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COMPARISON OF CONTROL CHARTS FOR AUTOCORRELATED DATA 

 

ABSTRACT 

 

As a result of improvements in measurement techniques, sampling intervals 

become shorter, and this causes serial correlation in data. Also, in some process 

industries like chemical manufacturing and refinery operations serial correlation is 

inherent in consecutive measurements. To deal with this challenge, the traditional 

control charts are improved or new control charts are developed in the last few 

decades. Residual control charts such as X residual and EWMA residual are widely 

used control charts for autocorrelated data. In recent years, EWMAST, ARMAST, 

and DFTC charts have been also introduced for this type of data. To compare the 

performances of control charts have attracted interest of researchers. In the relevant 

literature, although there have been a lot of comparison studies, in only few of them 

the first-order autoregressive moving average (ARMA(1,1)) process have been 

investigated. 

 

The objective of this research is to compare performances of Shewhart X, 

CUSUM, X residual, EWMA residual, EWMAST, ARMAST, and DFTC charts for 

ARMA(1,1) process when the mean shifts. Performance criterion used for this 

comparison is the average run length (ARL).  

 

Keywords: Control charts, Serial correlation, Average run length, Autoregressive 

moving average process, Comparison 
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OTOKORELASYONLU VERİLER İÇİN KONTROL KARTLARININ 

KIYASLANMASI 

 

ÖZ 

 

Günümüzde ölçme tekniklerinin gelişmesiyle birlikte örnekleme aralıkları da 

kısalmıştır, bu durum veri seti içinde otokorelasyona yol açmaktadır. Ayrıca, 

kimyasal süreçlerde ve rafineri operasyonlarında olduğu gibi bazı endüstrilerde 

otokorelasyon sürecin doğasından kaynaklanmaktadır. Otokorelasyonla başa 

çıkabilmek için, son dönemlerde mevcut kalite kontrol kartları iyileştirilmekte veya 

yeni kontrol kartları geliştirilmektedir. X artık ve EWMA artık gibi kontrol kartları 

otokorelasyonlu gözlemler için sıkça kullanılan kartlardandır. Bunların dışında, son 

yıllarda bu tip gözlemler için EWMAST, ARMAST ve DFTC kartları geliştirilmiştir. 

Kontrol kartı kıyaslamaları araştırmacılar tarafından büyük ilgi görmüştür. 

Literatürde birçok kıyaslama çalışması bulunmasına rağmen, bu çalışmaların pek 

azında otokorelasyon yapısı birinci dereceden otoregresif hareketli ortalama 

modeline uymaktadır. 

 

Bu araştırmanın amacı, Shewhart X, CUSUM, X artık, EWMA artık, EWMAST, 

ARMAST, ve DFTC kartlarını ARMA (1,1) süreci için ve süreç ortalamasından 

sapma olduğu durumda kıyaslamaktır. Kıyaslama için kullanılan performans ölçüsü 

ortalama koşum uzunluğudur. 

 

Anahtar sözcükler: Kontrol kartları, Seri korelasyon, Ortalama koşum uzunluğu, 

Otoregresif hareketli ortalama, Kıyaslama 
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CHAPTER ONE 

INTRODUCTION 

 

In this chapter, the background, motivation and objectives of this work are stated, 

and the organization of this dissertation is outlined. 

 

1.1 Background and Motivation 

 

 The concept quality is as old as the industry itself. However, especially in 

last few decades, quality has taken much attention as a result of globalizing world. 

Due to the global economic conditions, companies compete in the overall world and 

customer satisfaction, which depends on high quality products and services, is vital 

for companies. Regardless of weather the consumer is an individual or an industrial 

organization quality is the key factor for customer satisfaction. Companies which 

want to survive in the competitive economy should regard this important customer 

decision factor, quality. 

 

One of the essentials of producing high quality low cost products is to adopt and 

apply the Statistical Process Control (SPC) correctly. SPC is a tool for achieving and 

improving quality standards. One of the most useful properties of SPC is that it can 

be applied to any process. The most important and sophisticated tool of SPC is 

control charts. 

 

In the use of traditional control charts the most important assumption is that the 

observations on process or product characteristics are independent. However, as a 

result of improvements in measurement techniques sampling intervals become 

shorter, and this causes serial correlation in data. Besides this, in some process 

industries like chemical manufacturing, refinery operations, wood product 

manufacturing,  nuclear processes, and forging operations serial correlation is 

inherent in consecutive measurements. In this case, traditional control charts such as 

Shewhart X and CUSUM, estimate process parameters with bias, and this causes 

poor  ARL performance such as  high false  alarm rates and slow detection of process
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shifts. Under such conditions, the traditional control charts can still be used, but they 

will be ineffective. 

 

Therefore, some modifications for traditional control charts are necessary. 

Residual control charts such as X residual and EWMA residual are widely used 

modified control charts for autocorrelated data (for further reading see Alwan & 

Roberts, 1988; Montgomery & Mastrangelo, 1991; Wardel et al., 1994; Runger & 

Willemain, 1995; Atienza et al., 1997; Reynolds & Lu, 1997; Zhang, 1997). In the 

last decade, EWMAST, ARMAST, and DFTsC charts have been also introduced for 

this type of data (see Zhang, 1998; Zhang, 2000; Jieng et al.,2000; Jiang & Tsui, 

2001, Winkel & Zhang, 2004; Kim et al., 2006; Kim et al., 2007).  

 

1.2 Research Objective 

 

In the relevant literature, various control charts have been developed for 

monitoring autocorrelated processes, and their performances have been compared 

with each other. Although the first-order autoregressive moving average ARMA(1,1) 

process takes place commonly in real life industries, it has been investigated in only 

few of research studies. Furthermore, there seems to be no earlier study testing 

traditional, residual and distribution free control charts (DFTC) together for 

ARMA(1,1). In this study, we compare the performances of Shewhart X, CUSUM, X 

residual, EWMA residual, EWMAST, ARMAST, and DFTC control charts for an 

ARMA(1,1) process when the mean shifts. We use average run length (ARL) as 

performance criterion.  

 

1.3 Organization of the Thesis  
 

This dissertation is organized as follows. In chapter two, an overview of statistical 

process control and its tools are given. Chapter three includes detailed explanation of 

time series and control charts in the presence of data correlation. Also, a review of 

the recent works on control chart applications in autocorrelated processes are given, 

and both theoretical developments and practical experiences are discussed. Chapter 4 
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presents an extensive comparison of the different control chart implementations in 

the presence of autocorrelation. Finally, chapter five concludes the dissertation. 
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CHAPTER TWO 

STATISTICAL PROCESS CONTROL 

 

In this chapter, basic definitions and seven tools of statistical process control 

(SPC) which is called the “magnificent seven” are presented.  

 

2.1 Statistical Process Control  

 

It is better to define the basic concepts of statistical process control (SPC), before 

giving definition of it. In the following subsection we give the basic concepts of 

SPC, and then we explain what SPC means. After defining the SPC, we will give a 

brief overview on statistical process control charts in the next section. 

 

2.1.1 The Basic Concepts 

 

One of the fundamental concepts of SPC is quality. The word quality is often used 

to signify excellence of a product. The term product consists of manufactured goods 

such as refrigerators, computers, and automobiles and services such as hotel industry, 

transportation, and health care. 

 

Basically, quality is the level of meeting the requirements of customer. On the 

other hand, by the customer’s point of view, quality is the customers’ perception of 

the value of the suppliers’ output. Here the term customer not only means the end 

user, it also involves the consecutive offices, stations, or departments of a company.  

 

The term quality has been defined by many scientists. The most common 

definition of quality is given by Juran (1999) as “fitness for purpose or use”. Various 

scientist highlight different properties of quality. Walter Shewhart (1931), who 

introduced the idea of control charts, attracts attention in sides of quality. He states 

that quality has both an objective and a subjective part. While the objective side of 

quality deals with measurement specifications and minimizing variation, the 

subjective side deals with the commercial value and esthetics. In addition, W.
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Edwards Deming (1988) emphasize on the beholder. According to him, “quality is in 

the eyes of the beholder”. He expresses that quality has different denotations for the 

end user and the industry. 

 

Although there have been various definitions of quality in the literature, there are 

also some common items such as: 

 

• Customer satisfaction is the fundamental value in quality whether the 

customer is an end user or not, 

• Measurement techniques which are used for determining the quality level, 

and 

• Standards facilitate to achieve and stable the desired quality level, 

 

Another important concept is the process. A process is a set of causes, which work 

together to constitute a given result. In other words, a process is the transformation of 

a set of inputs, into desired outputs (Thomas et al. 1984, Oakland 2003). 

      

The term output, which takes place in the above definitions, is processed inputs 

that are transferred to the customer. Through the definition of process, we can 

conclude that organizations have to monitor and analyze the process to fulfill 

customer satisfaction. Analyzing the process can only be formed by determining and 

controlling the inputs to the process perfectly. Also, specifying the purpose of the 

process is vital essential, because by this way the inputs can be set correctly, and the 

customer requirements can be achieved perfectly.  

 

A simple model of a process is shown in Figure 2.1 (Oakland, 2003). It is shown 

that the inputs participate into the process and turn out as the outputs. Whether the 

process belongs to a manufacturing or service industry, the fundamental inputs are 

common:  materials (paper, computers, raw materials, work in processes, etc…), 

methods / procedures (including instructions), information, people (skills, training, 

knowledge), and the environment. It is important to get feedback from the customer 

when setting the required inputs and executing the process. 
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Figure 2.1 A process (Oakland, 2003). 

 

Also, fundamental outputs of various processes are: products, services, 

information, or paperwork. The documentation of procedures about the process must 

be collected (the voice of the process) to monitor and control process correctly. The 

aim of monitoring and controlling a process is to reduce the process variation.  

 

All processes exhibit variation. The probability of two things being exactly the 

same in a process is nearly zero. Even though the difference between two 

manufactured parts is very small, they are still different. Two units of a product 

which is produced by a manufacturing process can not be identical. There is always 

some process variation. For instance, the net content of a unit of toothpaste varies 

mildly from one to another (Montgomery, 1997; Griffith, 2000). There are two kinds 

of process variation in the literature: random variation and nonrandom variation. 

 

Random variation occurs in every production process regardless of how well 

designed or adequately maintained it is. This natural variability or background noise 

is uncontrollable. These variations are referred as stable system of chance causes 
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(Banks, 1989). In other words, random variation is variability of a process caused by 

many fluctuations or chance factors that are chance (or common) causes. These 

common causes cannot be anticipated, detected, identified, or corrected easily. 

Random variation is inherent to a process.  

 

On the other hand, nonrandom variation which is also said to be abnormal 

variation is fluctuations not inherent to a process. This kind of variability occurs in 

the output of the process. Such variability is generally large when compared to the 

random variation, and it usually represents an unacceptable level of process 

performance. Assignable (or special) causes engender this type of variation, and 

they can be detected, identified, and eliminated. These assignable causes in key 

quality characteristics are usually associated with the machines, the operators, or the 

materials of a process. 

 

It can be concluded from the above definitions that quality is inversely 

proportional to variability. Hence, the way of improving quality is reducing the 

process variability. 

 

Because of the reason that all of the manufacturing industry and the service 

industry processes have random or nonrandom variations, companies have to keep 

the variability of the processes at a reasonable level. The act of keeping the variation 

at a reasonable level is called control. Control is a management process which can be 

applied by using at least one of these following actions: 

 

i. actual performance is compared with planned performance, 

ii. difference between the two is measured, 

iii. causes contributing to the difference are identified, and 

iv. corrective action is taken to eliminate or minimize the difference. 

 

There are two types of processes relevant to control: in control processes and out 

of control processes. A process which operates in the presence of only chance causes 
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of variation is said to be statistically in control, and a process which operates with 

assignable causes of variation is said to be statistically out of control.  

 

There is also one more important term, quality characteristics. Quality 

characteristics are the parameters of quality which describe what the consumer thinks 

of as quality. 

 

2.1.2 Definition of SPC 

 

There are several definitions of SPC given by various authors in the literature. 

Montgomery (1997) defines SPC as a powerful collection of problem-solving tools 

which is useful in achieving process stability and improving capability through the 

reduction of variability. Ledolter, & Burrill (1999) also focuses on reducing the 

variability like Montgomery. They state that unusual process behavior can be 

determined and detected by implementing SPC. Smith (2004) describes SPC from 

another point of view. He denotes that SPC consists of collected, organized, 

analyzed, and interpreted data which can be fix a process at a desired level of quality. 

 

It can be concluded from the above definitions that the major objective of SPC is 

the elimination or reduction of the variation in all processes such as in products, in 

times of deliveries, in ways of doing things, in materials, in people’s attitudes, in 

equipment and its use, in maintenance practices, in everything. In addition to this 

main purpose, the followings are also fundamental objectives of SPC: 

 

• Meeting the customer requirements and fulfilling customer satisfaction by 

achieving process stability. 

 

• Minimizing production costs by embracing the “do it right the first time” 

philosophy. By avoiding defective products, costs associated with 

corrective actions are eliminated. 

 



9 

 

• Supporting the participation of all the employees from bottom to top into 

decisions and actions about the process. 

 

• Include all members of the organization into continuous process 

improvement.  

 

As a result, SPC is a tool for achieving and improving quality standards and it can 

be applied to any process. The basic SPC problem solving tools, the magnificent 

seven is described briefly in the following. 

 

1. Histogram: Histogram is a bar graph which shows the frequency of the  

specific measurements of the quality characteristics.  

 

2. Check sheet: A sheet which is used for collecting data in the early stages 

of an SPC implementation. It categorizes problems or defects by gathering 

information about everything relevant to the process; the type of the data, 

the operation number, the date, the analyst, etc... The check sheet output 

can be input for a Pareto chart, or for time series analysis. 

 

3. Pareto chart: A chart which is simply a bar graph (histogram) of the 

number of occurrences of specific problems. Pareto chart determines not 

the most important, but the most frequently occurred defects. The largest 

bar indicates the most frequent problem. Pareto chart is commonly used in 

nonmanufacturing processes. 

 

4. Cause and effect diagram: After a defect or a problem occurs, cause and 

effect diagram (or Ishikawa diagram, or fishbone diagram) analyzes the 

problem (effect) by considering potential causes. The diagram seeks for 

the root cause of the problem. Although it is suitable for any problem, it is 

commonly used for processes whose causes are not obvious. Cause and 

effect diagram is a powerful SPC tool which enables employees to 

participate into solution of the problem. 
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5. Defect concentration diagram: A diagram which illustrates a picture of the 

unit by showing all relevant views. In this diagram different kinds of 

defects are drawn on the picture. It is used for determining the location and 

potential causes of the defects on the unit. 

 

6. Scatter diagram: A useful diagram which plots pairs of measurements on 

a two dimensional coordinate system. It is used to determine the potential 

relationship between two variables.  

 

7. Control chart: Control chart is the most important and sophisticated one of 

the magnificent seven. We state the definition of the control chart in the 

next section.  

 

2.2 Statistical Process Control Charts 

 

A control chart is a time-sequence plot of an important quality characteristic in a 

process which illustrates how the characteristic behaves over time. Samples are 

taken, checked, or measured at periodic intervals, and the results are plotted on the 

chart. The charts can show the change in quality characteristic, the variation in 

measurements, or the change in proportion of defective pieces over time (Ledolter & 

Burrill, 1999; Smith, 2004).  

 

The major objective of a control chart is to find assignable cause, in other words 

nonrandom variation in the process. Control chart is a very powerful SPC tool that 

indicates the source of the variation, gives hints to the cause of the variation, and 

makes the employee take the action. By this way, control chart keeps the process 

statistically in control. Nevertheless, it should not be forgotten that the control chart 

only detects the assignable cause. It is up to management, engineer, and operator to 

eliminate the cause. Also, when eliminating the assignable cause, it is important to 

find the underlying root cause of the problem. Otherwise, cursory solutions will not 

improve the process in the long term. 
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Control charts are widely used as a SPC tool in manufacturing and service 

industries. They are also important tools in six sigma applications. They are applied 

in control part of the DMAIC methodology. DMAIC is the continuous improvement 

methodology of six sigma. It is an acronym of its steps: define, measure, analyze, 

improve, and control.  

 

2.2.1 The Basic Principles 

 

A typical control chart is shown in Figure 2.2, which is a graphical display of a 

quality characteristic that has been measured or computed from a sample versus to 

the sample number or time. The chart contains a center line (CL) that represents the 

average value of the quality characteristic corresponding to the in-control state. Two 

other horizontal lines, called the upper control limit (UCL) and the lower control 

limit (LCL), are also shown on the chart. Upper control limit (UCL) is the top limit 

for plotted quality characteristic before the process terminates in-control situation. 

Lower control limit (LCL) is the bottom limit for plotted quality characteristic before 

the process terminates in-control situation. Center line (CL) is the horizontal line 

which represents the mean of the quality characteristic.  

 

Figure 2.2 A typical control chart for in control processes (Montgomery, 1997). 
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Figure 2.3 A typical control chart for out of control processes. 
 

When a process is statistically in control, almost all of the plotted values of the 

quality characteristic should have a random pattern and have to fall between the 

control limits (Figure 2.2). If one or more of the points fall outside of the control 

limits, it denotes that the process is out of control (Figure 2.3). Then the special 

cause or causes of this out of control situation are must be investigated immediately, 

and the corrective action should be taken. This brings about the basic question: 

‘When should we take corrective action, and when should we leave the process 

alone? In other words, how should we choose the control limits?’ Determining the 

control limits is vital because, if the control limits are estimated so far from the 

center line, there will be a great deal of risk of a point falling between the control 

limits when the process is out of control. On the other hand, there will be less risk of 

a point falling outside the control limits when the process is in control. Also, if the 

control limits are estimated so close to the center line, the opposite of the above 

effects will be occurred. Due to the fact that scientist want to minimize all of the 

above risks, “3-sigma” control limits are widely used in literature for calculating the 

control limits. If the process parameters are known, control limits can be calculated 

from the following equations: 

 

UCL = μ + 3σ (2.1) 

 

LCL = μ - 3σ (2.2) 
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where μ and σ are the process mean and the process standard deviation, respectively. 

Montgomery (1997) points that “sigma refers to the standard deviation of the statistic 

plotted on the chart ( xσ ), not the standard deviation of the quality characteristic”.  

 

However, process parameters are unknown in practice and they have to be 

estimated. In such conditions that the process parameters are unknown estimators are 

used. Sample mean and sample standard deviation are suitable estimators for process 

mean (μ ) and process standard deviation (σ ), respectively. Let nzzz ,...,, 21  are 

observations of a sample of size n, the sample mean, variance and standard deviation 

are as follows: 

 

Sample mean: 
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Sample standard deviation: 
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The statistics z  measures the central tendency of the sample while s (or s2) 

measures variability. 
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Even though the control chart is a very powerful SPC tool, it is not recommended 

to use a control chart in every process. There is no need to use a control chart for a 

process which it is highly unlikely that the process could ever go out of control. A 

control chart should be used in a process where a problem is likely to occur.  In other 

words, it should be worth to implement a control chart. Also, when a control chart is 

implemented it must reduce the costs relevant to the quality defects significantly. 

Thus, management can understand the importance of the control charts and support 

their continuously use. 

 

We stated that the control charts are very powerful, important and sophisticated 

SPC tools in the beginning of this section. Now, we explain the reasons for that. Put 

another way, we state the benefits from using control charts in the following:  

 

• The most important benefit is improving the process. Process improvement using 

the control chart is given substantially in figure 2.4 (Montgomery, 1997). Because 

most processes are statistically out of control, control charts improve their quality 

level by identifying assignable causes. Once assignable causes are identified, then 

the employees responsible for the process should take the action to eliminate 

them.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.4 Process improvement using the control chart 

(Montgomery, 1997). 
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• Control charts reduce costs related with quality problems, because they are very 

effective in detect prevention. It is more expensive to identify defective goods 

from rest of them. So, it is more effective to prevent detects. Montgomery (1997) 

states that “if you do not have effective process control, you are paying someone 

to make a nonconforming product”. 

  

• Control charts focus on the process rather than the product. Through this feature 

of control charts, they help us to conclude a defective product is due to defective 

process, or due to defective workmanship. In other words, control charts provide 

diagnostic information. 

 

• Control charts prevent unnecessary process adjustments, because they can 

distinguish between the background noise and nonrandom variation. By this way 

control charts prevent employees from overreacting to the background noise. 

 

• The use of control charts forces communication between important issues of a 

process such as standards, measurements, and so forth; and establishes 

responsibility on employees among these important issues. 

 

• Process capability studies which have significant impact on many manufacturing 

decision problems can done by using control charts. That is through the control 

charts are also used as an estimating device. By this way, we can estimate certain 

process parameters such as the mean, standard deviation, fraction nonconforming, 

and so forth; and then we can determine the process capability by using these 

estimates. Consequently, control charts provide information about process 

capability.  

 

• Control charts generate a set of techniques that are applied by the employees. It is 

better for employees to follow instructions of control charts during the process 

improvement. 
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The performances of control charts are measured via average run length 

calculations in the literature. Run length (RL) is the number of observations that have 

to be plotted until one of the plotted observations exceeds the control limits for the 

first time. Due to the random nature of observations, the run length follows a 

probability distribution which is called run length distribution. 

 

Average run length (ARL) is the mean of the run length, which can be defined as 

the average number of observations before an out of control signal occurs. When a 

process is statistically in-control, namely has no shift from the mean, an out-of signal 

will be regarded to be false alarm. That means type I error, which is concluding the 

process is out of control when it is in control, occurs. Also, when a process is out-of-

control, an out of control signal must warn as soon as possible to detect the shift 

quickly. By this way, occurrence of type II error, that is concluding the process is in 

control when it is out of control, can be prevented. So, the in-control ARL value 

must be large and the out-of-control ARL value must be small for avoiding both type 

I and type II errors. We will interpret the ARL calculations of various control charts 

in chapter four. 

 

2.2.2 Development and Implementation of Control Charts 

 

Control charts are classified into two general types in the literature: variables 

control charts and attributes control charts. In this section we clarify some control 

charts (Shewhart X, EWMA, CUSUM) whose performances will be compared in 

chapter four. 

 

A variable is a quality characteristic which can and expressed as a number on 

some continuous scale of measurement (Montgomery, 1997). A variable can be a 

dimension, weight, volume, and so forth. If the quality characteristic is a variable, it 

is suitable to control it with a measure of central tendency and a measure of 

variability.  This kind of control charts are called variables control charts. Besterfield 

(2004) defines the control chart for variables as a means of visualizing the variations 



17 

 

that occur in the central tendency and dispersion of particular quality characteristic in 

a set of observations. The types of variables control charts are listed in the following: 

 

• Shewhart X charts ( X ) 

• Average and range charts ( X  and R) 

• Median and range charts ( X~ and R) 

• Average and standard deviation charts ( X  and S) 

• Individual and moving range charts (X and MR) 

• Run charts  

• S2 charts 

 

Shewhart X chart firstly introduced by Dr. Walter A. Shewhart in 1920s and is 

attracted many scientists’ interest. Since the first statistical control charts, x , x  and 

R,  x  and S, were introduced by him, these charts have been also called the 

Shewhart control charts.  

 

The Shewhart X chart which is the basis for many control charts is very simple 

and easy to use. . If nxxx ,...,, 21  is a sample of size n, the center line (CL), upper 

control limit (UCL), and lower control limit (LCL) of the Shewhart X chart is given, 

respectively in the following: 

 

n
xxx

xCL n+++
==

L21                  (2.6) 

 

σ3+= xUCL                    (2.7) 

 

σ3−= xLCL                    (2.8) 

 

where x  is the mean and σ is the standard deviation of the process. We assume that 

σ is known or an estimate is available. 
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We must treat the control limits as trial control limits. Trial control limits are 

useful for determining whether the process was in control or not when the initial 

observations were selected. According to this definition, it can be concluded that if 

all points plot inside the control limits, the process was in control in the past, and this 

means that the trial control limits can be used for controlling current and future 

production. Contrarily if some points plot outside the control limits, this means that 

the process was out of control in the past. In such a situation, every single assignable 

cause must be examined, and eliminated. After eliminating one of the assignable 

causes, the point belong to it must be ignored and the trial control limits should be 

recalculated. This process is continued until all points plot inside the limits. This 

analysis of past data is referred to Phase I analysis. After Phase I analysis, the 

obtained control limits are used in Phase II. Phase II is using the limits for current 

and future monitoring.  

 

There is another concept in Shewhart X charts which named rational subgroup by 

Dr. Shewhart. Rational subgroup is the collection of sample data in subgroups or 

samples. The purpose of the rational subgroup concept is to maximize the differences 

between subgroups when assignable causes occur; and to minimize the differences 

within a subgroup. However, using rational subgroups are ineffective due to the lack 

of time and costs in industrial world. The case of individual observations occurs very 

often in practice. So, we prefer to use individual observations rather than rational 

subgroups in this dissertation. 

 

Shewhart control charts have been used in practice for decades because; they do 

not need deep statistical knowledge, they are easy to use and interpret. Besides these 

advantages, Shewhart charts have also some disadvantages. Crucial issue of any 

Shewhart control chart is that it only takes into consideration the last plotted point, 

and can not contain information about the whole process. Because of this feature, 

Shewhart charts are usually effective for detecting large shifts but ineffective for 

detecting small shifts (about 1,5σ or less) in process parameters. 
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There is also one more type of control charts: attributes control charts, as it is 

expressed in the beginning of this section. Contrary to variables, many quality 

characteristics cannot be represented numerically. This type of quality characteristics 

is called attributes. “Attributes control charts use pass-fail information for charting. 

An item passes inspection when it conforms to the standards; a nonconforming item 

fails inspection” (Smith, 2004). The types of attributes control charts are listed in the 

following: 

 

• Control charts for fraction nonconforming (p charts) 

• Control charts for number nonconforming (np charts) 

• Control charts for nonconformities (c charts) 

• Control charts for nonconformities per unit (u charts) 

 

As we mentioned before, there is an important shortcoming relevant to Shewhart 

charts which is they are ineffective for detecting small shifts. To overcome this 

disadvantage two different control charts, cumulative sum (CUSUM) and 

exponentially weighted moving average (EWMA), are proposed. They are 

appropriate for detecting small shifts, because they give smaller weight to the past 

data. However, they do not react to large shifts as quickly as the Shewhart chart.  

 

The cumulative sum (CUSUM) chart was firstly introduced by Page in 1954. The 

CUSUM chart was developed in Britain and is one of the most powerful 

management tools available for the detection of trends and slight changes in data.  

 

Let nxxx ,...,, 21  is a sample of size n, jx  is the average of the jth sample, and 0μ  is 

the target for the process mean. Then the CUSUM control chart is formed by plotting 

the following quantity: 

 

∑
=

−=
i

j
ji xC

1
0 )( μ                    (2.9) 
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Ci is called the cumulative sum of the ith sample. As it is seen from the equation 

above CUSUM charts contain information from several samples. Consequently, 

CUSUM charts are more effective than Shewhart charts for detecting small process 

shifts. 

 

Equation 2.9 above calculates the plotted points of CUSUM. Of course, it needs 

control limits to be a control chart. There are two representations of CUSUM charts 

related to control limits: the tabular (or algorithmic) CUSUM, and the V-mask 

procedure. Due to the various disadvantages of the V-mask procedure, it is 

recommended to use tabular CUSUM chart in the literature.  

 

If iX  is the ith observation of the process, it is assumed that iX  has a normal 

distribution with mean 0μ  and standard deviation σ  when the process is in control. 

It is also assumed that σ  is known or an estimate is available.  

 

In general, 0μ  is interpreted as a target value for the quality characteristic x. The 

tabular CUSUM is formed by accumulating derivations from 0μ  that are above 

target with the statistic +C  and accumulating derivations from 0μ  that are below 

target with the statistic −C . The statistics +C  and −C  are called one sided upper and 

lower CUSUMs, respectively. They are computed as follows:  

 

])(,0max[ 10
+
−

+ ++−= iii CKxC μ               (2.10) 

 

])(,0max[ 10
−
−

− +−−= iii CxKC μ               (2.11) 

 

where K is the reference value (or the allowance, or the slack value). K is usually 

selected the half of the process shift in the literature, as the following equation: 

 

σδ
μμ

22
01 =

−
=K                  (2.12) 
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where 1μ  is the out of control value of the process mean ( δμμ += 01 ), and δ is the 

amount of the process shift (
σ
μμ

δ 01 −= ).  

 

If neither +C  nor −C  exceeds the decision interval H, the process will be 

statistically in control. The value of H is suggested as five times the process standard 

deviation (σ ) in the literature.  

 

When any out of control signal is occurred on a CUSUM control chart, on a 

CUSUM control one should search for the assignable cause, take any corrective 

action required, and then reinitialize the CUSUM at zero. In such situations which 

the process needs to be back to the target value 0μ  by a corrective action, it may be 

helpful to have an estimate of the new process mean including the shift. This can be 

computed as: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧
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>++
=

−
−
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+

+
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C

K

i
i

i
i

,

,
ˆ

0

0

μ

μ
μ                  (2.13) 

 

It is obvious that when implementing the CUSUM chart the determination of K 

and H is vital. Let σhH =  and σkK = , Hawkins (1993) gives a table of k and the 

corresponding h values. We select values of k and the corresponding values of h as 

0.5 and 4.77, respectively throughout this dissertation. 

 

Various techniques have been introduced to calculate the ARL of a CUSUM, but 

the ARL approximation given by Siegmund (1985) is commonly used in the 

literature due to its simplicity. We also use the Siegmund’s approximation in this 

study. The Siegmund’s approximation is as follows: 

 

22
12)2exp(

Δ
−Δ+Δ−

=
bbARL                (2.14) 
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for Δ ≠ 0, where k−=Δ *δ  for +
iC , and  k−=Δ *δ  for −

iC , b = h +1.66, and 

σμμδ /)( 01
* −= . If Δ = 0, ARL = b2. 

 

The ARL of the two sided CUSUM is: 

 

−+ +=
ARLARLARL

111                 (2.15) 

 

where ARL+ and ARL- are one sided statistics.  

 

CUSUM control charts are especially effective with processes whose sample sizes 

are one (n = 1). Due to this feature of CUSUM control charts, they are effectively 

used in individual observations one such as chemical and process industries, and 

discrete parts manufacturing with automatic measurement of each part.  

 

The exponentially weighted moving average (EWMA) control chart was proposed 

by Roberts in 1959.  Like CUSUM chart, EWMA is suitable for detecting small 

process shifts. Due to the structure of the EWMA chart, it gives less weight to farther 

past data. Even though the performance of the EWMA chart is similar to the 

corresponding CUSUM chart, EWMA chart is much easy to set up and operate. Such 

as the CUSUM chart, the EWMA chart is very effective particularly when used with 

individual observations.  

 

The exponentially weighted moving average is defined as follows: 

 

1)1( −−+= iii zxz λλ                 (2.16) 

 

where λ  is a constant between (0,1), and the starting value is the process target 

00 μ=z , or occasionally the average of preliminary data xz =0 . 

 

If we substitute jiz −  for j = 2,3,…,t in equation 2.16, we get 
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ji
j

i

j
i λλλ −+−= −

−

=
∑                (2.17) 

 

Then the EWMA control chart is formed by plotting the iz  values versus the 

sample number i or time. It is understood from the above equation that weight 

assigned to the past data geometrically decreases. Because of this reason the EWMA 

control chart is also called the geometric moving average (GMA) control chart.  

 

If the observations xi are independent random variables with variance 2σ , then 

the variance of zi will be 

 

])1(1)[
2

( 222 i
zi

λ
λ

λσσ −−
−

=                (2.18) 

 

Then the center line and the control limits for the EWMA chart are calculated as 

follows: 

 

])1(1)[
2

( 2
0

iLUCL λ
λ

λσμ −−
−

+=               (2.19) 

 

0μ=CL  

 

])1(1)[
2

( 2
0

iLLCL λ
λ

λσμ −−
−

−=               (2.20) 

 

where L is the width of the control limits. Notice that the term ])1(1[ 2iλ−−  in 

equations 2.19 and 2.20 approaches unity as i gets larger. It means that if the amount 

of data is large enough, the variance and the control limits of EWMA will be, 

 

)
2

(22

λ
λσσ
−

=
iz                  (2.21) 
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)
2

(0 λ
λσμ
−

+= LUCL                 (2.22) 

 

)
2

(0 λ
λσμ
−

−= LLCL                 (2.23) 

 

When designing an EWMA control chart, determination of L and λ  is vital. “the 

optimal design procedure would consist of specifying the desired in control and out 

of control average run lengths and the magnitude of the process shift that is 

anticipated, and then to select the combination of λ  and L” (Montgomery, 1997). 

 

Generally, it is advised to choose λ  between 0.05 and 0.25. Also L = 3 is 

suggested commonly. 

 

Consequently, both of the CUSUM and EWMA control charts perform well in 

detecting small shifts, but they have poor performance with large shifts. nevertheless, 

EWMA is usually superior to CUSUM for large shifts particularly if 10.0>λ  (See 

Montgomery, 1997). 

 

As mentioned above, the fundamental assumption of these charts is that the 

observations of the process are independent and identically distributed (iid) normal 

about a certain mean. However, the independency assumption is not realistic in 

practice due to various reasons. Control charts for such conditions (autocorrelated 

processes) will be examined in the next chapter. 
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CHAPTER THREE 

TIME SERIES AND CONTROL CHARTS FOR AUTOCORRELATED 

PROCESSES 

 

The purpose of this chapter is to present time series analysis, and give an 

overview of the control charts used for autocorrelated data. We explain time series 

before examining autocorrelation because time series analysis knowledge will enable 

someone better understanding of the autocorrelation structure of the process. Then, 

we review the literature of control charts for autocorrelated processes in a 

chronological order; discuss both theoretical developments and practical experiences; 

and also state historical progression of these charts. 

 

3.1. Time Series  

 

As it is stated in the previous chapter, many processes in the real manufacturing, 

or service environment are autocorrelated. The idea of describing an autocorrelated 

process by a time series model was firstly introduced by Alwan & Roberts in 1988. 

They use time series modeling to detect the nonrandom variation, namely assignable 

causes. 

 

A time series is ordered sequence of observations. It is constructed by plotting the 

observed variable versus to time. If only one variable is observed, the time series is 

said to be univariate. Contrarily, if the time series involves simultaneous 

observations on several variables, it is called the multivariate time series. 

Multivariate time series analysis is beyond the purpose of this dissertation. A time 

series can be continuous, such as chemical processes or discrete, such as television 

manufacturing. 

 

There are three general objectives for studying time series: 

1. understanding and modeling of the underlying mechanism that generates 

the time series, 

2. prediction of future values, and 



26 

 

3. control of some system for which the time series is a performance 

measure. 

 

Examples of the third application occur frequently in industry. Almost all time 

series exhibit some structural dependency. That is, the successive observations are 

correlated over time, or autocorrelated. Special classes of statistical methods that take 

this autocorrelative structure into account are required (Mastrangelo et al., 2001). 

 

For these autocorrelative cases, time series are analyzed and presented by Box, 

and Jenkins (1976), and are called Box-Jenkins (or ARIMA – AutoRegressive 

Integrated Moving Average) models. Box & Jenkins proposed a methodology to find 

an appropriate ARIMA(p,d,q) model. This methodology consists of three steps: i) 

identification of the model, ii) estimation of the parameters, iii) diagnostic checking. 

It is recommended that one must have at least 50 observations available to identify 

the appropriate model structure. 

 

In this study, we assume that the underlying process is best described by a 

stationary ARMA(1,1) model. Thus, we give the definition of stationarity and 

discuss the ARMA(1,1) model. We also study AR(1), and MA(1) processes for a 

better understanding of the ARMA(1,1) structure in the following subsections. 

 

3.1.1 Stationary and Nonstationary processes  

 

The time series whose variable varies around a constant level, as in Figure 3.1, is 

stationary. On the contrary, if the variable drifts with no obvious fixed level, such as 

in Figure 3.2, this means that the process has nonstationary behaviour. Many time 

series behave as is they have no constant mean; that is, in any local segment of time 

the observations look like those in any other segment, apart from their  average.  

Such a time series is called nonstationary in mean (Montgomery, & Johnson (1976)) 

Similarly, it is possible for a time series to exhibit nonstationary behavior in both 

mean and slope: that is,  apart from  the mean and  the slope, observations  in 
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different  segments of time look very much alike. Examples of nonstationary time 

series are shown in Figure 3.2. 

Figure 3.1 A stationary time series. 

 

(a) Time series that is nonstationary in the mean. 

(b) Time series that is nonstationary in mean and slope. 
Figure 3.2 (a) and (b) Two nonstationary time series. 
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A general model of nonstationary time series is the autoregressive integrated 

moving average process of order (p,d,q) (ARIMA(p,d,q)). Nevertheless, a wide 

variety of time series in practice are from stationary processes. Therefore, we deal 

with the most common stationary autocorrelated process model, ARMA(1,1) 

throughout this work. 

 

3.1.1.1 Stationarity and Invertibility 

 

According to Cryer (1986) “the basic idea of stationarity is that the probability 

laws governing the process do not change with time that is the process in statistical 

equilibrium”.  

 

“If {Zt} is a stationary series, the mean, variance, and autocorrelation can usually 

be well approximated by sufficiently long time averages based on a single 

realization.” (Enders, 1995). 

 

μ== − )()( stt ZEZE  

 
222 ])[(])[( ystt ZEZE σμμ =−=− −  or 2)()( ystt ZVZV σ== −  

 

ssjtjtstt ZZEZZE γμμμμ =−−=−− −−−− )])([()])([(  

 

or ssjtjtstt ZZCovZZCov γ== −−−− ),(),(                 (3.1) 

 

where μ , 2
yσ  and all sγ  are constants, representing mean, variance and lag s 

covariance of the process, respectively. “The series {Zt} is invertible if it can be 

represented by a finite-order or convergent autoregressive process” (Enders, 1995). 
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3.1.1.2 Autocorrelation and Partial Autocorrelation 

 

Autocorrelation is the dependence in a time series, the term serial dependence is 

also used in the literature for autocorrelation. Autocorrelation is the correlation of 

one variable at one point in time with observations of the same variable at prior time 

points. 

 

The kth autocorrelation (denoted by kρ ) of a covariance stationary process is 

defined as its autocovariance divided by the variance. The autocorrelation at lag k 

( kρ ) refers to the correlation between any two observations in a time series that are k 

periods apart (Hamilton, 1994; Montgomery, & Johnson, 1976). The autocorrelation 

at lag k is given in the following equation: 

 

0)()(
),(

γ
γ

ρ k

ktt

ktt
k zVzV

zzCov
==

+

+                   (3.2) 

 

Autocorrelation function { kρ } of a process is the graphical display of kρ  versus 

the lag k. Autocorrelation function is symmetric which results in kk −= ρρ . The 

autocorrelation function value is between -1 and 1 ( 11 ≤≤− kρ ) and it is 

dimensionless. Mostly, if observations k lags apart are close together in value, the 

autocorrelation function value kρ  will be close to 1. Also, if a large observation at 

time t is followed by a small observation at time t+k, the kρ  value will be close to -1. 

Furthermore, if there is little relationship between observations k lags apart, the kρ  

value will be close to 0 (Box & Jenkins, 1976; Montgomery & Johnson, 1976). 

 

Partial Autocorrelation is the correlation of one variable at one point in time with 

another observation of the same variable at prior time point. In other words, “the 

partial autocorrelation at lag k is the correlation between zt and zt+k with the effects of 

the intervening observations ( 121 ,,, −+++ kttt zzz K ) removed” (Montgomery, & 

Johnson, 1976). kth partial autocorrelation is denoted as the coefficient kkφ . Partial 
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autocorrelation function { kkφ } of a process is the graphical display kkφ versus the lag 

k. 

 

3.1.2 The First-Order Autoregressive Process 

 

The first-order autoregressive (AR(1)) process is: 

 

ttt ZZ εφξ ++= −1                    (3.3) 

 

where the distribution of { tε } is normal with mean 0 and variance 2
εσ , and the 

sequence of random variables K,,, 21 −− ttt εεε  is called a white noise process. 

 

The mean, variance, and autocovariance of the AR(1)  process are given, 

respectively in the following: 
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Then the autocorrelation function can be found easily from the equations (3.5) and 

(3.6): 
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3.1.3 The First-Order Moving Average Process 

 

The first-order moving average (MA(1)) process is: 

 

1−−+= tttZ θεεμ                    (3.8) 

 

where the distribution of { tε } is normal with mean 0 and variance 2
εσ . 

 

The mean, and variance of the MA(1)  process are given, respectively in the 

following: 

 

μ=)( tZE                        (3.9) 
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and using (3.10), the autocorrelation function is: 
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3.1.4 The First-Order Autoregressive Moving Average Process 

 

While building empirical models of actual time series, scientists (Box & Jenkins, 

1976; Montgomery & Johnson, 1976) found that a major part of processes do not fit 

in a pure autoregressive or a pure moving average forms. Many industrial processes’ 

behavior includes both autoregressive and moving average terms. Consequently, the 

mixed autoregressive moving average model is suggested. 

 

The first-order autoregressive moving average (ARMA(1,1)) process is: 

 

11 −− −++= tttt ZZ θεεφξ                 (3.12) 
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where the distribution of { tε } is normal with mean 0 and variance 2
εσ . The process 

is stationary and invertible if 1<φ  and 1<θ , respectively.  

 

The mean, variance, and autocovariance of ARMA(1,1)  are: 
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The autocorrelation function is calculated from (3.13) and (3.14): 
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2,1 ≥= − kkk φρρ                 (3.16) 

 

From the equation (3.15) and (3.16) we see that the moving average component 

affects only the autocorrelation of the first lag, after the autocorrelation function for 

the first lag autocorrelation decays exponentially from ρ1. Thus, the autocorrelation 

function tails off after lag 1 in ARMA(1,1) processes. Since ρ1 is composed of two 

parameters ),( θφ , the values of ),( θφ determine the autocorrelation function value, 

namely serial correlation of a process. If the value of φ  is close to 1 when θ  is 

smaller than 0, the process will have high positive autocorrelation even if the 

magnitude of θ  is high or small. If φ  value is close to -1 when θ  value is greater 

than zero, the process will have high negative autocorrelation. Besides, 

autocorrelation gets close to zero when the autoregressive and the moving average 
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process parameters close up each other. When θφ = , there will be no 

autocorrelation. If =φ 0 the process is purely moving average (MA(1)), and if =θ 0 

then the process is purely autoregressive (AR(1)). Furthermore, when a process is 

said to be highly positive (negative) autocorrelated, it means that the first lag 

autocorrelation coefficient is close to 1 (-1). 

  

As a result, the first q lags of the autocorrelation function of a ARMA(p,q) 

process is affected by the moving average parameters, and lags greater than q is  

affected only by the autoregressive parameters (Montgomery, & Johnson, 1976). 

 

3.2 Control Charts for Autocorrelated Processes 

 

In this section, we can examine the need for control charts when processes are 

autocorrelated and define particular charts used for this purpose. 

 

As it is mentioned in chapter two, the fundamental assumption of traditional 

control charts is that the observations of the process are independent and identically 

distributed (iid) normal about a certain mean. However, the independency 

assumption is not realistic in practice. High speed automatic data collection 

techniques make the sampling intervals shorter. Shorter sampling intervals cause 

significant serial correlation (autocorrelation) in observations. Besides this, in 

continuous flow processes such as chemical manufacturing, refinery operations, 

wood product manufacturing and nuclear processes serial correlation is inherent in 

consecutive measurements. When there is significant autocorrelation in a process, 

traditional control charts with iid assumption will estimate biased process parameters 

which results in poor ARL performance like high false alarm rates and slow 

detection of process shifts. Under such conditions, the traditional control charts can 

still be used, but they will be ineffective. Because of this reason some modifications 

for traditional control charts are necessary if autocorrelation cannot be ignored. 

Therefore, various control charts have been developed for monitoring autocorrelated 

processes. These control charts used for autocorrelated processes have attracted 

many scientists’ interest especially in the last two decades. In the following 
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subsections we define residual, EWMAST, ARMAST, and DFTC control charts 

whose performances will be compared later. 

 

3.2.1 Residual Control Charts  

 

The first residual control chart, namely special cause chart (SCC), was introduced 

by Alwan & Roberts in 1988. The SCC chart is also known as the X residual chart in 

the literature. In residual charts, forecast errors, namely residuals, are assumed to be 

statistically uncorrelated. An appropriate time series model is fitted to the 

autocorrelated observations and the residuals are plotted in a control chart. For this 

reason all of the well-known control schemes can be transformed to the residual 

control scheme. 

 

Alwan & Roberts (1988) suggested that in a wide range of applications in which 

processes are not in control in the sense of iid random variables, one can use 

relatively elementary regression techniques to identify and fit appropriate time series 

models. If one succeed in finding such a model, he have reached a negative verdict 

about statistical control in the sense of iid and can obtain fitted values and residuals 

along with probabilistic assessments of uncertainty as follows: 

 

Actual = Fitted + Residual                 3.17 

 

When constructing the X residual chart, the centerline is at μ, and the 3-sigma control 

limits are as follows: 

 

εσ3+= xUCL                   3.18 

 

εσ3−= xLCL                   3.19 

 

After Alwan & Roberts (1988), many scientists have interested in residual control 

charts. Literature survey will be given at the end of this chapter. EWMA residual 

charts have attracted many scientists’ interest among residual control charts. 
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Reynolds & Lu (1997) defined the EWMA residual which uses a control statistic 

of the form: 

 

ttt eZZ λλ +−= −1)1(                 (3.20) 

 

where te  is the residual for observation t. The EWMA residual chart is constructed 

by charting Zt the centerline is at μ, and the 3-sigma control limits are: 

 

)
2

(
λ

λσ
−

+= eLUCL                 (3.21) 

 

)
2

(
λ

λσ
−

−= eLLCL                 (3.22) 

 

where L is a constant and eσ  is the standard deviation of te .  

 

3.2.2 The Exponentially Weighted Moving Average Control Chart for Stationary 

Processes (EWMAST)  

 

Exponentially Weighted Moving Average for Stationary Process (EWMAST) 

control chart has been introduced by Nien Fan Zhang in 1998 to deal with the 

disadvantages of the residual charts. EWMAST chart is an extension of the 

traditional EWMA chart and basically constructed by charting the EWMA statistics 

for stationary process. 

 

Zhang (1998) remarked that the limits of the EWMAST chart are different from 

that of the traditional EWMA chart when the data are autocorrelated. When the 

process is positively autocorrelated, the limits of the EWMAST chart are wider than 

that of the ordinary EWMA chart. 
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Suppose {Xt} is a discrete stationary process with constant mean and 

autocovariance function, kγ . That is, 

 

,...2,1,0)( == tXE t μ                (3.23) 

 

)])([(],cov[ μμγ ττ −−== ++ ttttk XXEXX              (3.24) 

 

The autocovariance function of Zt is given by Zhang (1998) as follows: 
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where kρ  is the autocorrelation of Xt at lag k and 0/ γγρ kk =  from (3.7). Then the 

variance of Zt is given below, when 0=τ : 
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The approximate variance of Zt when t is large enough (t → ∞) is written as 

follows: 
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where M is a large integer. Assuming that Xt is normally distributed, Zt is also 

normally distributed with mean = μ and variance given in (3.26). The EWMAST 

chart is constructed by charting Zt. the centerline is at μ, and the 3-sigma control 

limits are: 
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UCL = μ + 3σz   

LCL = μ - 3σz   

 

where σz is the standard deviation of Zt which can be calculated by taking the square 

root of (3.26). The approximation given in (3.27) can be used for large t. 

 

When observations are from an iid process, namely 0=kρ  for k ≥ 1, the term in 

braces in (3.26) will be t2)1(1 λ−− , and the term in braces in (3.27) will be 1. In this 

case, equations (2.18) and (2.21) which calculate the standard deviation of EWMA 

statistic, Zt, are equal to equations (3.26) and (3.27), respectively. Thus, the ordinary 

EWMA chart is a special case of the EWMAST chart when the sequence of 

observations,  Xt, are independent. 

 

As it seen from (3.27), the choice of M is important. Box & Jenkins (1976) 

proposed that useful estimates of kρ  can only be made if the data size N is roughly 

50 or more and k < N / 4. Consequently, Zhang (1998) suggested that “M should be 

large enough to make the approximation in (3.27) usable and at the same time less 

than N / 4 to avoid the large estimation errors of the autocorrelations”.  

 

3.2.3 The Autoregressive Moving Average (ARMA) Control Chart  

 

The autoregressive moving average (ARMA) chart has been proposed by Jiang et 

al. (2000). The ARMA chart monitors the successive values of an ARMA statistic 

which is obtained by the application of generalized first order autoregressive moving 

average (ARMA(1,1)) process applied to the iid process. Jiang et al. (2000) use the 

same notation of the EWMAST chart proposed by Zhang (1998), and denote the 

ARMA chart as the ARMAST chart for stationary processes.  
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Suppose {Xt} is a series of autocorrelated observations with normality, an in 

control mean of 0, and variance 2
xσ . Jiang et al. (2000) applied the ARMA statistic to 

the underlying process, Xt, as follows: 
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where 0/θθβ =  and φθθ −+= 10 .  

 

Stationarity and invertibility constraints of the process are 1<φ , and 1<β , 

respectively.  

 

Jiang et al. (2000) assume that the underlying process , Xt, is characterized by the 

autocorrelation structure τρ  with 0/ γγρ ττ =  and ),cov( ττγ += tt XX . And they 

represented the ARMA statistic as follows: 
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where θφθα −= 0  and φθθ −+= 10 . 

 

The covariance function given by Jiang et al. (2000) is: 

 

 

 
 
 
 
 
 

 

  (3.30) 

 
⎭
⎬
⎫

+

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
++=

+⎥
⎦

⎤
⎢
⎣

⎡
++=

⎥
⎦

⎤
⎢
⎣

⎡
++=

∑ ∑

∑∑

∑ ∑∑∑

∑∑

−

=

−+

=
+−

−+

−+

=
−

−
−

=
+

−

−

=

−+

=
+−

−+
−+

=
−

−
−

=
+

−

−+

=
−+

−
+

−

=
−

−
+

1

1

1

1

22

1

1

1
1

1

1
0

2
0

2

1

1

1

1

22
1

1

1
1

1

1
0

2
0

1

1

1
0

1

1

1
0 ,cov),cov(

t

i

t

j
ij

ji

t

k
k

k
t

k
k

k
X

t

i

t

j
ij

ji
t

k
k

k
t

k
k

k

t

k
kt

k
t

t

k
kt

k
ttt XXXXZZ

τ

τ

τ

τττ

τ

τ

τ

τττ

τ

τττ

ρφα

ρφρφαθρθσ

γφαγφγφαθγθ

φαθφαθ



39 

 

 

When 0=τ , the variance of Zt is: 
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Similarly, the variance of Zt for large t (t → ∞), namely steady state variance is: 

 

2

1

1
2

2

02

2
2
0

2

1 1 1

222
02

2
1

0
2
0

2

1 1 1

221
0

2
0

2

1
2

1

2
1

2

2

X
k

k
k

X
k k l

l
k

k
k

k

X
k i j

ij
ji

k
k

Z

σρφ
φ

φααθ
φ

αθ

σφρφφαρ
φ

αρφαθθ

σρφαρφαθθσ

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

++
−

+=

⎭
⎬
⎫

⎩
⎨
⎧

+
−

++=

⎭
⎬
⎫

⎩
⎨
⎧

++=

∑

∑ ∑ ∑

∑ ∑∑

∞

=

−

∞

=

∞

=

∞

=

−−

∞

=

∞

=

∞

=
−

−+−

       (3.32) 

 

where ∑
∞

=!k
k

k ρφ  converges because 1<kρ  (k > 0).  

 

The ARMA chart is constructed based on (3.30), and (3.32) for large t. then, the 3-

sigma control limits are: 

 

UCL = μ + 3σz 

LCL = μ - 3σz   

 

where σz is the standard deviation of Zt which can be calculated by taking the square 

root of (3.30). The approximation given in (3.32) can be used for large t. 

 

ARMA chart reduces to the EWMA chart when 0=θ  with λφ −= 1 . Therefore, 

the EWMA chart can be considered as a special case of the ARMA chart. 

 

As it is stated above, ARMA statistic is 110 −− +−= tttt XXXZ φθθ . Since 

φθθ −+= 10 , the equation can be written as follows: 
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11 −− +−−+= tttttt ZXXXXZ φθφθ  

 

If λφ −= 1 , and 0=θ , then 

 

11 )1()1()1( −− −++−=−+−−= tttttttt ZXXXZXXZ λλλλ  

 

Consequently, ARMA statistic becomes 

 

ttt XZZ λλ +−= −1)1(  

 

which is equal to the EWMA statistic given previously. 

 

3.2.4 A Distribution Free Tabular CUSUM Chart for Autocorrelated Processes 

 

Distribution free charts are suggested for distribution free processes. Kim et al. 

(2007) proposed a distribution free tabular CUSUM (DFTC) chart to detect mean 

shifts of autocorrelated observations. Kim et al. (2007) defined the proposed chart as 

“a generalization of the conventional tabular CUSUM chart that is designed for iid 

normal random variables”. 

 

Suppose {Xt} is a discrete-time stochastic process which has steady state 

distribution with mean μ , marginal variance 2
xσ . Let the in control process mean be 

0μ . The standardized CUSUM, Ci(t), is defined as: 
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where [.] is the “floor” (greatest integer) function so that [z] denotes the largest 

integer not exceeding z, and 2
XΩ  is the variance parameter for the process {Xt}, 

defined as: 
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For the one sided tabular CUSUM statistics, +
iC  and −

iC , defined in equations 

(2.10) and (2.11) , Kim et al. (2007) used the notations +
nS  and −

nS  corresponding 

times at which an alarm is raised, 
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where XkK σ=  and XhH σ=  

 

Kim et al. (2007) formulate the procedure of DFTC by computing the one sided 

ARL [ ]+XTE  for the in-control condition [ ] 0μ=tXE .  

 

H. Kim et al. (2007) formulate a distribution-free generalization of Siegmund’s 

approximation to handle the case of observations that may be correlated or 

nonnormal and develop a procedure for DFTC as follows: 

 

Step 1. Choose K and the target two-sided ARL0. Then, calculate H and the 

solution, 
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Step 2. Set an out of control alarm after the nth observation if HSn ≥+  or HSn ≥− . 

 

3.2.5 A Review on Statistical Process Control Charts for Autocorrelated Processes 

 

The fundamentals of SPC and control charts were firstly introduced by Dr. Walter 

A. Shewhart in 1920s while he was working for Bell Telephone Laboratories. Since 

then the first statistical control charts such as X , X  and R, X  and S, are called 

Shewhart charts due to the scientist who developed them. Shewhart control charts are 

widely used in both theoretical researches and practical applications, because they 

are the basis of many control charts and easy to use and interpret. Nevertheless, there 

is also a main disadvantage relevant to any type of a Shewhart chart that is it only 

uses the information about the process contained in the last plotted point. So, it has 

lack of information about the entire process. As a result, Shewhart charts are 

effective when the shift in process parameters are large, but are ineffective when the 

shift is small (about 1,5σ or less). 

 

Two different control charts are proposed to overcome this disadvantage: 

cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) 

charts that are introduced by Page (1954) and Roberts (1959), respectively. The 

CUSUM and EWMA charts give smaller weight to the past data, and much weight to 

the recent data. Consequently, they are appropriate for detecting small shifts, but 

inappropriate for large ones. 

 

All of the above traditional control charts perform under iid assumption, but we 

mentioned previously that the iid assumption is not realistic in practice. In the last 

two decades, the scientists’ interest in autocorrelated processes have improved, and 

two general approaches are proposed to deal with autocorrelated processes: i) 

residual control charts, and ii) modified control charts.  

 

Residual control charts have been studied quite extensively. In these charts, 

forecast errors, namely residuals, are assumed to be statistically uncorrelated. An 

appropriate time series model is fitted to the autocorrelated observations and the 
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residuals are plotted in a control chart. For this reason all of the well-known control 

schemes can be transformed to the residual control scheme. The main advantage of a 

residual chart is that it can be applied to any autocorrelated data whether the process 

is stationary or not. However, there are also some disadvantages of the residual 

control charts such as: 

 

• time series modeling knowledge is needed for constructing the ARIMA 

model, 

 

• some residual charts which based on two valid time series models signal 

differently, and 

 

• they do not detect a possible mean shift quickly (i.e. for some cases, the 

detection capability of an X residual chart is smaller than the traditional X 

chart and other residual charts as EWMA and CUSUM) (for further 

reading see Harris & Ross 1991, Longnecker & Ryan 1992, Wardell et al. 

1994, and Zhang 1998). 

 

Alwan & Roberts (1988) introduced the common cause chart (CCC) which is 

applied by forming an ARIMA model for the autocorrelated process. CCC is not a 

control chart actually, because it does not have any control limits, it consists of only 

plotted data which have been modeled with an ARIMA model. Even though CCC 

has no control limits, it gives information about variation of the modeled data. 

Furthermore, Alwan & Roberts (1988) developed a residual Shewhart chart and 

called it the special cause chart (SCC). SCC is an individual control chart (individual 

control chart is constructed by plotting single observations and setting control limits 

on these observations) applied to the residuals.  

 

Yourstone & Montgomery (1989), studied geometric moving average (GMA), 

geometric moving range, and Shewhart X control charts; and two years later (1991), 

they proposed two innovative control charts, the sample autocorrelation chart 

(SACC), and the group autocorrelation chart (GACC) that are based on the 
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autocorrelation function of autocorrelated data. The authors claimed that the charts 

are capable of detecting changes in mean, variance and stochastic behavior of a 

series. Later, in the study of Atienza et al. (1997), the performance of SACC was 

compared with SCC and residual CUSUM chart,  and the authors concluded  that 

SACC does not have a better performance than both of the residual CUSUM and 

SCC charts, and SACC is appropriate only for medium shifts in mean. Furthermore, 

SACC outperforms SCC and CUSUM charts when detecting changes in model 

parameters. In the following year, Atienza et al. (1998) proposed a chart which can 

detect level shifts in time series data effectively. 

 

Lucas & Saccucci (1990) showed that CUSUM and EWMA charts perform 

almost the same. Harris & Ross (1991) studied the impact of autocorrelation on 

CUSUM and EWMA charts for AR(1) processes. Montgomery & Mastrangelo 

(1991) proposed an EWMA chart which is constructed by plotting one step ahead 

prediction errors on the chart. Wardell et al. (1992) compared the traditional 

Shewhart and EWMA charts with CCC and SCC charts for ARMA(1,1) process. 

They examined the robustness of the Shewhart and EWMA charts, in order to figure 

out their cost effectiveness and thus their ability in competing with the residual 

control charts. They observed that the EWMA chart is more robust to serial 

correlation than the Shewhart chart. Yashchin (1993) discussed the run length 

characteristics of a CUSUM chart when the underlying process is autocorrelated. 

Reynolds & Lu (1997) compared various types of EWMA control charts based on 

the original observations or on the residuals from an AR(1) model. Wardell et al. 

(1994) and Zhang (1997) remarked that the detection capability of an X residual chart 

was poor for small mean shifts compared to the traditional X chart, EWMA, and 

CUSUM charts. Lu and Reynolds (1999) discussed the residual EWMA chart. 

 

Zhang, N.F. (1997) studied the detection capability of the X residual chart, and the 

following year (1998) he introduced the Exponentially Weighted Moving Average 

for Stationary Process (EWMAST) control chart which is constructed by charting the 

EWMA statistics for stationary process. Also, Zhang (2000) pointed out that the 

performances of CUSUM residual and EWMA residual control charts are almost the 
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same. Winkel & Zhang (2004) defined EWMAST chart as the extension of the 

traditional EWMA chart designed to monitor a stationary process. Even though the 

EWMAST chart is very similar to the traditional EWMA chart, its control limits 

depend on the autocorrelation of the process and it is not necessary to fit a time series 

model to data. Some advantages of the EWMAST chart are: it is easy to implement, 

and no time series modeling effort is needed.  

 

Jieng et al. (2000) proposed the ARMA chart. They used the ARMA (1,1) 

statistics obtained by the fitting generalized ARMA(1,1) model to data. They called 

the proposed chart ARMAST chart for stationary processes. The EWMAST chart is a 

special case of the ARMA chart. If λφ −= 1 and θ=0, ARMA and EWMA statistics 

will be the same. Jiang & Tsui (2001) discussed computing ARL for ARMA charts. 

Furthermore, Pacella & Semeraro (2007) introduced the Elman’s neural network 

(ENN) chart, and compared it to Shewart X, SCC, EWMAST, ARMAST charts for 

ARMA(1,1) autocorrelation structure. 

 

The second approach, the modified control chart, is based on applying the original 

control chart methodology with a little modification. Autocorrelated data is used in 

original control chart by adjusting its control limits. Since rearrangement of the 

control limits for autocorrelated data is not so easy, application of modified charts is 

more complicated then the first approach. Besides, the model-based charts have the 

disadvantage that the underlying model may be inappropriate. In this case, 

distribution free SPC charts are proposed to overcome the distribution based 

procedures. Distribution free charts have been used in SPC problems when there is 

limited or lack of knowledge about the underlying process distribution. Johnson & 

Bagshaw (1974), and Bagshaw & Johnson (1975) examined the performance of 

CUSUM control chart under autocorrelation and they found CUSUM is not robust 

under autocorrelation. They presented CUSUM based methods that use raw 

(unbatched) observations instead of batch means in 1974. Vasilopoulos & 

Stamboulis (1978) introduced the X chart with modified limits when the underlying 

process is described by an AR(2) model, but they ignore the autocorrelation between 

subsample means. Alwan & Radson (1992) investigate the time series behavior of 
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subsample means for AR(1) process. Runger & Willemain (1995) studied the 

sequence of observations from the monitored process into adjacent nonoverlapping 

batches of equal size; and initially developed the Unweighted Batch Means (UBM) 

chart which aims to diminish the autocorrelation between subsample means or batch 

means; and also compared with the X residual and CUSUM residual charts. 

Furthermore, the following year (1996) they proved that larger batch sizes give better 

performance for AR(1) process. Kim et al. (2006) presented a model free CUSUM 

(MFC) chart by unbatched CUSUM based methods, and in 2007 introduced a 

distribution free tabular CUSUM chart (DFTC).  

 

In addition to above charts, Schmid (1997), and VanBrackle & Reynolds (1997) 

also discussed the application of the EWMA chart to autocorrelated processes. 

 

As can be seen from the literature review given above, performances of several 

control charts for ARMA(1,1) process was firstly compared by Wardel et al. in 1992. 

Later, this process model was employed by several authors in comparison studies. 

Even though there exist much amount of comparison studies for ARMA(1,1) model, 

there seems to be no earlier study testing traditional, residual and distribution free 

control charts (DFTC) together for ARMA(1,1). DFTC have attracted the interests of 

scientists, because of process data are generally not independent and identically 

distributed normal about a certain mean. DFTC have been included by many 

comparison studies, but in only few of them ARMA(1,1) process structure is 

considered. In the current study, we examine Shewhart X, CUSUM, X residual, 

EWMA residual, EWMAST, ARMAST, and DFTC for ARMA (1,1) process. 

 

3.2.6 Summary  

 

Over the last two decades, control charts for autocorrelated observations have 

been applied to an increasing number of real-world problems. We tried to provide an 

extensive literature review on the applications of control charts to processes with 

various autocorrelation structures, in previous subsection. In Table 3.1, we 

summarize the recent research studies in a chronological order, in order to see the 
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gradual development in these works. Our survey is limited with the publications 

appearing in refereed journals and conference proceedings between 1974 and 2007.  

 
Table 3.1 Evolution of control charts for autocorrelated processes 

Year   Author(s)  Control Charts   

Auto-

correlation 

Structure 

1974   Johnson & Bagshaw  J&B   AR(1) 

1975   Bagshaw & Johnson  J&B   AR(1) 

1978   
Vasilopoulos & 

Stamboulis  
 modified X chart   AR(2) 

1988   Alwan & Roberts   Shewhart X, CCC, SCC   
ARIMA(0,1,1),

ARIMA(1,01) 

1989   
Yourstone & 

Montgomery  
 GMA, GMR, Shewhart X   

AR(2), 

ARMA(2,1) 

1990   Lucas & Saccucci   CUSUM, EWMA     

1991   Harris & Ross  CUSUM, EWMA   AR(1) 

1991   
Montgomery & 

Mastrangelo  
EWMA residual     

1991   
Yourstone & 

Montgomery  
 SACC, GACC   AR(4) 

1992   Alwan & Radson   modified X chart   AR(1)  

1992   Wardel et al.  
EWMA, Shewhart, 

SCC, CCC 
  ARMA(1,1) 

1993   Yashchin   CUSUM     

1994   Wardel et al.  
Shewhart X, 

X residual 
  ARMA(1,1) 

1995   Runger & Willemain    
X residual, CUSUM residual, 

UBM chart 
  AR(1) 

1996   Runger & Willemain    UBM chart   AR(1) 

1997   Atienza et al.   
SACC, SCC, 

CUSUM residual 
  AR(1), MA(1) 
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1997   Reynolds & Lu   EWMA residual   AR(1) 

1997   
VanBrackle & 

Reynolds  
 CUSUM, EWMA   

AR(1), 

ARMA(1,1) 

1997   Zhang   
Shewhart X, X residual, 

adjusted X chart 
  AR(1), AR(2) 

1998   Zhang   
EWMAST, 

Shewhart X, X residual 
  

AR(1), AR(2),

ARMA(1,1) 

1999   Lu and Reynolds   EWMA, EWMA residual   AR(1) 

2000   Zhang   

Shewhart X, X residual, 

CUSUM, EWMA, EWMA 

residual, 

CUSUM residual, 

EWMAST 

  AR(1) 

2000   Jieng et al.   

SCC, CUSUM, EWMA, 

EWMAST, ARMA, 

ARMAST 

  
AR(1), 

ARMA(1,1) 

2001   Jiang & Tsui   ARMA   AR(1), AR(2) 

2004   Winkel & Zhang  EWMA, EWMAST   AR(1) 

2006   Kim et al.   CUSUM, J&B, MFC   AR(1) 

2007   Kim et al.   J&B, MFC, DFTC   AR(1), AR(2) 

2007   Pacella & Semeraro   
ENN, SCC, Shewart X, 

EWMAST, ARMAST 
  ARMA(1,1) 

 

We briefly summarize our conclusions from this detailed review in the following: 

 

• Fundamentals of control charts are constituted in 1920s. 

 

• Control charts for autocorrelated processes attracted scientists’ attention in 

1970s. Scientists studied the effect of autocorrelation on the existing 

charts, initially. Later, they proposed charts for autocorrelated data. 
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• Many scientists have studied the residual control charts more than 

modified charts due to their simplicity. 

 

• The first residual control chart was applied to Shewhart X. After the first 

residual control chart introduced at the end of the 1980s, scientists 

compared the residual chart with traditional charts at early 1990s. Because 

of the reason that the residual chart perform well, then the scientists 

become interested in residual charts of well-known control schemes. Many 

research studies that compare residual charts have been issued during the 

last decade. From the middle of 1990s to present, many scientists have 

studied various types of residual control charts.  

 

• Scientists proposed original and innovative control charts in earlier years. 

But in recent years most of the proposed control charts are enhanced 

versions of existing charts. However, some sophisticated control charts 

such as ENN and DFTC were also introduced by the year 2000. 

 

• As it can be seen from Table 3.1, most of the scientists have chosen an 

appropriate AR(p) model, especially AR(1), for their data set. Few of the 

researchers have studied ARMA(1,1) model. 

 

In this section, control charts for autocorrelated processes were reviewed, and the 

historical progression in this field was emphasized. We compare the performances of 

control charts in the presence of autocorrelation in the following chapter. 
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CHAPTER FOUR 

ARL PERFORMANCES OF CONTROL CHARTS FOR 

AUTOCORRELATED DATA 

 

4.1 Introduction  

 

In this chapter, ARL performances of Shewhart X, CUSUM, X residual, EWMA 

residual, EWMAST, ARMAST, and DFTC charts are compared in the presence of 

data correlation. Firstly, the desired ARL value (ARL0) is given, and parameters of 

the above control charts are selected relevant to it. Subsequently, the impact of the 

different levels of autocorrelation and different magnitudes of process shift is 

interpreted; and ARL results of the charts are concluded.  

 

4.2 Problem Statement  

 

As it is stated previously, the independency assumption is not realistic in practice 

due to internal or external reasons. Having numerous potential applications in real 

life, in recent years, various research works have been carried out to deal with the 

autocorrelation problem. Although various control charts have been developed for 

monitoring autocorrelated processes and their performances have been compared 

with each other, the first-order autoregressive moving average ARMA(1,1) process 

has been considered in only a few comparison study. Because of this reason we 

compare the ARL performances of several charts for the first order autoregressive 

moving average (ARMA(1,1)) process, in this dissertation. Furthermore, many 

industrial processes can be presented by ARMA(1,1) model. Especially in process 

industries first order autoregressive moving average process behavior is fairly 

common (see Wardel et al., 1992, Mongomery, 1997). It is a stationary process, and 

contains both autoregressive and moving average components. 

 

The model structure of ARMA(1,1) process is explained in section 3.1.4 and 

defined as follows: 
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11 −− −++= tttt ZZ θεεφξ     

 

where 

 

=tZ  the observation at time t, 

=tε  random noise term with mean 0 and variance 2
εσ  at time t, 

=φ  the autoregressive parameter, 

=θ the moving average parameter, 

=ζ  the mean of the process. 

 

It is also assumed that distribution of the { tε } is normal with mean 0, and a 

common variance 2
εσ  (Gaussian white noise).  

 

4.3 Design of the Control Charts 

 

In this study, we compare the performances of Shewhart X, CUSUM, X residual, 

EWMA residual, EWMAST, ARMAST, and DFTC control charts for an 

ARMA(1,1) process, as mentioned before. We use average run length (ARL) as 

performance criterion.  

 

Firstly, we generate data that fits the ARMA(1,1) model. The autoregressive and 

moving average process parameters ),( θφ  are chosen as following: (0.95, -0.90), 

(0.00, -0.90), (-0.95, 0.90), (-0.95, 0.00), and (-0.95, 0.45). These combinations of 

),( θφ  have been also used by many authors (Wardell et al., 1992; Zhang, 1998; 

Jiang et al., 2000; Pacella & Semeraro, 2007). Various magnitudes of process shifts 

(δ ) are also considered as 0σ , 0.5σ , 1σ , 2σ , 3σ .  

 

Let tX  be the random time series of the quality characteristic measurements: 

 

δ+= tt ZX   for t = 1,2,…                     (5.1) 
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where δ  is a shift due to special causes and Zt is the first-order autoregressive 

moving average process which defined in equation (3.12). Shift from the process 

mean can be defined as the difference between the shifted process mean and target 

process mean divided by the process standard deviation: 

 

σ
μμ

δ 01 −=                     (5.2) 

 

where 

 

=δ  magnitude of the shift due to  special causes, 

=0μ  target mean, 

=1μ  out-of-control value of the process mean, 

=σ  standard deviation of in-control process. 

 

In simulations 5000 runs are generated, 500 run lengths are collected to calculate an 

ARL, and 10 ARLs are used to calculate a grand ARL. When comparing ARL values of 

various control charts, initially a target ARL for iid situation (ARL0) is set for all compared 

charts. In this study, we take ARL0 is equal to 370. 

 

Different types of control charts can be compared each other for various levels of 

autocorrelation and mean shift by adjusting the constants such as L, k, h, λ, M, RS in the 

control limits of each chart to give the same in control ARL in iid case. Then the ARLs of 

the charts can be interpreted.  In ARL calculations, 3σ  control limits are used for the X and 

X Residual charts. For CUSUM and DFTC charts, the ARL0 values of k and the 

corresponding values of h are selected as 0.5 and 4.77, respectively (see Hawkins, 1993). As 

mentioned before, we use Siegmund’s (1985) approximation for calculating the ARL values 

of CUSUM and DFTC charts. In addition, for the EWMA residual chart, λ=0.2 and 3σ  

control limits were used, and for the EWMAST chart M = 25 (see Zhang, 1998) . For the 

ARMAST chart, selected value of RS  = 3 (Jiang et al., 2000).  

 

4.4 Experimental Results  

 

In the light of foregoing, the calculated ARL values are given in Table 2.  
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Table 4.1 Comparisons of ARL’s: Shewhart X, CUSUM, X residual, EWMA residual, EWMAST, 

ARMAST, and DFTC 

Shift φ  θ  1ρ  Shewhart
X CUSUM X 

Residual
EWMA
Residual EWMAST ARMAST DFTC

0 0 0 0 370 371 370 370 370 370 370 
0.5    155 38 158 41 46 36 39 
1    44 10 43 9 11 6 8 
2    6 4 5 3 3 2 3 
3    2 2 2 2 2 1 1 
0 0.95 -0.9 0.97 839 27 370 370 370 370 370 

0.5    418 21 42 39 240 43 165 
1    158 14 1 1 110 1 24 
2    32 5 1 1 26 1 1 
3    6 3 1 1 9 1 1 
0 0 0.9 -0.50 401 51 370 370 370 370 370 

0.5    181 26 278 235 216 221 230 
1    56 12 145 116 89 90 92 
2    9 4 1 19 24 22 27 
3    3 3 1 12 8 9 14 
0 -0.95 0.9 -0.97 839 28 370 370 370 370 370 

0.5    418 23 24 18 21 10 17 
1    159 16 21 6 10 3 6 
2    31 5 2 3 6 2 4 
3    6 3 1 2 3 1 2 
0 -0.95 0 -0.95 837 29 370 370 370 370 370 

0.5    416 22 11 6 14 3 8 
1    155 15 5 2 2 2 3 
2    29 5 3 1 1 1 2 
3    7 3 2 1 1 1 2 
0 -0.95 0.475 -0.97 839 28 370 370 370 370 370 

0.5    417 24 32 11 15 8 11 
1    160 15 18 5 7 2 5 
2    31 5 2 2 4 2 3 
3    6 3 1 1 2 2 2 
 

The first column of this table denotes magnitude of the mean shift. Mean shifts 

branch into three classes relevant to their magnitudes such as, small, medium and 

large shifts. In the literature, small shifts are said to be less than or equal to 1.5 

( 5.1≤δ ); medium shifts are between 1.5 and 2.5 ( 5.25.1 ≤≤ δ ); and large shifts are 

greater than or equal to 2.5 ( 5.2≥δ ). Moreover, the second and third columns 

represent parameters of the autocorrelation structure, and autocorrelation function 

value is given in the fourth column. Recall from chapter three that, if the 

autocorrelation function value is smaller than 0, then the process will be negatively 

correlated; and if it is smaller than 0, the process will be positively correlated. Like 
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mean shift, autocorrelation is also classified according to absolute value of the 

correlation as follows: 

 

3.00 1 ≤≤ ρ   low autocorrelation 

7.03.0 1 ≤≤ ρ  moderate autocorrelation 

17.0 1 ≤≤ ρ  high autocorrelation 

 

Finally, the rest of the columns of Table 4.1 show the calculated ARL values of 

relevant charts. Furthermore, we clarified the term ARL in chapter two and stated 

that the in-control ARL value must be large and the out-of-control ARL value must 

be small. Thus, when there is no shift ( 0=δ ) in the mean the charts with large ARL 

values (in-control ARL) performed better, and when there is shift ( 0≠δ ) the charts 

with small ARL values (out-of-control ARL) are better. 

 

It can be seen from the table, when the process is under iid condition CUSUM, 

EWMA residual, EWMAST, ARMAST, and DFTC control charts perform almost 

the same, especially for medium to large shifts. Particularly, DTFC performed 

similar to the CUSUM in iid situation. Figure 4.1 illustrates this situation. The 

colored bars represent the corresponding chart’s ARL value. Shewhart X chart and X 

residual chart perform exactly the same for iid situation and they are not effective for 

detecting small shifts as expected, as it seen from the figure.  

 

ARL performances of control charts are figured in Figure 4.2 when the process is 

highly positive correlated. It is seen from Table 4.1 and Figure 4.2 that the CUSUM 

chart has the worst in-control ARL performance. Furthermore, the Shewhart X chart 

performs worst and the EWMA residual chart performs best especially for small 

shifts. X residual, EWMA residual and ARMAST charts present similar 

performances as for small shifts, and the DFTC chart also performs like them for 

large shifts. Moreover, residual charts show better performance than the EWMAST 

and DFTC for small to medium shifts. 
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Figure 4.1. ARL bars of uncorrelated process. (φ,θ) = (0,0) 

 

 

Figure 4.2  ARL bars of  highly positive correlated  process.  (φ,θ) = (0.95,  

-0.90 ) 

 

ARL bars of a moderate negatively correlated process versus shift of the mean are 

represented in Figure 4.3. Except the CUSUM chart, all of the charts have analogous 

and satisfactory in-control ARL performances. Even tough the in-control ARL 

performance of the CUSUM chart is significantly worst of all charts, and its out-of-
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control performance is the best for small to medium shifts. The X residual chart 

performs best for large shifts. The EWMAST chart perform better than X residual, 

EWMA residual, ARMAST and DFTC charts for small to medium shifts. ARMAST 

and DFTC charts perform like each other for medium shifts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 ARL bars of moderate negatively correlated process. (φ,θ) = 

(0,0.90) 

 

ARL bars of highly negative correlated processes are illustrated in Figure 4.4. 

Three different ARMA(1,1) processes such as (-0.95,0.90), (-0.95,0) and                   

(-0.95,0.475) form high negative correlation in this study. It is concluded that when 

there is high negative correlation in the process, the ARMAST chart has an overall 

performance. Especially for small shifts the only one who performs best is 

ARMAST. X residual and EWMA residual charts perform well for medium to large 

shifts, and the DFTC charts performance is well for large shifts. The Shewhart X 

achieved the worst out-of-control ARL performance for high autocorrelation whether 

it is positive or negative, and small shifts.  
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(a) (φ,θ) = (-0.95,0.90) 

 

 

(b) (φ,θ) = (-0.95,0) 
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(c) (φ,θ) = (-0.95,0.475) 

Figure 4.4 (a), (b) and (c) ARL bars of highly negative correlated processes. 

 

We have compared various control charts via ARL calculations, and interpreted 

them in respect of autocorrelation structure and magnitude of shift.  Now, we explain 

control charts behavior one by one, in the following. Firstly, we discuss the Shewhart 

X chart in Figure 4.5. The autocorrelation has big impact on the traditional control 

charts like Shewhart X chart. When there is high correlation, whether it is positive or 

negative, out-of-control ARL increases significantly. This effect can be seen in 

Figure 4.5 that the ARL bars of highly  correlated  processes  such as  (0.95,-0.90),  

(-0.95,0.90), (-0.95,0), and (-0.95,0.475) are higher than the blue painted iid bar. It 

means that the Shewhart X chart perform well for in-control ARL, but awful for out-

of-control ARL due to the reason that bars belong to highly autocorrelated processes 

decrease very slowly when there is mean shift. 

 

It is obvious from Table 4.1 that, when the process is autocorrelated, whether it is 

positive or negative, the in-control ARL of CUSUM chart drops dramatically. For 

instance,  when  process  parameters  changed from  ),( θφ = (0, 0)  to  ),( θφ = (0.95, 

-0.90), the in-control ARL of the CUSUM reduced from 371 to 27. Thus, when a 

process is autocorrelated, even it is week, CUSUM control charts chart give false 

alarms frequently when the process is in control. These explanations are illustrated in 
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Figure 4.6. The impact of autocorrelation on in-control ARL performance of 

CUSUM takes place in figure by a sudden decrease in 0-shift area which means poor 

in-control ARL performance. On the other hand, as mentioned in the previous studies 

(Johnson & Bagshaw, 1974; Bagshaw & Johnson, 1975; Harris & Ross, 1991) 

autocorrelation has relatively small effect on the out-of-control ARL of CUSUM. 

CUSUM chart responds quickly to the shifts from various levels of autocorrelation.  

 

 

Figure 4.5 ARL bars of Shewhart X chart for different levels of 

autocorrelation versus mean shift. 

 

ARL bars of X residual and EWMA residual charts are given in Figures 4.7 and 

4.8, respectively. The X residual chart does not perform well when the process is 

moderately negative correlated which is represented by the yellow bar in Figure 4.7. 

The yellow bar does not decay significantly especially for small to medium shifts. 

However, all of the bars are close to zero for large shifts. Thus, the X residual chart is 

appropriate for large shifts. 

 

Moreover, the EWMA residual chart has quick response to autocorrelation. All of 

the bars except the yellow one (moderate negative autocorrelation) declines quickly 

when the process mean shifts. It means that the EWMA residual chart gives better 
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performance than the X residual in detecting small shifts, just like traditional control 

charts.  

 

 

 

 

 

 

Figure 4.6 ARL bars of CUSUM chart for different levels of 

autocorrelation versus mean shift. 

 

 

Figure 4.7 ARL bars of X Residual chart for different levels of 

autocorrelation versus mean shift. 
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Figure 4.8 ARL bars of EWMA Residual chart for different levels of 

autocorrelation versus mean shift. 

 

 

Figure 4.9 ARL bars of EWMAST chart for different levels of 

autocorrelation versus mean shift. 

 

The effect of different autocorrelation structures on EWMAST and ARMAST 

charts are attached below in Figures 4.9 and 4.10. It is obvious that the ARMAST 
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correlated. For instance, when ),( θφ =(-0.95, 0.90) the light green bar of ARMAST 

in Figure 4.9 decays faster than the EWMAST’s bar in Figure 4.9 which means that 

ARMAST performed better than EWMAST. It is seen that the ARMAST has been 

more effective especially for small shifts. These observations are consistent with the 

results obtained by Jiang et al. (2000). Moreover, it is concluded from Figures 4.9 & 

4.10 that both of the EWMAST and ARMAST perform better when the process is 

highly negative correlated, because the last three bars of corresponding charts which 

represent highly negative autocorrelation decline suddenly when the process mean 

shifts. 

 

Finally, ARL bars for DFTC versus mean shift are illustrated in Figure 4.11. 

DTFC displays better performance than CUSUM in detecting small shifts for highly 

negative autocorrelation. However, it performs worse than CUSUM when the 

process is positively correlated with small shifts. In addition, we conclude that the 

DFTC chart performs best when the process is negatively correlated. 

 
 

Figure 4.10 ARL bars of ARMAST chart for different levels of 

autocorrelation versus mean shift. 
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Figure 4.11 ARL bars of DTFC chart for different levels of autocorrelation 

versus mean shift. 
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CHAPTER FIVE 

CONCLUSION 

 

In this concluding chapter, we summarize what has been accomplished in this 

thesis, and describe some potential future work to extend the present results for the 

discussed autocorrelation problem. 

 

Control charts are one of the most powerful tools of Statistical Process Control 

(SPC) and a fundamental assumption of traditional control charts is that the 

observations of the process are independent and identically distributed (iid) normal 

about a certain mean. Because the independency assumption is not realistic in 

practice, during the last decades many researchers have proposed some modifications 

for traditional control charts when processes are autocorrelated. Therefore, the aim of 

this thesis is to compare various charts which have been developed for monitoring 

autocorrelated processes. 

 

In this thesis, firstly, an overview of SPC and its tools are given. Then, behavior 

of traditional control charts in the presence of serial correlation and the charts that 

deal with autocorrelation problem are studied. A detailed literature review of control 

chart applications for autocorrelated processes is provided.  

 

In chapter four, performances of Shewhart X, CUSUM, X residual, EWMA 

residual, EWMAST, ARMAST, and DFTC charts are compared by using average 

run length (ARL) performance criterion. In this comparison study, the first-order 

autoregressive moving average ARMA(1,1) model is considered as autocorrelation 

structure. Even though there exist much amount of comparison studies for 

ARMA(1,1) model, there seems to be no earlier study examining traditional, residual 

and distribution free control charts together for ARMA(1,1). 
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It is concluded in chapter four that autocorrelation has big impact on traditional 

control charts. When there is high correlation, whether it is positive or negative, the 

out-of-control ARL of Shewhart X chart increases significantly, and the in-control 

ARL of CUSUM chart drops dramatically. So, autocorrelation causes poor ARL 

performances for out-of-control ARL of Shewhart X and in-control ARL of CUSUM. 

Control charts which are proposed for autocorrelation problem, perform differently 

for various levels of autocorrelation and various magnitudes of mean shifts. The 

ARL results of these charts and interpretation of them are given in chapter four. In 

Table 5.1, a brief overview about the ARL performance of control charts compared 

in this study is given. For each autocorrelation-shift combination the best performed 

control charts are recorded. 

 
Table 5.1 Best Performed Control Charts 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be concluded that none of the compared charts have an overall performance. 

Every single control chart has good performances for some situations, and bad 

performances for some. However, in general, the ARMAST chart has best 
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performance in most of the autocorrelation-shift combinations. The Shewhart X chart 

achieved the worst ARL performance, so that it does not even take place in the table. 

CUSUM performs well when there is high positive or moderate negative 

autocorrelation in the process and mean shifts are small to medium. Residual control 

charts are appropriate for highly correlated processes, and the X residual control chart 

is suitable for large mean shifts while the EWMA residual chart is suitable for small 

ones. Also, the X residual chart and the ARMAST chart are suitable for moderately 

negative correlated processes with large mean shifts, and highly negative correlated 

processes with small mean shifts, respectively. EWMAST performs well when the 

process is highly negative correlated and the shifts from mean are large. 

Furthermore, The EWMAST is much more effective than Shewhart X, residual 

charts, ARMAST and DFTC when the absolute value of the lag-one autocorrelation 

coefficient is not high, and the shift from the mean is small. When the process is 

highly correlated and mean shifts are large, the DFTC chart performed as well as the 

ARMAST. 

 

Processes studied throughout this thesis were stationary. It may also be interesting 

to extend ARL calculations for processes which are nonstationary in mean. 
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