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DEFENCE SYSTEM MODELLING AGAINST COMPUTER WORMS 

 

ABSTRACT 

 

 

As computer networks become prevalent, the Internet has been a battlefield for 

attackers and defenders. One of the most powerful weapons for attackers is the 

computer worm. Computer worms are a self-propagating computer program that is 

being increasingly and widely used to attack the Internet. Because they spread 

extremely fast and usually install malicious code, computer worms are so dangerous.  

 

This thesis begins with definition, history and taxonomy. Also, it defines the 

structure and components of worms. It develops a life cycle model of worm defence, 

including prevention, prediction, detection and mitigation. It also discusses in detail 

about each of these techniques. It explains detection and defense techniques against 

to the computer worms. Group based  model have been developed and discussed 

with the simulations results. It concludes that computer worms are dangerous but 

there are ways and means to mitigate their ill effects. 

 

 

Keywords: Computer worms, Computer security, Network security, Defense 

system 
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BİLGİSAYAR KURTLARINA KARŞI SAVUNMA SİSTEMİ 

MODELLEMESİ 

 

ÖZ 

 

 

Bilgisayar ağlarının yaygın olması ile birlikte, saldıran ve savunanlar için internet 

bir savaş alanı oldu. Saldıranlar için en güçlü silahlardan birisi bilgisayar kurtlarıdır. 

Bilgisayar kurtları, sürekli artarak kendi kendine yayılabilen bilgisayar 

programlarıdır ve internete saldırmak için geniş bir kullanım alanına sahiptir. 

Oldukça hızlı yayıldıkları için ve genellikle zararlı kodlar yükledikleri için bilgisayar 

kurtları çok tehlikelidir. 

 

 Bu tez, bilgisayar kurtlarının tanımı, geçmişi ve sınıflandırılması ile başlıyor. 

Ayrıca, bilgisayar kurtlarının yapısını ve komponentlerini tanımlıyor. Bilgisayar 

kurtlarına karşı savunmada; önleme, tahmin, bulma ve azaltmayı içeren yaşam 

döngüsü modelini geliştirir. Ayrıca bu tekniklerin detayların da söz edilmiştir. 

Bilgisayar kurtlarını bulma ve savunma teknikleri açıklanmıştır. Hiyerarşik model 

geliştirilmiş ve simülasyon sonuçlarından bahsedilmiştir. Bilgisayar kurtlarının 

tehlikeli olduğu fakat kötü etkilerini azaltmak için yollar olduğu sonucuna varmıştır. 

 

 

 

Keywords: Bilgisayar kurtları, Bilgisayar güvenliği, Ağ güvenliği, Savunma 

sistemi 
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CHAPTER ONE 

INTRODUCTION 

 

 

This thesis provides a perspective of computer worms, explores the various worm 

technologies and popular worms of the past, present and future. It primarily deals 

with stopping a worm on its tracks without human intervention. Several strategies 

have been proposed and analyzed with simulations.  

 

 

1.1 Contribution of This Thesis To The Field 

 

This thesis begins by providing a model of a simple worm and an extensive 

background about worms of the past, present and future. It develops a simple 

comprehensible model of a worm. It discusses the various scanning techniques and 

gives a broad classiffcation of worms. It develops a life cycle model for defense 

against computer worms. It also discusses several defensive techniques and strategies 

like prevention, prediction, detection and mitigation. All the above together serves as 

a compact compendium of worm technologies for the computer security community. 

This is one of the contributions of this thesis to the computer and network security 

community. 

 

It also develops and analyzes several indigenous and innovative techniques to 

address the problem of computer worms. It develops a mitigation model, the grop 

based model. This research shows how to stop worms in its tracks without human 

intervention. These form the contributions of this thesis to the field of computer and 

network security. 

 

 

1.2 Research Objectives and Solutions 

 

The objective of this thesis is to model and defend against worm attacks without 

human intervention. Several strategies have been analyzed and with simulations. We  
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attempt to answer the following important questions: 

 

• What is a worm? 

 

• What are the components of worms and how they propagate in the 

Internet? 

 

• What are the detection methods against the worms? What are the 

advantages and disadvantages of these methods? 

 

• What are the defence strategies and methods against the worms? What are 

the strengths and weaknesses of these methods? 

 

• How can we defend against worms? 

 

To investigate these questions, we apply mathematical modeling methodology and 

verify analytical results through simulations. Mathematical models can provide 

quantitative analysis on the propagation dynamics of worms and  the effectiveness of 

defense systems. Simulations are used to verify our model. 

 

In this thesis, the following four topics are investigated: 

 

1. Worms and their scan techniques: In order to analyze the worms we start by 

providing a definition about computer worms and an extensive background about 

them including their history and taxonomy. At the core of any worm system are five 

components. A worm may contain any or all of these components, usually in some 

combination. In order to propagate itself in the Internet, a worm needs to find 

vulnerable machines and then infect them. To find vulnerable machines, a worm can 

either simply scan the entire IP address space randomly, or may perform various 

strategies to scan the entire or partial IP address space to find targeted hosts. We 

investigated various scan strategies and analyzed their spreading speed. 
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2. Analyzing of the worm detection methods: There are different methods of 

worm detection. These methods are traffic analysis, the use of honeypots, dark 

network monitors, and the employment of signature-based detection systems. These 

methods form the core of detecting both hackers and worms. The goal of our 

detection strategies is to detect nearly any type of worm with as little effort as 

possible. To do this, we will focus on the features common to most worm types and 

build strategies to detect these characteristics. While no single methods work for all 

worm types, a combination of efforts can provide more complete coverage. 

 

3. Analyzing of the worm defence methods: There are various stages of the life 

cycle of worm defense. The life cycles contains following steps: Prevention,  

prediction, detection, analysis, mitigation, curing, vaccination and patch similar 

vulnerabilities. As defence strategies against the worms, there are 2 defence 

strategies, active and passive. These strategies have some weaknesses and some 

strengths.  

 

4. Modeling a defence system against the computer worms: This model of 

defence is based on the willing co-operation of a set of hosts on a pre-arranged 

protocol. We develop mathematical models for the simplest of the scenarios. Then, 

we go on to develop simulations to study more complex scenarios of worm 

mitigation. Grop based model of worm defence is discussed with the simulations 

results. 

 

 

1.3 Thesis Outline 

 

This thesis starts off by providing a definition about computer worms and an 

extensive background about them including their history and taxonomy. Chapter 3 

presents various techniques used by worms to scan the Internet to find hosts 

susceptible to infection. The chapter following that discusses future worms. Chapter 

5 develops a life cycle model for the defense against worms. Chapter 6 analyzes 

various techniques about the worm detection. The next chapter mentions about the 
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active and passive defences against the computer worms. Grop based model of worm 

defence is discussed with the simulations results in the chapters following. The last 

chapter of this thesis present the conclusions and future directions of this research 

respectively. 
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CHAPTER TWO 

WORMS DEFINED 

 

 

2.1 Definition 

 

A computer worm is a self-replicating computer program. It uses a network to 

send copies of itself to other nodes (computer terminals on the network) and it may 

do so without any user intervention. (Wikipedia, 2007) 

 

Computer worms and viruses are typically grouped together as infectious agents 

that replicate themselves and spread from system to system. However, they have 

different properties and capabilities.   

 

Computer worms must be differentiated from computer viruses if we are to 

understand how they operate, spread, and can be defended against. Failure to do so 

can lead to an ineffective detection and defense strategy. Like a virus, computer 

worms alter the behavior of the computers they infect. Computer worms typically 

install themselves onto the infected system and begin execution, utilizing the host 

system’s resources, including its network connection and storage capabilities. 

Although many of the features of each are similar, worms differ from computer 

viruses in several key areas: 

 

• Both worms and viruses spread from a computer to other computers. 

However, viruses typically spread by attaching themselves to files (either 

data files or executable applications). Their spread requires the 

transmission of the infected file from one system to another. Worms, in 

contrast, are capable of autonomous migration from system to system via 

the network without the assistance of external software. 

 

• A worm is an active and volatile automated delivery system that controls 

the medium (typically a network) used to reach a specific target system.  
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• Viruses, in contrast, are a static medium that does not control the 

distribution medium. 

 

• Worm nodes can sometimes communicate with other nodes or a central 

site. Viruses, in contrast, do not communicate with external systems. 

 

 

2.1.1 A Formal Definition 

 

From the 1991 appeal by R. T. Morris regarding the operation of the 1988 worm 

that bears his name, the court defined a computer worm as follows: 

 

In the colorful argot of computers, a “worm” is a program that travels from one 

computer to another but does not attach itself to the operating system of the computer 

it “infects.” It differs from a “virus,” which is also a migrating program, but one that 

attaches itself to the operating system of any computer it enters and can infect any 

other computer that uses files from the infected computer. 

 

This definition, as we will see later, limits itself to agents that do not alter the 

operating system. Many worms hide their presence by installing software, or root kits, 

to deliberately hide their presence, some use kernel modules to accomplish this. Such 

an instance of a worm would not be covered by the above definition. 

 

We will define a computer worm as an independently replicating and autonomous 

infection agent, capable of seeking out new host systems and infecting them via the 

network.  

 

 

2.2 Worm History  

 

The term worm comes from the book Shockwave Rider by John Brunner. 

Published in 1975, it is a science fiction novel about the future of computing. In the 
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novel, the heroes defeat a government that has become an enemy by unleashing a 

computer worm. It congests the network to such an extreme that the government 

must shut it down. 

 

 

2.2.1 The First Computer Worm 

 

The Morris worm or Internet worm was one of the first computer worms 

distributed via the Internet; it is considered the first worm and was certainly the first 

to gain significant mainstream media attention. It also resulted in the first conviction 

under the 1986 Computer Fraud and Abuse Act. 

 

According to its creator, the Morris worm was not written to cause damage, but to 

gauge the size of the Internet. An unintended consequence of the code, however, 

caused it to be more damaging: a computer could be infected multiple times and each 

additional process would slow the machine down, eventually to the point of being 

unusable. The Morris worm worked by exploiting known vulnerabilities in Unix 

sendmail, Finger, rsh/rexec and weak passwords. 

 

 

2.2.2 Cycles of Worm Releases 

 

Just as vulnerabilities have a window of exposure between the release of 

information about the vulnerability and the widespread use of exploits against them, 

worms have an interval of time between the release of the vulnerability and the 

appearance of the worm. Nearly any widespread application with a vulnerability can 

be capitalized on by a worm. 

 

Table 2.1 shows the interval between the release of information about a 

vulnerability and the introduction of a worm that has exploited that weakness. Some 

worms are fast to appear, such as the Slapper worm (with an interval of 11 days), 

while others are much slower such as the sadmind/IIS worm (with a minimum 

internal of 210 days). This table clearly illustrates the need to evaluate patches for 
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known vulnerabilities and implement them as efficiently as possible as a means to 

stop the spread of future worms. 

 

Table 2.1 Interval between Vulnerability Announcement and Worm Appearance 

Name Vulnerability Announced  Worm Found Interval(Days) 

SQLsnake November 27, 2001 May 22, 2002 176 

        

Code Red June 19, 2001 July 19, 2001 30 

        

Nimda May 15, 2001 September 18, 2001 126 

  August 6, 2001   42 

  April 3, 2001   168 

        

Sadmind/IIS December 14, 1999 May 8, 2001 511 

  October 10, 2000   210 

        

Ramen July 7, 2000 January 18, 2001 195 

  July 16, 2000   186 

  September 25, 2000   115 

        

Slapper July 30, 2002 September 14, 2002 45 

        

Scalper June 17, 2002 June 28, 2002 11 

        

Sapphire July 24, 2002 January 25, 2003 184 

 

 

This relates directly to the importance of the rapid deployment of security patches 

to hosts and the sound design of a network. Worms can appear rapidly (as the 

Slapper worm did), quickly changing the job of a security administrator or architect 

from prevention to damage control. 

 

 

2.3 Worm Taxonomy 

 

Figure 2.1 shows a generalized lineage of many of the worms discussed here. 

From their roots in the research at Xerox PARC to the Morris worm, UNIX and 

Windows worms have evolved somewhat independently. Although they share key 

concepts, the methodology of spreading differs between the two types of hosts. 
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       Figure 2.1 A Lineage of Internet Worms. UNIX hosts (left-hand column) and Windows hosts 

         (right-hand column) 

 

 

2.3.1 Unix Targets 

 

While the free UNIX systems (Linux and the BSD systems) have lagged far 

behind Windows in terms of popularity, they have been the targets of several worms 

in recent years. Although these worms have not had as large an impact on the overall 

performance and security of the Internet when compared to Windows worm incidents, 

their impact has been noticeable, as described in the preceding chapter. 

 

The popularity of free UNIX systems as a target for worms is probably due to 

three factors. First, they are a popular choice as a workstation platform for many 

attackers, giving them ample time to develop familiarity with the weaknesses in 

UNIX systems. Secondly, UNIX lends itself well to scripting and networking, which 
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are backbone assets in worm systems. Last, compilers are freely available for the 

systems, meaning that attackers can develop binary worm components for use on 

these systems. 

 

 

2.3.2 Windows Targets 

 

At this time, Microsoft Windows systems make up a majority of the personal 

computers today. As such, they make an attractive target for a worm to attack. 

Several recent incidents have shown the scale of damage that can be done by 

attacking even just one vulnerability in these systems. Windows worms have quickly 

gone from simple to efficient, each time increasing their capability to do damage. 

 

More than 90% of the personal computer systems in operation use some form of 

Microsoft Windows. This homogeneous environment mimics that capitalized on by 

the Morris worm in 1988. By developing an attack for one type of widely deployed 

host, an attacker can expect to leverage a broad base for their worm. 

 

The more devastating Windows worms have attacked IIS Web servers. Web 

servers, by their design, communicate to the world at large and handle requests from 

a multitude of clients. IIS, Microsoft’s Web server software, has been the subject of 

much scrutiny by the security community. As flaws have been found, exploits have 

been developed against them, some of these being incorporated into worms. 

 

 

2.4 Components of Worm 

 

At the core of any worm system are five components. A worm may contain any or 

all of these components, usually in some combination. These components are: 

 

• Reconnaissance: The worm network has to hunt out other network nodes to 

infect. This component of the worm is responsible for discovering hosts on 
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the network that are capable of being compromised by the worm’s known 

methods. 

 

• Attack components: These are used to launch an attack against an identified 

target system. Attacks can include the traditional buffer or heap overflow, 

string formatting attacks, Unicode misinterpetations (in the case of IIS 

attacks), and misconfigurations. 

 

• Communication components: Nodes in the worm network can talk to each 

other. The communication components give the worms the interface to send 

messages between nodes or some other central location. 

 

• Command components: Once compromised, the nodes in the worm 

network can be issued operation commands using this component. The 

command element provides the interface to the worm node to issue and act 

on commands. 

 

• Intelligence components: To communicate effectively, the worm network 

needs to know the location of the nodes as well as characteristics about them. 

The intelligence portion of the worm network provides the information 

needed to be able to contact other worm nodes, which can be accomplished 

in a variety of ways. (Nazario, 2001) 

 

 

2.4.1 Reconnaissance Component 

 

This is the mechanism by which the system extends its view of the world around 

itself, determines information about the systems and networks around it, and 

identifies targets.  

 

When an attacker performs these actions, they have at their disposal a suite of 

methodologies. By identifying the characteristics which define a system tobe of one 
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type, or more importantly of a vulnerability, they can identify systems which will 

become targets. 

 

This component of the worm performs these same processes, but in an automated 

fashion. This includes scans and sweeps, such as port scans of a block of machines or 

service sweeps of a network, which are usually active in nature. The system sends 

stimuli at a possible target, and based upon the responses received it can determine 

what hosts are active and listening, what ports are open and accessible, and even 

what operating system the target is running. The configuration of the machine may 

also be examined by the worm to determine trusted hosts, a technique utilized by the 

Morris worm. 

 

Having analyzed the network and hosts around itself, the system node can identify 

targets on a variety of criteria. This includes the capabilities available to the system, 

position in a  network in relation to a goal, or the system profile, such as a poorly 

configured, rarely monitored target.  

 

Currently, a variety of methods exist to obtain this information in a manual 

fashion. This can be readily scripted to perform wide area intelligence gathering, but 

the data is usually  manually analyzed. By incorporating these techniques into a 

worm system component, the  system can gain information as it progresses. This 

information can be shared using  communications channels  and stored in the 

intelligence component, if so desired. 

 

 

2.4.2 Attack Component 

 

The worm’s attack components are their most visible and prevalent element. This 

is the means by which worm systems gain entry on remote systems and begin their 

infection cycle. These methods can include the standard remote exploits, such as 

buffer overflows, cgi-bin errors, or similar, or they can include Trojan horse methods.  
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This component has to be further subdivided into two portions: the platform on 

which the worm is executing and the platform of the target. This attack element can 

be a compiled binary or an interpreted script, which utilizes a network component 

from the attacking host, such as a client socket or a network aware application, to 

transfer itself to its victim. 

 

A main factor of the attack component is the nature of the target being attacked, 

specifically its platform and operating system. Attack components that are limited to 

one platform or method rely on finding hosts vulnerable to only this particular 

exploit. For a worm to support multiple vectors of compromise or various target 

platforms of a similar type, it must be large. This extra weight can slow down any 

one instance of a worm attack or, in a macroscopic view, more quickly clog the 

network. 

 

Other attacks include session hijacking and credential theft (such as passwords 

and cookies) attacks. Here the attack does not involve any escalation of privileges, 

but does assist the worm in gaining access to additional systems. 

 

These attack elements are also most often used in intrusion detection signature 

generation. Since the attack is executed between two hosts and over the network, it is 

visible to monitoring systems. This provides the most accessible wide area 

monitoring of the network for the presence of an active worm. However, it requires a 

signature of the attack to trigger an alert. Furthermore, passive intrusion detection 

systems cannot stop the worm, and the administrator is alerted to the presence of the 

worm only as it gains another host. 

 

2.4.3 Communication Component 

 

Because the nodes of the worm network reside on different systems, they must 

have some form of communications. This allows for the transfer of information. For 

reconnaissance information, network vulnerability and mapping information must be 

distributed to nodes which can use this information in an attack. For commands, they 
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must be able to send requests to the action nodes, to initiate a scan, an attack, or other 

activities. 

 

Communications channels are usually hidden by the worm using the same 

techniques hackers use when they have manually compromised a machine, such as 

rootkits. 

 

They typically include network clients to various services or transport 

mechanisms such as ICMP packets. 

 

 

2.4.4 Command Component 

 

A system of nodes is only worthwhile if they are able to be controlled by some 

means. This can either be an interactive control mechanism, where a user is able to 

direct actions of the  node, or through some channel for the system itself to control a 

node. 

 

In this part, worm networks are akin to a network of systems in a distributed 

denial of service (DDoS) ring. Usually these nodes have two types of command 

interfaces, one interactive, where a remote control shell is obtained, and one that is 

automatic, where the node is in  control of some master. 

 

Traditionally the attacker has placed some form of a backdoor entry into the 

system. On UNIX systems this can include a trojanned login daemon which is 

configured to accept a special passphrase that grants administrative access. On 

desktop systems, such as Windows PC's and Macintosh systems, this can be a simple 

`Trojan Horse' program, which listens on a network socket for commands. 

 

The objective is quite simple, to allow for the system itself, using a master-slave 

node relationship, to have an extended reach or capability, or more simply to allow 

an intruder unfettered access to the system to manually command it. In one form or 

another, most worm systems have some form of a command interface. This prevents 
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the worm system from  lacking any structure, so that it may be used in a controlled 

fashion. Commands such as file uploads or downloads, status reports, or actions such 

as “attack this target” have all been possible through this interface. 

 

The command interface can be connected to by another node of the worm network, 

such as the parent or a child, or manually by an attacker. The command interface is 

tightly coupled to the communications channels, but is separate as different 

communications mechanisms can be used to contact the same command interface. 

 

 

2.4.5 Intelligence Component 

 

The worm system maintains a record of its members and their locations in some 

form or another. This is useful so that the nodes can brough together for some 

additional action. Control, through the command interface, can be taken by a person 

or by another node of the worm system. However, this requires knowing how to 

contact the nodes, which requires knowing their network locations. 

 

The simplest fashion for this to occur is via an update message from a newly 

acquired node. The new member's address, and any pertinent information, and sent to 

a some facility and recorded. 

 

This information can manifest itself in intangible ways, as well. For example, 

many  Windows worms use their presence on a network chat room, such as IRC, an 

an intelligence mechanism. 

 

They arrive once infected, announce their location and any passphrases needed to 

gain entry, and simply sit and wait. In this fashion, the worm network knows about 

its members, their location and potentially any capabilities they possess. 
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2.4.6 Assembly of The Components 

 

Figure 2.2 shows the pieces as they would be assembled in a full worm. For 

example, the reconnaissance component sends information to the attack module 

about where to launch an attack. It also sends this information to an intelligence 

database, possibly using the communication interface. This communications 

interface is also used to interface to the command module, calling for an attack or the 

use of the other capabilities against a target. 

 

 
 

Figure 2.2 Assembly of the worm's components 

 

 

2.5 Worm Traffic Patterns 

 

The worm network actively seeks new hosts to attack and add to the collection 

nodes in the network. As it finds hosts and attacks them, the worm network grows 

exponentially. This growth pattern mimics patterns seen for communities occurring 

naturally,such as bacteria and weeds.  
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Worm infections can grow in an exponential pattern, rapidly at first and then 

slowing as a plateau value is reached. This is a typical kinetic model that can be 

described by a first-order equation: 

 

Nda = (Na)K(1-a)dt 

 

It can then be rewritten in the form of a differential equation: 

 

dt

da
 = Ka(1 - a) 

 

This describes the random constant spread rate of the worm. Solving the 

differential equation yields 

 

a = e
K(t-τ) 

 / (1 + e
K(t-τ)

 ) 

 

where a is the proportion of vulnerable machines that have been compromised, t is 

the time, K is an initial compromise rate, and T is the constant time at which the 

growth began. Rate K must be scaled to account for machines that have already been 

infected, yielding e
K(t-τ)

 

 

While more complicated models can be derived, most network worms will follow 

this trend. We can use this model to obtain a measure of the growth rate of the worm. 

Some worms, such as Nimda and Code Red, have a very high rate constant k 

meaning that they are able to compromise many hosts per unit of time. Other worms, 

such as Bugbear and SQL Snake, are much slower, represented in the smaller rate 

constants for growth. 

 



 

 

18 

 

      Figure 2.3 Worm Traffic Pattern 

 

Figure 2.3 shows a simple graph of using several values of k. The equation shown 

in this figure is the sigmoidal growth phase of a logistic growth curve. The initial 

phase of exponential growth and the long linearphase as the worm spread scan be 

observed. As the worm saturates its vulnerable population and the network, its 

growth slows and it approaches a plateau value. 

 

These equations are highly idealized, because the value of N is assumed to be 

fixed. This assumes that all hosts that are connected at the outset of the worm attack 

will remain attached to the network. This constancy assumes that hosts will remain 

vulnerable and patches will not be applied. Furthermore, the model assumes a similar 

amount of bandwidth between hosts which also remains constant during the worm’s 

life cycle. In the real world, not all hosts have the same amount of connectivity, and 

bandwidth is quickly consumed by the worm network as it grows to fill the space. 

Despite this, these equations provide a good representation of the observed data for a 

reasonably fast moving worm. 
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CHAPTER THREE 

WORM SCAN TECHNIQUES 

 

 

In order to propagate itself in the Internet, a worm needs to find vulnerable 

machines and then infect them. To find vulnerable machines, a worm can either 

simply scan the entire IPv4 address space randomly, or may perform various 

strategies to scan the entire or partial IPv4 address space to find targeted hosts. In 

this section, we discuss various scan strategies and analyze their spreading speed. 

 

 

3.1 Random Scan 

 

A worm randomly searches the entire IPv4 address space, which contains 2
32

 

possible IP addresses, to find vulnerable machines. We call such scan method 

random scan. There are two existing models to simulate the random scan worm 

propagation. One is the epidemiological model proposed by Kephart and the other is 

AAWP model proposed by Chen. (Xia, Vangala, Wu, & Gao, 2006) 

 

 

Figure 3.1 Comparison between AAWP model and Weaver’s 

simulator  
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Due to the equivalence of these two models as shown in Figure 3.1, we adopt the 

AAWP model in this thesis. Based on the AAWP model, the spread of worm is 

characterized as follows: 

 

ni+1 = ni + [N – ni][1 – (1 – 1/Ω)
sn

i]      (1) 

 

N: the total number of vulnerable machines in the Internet 

Ω: number of the addresses that a worm performs random scan 

s: the scan rate (the number of scan packets sent out by an infected machine per 

time tick) 

ni: the number of infected machines up to time tick i. 

 

In Equation (1), the first term on the right hand side denotes the number of 

infected machines alive at the end of time tick i. The term, N – ni, denotes the 

number of vulnerable machines not infected by time tick i. The remaining term, (1 – 

1/Ω)
sn

i, is the probability that an uninfected machine will be infected at the end of 

time tick i + 1. We do not consider the death rate due to computer crash and patching 

rate due to maintenance here. Code Red is a typical example of random scan worms. 

 

 

3.2 Selective Random Scan 

 

Instead of scanning the entire IPv4 address space blindly, a worm can scan the 

partial IPv4 address space that is more likely to be used in the Internet. This will help 

the worm spread faster by reducing the waste of time on scanning unallocated 

addresses. The selected address list can be obtained from other resources such as 

IANA’s IPv4 address allocation map. Such scan technique with target selection is 

called selective random scan. The Slapper worm has used this scan technique to 

spread rapidly. However, worms using the selective random scan need to carry 

information about the selected target addresses. Carrying such information enlarges 

the worm’s code size and slows down the spreading and infection processes. This 
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information can be hundreds of bytes long and therefore, may not provide much 

advantage over the random scan. 

 

The SQL Snake worm array is shown next. This array was used to generate a 

biased list of addresses for the worm to probe and attack: 

 

sdataip = new Array(216, 64, 211, 209, 210, 212, 206, 61, 63, 202, 208, 24, 207, 

204, 203, 66, 65, 213, 12, 192, 194, 195, 198, 193, 217, 129, 140, 142, 148, 128, 

196, 200, 130, 146, 160, 164, 170, 199, 205, 43, 62, 131, 144, 151, 152, 168, 218, 4, 

38, 67, 90, 132, 134, 150, 156, 163, 166, 169); 

 

This array represents the first octet in the network address to scan, and it has 

been chosen because these networks lie in the space between class A (0/8 through 

126/8) and class C networks (ending at 223.255.255.255), inclusive. This array is 

then used to build a second array with a nonrandom frequency of these numbers. 

The second octet is a random number chosen from between 1 and 254, with the 

scanner operating on more than 65,000 hosts (in a /16 network block) sequentially. 

 

However, not all of the address space that can be allocated and used in this range 

is actually used. For various reasons, many networks are empty and have few or no 

hosts assigned to them. If the worm were to attempt to probe or scan these networks, 

the rate of scanning would not be bound by the number of hosts to scan, but instead 

by the timeout values for the inability to connect. When a network range is scanned, 

the number of addresses attempted can grow to the tens of thousands, causing a 

significant delay in the worm’s overall spread. 

 

To compare the spreading speed between random scan worms and selective 

random scan worms, we   do not consider such additional payload information on 

selected target addresses. Figure 3.2 compares the spreading speed of worms that 

use random scan and selective random scan techniques. 

 



 

 

22 

 

  Figure 3.2 Spreading speed of random scan and selective random 

 

The  parameters are chosen as the same for both the random scan and the selective 

random scan. The total number of vulnerable machines N is 500,000; the scan rate s 

is 2 scans/second. The random scan worms use the entire IPv4 address space which 

has about 2
32

 ≈ 4.3 x 10
9
  addresses. The selective random scan worms use only 162 

/8 address blocks which contain about 2.7 x 10
9
 addresses. Figure 3.2 demonstrates 

that worm can spread much faster using a selective address pool than using the entire 

IPv4 address space. 

 

 

3.3 Hit-list Scan 

 

Nicholas Weaver described a new type of worm and he dubbed it the Warhol 

worm. We analyzed this worm in Chapter 4. The biggest jump in design in a Warhol 

worm is the use of a hit list to scan and attack. This hit list contains the addresses and 

information of nodes vulnerable to the worm’s attacks. This list is generated from 

scans made before unleashing the worm. For example, an attacker would scan the 

Internet to find 50,000 hosts vulnerable to a particular Web server exploit. 
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This list is carried by the worm as it progresses, and is used to direct its attack. 

When a node is attacked and compromised, the hit list splits in half and one-half 

remains with the parent node and the other half goes to the child node. This 

mechanism continues and the worm’s efficiency improves with every permutation. 

 

The exact speed with which near complete infection of the Internet would occur is 

debatable. Weaver’s estimates for probe size, infection binary size, the speed with 

which this infection can be transferred between parent and child node, and network 

bandwidth are all speculative. However, there is no doubt that this infection design is 

highly effective. 

 

While effective, this mechanism has several drawbacks. First, the necessary scans 

are likely to be noticed. While widespread vulnerability scanning has become 

commonplace on the Internet and is possibly accepted as background noise by some, 

widespread scanning for the same vulnerability still generates enough traffic in the 

monitoring community to raise some flags. Second, the network bandwidth 

consumed by a fast moving worm is likely to choke itself off of the network. As 

more worms become active, network connections fill, restricting the ability for the 

worm to move as efficiently. However, if the hit list were to be sorted hierarchically, 

so that larger bandwidth networks were hit first and the children nodes were within 

those networks, concerns about bandwidth could be minimized. 

 

 

3.4 Routable Scan 

 

The fourth type of network scanning that worms perform is typically called 

routable scan.  In order to further reduce scanning address space, a worm may avoid 

scanning the address space that could not be routed in the Internet. It means that a 

worm can obtain all routable addresses as scan targets in order to spread fast and 

effectively. However, this worm has to carry a database of routable IP addresses in 

its code. The size of this database will affect the propagation speed. A database of 

larger size will lead to a longer infection time, resulting in slower worm propagation.  
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               Figure 3.3 Spreading speed of random scan and routable scan 

 

The worm that employs routable scan needs to scan only 10
9
 IP addresses instead 

of 2
32

 addresses, which is four-fold smaller. Hence, routable scan worm has a 

scanning space of size  Ω ≈ 10
9
. For other parameters, we use the same settings as 

random scan. Figure 3.3 shows the spreading speed of routable scan and random scan. 

We find that if random scan worm needs to spend about 24 hours to infect almost 

whole vulnerable machines, the routable scan worm only needs to spend about 7 

hours to do it. Clearly, routable scan strategy greatly increases the worm spreading 

speed. 

 

 

3.5 Scanning Constraints 

 

Some interesting problems arise for the worms that try to spread fast. Their ability 

to scan the network are usually constrained by bandwidth limits or latency limits: 

 

Bandwidth Limited: Worms such as the Slammer that use UDP to spread face 

this constraint. Since there is no connection establishment overhead, the worm can 



 

 

25 

just keep transmitting packets into the network without expecting an 

acknowledgement from the victim. Modern servers are able to transmit data at more 

than a hundred Mbps rate. 

 

Let us perform some simple calculations. Consider a Slammer-like worm that uses 

a single UDP packet of 400 bytes to spread. It resides on an infected machine with a 

100Mbps link to the Internet. Assuming the network is otherwise quiescent, the total 

capacity of the link divided by the number of bits in the worm packet gives the 

scanning rate. Initially, this is 100x 10
6
 / (400 x 8) ≈ 30, 000 scans per second. 

 

But the network soon saturates with traffic from several copies of the same worm 

from different victims or the same victim, each of which generates data at its 

maximum possible rate. As a result, the spread of the worm is constrained. Thus a 

worm becomes a bandwidth limited worm. 

 

Latency Limited: A worm that uses TCP to spread is constrained by latency. 

These kind of worms need to transmit a TCP-SYN packet and wait for a response to 

establish a connection or timeout. The worm is not able to do anything during this 

waiting time. In effect, this is lost time for the worm. To compensate a worm can 

invoke a sufficiently large number of threads such that the CPU is kept busy always. 

However, in practice, context switch overhead is significant and there are insufficient 

resources to create enough threads to counteract the network delays. Hence the worm 

quickly reaches terminal spread speed. 

 

 

3.6 Summary 

 

We described various scanning techniques that are employed by worms. Hit-list 

scanning seems to be the most effective to spread a worm in the smallest amount of 

time possible. This chapter explained the bandwidth and latency constraints faced by 

high-speed worms.   
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CHAPTER FOUR 

FUTURE WORMS 

 

 

4.1 Intelligent Worms 

 

A Polish security researcher, Michal Zalewski, released a paper describing a 

design for a smarter worm. Entitled “I Don’t Think I Really Love You, or Writing 

Internet Worms for Fun and Profit,” the ideas in Zalewski’s paper, provide a 

compelling vision of worms. Many of the techniques he describes have been 

incorporated into tools used by attackers during unautomated attacks. 

 

The analysis begins with the idea that the Melissa virus was not as devastating as 

it could have been. After all, the virus used a simple engine to spread, always 

executed using the same mechanism, and thus had a static signature. Many 

mechanisms exist to detect and disable such worms and viruses, as evidenced by the 

large antivirus industry. 

 

Zalewski and other hackers introduces a project which name is Samhain. 

Intending to design a more effective Internet worm, they listed seven requirements 

and guidelines for their system: 

 

• In order to achieve the largest possible dispersal, the maximum number of 

target hosts must be used. For this, it should be portable. It means that it 

should be compatible with all of the possible operating systems and the 

hardware arhitectures.  

 

• Invisibility from detection. Once found, the worm instance can be killed on 

the host, disrupting the worm network. 

 

• Independence from manual intervention. The worm must not only spread 

automatically but also adapt to its network. 
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• The worm should be able to learn new techniques. Its database of exploits 

should be able to be updated. 

 

• Integrity of the worm host must be preserved. The instance of the worm’s 

executables should avoid analysis by outsiders. 

 

• Avoid the use of static signatures. By using polymorphism, the worm can 

avoid detection methods that rely on signature-based methods. 

 

• Overall worm net usability. The network created by the worm should be able 

to be focused to achieve a specific task. (Zalewski, 2000) 

 

From these seven requirements came an implementation in pieces that, when 

assembled, formed a worm system.  

 

By far one of the most challenging things the Samhain worm would have to 

achieve is portability. Source code that is intentionally written and extensively tested 

has difficulty in doing this correctly under all circumstances. Because of their “fire 

and forget” nature, worms do not have the luxury of debugging in the field. 

 

The Samhain worm attempts to achieve this by relying as little as possible on 

architectural specifics. This includes favoring interpreted languages over compiled 

languages when possible and using generic coding techniques that attempt to use the 

most common factors available. While not all languages are present between UNIX 

and Windows, for example, enough functionality is possible. Furthermore, with 

additional features within the worm, once built on one system, a worm component 

can easily be requested and installed by any node. 

 

The overriding philosophy for this design decision is that for a worm to be truly 

disruptive and effective, it has to affect as many hosts on the network as possible. 

When limited to, say, Linux or Microsoft Windows, only a part of the total possible 

space is explored by the worm. Enough vulnerabilities exist between these major 
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hosts that they can be used to target nearly all hosts on the Internet, creating a large-

scale disruption and problem worse than any seen previously. 

 

Once inside the child host, Zalewski notes, the worm needs to attempt some form 

of invisibility. This sort of hiding is desirable because the worm will want to survive 

on the host for as long as possible. A longer lived worm can find more hosts and 

attack more targets, increasing the worm’s spread. This invisibility is necessary 

mainly to hide from system administrators or investigators.  

 

The worm can utilize either of two different main mechanisms for hiding on a 

system. The first method does not rely on privileged execution, but instead hides in 

the open. Because most systems are busy, the worm simply adopts the name of a 

process on the system. This might include processes that have multiple instances of 

themselves running, such as “httpd.” In doing so, an administrator would most likely 

skip right over the worm process, not noticing its presence. 

 

The second method relies on the worm processes having elevated privileges on 

the target system. In this case, the new processes can insert kernel modules that can 

redirect system calls. These altered system parameters can be used to hide worm files 

and processes on a system. Additionally, altered binaries on a host that simply do not 

report the worm’s processes and activities can also be inserted into the system. 

 

The next design requirement for the worm that Zalewski described is the ability to 

operate independently. While worms do replicate and work automatically, in this 

scenario this requirement is more significant. Because the worm has to target 

multiple host types and adapt to the local environment in order to hide itself, the 

worm’s intelligence must be beyond that of most worms. 

 

To accomplish this, Zalewski proposes that a database of known attack methods 

and exploits be made available to the worm. For example, a worm encounters a host 

running a particular server version and launches one of the attacks it knows about. 

The attacks focus on platform independence, such as file system races and 
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configuration errors, rather than architecturedependent attacks such as buffer 

overflows and signal races. This gives the worm the platform independence specified 

by the first design goal. Known attacks would be sorted by their effectiveness with 

the list passed to the child nodes. The executables for the worm could also be 

distributed from other nodes in the system. For example, when a node is attacked but 

it lacks any means to compile the executable, or the parent node is missing the 

binaries for the child node, they are simply retrieved from another node that already 

has these pieces. 

 

An additional design goal for the worm described by Zalewski is the ability to 

update to learn new attack methods. To do this, the worm nodes would establish a 

network, much like those discussed in earlier chapters. From one or more central 

sites the worm network would receive updates to this database of attack methods, 

allowing it to adapt to new methods and capabilities, improving its overall life span. 

 

In the paper, Zalewski revives an older method for finding new hosts to attack—

observing the host system’s behaviors. The Morris worm found new victims to attack 

by investigating the list of trusted hosts. The worm designed by Zalewski would 

observe the servers to which the worm node normally connects (from its users) and 

attack them. The primary benefit of this is the ability to hide in the normal traffic for 

the host, and also being able to observe some facets of the target server before an 

attack is launched. 

 

Two additional methods are described to achieve the design goal of maintaining 

the integrity of the worm node. The first is to hide from any monitoring and 

investigation by detaching from process tracing methods. The worm simply detects 

the attachment of a process tracing facility and disables it while continuing its 

execution. This hampers investigation and, sometimes, sandboxing of the executable. 

 

Secondly, the use of cryptographically signed updates means that an adversary 

would encounter difficulty in injecting updates that would compromise the worm 

node. These would include poison or empty updates that would effectively disable 
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the worm node. These sorts of attacks are described in more detail in Chapter 7. By 

ensuring that only trusted updates are inserted into the system, the overall integrity of 

the worm node can be maintained. 

 

One of the most commonly used detection methods is a static signature. As 

described in Chapter 6, these can include log signatures, network attack signatures, 

or file signatures. To bypass these detection methods, some viruses employ a strategy 

termed polymorphism. The worm described by Zalewski also uses such a principle. 

 

The fundamental method used by malicious polymorphic code is simple 

encryption, with decryption occurring at run time. By using a random key each time, 

the encrypted file has a different signature. In this way, the malicious payload is able 

to escape signature detection. 

 

The worm designer’s final goal is to make it usable. The worm must do more than 

simply spread as far and as wide as possible. It must be usable for some higher 

purpose. While it may be tempting to develop the worm initially with this ultimate 

use in mind, one strategy outlined by Zalewski was to have the worm spread to its 

final destinations and then use the update capabilities to begin its mission. This 

purpose could include the retrieval of sensitive files, destruction of data, or network 

disruption. 

 

It is interesting to note that some of the adaptations have been used by worms 

since Zalewski’s paper. The Adore worm, for example, used kernel modules to hide 

its presence on a host. Variants of the Slapper worm would use the process name 

“httpd” to hide in with other Web server daemon processes it used to gain entry to 

the system. In this latter case, the worm process was distinguished by its lack of 

options similar to the normal web server daemon processes. 

 

Furthermore, the use of multiple forking to evade process tracing has been found 

in the wild. While this makes investigation and sandboxing difficult, it is not 

impossible. An additional design goal that has been seen in the wild for many years 
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is the use of polymorphism. This design premise was borrowed from the world of 

computer viruses, where polymorphic viruses have been found in the field for several 

years. They present a significant challenge to detection and investigation, but not a 

total one. 

 

Two other design ideas developed by Zalewski have also been seen in worms 

found in the wild. Updatable worms have been found, namely, the Windows Leaves 

worm. Using a modular architecture, updates can be distributed on the Internet and 

the worm can retrieve them. Second, multiple attack vectors are not uncommon for 

worms to use, though none have presented a sophisticated system for sorting their 

attack mechanisms or attempted to use platform-independent methods. 

 

 

4.2 Modular and Upgradable Worms 

 

Nazario describes worms on the basis of the five components outlined in Chapter 

2: reconnaissance actions, attack capabilities, a command interface, communication 

mechanisms, and an intelligence system. These components were then identified in 

three existing worms found in the wild to illustrate how they can be combined into a 

larger functional worm. 

 

In the analysis of the potential future of Internet worms, there are several 

problems with the design and implementation of current worms. These are necessary 

to assess a likely future for worm designs. The first limitation is in the worm’s 

capabilities. These limitations are found in all aspects of the worm’s behavior, 

including its attack and reconnaissance actions. For network-based intrusion 

detection, the signatures of the remote attacks can be quickly identified and 

associated with the spread of the worm. This reconnaissance traffic can also be 

associated with the worm, identifying the source nodes as compromised. 
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The second major problem with worms, they have a finite set of known attacks 

they can use. They have a limited pool of potential targets. It means that limited 

lifespan for the worms. 

 

Finally, a worm that does utilize a database of affected hosts typically uses a 

central intelligence database. The central location means that the worm is open to full 

investigation. An attacker or investigator can easily enumerate all of the worm nodes 

and either overtake them or clean them up. Alternatively, an attacker or investigator 

can move to knock out the location, either by firewalling the destination at the 

potential source networks or at the incoming transport mechanism. Examples of this 

include an e-mail inbox, a channel in a network chat system, or a machine to which it 

is connected directly. By blocking the delivery of the updates from the new nodes to 

the central source, no additional information is gathered about the worm. 

 

 

4.3 Warhol Worms 

 

Nicholas Weaver proposed a new model for worm spread. (Weaver, 2001) This 

model was dubbed the Warhol worm. A Warhol worm is an extremely rapidly 

propagating computer worm that spreads as fast as physically possible, infecting all 

vulnerable machines on the entire Internet in 15 minutes or less. The term is based on 

Andy Warhol's remark that "In the future, everyone will have 15 minutes of fame". A 

worm author could collect a list of 10,000 to 50,000 potentially vulnerable machines, 

ideally ones with good network connections. When released onto a machine on this 

hit-list, the worm begins infecting hosts on the list. When it infects a machine, it 

divides the hit-list into half, communicating one half to the recipient worm and 

keeping the other half. The creation of the hit list can be readily accomplished using 

existing Internet mechanisms. These mechanisms were enumerated by Staniford: 

 

• Single-source scans: Utilizing a single, well-connected host, the entire 

Internet space can be scanned for known vulnerabilities, and these data 

organized for retrieval later. The speed of any scan will depend on the 
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bandwidth available to the source, the nature of the scanning tool (such as the 

number of threads available to it), and the data gathered. A simple TCP 

connect scan, for example, will consume fewer resources than a service 

analysis or even a banner grab. 

 

• Distributed source scans: Utilizing the same type of network used by DDoS 

systems, multiple sources can be used to scan the Internet for vulnerabilities. 

The distributed nature of the scan will improve efficiency as well as mask the 

scale of the scan, because the aggregate bandwidth will scale with the 

network. In either case, single host or distributed, large-scale scans no longer 

receive much attention from the Internet community due to their 

pervasiveness. Furthermore, if speed is not a concern, the scan can hide 

below the threshhold of the Internet security community at large. 

 

• DNS searches: Some types of servers are so well advertised by the DNS 

system, such as name servers (using NS records) and mail servers (using MX 

records) that they can be enumerated via a simple DNS query. 

 

• Public survey projects: Web servers are well categorized by their server 

address, type, features, and usually the banner by projects such as the Netcraft 

survey. Using this database, gathered by others for use in a respected project, 

could save the attackers time and make building a large hit list a relatively 

easy task. 

 

• Passive data gathering: Many vulnerable systems advertise themselves on 

the Internet without any work required by an attacker. These include peer-to-

peer networks as well as nodes affected by other worms, announced as they 

scan for new victims. Well-connected sites could gather lists of hundreds of 

thousands of vulnerable hosts due to these sorts of actions. (Staniford, 2002) 
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4.4 Flash Worms 

 

An improvised Warhol strategy would be to program the worm to divide the 

hit-list into `n' small blocks instead of 2 huge ones, infect an high-bandwidth 

address in each block and pass on to the child worm the corresponding block. 

This process would be repeated by each child worm. 

 

A threaded worm could start infecting hosts before it had received the full host 

list from its parent to work on. This maximizes the parallelism of the process, and 

the child worm can also start looking for multiple children in parallel. 

 

 

4.5 Polymorphic Worms 

 

Any worm that changes its form or functionality as it propagates from 

machine to machine can be called a Polymorphic Worm. 

 

 

                                          Figure 4.1 Components of a polymorphic worm 
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The Worm Engine contains an additional module called the Encryption 

Engine or the Mutation Engine that is responsible to change the form or look of 

the worm when it moves from one host to another. Figure 4.2 shows the typical 

polymorphic worm structure. (Lee, 2006) 

 

 

 

 

 

 

Figure 4.2 Typical polymorphic worm structure 

 

 

The encryption engine could be something very simple, for example, that just 

inserts some no-ops into the worm code to evade systems that use signatures for 

detection or could be something as sophisticated as encrypting the entire worm 

including itself using a random seed for every hop so as to evade detection during 

transit. It could even reprogram itself to exploit different vulnerabilities on 

depending on the host operating system or other such parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 4.3 Polymorphic worm cycle 
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4.6 Miscellaneous Worms and Viruses 

 

Viruses are a different class of programs that need human intervention to 

spread from one host to another. Early viruses attached themselves to other 

popular programs and spread when people exchanged or copied these programs 

from one machine to another through floppy disks or other manual means. Later 

viruses attached themselves to e-mails that a user sent out. Some viruses 

automatically sent e-mails to addresses in the address book on the infected 

system. Since these didn't require human intervention, these were called e-mail 

worms. 

 

Some of the second generation viruses include: 

 

• Retro Viruses: Viruses that fight back against anti-virus tools by 

deleting virus definition tables, memory resident scanners, etc., These 

viruses could be used as pilot viruses to a malicious worm that would 

come by later. This way, for example, the worm following the Retro 

virus would not be detected by IDSs. 

 

• Stubborn Viruses: These can prevent themselves from being 

unloaded from an infected Windows system. However, techniques 

that could achieve this have not been fully explored. 

 

• Wireless Viruses: These are viruses that infect wireless devices by 

making use of their ability to exchange applications \through the air". 

 

• Coffee Shop viruses: These viruses attach themselves to computers 

that are plugged into the network of some chains of coffee shops. 

They don't try to hop from one machine to another. They just wait at 

the coffee shop for a vulnerable host to come by and connect to that 

network. 
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CHAPTER FIVE 

THE LIFE CYCLE MODEL OF WORM DEFENSE 

 

 

The problem of worm defense can be broken down into various stages and fit into 

a life-cycle model. This is a problem where the defenders are perpetually in a race 

against unknown and unseen opponents. Hence the model is cyclic. Figure 5.1 gives 

a diagrammatic representation of the life cycle. (Cheetancheri, 2004) 

 

 

 

              Figure 5.1 The various stages of the life cycle of worm defense 
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5.1 Prevention 

 

The best way to stop a worm is to prevent its incursion into a particular site. 

Prevention is better than cure. Once a suspicious activity is discovered, fix holes that 

are being exploited and distribute the patch widely. This step applies even when 

there is no worm spreading. Only constant watch and vigil can prevent worms. 

However, it is next to impossible to have no holes at all points of time. But an earnest 

approach to plug holes identified by advisories from trusted security sources is a 

good step in that direction. 

 

 

5.2 Prediction 

 

The observation of suspicious and similar behaviour at various places is a good 

indication of the genesis of a worm. This needs quite an amount of co-operation and 

correlation amongst various sensors. The "Group Based Model" in Chapter 8, does 

this as a part of its mitigation strategy. 

 

 

5.3 Detection 

 

Detection of a worm is either an easy or hard job depending on the kind of worm 

we are dealing with. Fast spreading worms are easy to detect. They show themselves 

through various symptoms on the network and on the individual hosts that they infect. 

The most obvious symptom usually is abnormally excessive cpu load at the host 

level and bandwidth saturation at the network level. Fast spreading worms have the 

following characters: 

 

• They write heavily to the network. 

 

• They copy themselves frequently. Frequent fork()ing is a symptom of this 

behaviour. 
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• They scan the network heavily, usually looking at a single port. 

 

• They open up a lot of TCP connections. 

 

 

5.4 Analysis 

 

Once we detect a worm in action the immediate analysis should focus on 

identifying the signature so that we can try to stop traffic that match the signature. In 

the presence of a very fast worm, the solution might be to stop all traffic. But normal 

traffic should be allowed to resume as soon as possible. Otherwise, the cost of traffic 

locking could be more than the damages that the worm could cause. The later 

analysis, after the worm is defeated, should focus on identifying the intent, means 

and damage caused, to help cure the infected hosts and take steps so that it doesn't re-

surge, as does the Code Red worm that keeps re-surging monthly. For example, 

Nimda is still not fully understood. 

 

 

5.5 Mitigation and Response Strategies 

 

We cannot stop a fast moving worm at all places as soon as it is discovered at one 

place. Even though we fix one host, there are already several others infected which 

continue to spread the disease to other susceptible hosts. This doesn't mean infected 

hosts should not be fixed to stop the worm. They should be fixed. But before that, the 

situation warrants a different approach to arrest the spread: at least, slow down the 

worm and mitigate the disaster. 

 

Some of the hypothesized high speed worms like Flash worms should be 

responded to automatically. These cannot be managed by human intervention. All 

damage would be done even before we could react. To respond to such a worm with 

human speed is simply not possible.  
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5.6 Curing The Infected Hosts 

 

Even though we could reboot an infected machine to kill a worm instance, this 

machine will be re-infected sooner or later unless the vulnerability exploited is fixed. 

So, the most logical step after a worm attack is to fix the vulnerabilities that were 

exploited by the worm. This involves using the results of the analysis and acting 

upon them. Closing all relevant back doors and fixing the bugs exploited by the 

worm are only a few of the pertinent activities in this step. 

 

 

5.7 Vaccinating Uninfected Hosts 

 

Even uninfected hosts should be patched up. Mitigating the spread of worm 

involves turning on filter rules at fire-walls and patching. Filters decrease 

performance. So, the filters have to be turned off eventually. Once the firewall rules 

are turned off, there are chances of reinfection un-cured hosts. 

 

 

5.8 Patching Similar Vulnerabilities 

 

One of the important lessons learnt from any worm incident should be an 

awareness of the vulnerability exploited. Once this is learnt, similar vulnerabilities 

should be sought out and fixed. For example, the Morris worm showed that the 

sendmail program had a bad default Debug option. Once this was realized all other 

programs should be checked for similar oversights. Fixing such vulnerabilities 

should be an on-going process all the time. This naturally blends into the first step of 

prevention. 

 

In an ideal situation we should be spending the most time in the prevention phase 

of the worm life cycle. That would mean we are maintaining a more secure Internet. 
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CHAPTER SIX 

WORM DETECTION 

 

 

This part builds on this information in an attempt to illustrate three methods of 

detecting worms. These methods are traffic analysis, the use of honeypots and dark 

network monitors, and the employment of signature-based detection systems. These 

methods form the core of detecting both hackers and worms. 

 

The goal of our detection strategies is to detect nearly any type of worm with as 

little effort as possible. To do this, we will focus on the features common to most 

worm types and build strategies to detect these characteristics. While no single 

methods work for all worm types, a combination of efforts can provide more 

complete coverage. 

 

 

6.1 Traffic Analysis 

 

Briefly, traffic analysis is the act of analyzing the network’s communications and 

the patterns inherent in it. The characteristics of the traffic that are studied can 

include the protocols, the ports used in the connections, the success and failures of 

connections, the peers of the communications, and the volume of traffic over time 

and per host. All of these characteristics can be combined to develop a picture of the 

network under normal circumstances and also used to identify the presence of a 

worm. 

 

With respect to analyzing traffic to monitor for worms, we are interested in 

monitoring three major features. These three characteristics are common to nearly all 

worm scenarios and hence of interest to us. Furthermore, the ease of monitoring 

these features makes them especially attractive. 

 

The first facet of a network we should monitor to detect the presence and activity 

of worms is the volume of traffic. Most worm models use a logistical growth model,  
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meaning the number of hosts grows exponentially in the initial phases. As hosts are 

brought on-line into the worm network, they perform scans and attacks. Their 

combine traffic leads to an increase in the volume of traffic seen over time. This is 

best monitored at a network connection point, such as a router or a firewall, and not 

necessarily an edge node. 

 

The second feature of the network’s traffic we are interested in monitoring in the 

number of type of scans occurring. Most worms use active measures to identify new 

targets to attack, using scans of hosts and networks to find suitable targets to attack. 

These scans can be tracked using monitors and measurement tools and analyzed to 

reveal worm hosts either on the local network or attacking the local network from 

remote sites. 

 

The third feature we are interested in for the purposes of traffic analysis is the 

change in traffic patterns when a host is part of a worm network. Each host on a 

network has a well-defined set of characteristics in its traffic that typically change 

after compromise by a worm. By monitoring hosts and their traffic patterns, the 

presence of a worm on the local network can be identified. 

 

The use of traffic analysis to detect the behavior of network worms is a powerful 

technique due to its generality. Larger network events are typically monitored and 

analyzed to search for trends. While not all of the observations that are associated 

with worms are unique identifiers of worm activity, when combined with other 

analysis methods a more detailed picture emerges. The main drawbacks to traffic 

analysis, including a large data set and a number of observation points, make it a 

challenging endeavor. 

 

 

6.1.1 Strengths of Traffic Analysis 

 

Traffic analysis, which focuses on general aspects of the network and the trends 

therein, has several advantages over specific detection methods and black hole and 
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honeypot monitors. The first is that it works for almost all worm types, specifically 

for worms that use active target identification methods and exponential growth 

models. Scans can be measured and tracked as a general phenomenon, and the 

exponential growth of the overall volume of the network can also be observed. 

 

Secondly, signature detection fails for worms that use any variety of dynamic 

methods. These can include modules that can be updated to accommodate new attack 

methods or scan engines, or worms that behave in a manner similar to polymorphic 

viruses. Furthermore, signature detection at the network level will fail for worms that 

use either encoded or polymorphic attack vectors. By observing the traffic 

characteristics generally, the presence of the worm can be identified. 

 

 

6.1.2 Weaknesses of Traffic Analysis 

 

The analysis of network traffic to identify the presence of a network worm has 

several drawbacks. The first is that it is labor intensive, requiring a reasonably 

lengthy time period to develop an understanding of the normal traffic on a network. 

This time frame is usually 1 to 2 weeks for a LAN of several thousand hosts and 

requires a monitoring infrastructure. Coverage is also a significant challenge for a 

network with a hierarchical structure. For larger networks that only want a gross 

measurement of their traffic, it will suffice to monitor only a border router or major 

switches. 

 

The second major weakness to traffic analysis is the most worms seen so far 

operate in a predictable fashion. 

 

By studying one instance of the worm, we have identified the behaviors of nearly 

all of the worm nodes. However, this will not always be the case. Worms that have 

updatable modules or even random behavior in their static modules will be difficult 

to track using specific traffic analysis based on signatures. This is why the methods 

described here focus on the general properties of the network’s traffic. 
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The next major weakness of the traffic analysis method to understanding worm 

behavior is due to the speed of the worm’s propagation. A worm that moves 

sufficiently slowly or only infects a handful of nodes per round will be more difficult 

to track using traffic analysis than other means (such as honeypot, black hole, or 

signature-based analysis). The difficulty in this scenario stems from the amount of 

data when compared to the background traffic on the network. 

 

Traffic analysis will also create some false positives due to the anomalies that 

appear to be similar between a worm and an attack or a sudden surge in a site’s 

number of clients. For example, while an attack like Code Red would be detected as 

an exponential increase in HTTP traffic all to Web servers on port 80 with the same 

request, a site which has immediately attracted widespread attention would show 

similar behavior. Here, the sensor may classify this as the activity of a worm. 

However, with some more careful analysis, this can be distinguished. The number of 

sites being targeted remains constant (in this case one Web server) despite a rapid 

exponential increase in similar traffic. 

 

Lastly, consider a worm that uses passive mechanisms to identify and attack 

targets. For example, a worm that attacks Web servers and, rather than hopping from 

Web server to Web server, now attacks clients that connect to that server. The traffic 

characteristics remain much the same for the server, such as connections from 

random clients to the server and then from the server back to clients. This would be 

difficult to identify, based solely on the patterns of traffic, because little change is 

observable. The Nimda worm utilized this strategy as a part of its spread, using a 

vector to jump from server to clients by inserting a malicious file onto the 

compromised Web server. The Morris worm also followed the paths set up by the 

compromised system to identify new targets based on the established trust using the 

remote shell system. In this scenario, the major change in the network’s 

characteristics visible via traffic analysis would be the upsurge in traffic from the 

compromised systems. 
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However, none of these weaknesses should prevent the use of traffic analysis in 

worm detection. For the foreseeable future, most worms will be detectable by these 

methods and once established they can provide data with minimal ongoing 

maintenance. Furthermore, the data gathered in this approach can also be used to 

detect additional network anomalies. 

 

 

6.2 Honeypots 

 

A network honeypot is simply a system you expect to get probed or attacked so 

that you can analyze these data later. A honeynet differs from a honeypot in that it is 

a network of honeypots made of full production systems. (Spitzner, 2003) This 

network can be logically and geographically dispersed. Because of their nature, 

worms will indiscriminately attack any available host on the network, including 

honeypots. The value of this approach is that you can analyze the attack after it has 

happened and learn about the methods used by the attacking agent. Honeypots come 

in three basic varieties: 

 

• Full dedicated systems, which are typically nonhardened installations of an 

operating system. These are installed with a minimum amount of setup in 

an attempt to mirror a default installation and then placed on the network. 

External monitors are typically used to capture the network traffic to and 

from the host. 

 

• Service-level honeypots are hosts that have one or more services installed 

in logical “jails,” areas of protected process and memory space. An 

attacker can probe and attack the service, but any compromise is contained 

to the virtual machine running on the host. Commercial as well as open-

source versions of these tools are available. 
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• Virtual hosts and networks, which provide the illusion of a host and its 

associated services to an attacker. This is typically housed in a single host 

on the network, spoofing other hosts. 

 

Each of these approaches offers varying degrees of accessibility and value, along 

with associated risk. For instance, it can be more costly to implement a set of 

honeypots with full, dedicated systems, though you may capture more data with real 

services. A virtual honeypot, however, has an advantage in that you can more readily 

deploy an additional host or even network into your monitored space. 

 

Honeypots have an inherent risk factor associated with them that has to be stated. 

Because a honeypot is designed to allow an attacker to enter and gain control (for the 

purposes of monitoring their actions), it is possible the compromised host may be 

used to spread more attacks. For this reason it is vital to monitor it closely and both 

control the outbound connections as well as close the host down when it has been 

compromised. Also, it should never be deployed on a production subnet where it can 

interfere with legitimate network activities and be used to gain entry to a protected 

network. 

 

 

6.2.1 Strengths of Honeypot Monitoring 

 

Perhaps the single biggest advantage to be gained when using a honeypot is the 

depth of information available from a compromised honeypot. Because an attacker or, 

in this case, a worm has attacked the system, a full set of changes to the system can 

be obtained. This can be useful in determining the nature of the attack. Furthermore, 

the actual executables used in the worm’s propagation are typically also available. 

With these two pieces of information, a nearly full analysis of the worm can be 

achieved. 

 

Additionally, with a honeypot, a wealth of additional detection data can be 

generated. Based on the patterns of attack by the worm and the nature of the 
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executables, file system signatures of the worm’s behavior can be generated. The 

network behavior signature, including the attack, any communication messages 

generated, and any probes, can also be identified. With this information, a rich 

detection system can be developed to look for the worm’s behavior. 

 

 

6.2.2 Weaknesses of Honeypot Monitoring 

 

Honeypot monitoring has a few weaknesses that are worth acknowledging. The 

first is that typically only one or a small handful of honeypot systems are deployed. 

While each system gives a detailed set of data about the worm’s behavior, they offer 

only a limited perspective on the network being monitored. 

 

Second, honeypots are labor intensive. They require extensive setup to be 

effective, and the maintenance and monitoring needed to prevent the use of the 

honeypot to act as a worm springboard is quite extensive. Properly set up firewall 

rules, for example, are needed to prevent the system from being a reflector for worm 

activity. 

 

Due to the variety of systems that are targeted by worms, and the inability to 

predict what systems will be struck in the future, honeypots necessarily have to be set 

up with only a limited subset of systems that can be attacked. Worms typically attack 

systems that are exposed to the world at large, hence services that are exposed to the 

larger world are best generated using a honeypot. 

 

Lastly, honeypots do not give early warnings about worms; they are typically hit 

only during the peak times of worm activity. This is due to the limited visibility they 

have for the network. As such, they can only provide data at the height of the worm’s 

spread. 
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6.3 Black Hole Monitoring 

 

The implementation of unused IP space in worm tracking has proven to be an 

even more effective technique in worm detection and tracking. This unallocated, 

unadvertised network space has no DNS entries, but does have valid routes to reach 

it. Because it is not in use (no machines are deployed within it) and no photons are 

traveling along the fiber, it is called a dark space or a black hole network. 

 

Monitoring this dark IP space is effective because of the persistent and complete 

coverage by Internet worms. Worms, unlike many real attackers, do not monitor 

DNS entries or service advertisements to determine who to attack. They simply find 

a network block to scan and begin doing so. Hits in that space are therefore 

interesting, because no legitimate traffic (in the absence of DNS, application, or 

routing errors) should be seen in that network. 

 

The scale of the unused network space does not have any direct impact on the 

usability of the method, although a larger space will give a larger vantage point on 

the operations of a worm. A network such as a corporate or academic network may 

have unallocated /27 sized spaces lying about, while network researchers may be 

able to monitor a space as large as a /8, allowing for a full view of 1/256th of the 

Internet. 

 

Black hole monitoring generally can be done in one of three ways: 

 

• The first is to monitor what is called backscatter, or the reply packets sent 

by spoofed sources. If the forged source lies within the monitored dark 

network space, the replies will be visible. These include SYN-ACK and 

RST packets from SYN flood attacks, and ICMP errors and control 

messages from packet floods. This kind of analysis, pioneered by the 

CAIDA research group, helps in the analysis of DoS and DDoS attacks. 

This kind of analysis, however, is minimally useful in the analysis of 
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worms. Because worms typically establish bidirectional communications 

channels, they generate little backscatter from forged addresses. 

 

• The second method is to simply monitor the number of requests for access 

to the unallocated network space. These requests are typically monitored 

by a router that advertises routes to these networks internally. The requests 

for those routes can be measured either by the flow export data or from the 

routing table data maintained by the system. 

 

• The third method is to view the network or subnet as a black hole and 

anything going into it as interesting traffic. This monitors both reply 

packets as well as requests, such as SYN packets from worms and other 

scans. While some spurious traffic is certain to enter this space, worm 

traffic will also enter this monitored area. Captured signatures can then 

provide a basis for worm analysis, allowing for an estimation of the spread 

and activity of a worm. 

 

 

6.3.1 Strengths of Black Hole Monitoring 

 

The biggest strength of network black hole monitoring is the relative ease of data 

collection. Worms that actively scan will constantly generate data as connection 

requests are sent to these unused networks. Because worms typically do not correlate 

the use of networks with their probes, most worms will generate probes to 

unallocated network space. 

 

The largest challenge facing the use of black hole monitoring is the discrimination 

of regular probes and attacks from activity from worms. This can generally be done 

by looking for an exponential rise in the number of sources that parallels a rise in 

activity sent toward the dark network space. However, this typically yields a larger 

picture of network activity than other monitoring methods do due to the large scale 
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of coverage possible. The intentions of the client computer can be assessed on the 

basis of the intended network destination. 

 

When the third type of black hole monitor is set up (which responds to connection 

requests to receive the first data packet), worm activity can be measured. In this 

scenario, the payloads of the captured packets are stored and compared to look for 

worm activity. This gives deep insight into worm activity, along with a large degree 

of coverage without the requirement of known signatures, as would be needed for a 

NIDS monitor. 

 

 

6.3.2 Weaknesses of Black Hole Monitoring 

 

As described earlier, the biggest weakness in black hole network monitoring is the 

growing presence of worms that use lists of allocated addresses to target. These 

threaten to minimize the utility of global-scale dark network monitoring for worm 

activity. While some worms, such as Code Red and Nimda, will indiscriminately 

attack any valid IPv4 class A, B, or C address (which does include unallocated 

space), newer worms such as Slapper and SQL Snake have incorporated lists of 

allocated network blocks to target. The increased use of this approach will gradually 

diminish the utility of dark network space monitoring. 

 

Similarly, the threat of hit list scanning, as proposed for Warhol worms and the 

like, diminishes the utility of dark space monitoring. Since hit lists are built from 

allocated and in-use system data, the likelihood of a system migrating from allocated 

to unallocated space is minimal. As such, dark space monitors are of no help in these 

kinds of worms. 

 

Again, worms that utilize a passive target acquisition model are also likely to be 

missed by dark network space monitoring techniques. Because worms that use this 

target acquisition model attack only hosts that are known to be active, they do not 
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reside in unused network spaces. Hence, they will not be monitored for the kinds of 

use that dark network space monitoring tracks. 

 

Lastly, changes in network allocation will require updates to the dark network 

space monitors. For example, if a local subnet becomes used, its utility as a dark 

space monitor becomes impossible. Similarly, when new networks are allocated in 

the global IPv4 space, changes must be propagated to the dark network space 

monitors. 

 

 

6.4 Signature-Based Detection 

 

At the heart of signature-based detection is pattern matching. A dictionary of 

known fingerprints is used and run across a set of input. This dictionary typically 

contains a list of known bad signatures, such as malcious network payloads or the 

file contents of a worm executable. This database of signatures is the key to the 

strength of the detection system, and its prowess is a direct result of its speed. 

 

We are interested in three main types of signature analysis for worm detection: 

 

• The first is the use of network payload signatures, as is used in network 

intrusion detection systems (NIDS). The detection methods used by NIDS 

engines perform an evaluation of packet contents received from the 

network, typically using passive capture techniques. (Bace, & Mell, 2001) 

This can include matching signatures based on payload contents measured 

by string comparisons, application protocol analysis, or network 

characteristics. A list of unacceptable patterns are compared against a list 

of network traffic and alerts are issued when a match is found. 

 

• The second type of signature matching is based on logfile analysis. 

Application and system logs can contain information that can be used to 

fingerprint the behavior of a network worm. This can include attack 
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contents, such as in Web server logs, or simple application errors issued 

when a worm probes a machine. This is a relatively simple approach but, 

when joined with other detection methods, provides a sophisticated 

detection framework. 

 

• The third type of signature detection is the most popular method, file 

signatures. File payloads of worms and their executables are typically 

monitored using host-level antivirus products. Several commercial 

products exist to do this and are typically found on home PCs. 

 

Signature-based detection methods are a powerful way to match known worms 

through multiple mechanisms. By examining network traffic, file system contents, 

and server logfile entries, it becomes possible to specifically track the progress of 

worms as they move on the network. Unlike other detection methods, with a properly 

crafted signature, detection can be precise and specific, allowing for high-resolution 

results. 

 

However, it is the specificity of the signature that is also its weakness. Simple 

mutations or alterations in the contents of the data being screened, such as an altered 

attack signature or file contents, renders signature-based methods nearly totally blind. 

These mutations happen frequently, leaving systems exposed that look for only those 

known contents. Furthermore, signatures can only be generated for known worms 

and other malicious contents. As such, they cannot be used to identify emerging 

worms, unlike other methods of worm detection. 

 

 

6.4.1 Strengths of  Signature-Based Detection Methods 

 

The biggest strength to signature-based detection methods is the ease with which 

they can be developed and deployed. Once a worm (or any piece of malware) is 

captured and studied or even simply observed, only a brief analysis is needed to 

develop a signature. This analysis is performed to identify the characteristics that 
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make the malicious software or traffic uniquely identifiable when compared against a 

backdrop of normal data. The features that are used in the monitor can be, as noted 

above, in the logfile entries, the payload of files either on disk or in transit, or in the 

network traffic generated by the worm. 

 

The relative speed of signature-based detection systems is also another benefit of 

using them. Large numbers of optimized engines have been developed that can 

perform pattern matching efficiently, a requirement as communication volumes and 

the bandwidth of a typical network increase. These detection engines must keep up 

with this pace and react quickly. 

 

An additional benefit for signature-based detection methods is the ease of removal 

of the malicious content. For a mail or file server that is being used to distribute the 

worm, content screening immediately identifies the malicious payload and can 

quarantine the data. For a network-based intrusion detection system, reactive systems 

can be triggered to close a malicious connection or install a network filter on a router 

or firewall to block the compromised machine from continuing the worm’s spread. 

Server level firewalls can also be configured dynamically by analysis engines once a 

malicious client has been identified from logfile entries. 

 

Lastly, due to the great quantity of malware that exists for the Windows platform, 

signature-based detection systems in the form of commercial antivirus tools are the 

easiest route to take. There are simply too many threats to monitor and keep active 

against without a large pool of resources, which are provided for by the antivirus 

software vendors. 

 

 

6.4.2 Weaknesses In Signature-Based Detection Methods 

 

The single biggest drawback to signature-based detection methods is that they are 

reactionary, they rarely can be used to detect a new worm. Only after an attack is 

known can it be fingerprinted and made into a signature for use by a sensor. Only if 
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the attack used by the worm is recycled from a known attack can it be used to 

proactively detect a worm. Some metasignature detection methods, such as protocol 

analyzers and related tools that understand protocol parameters, can be used to detect 

a worm early on. However, these are uncommon in large, coordinated NIDS 

deployments at this time. 

 

The second drawback to signature-based detection methods is that they don’t 

scale well to large operations. These include networks such as an enterprise or 

campus networks with thousands of users. Desktop-based remedies are difficult to 

maintain actively, though many centralized management tools have been developed 

to overcome this obstacle. However, the volume and distributed nature of the 

problem makes the issue of scale a difficult challenge to adequately address. 

 

The next major difficulty in a successful deployment of signature-based methods 

is that it is hard to keep up with variants of worms and viruses. Variations inevitably 

appear that can evade signature-based detection methods on all levels. Furthermore, 

when polymorphic techniques are introduced into worms, the challenge rises 

significantly, making the reliable detection of worms much more difficult. 

 

Network-based signature detection suffers from a number of weaknesses, 

including payload fragmentation and forgery. These issues are still present in many 

NIDS products and have been well described by Ptacek and Newsham. 

 

Last, unless in-house signature generation is done, detection is always at the 

mercy of the supplier of these signatures. While many large and popular packages 

have rapid responses, as was demonstrated by the Code Red and Nimda worms, this 

turnaround time can result in a significant delay in relation to the rate of the worm’s 

spread. Signature-based detection methods are only reactionary and always lag 

behind the introduction of the worm.  
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CHAPTER SEVEN 

DEFENCES 

 

 

7.1 Firewall and Network Defences 

 

Firewalls have become a commercially successful market item, because of such 

features as ease of use, application layer filtering, and line speed. Despite these 

enhancements, little has changed in their basic design principles. 

 

Firewalls are devices that enforce a network security policy. This policy can be 

the authorization to establish communications between two endpoints, controlled by 

the ports, applications, and protocols in use. The firewall evaluates connection 

requests against its rule base and applies a decision to the requested action. (Wack, 

Cutler, Pole, 2001) Network architects and administrators employ firewall 

technology to accomplish several key tasks (Wack, 2002): 

 

• Protection from vulnerable services: Firewalls protect potentially 

dangerous or malicious applications from entering or leaving a network. 

 

• Controlled access to systems: Filters can control the destinations and 

sources of network communications. 

 

• Concentrated security: By focusing many of the security measures 

on a single host, the overhead for management and costs of a distributed 

security system can be alleviated. 

 

• Enhanced privacy: A network filter can protect services from being 

viewed by unauthorized parties. 
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• Logging statistics for Internet activities: This logging of activity 

can include both normal usage patterns as well as malicious activity 

originating either internally or externally. 

 

Most firewalling devices are of two basic types. The first is a packet filter, which 

performs policy enforcement at the packet level. (Chapman, 1992) As each packet in 

a communications stream passes through the router or bridge, it is compared to a set 

of rules to determine the action to take, determining the passage or rejection of the 

packet. The criteria for this decision are typically the source and destination 

addresses and ports along with a protocol. These usually define the communicating 

parties and the applications in use. 

 

Packet filters can be either stateful or stateless. A stateful filter understands the 

context of a communication and can conditionally pass or reject packets that are a 

part of the communication (or merely appear to be). A stateless firewall, in contrast, 

only monitors any single packet without any concept of the context of the 

surrounding traffic. Here, filtering rules would be applied on a packet-level basis as 

opposed to a connection-level basis. 

 

A second type of firewalling device, a network proxy, performs its decision at the 

application layer. These devices have additional potentials for security applications 

and are discussed as proxy-based defence at next section. 

 

 

7.1.1 Example Rules of Firewall Defences 

 

While IP traffic filtering is itself common, the syntax used by different vendors or 

firewalling packages varies. The languages used by each reflect various attributes of 

each product. Several examples are shown to illustrate the fundamental principles of 

packet filtering. This set is by no means a comprehensive list of all firewall products 

or their capabilities. 
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Obviously a firewall is only as good as the rules it contains and enforces. A filter 

set that defaults to an open policy and has a minimal set of rules does little good and 

can be trivially circumvented. The syntax and structure of the rules determine the 

strength of the firewall in relation to the security policy desired. 

 

Cisco IOS-based routers have had filtering capabilities for several of their 

versions as of this writing. IOS uses access-list (ACL) statements, access-group 

statements and rules to manage traffic decisions. An example collection of several 

IOS access-list statements in a configuration would appear as follows: 

 

access-list 100 deny icmp any any fragments 

access-list 100 permit icmp any any echo 

access-list 100 permit tcp 192.168.1.0 0.0.0.255 any eq 22 

 

These rules will tell the router to drop any ICMP fragmented traffic and allow any 

ICMP “echo” traffic (typically associated with the ping program). Also, these rules 

state that the network 192.168.1/24 is allowed to pass for TCP port 22 traffic 

(associated with the SSH protocol). The use of access-group statements facilitates the 

management of access lists, allowing for the grouping of rules and addresses. 

 

The Cisco PIX product, a dedicated firewall device, features a filtering statement 

in addition to the access-list and access-group statements found in IOS. The shun 

statement provides a coarse-grained filtering capability for filtering networks, as 

shown below: 

 

shun 10.1.1.27 10.2.2.89 555 666 tcp 

 

This statement would block any TCP traffic from 10.1.1.27 with a source port of 

555 to the host 10.2.2.89 with a destination port of 666. The Pix product, like many 

commercial and dedicated firewall devices, features several other policy enforcement 

tools, such as virtual private networking services and authentication mechanisms for 

networks, in addition to application layer handling. 
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Juniper routers are also capable of handling filter statements in their 

configurations. The following stanza from a JunOS configuration illustrates the 

typical layout of such a configuration: 

 

term a { 

     from {{ 

    destination-address { 

   10.1.1.1/32; 

  } 

  protocol icmp; 

  } 

then { 

  discard; 

} 

} 

 

This rule would block any ICMP traffic to the host 10.1.1.1. JunOS filter rules 

typically follow the format of containing a statement of criteria to match and then a 

decision, such as discard or permit, or it may include options as well, such as logging 

or rate limiting. Arbitrary criteria can also be utilized with this setup. 

 

Lastly, the popular and freely available IP Filter (IPF) tool from Darren Reed can 

also be used to build a filtering host (http://coombs.anu.edu/~avalon). IPF is 

available as a module for many popular operating systems, both freely available and 

commercially supported. Typical syntax for this type of filtering is shown here: 

 

pass in proto tcp from 10.2.2.2/24 to \ 

10.1.1.2/32 port = 6667 

block in on fxp0 proto tcp/udp from any to any \ 

port 511<>516 
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These two rules illustrate the syntax for varying rule types. In the first, traffic 

between two hosts using protocol TCP to port 6667 (associated with the IRC 

protocol) is allowed to pass. The second statement blocks traffic that arrives on the 

interface fxp0 (a fast Ethernet interface) of either protocols TCP or UDP between 

ports 511 and 516. Unlike many commercial firewall packages, IPF does not offer 

encryption services or rate limiting. 

 

 

7.1.2 Strengths of Firewall Defences 

 

Because firewall systems are available in a wide variety of scales for line speed, 

ease of configuration, and in many routers, they are a readily deployable security tool. 

This can be useful when a new worm appears that uses traffic patterns that can be 

easily blocked using a network filter.  

 

Because firewalls can permit or deny traffic on a large set of arbitrary criteria, 

they can be an effective security tool. As demonstrated with IPF and PIX filters, 

firewall rules can be either coarse grained or fine grained, depending on the filter 

language used. Combined with packet inspection and dynamic rule sets, a selective 

filter can be created to enforce a network security template. 

 

Lastly, as described in this chapter, a firewall can be configured to keep a worm 

out or inside a network. This can be useful to contain a locally found machine that 

has been compromised by the worm being defended against. 

 

 

7.1.3 Weaknesses of Firewall Systems 

 

At this time, most firewall systems are able to only filter on the basis of the packet 

headers. As a result, a typical firewall system is ineffective at defending against a 

worm for services that must be accessible to the world, for example, Web servers in 
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exposed networks. Furthermore, because a typical firewall does not examine the 

contents of a packet, it may block legitimate traffic. 

 

A stateful firewall can be unduly stressed by a large number of active connections. 

This is typically seen with worms that perform heavy amounts of scanning for target 

hosts. Due to memory constraints, the firewall may begin to fail and disrupt normal 

communications during periods of heavy worm activity. 

 

 

7.2 Proxy-Based Defences 

 

A second type of network firewall is the proxy server. Firewalls built on proxy 

servers use a technology based on a third party brokering a request for a client to a 

server. This third party is made up of the proxy server, which is connected to and 

passes the resulting information back to the client. Through the configuration of a 

proxy server, network policy can be enforced, controlling applications and network 

endpoints. This policy enforcement can occur at the level of the connection endpoints, 

the application in use, or the content of the material being transmitted. 

 

Proxy servers, or application gateways, provide their services by being an 

intermediate system for a network connection. A listening agent on the proxy server 

receives a request for a network action and, on behalf of the client, fulfills the request. 

The connection comes from the proxy server to the destination and the data are 

passed back to the proxy. The final data transfer occurs between the gateway server 

and the client. At no time do the client and final destination make direct contact. 

 

 

7.2.1 Example Configuration of Proxy-Based Defence 

 

In many ways, proxy servers are configured much like listening applications. 

They are specified to listen on interfaces and accept connections. However, unlike 

many services in use on a network server, access controls are typically standard for 
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an application gateway. Additionally, the second endpoint, the intended destination 

of the client system, can be controlled by the proxy server. If the client is making a 

request to a system that is off limits, the connection can be blocked at this stage. 

Application gateway systems can be configured in a variety of ways, some of which 

are shown in this section. 

 

An application gateway can be used to provide a minimal amount of filtering 

activity. The Web server Apache, for example, can be used to provide a basic fiter 

for a site. The following configuration stanza would install a minimal Web-based 

proxy for normal HTTP communications at the IP address 192.168.1.1: 

 

Listen 192.168.1.1:80 

ProxyBlockContent Java 

ProxyBlockList /etc/firewall/lists/hacker 

<Directory Proxy> 

allow from 0.0.0.0 

</Directory Proxy> 

 

As is evident in the above configuration, only a minimal amount of security 

filtering is in place. Almost any host is allowed to connect without any authentication, 

and only hosts listed in the file /etc/firewall/ lists/hacker and Java-based content are 

filtered. Other directives can be employed, as well, including caching content locally 

or connection controls. 

 

Because proxies work at the level of the application, a variety of access control 

mechanisms can be employed. These can include network sources and destinations 

or application-level authentication. For example, a proxy firewall may specify a 

handful of networks as being “secure” because they are local networks and trusted: 

 

10.100.0.0/16 

10.200.0.0/16 

10.201.10.0/24 
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Here, three network segments have been specified as secure networks. This can be 

used, for example, to configure a variety of services with minimal restrictions and 

only local network access, no authentication. 

 

A Telnet gateway directive for the FW-Cop application gateway is shown below. 

Here a Telnet proxy is configured with minimal requirements besides resource 

controls via a maximum number of connections: 

 

# Telnet Proxy Configuration Lines 

  proxy { 

  maxprocs 999 

  path /usr/local/etc/tnproxy tnproxy 

  listen 23 

  listen 10.100.10.2:23 

  maxconn 10.0.0.0/255.0.0.0 10 15 

  maxconn 0.0.0.0/0 1 2 

  } 

 

This is a minimal installation, useful for resource management via a central 

gateway site. 

 

A Telnet gateway from the Firewall Toolkit (fwtk) can be similarily configured. 

(Ranum and Avolio, 1994) Again, allowing only hosts on the local network 

(10.100.10.0/24) to use the gateway, they must authenticate via a password: 

 

tn-gw: timeout 3600 

tn-gw: permit-hosts 10.100.10.* -passok -xok 

tn-gw: permit-hosts * -auth 
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The final line of this configuration stanza allows any hosts from any network to 

use the gateway provided they have been authenticated. This can be useful for 

allowing incoming connections from the outside world that have been authenticated. 

 

As a final step, the gateway device, which is also typically the default router for 

the clients it serves, is configured to not forward packets at the network layer for the 

networks it serves. This prevents circumvention of the proxy server by making a 

direct connection to the server on the part of the client. If this were to happen, any 

security enhancements made by the introduction of the proxy server would be 

defeated. The only way for the clients to pass to the outside world would be through 

the application gateway, both the device and at the application layer. 

 

Obviously, application gateways can be far more complex than those shown here. 

Authentication systems, encryption enabling devices, or content filtering can all be 

installed in almost any combination. This provides a rigorous control of connections 

via the gateway server. When combined with packet filtering, the use of proxy 

servers can be forced and application use restricted. 

 

 

7.2.2 Strengths of Proxy-Based Defences 

 

Once a client application is configured to use the proxy server, access to network 

services appears transparent to the client process. The difficulty of the negotiations is 

handled quietly by the application and data are seamlessly transported back to the 

client. 

 

Unlike a packet filter, which can only understand the contents of a packet, a proxy 

device offers true application-layer filtering. This can give the advantage of content 

specific filtering. As described above, this also gives the advantage of normalizing 

the communications stream, removing the ambiguity for signature matching and 

content-inspection or application handling. This gives the network administrators full 

control over the content of the communications. 
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Application gateways default to a block policy during failure. Because no other 

gateway for communications is enabled, if the application gateway fails due to attack 

or an error, all internetwork communications will cease. No open window for an 

attack is created by the failure of the network filtering device. 

 

Lastly, because a proxy acts as an intermediate party for the communications, it 

can fully log all actions. This is dramatically different than the inference from 

watching packets passively. While this can be used for filtering purposes, it can also 

be used for audit trail creation. 

 

 

7.2.3 Weaknesses of Proxy-Based Defences 

 

One of the biggest drawbacks to an application gateway is the latency that it 

introduces to a communications stream. Because the requests and data are stored 

before forwarding, a noticeable lag occurs in the time between the request and the 

completion of that action. Proxying would therefore not work for applications that 

require real-time performance, such as streamed communications applications. 

 

Because of their placement, the use of application gateways only works for 

transmissions crossing a border where the filtering devices are in place. It cannot be 

used to monitor or control intranetwork communications. 

 

Lastly, the setup of an application gateway can be significant for a new 

application. The interface and specification must be studied and the application 

altered to accommodate the proxy service. Furthermore, this approach is not 

available to all protocols and applications, including diagnostic tools such as ping of 

traceroute. Encrypted communications, such as secure Web transactions using the 

HTTPS protocol, cannot be proxied without defeating their security measures. 
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7.3 Active Worm Defence 

 

The previous section have focused on passive defence measures. Hosts can be 

hardened sufficiently to ensure that a worm that attacks it will fail or be unable to 

initialize itself. The network overall can be configured and defended to minimize the 

exposure to an untrusted Internet and the content of malicious requests and data 

removed. In this way, the worm will attempt to compromise new hosts but fail. 

 

An additional defence strategy is to attack the worm network.(Mullen, 2002) This 

will essentially turn the devices of the worm network against itself, offering both an 

entry point into the network as well as a built-in mechanism to utilize in this pursuit. 

The advantage of this approach is a slowdown of the worm’s progress overall, which 

will eventually lessen the load of any worm on the local network. 

 

Some counterstrike methodologies are based on host-level measures.(Mullen, 

2002) Methods such as kernel alterations, interfering with selective processes, or 

networking attempts by hostile software will not be discussed here. However, they 

are an interesting design consideration for future methods at the operating system 

level to defeating hostile executables, regardless of the source. 

 

By attacking the worm network itself, the end goal is to stop one or more nodes of 

the worm network from continuing to propagation. The major strategies towards this 

include: 

 

• A message to the network to shut down 

 

• Forged replies to a query that you are already infected 

 

• Poison updates to the worm 

 

• Stalling the worms. 
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Some are more effective than others, but all can provide an accessible way to help 

stem the spread of a worm. 

 

The general principle in this section is to find a worm node, using information 

gathered from an IDS, the system logs, and the like, and attack it back. Because this 

strategy assumes that each host must be contacted singly, you will have to enumerate 

each host for worms you wish to target. Because this is a very controversial method 

for defending against an Internet worm attack, the target select caveats are discussed 

later in this chapter. 

 

We now look at general strategies. Most of the methods for attacking the worm 

network outlined above rely on a failure to gracefully handle errors or authenticate 

data from other nodes. These failures can be used to perform arbitrary actions on the 

worm node, including shutting it down or stopping the worm process. 

 

Many attack programs are themselves poorly developed and contain unchecked 

runtime errors. These errors include many of the same types of errors that they are 

designed to exploit on a target system. By identifying and exploiting these 

weaknesses in the attacking agents, a decoy target can alter the behavior of the 

malicious client. 

 

For example, an inspection of the Scalper worm exposes several vulnerabilities. 

An interesting one is a possible overflow in the handling of cookies sent by the 

targeted server. In the ViewWebsite() function, only 256 bytes are allocated for the 

storage of the cookie, and are copied without bounds checking: 

 

void ViewWebsite(char *http,char *cookie) { 

char *server,additional[256], cookies[1024], 

location[1024]; 

unsigned long j,i; 

struct ainst up; 
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char num=0; 

if (!strncmp(http,"http://",7)) 

   server=http+7; 

else 

   server=http; 

for (i=0;i<strlen (server);i++) 

if (server[i] == ’/’) { 

  server[i]=0; 

  num+=1; 

  break; 

} 

memset(additional,0,256); 

if (cookie) { 

  for (j=0;j<strlen (cookie);j++) 

  if (cookie[j] == ’;’) { 

  cookie[j]=0; 

  break; 

} 

sprintf(additional,"Cookie2:" 

"$Version=\"1\"\r\ncookie: %s\r\n", 

cookie); 

} 

... 

 

The value of *cookie is set by reading the returned string from the server, also 

without bounds checking. The failure to do this check can result in a failed worm 

process when an overly long cookie is encountered. This long cookie is then copied 

into the array additional, which is smaller than the allowable size of cookies. This 

can be used by a malicious decoy to attack a worm client and stop the process. 

Inspection of many of the attack programs available on the Internet reveal similar 

errors. 
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7.3.1 Shutdown Messages 

 

The first way to attack a worm network is to tell each node to stop its worm 

behaviors. This is done by either telling the host to stop all worm-associated 

processes or to simply shut down. For worms that accept network communications 

and commands, such as Slapper (accessible via UDP interface) or the IIS worms 

Code Red and Nimda residual cmd.exe shell, it is possible to send the worm a remote 

command and to shut the worm system off. 

 

There are two ways to gain entry to a worm node. The first is to attack the worm’s 

communications interface. In the case of the Slapper or Scalper worm this is through 

the listening interface on UDP port 2002 that accepts commands from other worm 

nodes. The second is to attack the wormcompromised host in the same way the worm 

did and to exploit a vulnerable service. 

 

The use of the communications interface assumes that there are no authentication 

mechanisms in the interworm connections. When this is the case, as is with Slapper 

and Scalper, one can simply send a command to be run to the worm node via the 

listening interface. The commands typically remove worm-associated files and kill 

the worm’s processes, such as its scanner and attack components. For a Code Red or 

Nimda compromised host, the following request format should typically work: 

 

http://172.17.3.45/scripts/root.exe?/c+shutdown 

 

The IP address 172.17.3.45 will, of course, depend on the attacking host. The 

shutdown command tells the system to stop its operations and begin shutting down, 

stopping the worm’s activity. 

 

The second method of gaining entry to the remote worm host, by attacking the 

host itself, is a little trickier. The basic operation is to perform the same exploit of the 

vulnerability that the worm used to gain entry but to use a different set of options. 

Whereas the worm itself will typically install the files needed to target hosts and 
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attack them, in this scenario, the commands remove worm files and kill processes 

associated with the worm component. This system will not work for hosts that have 

been upgraded by the worm, which has been performed by some worms but not by 

several of the more major, recent worms, such as Code Red and Nimda. 

 

These methods treat the worm host as a server to which a machine under your 

control connects. Typically, some information about the worm, including the worm 

executables themselves, is required. With the information from the analysis of those 

pieces, vulnerabilities in the design of the worm can emerge. 

 

The natural defence for a worm against such an attack is to strongly authenticate 

messages received from the network, which can be done with the use of 

cryptography. Then an adversary, namely, an administrator attempting to inject 

messages to shut down the worm host, would have to break the encryption used by 

the worm network in order to have the message accepted. While it may be possible to 

break into the worm host using the methods first used by the worm to gain entry, if 

the worm fixes the vulnerabilities it used during installation then this becomes 

difficult to do. Some worms, such as the ADMw0rm, used these methods to keep 

would-be attackers away. 

 

 

7.3.2 “I am already infected” 

 

The next method of attacking the worm network by using its own methods against 

it is to convince the attacking worm that the target is already compromised by the 

worm. This works for worms that first check for their presence on the target system 

before launching. This check can be for a process name, a filename, or some other 

indication that the worm is already installed on the system. 

 

Such an attack is possible against a handful of worms, including Code Red and 

Slapper. Code Red looks for the file C:\\notworm and, on finding it, ceases operation. 

Slapper, in contrast, is unable to begin operation if its filename is already in use and 
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UDP port 2002 is unavailable to begin listening. This attack is also possible gainst 

Warhol worms, which use an indicator to the attacking node during the permutated 

scans. This method of delaying the worm’s spread was also discussed during the 

outbreak of the WANK and OILZ worms. (Oberman, 1989) 

 

The attack works by exploiting the check made by the worm for its own presence. 

Some worms, such as those listed above, will attempt to avoid double infection on 

any host. A quick check for the worm’s indicator on the system is performed before 

launch. Other worms, such as Slapper, ungracefully handle the condition of double 

infection due to colliding requirements during startup. 

 

The attack against such a method used by the worm is often quite easy to perform. 

It is typically enough to either install stub files of the worm process or to start a 

process with the same name as that used by the worm. In the case of Code Red, for 

example, you would create an empty file C:\\notworm. For the Slapper worm, in 

contrast, you would simply bind a listening process on UDP port 2002 that will cause 

the worm’s startup to fail. 

 

As a defensive measure, an administrator can install worm files with the same 

name and make them immutable. During the attack and installation of the worm, the 

worm application cannot install new files. This effectively blocks the worm before it 

launches as it cannot install itself. Note that this method does not stop the attack of 

the remote worm system on a local host. Rather, it simply prevents the worm from 

installing and launching locally. This method also takes advantage of the predictable 

nature of most worms. 

 

 

7.3.3 Poison Updates 

 

The next method of attacking the worm network as a countermeasure assumes that 

the worm can be updated. Most worms are typically static and not able to accept 

changes in their behavior via updated modules. 
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Typically, a worm such as this would be updated by its users, often those who 

wrote or launched the worm. In this countermeasure this mode of entry is abused by 

outsiders. The attacker, such as an administrator for a network, sends the worm node 

or even the network a new module. However, unlike the updates sent by the users of 

the worm system, the new module is designed to hinder the worm’s operation, not 

enhance it. The module can contain empty attack routines, for example, which return 

success despite not actually attacking a node. 

 

An alternative strategy is to disable the worm entirely. The injection of modules 

that contain broken routines that fail no matter what will achieve this goal. Because 

the update crashes the worm programs (or even the entire system), the worm can not 

operate and the worm node is effectively shut down. 

 

For creators of worms and those who would use them, two major defences are 

possible. The first is to authenticate modules in much the same way as was used by a 

worm receiving messages. This ensures that the modules came from a trusted source 

and not an outside attacker. Public key cryptography, for example, would allow for 

the authentication of the source of the module. The second method is to not discard 

the old modules when an update is received. Instead, keep the old modules intact and 

use them as needed. The worm can choose from known modules and still achieve 

success. An obvious attack against this is to send so many modules to the worm node 

that it consumes all of its storage space and only contains the attacker’s modules. 

 

 

7.3.4 Slowing Down The Spread 

 

One simple way to slow the spread of a worm network is to abuse two key 

features of how a typical worm operates. First, you abuse the scanning and 

reconnaissance operations of the worm by giving it extra work to do. Secondly, you 

abuse protocol options to make your section of the network “stickier” than it should 



 

 

72 

be. In this way you can hold the worm around longer, preventing it from spreading as 

fast.  

 

Network worms will typically begin by scanning a network for targets to attack. 

Scans such as this will make a connection to the host service being offered before 

they launch an attack. Since nodes on a network do not know which addresses are 

occupied and which are not, they will scan all addresses in a given network space. 

 

This method of attacking the worm works by sending forged replies for hosts that 

do not exist. The worm scans will attempt to make a connection to a host, requiring 

an ARP mapping be made. The subnet’s router will attempt to resolve this so it can 

forward the connection request. In the absence of a host listening at that address, the 

requests will go unanswered: 

 

23:27:27.312595 arp who-has 68.40.154.84 tell 68.40.152.1 

23:27:30.527061 arp who-has 68.40.154.84 tell 68.40.152.1 

23:27:37.088597 arp who-has 68.40.154.84 tell 68.40.152.1 

 

The method is then simple: A host will forge replies to these requests and handle 

the connection. What it does next, then, is part of the trick. It advertises a receive 

buffer in the SYN-ACK packet it sends back, but since it never really established a 

connection, it will never continue the dialogue. The worm system will send an initial 

payload to it but will stall when it has nothing left to send, having filled the receiving 

host’s window. 

 

A second method employed here is to use an HTTP option to keep the connection 

alive. This method normally reuses a Web connection for multiple objects. However, 

by setting the connection to be persistent, the client will stay connected to the server 

for a longer period of time. 

 

Using these techniques, LaBrea is able to have worm-infected hosts stick around 

longer. The larger advertised network along with the persistence of the connections 
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stalls the progress of the worm. Though this does not eliminate it, it does provide an 

increased window of time to implement a larger solution. 

 

This method of attacking the activity of the worm can be utilized by a honeypot 

installation. By creating many virtual honeypots as described in Chapter 6, the 

network population is artificially inflated and the worm is given more work to do. By 

using the black hole monitoring technique of sending a single packet to establish the 

connection from these virtual hosts, the network can stall the progress of the worm 

 

 

7.3.5 Strengths of Attacking The Worm Network 

 

Obviously the biggest advantage of attacking the worm network is that the attacks, 

either in the form of probes or actual attacks, are stopped at the source. Provided the 

attack was successful, the worm will be stopped at that node. 

 

For the method used by the LaBrea tool, which can also be used by the dark 

network monitor tools described in Chapter 6, the main advantage for a security 

administrator is that the worm’s progress is slowed. In the time  gained by slowing 

the worm’s spread, site officials can take corrective actions and remedy the problems 

at the host itself. 

 

 

7.3.6 Weaknesses of Attacking The Worm Network 

 

Because these methods all attack one node in a worm network at a time, they are 

time consuming and laborious. After detection, each node must be attacked 

individually to stop its behavior. This can quickly become intractable in scale. 

 

While the strategy of using the same files and methods the worm uses, and 

making them immutable, is tempting, it is trivially overcome. One simple method to 

overcome this is the use of random file and process names for worm components. 
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This would prevent the use of empty or immutable files to block the worm’s 

installation on the host. To block injected messages, such as shutdown messages, the 

worm could easily employ some strong form of proof that the target host is already 

infected, using an encrypted nonce for example. Lastly, the worm could simply 

ignore attempts if the target is already compromised and accept attempts at double 

infection. 

 

A worm can take two major defences to defeat LaBrea-type countermeasures. 

First, the use of aggressive scan timeouts by the worm will decrease the impact of the 

added “hosts” on the network. Secondly, a worm that only launches its attack against 

known servers would be largely immune from this method. The targeted type of 

worm in this method is the type that uses active scanning to identify targets. 

 

Furthermore, the methods outlined here are reactive in their nature. They do 

nothing to protect a host or a network from worm attacks as they happen or while an 

administrator is away. While they may remedy the situation for a brief time period, 

they are best used long after the worm’s initial spread is over. 
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CHAPTER EIGHT 

GROUP BASED MODEL OF WORM DEFENCE 

 

 

8.1 Introduction 

 

This model of defence is based on the willing co-operation of a set of hosts on a 

pre-arranged protocol which is described below. 

 

An alert message is spread to the set of participating hosts in order to stop the 

spread of the worm. This alert can be sent from the detector to the entire set or a 

small subset of participating hosts. We will describe all properties of this message 

below. Our goal is to maximize the number of hosts that can be prevented from 

contracting the worm.     

 

In this chapter as well as the next, we develop mathematical models for the 

simplest of the scenarios. Then, we go on to develop simulations to study more 

complex scenarios of worm mitigation. 

 

 

8.2 The Model 

 

8.2.1 Definition 

 

Once a worm is detected, an alert message is spread to the set of participating 

hosts to stop the spread of the worm. Using this alert message, we prevent from 

infection to the our nodes and we reduce to infection of worm. It is true, when some 

nodes detect the worm and send the an alert message for this. But, if we do not detect 

the worm, we do not this.  

 

How a worm is detected or declared has been discussed in chapter 6. But the 

worm may be polymorphic or its signature is not known or it is not identified, etc. 

Due to these reasons, the worm may not be detected. So that we can use alert 

message not just when worm detected, we use it for every suspect situations.  
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Now, we can define some abbreviations below which will be used in our model: 

 

• Group Size (G): Number of children for hierarchical networks. 

 

• Threshold (τ): It is the limit value. When network reachs the value, then 

defence unit will be active. ( 0 < τ < G) 

 

• a: The number of infected node. 

 

• c: The proportion of alerted members. 

 

• M: The total number of response members  

 

• Infection Rate (r): Some worms spreads very fast and the other spreads 

slow. We use the term of infection rate as spread speed of worm. 

 

• Alert Message (A): It is an alert message. Every cycle, every parent gets 

this message from their children.  It is a number which is between 0 and 1. 

If detection unit detect a worm send this message as 1. But as we 

mentioned above, sometimes detection unit can not detect the worm 

however it observes some anomalies in the node. It may be a worm which 

does not known worm. In order to prevent network we consider this 

anomaly. And according to this anomaly, detection unit decide the alert 

message. If it is high, the alert message will be near 1. If it is not, it will 

be near the 0. If everything is normal, no worm and no any anomalies, it 

will be 0. ( 0 ≤ A ≤ 1 ) 

 

• Alert Level (AL): It is total of received alert message for a node.  

AL = ∑
=

G

k

A
1

          (8.1) 
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If an uninfected node receives at least thresold(τ) alert level(AL) in the same 

timestep, then defence unit will be active and the node will be protected now. 

 

 

8.2.2 Mathematical Model 

 

In chapter 2 we mentioned about the worm spread. Shortly, we mentioned it again 

for our mathematical model. Worm infections can grow in an exponential pattern, 

rapidly at first and then slowing as a plateau value is reached. This is a typical kinetic 

model that can be described by a first-order equation: 

 

N.da = (Na).K(1-a)dt 

 

a: is the proportion of vulnerable machines that have been compromised 

t: is the time,  

K: is an initial compromise rate 

T: is the constant time at which the growth began 

 

It can then be rewritten in the form of a differential equation: 

 

dt

da
 = Ka.(1 - a)     (8.2) 

 

This describes the random constant spread rate of the worm. Solving the 

differential equation yields: 

 

a = e
K(t - τ) 

 / (1 + e
K(t - τ)

 ) 

 

Rate K must be scaled to account for machines that have already been infected, 

yielding e
K(t - τ)

 

 

This is an interesting equation. For early t (t << T), a grows exponentially. For 

large t (t >> T), a goes to 1 (all vulnerable hosts are compromised). This is 
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interesting because, it tells us that a worm like this can compromise all vulnerable 

machines on the Internet quickly. 

 

For a given member, the expected number of co-operating nodes who remain in 

the normal, un-alerted state is: 

 

)1.( cF −  

 

The number of alerts a particular member sends in time dt is: 

 

dtacF .).1.( −  

 

This implies that the total number of alerts system wide is given by multiplying 

the above term by M, the total number of response members. Since each member 

needs τ alerts before it can change its state, the number of members changing state in 

time dt is given by: 

dt

dcM
= 

τ

acF ).1.( −

 

 

Rearranging the terms, we get the evolution rate of the number of alerted 

members in the following differential equation: 

 

τ

acF

dt

dc ).1.( −
=   (8.3) 

 

The proportion of member already infected is obtained by altering (8.2) to include 

the fact that cooperatively alerted members will be able to block the worm. Two 

types of infection attempts are considered, local and global infection. Local infection 

is an infection that spreads from a host to another host without having to pass 

through any router. Global infection is an infection that needs to pass through a 

router. When an infected host tries to infect another one across a router, the infection 
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must pass through two filters, the local filter that blocks outgoing infections and the 

remote filter that blocks incoming infections. The probability that both of these are 

not alerted is )1( c−
2
 . Thus the global infection is 

 

)1).(1(. caKa −−
2
 

 

The local infection rate is same as the rate equation (8.2) because there are 

response devices between infection source and target. Since there are M response 

members, the probability of a host choosing a target behind the same router is 

M

1
and behind another router is (

M

1
1− ) Combining these probabilities and the 

infection rates, equation (8.2) becomes: 

 

)1).(1(. caKa
dt

da
−−=

2
 . M

aKa
M

1
).1(.)

1
1( −+−     

(8.4) 

 

Thus we have a pair of differential equations which can be solved to get the 

number of infected and number of alerted members. 

 

According to our model, hosts back off from fitering the traffic after a certain time 

period. The rate of back off is directly proportional to )1( a−  and also to the 

proportion of alerted members, c. Thus equation 8.3 becomes: 

 

ca
acF

dt

dc
).1.(

).1.(
−−

−
= ε

τ

  (8.5) 

 

where ε is a constant indicating how fast a host backs-off from filtering traffic. 

 

Then in state t, there are a(G - a) exponential random variables in progress at once, 

since each of the (a) infected nodes is trying to infect each of the (G – a) uninfected 

nodes. Then the time to go from state t to t + 1 will be the minimum of a(G – a) 
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exponentially distributed random variables, and thus will itself be exponentially 

distributed, with mean 
).(

1

aGa −

 

 

For simplicity, we will consider the case τ = G – 1. The total expected time to an 

alert, starting at the time the first member of the group becomes infected, is 

 

∑
−

=
−

1

1 ).(

1G

a aGa
 

 

Using a standard approximation, 

 

dx
xGx

G

.
).(

1
1

1

∫
−

−

 = 
G

1
 dx

xGx

G

).
11

(

1

1
−

+∫
−

 = CG
G

+− )1ln(
2

 

 

where C is the constant of integration. The latter quantity goes to C as G  � ∞ 

 

In other words, the first equality remains bounded as G  � ∞. This is a very 

interesting result, since it says that the mean time to alert is bounded no matter how 

big our group size is. This is verified in our simulations. 

 

 

8.3 Architecture Of The Model 

 

In order to simulate the our model, we use 3 units which names are infection unit, 

detection unit and defence unit. 

 

       Figure 8.1 Architecture of the model 
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8.3.1 Infection Unit 

 

It behavior a worm. The rate of infection is fixed at the beginning of the 

simulation. The exact number of machines that each infected machine tries to infect 

is determined by using a Poisson distribution, with the mean value as the rate of 

infection. 

 

There are 3 parameters for this unit which described as below: 

 

• Infection rate (r): Using this parameter, we control the spread of worm. It is 

a constant value so that, it define before the simulation. 

r: Double 

 

• Infected: It is the output of this unit and it is a boolean array value. If it is 

true, then it will be infected  for the node. The array length is equal to group 

size (G).  

Infected: Array [1..G] of Boolean 

 

• Protected: It is the input of this unit and it is a boolean value. The input 

value, comes from the defence unit. If it is true, the infection unit will not 

infect the node because it is protected.  

Protected: Array [1..G] of Boolean 

 

 

8.3.2 Detection Unit 

 

There are 2 parameters for this unit which described as below: 

 

• Infected: It is the input of this unit and it is a boolean array value. The input 

value, comes from infection unit. The array length is equal to group size (G).  

Infected: Array [1..G] of Boolean 
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• Alert Message (A): It is the output of this unit. If the unit detects a worm it 

send this message as 1. (0 ≤ A ≤ 1) 

A: Array [1..G] of Double  

 

 

8.3.3 Defence Unit 

 

It is the main unit which we will control. There are 3 parameters for this unit 

which described as below: 

 

• Threshold (τ): When network reachs the value, then defence unit will be 

active. It is a constant value so that, it define before the simulation. When the 

AL reaches the threshold, the detection unit will be active. ( 0 < τ < G) 

τ: Integer 

 

• Alert Message (A): It is the input of this unit which comes from detection 

unit. It must be between 0 and 1.  

A: Array [1..G] of Double  

 

• Protected: It is the output of this unit and it is a boolean value. The true 

means, the node will be protected.  

Protected: Array [1..G] of Boolean 

 

 

8.4 Description of The Simulation 

 

The simulation was done on a network modeled as a tree with 4 levels. Each level 

of the tree has 4 children. The simulation is started by randomly infecting a single 

leaf node. The rate of infection is fixed at the beginning of the simulation. 
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     Figure 8.2 Our simulation’s network 

 

The exact number of machines that each infected machine tries to infect is 

determined by using a Poisson distribution, with the mean value as the rate of 

infection.  

 

In each time slice, every infected machine tries to infect as many other machines 

as dictated by the Poisson distribution. Alerts are raised in the same time slice as an 

infection occurs. And each alert is propagated as high as possible in the tree in the 

same time slice. 

 

Simulations were run with thresholds at 75% and 50% of the number of children. 

That is, if 75% of a node's children have raised alerts, the node takes action. The 

structure of network and thresholds were chosen so as to be comprehensible. 

However, more complex structures with different number of children at each level 

and different thresholds at each level could also be simulated. 

 

 

8.5 Discussion of The Results 

 

The basic results of two extreme cases where all parameters are identical except 

the rate of infection which is very high and very low are shown in Figure 8.3 and 
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Figure 8.4.  In these two figures, for alert message we just use 0 and 1. It means that, 

the worm is not polymorphic, and its signature is known in advance or it is identified 

in real time. These two figures show that the number of infections before complete 

immunization could take place is almost the same for both the cases. 

 

 

    Figure 8.3 Response for a low rate of infection and for known worms 

 

 

    Figure 8.4 Response for a high rate of infection and known worms 
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In Figure 8.5, the worm may be polymorphic and its signature is unknown, but 

regarding the some anomalies, the detection unit send alert message as 0.8. As we 

can see the in the Figure 8.5, and although infected node more than protected, it is 

work. Due to the worm is unknown, detection unit would be sent just 0 for the alert 

message and there would be any protected nodes. But in Figure 8.5, detection unit 

observes the traffic and when it finds some anomalies in the node, it will send the 

alert message as between 0 and 1.  

 

 

   Figure 8.5 Response for unknown worms 

 

Figure 8.6 shows that varies with threshold is the number of infected machines. A 

low threshold helps to save a lot of machines. Using threshold, we can define our 

tolerance.  
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   Figure 8.6  Percentage of machines infected for different threshold values 

 

 

8.6 Summary and Conclusions 

 

This chapter provided a mathematical analyses of the group based model of worm 

defence and showed that the simulation results. 

 

From this model, and the simulations, we can determine the thresholds required 

for a given tolerance of lost machines. With the threshold levels and detection unit 

thus determined, we can effectively inhibit the spread of worms . 
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CHAPTER NINE 

CONCLUSIONS AND FUTURE WORK 

 

 

9.1 Research Contributions 

 

In this thesis, a research has been done characterizing and analyzing computer 

worms and a defence system model against the computer worms has been developed. 

Research has been made in the following areas: 

 

1. Worms and their scan techniques 

 

2. Analyzing of the worm detection methods  

 

3. Analyzing of the worm defence methods 

 

4. Modeling a defence system against the computer worms 

 

 

9.1.1. Worms and Their Scan Techniques 

 

This thesis gave a stepwise introduction to a worm. It traced the genesis, evolution 

and the state of the art of worm technology. A brief history of worms was provided 

and an extensive background about them including their history and taxonomy. It 

developed a comprehensive model of a simple worm and described the components 

that make up a worm.  In chapter 4, discussed possible future worms. It provided a 

detailed account of various worm scanning techniques. Network bandwidth and 

latency constraints faced by the worm during spreading were explained in detail. 

These scanning techniques and constraints were explained.  
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9.1.2 Analyzing of The Worm Detection Methods 

 

The goal of our detection strategies is to detect nearly any type of worm with as 

little effort as possible. To do this, we focuses on the features common to most worm 

types and build strategies to detect these characteristics. There are different methods 

of worm detection. These methods are traffic analysis, the use of honeypots, dark 

network monitors, and the employment of signature-based detection systems. It 

analyzed these various techniques and mentinoed about their advantages and 

disadvantages. 

 

 

9.1.3 Analyzing of The Worm Defence Methods 

 

There are various stages of the life cycle of worm defense. The life cycles 

contains following steps: Prevention,  prediction, detection, analysis, mitigation, 

curing, vaccination and patch similar vulnerabilities. It showed how the fight against 

computer worms is an on-going process without an end. It emphasized the need to 

keep systems patched up and up to date and the importance of preventing a worm 

incursion rather than trying to catch up with it. 

 

There are 2 defence strategies, active and passive.  Firewall, network defences and 

proxy-based defences are passive defence, active worm defence is active defence 

strategies. 

 

Firewall systems are a popular network security device. When properly 

configured, a firewall can enforce the security policies of a network and become an 

effective tool in the defense against worms. However, even with their widespread 

deployment, Code Red and Nimda were able to deeply penetrate many networks that 

were otherwise protected.  Altough firewall is effective tool in the defense against 

worms, it is not the final solution for network security. 
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9.1.4 Modeling A Defence System Against The Computer Worms 

 

In Chapter 8, the group based defence is modeled. This model of defence is based 

on the willing co-operation of a set of hosts on a pre-arranged protocol. We 

developed mathematical models for the simplest of the scenarios. Then, we went on 

to develop simulations to study more complex scenarios of worm mitigation. Group 

based model of worm defence is discussed with the simulations results. 

 

From this model, and the simulations, we can determine the thresholds required 

for a given tolerance of lost machines. With the threshold levels and detection unit 

thus determined, we can effectively inhibit the spread of worms . 

 

 

9.2 Conclusion and Future Work 

 

Computer worms are a self-propagating computer program that is being 

increasingly and widely used to attack the Internet. Because they spread extremely 

fast, usually install malicious code and it could access confidential information. This 

thesis concludes that worms could be very dangerous to the Internet. But there are 

several techniques to mitigate the ill-effects of worms as illustrated in this thesis. 

 

In the future work, we would like to design worm defence system. An effective 

practical worm defense system is important. The following important questions will 

be answered: How can firewalls cooperate with each other to block worm traffic? 

How do firewalls treat traffic differently from the normal pattern? How can the 

system defeat the malicious firewalls? 
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