
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DEFENCE SYSTEM MODELLING AGAINST

COMPUTER WORMS

by

Emre ERKAT

September, 2008

İZMİR

DEFENCE SYSTEM MODELLING AGAINST

COMPUTER WORMS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Electrical and Electronics Engineering

by

Emre ERKAT

September, 2008

İZMİR

 ii

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DEFENCE SYSTEM MODELLING

AGAINST COMPUTER WORMS” completed by EMRE ERKAT under

supervision of ASST. PROF. DR. ZAFER DİCLE and we certify that in our

opinion it is fully adequate, in scope and in quality, as a thesis for the degree of

Master of Science.

Asst. Prof. Dr. Zafer DİCLE

Supervisor

 (Jury Member) (Jury Member)

Prof.Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

 iii

ACKNOWLEDGMENTS

I would like to give my sincere thanks to my supervisor, Asst. Prof. Dr. Zafer

DİCLE for his guidance, advice and encouragement along the fulfillment of this

project.

Emre ERKAT

 iv

DEFENCE SYSTEM MODELLING AGAINST COMPUTER WORMS

ABSTRACT

As computer networks become prevalent, the Internet has been a battlefield for

attackers and defenders. One of the most powerful weapons for attackers is the

computer worm. Computer worms are a self-propagating computer program that is

being increasingly and widely used to attack the Internet. Because they spread

extremely fast and usually install malicious code, computer worms are so dangerous.

This thesis begins with definition, history and taxonomy. Also, it defines the

structure and components of worms. It develops a life cycle model of worm defence,

including prevention, prediction, detection and mitigation. It also discusses in detail

about each of these techniques. It explains detection and defense techniques against

to the computer worms. Group based model have been developed and discussed

with the simulations results. It concludes that computer worms are dangerous but

there are ways and means to mitigate their ill effects.

Keywords: Computer worms, Computer security, Network security, Defense

system

 v

BİLGİSAYAR KURTLARINA KARŞI SAVUNMA SİSTEMİ

MODELLEMESİ

ÖZ

Bilgisayar ağlarının yaygın olması ile birlikte, saldıran ve savunanlar için internet

bir savaş alanı oldu. Saldıranlar için en güçlü silahlardan birisi bilgisayar kurtlarıdır.

Bilgisayar kurtları, sürekli artarak kendi kendine yayılabilen bilgisayar

programlarıdır ve internete saldırmak için geniş bir kullanım alanına sahiptir.

Oldukça hızlı yayıldıkları için ve genellikle zararlı kodlar yükledikleri için bilgisayar

kurtları çok tehlikelidir.

 Bu tez, bilgisayar kurtlarının tanımı, geçmişi ve sınıflandırılması ile başlıyor.

Ayrıca, bilgisayar kurtlarının yapısını ve komponentlerini tanımlıyor. Bilgisayar

kurtlarına karşı savunmada; önleme, tahmin, bulma ve azaltmayı içeren yaşam

döngüsü modelini geliştirir. Ayrıca bu tekniklerin detayların da söz edilmiştir.

Bilgisayar kurtlarını bulma ve savunma teknikleri açıklanmıştır. Hiyerarşik model

geliştirilmiş ve simülasyon sonuçlarından bahsedilmiştir. Bilgisayar kurtlarının

tehlikeli olduğu fakat kötü etkilerini azaltmak için yollar olduğu sonucuna varmıştır.

Keywords: Bilgisayar kurtları, Bilgisayar güvenliği, Ağ güvenliği, Savunma

sistemi

 vi

CONTENTS

Page

THESIS EXAMINATION RESULT FORM ………………………………………..ii

ACKNOWLEDGEMENTS …………………………………………………………iii

ABSTRACT.………………………………………………………………………...iv

ÖZ …………………………………………………………………………………....v

CHAPTER ONE – INTRODUCTION ………………………………………...….1

1.1 Contribution of This Thesis To The Field……………………………….…1

1.2 Research Objectives and Solutions.……………………………………………1

1.3 Thesis Outline …………………………………………………………………3

CHAPTER TWO - WORMS DEFINED ……………………………………….....5

 2.1 Definition ……………………………………………………………………...5

 2.1.1 A Formal Definition ……………………………………………………6

 2.2 Worm History …………………………………………………………………6

2.2.1 The First Computer Worm ……………………………………………..7

2.2.2 Cycles of Worm Releases ……………………………………………...7

 2.3 Worm Taxonomy ……………………………………………………………...8

2.3.1 Unix Targets ……………………………………………………………9

2.3.2 Windows Targets ……………………………………………………..10

 2.4 Components of Worm ………………………………………………………..10

2.4.1 Reconnaissance Component ………………………………………….11

2.4.2 Attack Component ……………………………………………………12

2.4.3 Communication Component ………………………………………….13

2.4.4 Command Component ………………………………………………..14

2.4.5 Intelligence Component ………………………………………………15

2.4.6 Assembly of The Components ………………………………………..16

 vii

 2.5 Worm Traffic Patterns ……………………………………………………….16

CHAPTER THREE - WORM SCAN TECHNIQUES ………………………....19

3.1 Random Scan ………………………………………………………………..19

3.2 Selective Random Scan ……………………………………………………...20

3.3 Hit-list Scan ………………………………………………………………….22

3.4 Routable Scan ………………………………………………………………..23

3.5 Scanning Constraints ………………………………………………………...24

3.6 Summary ………………………………………………………………….....25

CHAPTER FOUR - FUTURE WORMS ………………………………………...26

4.1 Intelligent Worms ……………………………………………………………26

4.2 Modular and Upgradable Worms ……………………………………………31

4.3 Warhol Worms ………………………………………………………………32

4.4 Flash Worms ………………………………………………………………...34

4.5 Polymorphic Worms ………………………………………………………...34

4.6 Miscellaneous Worms and Viruses ………………………………………….36

CHAPTER FIVE - THE LIFE CYCLE MODEL OF WORM DEFENCE …...37

5.1 Prevention …………………………………………………………………...38

5.2 Prediction ……………………………………………………………………38

5.3 Detection …………………………………………………………………….38

5.4 Analysis ……………………………………………………………………..39

5.5 Mitigation and Response Strategies …………………………………………39

5.6 Curing The Infected Hosts …………………………………………………..40

5.7 Vaccinating Uninfected Hosts ……………………………………………….40

5.8 Patching Similar Vulnerabilities …………………………………………….40

CHAPTER SIX - WORM DETECTION ………………………………………..41

 viii

6.1 Traffic Analysis ……………………………………………………………...41

6.1.1 Strengths of Traffic Analysis …………………………………………...42

6.1.2 Weaknesses of Traffic Analysis ………………………………………..43

6.2 Honeypots …………………………………………………………………...45

6.2.1 Strengths of Honeypot Monitoring …………………………………….46

6.2.2 Weaknesses of Honeypot Monitoring ………………………………….47

6.3 Black Hole Monitoring ……………………………………………………...48

6.3.1 Strengths of Black Hole Monitoring …………………………………...49

6.3.2 Weaknesses of Black Hole Monitoring ………………………………...50

6.4 Signature-Based Detection …………………………………………………..51

6.4.1 Strengths of Signature-Based Detection Methods ……………………..52

6.4.2 Weaknesses In Signature-Based Detection Methods …………………..53

CHAPTER SEVEN – DEFENCES ………………………………………………55

7.1 Firewall and Network Defences ……………………………………………..55

7.1.1 Example Rules of Firewall Defences …………………………………..56

7.1.2 Strengths of Firewall Defences ………………………………………...59

7.1.3 Weaknesses of Firewall Systems ………………………………………59

7.2 Proxy-Based Defences ………………………………………………………60

7.2.1 Example Configuration of Proxy-Based Defence ……………………...60

7.2.2 Strengths of Proxy-Based Defences …………………………………....63

7.2.3 Weaknesses of Proxy-Based Defences …………………………………64

7.3 Active Worm Defence ……………………………………………………….65

7.3.1 Shutdown Messages ……………………………………………………68

7.3.2 “I am already infected” …………………………………………………69

7.3.3 Poison Updates …………………………………………………………70

7.3.4 Slowing Down The Spread ……………………………………………..71

7.3.5 Strengths of Attacking The Worm Network …………………………...73

7.3.6 Weaknesses of Attacking The Worm Network ………………………...73

 ix

CHAPTER EIGHT - GROUP BASED MODEL OF WORM DEFENCE ……75

8.1 Introduction ………………………………………………………………….75

8.2 The Model …………………………………………………………………...75

 8.2.1 Definition ………………………………………………………………75

 8.2.2 Mathematical Model …………………………………………………...77

 8.3 Architecture Of The Model ………………………………………………….80

8.3.1 Infection Unit …………………………………………………………81

8.3.2 Detection Unit ………………………………………………………...81

8.3.3 Defence Unit ………………………………………………………….82

 8.4 Description of The Simulation ………………………………………………82

 8.5 Discussion of The Results …………………………………………………...83

 8.6 Summary and Conclusions ………………………………………………….86

CHAPTER NINE - CONCLUSIONS AND FUTURE WORK ………………...87

9.1 Research Contributions ……………………………………………………...87

 9.1.1 Worms and Their Scan Techniques ……………………………………87

 9.1.2 Analyzing of The Worm Detection Methods …………………………..88

 9.1.3 Analyzing of The Worm Defence Methods ……………………………88

 9.1.4 Modeling A Defence System Against The Computer Worms …………89

 9.2 Conclusion and Future Work ………………………………………………..89

REFERENCES …………………………………………………………………….90

 1

CHAPTER ONE

INTRODUCTION

This thesis provides a perspective of computer worms, explores the various worm

technologies and popular worms of the past, present and future. It primarily deals

with stopping a worm on its tracks without human intervention. Several strategies

have been proposed and analyzed with simulations.

1.1 Contribution of This Thesis To The Field

This thesis begins by providing a model of a simple worm and an extensive

background about worms of the past, present and future. It develops a simple

comprehensible model of a worm. It discusses the various scanning techniques and

gives a broad classiffcation of worms. It develops a life cycle model for defense

against computer worms. It also discusses several defensive techniques and strategies

like prevention, prediction, detection and mitigation. All the above together serves as

a compact compendium of worm technologies for the computer security community.

This is one of the contributions of this thesis to the computer and network security

community.

It also develops and analyzes several indigenous and innovative techniques to

address the problem of computer worms. It develops a mitigation model, the grop

based model. This research shows how to stop worms in its tracks without human

intervention. These form the contributions of this thesis to the field of computer and

network security.

1.2 Research Objectives and Solutions

The objective of this thesis is to model and defend against worm attacks without

human intervention. Several strategies have been analyzed and with simulations. We

2

attempt to answer the following important questions:

• What is a worm?

• What are the components of worms and how they propagate in the

Internet?

• What are the detection methods against the worms? What are the

advantages and disadvantages of these methods?

• What are the defence strategies and methods against the worms? What are

the strengths and weaknesses of these methods?

• How can we defend against worms?

To investigate these questions, we apply mathematical modeling methodology and

verify analytical results through simulations. Mathematical models can provide

quantitative analysis on the propagation dynamics of worms and the effectiveness of

defense systems. Simulations are used to verify our model.

In this thesis, the following four topics are investigated:

1. Worms and their scan techniques: In order to analyze the worms we start by

providing a definition about computer worms and an extensive background about

them including their history and taxonomy. At the core of any worm system are five

components. A worm may contain any or all of these components, usually in some

combination. In order to propagate itself in the Internet, a worm needs to find

vulnerable machines and then infect them. To find vulnerable machines, a worm can

either simply scan the entire IP address space randomly, or may perform various

strategies to scan the entire or partial IP address space to find targeted hosts. We

investigated various scan strategies and analyzed their spreading speed.

3

2. Analyzing of the worm detection methods: There are different methods of

worm detection. These methods are traffic analysis, the use of honeypots, dark

network monitors, and the employment of signature-based detection systems. These

methods form the core of detecting both hackers and worms. The goal of our

detection strategies is to detect nearly any type of worm with as little effort as

possible. To do this, we will focus on the features common to most worm types and

build strategies to detect these characteristics. While no single methods work for all

worm types, a combination of efforts can provide more complete coverage.

3. Analyzing of the worm defence methods: There are various stages of the life

cycle of worm defense. The life cycles contains following steps: Prevention,

prediction, detection, analysis, mitigation, curing, vaccination and patch similar

vulnerabilities. As defence strategies against the worms, there are 2 defence

strategies, active and passive. These strategies have some weaknesses and some

strengths.

4. Modeling a defence system against the computer worms: This model of

defence is based on the willing co-operation of a set of hosts on a pre-arranged

protocol. We develop mathematical models for the simplest of the scenarios. Then,

we go on to develop simulations to study more complex scenarios of worm

mitigation. Grop based model of worm defence is discussed with the simulations

results.

1.3 Thesis Outline

This thesis starts off by providing a definition about computer worms and an

extensive background about them including their history and taxonomy. Chapter 3

presents various techniques used by worms to scan the Internet to find hosts

susceptible to infection. The chapter following that discusses future worms. Chapter

5 develops a life cycle model for the defense against worms. Chapter 6 analyzes

various techniques about the worm detection. The next chapter mentions about the

4

active and passive defences against the computer worms. Grop based model of worm

defence is discussed with the simulations results in the chapters following. The last

chapter of this thesis present the conclusions and future directions of this research

respectively.

 5

CHAPTER TWO

WORMS DEFINED

2.1 Definition

A computer worm is a self-replicating computer program. It uses a network to

send copies of itself to other nodes (computer terminals on the network) and it may

do so without any user intervention. (Wikipedia, 2007)

Computer worms and viruses are typically grouped together as infectious agents

that replicate themselves and spread from system to system. However, they have

different properties and capabilities.

Computer worms must be differentiated from computer viruses if we are to

understand how they operate, spread, and can be defended against. Failure to do so

can lead to an ineffective detection and defense strategy. Like a virus, computer

worms alter the behavior of the computers they infect. Computer worms typically

install themselves onto the infected system and begin execution, utilizing the host

system’s resources, including its network connection and storage capabilities.

Although many of the features of each are similar, worms differ from computer

viruses in several key areas:

• Both worms and viruses spread from a computer to other computers.

However, viruses typically spread by attaching themselves to files (either

data files or executable applications). Their spread requires the

transmission of the infected file from one system to another. Worms, in

contrast, are capable of autonomous migration from system to system via

the network without the assistance of external software.

• A worm is an active and volatile automated delivery system that controls

the medium (typically a network) used to reach a specific target system.

6

• Viruses, in contrast, are a static medium that does not control the

distribution medium.

• Worm nodes can sometimes communicate with other nodes or a central

site. Viruses, in contrast, do not communicate with external systems.

2.1.1 A Formal Definition

From the 1991 appeal by R. T. Morris regarding the operation of the 1988 worm

that bears his name, the court defined a computer worm as follows:

In the colorful argot of computers, a “worm” is a program that travels from one

computer to another but does not attach itself to the operating system of the computer

it “infects.” It differs from a “virus,” which is also a migrating program, but one that

attaches itself to the operating system of any computer it enters and can infect any

other computer that uses files from the infected computer.

This definition, as we will see later, limits itself to agents that do not alter the

operating system. Many worms hide their presence by installing software, or root kits,

to deliberately hide their presence, some use kernel modules to accomplish this. Such

an instance of a worm would not be covered by the above definition.

We will define a computer worm as an independently replicating and autonomous

infection agent, capable of seeking out new host systems and infecting them via the

network.

2.2 Worm History

The term worm comes from the book Shockwave Rider by John Brunner.

Published in 1975, it is a science fiction novel about the future of computing. In the

7

novel, the heroes defeat a government that has become an enemy by unleashing a

computer worm. It congests the network to such an extreme that the government

must shut it down.

2.2.1 The First Computer Worm

The Morris worm or Internet worm was one of the first computer worms

distributed via the Internet; it is considered the first worm and was certainly the first

to gain significant mainstream media attention. It also resulted in the first conviction

under the 1986 Computer Fraud and Abuse Act.

According to its creator, the Morris worm was not written to cause damage, but to

gauge the size of the Internet. An unintended consequence of the code, however,

caused it to be more damaging: a computer could be infected multiple times and each

additional process would slow the machine down, eventually to the point of being

unusable. The Morris worm worked by exploiting known vulnerabilities in Unix

sendmail, Finger, rsh/rexec and weak passwords.

2.2.2 Cycles of Worm Releases

Just as vulnerabilities have a window of exposure between the release of

information about the vulnerability and the widespread use of exploits against them,

worms have an interval of time between the release of the vulnerability and the

appearance of the worm. Nearly any widespread application with a vulnerability can

be capitalized on by a worm.

Table 2.1 shows the interval between the release of information about a

vulnerability and the introduction of a worm that has exploited that weakness. Some

worms are fast to appear, such as the Slapper worm (with an interval of 11 days),

while others are much slower such as the sadmind/IIS worm (with a minimum

internal of 210 days). This table clearly illustrates the need to evaluate patches for

8

known vulnerabilities and implement them as efficiently as possible as a means to

stop the spread of future worms.

Table 2.1 Interval between Vulnerability Announcement and Worm Appearance

Name Vulnerability Announced Worm Found Interval(Days)

SQLsnake November 27, 2001 May 22, 2002 176

Code Red June 19, 2001 July 19, 2001 30

Nimda May 15, 2001 September 18, 2001 126

 August 6, 2001 42

 April 3, 2001 168

Sadmind/IIS December 14, 1999 May 8, 2001 511

 October 10, 2000 210

Ramen July 7, 2000 January 18, 2001 195

 July 16, 2000 186

 September 25, 2000 115

Slapper July 30, 2002 September 14, 2002 45

Scalper June 17, 2002 June 28, 2002 11

Sapphire July 24, 2002 January 25, 2003 184

This relates directly to the importance of the rapid deployment of security patches

to hosts and the sound design of a network. Worms can appear rapidly (as the

Slapper worm did), quickly changing the job of a security administrator or architect

from prevention to damage control.

2.3 Worm Taxonomy

Figure 2.1 shows a generalized lineage of many of the worms discussed here.

From their roots in the research at Xerox PARC to the Morris worm, UNIX and

Windows worms have evolved somewhat independently. Although they share key

concepts, the methodology of spreading differs between the two types of hosts.

9

 Figure 2.1 A Lineage of Internet Worms. UNIX hosts (left-hand column) and Windows hosts

 (right-hand column)

2.3.1 Unix Targets

While the free UNIX systems (Linux and the BSD systems) have lagged far

behind Windows in terms of popularity, they have been the targets of several worms

in recent years. Although these worms have not had as large an impact on the overall

performance and security of the Internet when compared to Windows worm incidents,

their impact has been noticeable, as described in the preceding chapter.

The popularity of free UNIX systems as a target for worms is probably due to

three factors. First, they are a popular choice as a workstation platform for many

attackers, giving them ample time to develop familiarity with the weaknesses in

UNIX systems. Secondly, UNIX lends itself well to scripting and networking, which

10

are backbone assets in worm systems. Last, compilers are freely available for the

systems, meaning that attackers can develop binary worm components for use on

these systems.

2.3.2 Windows Targets

At this time, Microsoft Windows systems make up a majority of the personal

computers today. As such, they make an attractive target for a worm to attack.

Several recent incidents have shown the scale of damage that can be done by

attacking even just one vulnerability in these systems. Windows worms have quickly

gone from simple to efficient, each time increasing their capability to do damage.

More than 90% of the personal computer systems in operation use some form of

Microsoft Windows. This homogeneous environment mimics that capitalized on by

the Morris worm in 1988. By developing an attack for one type of widely deployed

host, an attacker can expect to leverage a broad base for their worm.

The more devastating Windows worms have attacked IIS Web servers. Web

servers, by their design, communicate to the world at large and handle requests from

a multitude of clients. IIS, Microsoft’s Web server software, has been the subject of

much scrutiny by the security community. As flaws have been found, exploits have

been developed against them, some of these being incorporated into worms.

2.4 Components of Worm

At the core of any worm system are five components. A worm may contain any or

all of these components, usually in some combination. These components are:

• Reconnaissance: The worm network has to hunt out other network nodes to

infect. This component of the worm is responsible for discovering hosts on

11

the network that are capable of being compromised by the worm’s known

methods.

• Attack components: These are used to launch an attack against an identified

target system. Attacks can include the traditional buffer or heap overflow,

string formatting attacks, Unicode misinterpetations (in the case of IIS

attacks), and misconfigurations.

• Communication components: Nodes in the worm network can talk to each

other. The communication components give the worms the interface to send

messages between nodes or some other central location.

• Command components: Once compromised, the nodes in the worm

network can be issued operation commands using this component. The

command element provides the interface to the worm node to issue and act

on commands.

• Intelligence components: To communicate effectively, the worm network

needs to know the location of the nodes as well as characteristics about them.

The intelligence portion of the worm network provides the information

needed to be able to contact other worm nodes, which can be accomplished

in a variety of ways. (Nazario, 2001)

2.4.1 Reconnaissance Component

This is the mechanism by which the system extends its view of the world around

itself, determines information about the systems and networks around it, and

identifies targets.

When an attacker performs these actions, they have at their disposal a suite of

methodologies. By identifying the characteristics which define a system tobe of one

12

type, or more importantly of a vulnerability, they can identify systems which will

become targets.

This component of the worm performs these same processes, but in an automated

fashion. This includes scans and sweeps, such as port scans of a block of machines or

service sweeps of a network, which are usually active in nature. The system sends

stimuli at a possible target, and based upon the responses received it can determine

what hosts are active and listening, what ports are open and accessible, and even

what operating system the target is running. The configuration of the machine may

also be examined by the worm to determine trusted hosts, a technique utilized by the

Morris worm.

Having analyzed the network and hosts around itself, the system node can identify

targets on a variety of criteria. This includes the capabilities available to the system,

position in a network in relation to a goal, or the system profile, such as a poorly

configured, rarely monitored target.

Currently, a variety of methods exist to obtain this information in a manual

fashion. This can be readily scripted to perform wide area intelligence gathering, but

the data is usually manually analyzed. By incorporating these techniques into a

worm system component, the system can gain information as it progresses. This

information can be shared using communications channels and stored in the

intelligence component, if so desired.

2.4.2 Attack Component

The worm’s attack components are their most visible and prevalent element. This

is the means by which worm systems gain entry on remote systems and begin their

infection cycle. These methods can include the standard remote exploits, such as

buffer overflows, cgi-bin errors, or similar, or they can include Trojan horse methods.

13

This component has to be further subdivided into two portions: the platform on

which the worm is executing and the platform of the target. This attack element can

be a compiled binary or an interpreted script, which utilizes a network component

from the attacking host, such as a client socket or a network aware application, to

transfer itself to its victim.

A main factor of the attack component is the nature of the target being attacked,

specifically its platform and operating system. Attack components that are limited to

one platform or method rely on finding hosts vulnerable to only this particular

exploit. For a worm to support multiple vectors of compromise or various target

platforms of a similar type, it must be large. This extra weight can slow down any

one instance of a worm attack or, in a macroscopic view, more quickly clog the

network.

Other attacks include session hijacking and credential theft (such as passwords

and cookies) attacks. Here the attack does not involve any escalation of privileges,

but does assist the worm in gaining access to additional systems.

These attack elements are also most often used in intrusion detection signature

generation. Since the attack is executed between two hosts and over the network, it is

visible to monitoring systems. This provides the most accessible wide area

monitoring of the network for the presence of an active worm. However, it requires a

signature of the attack to trigger an alert. Furthermore, passive intrusion detection

systems cannot stop the worm, and the administrator is alerted to the presence of the

worm only as it gains another host.

2.4.3 Communication Component

Because the nodes of the worm network reside on different systems, they must

have some form of communications. This allows for the transfer of information. For

reconnaissance information, network vulnerability and mapping information must be

distributed to nodes which can use this information in an attack. For commands, they

14

must be able to send requests to the action nodes, to initiate a scan, an attack, or other

activities.

Communications channels are usually hidden by the worm using the same

techniques hackers use when they have manually compromised a machine, such as

rootkits.

They typically include network clients to various services or transport

mechanisms such as ICMP packets.

2.4.4 Command Component

A system of nodes is only worthwhile if they are able to be controlled by some

means. This can either be an interactive control mechanism, where a user is able to

direct actions of the node, or through some channel for the system itself to control a

node.

In this part, worm networks are akin to a network of systems in a distributed

denial of service (DDoS) ring. Usually these nodes have two types of command

interfaces, one interactive, where a remote control shell is obtained, and one that is

automatic, where the node is in control of some master.

Traditionally the attacker has placed some form of a backdoor entry into the

system. On UNIX systems this can include a trojanned login daemon which is

configured to accept a special passphrase that grants administrative access. On

desktop systems, such as Windows PC's and Macintosh systems, this can be a simple

`Trojan Horse' program, which listens on a network socket for commands.

The objective is quite simple, to allow for the system itself, using a master-slave

node relationship, to have an extended reach or capability, or more simply to allow

an intruder unfettered access to the system to manually command it. In one form or

another, most worm systems have some form of a command interface. This prevents

15

the worm system from lacking any structure, so that it may be used in a controlled

fashion. Commands such as file uploads or downloads, status reports, or actions such

as “attack this target” have all been possible through this interface.

The command interface can be connected to by another node of the worm network,

such as the parent or a child, or manually by an attacker. The command interface is

tightly coupled to the communications channels, but is separate as different

communications mechanisms can be used to contact the same command interface.

2.4.5 Intelligence Component

The worm system maintains a record of its members and their locations in some

form or another. This is useful so that the nodes can brough together for some

additional action. Control, through the command interface, can be taken by a person

or by another node of the worm system. However, this requires knowing how to

contact the nodes, which requires knowing their network locations.

The simplest fashion for this to occur is via an update message from a newly

acquired node. The new member's address, and any pertinent information, and sent to

a some facility and recorded.

This information can manifest itself in intangible ways, as well. For example,

many Windows worms use their presence on a network chat room, such as IRC, an

an intelligence mechanism.

They arrive once infected, announce their location and any passphrases needed to

gain entry, and simply sit and wait. In this fashion, the worm network knows about

its members, their location and potentially any capabilities they possess.

16

2.4.6 Assembly of The Components

Figure 2.2 shows the pieces as they would be assembled in a full worm. For

example, the reconnaissance component sends information to the attack module

about where to launch an attack. It also sends this information to an intelligence

database, possibly using the communication interface. This communications

interface is also used to interface to the command module, calling for an attack or the

use of the other capabilities against a target.

Figure 2.2 Assembly of the worm's components

2.5 Worm Traffic Patterns

The worm network actively seeks new hosts to attack and add to the collection

nodes in the network. As it finds hosts and attacks them, the worm network grows

exponentially. This growth pattern mimics patterns seen for communities occurring

naturally,such as bacteria and weeds.

17

Worm infections can grow in an exponential pattern, rapidly at first and then

slowing as a plateau value is reached. This is a typical kinetic model that can be

described by a first-order equation:

Nda = (Na)K(1-a)dt

It can then be rewritten in the form of a differential equation:

dt

da
 = Ka(1 - a)

This describes the random constant spread rate of the worm. Solving the

differential equation yields

a = e
K(t-τ)

 / (1 + e
K(t-τ)

)

where a is the proportion of vulnerable machines that have been compromised, t is

the time, K is an initial compromise rate, and T is the constant time at which the

growth began. Rate K must be scaled to account for machines that have already been

infected, yielding e
K(t-τ)

While more complicated models can be derived, most network worms will follow

this trend. We can use this model to obtain a measure of the growth rate of the worm.

Some worms, such as Nimda and Code Red, have a very high rate constant k

meaning that they are able to compromise many hosts per unit of time. Other worms,

such as Bugbear and SQL Snake, are much slower, represented in the smaller rate

constants for growth.

18

 Figure 2.3 Worm Traffic Pattern

Figure 2.3 shows a simple graph of using several values of k. The equation shown

in this figure is the sigmoidal growth phase of a logistic growth curve. The initial

phase of exponential growth and the long linearphase as the worm spread scan be

observed. As the worm saturates its vulnerable population and the network, its

growth slows and it approaches a plateau value.

These equations are highly idealized, because the value of N is assumed to be

fixed. This assumes that all hosts that are connected at the outset of the worm attack

will remain attached to the network. This constancy assumes that hosts will remain

vulnerable and patches will not be applied. Furthermore, the model assumes a similar

amount of bandwidth between hosts which also remains constant during the worm’s

life cycle. In the real world, not all hosts have the same amount of connectivity, and

bandwidth is quickly consumed by the worm network as it grows to fill the space.

Despite this, these equations provide a good representation of the observed data for a

reasonably fast moving worm.

 19

CHAPTER THREE

WORM SCAN TECHNIQUES

In order to propagate itself in the Internet, a worm needs to find vulnerable

machines and then infect them. To find vulnerable machines, a worm can either

simply scan the entire IPv4 address space randomly, or may perform various

strategies to scan the entire or partial IPv4 address space to find targeted hosts. In

this section, we discuss various scan strategies and analyze their spreading speed.

3.1 Random Scan

A worm randomly searches the entire IPv4 address space, which contains 2
32

possible IP addresses, to find vulnerable machines. We call such scan method

random scan. There are two existing models to simulate the random scan worm

propagation. One is the epidemiological model proposed by Kephart and the other is

AAWP model proposed by Chen. (Xia, Vangala, Wu, & Gao, 2006)

Figure 3.1 Comparison between AAWP model and Weaver’s

simulator

20

Due to the equivalence of these two models as shown in Figure 3.1, we adopt the

AAWP model in this thesis. Based on the AAWP model, the spread of worm is

characterized as follows:

ni+1 = ni + [N – ni][1 – (1 – 1/Ω)
sn

i] (1)

N: the total number of vulnerable machines in the Internet

Ω: number of the addresses that a worm performs random scan

s: the scan rate (the number of scan packets sent out by an infected machine per

time tick)

ni: the number of infected machines up to time tick i.

In Equation (1), the first term on the right hand side denotes the number of

infected machines alive at the end of time tick i. The term, N – ni, denotes the

number of vulnerable machines not infected by time tick i. The remaining term, (1 –

1/Ω)
sn

i, is the probability that an uninfected machine will be infected at the end of

time tick i + 1. We do not consider the death rate due to computer crash and patching

rate due to maintenance here. Code Red is a typical example of random scan worms.

3.2 Selective Random Scan

Instead of scanning the entire IPv4 address space blindly, a worm can scan the

partial IPv4 address space that is more likely to be used in the Internet. This will help

the worm spread faster by reducing the waste of time on scanning unallocated

addresses. The selected address list can be obtained from other resources such as

IANA’s IPv4 address allocation map. Such scan technique with target selection is

called selective random scan. The Slapper worm has used this scan technique to

spread rapidly. However, worms using the selective random scan need to carry

information about the selected target addresses. Carrying such information enlarges

the worm’s code size and slows down the spreading and infection processes. This

21

information can be hundreds of bytes long and therefore, may not provide much

advantage over the random scan.

The SQL Snake worm array is shown next. This array was used to generate a

biased list of addresses for the worm to probe and attack:

sdataip = new Array(216, 64, 211, 209, 210, 212, 206, 61, 63, 202, 208, 24, 207,

204, 203, 66, 65, 213, 12, 192, 194, 195, 198, 193, 217, 129, 140, 142, 148, 128,

196, 200, 130, 146, 160, 164, 170, 199, 205, 43, 62, 131, 144, 151, 152, 168, 218, 4,

38, 67, 90, 132, 134, 150, 156, 163, 166, 169);

This array represents the first octet in the network address to scan, and it has

been chosen because these networks lie in the space between class A (0/8 through

126/8) and class C networks (ending at 223.255.255.255), inclusive. This array is

then used to build a second array with a nonrandom frequency of these numbers.

The second octet is a random number chosen from between 1 and 254, with the

scanner operating on more than 65,000 hosts (in a /16 network block) sequentially.

However, not all of the address space that can be allocated and used in this range

is actually used. For various reasons, many networks are empty and have few or no

hosts assigned to them. If the worm were to attempt to probe or scan these networks,

the rate of scanning would not be bound by the number of hosts to scan, but instead

by the timeout values for the inability to connect. When a network range is scanned,

the number of addresses attempted can grow to the tens of thousands, causing a

significant delay in the worm’s overall spread.

To compare the spreading speed between random scan worms and selective

random scan worms, we do not consider such additional payload information on

selected target addresses. Figure 3.2 compares the spreading speed of worms that

use random scan and selective random scan techniques.

22

 Figure 3.2 Spreading speed of random scan and selective random

The parameters are chosen as the same for both the random scan and the selective

random scan. The total number of vulnerable machines N is 500,000; the scan rate s

is 2 scans/second. The random scan worms use the entire IPv4 address space which

has about 2
32

 ≈ 4.3 x 10
9
 addresses. The selective random scan worms use only 162

/8 address blocks which contain about 2.7 x 10
9
 addresses. Figure 3.2 demonstrates

that worm can spread much faster using a selective address pool than using the entire

IPv4 address space.

3.3 Hit-list Scan

Nicholas Weaver described a new type of worm and he dubbed it the Warhol

worm. We analyzed this worm in Chapter 4. The biggest jump in design in a Warhol

worm is the use of a hit list to scan and attack. This hit list contains the addresses and

information of nodes vulnerable to the worm’s attacks. This list is generated from

scans made before unleashing the worm. For example, an attacker would scan the

Internet to find 50,000 hosts vulnerable to a particular Web server exploit.

23

This list is carried by the worm as it progresses, and is used to direct its attack.

When a node is attacked and compromised, the hit list splits in half and one-half

remains with the parent node and the other half goes to the child node. This

mechanism continues and the worm’s efficiency improves with every permutation.

The exact speed with which near complete infection of the Internet would occur is

debatable. Weaver’s estimates for probe size, infection binary size, the speed with

which this infection can be transferred between parent and child node, and network

bandwidth are all speculative. However, there is no doubt that this infection design is

highly effective.

While effective, this mechanism has several drawbacks. First, the necessary scans

are likely to be noticed. While widespread vulnerability scanning has become

commonplace on the Internet and is possibly accepted as background noise by some,

widespread scanning for the same vulnerability still generates enough traffic in the

monitoring community to raise some flags. Second, the network bandwidth

consumed by a fast moving worm is likely to choke itself off of the network. As

more worms become active, network connections fill, restricting the ability for the

worm to move as efficiently. However, if the hit list were to be sorted hierarchically,

so that larger bandwidth networks were hit first and the children nodes were within

those networks, concerns about bandwidth could be minimized.

3.4 Routable Scan

The fourth type of network scanning that worms perform is typically called

routable scan. In order to further reduce scanning address space, a worm may avoid

scanning the address space that could not be routed in the Internet. It means that a

worm can obtain all routable addresses as scan targets in order to spread fast and

effectively. However, this worm has to carry a database of routable IP addresses in

its code. The size of this database will affect the propagation speed. A database of

larger size will lead to a longer infection time, resulting in slower worm propagation.

24

 Figure 3.3 Spreading speed of random scan and routable scan

The worm that employs routable scan needs to scan only 10
9
 IP addresses instead

of 2
32

 addresses, which is four-fold smaller. Hence, routable scan worm has a

scanning space of size Ω ≈ 10
9
. For other parameters, we use the same settings as

random scan. Figure 3.3 shows the spreading speed of routable scan and random scan.

We find that if random scan worm needs to spend about 24 hours to infect almost

whole vulnerable machines, the routable scan worm only needs to spend about 7

hours to do it. Clearly, routable scan strategy greatly increases the worm spreading

speed.

3.5 Scanning Constraints

Some interesting problems arise for the worms that try to spread fast. Their ability

to scan the network are usually constrained by bandwidth limits or latency limits:

Bandwidth Limited: Worms such as the Slammer that use UDP to spread face

this constraint. Since there is no connection establishment overhead, the worm can

25

just keep transmitting packets into the network without expecting an

acknowledgement from the victim. Modern servers are able to transmit data at more

than a hundred Mbps rate.

Let us perform some simple calculations. Consider a Slammer-like worm that uses

a single UDP packet of 400 bytes to spread. It resides on an infected machine with a

100Mbps link to the Internet. Assuming the network is otherwise quiescent, the total

capacity of the link divided by the number of bits in the worm packet gives the

scanning rate. Initially, this is 100x 10
6
 / (400 x 8) ≈ 30, 000 scans per second.

But the network soon saturates with traffic from several copies of the same worm

from different victims or the same victim, each of which generates data at its

maximum possible rate. As a result, the spread of the worm is constrained. Thus a

worm becomes a bandwidth limited worm.

Latency Limited: A worm that uses TCP to spread is constrained by latency.

These kind of worms need to transmit a TCP-SYN packet and wait for a response to

establish a connection or timeout. The worm is not able to do anything during this

waiting time. In effect, this is lost time for the worm. To compensate a worm can

invoke a sufficiently large number of threads such that the CPU is kept busy always.

However, in practice, context switch overhead is significant and there are insufficient

resources to create enough threads to counteract the network delays. Hence the worm

quickly reaches terminal spread speed.

3.6 Summary

We described various scanning techniques that are employed by worms. Hit-list

scanning seems to be the most effective to spread a worm in the smallest amount of

time possible. This chapter explained the bandwidth and latency constraints faced by

high-speed worms.

 26

CHAPTER FOUR

FUTURE WORMS

4.1 Intelligent Worms

A Polish security researcher, Michal Zalewski, released a paper describing a

design for a smarter worm. Entitled “I Don’t Think I Really Love You, or Writing

Internet Worms for Fun and Profit,” the ideas in Zalewski’s paper, provide a

compelling vision of worms. Many of the techniques he describes have been

incorporated into tools used by attackers during unautomated attacks.

The analysis begins with the idea that the Melissa virus was not as devastating as

it could have been. After all, the virus used a simple engine to spread, always

executed using the same mechanism, and thus had a static signature. Many

mechanisms exist to detect and disable such worms and viruses, as evidenced by the

large antivirus industry.

Zalewski and other hackers introduces a project which name is Samhain.

Intending to design a more effective Internet worm, they listed seven requirements

and guidelines for their system:

• In order to achieve the largest possible dispersal, the maximum number of

target hosts must be used. For this, it should be portable. It means that it

should be compatible with all of the possible operating systems and the

hardware arhitectures.

• Invisibility from detection. Once found, the worm instance can be killed on

the host, disrupting the worm network.

• Independence from manual intervention. The worm must not only spread

automatically but also adapt to its network.

27

• The worm should be able to learn new techniques. Its database of exploits

should be able to be updated.

• Integrity of the worm host must be preserved. The instance of the worm’s

executables should avoid analysis by outsiders.

• Avoid the use of static signatures. By using polymorphism, the worm can

avoid detection methods that rely on signature-based methods.

• Overall worm net usability. The network created by the worm should be able

to be focused to achieve a specific task. (Zalewski, 2000)

From these seven requirements came an implementation in pieces that, when

assembled, formed a worm system.

By far one of the most challenging things the Samhain worm would have to

achieve is portability. Source code that is intentionally written and extensively tested

has difficulty in doing this correctly under all circumstances. Because of their “fire

and forget” nature, worms do not have the luxury of debugging in the field.

The Samhain worm attempts to achieve this by relying as little as possible on

architectural specifics. This includes favoring interpreted languages over compiled

languages when possible and using generic coding techniques that attempt to use the

most common factors available. While not all languages are present between UNIX

and Windows, for example, enough functionality is possible. Furthermore, with

additional features within the worm, once built on one system, a worm component

can easily be requested and installed by any node.

The overriding philosophy for this design decision is that for a worm to be truly

disruptive and effective, it has to affect as many hosts on the network as possible.

When limited to, say, Linux or Microsoft Windows, only a part of the total possible

space is explored by the worm. Enough vulnerabilities exist between these major

28

hosts that they can be used to target nearly all hosts on the Internet, creating a large-

scale disruption and problem worse than any seen previously.

Once inside the child host, Zalewski notes, the worm needs to attempt some form

of invisibility. This sort of hiding is desirable because the worm will want to survive

on the host for as long as possible. A longer lived worm can find more hosts and

attack more targets, increasing the worm’s spread. This invisibility is necessary

mainly to hide from system administrators or investigators.

The worm can utilize either of two different main mechanisms for hiding on a

system. The first method does not rely on privileged execution, but instead hides in

the open. Because most systems are busy, the worm simply adopts the name of a

process on the system. This might include processes that have multiple instances of

themselves running, such as “httpd.” In doing so, an administrator would most likely

skip right over the worm process, not noticing its presence.

The second method relies on the worm processes having elevated privileges on

the target system. In this case, the new processes can insert kernel modules that can

redirect system calls. These altered system parameters can be used to hide worm files

and processes on a system. Additionally, altered binaries on a host that simply do not

report the worm’s processes and activities can also be inserted into the system.

The next design requirement for the worm that Zalewski described is the ability to

operate independently. While worms do replicate and work automatically, in this

scenario this requirement is more significant. Because the worm has to target

multiple host types and adapt to the local environment in order to hide itself, the

worm’s intelligence must be beyond that of most worms.

To accomplish this, Zalewski proposes that a database of known attack methods

and exploits be made available to the worm. For example, a worm encounters a host

running a particular server version and launches one of the attacks it knows about.

The attacks focus on platform independence, such as file system races and

29

configuration errors, rather than architecturedependent attacks such as buffer

overflows and signal races. This gives the worm the platform independence specified

by the first design goal. Known attacks would be sorted by their effectiveness with

the list passed to the child nodes. The executables for the worm could also be

distributed from other nodes in the system. For example, when a node is attacked but

it lacks any means to compile the executable, or the parent node is missing the

binaries for the child node, they are simply retrieved from another node that already

has these pieces.

An additional design goal for the worm described by Zalewski is the ability to

update to learn new attack methods. To do this, the worm nodes would establish a

network, much like those discussed in earlier chapters. From one or more central

sites the worm network would receive updates to this database of attack methods,

allowing it to adapt to new methods and capabilities, improving its overall life span.

In the paper, Zalewski revives an older method for finding new hosts to attack—

observing the host system’s behaviors. The Morris worm found new victims to attack

by investigating the list of trusted hosts. The worm designed by Zalewski would

observe the servers to which the worm node normally connects (from its users) and

attack them. The primary benefit of this is the ability to hide in the normal traffic for

the host, and also being able to observe some facets of the target server before an

attack is launched.

Two additional methods are described to achieve the design goal of maintaining

the integrity of the worm node. The first is to hide from any monitoring and

investigation by detaching from process tracing methods. The worm simply detects

the attachment of a process tracing facility and disables it while continuing its

execution. This hampers investigation and, sometimes, sandboxing of the executable.

Secondly, the use of cryptographically signed updates means that an adversary

would encounter difficulty in injecting updates that would compromise the worm

node. These would include poison or empty updates that would effectively disable

30

the worm node. These sorts of attacks are described in more detail in Chapter 7. By

ensuring that only trusted updates are inserted into the system, the overall integrity of

the worm node can be maintained.

One of the most commonly used detection methods is a static signature. As

described in Chapter 6, these can include log signatures, network attack signatures,

or file signatures. To bypass these detection methods, some viruses employ a strategy

termed polymorphism. The worm described by Zalewski also uses such a principle.

The fundamental method used by malicious polymorphic code is simple

encryption, with decryption occurring at run time. By using a random key each time,

the encrypted file has a different signature. In this way, the malicious payload is able

to escape signature detection.

The worm designer’s final goal is to make it usable. The worm must do more than

simply spread as far and as wide as possible. It must be usable for some higher

purpose. While it may be tempting to develop the worm initially with this ultimate

use in mind, one strategy outlined by Zalewski was to have the worm spread to its

final destinations and then use the update capabilities to begin its mission. This

purpose could include the retrieval of sensitive files, destruction of data, or network

disruption.

It is interesting to note that some of the adaptations have been used by worms

since Zalewski’s paper. The Adore worm, for example, used kernel modules to hide

its presence on a host. Variants of the Slapper worm would use the process name

“httpd” to hide in with other Web server daemon processes it used to gain entry to

the system. In this latter case, the worm process was distinguished by its lack of

options similar to the normal web server daemon processes.

Furthermore, the use of multiple forking to evade process tracing has been found

in the wild. While this makes investigation and sandboxing difficult, it is not

impossible. An additional design goal that has been seen in the wild for many years

31

is the use of polymorphism. This design premise was borrowed from the world of

computer viruses, where polymorphic viruses have been found in the field for several

years. They present a significant challenge to detection and investigation, but not a

total one.

Two other design ideas developed by Zalewski have also been seen in worms

found in the wild. Updatable worms have been found, namely, the Windows Leaves

worm. Using a modular architecture, updates can be distributed on the Internet and

the worm can retrieve them. Second, multiple attack vectors are not uncommon for

worms to use, though none have presented a sophisticated system for sorting their

attack mechanisms or attempted to use platform-independent methods.

4.2 Modular and Upgradable Worms

Nazario describes worms on the basis of the five components outlined in Chapter

2: reconnaissance actions, attack capabilities, a command interface, communication

mechanisms, and an intelligence system. These components were then identified in

three existing worms found in the wild to illustrate how they can be combined into a

larger functional worm.

In the analysis of the potential future of Internet worms, there are several

problems with the design and implementation of current worms. These are necessary

to assess a likely future for worm designs. The first limitation is in the worm’s

capabilities. These limitations are found in all aspects of the worm’s behavior,

including its attack and reconnaissance actions. For network-based intrusion

detection, the signatures of the remote attacks can be quickly identified and

associated with the spread of the worm. This reconnaissance traffic can also be

associated with the worm, identifying the source nodes as compromised.

32

The second major problem with worms, they have a finite set of known attacks

they can use. They have a limited pool of potential targets. It means that limited

lifespan for the worms.

Finally, a worm that does utilize a database of affected hosts typically uses a

central intelligence database. The central location means that the worm is open to full

investigation. An attacker or investigator can easily enumerate all of the worm nodes

and either overtake them or clean them up. Alternatively, an attacker or investigator

can move to knock out the location, either by firewalling the destination at the

potential source networks or at the incoming transport mechanism. Examples of this

include an e-mail inbox, a channel in a network chat system, or a machine to which it

is connected directly. By blocking the delivery of the updates from the new nodes to

the central source, no additional information is gathered about the worm.

4.3 Warhol Worms

Nicholas Weaver proposed a new model for worm spread. (Weaver, 2001) This

model was dubbed the Warhol worm. A Warhol worm is an extremely rapidly

propagating computer worm that spreads as fast as physically possible, infecting all

vulnerable machines on the entire Internet in 15 minutes or less. The term is based on

Andy Warhol's remark that "In the future, everyone will have 15 minutes of fame". A

worm author could collect a list of 10,000 to 50,000 potentially vulnerable machines,

ideally ones with good network connections. When released onto a machine on this

hit-list, the worm begins infecting hosts on the list. When it infects a machine, it

divides the hit-list into half, communicating one half to the recipient worm and

keeping the other half. The creation of the hit list can be readily accomplished using

existing Internet mechanisms. These mechanisms were enumerated by Staniford:

• Single-source scans: Utilizing a single, well-connected host, the entire

Internet space can be scanned for known vulnerabilities, and these data

organized for retrieval later. The speed of any scan will depend on the

33

bandwidth available to the source, the nature of the scanning tool (such as the

number of threads available to it), and the data gathered. A simple TCP

connect scan, for example, will consume fewer resources than a service

analysis or even a banner grab.

• Distributed source scans: Utilizing the same type of network used by DDoS

systems, multiple sources can be used to scan the Internet for vulnerabilities.

The distributed nature of the scan will improve efficiency as well as mask the

scale of the scan, because the aggregate bandwidth will scale with the

network. In either case, single host or distributed, large-scale scans no longer

receive much attention from the Internet community due to their

pervasiveness. Furthermore, if speed is not a concern, the scan can hide

below the threshhold of the Internet security community at large.

• DNS searches: Some types of servers are so well advertised by the DNS

system, such as name servers (using NS records) and mail servers (using MX

records) that they can be enumerated via a simple DNS query.

• Public survey projects: Web servers are well categorized by their server

address, type, features, and usually the banner by projects such as the Netcraft

survey. Using this database, gathered by others for use in a respected project,

could save the attackers time and make building a large hit list a relatively

easy task.

• Passive data gathering: Many vulnerable systems advertise themselves on

the Internet without any work required by an attacker. These include peer-to-

peer networks as well as nodes affected by other worms, announced as they

scan for new victims. Well-connected sites could gather lists of hundreds of

thousands of vulnerable hosts due to these sorts of actions. (Staniford, 2002)

34

4.4 Flash Worms

An improvised Warhol strategy would be to program the worm to divide the

hit-list into `n' small blocks instead of 2 huge ones, infect an high-bandwidth

address in each block and pass on to the child worm the corresponding block.

This process would be repeated by each child worm.

A threaded worm could start infecting hosts before it had received the full host

list from its parent to work on. This maximizes the parallelism of the process, and

the child worm can also start looking for multiple children in parallel.

4.5 Polymorphic Worms

Any worm that changes its form or functionality as it propagates from

machine to machine can be called a Polymorphic Worm.

 Figure 4.1 Components of a polymorphic worm

35

The Worm Engine contains an additional module called the Encryption

Engine or the Mutation Engine that is responsible to change the form or look of

the worm when it moves from one host to another. Figure 4.2 shows the typical

polymorphic worm structure. (Lee, 2006)

Figure 4.2 Typical polymorphic worm structure

The encryption engine could be something very simple, for example, that just

inserts some no-ops into the worm code to evade systems that use signatures for

detection or could be something as sophisticated as encrypting the entire worm

including itself using a random seed for every hop so as to evade detection during

transit. It could even reprogram itself to exploit different vulnerabilities on

depending on the host operating system or other such parameters.

 Figure 4.3 Polymorphic worm cycle

D e c ry p to r P o ly m o rp h ic E n g in eW o rm C o d e: O b fu s c a te d A re a: C ip h e re d A re a

Orig ina l CodeC ipher Code
Obfuscated Decryptor Transm it / Receive

Decipher Code

36

4.6 Miscellaneous Worms and Viruses

Viruses are a different class of programs that need human intervention to

spread from one host to another. Early viruses attached themselves to other

popular programs and spread when people exchanged or copied these programs

from one machine to another through floppy disks or other manual means. Later

viruses attached themselves to e-mails that a user sent out. Some viruses

automatically sent e-mails to addresses in the address book on the infected

system. Since these didn't require human intervention, these were called e-mail

worms.

Some of the second generation viruses include:

• Retro Viruses: Viruses that fight back against anti-virus tools by

deleting virus definition tables, memory resident scanners, etc., These

viruses could be used as pilot viruses to a malicious worm that would

come by later. This way, for example, the worm following the Retro

virus would not be detected by IDSs.

• Stubborn Viruses: These can prevent themselves from being

unloaded from an infected Windows system. However, techniques

that could achieve this have not been fully explored.

• Wireless Viruses: These are viruses that infect wireless devices by

making use of their ability to exchange applications \through the air".

• Coffee Shop viruses: These viruses attach themselves to computers

that are plugged into the network of some chains of coffee shops.

They don't try to hop from one machine to another. They just wait at

the coffee shop for a vulnerable host to come by and connect to that

network.

 37

CHAPTER FIVE

THE LIFE CYCLE MODEL OF WORM DEFENSE

The problem of worm defense can be broken down into various stages and fit into

a life-cycle model. This is a problem where the defenders are perpetually in a race

against unknown and unseen opponents. Hence the model is cyclic. Figure 5.1 gives

a diagrammatic representation of the life cycle. (Cheetancheri, 2004)

 Figure 5.1 The various stages of the life cycle of worm defense

38

5.1 Prevention

The best way to stop a worm is to prevent its incursion into a particular site.

Prevention is better than cure. Once a suspicious activity is discovered, fix holes that

are being exploited and distribute the patch widely. This step applies even when

there is no worm spreading. Only constant watch and vigil can prevent worms.

However, it is next to impossible to have no holes at all points of time. But an earnest

approach to plug holes identified by advisories from trusted security sources is a

good step in that direction.

5.2 Prediction

The observation of suspicious and similar behaviour at various places is a good

indication of the genesis of a worm. This needs quite an amount of co-operation and

correlation amongst various sensors. The "Group Based Model" in Chapter 8, does

this as a part of its mitigation strategy.

5.3 Detection

Detection of a worm is either an easy or hard job depending on the kind of worm

we are dealing with. Fast spreading worms are easy to detect. They show themselves

through various symptoms on the network and on the individual hosts that they infect.

The most obvious symptom usually is abnormally excessive cpu load at the host

level and bandwidth saturation at the network level. Fast spreading worms have the

following characters:

• They write heavily to the network.

• They copy themselves frequently. Frequent fork()ing is a symptom of this

behaviour.

39

• They scan the network heavily, usually looking at a single port.

• They open up a lot of TCP connections.

5.4 Analysis

Once we detect a worm in action the immediate analysis should focus on

identifying the signature so that we can try to stop traffic that match the signature. In

the presence of a very fast worm, the solution might be to stop all traffic. But normal

traffic should be allowed to resume as soon as possible. Otherwise, the cost of traffic

locking could be more than the damages that the worm could cause. The later

analysis, after the worm is defeated, should focus on identifying the intent, means

and damage caused, to help cure the infected hosts and take steps so that it doesn't re-

surge, as does the Code Red worm that keeps re-surging monthly. For example,

Nimda is still not fully understood.

5.5 Mitigation and Response Strategies

We cannot stop a fast moving worm at all places as soon as it is discovered at one

place. Even though we fix one host, there are already several others infected which

continue to spread the disease to other susceptible hosts. This doesn't mean infected

hosts should not be fixed to stop the worm. They should be fixed. But before that, the

situation warrants a different approach to arrest the spread: at least, slow down the

worm and mitigate the disaster.

Some of the hypothesized high speed worms like Flash worms should be

responded to automatically. These cannot be managed by human intervention. All

damage would be done even before we could react. To respond to such a worm with

human speed is simply not possible.

40

5.6 Curing The Infected Hosts

Even though we could reboot an infected machine to kill a worm instance, this

machine will be re-infected sooner or later unless the vulnerability exploited is fixed.

So, the most logical step after a worm attack is to fix the vulnerabilities that were

exploited by the worm. This involves using the results of the analysis and acting

upon them. Closing all relevant back doors and fixing the bugs exploited by the

worm are only a few of the pertinent activities in this step.

5.7 Vaccinating Uninfected Hosts

Even uninfected hosts should be patched up. Mitigating the spread of worm

involves turning on filter rules at fire-walls and patching. Filters decrease

performance. So, the filters have to be turned off eventually. Once the firewall rules

are turned off, there are chances of reinfection un-cured hosts.

5.8 Patching Similar Vulnerabilities

One of the important lessons learnt from any worm incident should be an

awareness of the vulnerability exploited. Once this is learnt, similar vulnerabilities

should be sought out and fixed. For example, the Morris worm showed that the

sendmail program had a bad default Debug option. Once this was realized all other

programs should be checked for similar oversights. Fixing such vulnerabilities

should be an on-going process all the time. This naturally blends into the first step of

prevention.

In an ideal situation we should be spending the most time in the prevention phase

of the worm life cycle. That would mean we are maintaining a more secure Internet.

 41

CHAPTER SIX

WORM DETECTION

This part builds on this information in an attempt to illustrate three methods of

detecting worms. These methods are traffic analysis, the use of honeypots and dark

network monitors, and the employment of signature-based detection systems. These

methods form the core of detecting both hackers and worms.

The goal of our detection strategies is to detect nearly any type of worm with as

little effort as possible. To do this, we will focus on the features common to most

worm types and build strategies to detect these characteristics. While no single

methods work for all worm types, a combination of efforts can provide more

complete coverage.

6.1 Traffic Analysis

Briefly, traffic analysis is the act of analyzing the network’s communications and

the patterns inherent in it. The characteristics of the traffic that are studied can

include the protocols, the ports used in the connections, the success and failures of

connections, the peers of the communications, and the volume of traffic over time

and per host. All of these characteristics can be combined to develop a picture of the

network under normal circumstances and also used to identify the presence of a

worm.

With respect to analyzing traffic to monitor for worms, we are interested in

monitoring three major features. These three characteristics are common to nearly all

worm scenarios and hence of interest to us. Furthermore, the ease of monitoring

these features makes them especially attractive.

The first facet of a network we should monitor to detect the presence and activity

of worms is the volume of traffic. Most worm models use a logistical growth model,

42

meaning the number of hosts grows exponentially in the initial phases. As hosts are

brought on-line into the worm network, they perform scans and attacks. Their

combine traffic leads to an increase in the volume of traffic seen over time. This is

best monitored at a network connection point, such as a router or a firewall, and not

necessarily an edge node.

The second feature of the network’s traffic we are interested in monitoring in the

number of type of scans occurring. Most worms use active measures to identify new

targets to attack, using scans of hosts and networks to find suitable targets to attack.

These scans can be tracked using monitors and measurement tools and analyzed to

reveal worm hosts either on the local network or attacking the local network from

remote sites.

The third feature we are interested in for the purposes of traffic analysis is the

change in traffic patterns when a host is part of a worm network. Each host on a

network has a well-defined set of characteristics in its traffic that typically change

after compromise by a worm. By monitoring hosts and their traffic patterns, the

presence of a worm on the local network can be identified.

The use of traffic analysis to detect the behavior of network worms is a powerful

technique due to its generality. Larger network events are typically monitored and

analyzed to search for trends. While not all of the observations that are associated

with worms are unique identifiers of worm activity, when combined with other

analysis methods a more detailed picture emerges. The main drawbacks to traffic

analysis, including a large data set and a number of observation points, make it a

challenging endeavor.

6.1.1 Strengths of Traffic Analysis

Traffic analysis, which focuses on general aspects of the network and the trends

therein, has several advantages over specific detection methods and black hole and

43

honeypot monitors. The first is that it works for almost all worm types, specifically

for worms that use active target identification methods and exponential growth

models. Scans can be measured and tracked as a general phenomenon, and the

exponential growth of the overall volume of the network can also be observed.

Secondly, signature detection fails for worms that use any variety of dynamic

methods. These can include modules that can be updated to accommodate new attack

methods or scan engines, or worms that behave in a manner similar to polymorphic

viruses. Furthermore, signature detection at the network level will fail for worms that

use either encoded or polymorphic attack vectors. By observing the traffic

characteristics generally, the presence of the worm can be identified.

6.1.2 Weaknesses of Traffic Analysis

The analysis of network traffic to identify the presence of a network worm has

several drawbacks. The first is that it is labor intensive, requiring a reasonably

lengthy time period to develop an understanding of the normal traffic on a network.

This time frame is usually 1 to 2 weeks for a LAN of several thousand hosts and

requires a monitoring infrastructure. Coverage is also a significant challenge for a

network with a hierarchical structure. For larger networks that only want a gross

measurement of their traffic, it will suffice to monitor only a border router or major

switches.

The second major weakness to traffic analysis is the most worms seen so far

operate in a predictable fashion.

By studying one instance of the worm, we have identified the behaviors of nearly

all of the worm nodes. However, this will not always be the case. Worms that have

updatable modules or even random behavior in their static modules will be difficult

to track using specific traffic analysis based on signatures. This is why the methods

described here focus on the general properties of the network’s traffic.

44

The next major weakness of the traffic analysis method to understanding worm

behavior is due to the speed of the worm’s propagation. A worm that moves

sufficiently slowly or only infects a handful of nodes per round will be more difficult

to track using traffic analysis than other means (such as honeypot, black hole, or

signature-based analysis). The difficulty in this scenario stems from the amount of

data when compared to the background traffic on the network.

Traffic analysis will also create some false positives due to the anomalies that

appear to be similar between a worm and an attack or a sudden surge in a site’s

number of clients. For example, while an attack like Code Red would be detected as

an exponential increase in HTTP traffic all to Web servers on port 80 with the same

request, a site which has immediately attracted widespread attention would show

similar behavior. Here, the sensor may classify this as the activity of a worm.

However, with some more careful analysis, this can be distinguished. The number of

sites being targeted remains constant (in this case one Web server) despite a rapid

exponential increase in similar traffic.

Lastly, consider a worm that uses passive mechanisms to identify and attack

targets. For example, a worm that attacks Web servers and, rather than hopping from

Web server to Web server, now attacks clients that connect to that server. The traffic

characteristics remain much the same for the server, such as connections from

random clients to the server and then from the server back to clients. This would be

difficult to identify, based solely on the patterns of traffic, because little change is

observable. The Nimda worm utilized this strategy as a part of its spread, using a

vector to jump from server to clients by inserting a malicious file onto the

compromised Web server. The Morris worm also followed the paths set up by the

compromised system to identify new targets based on the established trust using the

remote shell system. In this scenario, the major change in the network’s

characteristics visible via traffic analysis would be the upsurge in traffic from the

compromised systems.

45

However, none of these weaknesses should prevent the use of traffic analysis in

worm detection. For the foreseeable future, most worms will be detectable by these

methods and once established they can provide data with minimal ongoing

maintenance. Furthermore, the data gathered in this approach can also be used to

detect additional network anomalies.

6.2 Honeypots

A network honeypot is simply a system you expect to get probed or attacked so

that you can analyze these data later. A honeynet differs from a honeypot in that it is

a network of honeypots made of full production systems. (Spitzner, 2003) This

network can be logically and geographically dispersed. Because of their nature,

worms will indiscriminately attack any available host on the network, including

honeypots. The value of this approach is that you can analyze the attack after it has

happened and learn about the methods used by the attacking agent. Honeypots come

in three basic varieties:

• Full dedicated systems, which are typically nonhardened installations of an

operating system. These are installed with a minimum amount of setup in

an attempt to mirror a default installation and then placed on the network.

External monitors are typically used to capture the network traffic to and

from the host.

• Service-level honeypots are hosts that have one or more services installed

in logical “jails,” areas of protected process and memory space. An

attacker can probe and attack the service, but any compromise is contained

to the virtual machine running on the host. Commercial as well as open-

source versions of these tools are available.

46

• Virtual hosts and networks, which provide the illusion of a host and its

associated services to an attacker. This is typically housed in a single host

on the network, spoofing other hosts.

Each of these approaches offers varying degrees of accessibility and value, along

with associated risk. For instance, it can be more costly to implement a set of

honeypots with full, dedicated systems, though you may capture more data with real

services. A virtual honeypot, however, has an advantage in that you can more readily

deploy an additional host or even network into your monitored space.

Honeypots have an inherent risk factor associated with them that has to be stated.

Because a honeypot is designed to allow an attacker to enter and gain control (for the

purposes of monitoring their actions), it is possible the compromised host may be

used to spread more attacks. For this reason it is vital to monitor it closely and both

control the outbound connections as well as close the host down when it has been

compromised. Also, it should never be deployed on a production subnet where it can

interfere with legitimate network activities and be used to gain entry to a protected

network.

6.2.1 Strengths of Honeypot Monitoring

Perhaps the single biggest advantage to be gained when using a honeypot is the

depth of information available from a compromised honeypot. Because an attacker or,

in this case, a worm has attacked the system, a full set of changes to the system can

be obtained. This can be useful in determining the nature of the attack. Furthermore,

the actual executables used in the worm’s propagation are typically also available.

With these two pieces of information, a nearly full analysis of the worm can be

achieved.

Additionally, with a honeypot, a wealth of additional detection data can be

generated. Based on the patterns of attack by the worm and the nature of the

47

executables, file system signatures of the worm’s behavior can be generated. The

network behavior signature, including the attack, any communication messages

generated, and any probes, can also be identified. With this information, a rich

detection system can be developed to look for the worm’s behavior.

6.2.2 Weaknesses of Honeypot Monitoring

Honeypot monitoring has a few weaknesses that are worth acknowledging. The

first is that typically only one or a small handful of honeypot systems are deployed.

While each system gives a detailed set of data about the worm’s behavior, they offer

only a limited perspective on the network being monitored.

Second, honeypots are labor intensive. They require extensive setup to be

effective, and the maintenance and monitoring needed to prevent the use of the

honeypot to act as a worm springboard is quite extensive. Properly set up firewall

rules, for example, are needed to prevent the system from being a reflector for worm

activity.

Due to the variety of systems that are targeted by worms, and the inability to

predict what systems will be struck in the future, honeypots necessarily have to be set

up with only a limited subset of systems that can be attacked. Worms typically attack

systems that are exposed to the world at large, hence services that are exposed to the

larger world are best generated using a honeypot.

Lastly, honeypots do not give early warnings about worms; they are typically hit

only during the peak times of worm activity. This is due to the limited visibility they

have for the network. As such, they can only provide data at the height of the worm’s

spread.

48

6.3 Black Hole Monitoring

The implementation of unused IP space in worm tracking has proven to be an

even more effective technique in worm detection and tracking. This unallocated,

unadvertised network space has no DNS entries, but does have valid routes to reach

it. Because it is not in use (no machines are deployed within it) and no photons are

traveling along the fiber, it is called a dark space or a black hole network.

Monitoring this dark IP space is effective because of the persistent and complete

coverage by Internet worms. Worms, unlike many real attackers, do not monitor

DNS entries or service advertisements to determine who to attack. They simply find

a network block to scan and begin doing so. Hits in that space are therefore

interesting, because no legitimate traffic (in the absence of DNS, application, or

routing errors) should be seen in that network.

The scale of the unused network space does not have any direct impact on the

usability of the method, although a larger space will give a larger vantage point on

the operations of a worm. A network such as a corporate or academic network may

have unallocated /27 sized spaces lying about, while network researchers may be

able to monitor a space as large as a /8, allowing for a full view of 1/256th of the

Internet.

Black hole monitoring generally can be done in one of three ways:

• The first is to monitor what is called backscatter, or the reply packets sent

by spoofed sources. If the forged source lies within the monitored dark

network space, the replies will be visible. These include SYN-ACK and

RST packets from SYN flood attacks, and ICMP errors and control

messages from packet floods. This kind of analysis, pioneered by the

CAIDA research group, helps in the analysis of DoS and DDoS attacks.

This kind of analysis, however, is minimally useful in the analysis of

49

worms. Because worms typically establish bidirectional communications

channels, they generate little backscatter from forged addresses.

• The second method is to simply monitor the number of requests for access

to the unallocated network space. These requests are typically monitored

by a router that advertises routes to these networks internally. The requests

for those routes can be measured either by the flow export data or from the

routing table data maintained by the system.

• The third method is to view the network or subnet as a black hole and

anything going into it as interesting traffic. This monitors both reply

packets as well as requests, such as SYN packets from worms and other

scans. While some spurious traffic is certain to enter this space, worm

traffic will also enter this monitored area. Captured signatures can then

provide a basis for worm analysis, allowing for an estimation of the spread

and activity of a worm.

6.3.1 Strengths of Black Hole Monitoring

The biggest strength of network black hole monitoring is the relative ease of data

collection. Worms that actively scan will constantly generate data as connection

requests are sent to these unused networks. Because worms typically do not correlate

the use of networks with their probes, most worms will generate probes to

unallocated network space.

The largest challenge facing the use of black hole monitoring is the discrimination

of regular probes and attacks from activity from worms. This can generally be done

by looking for an exponential rise in the number of sources that parallels a rise in

activity sent toward the dark network space. However, this typically yields a larger

picture of network activity than other monitoring methods do due to the large scale

50

of coverage possible. The intentions of the client computer can be assessed on the

basis of the intended network destination.

When the third type of black hole monitor is set up (which responds to connection

requests to receive the first data packet), worm activity can be measured. In this

scenario, the payloads of the captured packets are stored and compared to look for

worm activity. This gives deep insight into worm activity, along with a large degree

of coverage without the requirement of known signatures, as would be needed for a

NIDS monitor.

6.3.2 Weaknesses of Black Hole Monitoring

As described earlier, the biggest weakness in black hole network monitoring is the

growing presence of worms that use lists of allocated addresses to target. These

threaten to minimize the utility of global-scale dark network monitoring for worm

activity. While some worms, such as Code Red and Nimda, will indiscriminately

attack any valid IPv4 class A, B, or C address (which does include unallocated

space), newer worms such as Slapper and SQL Snake have incorporated lists of

allocated network blocks to target. The increased use of this approach will gradually

diminish the utility of dark network space monitoring.

Similarly, the threat of hit list scanning, as proposed for Warhol worms and the

like, diminishes the utility of dark space monitoring. Since hit lists are built from

allocated and in-use system data, the likelihood of a system migrating from allocated

to unallocated space is minimal. As such, dark space monitors are of no help in these

kinds of worms.

Again, worms that utilize a passive target acquisition model are also likely to be

missed by dark network space monitoring techniques. Because worms that use this

target acquisition model attack only hosts that are known to be active, they do not

51

reside in unused network spaces. Hence, they will not be monitored for the kinds of

use that dark network space monitoring tracks.

Lastly, changes in network allocation will require updates to the dark network

space monitors. For example, if a local subnet becomes used, its utility as a dark

space monitor becomes impossible. Similarly, when new networks are allocated in

the global IPv4 space, changes must be propagated to the dark network space

monitors.

6.4 Signature-Based Detection

At the heart of signature-based detection is pattern matching. A dictionary of

known fingerprints is used and run across a set of input. This dictionary typically

contains a list of known bad signatures, such as malcious network payloads or the

file contents of a worm executable. This database of signatures is the key to the

strength of the detection system, and its prowess is a direct result of its speed.

We are interested in three main types of signature analysis for worm detection:

• The first is the use of network payload signatures, as is used in network

intrusion detection systems (NIDS). The detection methods used by NIDS

engines perform an evaluation of packet contents received from the

network, typically using passive capture techniques. (Bace, & Mell, 2001)

This can include matching signatures based on payload contents measured

by string comparisons, application protocol analysis, or network

characteristics. A list of unacceptable patterns are compared against a list

of network traffic and alerts are issued when a match is found.

• The second type of signature matching is based on logfile analysis.

Application and system logs can contain information that can be used to

fingerprint the behavior of a network worm. This can include attack

52

contents, such as in Web server logs, or simple application errors issued

when a worm probes a machine. This is a relatively simple approach but,

when joined with other detection methods, provides a sophisticated

detection framework.

• The third type of signature detection is the most popular method, file

signatures. File payloads of worms and their executables are typically

monitored using host-level antivirus products. Several commercial

products exist to do this and are typically found on home PCs.

Signature-based detection methods are a powerful way to match known worms

through multiple mechanisms. By examining network traffic, file system contents,

and server logfile entries, it becomes possible to specifically track the progress of

worms as they move on the network. Unlike other detection methods, with a properly

crafted signature, detection can be precise and specific, allowing for high-resolution

results.

However, it is the specificity of the signature that is also its weakness. Simple

mutations or alterations in the contents of the data being screened, such as an altered

attack signature or file contents, renders signature-based methods nearly totally blind.

These mutations happen frequently, leaving systems exposed that look for only those

known contents. Furthermore, signatures can only be generated for known worms

and other malicious contents. As such, they cannot be used to identify emerging

worms, unlike other methods of worm detection.

6.4.1 Strengths of Signature-Based Detection Methods

The biggest strength to signature-based detection methods is the ease with which

they can be developed and deployed. Once a worm (or any piece of malware) is

captured and studied or even simply observed, only a brief analysis is needed to

develop a signature. This analysis is performed to identify the characteristics that

53

make the malicious software or traffic uniquely identifiable when compared against a

backdrop of normal data. The features that are used in the monitor can be, as noted

above, in the logfile entries, the payload of files either on disk or in transit, or in the

network traffic generated by the worm.

The relative speed of signature-based detection systems is also another benefit of

using them. Large numbers of optimized engines have been developed that can

perform pattern matching efficiently, a requirement as communication volumes and

the bandwidth of a typical network increase. These detection engines must keep up

with this pace and react quickly.

An additional benefit for signature-based detection methods is the ease of removal

of the malicious content. For a mail or file server that is being used to distribute the

worm, content screening immediately identifies the malicious payload and can

quarantine the data. For a network-based intrusion detection system, reactive systems

can be triggered to close a malicious connection or install a network filter on a router

or firewall to block the compromised machine from continuing the worm’s spread.

Server level firewalls can also be configured dynamically by analysis engines once a

malicious client has been identified from logfile entries.

Lastly, due to the great quantity of malware that exists for the Windows platform,

signature-based detection systems in the form of commercial antivirus tools are the

easiest route to take. There are simply too many threats to monitor and keep active

against without a large pool of resources, which are provided for by the antivirus

software vendors.

6.4.2 Weaknesses In Signature-Based Detection Methods

The single biggest drawback to signature-based detection methods is that they are

reactionary, they rarely can be used to detect a new worm. Only after an attack is

known can it be fingerprinted and made into a signature for use by a sensor. Only if

54

the attack used by the worm is recycled from a known attack can it be used to

proactively detect a worm. Some metasignature detection methods, such as protocol

analyzers and related tools that understand protocol parameters, can be used to detect

a worm early on. However, these are uncommon in large, coordinated NIDS

deployments at this time.

The second drawback to signature-based detection methods is that they don’t

scale well to large operations. These include networks such as an enterprise or

campus networks with thousands of users. Desktop-based remedies are difficult to

maintain actively, though many centralized management tools have been developed

to overcome this obstacle. However, the volume and distributed nature of the

problem makes the issue of scale a difficult challenge to adequately address.

The next major difficulty in a successful deployment of signature-based methods

is that it is hard to keep up with variants of worms and viruses. Variations inevitably

appear that can evade signature-based detection methods on all levels. Furthermore,

when polymorphic techniques are introduced into worms, the challenge rises

significantly, making the reliable detection of worms much more difficult.

Network-based signature detection suffers from a number of weaknesses,

including payload fragmentation and forgery. These issues are still present in many

NIDS products and have been well described by Ptacek and Newsham.

Last, unless in-house signature generation is done, detection is always at the

mercy of the supplier of these signatures. While many large and popular packages

have rapid responses, as was demonstrated by the Code Red and Nimda worms, this

turnaround time can result in a significant delay in relation to the rate of the worm’s

spread. Signature-based detection methods are only reactionary and always lag

behind the introduction of the worm.

 55

CHAPTER SEVEN

DEFENCES

7.1 Firewall and Network Defences

Firewalls have become a commercially successful market item, because of such

features as ease of use, application layer filtering, and line speed. Despite these

enhancements, little has changed in their basic design principles.

Firewalls are devices that enforce a network security policy. This policy can be

the authorization to establish communications between two endpoints, controlled by

the ports, applications, and protocols in use. The firewall evaluates connection

requests against its rule base and applies a decision to the requested action. (Wack,

Cutler, Pole, 2001) Network architects and administrators employ firewall

technology to accomplish several key tasks (Wack, 2002):

• Protection from vulnerable services: Firewalls protect potentially

dangerous or malicious applications from entering or leaving a network.

• Controlled access to systems: Filters can control the destinations and

sources of network communications.

• Concentrated security: By focusing many of the security measures

on a single host, the overhead for management and costs of a distributed

security system can be alleviated.

• Enhanced privacy: A network filter can protect services from being

viewed by unauthorized parties.

56

• Logging statistics for Internet activities: This logging of activity

can include both normal usage patterns as well as malicious activity

originating either internally or externally.

Most firewalling devices are of two basic types. The first is a packet filter, which

performs policy enforcement at the packet level. (Chapman, 1992) As each packet in

a communications stream passes through the router or bridge, it is compared to a set

of rules to determine the action to take, determining the passage or rejection of the

packet. The criteria for this decision are typically the source and destination

addresses and ports along with a protocol. These usually define the communicating

parties and the applications in use.

Packet filters can be either stateful or stateless. A stateful filter understands the

context of a communication and can conditionally pass or reject packets that are a

part of the communication (or merely appear to be). A stateless firewall, in contrast,

only monitors any single packet without any concept of the context of the

surrounding traffic. Here, filtering rules would be applied on a packet-level basis as

opposed to a connection-level basis.

A second type of firewalling device, a network proxy, performs its decision at the

application layer. These devices have additional potentials for security applications

and are discussed as proxy-based defence at next section.

7.1.1 Example Rules of Firewall Defences

While IP traffic filtering is itself common, the syntax used by different vendors or

firewalling packages varies. The languages used by each reflect various attributes of

each product. Several examples are shown to illustrate the fundamental principles of

packet filtering. This set is by no means a comprehensive list of all firewall products

or their capabilities.

57

Obviously a firewall is only as good as the rules it contains and enforces. A filter

set that defaults to an open policy and has a minimal set of rules does little good and

can be trivially circumvented. The syntax and structure of the rules determine the

strength of the firewall in relation to the security policy desired.

Cisco IOS-based routers have had filtering capabilities for several of their

versions as of this writing. IOS uses access-list (ACL) statements, access-group

statements and rules to manage traffic decisions. An example collection of several

IOS access-list statements in a configuration would appear as follows:

access-list 100 deny icmp any any fragments

access-list 100 permit icmp any any echo

access-list 100 permit tcp 192.168.1.0 0.0.0.255 any eq 22

These rules will tell the router to drop any ICMP fragmented traffic and allow any

ICMP “echo” traffic (typically associated with the ping program). Also, these rules

state that the network 192.168.1/24 is allowed to pass for TCP port 22 traffic

(associated with the SSH protocol). The use of access-group statements facilitates the

management of access lists, allowing for the grouping of rules and addresses.

The Cisco PIX product, a dedicated firewall device, features a filtering statement

in addition to the access-list and access-group statements found in IOS. The shun

statement provides a coarse-grained filtering capability for filtering networks, as

shown below:

shun 10.1.1.27 10.2.2.89 555 666 tcp

This statement would block any TCP traffic from 10.1.1.27 with a source port of

555 to the host 10.2.2.89 with a destination port of 666. The Pix product, like many

commercial and dedicated firewall devices, features several other policy enforcement

tools, such as virtual private networking services and authentication mechanisms for

networks, in addition to application layer handling.

58

Juniper routers are also capable of handling filter statements in their

configurations. The following stanza from a JunOS configuration illustrates the

typical layout of such a configuration:

term a {

 from {{

 destination-address {

 10.1.1.1/32;

 }

 protocol icmp;

 }

then {

 discard;

}

}

This rule would block any ICMP traffic to the host 10.1.1.1. JunOS filter rules

typically follow the format of containing a statement of criteria to match and then a

decision, such as discard or permit, or it may include options as well, such as logging

or rate limiting. Arbitrary criteria can also be utilized with this setup.

Lastly, the popular and freely available IP Filter (IPF) tool from Darren Reed can

also be used to build a filtering host (http://coombs.anu.edu/~avalon). IPF is

available as a module for many popular operating systems, both freely available and

commercially supported. Typical syntax for this type of filtering is shown here:

pass in proto tcp from 10.2.2.2/24 to \

10.1.1.2/32 port = 6667

block in on fxp0 proto tcp/udp from any to any \

port 511<>516

59

These two rules illustrate the syntax for varying rule types. In the first, traffic

between two hosts using protocol TCP to port 6667 (associated with the IRC

protocol) is allowed to pass. The second statement blocks traffic that arrives on the

interface fxp0 (a fast Ethernet interface) of either protocols TCP or UDP between

ports 511 and 516. Unlike many commercial firewall packages, IPF does not offer

encryption services or rate limiting.

7.1.2 Strengths of Firewall Defences

Because firewall systems are available in a wide variety of scales for line speed,

ease of configuration, and in many routers, they are a readily deployable security tool.

This can be useful when a new worm appears that uses traffic patterns that can be

easily blocked using a network filter.

Because firewalls can permit or deny traffic on a large set of arbitrary criteria,

they can be an effective security tool. As demonstrated with IPF and PIX filters,

firewall rules can be either coarse grained or fine grained, depending on the filter

language used. Combined with packet inspection and dynamic rule sets, a selective

filter can be created to enforce a network security template.

Lastly, as described in this chapter, a firewall can be configured to keep a worm

out or inside a network. This can be useful to contain a locally found machine that

has been compromised by the worm being defended against.

7.1.3 Weaknesses of Firewall Systems

At this time, most firewall systems are able to only filter on the basis of the packet

headers. As a result, a typical firewall system is ineffective at defending against a

worm for services that must be accessible to the world, for example, Web servers in

60

exposed networks. Furthermore, because a typical firewall does not examine the

contents of a packet, it may block legitimate traffic.

A stateful firewall can be unduly stressed by a large number of active connections.

This is typically seen with worms that perform heavy amounts of scanning for target

hosts. Due to memory constraints, the firewall may begin to fail and disrupt normal

communications during periods of heavy worm activity.

7.2 Proxy-Based Defences

A second type of network firewall is the proxy server. Firewalls built on proxy

servers use a technology based on a third party brokering a request for a client to a

server. This third party is made up of the proxy server, which is connected to and

passes the resulting information back to the client. Through the configuration of a

proxy server, network policy can be enforced, controlling applications and network

endpoints. This policy enforcement can occur at the level of the connection endpoints,

the application in use, or the content of the material being transmitted.

Proxy servers, or application gateways, provide their services by being an

intermediate system for a network connection. A listening agent on the proxy server

receives a request for a network action and, on behalf of the client, fulfills the request.

The connection comes from the proxy server to the destination and the data are

passed back to the proxy. The final data transfer occurs between the gateway server

and the client. At no time do the client and final destination make direct contact.

7.2.1 Example Configuration of Proxy-Based Defence

In many ways, proxy servers are configured much like listening applications.

They are specified to listen on interfaces and accept connections. However, unlike

many services in use on a network server, access controls are typically standard for

61

an application gateway. Additionally, the second endpoint, the intended destination

of the client system, can be controlled by the proxy server. If the client is making a

request to a system that is off limits, the connection can be blocked at this stage.

Application gateway systems can be configured in a variety of ways, some of which

are shown in this section.

An application gateway can be used to provide a minimal amount of filtering

activity. The Web server Apache, for example, can be used to provide a basic fiter

for a site. The following configuration stanza would install a minimal Web-based

proxy for normal HTTP communications at the IP address 192.168.1.1:

Listen 192.168.1.1:80

ProxyBlockContent Java

ProxyBlockList /etc/firewall/lists/hacker

<Directory Proxy>

allow from 0.0.0.0

</Directory Proxy>

As is evident in the above configuration, only a minimal amount of security

filtering is in place. Almost any host is allowed to connect without any authentication,

and only hosts listed in the file /etc/firewall/ lists/hacker and Java-based content are

filtered. Other directives can be employed, as well, including caching content locally

or connection controls.

Because proxies work at the level of the application, a variety of access control

mechanisms can be employed. These can include network sources and destinations

or application-level authentication. For example, a proxy firewall may specify a

handful of networks as being “secure” because they are local networks and trusted:

10.100.0.0/16

10.200.0.0/16

10.201.10.0/24

62

Here, three network segments have been specified as secure networks. This can be

used, for example, to configure a variety of services with minimal restrictions and

only local network access, no authentication.

A Telnet gateway directive for the FW-Cop application gateway is shown below.

Here a Telnet proxy is configured with minimal requirements besides resource

controls via a maximum number of connections:

Telnet Proxy Configuration Lines

 proxy {

 maxprocs 999

 path /usr/local/etc/tnproxy tnproxy

 listen 23

 listen 10.100.10.2:23

 maxconn 10.0.0.0/255.0.0.0 10 15

 maxconn 0.0.0.0/0 1 2

 }

This is a minimal installation, useful for resource management via a central

gateway site.

A Telnet gateway from the Firewall Toolkit (fwtk) can be similarily configured.

(Ranum and Avolio, 1994) Again, allowing only hosts on the local network

(10.100.10.0/24) to use the gateway, they must authenticate via a password:

tn-gw: timeout 3600

tn-gw: permit-hosts 10.100.10.* -passok -xok

tn-gw: permit-hosts * -auth

63

The final line of this configuration stanza allows any hosts from any network to

use the gateway provided they have been authenticated. This can be useful for

allowing incoming connections from the outside world that have been authenticated.

As a final step, the gateway device, which is also typically the default router for

the clients it serves, is configured to not forward packets at the network layer for the

networks it serves. This prevents circumvention of the proxy server by making a

direct connection to the server on the part of the client. If this were to happen, any

security enhancements made by the introduction of the proxy server would be

defeated. The only way for the clients to pass to the outside world would be through

the application gateway, both the device and at the application layer.

Obviously, application gateways can be far more complex than those shown here.

Authentication systems, encryption enabling devices, or content filtering can all be

installed in almost any combination. This provides a rigorous control of connections

via the gateway server. When combined with packet filtering, the use of proxy

servers can be forced and application use restricted.

7.2.2 Strengths of Proxy-Based Defences

Once a client application is configured to use the proxy server, access to network

services appears transparent to the client process. The difficulty of the negotiations is

handled quietly by the application and data are seamlessly transported back to the

client.

Unlike a packet filter, which can only understand the contents of a packet, a proxy

device offers true application-layer filtering. This can give the advantage of content

specific filtering. As described above, this also gives the advantage of normalizing

the communications stream, removing the ambiguity for signature matching and

content-inspection or application handling. This gives the network administrators full

control over the content of the communications.

64

Application gateways default to a block policy during failure. Because no other

gateway for communications is enabled, if the application gateway fails due to attack

or an error, all internetwork communications will cease. No open window for an

attack is created by the failure of the network filtering device.

Lastly, because a proxy acts as an intermediate party for the communications, it

can fully log all actions. This is dramatically different than the inference from

watching packets passively. While this can be used for filtering purposes, it can also

be used for audit trail creation.

7.2.3 Weaknesses of Proxy-Based Defences

One of the biggest drawbacks to an application gateway is the latency that it

introduces to a communications stream. Because the requests and data are stored

before forwarding, a noticeable lag occurs in the time between the request and the

completion of that action. Proxying would therefore not work for applications that

require real-time performance, such as streamed communications applications.

Because of their placement, the use of application gateways only works for

transmissions crossing a border where the filtering devices are in place. It cannot be

used to monitor or control intranetwork communications.

Lastly, the setup of an application gateway can be significant for a new

application. The interface and specification must be studied and the application

altered to accommodate the proxy service. Furthermore, this approach is not

available to all protocols and applications, including diagnostic tools such as ping of

traceroute. Encrypted communications, such as secure Web transactions using the

HTTPS protocol, cannot be proxied without defeating their security measures.

65

7.3 Active Worm Defence

The previous section have focused on passive defence measures. Hosts can be

hardened sufficiently to ensure that a worm that attacks it will fail or be unable to

initialize itself. The network overall can be configured and defended to minimize the

exposure to an untrusted Internet and the content of malicious requests and data

removed. In this way, the worm will attempt to compromise new hosts but fail.

An additional defence strategy is to attack the worm network.(Mullen, 2002) This

will essentially turn the devices of the worm network against itself, offering both an

entry point into the network as well as a built-in mechanism to utilize in this pursuit.

The advantage of this approach is a slowdown of the worm’s progress overall, which

will eventually lessen the load of any worm on the local network.

Some counterstrike methodologies are based on host-level measures.(Mullen,

2002) Methods such as kernel alterations, interfering with selective processes, or

networking attempts by hostile software will not be discussed here. However, they

are an interesting design consideration for future methods at the operating system

level to defeating hostile executables, regardless of the source.

By attacking the worm network itself, the end goal is to stop one or more nodes of

the worm network from continuing to propagation. The major strategies towards this

include:

• A message to the network to shut down

• Forged replies to a query that you are already infected

• Poison updates to the worm

• Stalling the worms.

66

Some are more effective than others, but all can provide an accessible way to help

stem the spread of a worm.

The general principle in this section is to find a worm node, using information

gathered from an IDS, the system logs, and the like, and attack it back. Because this

strategy assumes that each host must be contacted singly, you will have to enumerate

each host for worms you wish to target. Because this is a very controversial method

for defending against an Internet worm attack, the target select caveats are discussed

later in this chapter.

We now look at general strategies. Most of the methods for attacking the worm

network outlined above rely on a failure to gracefully handle errors or authenticate

data from other nodes. These failures can be used to perform arbitrary actions on the

worm node, including shutting it down or stopping the worm process.

Many attack programs are themselves poorly developed and contain unchecked

runtime errors. These errors include many of the same types of errors that they are

designed to exploit on a target system. By identifying and exploiting these

weaknesses in the attacking agents, a decoy target can alter the behavior of the

malicious client.

For example, an inspection of the Scalper worm exposes several vulnerabilities.

An interesting one is a possible overflow in the handling of cookies sent by the

targeted server. In the ViewWebsite() function, only 256 bytes are allocated for the

storage of the cookie, and are copied without bounds checking:

void ViewWebsite(char *http,char *cookie) {

char *server,additional[256], cookies[1024],

location[1024];

unsigned long j,i;

struct ainst up;

67

char num=0;

if (!strncmp(http,"http://",7))

 server=http+7;

else

 server=http;

for (i=0;i<strlen (server);i++)

if (server[i] == ’/’) {

 server[i]=0;

 num+=1;

 break;

}

memset(additional,0,256);

if (cookie) {

 for (j=0;j<strlen (cookie);j++)

 if (cookie[j] == ’;’) {

 cookie[j]=0;

 break;

}

sprintf(additional,"Cookie2:"

"$Version=\"1\"\r\ncookie: %s\r\n",

cookie);

}

...

The value of *cookie is set by reading the returned string from the server, also

without bounds checking. The failure to do this check can result in a failed worm

process when an overly long cookie is encountered. This long cookie is then copied

into the array additional, which is smaller than the allowable size of cookies. This

can be used by a malicious decoy to attack a worm client and stop the process.

Inspection of many of the attack programs available on the Internet reveal similar

errors.

68

7.3.1 Shutdown Messages

The first way to attack a worm network is to tell each node to stop its worm

behaviors. This is done by either telling the host to stop all worm-associated

processes or to simply shut down. For worms that accept network communications

and commands, such as Slapper (accessible via UDP interface) or the IIS worms

Code Red and Nimda residual cmd.exe shell, it is possible to send the worm a remote

command and to shut the worm system off.

There are two ways to gain entry to a worm node. The first is to attack the worm’s

communications interface. In the case of the Slapper or Scalper worm this is through

the listening interface on UDP port 2002 that accepts commands from other worm

nodes. The second is to attack the wormcompromised host in the same way the worm

did and to exploit a vulnerable service.

The use of the communications interface assumes that there are no authentication

mechanisms in the interworm connections. When this is the case, as is with Slapper

and Scalper, one can simply send a command to be run to the worm node via the

listening interface. The commands typically remove worm-associated files and kill

the worm’s processes, such as its scanner and attack components. For a Code Red or

Nimda compromised host, the following request format should typically work:

http://172.17.3.45/scripts/root.exe?/c+shutdown

The IP address 172.17.3.45 will, of course, depend on the attacking host. The

shutdown command tells the system to stop its operations and begin shutting down,

stopping the worm’s activity.

The second method of gaining entry to the remote worm host, by attacking the

host itself, is a little trickier. The basic operation is to perform the same exploit of the

vulnerability that the worm used to gain entry but to use a different set of options.

Whereas the worm itself will typically install the files needed to target hosts and

69

attack them, in this scenario, the commands remove worm files and kill processes

associated with the worm component. This system will not work for hosts that have

been upgraded by the worm, which has been performed by some worms but not by

several of the more major, recent worms, such as Code Red and Nimda.

These methods treat the worm host as a server to which a machine under your

control connects. Typically, some information about the worm, including the worm

executables themselves, is required. With the information from the analysis of those

pieces, vulnerabilities in the design of the worm can emerge.

The natural defence for a worm against such an attack is to strongly authenticate

messages received from the network, which can be done with the use of

cryptography. Then an adversary, namely, an administrator attempting to inject

messages to shut down the worm host, would have to break the encryption used by

the worm network in order to have the message accepted. While it may be possible to

break into the worm host using the methods first used by the worm to gain entry, if

the worm fixes the vulnerabilities it used during installation then this becomes

difficult to do. Some worms, such as the ADMw0rm, used these methods to keep

would-be attackers away.

7.3.2 “I am already infected”

The next method of attacking the worm network by using its own methods against

it is to convince the attacking worm that the target is already compromised by the

worm. This works for worms that first check for their presence on the target system

before launching. This check can be for a process name, a filename, or some other

indication that the worm is already installed on the system.

Such an attack is possible against a handful of worms, including Code Red and

Slapper. Code Red looks for the file C:\\notworm and, on finding it, ceases operation.

Slapper, in contrast, is unable to begin operation if its filename is already in use and

70

UDP port 2002 is unavailable to begin listening. This attack is also possible gainst

Warhol worms, which use an indicator to the attacking node during the permutated

scans. This method of delaying the worm’s spread was also discussed during the

outbreak of the WANK and OILZ worms. (Oberman, 1989)

The attack works by exploiting the check made by the worm for its own presence.

Some worms, such as those listed above, will attempt to avoid double infection on

any host. A quick check for the worm’s indicator on the system is performed before

launch. Other worms, such as Slapper, ungracefully handle the condition of double

infection due to colliding requirements during startup.

The attack against such a method used by the worm is often quite easy to perform.

It is typically enough to either install stub files of the worm process or to start a

process with the same name as that used by the worm. In the case of Code Red, for

example, you would create an empty file C:\\notworm. For the Slapper worm, in

contrast, you would simply bind a listening process on UDP port 2002 that will cause

the worm’s startup to fail.

As a defensive measure, an administrator can install worm files with the same

name and make them immutable. During the attack and installation of the worm, the

worm application cannot install new files. This effectively blocks the worm before it

launches as it cannot install itself. Note that this method does not stop the attack of

the remote worm system on a local host. Rather, it simply prevents the worm from

installing and launching locally. This method also takes advantage of the predictable

nature of most worms.

7.3.3 Poison Updates

The next method of attacking the worm network as a countermeasure assumes that

the worm can be updated. Most worms are typically static and not able to accept

changes in their behavior via updated modules.

71

Typically, a worm such as this would be updated by its users, often those who

wrote or launched the worm. In this countermeasure this mode of entry is abused by

outsiders. The attacker, such as an administrator for a network, sends the worm node

or even the network a new module. However, unlike the updates sent by the users of

the worm system, the new module is designed to hinder the worm’s operation, not

enhance it. The module can contain empty attack routines, for example, which return

success despite not actually attacking a node.

An alternative strategy is to disable the worm entirely. The injection of modules

that contain broken routines that fail no matter what will achieve this goal. Because

the update crashes the worm programs (or even the entire system), the worm can not

operate and the worm node is effectively shut down.

For creators of worms and those who would use them, two major defences are

possible. The first is to authenticate modules in much the same way as was used by a

worm receiving messages. This ensures that the modules came from a trusted source

and not an outside attacker. Public key cryptography, for example, would allow for

the authentication of the source of the module. The second method is to not discard

the old modules when an update is received. Instead, keep the old modules intact and

use them as needed. The worm can choose from known modules and still achieve

success. An obvious attack against this is to send so many modules to the worm node

that it consumes all of its storage space and only contains the attacker’s modules.

7.3.4 Slowing Down The Spread

One simple way to slow the spread of a worm network is to abuse two key

features of how a typical worm operates. First, you abuse the scanning and

reconnaissance operations of the worm by giving it extra work to do. Secondly, you

abuse protocol options to make your section of the network “stickier” than it should

72

be. In this way you can hold the worm around longer, preventing it from spreading as

fast.

Network worms will typically begin by scanning a network for targets to attack.

Scans such as this will make a connection to the host service being offered before

they launch an attack. Since nodes on a network do not know which addresses are

occupied and which are not, they will scan all addresses in a given network space.

This method of attacking the worm works by sending forged replies for hosts that

do not exist. The worm scans will attempt to make a connection to a host, requiring

an ARP mapping be made. The subnet’s router will attempt to resolve this so it can

forward the connection request. In the absence of a host listening at that address, the

requests will go unanswered:

23:27:27.312595 arp who-has 68.40.154.84 tell 68.40.152.1

23:27:30.527061 arp who-has 68.40.154.84 tell 68.40.152.1

23:27:37.088597 arp who-has 68.40.154.84 tell 68.40.152.1

The method is then simple: A host will forge replies to these requests and handle

the connection. What it does next, then, is part of the trick. It advertises a receive

buffer in the SYN-ACK packet it sends back, but since it never really established a

connection, it will never continue the dialogue. The worm system will send an initial

payload to it but will stall when it has nothing left to send, having filled the receiving

host’s window.

A second method employed here is to use an HTTP option to keep the connection

alive. This method normally reuses a Web connection for multiple objects. However,

by setting the connection to be persistent, the client will stay connected to the server

for a longer period of time.

Using these techniques, LaBrea is able to have worm-infected hosts stick around

longer. The larger advertised network along with the persistence of the connections

73

stalls the progress of the worm. Though this does not eliminate it, it does provide an

increased window of time to implement a larger solution.

This method of attacking the activity of the worm can be utilized by a honeypot

installation. By creating many virtual honeypots as described in Chapter 6, the

network population is artificially inflated and the worm is given more work to do. By

using the black hole monitoring technique of sending a single packet to establish the

connection from these virtual hosts, the network can stall the progress of the worm

7.3.5 Strengths of Attacking The Worm Network

Obviously the biggest advantage of attacking the worm network is that the attacks,

either in the form of probes or actual attacks, are stopped at the source. Provided the

attack was successful, the worm will be stopped at that node.

For the method used by the LaBrea tool, which can also be used by the dark

network monitor tools described in Chapter 6, the main advantage for a security

administrator is that the worm’s progress is slowed. In the time gained by slowing

the worm’s spread, site officials can take corrective actions and remedy the problems

at the host itself.

7.3.6 Weaknesses of Attacking The Worm Network

Because these methods all attack one node in a worm network at a time, they are

time consuming and laborious. After detection, each node must be attacked

individually to stop its behavior. This can quickly become intractable in scale.

While the strategy of using the same files and methods the worm uses, and

making them immutable, is tempting, it is trivially overcome. One simple method to

overcome this is the use of random file and process names for worm components.

74

This would prevent the use of empty or immutable files to block the worm’s

installation on the host. To block injected messages, such as shutdown messages, the

worm could easily employ some strong form of proof that the target host is already

infected, using an encrypted nonce for example. Lastly, the worm could simply

ignore attempts if the target is already compromised and accept attempts at double

infection.

A worm can take two major defences to defeat LaBrea-type countermeasures.

First, the use of aggressive scan timeouts by the worm will decrease the impact of the

added “hosts” on the network. Secondly, a worm that only launches its attack against

known servers would be largely immune from this method. The targeted type of

worm in this method is the type that uses active scanning to identify targets.

Furthermore, the methods outlined here are reactive in their nature. They do

nothing to protect a host or a network from worm attacks as they happen or while an

administrator is away. While they may remedy the situation for a brief time period,

they are best used long after the worm’s initial spread is over.

 75

CHAPTER EIGHT

GROUP BASED MODEL OF WORM DEFENCE

8.1 Introduction

This model of defence is based on the willing co-operation of a set of hosts on a

pre-arranged protocol which is described below.

An alert message is spread to the set of participating hosts in order to stop the

spread of the worm. This alert can be sent from the detector to the entire set or a

small subset of participating hosts. We will describe all properties of this message

below. Our goal is to maximize the number of hosts that can be prevented from

contracting the worm.

In this chapter as well as the next, we develop mathematical models for the

simplest of the scenarios. Then, we go on to develop simulations to study more

complex scenarios of worm mitigation.

8.2 The Model

8.2.1 Definition

Once a worm is detected, an alert message is spread to the set of participating

hosts to stop the spread of the worm. Using this alert message, we prevent from

infection to the our nodes and we reduce to infection of worm. It is true, when some

nodes detect the worm and send the an alert message for this. But, if we do not detect

the worm, we do not this.

How a worm is detected or declared has been discussed in chapter 6. But the

worm may be polymorphic or its signature is not known or it is not identified, etc.

Due to these reasons, the worm may not be detected. So that we can use alert

message not just when worm detected, we use it for every suspect situations.

76

Now, we can define some abbreviations below which will be used in our model:

• Group Size (G): Number of children for hierarchical networks.

• Threshold (τ): It is the limit value. When network reachs the value, then

defence unit will be active. (0 < τ < G)

• a: The number of infected node.

• c: The proportion of alerted members.

• M: The total number of response members

• Infection Rate (r): Some worms spreads very fast and the other spreads

slow. We use the term of infection rate as spread speed of worm.

• Alert Message (A): It is an alert message. Every cycle, every parent gets

this message from their children. It is a number which is between 0 and 1.

If detection unit detect a worm send this message as 1. But as we

mentioned above, sometimes detection unit can not detect the worm

however it observes some anomalies in the node. It may be a worm which

does not known worm. In order to prevent network we consider this

anomaly. And according to this anomaly, detection unit decide the alert

message. If it is high, the alert message will be near 1. If it is not, it will

be near the 0. If everything is normal, no worm and no any anomalies, it

will be 0. (0 ≤ A ≤ 1)

• Alert Level (AL): It is total of received alert message for a node.

AL = ∑
=

G

k

A
1

 (8.1)

77

If an uninfected node receives at least thresold(τ) alert level(AL) in the same

timestep, then defence unit will be active and the node will be protected now.

8.2.2 Mathematical Model

In chapter 2 we mentioned about the worm spread. Shortly, we mentioned it again

for our mathematical model. Worm infections can grow in an exponential pattern,

rapidly at first and then slowing as a plateau value is reached. This is a typical kinetic

model that can be described by a first-order equation:

N.da = (Na).K(1-a)dt

a: is the proportion of vulnerable machines that have been compromised

t: is the time,

K: is an initial compromise rate

T: is the constant time at which the growth began

It can then be rewritten in the form of a differential equation:

dt

da
 = Ka.(1 - a) (8.2)

This describes the random constant spread rate of the worm. Solving the

differential equation yields:

a = e
K(t - τ)

 / (1 + e
K(t - τ)

)

Rate K must be scaled to account for machines that have already been infected,

yielding e
K(t - τ)

This is an interesting equation. For early t (t << T), a grows exponentially. For

large t (t >> T), a goes to 1 (all vulnerable hosts are compromised). This is

78

interesting because, it tells us that a worm like this can compromise all vulnerable

machines on the Internet quickly.

For a given member, the expected number of co-operating nodes who remain in

the normal, un-alerted state is:

)1.(cF −

The number of alerts a particular member sends in time dt is:

dtacF .).1.(−

This implies that the total number of alerts system wide is given by multiplying

the above term by M, the total number of response members. Since each member

needs τ alerts before it can change its state, the number of members changing state in

time dt is given by:

dt

dcM
=

τ

acF).1.(−

Rearranging the terms, we get the evolution rate of the number of alerted

members in the following differential equation:

τ

acF

dt

dc).1.(−
= (8.3)

The proportion of member already infected is obtained by altering (8.2) to include

the fact that cooperatively alerted members will be able to block the worm. Two

types of infection attempts are considered, local and global infection. Local infection

is an infection that spreads from a host to another host without having to pass

through any router. Global infection is an infection that needs to pass through a

router. When an infected host tries to infect another one across a router, the infection

79

must pass through two filters, the local filter that blocks outgoing infections and the

remote filter that blocks incoming infections. The probability that both of these are

not alerted is)1(c−
2
 . Thus the global infection is

)1).(1(. caKa −−
2

The local infection rate is same as the rate equation (8.2) because there are

response devices between infection source and target. Since there are M response

members, the probability of a host choosing a target behind the same router is

M

1
and behind another router is (

M

1
1−) Combining these probabilities and the

infection rates, equation (8.2) becomes:

)1).(1(. caKa
dt

da
−−=

2
 . M

aKa
M

1
).1(.)

1
1(−+−

(8.4)

Thus we have a pair of differential equations which can be solved to get the

number of infected and number of alerted members.

According to our model, hosts back off from fitering the traffic after a certain time

period. The rate of back off is directly proportional to)1(a− and also to the

proportion of alerted members, c. Thus equation 8.3 becomes:

ca
acF

dt

dc
).1.(

).1.(
−−

−
= ε

τ

 (8.5)

where ε is a constant indicating how fast a host backs-off from filtering traffic.

Then in state t, there are a(G - a) exponential random variables in progress at once,

since each of the (a) infected nodes is trying to infect each of the (G – a) uninfected

nodes. Then the time to go from state t to t + 1 will be the minimum of a(G – a)

80

exponentially distributed random variables, and thus will itself be exponentially

distributed, with mean
).(

1

aGa −

For simplicity, we will consider the case τ = G – 1. The total expected time to an

alert, starting at the time the first member of the group becomes infected, is

∑
−

=
−

1

1).(

1G

a aGa

Using a standard approximation,

dx
xGx

G

.
).(

1
1

1

∫
−

−

 =
G

1
 dx

xGx

G

).
11

(

1

1
−

+∫
−

 = CG
G

+−)1ln(
2

where C is the constant of integration. The latter quantity goes to C as G � ∞

In other words, the first equality remains bounded as G � ∞. This is a very

interesting result, since it says that the mean time to alert is bounded no matter how

big our group size is. This is verified in our simulations.

8.3 Architecture Of The Model

In order to simulate the our model, we use 3 units which names are infection unit,

detection unit and defence unit.

 Figure 8.1 Architecture of the model

81

8.3.1 Infection Unit

It behavior a worm. The rate of infection is fixed at the beginning of the

simulation. The exact number of machines that each infected machine tries to infect

is determined by using a Poisson distribution, with the mean value as the rate of

infection.

There are 3 parameters for this unit which described as below:

• Infection rate (r): Using this parameter, we control the spread of worm. It is

a constant value so that, it define before the simulation.

r: Double

• Infected: It is the output of this unit and it is a boolean array value. If it is

true, then it will be infected for the node. The array length is equal to group

size (G).

Infected: Array [1..G] of Boolean

• Protected: It is the input of this unit and it is a boolean value. The input

value, comes from the defence unit. If it is true, the infection unit will not

infect the node because it is protected.

Protected: Array [1..G] of Boolean

8.3.2 Detection Unit

There are 2 parameters for this unit which described as below:

• Infected: It is the input of this unit and it is a boolean array value. The input

value, comes from infection unit. The array length is equal to group size (G).

Infected: Array [1..G] of Boolean

82

• Alert Message (A): It is the output of this unit. If the unit detects a worm it

send this message as 1. (0 ≤ A ≤ 1)

A: Array [1..G] of Double

8.3.3 Defence Unit

It is the main unit which we will control. There are 3 parameters for this unit

which described as below:

• Threshold (τ): When network reachs the value, then defence unit will be

active. It is a constant value so that, it define before the simulation. When the

AL reaches the threshold, the detection unit will be active. (0 < τ < G)

τ: Integer

• Alert Message (A): It is the input of this unit which comes from detection

unit. It must be between 0 and 1.

A: Array [1..G] of Double

• Protected: It is the output of this unit and it is a boolean value. The true

means, the node will be protected.

Protected: Array [1..G] of Boolean

8.4 Description of The Simulation

The simulation was done on a network modeled as a tree with 4 levels. Each level

of the tree has 4 children. The simulation is started by randomly infecting a single

leaf node. The rate of infection is fixed at the beginning of the simulation.

83

 Figure 8.2 Our simulation’s network

The exact number of machines that each infected machine tries to infect is

determined by using a Poisson distribution, with the mean value as the rate of

infection.

In each time slice, every infected machine tries to infect as many other machines

as dictated by the Poisson distribution. Alerts are raised in the same time slice as an

infection occurs. And each alert is propagated as high as possible in the tree in the

same time slice.

Simulations were run with thresholds at 75% and 50% of the number of children.

That is, if 75% of a node's children have raised alerts, the node takes action. The

structure of network and thresholds were chosen so as to be comprehensible.

However, more complex structures with different number of children at each level

and different thresholds at each level could also be simulated.

8.5 Discussion of The Results

The basic results of two extreme cases where all parameters are identical except

the rate of infection which is very high and very low are shown in Figure 8.3 and

84

Figure 8.4. In these two figures, for alert message we just use 0 and 1. It means that,

the worm is not polymorphic, and its signature is known in advance or it is identified

in real time. These two figures show that the number of infections before complete

immunization could take place is almost the same for both the cases.

 Figure 8.3 Response for a low rate of infection and for known worms

 Figure 8.4 Response for a high rate of infection and known worms

85

In Figure 8.5, the worm may be polymorphic and its signature is unknown, but

regarding the some anomalies, the detection unit send alert message as 0.8. As we

can see the in the Figure 8.5, and although infected node more than protected, it is

work. Due to the worm is unknown, detection unit would be sent just 0 for the alert

message and there would be any protected nodes. But in Figure 8.5, detection unit

observes the traffic and when it finds some anomalies in the node, it will send the

alert message as between 0 and 1.

 Figure 8.5 Response for unknown worms

Figure 8.6 shows that varies with threshold is the number of infected machines. A

low threshold helps to save a lot of machines. Using threshold, we can define our

tolerance.

86

 Figure 8.6 Percentage of machines infected for different threshold values

8.6 Summary and Conclusions

This chapter provided a mathematical analyses of the group based model of worm

defence and showed that the simulation results.

From this model, and the simulations, we can determine the thresholds required

for a given tolerance of lost machines. With the threshold levels and detection unit

thus determined, we can effectively inhibit the spread of worms .

 87

CHAPTER NINE

CONCLUSIONS AND FUTURE WORK

9.1 Research Contributions

In this thesis, a research has been done characterizing and analyzing computer

worms and a defence system model against the computer worms has been developed.

Research has been made in the following areas:

1. Worms and their scan techniques

2. Analyzing of the worm detection methods

3. Analyzing of the worm defence methods

4. Modeling a defence system against the computer worms

9.1.1. Worms and Their Scan Techniques

This thesis gave a stepwise introduction to a worm. It traced the genesis, evolution

and the state of the art of worm technology. A brief history of worms was provided

and an extensive background about them including their history and taxonomy. It

developed a comprehensive model of a simple worm and described the components

that make up a worm. In chapter 4, discussed possible future worms. It provided a

detailed account of various worm scanning techniques. Network bandwidth and

latency constraints faced by the worm during spreading were explained in detail.

These scanning techniques and constraints were explained.

88

9.1.2 Analyzing of The Worm Detection Methods

The goal of our detection strategies is to detect nearly any type of worm with as

little effort as possible. To do this, we focuses on the features common to most worm

types and build strategies to detect these characteristics. There are different methods

of worm detection. These methods are traffic analysis, the use of honeypots, dark

network monitors, and the employment of signature-based detection systems. It

analyzed these various techniques and mentinoed about their advantages and

disadvantages.

9.1.3 Analyzing of The Worm Defence Methods

There are various stages of the life cycle of worm defense. The life cycles

contains following steps: Prevention, prediction, detection, analysis, mitigation,

curing, vaccination and patch similar vulnerabilities. It showed how the fight against

computer worms is an on-going process without an end. It emphasized the need to

keep systems patched up and up to date and the importance of preventing a worm

incursion rather than trying to catch up with it.

There are 2 defence strategies, active and passive. Firewall, network defences and

proxy-based defences are passive defence, active worm defence is active defence

strategies.

Firewall systems are a popular network security device. When properly

configured, a firewall can enforce the security policies of a network and become an

effective tool in the defense against worms. However, even with their widespread

deployment, Code Red and Nimda were able to deeply penetrate many networks that

were otherwise protected. Altough firewall is effective tool in the defense against

worms, it is not the final solution for network security.

89

9.1.4 Modeling A Defence System Against The Computer Worms

In Chapter 8, the group based defence is modeled. This model of defence is based

on the willing co-operation of a set of hosts on a pre-arranged protocol. We

developed mathematical models for the simplest of the scenarios. Then, we went on

to develop simulations to study more complex scenarios of worm mitigation. Group

based model of worm defence is discussed with the simulations results.

From this model, and the simulations, we can determine the thresholds required

for a given tolerance of lost machines. With the threshold levels and detection unit

thus determined, we can effectively inhibit the spread of worms .

9.2 Conclusion and Future Work

Computer worms are a self-propagating computer program that is being

increasingly and widely used to attack the Internet. Because they spread extremely

fast, usually install malicious code and it could access confidential information. This

thesis concludes that worms could be very dangerous to the Internet. But there are

several techniques to mitigate the ill-effects of worms as illustrated in this thesis.

In the future work, we would like to design worm defence system. An effective

practical worm defense system is important. The following important questions will

be answered: How can firewalls cooperate with each other to block worm traffic?

How do firewalls treat traffic differently from the normal pattern? How can the

system defeat the malicious firewalls?

90

REFERENCES

Bace, R., & Mell, P. (2001). NIST Special Publication on Intrusion Detection

Systems. Retrieved June 18, 2007 from

http://download.at.kde.org/infosys/security/snort/docs/nist-ids.pdf

Chapman, D. B. (1992). Network (In)Security Through IP Packet Filtering.

Retrieved July 29, 2007 from http://www.greatcircle.com/pkt_filtering.html

Cheetancheri, S. G. (2004). Modelling a Computer Worm Defense System. Ms.

Thesis. University of California Davis in Computer Science.

Lee, K. (2006). Polymorphic Worm Detection by Instruction Distribution. Retrieved

March 19, 2007 from

http://www.isit.or.jp/lab2/kouryu/2006/postech/postech_jkim_hpc/postech_hpc_ki

hunLee.ppt

Mullen, T. (2002). The Right to Defend. Retrieved July 29, 2007 from

http://www.securityfocus.com/columnists/98

Mullen, T. (2002). Defending your right to defend: Considerations of an automated

strike-back technology. Retrieved July 31, 2007 from

http://www.hammerofgod.com/strikeback.txt

91

Munson, H. G. (1991). 928 F.2D 504: United States of America v. Robert Tappan

Morris. Retrieved January 24, 2007 from

http://floridalawfirm.com/iplaw/worm2.html

Nazario, J., Anderson, J., Wash, R., & Connelly, C. (2001). The Future of Internet

Worms. Retrieved January 29, 2007 from

http://www.blackhat.com/presentations/bh-usa-01/JoseNazario/bh-usa-01-Joes-

Nazario.pdf

Nazario, J. (2003). Defense and Detection Strategies against Internet Worms. (1th

ed.). Norwood: Artech House.

Oberman, R. K. (1998). A-2: The W.COM Worm affecting VAX VMS Systems.

Retrieved August 5, 2007 from http://www.ciac.org/ciac/bulletins/a-02.shtml

Spitzner, L. (2003). Honeypots Definitions and Value of Honeypots. Retrieved June

10, 2007 from http://www.tracking-hackers.com/papers/honeypots.html

Staniford, S., Paxson, V., & Weaver, N. (2002). How to Own the Internet in Your

Spare Time. Retrieved February 19, 2007 from

http://www.cs.pitt.edu/~mosse/3510/vern-usenix02.pdf

Wack, J., Cutler, K., & Pole, J. (2001). Guidelines on Firewalls and Firewall Policy:

Recommendations of the National Institute of Standards and Technology.

Retrieved April 29, 2007 from http://csrc.nist.gov/publications/nistpubs/800-

41/sp800-41.pdf

92

Wack, J. (2002). Keeping Your Site Comfortably Secure: An Introduction to Internet

Firewalls. Retrieved July 27, 2007 from

http://www.windowsecurity.com/whitepapers/Keeping_Your_Site_Comfortably_

Secure__Introduction_to_Firewalls.html

Weaver, N. C. (2001). Warhol Worms: The Potential for Very Fast Internet Plagues.

Retrieved March 11, 2007 from http://www.cs.berkeley.edu/nweaver/warhol.html

Wikipedia. (2007). Computer worm. Retrieved January 24, 2007 from

http://en.wikipedia.org/wiki/Computer_worm

Xia, J., Vangala, S., Wu, J. & Gao, L. (2006). Effective Worm Detection for Various

Scan Techniques. Journal of Computer Security, 14, 359-387. Retrieved February

19, 2007, from ACM database.

Zalewski, M. (2000). I Don’t Think I Really Love You, or Writing Internet Worms for

Fun and Profit. Retrieved February 17, 2007 from

http://lcamtuf.coredump.cx/worm.txt

