınki

3.2.1.2 Verbal Paradigm

The verbal paradigm is more complicated than nominal paradigm. It is shown in

Figure 3.3. Verbal paradigm’s elements are shown in Table 3.2.

Verbal

Root

Voice

Suffixes

Negation

Suffix

Compound

Verb

Suffix

Main

Tense

Suffix

Question

Suffix

Second

Tense

Suffix

Person

Suffix

Figure 3.3 Turkish Verbal Model

Table 3.2 Verbal paradigm’s elements

Reflexive -(H)n

Reciprocal -(H)ş

Causative -DHr, -Ht, -t, -Hr, -Ar
Voice Suffixes

Passive - Hl, -Hn, -n

Negation Suffix -mA, -(y)AmA

Compound Verb Suffix -(y)Adur, -(y)Ayaz, -(y)Abil, - (y)Akal,

-(y)Akoy, -(y)Agel, -(y)Agör, -(y)Aver

Main Tense Suffix -DH, -sA, -mHş, -(y)A, -(y)AcAk, -mAIH, -(H)r,

 -0, -Ar, -(H)yor, -mAktA

Question Suffix -mH

Second Tense Suffix -(y)DH, -(y)sA, -(y)mHş

Person Suffix -m, -n, -k, -nHz, -lAr, -(y)Hm, -sHn, -(y)Hz, -

sHnHz, -lHm, -(y)Hn, -(y)HnHz, -sHlAr

 68

 69

 Verbal root, the main tense suffix and the person suffix are obligatory. Others

are optional.

 Voice suffixes can be divided four groups: reflexive, reciprocal, causative

and passive. These suffixes can be combined. They must be appearing in the

indicated order, and the reflexive and reciprocal are mutually exclusive.

Example: “öp-mek”, “öp-üş-mek”, “öp-üş-tür-mek”, “öp-üş-tü-rül-mek”

The causative verb suffixes can be used repeatedly. For example, “ört”,

“ör-ttür”, “ört-türt”.

The passive and reflexive forms of some verbs’ meaning are different but

they have same structure. These two sentences have the same verb but their

meaning is different from each other. Example word is “yıka-n-dı”.

“Balkon yıkandı.” The balkony were washed.

“Hülya yıkandı.” Hülya washed herself.

 There are two negation suffixes. These are “-mA” and “-(y)AmA”. These

meaning is different from each other. The meaning of “-mA” is “not” and the

meaning of “-(y)AmA” is “can/may not”.

 Example:

 “yemem”: I don’t eat

 “yiyemem”: I can’t eat

 Compound verb suffixes is used to add verbs certain additional semantics. “-

(y)Agör” and “-(y)Aver” are the most frequently used. Example word is

“oku-yabil-ir”.

 Main tense suffix is an obligatory. Every verb has a main tense suffix. There

are nine tenses:

70

o Definite past: {“-DH”}

o Narrative past: {“-mHş”}

o Future: {“-(y)AcAk”}

o Aorist: {“-(H)r”,” -Ar”}

o Progressive: {“-(H)yor”,” -mAktA”}

o Conditional: {“-sA”}

o Optative: {“-(y)A”}

o Necessitative: {“-mAIH”}

o Imperative: {“-0”}

 There is only one question suffix that is “-mH“. This suffix is written

separate from the word it follows. Example word is “yaptın mı?”

 Second tense suffixes are affixed to verb stems ending with a vowel with the

insertion of a Y in between. Example word is “oku-sa-ydı”.

 Person suffix defines the first, second and third singular or plural persons.

Example word is “gel-di-k”

3.2.1.3 Verbal Nouns

There are two types of sentences for Turkish. One of them is verb sentences and

the other one is noun sentences. There is a verb in the verb sentence. A verb

represents an action in the sentence. There is no explicit verb in the noun sentence so

there is no action. The verb “to be” in English is correspondence to the noun

sentences in Turkish.

Example:

 “Su içiyorum” is a verb sentence. “içtim” is a verb.

“Akıllıyım” is a noun sentence. There is no verb.

71

Negation suffix can be added to the verb: e.g.: “Su iç-mi-yorum”. There is no

such a suffix in noun sentences. For negation process the word “değil” can be used:

e.g.: “Akıllı değilim.”

Question suffix can be used noun and verb sentences: e.g.: “Su içtim mi?” is a

verb sentence; “Akıllı mıyım?” is a noun sentence.

Tense information can be used in noun and verb sentences. But verb sentences use

nine tense but noun sentences use three tense. These three tense are definite past,

narrative past and conditional suffix. Noun sentences also use independent words:

“idi”, “imiş”, “ise”. Example is “Akılllı-ydı-m”.

3.2.1.4 Suffix Classification

There is a root and several suffixes are combined to this root in Turkish. It is

possible to produce a very high number of words from the same root with suffixes.

These suffixes help us to find the right stem of a word. When we analyze the word

“kalem” then we can not sure stem, because there are two solutions: “kalem” and

“kale-m”. When we analyze the word “kalemler” there is only one solution: “kalem-

ler”. The solution “kale-m-ler” is invalid.

There are two main classes of suffixes:

 Derivational suffixes,

 Inflectional suffixes,

o Nominal verb suffixes,

o Noun suffixes,

o Tense & person verb suffixes,

o Verb suffixes,

Derivational suffixes produce a new word. This new word has different meaning

than the word derivational suffixes are affixed. They change the class of the word.

For example they make nouns from verbs. Inflectional suffixes do not produce a new

word like derivational suffixes. They do not change the class of the word.

72

Turkish suffixes are shown in Table 3.3. The abbreviations used to show suffixes in a

generic way in this representation in below: (Eryiğit & Adalı, 2004)

U: {ı,i,u,ü}

C: {c,ç}

A: {a,e}

D: {d,t}

I: {ı,i}

(): The letter in parentheses can be omitted.

Table 3.3 Turkish suffixes

Derivational suffixes “-lUk, “-CU”, “-CUk”, “-lAş”, “-lA“, “-lAn”, “-CA”,

“-lU”, “-sUz”

Nominal Verb

Suffixes

“-(y)Um”, “-sUn”, “-(y)Uz”, “-lAr”, “-m”, “-n”, “-k”,

“-nUz”, “-DUr”, “-cAsInA”, “-(y)DU”, “-(y)sA”,

“(y)mUş”, “-(y)ken”

Noun Suffixes “-lAr”, “-(U)m”, “-(U)mUz”, “-(U)n”, “-(U)nUz”, “-(s)U”,

“-lArI”, “-(y)U”, “-nU”, “(n)Un”, “-(y)A”, “-nA”, “-DA”,

“-nDA”, “-DAn”, “-nDAn”, “-(y)lA”, “ki”, “-(n)cA”

Tense & Person Verb

Suffixes

“-(y)Um”, “-sUn”, “-(y)Uz”, “-sUnUz”, “-lAr”, “-mUş”,

“-(y)AcAk”, “-(U)r”, “-Ar”, “-(U)yor”, “-mAktA”,

“-mAlI”, “-m”, “-n”, “-k”, “-nUz”, “-DU”, “-sA”, “-lIm”,

“-(y)A”, “-(y)UnUz”, “-(y)Un”, “-sUnlAr”, “-DUr”,

“-(y)DU”, “-(y)sA”, “-(y)mUş”, “-cAsInA”, “-(y)ken

Verb Suffixes “-m”, “-zsIn”, “-z”, ”-yIz”, “-zsInIz”, “-zlAr”, “-mA”,

“-(y)AmA”, “-(y)Adur”, “-(y)Uver”, “-(y)Agel”,

“-(y)Agör”, “-(y)Abil”, “-(y)Ayaz”, “-(y)Akal”,

“-(y)Akoy”, “-mAk”, “-(y)UcU”, “-(y)Up”, “(y)AlI”,

“-DUkçA”, “-(y)ArAk”, “-(y)UncA”, “-(y)Dan”, “-yA”,

“-(y)An”, “-(y)AcAk”, “-(y)AsI”, “-DUk”, “-mUş”,

“-mAzlIk”, “-mA”, “-(y)Uş”, “-Dan”, “-DA”, “-(y)lA”,

“-(y)A”, “-mAksIzIn”, “-mAdAn”, “-(U)n”, “-(U)ş”,

“-(U)l”, “-Dur”, “-(U)t”

73

CHAPTER FOUR

TURKISH RULE DEFINITIONS

4.1 Rule Definitions for Turkish Language

This chapter describes the details of the definitions of Turkish rules. These

Turkish rule definitions have been taken from Oflazer’s project. (Oflazer, 1993)

4.1.1 Alphabetic Characters

Turkish alphabetic characters are: {b, c, ç, d, f, g, ğ, h, j, k, l, m, n, p, r, s, ş, t, v, y,

z ,Z ,a ,e ,ı ,i, o, ö, u, ü, A, H, K, J, B, 9, D, $, Y, %, &, ^, ', x, q, w, E, Q, ~, +, 1, 2,

3, 4, 5, 6, 7, 8,}

Null: “0”

Any: “@”

Boundary: “#”

 Some capital letters are used in this representation. Their meanings are

following: Z = {s}, A = {a,e}, H = {ı,i,u,ü}, J = {ç}, B = {b}, D = {d,t}, Y =

{y}, % = {a}, & = {u}, ^ = {o}, . K represents a root-final lexical “k”. It never

becomes a surface “ğ”. When certain suffixes are affixed then some vowels are

deleted in the roots. These vowels are prefixed with a “$” in the lexical form. The

apostrophe “’” is used to separate proper nouns from suffixes.

74

4.1.2 Feasible Pairs

Default correspondence rules are defined as feasible pairs and presented in section

4.2.1.

4.1.3 Subsets

A set of alphabet characters indicate the character classes. These character classes

are defined in subset statements.

CONS is the set of consonants: {b, c, ç, d, f, g, ğ, h, j, k, l, m, n, p, r, s, ş, t, v, y, z, D,

Z, Y, K, J, B, 9}

VOWEL is a set of lexical vowels. These are used in lexical level: {a, e, i, ı, o,

ö, u, ü, A, H, %, &, ^, E, Q}

SVOWEL a set of surface vowels: {ı, i, o, ö, u, ü, a, e}

BACKV is a set of back vowels: {a, ı, u, o}

FRONTV is a set of front vowels: {e, i, ö, ü}

HIGHV: {ı, i, u, ü}

FRUNRV is set of front unrounded vowels: {i, e}

FRROV is set of front rounded vowels: {ö, ü}

BKROV is set of back rounded vowels: {u, o}

BKUNRV is set of back unrounded vowels: {a, ı}

X is set of some consonants. These lexical consonants used as first letter in a suffix

but they may disappear on the surface form under certain conditions: {s, y, n}

75

NDCONS is a set of some consonants. These lexical consonants used as first letter in

a suffix but they are always realized on the surface: {c, Z, l, d, D}

4.2 Two-Level Rules for Turkish

We can divide two-level rules for Turkish into two groups: default

correspondences and special correspondences. There are three rules as default

correspondences, twenty three rules as special correspondences. These

correspondences are presented following subsections.

4.2.1 Default Correspondences for Turkish Language

There are 3 default correspondences for Turkish language. Feasible pairs are all

these default correspondences’ pair.

RULE "defaults"

Table 4.1 State transition table for default correspondences - I

RULE "defaults"

Table 4.2 State transition table for default correspondences - II

RULE "defaults"

 b

b

c

c

ç

ç

d

d

F

f

g

g

ğ

ğ

h

h

j

j

k

k

l

l

m

m

n

n

p

p

r

r

s

s

ş

ş

t

t

v

v

y

y

z

z

Z

s

a

a

e

e

ı

ı

o

o

ö

ö

u

u

ü

ü

@

@

1: 1

 A

a

A

e

H

ı

H

ı

H

u

H

ü

K

k

J

ç

B

b

9

g

n

0

D

t

D

d

b

p

d

p

k

t

c

ğ

s

ç

y

0

$

0

a

0

e

0

ı

0

i

0

o

0

ö

0

u

0

ü

0

Y

0

Y

y

1: 1

76

Table 4.3 State transition table for default correspondences -III

4.2.2 Two-Level Rules for Turkish Language

There are 23 rules for Turkish language and listed below. These rules are called as

special correspondence. They have been taken from Kemal Oflazer’s project. It is

called “Two-Level Description of Turkish Morphology”.

RULE 1: A:a => [VOWEL:BACKV | Q:0] ':' * CONS * @:0 * +:0 * _

This rule force the agreement of an A vowel to a preceding vowel in the back ness

attribute.

Table 4.4 State transition table for Rule 1

For example:

Surface Form: masalar

Intermediate Form: masa0lar

Lexical Form: masa+lAr

RULE 2: A:e => [VOWEL:FRONTV | E:0 | %:a | &:u | ^:o] ':' * CONS * @:0 * +:0

* _

A

0

%

a

&

u

^

o

‘

0

‘

‘

x

x

q

q

w

w

E

0

Q

0

~

~

+

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

@

@

1: 1

 A

a

Q

0

‘

‘

CONS

CONS

@

0

+

0

VOWEL

BACKV

@

@

1: 0 2 1 1 1 1 3 1

2: 3 2 2 2 2 2 3 1

3: 3 3 3 3 3 3 3 1

77

This rule force the agreement of an A vowel to a preceding vowel in the back ness

attribute also.

Table 4.5 State transition table for Rule 2

 A

e

^

o

‘

‘

CONS

CONS

@

0

+

0

&

u

%

a

E

0

VOWEL

FRONTV

@

@

1: 0 2 1 1 1 1 3 4 5 6 1

2: 6 2 2 2 2 2 3 4 2 6 1

3: 6 2 3 3 3 3 3 4 3 6 1

4: 6 2 4 4 4 4 3 4 4 6 1

5: 6 2 5 5 5 5 3 4 5 6 1

6: 6 2 6 6 6 6 3 4 6 6 1

For example:

Surface Form: meşeler

Intermediate Form: meşe0ler

Lexical Form: meşe+lAr

RULE 3: A:0 <=> _ +:0 H:@ y o r

This rule forces the agreement of an H vowel to a preceding one in back ness and

roundedness.

Table 4.6 State transition table for Rule 3

 A

0

A

@

+

0

H

@

y

y

o

o

R

r

@

@

1: 2 7 1 1 1 1 1 1

2. 0 0 3 0 0 0 0 0

3. 0 0 0 4 0 0 0 0

4. 0 0 0 0 5 0 0 0

5. 0 0 0 0 0 6 0 0

6. 0 0 0 0 0 0 1 0

78

7: 2 7 8 1 1 1 1 1

8: 2 7 1 9 1 1 1 1

9: 2 7 1 1 10 1 1 1

10: 2 7 1 1 1 11 1 1

11: 2 7 1 1 1 1 0 1

Example:

Surface form: selamlıyor

Intermediate form: selam0l00ıyor

Lexical form: selam+lA+Hyor

RULE 4: H:u => VOWEL:BKROV ':' * CONS * +:0 * @:0 * _

This rule forces the agreement of an H vowel to a preceding one in back ness and

roundedness also.

Table 4.7 State transition table for Rule 4

 H

u

VOWEL

BKROV

‘

‘

CONS

CONS

+

0

@

0

@

@

1: 0 2 1 1 1 1 1

2: 2 2 2 2 2 2 1

For example:

Surface Form: kolun

Intermediate Form: kol0un

Lexical Form: kol+Hn

RULE 5: H:ü =>[VOWEL:FRROV | &:u | ^:o] ':' * CONS * +:0 * @:0 * _

This rule also forces the agreement of an H vowel to a preceding one in back ness

and roundedness.

79

Table 4.8 State transition table for Rule 5

 H

ü

^

o

‘

‘

CONS

CONS

+

0

@

0

&

u

VOWEL

FRROV

@

@

1: 0 2 1 1 1 1 3 4 1

2: 4 2 2 2 2 2 3 4 1

3: 4 2 3 3 3 3 3 4 1

4: 4 2 4 4 4 4 3 4 1

For example:

Surface Form: gölün

Intermediate Form: göl0ün

Lexical Form: göl+Hn

RULE 6: H:ı => [VOWEL:BKUNRV | Q:0] ':' * CONS * +:0 * @:0 * _

This rule also forces the agreement of an H vowel to a preceding one in back ness

and roundedness.

Table 4.9 State transition table for Rule 6

 H

I

@

0

‘

‘

CONS

CONS

+

0

@

0

VOWEL

BKUNRV

@

@

1: 0 2 1 1 1 1 3 1

2: 3 2 2 2 2 2 3 1

3: 3 3 3 3 3 3 3 1

For example:

Surface Form: kumarın

Intermediate Form: kumar0ın

Lexical Form: kumar+Hn

RULE 7: H:i => [VOWEL:FRUNRV | E:0 | FRUNRV:0 +:0 | %:a] ':' * CONS * +:0

* @:0 * _

80

This rule also forces the agreement of an H vowel to a preceding one in back ness

and roundedness.

Table 4.10 State transition table for Rule 7

 H

i

%

a

‘

‘

CONS

CONS

+

0

@

0

FRUNRV

0

E

0

VOWEL

FRUNRV

@

@

1: 0 2 1 1 1 1 3 5 6 1

2: 6 2 2 2 2 2 2 2 6 1

3: 0 2 1 1 4 1 3 5 6 1

4: 6 2 4 4 4 4 4 4 6 1

5: 6 2 5 5 5 5 5 5 6 1

6: 6 2 6 6 6 6 6 6 6 1

For example:

Surface Form: kalemim

Intermediate Form: kalem0im

Lexical Form: kalem+Hm

RULE 8: H:0 <=> VOWEL:VOWEL (':') +:0 _

If the last character of the stem is a vowel and the first character of the morpheme

it is affixed to stem is “H” vowel then “H” vowel is deleted.

Table 4.11 State transition table for Rule 8

 H

0

H

@

VOWEL

VOWEL

‘

‘

+

0

@

@

1: 0 2 2 1 1 1

2: 0 2 2 3 4 1

3: 0 2 2 1 4 1

4: 1 0 2 1 1 1

81

Example:

Surface form: kasam

Intermediate form: kasa00m

Lexical form: kasa+Hm

RULE 9: SVOWEL:0 <=> $:0_ CONS +:0 (X:0) [A:@ | H:@] | _ +:0 H:@ y o r

If there is a vowel ellipsis phenomenon in the lexical form of the stem, it has to be

deleted on the surface form. For this situation “$” is used by Oflazer on Turkish

Morphology project so same symbol is used for this case. In the dictionary, some

words include this “$” symbol.

Table 4.12 State transition table for Rule 9

 SVOWEL

0

SVOWEL

@

$

0

CONS

CONS

+

0

H

@

A

@

X

0

y

y

o

o

r

r

@

@

1: 11 16 2 1 1 1 1 1 1 16 1 1

2: 7 3 2 1 1 1 1 1 1 3 1 1

3: 11 16 2 4 17 1 1 1 4 16 4 1

4: 11 16 2 1 5 1 1 1 1 16 1 1

5: 11 16 2 1 1 0 0 6 1 16 1 1

6: 11 16 2 1 1 0 0 1 1 16 1 1

7. 0 0 0 8 0 0 0 0 8 0 8 0

8. 0 0 0 0 9 0 0 0 0 0 0 0

9. 0 0 0 0 0 1 1 10 0 0 0 0

10. 0 0 0 0 0 1 1 0 0 0 0 0

11. 0 0 0 0 12 0 0 0 0 0 0 0

12. 0 0 0 0 0 13 0 0 0 0 0 0

13. 0 0 0 0 0 0 0 0 14 0 0 0

14. 0 0 0 0 0 0 0 0 0 15 0 0

15. 0 0 0 0 0 0 0 0 0 0 1 0

16: 11 16 2 1 17 1 1 1 1 16 1 1

17: 11 16 2 1 1 18 1 1 1 16 1 1

18: 11 16 2 1 1 1 1 1 19 16 1 1

82

19: 11 16 2 1 1 1 1 1 1 20 1 1

20: 11 16 2 1 17 1 1 1 1 16 0 1

Example:

Surface form: ağzımı

Intermediate form: ağ00z0ım00ı

Lexical form: ağ$ız+Hm+yH

RULE 10: H:0 /<= VOWEL:0 +:0 _ y o r

The suffix +Hyor is indicating the present continuous tense. This suffix is verbal

suffix. So “H” vowel is not deleted bur the last phoneme of the stem is vowel then

this vowel is deleted.

Table 4.13 State transition table for Rule 10

 VOWEL

0

+

0

H

0

y

y

o

o

r

r

@

@

1: 2 1 2 1 1 1 1

2: 2 3 2 1 1 1 1

3: 2 1 4 1 1 1 1

4: 2 3 2 5 1 1 1

5: 2 1 2 1 6 1 1

6: 2 1 2 1 1 0 1

Example:

Surface form: döşüyor

Intermediate form: döş00üyor

Lexical form: döşe+Hyor

RULE 11: X:0 <=> CONS (':') +:0 _ (CONS) VOWEL

If a last phoneme of the stem is a consonant and the first phoneme of the first

suffix is “s”, “y” or “n” then this phoneme is deleted.

83

Table 4.14 State transition table for Rule 11

 X

0

X

@

CONS

CONS

‘

‘

+

0

VOWEL

VOWEL

@

@

1: 0 2 2 1 1 1 1

2: 0 2 2 3 4 1 1

3: 0 2 2 1 4 1 1

4: 7 5 2 1 1 1 1

5: 0 6 6 3 4 0 1

6: 0 2 2 3 4 0 1

7. 0 8 8 0 0 1 0

8. 0 0 0 0 0 1 0

Examples:

Surface form: bademi

Intermediate form: badem00i

Lexical form: badem+yH

Surface form: balonu

Intermediate form: balon00u

Lexical form: balon+yH

Surface form: kalemi

Intermediate form: kalem00i

Lexical form: kalem+sH

RULE 12: D:t <=> [h | @:ç | ş | @:k | @:p | @:t | f | s] +:0 (@:0) _

“D” is known as a “d” by default. But in the following case “D” is known as “t”.

Whenever it is preceded by one of the consonants in the option list across a

morpheme boundary, “D” is known as “t”.

84

Table 4.15 State transition table for Rule 12

 D

t

D

@

s

s

+

0

f

f

@

t

@

p

@

k

@

ş

ş

ç

@

h

h

@

@

@

1: 0 1 2 1 1 2 2 2 2 2 2 2 1

2: 0 1 2 3 1 2 2 2 2 2 2 2 1

3: 2 0 2 4 4 2 2 2 2 2 2 2 1

4: 2 0 2 1 1 2 2 2 2 2 2 2 1

5: 2 1 2 1 6 1 6 1 1 1 1 1 1

6: 2 1 2 1 1 0 1 0 1 0 1 1 1

Example:

Surface form: dolapta

Intermediate form: dolap0ta

Lexical form: dolab+DA

RULE 13: {b, d}:{p, t} <=> _# | _ +:0 (X:0) [CONS | c:ç]

When a word end with one of “p,t” or “p,t” are followed by a morpheme

beginning with a consonant then voiced obstruents “b,d” as “p,t”.

Table 4.16 State transition table for Rule 13

 b

p

d

t

b

@

d

@

+

0

X

0

CONS

CONS

c

ç

@

@

1: 2 2 3 3 1 1 1 1 1 1

2. 0 0 0 0 1 4 0 0 0 0

3: 2 2 3 3 0 6 1 1 1 1

4. 0 0 3 3 0 0 5 1 1 0

5. 0 0 3 3 0 0 0 1 1 0

6: 2 2 0 0 1 1 7 0 0 1

7: 2 2 0 0 1 1 1 0 0 1

Example:

Surface form: dolapçı

85

Intermediate form: dolap0çH

Lexical form: dolab+cH

RULE 14: c:ç <=> [ç | ş | @:k | @:p | @:t | f | s | h] +:0 _ [H:@ |A:@]

Table 4.17 State transition table for Rule 14

RULE 15: ç:c <=> _ +:0 (X:0) VOWEL

When “c” is the first phoneme of the suffix and “c” is the last phoneme of the

stem then both “c”’s change to “ç” by mutual influence.

Table 4.18 State transition table for Rule 15

 c

ç

ç

@

+

0

X

0

VOWEL

VOWEL

@

@

1: 2 5 1 1 1 1

2. 0 0 3 0 0 0

3. 0 0 0 4 1 0

4. 0 0 0 0 1 0

5: 2 5 6 1 1 1

6: 2 5 6 1 1 1

Example:

Surface form: haraççı

Intermediate form: haraç0çı

 c

ç

c

@

ç

ç

+

0

H

0

A

@

ş

ş

@

k

@

p

@

t

f

f

s

s

h

h

@

@

1: 0 1 2 1 1 1 2 2 2 2 2 2 2 1

2: 0 1 2 3 1 1 2 2 2 2 2 2 2 1

3: 5 4 2 1 1 1 2 2 2 2 2 2 2 1

4: 0 1 2 1 0 0 2 2 2 2 2 2 2 1

5. 0 0 0 0 1 1 0 0 0 0 0 0 0 0

86

Lexical form: haraç+cH

RULE 16: k:ğ <=> VOWEL _ +:0 (X:0) VOWEL

When the first phoneme is morpheme is a vowel and the last phoneme is the stem

is consonant “k” then “k” becomes “ğ”.

Table 4.19 State transition table for Rule 16

Examples:

Surface form: ekmeğim

Intermediate form: ekmeğ0im

Lexical form: ekmek+Hm

Surface form: tarağın

Intermediate form: tarağ0ın

Lexical form: tarak+Hn

RULE 17: k:g <=> n_ +:0 (X:0) VOWEL

When the first phoneme is morpheme is a vowel and the last phoneme is the stem

is consonant “k” then “k” becomes “g”.

 k

ğ

k

@

VOWEL

VOWEL

+

0

X

0

@

@

1: 0 2 2 1 1 1

2: 6 3 2 1 1 1

3: 0 1 2 4 1 1

4: 0 1 0 1 5 1

5: 0 1 0 1 1 1

6. 0 0 0 7 0 0

7. 0 0 2 0 8 0

8. 0 0 2 0 0 0

87

Table 4.20 State transition table for Rule 17

 k

g

k

@

n

n

+

0

VOWEL

VOWEL

X

0

@

@

1: 0 1 2 1 1 1 1

2. 6 3 2 1 1 1 1

3: 0 1 2 4 1 1 1

4: 0 1 2 1 0 5 1

5: 0 1 2 1 0 1 1

6. 0 0 0 7 0 0 0

7. 0 0 0 0 1 8 0

8. 0 0 0 0 1 0 0

Examples:

Surface form: dengi

Intermediate form: deng00i

Lexical form: denk+yH

Surface form: rengimiz

Intermediate form: reng0im00iz

Lexical form: renk+Hm+yHz

RULE 18: g:ğ => _ +:0 (X:0) VOWEL

Some words has a foreign origin in Turkish. If these words ending with “g” and

certain suffixes are added then the “g” becomes “ğ”.

Table 4.21 State transition table for Rule 18

 g

ğ

+

0

X

0

VOWEL

VOWEL

@

@

1: 2 1 1 1 1

2. 0 3 0 0 0

3. 0 0 4 1 0

4. 0 0 0 1 0

88

Example:

Surface form: dialoğa

Intermediate form: dialoğ00a

Lexical form: dialog+yA

RULE 19: g:ğ /<= n_

If foreign words ending with “g” and “g” is preceded by another consonant then it

doesn’t become “ğ”. This consonant may be “n”.

Table 4.22 State transition table for Rule 19

 n

n

g

ğ

@

@

1: 2 1 1

2: 2 0 1

Example:

Surface form: bumerangım

Intermediate form: bumerang0ım

Lexical form: bumerang+Hm

RULE 20: g:ğ /<= r_

If foreign words ending with “g” then it doesn’t become “ğ” when “g” is preceded

by another consonant. This consonant may be “r”.

Table 4.23 State transition table for Rule 20

 c

ç

ç

@

@

@

1: 2 1 1

2: 2 0 1

89

Example:

Surface form: morgunuz

Intermediate form: morg0unuz

Lexical form: morg+HnHz

RULE 21: Y:y <=> _ +:0 [X:0 | H:@]

Rule 21 and Rule 22 deal with nominal roots. These roots are ending with “su”.

Kemal Oflazer added a lexical “Y” to such nominal words. “Y” is realized as “0” at

the end of the word if followed by a consonant, which never drops in affixation.

Table 4.24 State transition table for Rule 21

 Y

y

Y

@

+

0

X

0

H

@

@

@

1: 2 4 1 1 1 1

2. 0 0 3 0 0 0

3. 0 0 0 1 1 0

4: 2 4 5 1 1 1

5: 2 4 1 0 0 1

Example:

Surface form: akarsuyunuz

Intermediate form: akarsuy00unuz

Lexical form: akarsuY+yHnHz

RULE 22: Y:0 <=> _# | _ +:0 NDCONS:@

Table 4.25 State transition table for Rule 22

 Y

0

Y

@

+

0

NDCONS

@

@

@

1: 2 3 1 1 1 1

90

2. 0 0 1 4 0 0

3: 2 3 0 5 1 1

4. 0 0 0 0 1 0

5: 2 3 1 1 0 1

Example:

Surface form: akarsular

Intermediate form: akarsu00lar

Lexical form: akarsuY+lar

RULE 23: ':0 <=> _# | _+:0 l

This rule remove “’” character from a lexical proper noun under certain

circumstances.

Table 4.26 State transition table for Rule 23

 ‘

0

‘

@

+

0

1

1

@

@

1: 2 3 1 1 1 1

2. 0 0 1 4 0 0

3: 2 3 0 5 1 1

4. 0 0 0 0 1 0

5: 2 3 1 1 0 0

4.2.3 Morpheme Order Rules for Turkish Language

 There are two main classes for Turkish roots: nominal and verbal. The

importances of these classes are presented in section 2.2.1. Two rules are produces

for these two paradigms in this project.

91

Rule about nominal paradigm:

The state diagram for the nominal model is shown in Figure 3.2. This rule is

produced this model for this project. State transition table for nominal model is

shown in Table 4.27.

Table 4.27 State transition table for nominal model

 Plural

Suffix

Possessive

Suffix

Case

Suffix

Relative

Suffix

1: 2 3 4 5

2: 0 3 4 5

3: 0 0 4 5

4: 0 0 0 5

5: 0 0 0 0

 Rule about verbal paradigm:

The state diagram for the verbal model is shown in Figure 3.4. This rule is produced

this model for this project. State transition table for verbal model is shown in Table

4.28.

Table 4.28 State transition table for verbal model

 Voice

Suffixes

Negation

Suffix

Compound

Verb

Suffix

Main

Tense

Suffix

Question

Suffix

Second

Tense

Suffix

Person

Suffix

1: 2 3 4 5 6 7 8

2. 0 3 4 5 0 0 0

3. 0 0 4 5 0 0 0

4. 0 0 0 5 0 0 0

5: 0 0 0 0 6 7 8

6. 0 0 0 0 0 7 8

7. 0 0 0 0 0 0 8

8: 0 0 0 0 0 0 0

92

CHAPTER FIVE

SOFTWARE DESIGN AND IMPLEMENTATION

 This chapter describes the design and implementation of Turkish

Morphological Analyzer project. The project consists of two parts: a library to

analyze words and an application that uses this library. This library is a reusable

software tool for analyses of Turkish text and the application is developed for testing

this library.

The application and the library are developed by Borland C++ Builder Version

6.0. This library reads Turkish rule definitions and analyzes the input word according

these Turkish rule definitions. All Turkish rule definitions are stored in XML files.

A drawing tool is developed for morphological analyzer of Turkish language.

(Duran & Kürkçü, 2004). This tool is used to draw finite state machine. Turkish rules

in “Rule.xml” documents can be opened by this tool. Rules can be seen as finite state

machine and can be changed by this tool if necessary.

5.1 Turkish Rule Definitions

 Entity relationship diagram for these tables are shown in Figure 5.1 and

Figure 5.2. All are in XML files.

93

Figure 5.1 ER Diagram

94

Turkish rule definitions contain the followings:

• Alphabetic Characters

Turkish alphabetic characters are stored in “Alphabet.xml”. Null, any

and boundary characters are not alphabetic character but in this project

these characters are stored in alphabetic characters document. Figure 5.2

shows a part of “Alphabet.xml” file.

Null character is “0”, any character is “@” and boundary character is

“#”. Types of these characters are stored in “Kind.xml”. Figure 5.3 shows

all character types.

Figure 5.2 Part of characters of Turkish language

Figure 5.3 All Character types in Turkish language

 Feasible Pairs

95

The all of the default and special correspondences makes up the set of

feasible pairs. Turkish feasible pairs are consist of the pairs in Turkish

rules. Turkish feasible pairs are stored in “Feasible_Pair.xml”. Figure 5.4

shows a part of “Feasible_Pair.xml” file.

“Lex_Ch_Id = 4” and “Sur_Ch_Id = 3” is a feasible pair. It determines

lexical character is “a” and surface character is “0”. This pair is shown

 as “a:0” as shortly.

Figure 5.4 Part of feasible pairs of Turkish language

 Subsets

 There are 12 subsets in Turkish rule definitions. Turkish subsets are

stored “Subset.xml” and “Subset_Content.xml”. Figure 5.5 shows all

subsets and Figure 5.6 shows some subset elements in Turkish rule

definitions.

96

Figure 5.5 All Subsets for Turkish language

Example: “X” is a subset and it includes three alphabetic characters in it.

“Sub_Id = 1” identifies subset “X”. “Ch = 20“ identifies alphabetic

character “n”. “Ch = 25“ identifies alphabetic character “s”. “Ch = 31“

identifies alphabetic character “y”.

Figure 5.6 Part of Subset Content for Turkish language

 Rules

There are 23 rules in Turkish rule definitions. Turkish rules are stored

in “Rule.xml” and “Rule_Content.xml”.

97

Figure 5.7 shows Rule number 19 in XML document. State transition

table for Rule number 19 is shown in Table 4.22 in chapter four. This

rule has three properties: description, number of columns and number od

states. These are stored in rule document. Number of columns determines

the number of feasible pair in this rule.

Figure 5.7 RULE 19 “g:ğ /<= n_” as in XML document

Figure 5.8 shows the detailed contents of rule number 191. This rule

has three feasible pair: “n:n”, “g:ğ”, “@:@”. There are two states: “1”

and “2”. Two states are final in rule number 191. “Cur_State_St”

property determines the current state situation that is final or non-final

states. It may be “0” or “1”. If this property is “1” then this state is final

otherwise is non-final state.

“Lex_Subset” and “Sur_Subset” properties determine whether the

feasible pair is a subset or a character. These properties may be “0” or

“1”. If “Lex_Subset” property is “0” then it means lexical part is a

character otherwise it is a subset. If “Sur_Subset” property is “0” then it

means surface part is a character otherwise it is a subset.

“Cur_State” property determines the current state number and

“Next_State” property determines the next state number.

98

Figure 5.8 Part of rule content data of Rule 19

 Suffix

There are many suffixes in Turkish language. These suffixes are

categorized in “Two-level description of Turkish Morphology” study of

Oflazer. (Oflazer, 1993). These suffixes are used to analyze word. After

each step of analyzing process, analyzer controls the string in suffix list

or word list.

Figure 5.9 All Suffix categories of Turkish language

99

Turkish suffix categories are stored in “Suffix_Category.xml”

and Turkish suffixes are stored in “Suffix.xml”. Figure 5.9 shows all

suffix categories. A part of suffixes are shown in Figure 5.10.

Figure 5.10 Part of suffixes of Turkish language

 Words

There are approximately 26.000 roots words in Turkish language.

These words are used to determine the stem of input word while

analyzing word. Turkish word categories are stored in

“Word_Category.xml” and Turkish words are stored in “Word.xml”.

Figure 5.12 shows a part of word categories of Turkish language. A part

of words are shown in Figure 5.11.

Figure 5.11 Part of words of Turkish language

100

Figure 5.12 All word categories of Turkish language

 Morpheme Order Rules

There are two main classes for Turkish roots: nominal and verbal.

These are presented in section 3.2.1. These two paradigms are

represented in two rules. These rules are called morpheme order rules.

These rules are stored in “Order_Rule.xml” and

“Order_Rule_Content.xml”. Figure 5.13 shows order rule’s header

information in XML document.

Figure 5.13 Morpheme order rules

 State transition table for nominal model is shown in Table 4.27 and

verbal model in Table 4.28 in chapter four. Nominal rule has two

properties: id and description. These are stored in rule document.

101

Figure 5.14 shows the detail contents of nominal rule. There are five

states that are final. There are five properties:

o “Rule_Kind_Id” determines the identity of nominal rule,

o “Cur_State” determines the current state number,

o “Next_State” determines the next state number under certain

situation,

o “Cat” determines the identity of the suffix categories.,

o “Cur_State_St” determines the current state situation that is

final or non-final states. It may be “0” or “1”. If this property

is “1” then this state is final otherwise is non-final state.

Figure 5.14 Detail contents of the Nominal rule

5. 2 Implementation of the Project

This project consists of two parts: a library to analyze words and an example

application that uses this library. The library is developed by Borland C++ Builder

Version 6.0. This library has two main functions: load data and analyze word.

102

 Load data function must be run before analyze a word. This function

reads all data about the Turkish rule definitions from XML documents

and stored in memory as string array to faster operations. XML

documents are in Data folder in application directory. These arrays are

global variables for library. TXMLDocument object is used to read XML

document in Borland C++ Builder. Load_Data functions call these

functions:

o Fill_Alphabet function finds alphabetic characters. It reads

“Kind.xml” document and gets the alphabetic character’s kind

identification then reads “Alphabet.xml” document for this kind

identification. After reading data it stores these alphabetic characters

in Alphabet array.

o Find_Boundary_Character function finds boundary symbol and stores

it in a global variable. It reads “Kind.xml” document and gets the

boundary symbol’s kind identification then reads “Alphabet.xml”

document for this kind identification.

o Find_Any_Character function finds any symbol and stores it in a

global variable. It reads “Kind.xml” document and gets the any

symbol’s kind identification then reads “Alphabet.xml” document for

this kind identification.

o Find_Null_Character function finds NULL symbol and stores it in a

global variable. It reads “Kind.xml” document and gets the NULL

symbol’s kind identification then reads “Alphabet.xml” document for

this kind identification.

o Fill_Subset_Content function finds subset contents. It reads

“Subset_Content.xml” document. After reading data it stores these

subset content data in Subset_Content array.

o Fill_Rule function finds rule headers data. It reads “Rule.xml”

document. After reading data, rule description data are stored in

103

Rule_Description array. Other rule header data are stored in Rule

array

o Fill_Rule_Content function finds rule content data. It reads

“Rule_Content.xml” document. After reading data, data are stored in

Rule_Content array.

o Fill_Feasible_Pair function finds feasible pairs data. It reads

“Feasible_Pair.xml” document. After reading data, data are stored in

Feasible_Pair array. Feasible_Pair is a two-dimensional array. First

dimension represents to the pair of lexical and the second dimension

represents to the pair of surface.

o Fill_Word_Category function finds word categories data from

“Word_Category.xml” document. After reading data, data are stored

in Word_Category array.

o Fill_Word_Entry function finds words data from “Word.xml”

document. After reading data, data are stored in Word array.

o Fill_Suffix_Category function finds suffix categories data from

“Suffix_Category.xml” document. After reading data, data are stored

in Suffix_Category array.

o Fill_Suffix_Entry function finds suffixes data from “Suffix.xml”

document. After reading data, data are stored in Suffix array.

o Fill_Order_Rule function finds order rule headers data. It reads

“Order_Rule.xml” document. After reading data, order rule

description data are stored in Order_Rule_Description array. Other

rule header data are stored in Order_Rule array

104

o Fill_Order_Rule_Content function finds rule content data. It reads

“Order_Rule_Content.xml” document. After reading data, data are

stored in Order_Rule_Content array.

 Analyze word function aims to analyze words as stem and suffixes. It

determines the types of stem and suffixes at the same time. This function

gets the word that is a surface form as input. If analyzer founds a result

then it continues looking for additional results. It returns a structure that is

called MY_RESULT. This structure has four elements: My_Way,

My_Alter, My_Way_File_Name and My_Alter_File_Name. All these

elements are string data type.

o My_Way includes the ways of all alternatives of analysis

o My_Alter includes all alternative results of analysis.

o My_Way_File_Name is the path of XML document for My_Way

o My_Alter_File_Name is the path of XML document for My_Alter

 This function also creates two XML documents: Result and

Result_Way. It saves My_Way and My_Alter to these XML documents.

The data of My_Way are stored in Result_Way XML document and the

data of My_Result are stored in Result XML document. These documents

are created in Debug folder in the application directory. These XML

documents are presented in following subsection.

 Result.xml

 The alternative outputs are in “Result.xml” document

containing the following data are stored in this document for each

alternation

 Stem: It is the stem of this alternation,

 Lexical_Part: It is lexical form of this alternation,

 Intermadiate_Part: It is an intermediate form of this

alternation,

105

 Morphemes: It is a set of all morphemes and their data of this

 alternation. Each morpheme of the alternation has following data:

o Affix: This is the morpheme,

o Category: This is the category of this morpheme

Figure 5.15 shows the example that is one of the alternations of input

word “ekmeği”.

Figure 5.15 One of alternations of input word “ekmeği”

Result_Way.xml

 The steps of the alternative outputs are in “Result_Way.xml”

document. The purpose of this document is to allow to user to see how a

surface form is processed so if a rule is wrong or dictionary is incomplete

then the user can see the problem and change rules or dictionary if

necessary. Figure 5.16 shows an example of Result_Way.xml document

as not detail.

106

Figure 5.16 Example of Result_Way.xml document as not detail

The following data are stored in this document:

 Word: This is an input word,

 Recordset: This is a set of data of each feasible pair. There are

following data for each recordset:

o Record: It has two parameters: Feasible Pair and Analyze.

Feasible Pair is the feasible pair (lexical:surface pair) that is

107

currently being considered. This parameter exists in every

Record. Analyze is a boolean parameter. If result is found then

this parameter will be true otherwise false.

o Lex_Part: This is the lexical character of the feasible pair,

o Srf_Part: This is the surface character of the feasible pair,

o Situation: It represents the result of the one step of the

analyzing operation. There are four alternatives for situation.

 If this step is accepted by all rules and lexical form is

in dictionary then situation will be true. This case is

shown in the Figure 5.17.

Figure 5.17 Example Situation result - I

 If current lexical form is not in the dictionary then

situation represents it. Word represents the lexical form

and state represents reason. This case is shown in

Figure 5.18.

Figure 5.18 Example Situation result - II

 If this feasible pair is not accepted at least one rule then

situation represents it. It contains information about

this rule that does not accept. RULE_NUMBER

represents the number of rule, RULE_DESCRIPTION

108

represents the description of the rule, and STATE

represents the set of current states. The leftmost

number is the state of rule 1, the second of is rule 2,

and so on. This case is shown in Figure 5.19.

Figure 5.19 Example Situation result - III

 If the stem of the input is a noun or adjective then

nominal order rule is applied. If the stem of the input is

a verb then verbal order rule is applied. If these two

rules fail then situation represents it. Rule_Id

represents the identity of the order rule.

Rule_Description represents the description of the

order rule. An example case is shown in Figure 5.20.

Figure 5.20 Example Situation result - IV

o Lexical_Form: This is the current value of the result lexical

form.

o Recordset: This is the same with the recordset above. This is a

set of data for next feasible pair.

 Rule_Analyze is called by Analyze_Word function for execution of analysis

operation. This function does the main operations. It a recursive function,

109

it computes lexical forms from the surface form by recursively. Its process

is left to right and one character of the surface input form is processed at a

time. Rule_Analye function has following inputs:

o Total_Result_Lexical is initially empty. This string gets longer

while analyzing. It holds the lexical form of the result.

o Total_Result_Intermediate is initially empty. This string gets longer

while analyzing. It holds the intermediate form of the result.

o xNode represents the step of analyzing process. Steps of analyzing

are stored in tree structure. xNode belongs to this structure.

o Result_Node represents the correct results. Results are stored in tree

structure. Result_Node belongs to this structure.

o My_State is an array. It represents the current state of all rules. “1”

is the initial state for all rules, elements of this array is set to “1”.

o Sozcuk is a string variable. It represents the input word. This word is

in surface form. The symbol “#” concatenate to this word. The

symbol “#” means that the end of the word. This string gets shorter

while analyzing. After each of the steps the first character of this

variable is dropped i.e. initially it is “ekmeği#”, it is “kmeği#” in

the second step. If its length is 1 then process is finished.

o Result is initially empty. It holds the last morpheme that is found.

o Kok is a boolean variable. It is initially true. If the stem of the input

word is found then this variable is set to false.

110

5.3 Functions in Library

 The following some functions in library to help to analyze the surface form.

The role of the each function is represented in the following.

 Find_In_Dictionary

It has two inputs: word and statu. If statu is equal to false then this

function finds the word in set of words. If it is equal to true then this function

finds the word in set of suffixes. This function returns true or false. If it finds

then returns true else false.

 Ara_Rule_Content

It has three inputs: Lexical_Harf_Id, Surface_Harf_Id and My_State.

Lexical_Harf_Id is lexical part of current feasible pair and Surface_Harf_Id

is surface part of current feasible pair. My_State is a set of current state

numbers for all rules.

This function returns a structure. This structure has two elements: count

and Set_Feasible_Pair. Count is an integer variable. It represents the

equivalent rules count. Set_Feasible_Pair is a five dimensional array. Its

elements represent:

o First index represents the lexical character id,

o Second index represents the surface character id,

o Third index represents the next state,

o Fourth index represents final/non-final state,

o Fifth index represents the rule id,

 Determine_Categories

This function is used to determine the categories for stem and all suffixes.

It has two inputs: Lexical and Result_Node. Lexical is the one of the results

111

and Result_Node is node of the result’s tree. It does not return any value. It

adds the category data in XML nodes.

 Find_Character_In_Subset

This function is used learn whether the input identification of character

exists in input identification of subset or not. It has two inputs: two inputs:

Harf_Id and Subset_Id. Harf_Id is the identification of character. This

character is a part of current feasible pair. Subset_Id is the identification of

the subset. This subset is in the current rule. The function returns true or

false. If the input identification of character is in the identication of the subset

then function returns true otherwise returns false.

 Lexical_Form_Harf_Karsiligi_Bul

This function is used to determine the character of the input identification.

It has one input that is Harf_Karsiligi. This input is integer data type that is

identification of a character. This function is used to determine the character

of this identification. If it finds the character then returns this character

otherwise returns null string.

 Find_Parent_Node

This function is used to determine the correct paths of results. It is called

when a result is found. It adds the Analyze parameter to the parent of correct

paths. If path is not correct there is no Analyze parameter in Record. This is

shown in Figure 5.18.

5.4 How Analyzer Works

 The analyzer computes lexical forms from a surface form recursively. It

processes the surface input form by one character at a time. It goes left to right. It

112

tries suitable feasible pairs for each surface character. Analyzer finds suitable

feasible pairs according to surface character using this control:

Step 1
for (int i=0; i<Feasible_Pair_Count; i++)

{

 if ((Feasible_Pair[i][1] = NULL) or

 (Feasible_Pair[i][1] = Surface_Character))

 {

 // step 2

 // step 3

 }

}

 Analyzer controls a boundary symbol in each step. If a boundary symbol is

reached then it controls the morpheme order in the following of operation.

Step 2
if (result.SubString(result.Length(),1) = Boundary_Character)

{

 Current_Lexical_Form = Feasible_Pair[i][0];

 my_flag = true;

}

else

{

 Current_Lexical_Form = Current_Lexical_Form +

 Feasible_Pair[i][0];

 my_flag = false;

}

 Analyzer looks dictionary in every step for current lexical form. If current

lexical form is not in dictionary then operation fails. In this case analyzer goes back

and tries another feasible pair and does same looking operation. If current lexical

113

form is in dictionary then analyzer applies all rules in parallel using the function

Ara_Rule_Content.

Step 3
if (Find_In_Dictionary(Current_Lexical_Form,my_flag) = true)

{

 my_feasible_pair = Ara_Rule_Content(Feasible_Pair[i][0],

 Feasible_Pair[i][1],

 My_State);

 // step 4

}

else

{

 my_flag = false;

 // write reason of fail as situation structure in

 // Result_Way.xml like Figure 5.18.

}

 Ara_Rule_Content returns a structure and assigns to my_feasible_pair.

Analyzer tries all possible results in my_feasible_pair. If a rule fails with current

feasible pair and current state then create a situation structure like Figure 5.19.

Step 4
for (k=0; k<my_feasible_pair.count ; k++)

{

 if ((my_feasible_pair.Set_Feasible_Pair[k][3] = 0)

or (Current_State_Situation = 0))

 {

 my_flag = false;

 // write reason of fail as situation structure

in // Result_Way.xml like Figure 5.19.

 }

 My_State[k] = my_feasible_pair.Set_Feasible_Pair[k][2];

114

}

// step5

 The last operation is the control of morpheme order. Two rules are designed

according to nominal and verbal model of Turkish language to control morpheme

order of lexical form.

If boundary symbol is found in step 2 and stem of the surface form is found then

analyzer controls the morpheme order rule. If stem of the surface form is a noun or

an adjective then nominal rule is applied. If it is a verb then verbal rule is applied.

Step 5
If ((Current_Lexical_Form.AnsiLastChar() = Boundary_Symbol) and

 (stem = true))

{

 // find morpheme category

 for (x=0; x<Order_Rule_Content_Count; x++)

 {

 if((Order_Rule_Content[x][0] = Morp_Order_Rule.Id) and

 (Order_Rule_Content[x][1] = Morp_Order_Rule.Cur_State)

and

 (Order_Rule_Content[x][2] = Morp_Order_Rule.Morpheme_Cat))

 {

 my_flag_order = true;

 break;

 }

 }

 if ((my_flag_order = false) || (Order_Rule_Content[x][3] = 0))

 {

 my_flag = false;

 // write reason of fail as situation structure in

 // Result_Way.xml like Figure 5.20.

 }

}

115

 After the entire controls, if my_flag variable is true then this feasible pair is

accepted, otherwise not. After all surface characters are processed, analyzer stops

and shows the alternation results and the steps of these results as tree structure.

5.5 Test Application

There is a test application that uses library in this project. This application is

developed by Borland C++ Builder 6.0. There are two main functions in it: Read

Data and Analyze Word. These functions call library’s functions.

 Read Data function must be run before analyzing words. Figure 5.21

shows the usage of the read data function.

Figure 5.21 Usage of the “read data” function

 Analyze Word function must be run after reading data process. It can

analyze only one word at the same time.

116

Figure 5.22 Screen before analyzing operation

When a word is written text box on the screen and clicked the Analyze

Word button then test application shows the result of analyzing operation.

The screen before analyzing operation is shown in Figure 5.22 and the screen

after analyzing operation is shown in Figure 5.23. The steps of the alternative

outputs are shown on the left of the screen and the alternative outputs are

shown on the right of the screen in Figure 5.23.

117

Figure 5.23 Example results of the analyzing operation

118

CHAPTER SIX

 CONCLUSION

The aims of the thesis were to implement a morphological analyzer for Turkish

language. This analyzer receives a surface form as input and gives lexical form of

this word as output.

Turkish rule definitions and words are stored in XML documents. Some words are

not stored as original i.e.: ağ$ız, bur$un. When certain suffixes are affixed then some

vowels can be deleted in these roots. These vowels are prefixed with a “$” in the

lexical form. These kinds of words are generally designating parts of the human

body. This exception must be solve in the future. “ağız” must be used instead of

“ağ$ız” in the dictionary. New rules may be written for this purpose.

The application is developed with Borland C++ Builder Version 6.0. The

performance of this analyzer can be better. String classes of Borland C++ builder are

unsatisfying for high performance. The application can be recoded by using any

other programming languages that has stronger string classes to get higher

performance.

The analyzer is able to process one word at a time. In the future, the analyzer can

be improved to analyze the sentences by using word order rules, paragraphs by using

sentence order rules. Such analyzer can be able to analyze the style of an article. By

collecting the results of analyzing articles we may analyze the style of an author.

This process is called as stylometry.

119

REFERENCES

Antworth, E.L.(1995). Introduction to PC-KIMMO. North Texas Natural Language

Processing Workshop. University of Texas, Arlington, USA.

Antworth, E.L.(1995). Developing the Rules Component. North Texas Natural

Language Processing Workshop. University of Texas, Arlington, USA.

Antworth, E. L. (1995). Two-Level Phonology Revisited. North Texas Natural

Language Processing Workshop. University of Texas, Arlington, USA.

Antworth, E. L. (1995). Reference Manual. North Texas Natural Language

Processing Workshop. University of Texas, Arlington, USA.

Barton, G. E. (1986). Computational Complexity In Two-Level Morphology. In ACL

Proceedings, 24th Annual Meeting (Association for Computational Linguistics).

Cambridge

Beesley, K.R. & Karttunen, L.(2001). A Short History of Two-Level Morphology.

 ESSLLI-2001 Special Event titled "Twenty Years of Finite-State Morphology.".

Helsinki, Finland.

Duran, A. & Kürkçü, L. (2004). A Drawing Tool For Morphologic Analyzer of

Turkish.

Dokuz Eylul University, Izmir, Turkey

Eryiğit, G. & Adalı, E. (2004). An Affix Stripping Morphological Analyzer For

Turkish. Artifical Intelligence and Applications. Innsbruck, Austria.

120

Hankamer, J.. (1986). Finite State Morphology and Left to Right Phonology.

Proceedings of the Fifth West Coast Conference on Formal Linguistics, Stanford,

CA.

Jurafsky, D & Martin, J.H. Speech and language processing. Prentice Hall, New

Jersey 2000

Mengüşoğlu, E. & Deroo, O. (2001). Turkish LVCSR: Database preparation and

Language Modeling for an Agglutinative Language. ICASSP. Salt-Lake City

Oflazer, K.(1993). Two-level Description of Turkish Morphology. Association for

Computational Linguistics. Morristown, NJ, USA

Oflazer, K. & Solak, A.(1993). Design and Implementation of a Spelling Checker

For Turkish. Literary and Linguistic Computing. Oxford Univ., USA

Oflazer, K., Göçmen, E. & Bozşahin, C. (1994) An Outline of Turkish morphology.

Technical Report, Middle East Technical University, Ankara, Turkey

Oflazer, K. & Güngördü, Z. (1994). Parsing Turkish Using the Lexical Functional

Grammar Formalism. International Conference On Computational

Linguisitics.USA

Oflazer, K. & Bozşahin, C. (1994). Turkish Natural Language Processing Initiative:

An overview. Proceedings of the Third Turkish Symposium on Artifical

Intelligence. Turkey.

Oflazer, K. & Güvenir, H.A. (1994). Using a Corpus For Teaching Turkish

Morphology. University of Twente. The Netherlands

Weber, D.J. , Black, H.A & McConnel, S.R.. (1988). AMPLE: a tool for exploring

morphology. Summer Institute of Linguistics. Dallas.

121

WEB_1. (2003). Computational Linguistics and Phonetics Web Site. http://www.

http://www.coli.uni-sb.de/ ~kris/nlp-with-prolog/html/node20html(12.12.2003)

WEB_2. (2003). Computational Linguistics and Phonetics Web Site. http://www.

http://www.coli.uni-sb.de/ ~kris/nlp-with-prolog/html/node21html(12.12.2003)

WEB_3. (2004). School of Computing - University of Leeds Home Page.

http://www.comp.leeds.ac.uk/nti-kbs/ai5/Misc/morphemes.html (30.03.2004)

WEB_4. (2004). Bob’s Home Page. http://www.cromwell-

intl.com/turkish/nouns.html (16.06.2004)

WEB_5. (2004). Bob’s Home Page. http://www.cromwell-

intl.com/turkish/orthography.html (16.06.2004)

WEB_6. (2004). Online Free Dictionary Web Site.

http://encyclopedia.thefreedictionary.com/Finite%20state%20automata

(20.07.2004)

WEB_7. (2004). Department of Computer Science of College of Sciences Web Site.

http://www.cs.odu.edu/~toida/nerzic/390teched/regular/fa/nfa-definitons.html

(28.07.2004)

122

APPENDIX A

CD CONTENTS

Root

 Sources

 Icons

 FONT02.ICO

 DCLAD050.BPI

 Drawing2.DDL

 MA.bpr

 MA.cpp

 MA.obj

 MA.res

 MA.tds

 Unit1.obj

 UnitFonksiyon.cpp

 UnitFonksiyon.obj

 UnitFonksiyon.h

 UnitMain.cpp

 UnitMain.ddp

 UnitMain.dfm

 UnitMain.h

 UnitMain.obj

 UnitMorphologicalAnalyzer.cpp

UnitMorphologicalAnalyzer.ddp

UnitMorphologicalAnalyzer.dfm

UnitMorphologicalAnalyzer.h

UnitMorphologicalAnalyzer.obj

123

UnitMorphologicalAnalyzer.cpp

Executables

 Data

 Alphabet.xml

Feasible_Pair.xml

Kind.xml

Order_Rule.xml

Rule.xml

Rule_Content.xml

Subset.xml

Subset_Content.xml

Suffix.xml

Suffix_Category.xml

Word.xml

Word_Category.xml

 Debug

 Result.xml

 Result_Way.xml

