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OUT – OF – PLANE DYNAMIC STABILITY ANALYSIS OF CURVED 

BEAMS UNDER DISTRIBUTED DYNAMIC LOADING 

 

 

ABSTRACT 

 

      

In this study, out of plane stability analysis of tapered cross-sectioned thin curved 

beams under uniformly distributed dynamic loads is investigated by using the Finite 

Element Method. Applying Lagrange’s principles to the energy expressions, the 

equation of dynamic equilibrium of the system is obtained and the problem is 

reduced to an eigenvalue problem. Solutions referred to as Bolotin’s approach are 

investigated for the dynamic stability analysis and the first unstable regions are 

examined. Out of plane vibration and out-plane buckling analyses are also studied. In 

addition, the results obtained from this study are compared with the results of other 

investigators in existing literature for the fundamental natural frequency and critical 

buckling load. The effects of subtended angle, variations of cross-section and, static 

and dynamic load parameters on the stability regions are shown in graphics. 

Moreover the results obtained with and without internal node for the vibration, 

buckling and dynamic stability are also compared. 

 

 

Keywords : Dynamic stability, buckling, curved beam, finite element, internal node  
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EĞRİ ÇUBUKLARIN YAYILI DİNAMİK YÜK ALTINDA DÜZLEM DIŞI 

KARALILIK ANALİZİ 

 

ÖZ 

 
Bu çalışmada, sonlu elemanlar metodu kullanılarak lineer olmayan kesit 

değişimine sahip eğri çubukların, yayılı dinamik yük altındaki düzlem dışı kararlılığı 

sonlu elemanlar yöntemi kullanılarak araştırılmıştır. Dinamik kararlılık çözümleri 

için Bolotin [1], yaklaşımı kullanılmış ve Lagrange’in enerji denklemleri kullanılarak 

birinci kararsızlık bölgeleri incelenmiştir. Bunun yanında, düzlem dışı titreşim ve 

burkulma analizi yapılmıştır. Bu çalışmada, birinci doğal frekans ve burkulma yükü 

değerleri literatürde mevcut diğer araştırmacılar tarafından verilen sonuçlarla 

karşılaştırılmış ve eğri çubuğun merkez açısının, kesit değişimin ve, statik ve 

dinamik yük parametresinin kararlılık bölgeleri üzerindeki etkileri grafikler ile 

gösterilmiştir. Ayrıca ara nodlu ve ara nodsuz sonlu eleman kullanarak modellenen 

eğri çubuk için doğal frekans kritik burkulma yükü ve dinamik kararlılık analizleri 

karşılaştırılmıştır.    

  

 

Anahtar Sözcükler: Dinamik kararlılık, burkulma, eğri çubuk, sonlu elemanlar 

metodu.  
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CHAPTER ONE 

INTRODUCTION 

 

The using of curved beams in high technology applications especially in turbine 

blades, bridges and outer space industry, has made elastic instability a problem of 

great importance. The problems which are examined in this branch of elasticity are 

related to those in the theory of vibrations and the stability of elastic systems. As in 

many other areas of learning that lie on the borderline of two fields, the theory of 

dynamic stability is now going through a period of intensive development. 

      

The problem of determining the natural frequencies and mode shapes of vibration 

of curved beams under distributed dynamic loading is of importance in the design of 

turbine, bridge and outer space industry propellers. 

 

The theory of dynamic stability has already opened the way for direct engineering 

applications. Parametrically excited vibrations are similar in appearance to the 

accompanying forced vibrations and can therefore qualify as ordinary resonance 

vibrations, by practical engineering standards. In a number of cases, however as in 

the presence of periodic vibrations  the usual methods  of damping  on vibration 

isolation may break down  and even bring about the opposite results. Although the 

vibrations may not threaten the structure  or its normal operation, they can cause 

fatigue failure if they continue to act. Therefore, the study of the formation of 

parametric vibrations and the methods for the prevention of their occurrence is 

necessary in the various areas of mechanics, transportation and industrial 

construction.       

 

Stability analysis of multiple degrees of freedom in parametric dynamic systems 

with periodic coefficients is a subject of recent interest, since the problem arises 

naturally in many physical situations; for example the dynamic stability of structures, 

under periodically varying loads, the stability of mechanisms with periodically 

varying inertia and stiffness coefficients and the stability of the steady state response 

of nonlinear systems.  

 1
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Many investigations about in-plane and out-of-plane vibrations of curved beams 

have also been carried out.  

 

Sabuncu (1978), investigated the vibration analysis of thin curved beams. He used 

several types of shape functions to develop different curved beam finite elements and 

pointed out the effect of displacement functions on the natural frequencies by 

comparing the results.    

 

Sabir and Ashwel (1971), discussed the natural frequency analysis of circular 

aches deformed in plane. The finite elements developed by using different types of 

shape functions were employed in their analysis.   

 

Petyt and Fleischer (1971), analyzed free vibrations of a curved beam for various 

boundary conditions. 

 

Yıldırım (1996), performed the in-plane and out-plane free vibration analysis with 

the program developed using the transfer matrix method of a double-side symmetric 

and elastic curved beam. 

 

Lee and Chao (2000), examined out-plane vibration of curved beams with a non-

uniform cross-section for constant angle. 

 

Kang, Bert and Striz (1995),discussed computation of the eigenvalues of the 

equations of motion governing the free in plane vibration including extensibility of 

the arch axis and the coupled out-of-plane twist-bending vibrations of circular arches 

using Differential Quadrature methods (DQM). 

 

Rao and Gupta (2001) have studied the dynamic stiffness matrices for the out-of-

plane vibration of curved beams using the Lagrange’s equations and the dynamic 

equilibrium equations, respectively, and then solved for the natural frequencies. 
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Kawakami, Sakiyama and Matsuda (1995), derived the characteristic equation by 

applying the discrete Green functions and using the numerical integration to obtain 

the eigenvalues for both the in-plane and out-of-plane free vibrations of the non-

uniform curved beams, where the formulation is much complicated than that of the 

classical approaches. 

 

Cortinez, Piovan and Rossi (2000), developed out of plane vibration of continuous 

horizontally curved thin-walled beams with both open and close cross-sections. 

 

Liu & Wu (2001), investigated in-plane  free vibrations of circular arches using 

the generalized differential    quadrature rule. The Kirchhoff  assumptions for the 

these beams were considered and the neutral axis was taken as inextensible. They 

presented several examples of arches  with uniform, continuously varying  and 

stepped cross sections. 

 

Ojalvo & Newman (1964), presented the frequencies of a cantilever ring 

segments.  

 

Wu & Chiang (2003), investigated  the natural frequencies and mode shapes for 

the radial bending vibrations of  uniform circular arches by means of   curved beam 

elements. The standard techniques  were used to determine  the natural frequencies 

and mode shapes  for the curved beam  with various boundary conditions and 

subtended angles. 

 

Yoo, Kang and Davidson (1996), performed buckling analysis of curved beams 

with the finite element method. 

 

Timoshenko and Gere (1961), studied the buckling analysis of hinged-hinged 

Bernoulli-Euler curved beams by using the analytical method. 
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Bazant and Cedolin  (1991), discussed the buckling analysis of curved beams by 

using analytical and energy methods. 

 

There have been many studies about the static and dynamic stability of 

mechanical systems such as curved beam. 

 

Bolotin (1964), studied the dynamic stability problems of various kinds of 

structural components. 

 

Abbas & Thomas (1978), developed a finite element model for the stability 

analysis of a Timoshenko beam resting on an elastic foundation and subjected to a 

periodic axial loads. The effect of an elastic foundation   on the natural frequencies 

and static buckling loads  of hinged-hinged and fixed free Timoshenko beams was 

investigated. 

 

Öztürk, Yeşilyurt and Sabuncu (2006), investigated in-plane stability analysis of 

non-uniform cross-sectioned thin curved beams under uniformly distributed dynamic 

loads by using the Finite Element Method. In this study, two different finite element 

models, representing variations of cross-section, were developed by using simple 

strain functions in the analysis. 

 

Banan, Karami and Farshad (1990), discussed Finite Elements analysis for the 

stability analysis of curved beams on elastic foundation. 

 

Nair, Garg and Lai (1985), examined stability of a curved rail under a constant 

moving load using a linear theory, critical speeds of the moving load and the 

dynamic rail deflections and rotation. 

 

Briseghella, Majarona & Pellegrino (1998), used the finite element method to find 

the regions  of dynamic stability of  beams and frames. A suitable numerical 

procedure  was applied to obtain these regions and vibration frequency of the 

structures. 
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Yokoyama (1988), studied the parametric instability behavior of a Timoshenko 

beam resting on an elastic foundation of the Winkler type by the finite element 

technique.  

 

Chen and Chern (1993), presented coupled bending-bending-torsion vibrations of 

a pretwisted rotating cantilever beams of fibre-reinforced material including shear 

deformation and rotary inertia. The free vibration and dynamic stability problems 

were discussed. 

 

Papangelis & Trahair (1987), developed a flexural-torsional buckling theory for 

circular arches of doubly symmetric cross section. Non linear expressions for the 

axial and shear strains were derived, and these were substituted into the second 

variation of the total potential to obtain the buckling equation.   

  

Yang & Kuo (1987), derived the nonlinear differential equations of equilibrium 

for a horizontally curved I-beam. Based on the principal of virtual displacements, the 

equilibrium of a bar was established for its deformed or buckled configuration using 

a Lagrangian approach. 

  

Şakar, Öztürk & Sabuncu (2001), investigated the effects of variations of 

subtended angle and curvature of an arch, having in-plane curvature, on the natural 

frequencies, static and dynamic instability.  

 

Yoo & Pfeiffer (1983), presented  a general solution method of a system having 

coupled differential equations governing the elastic buckling of thin walled  curved 

members. The finite element displacement method was formulated based on a 

variational principle. 
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There are many investigations about out of plane stability analysis of curved 

beams having symmetric and unsymmetric cross section. In this thesis the out of 

plane stability analysis of tapered cross-sectioned thin curved beams under uniformly 

distributed dynamic loads is investigated by using the Finite Element Method. 

Solutions referred to as Bolotin’s approach are investigated for the dynamic stability 

analysis and the first unstable regions are examined. Since natural frequency and 

buckling load effect the determination of stability regions, the out of plane vibration 

and out-plane buckling analyses are also studied. Two finite element models, which 

are with and without internal node,   are used for vibration and buckling analyses. In 

addition, the results obtained from this study are compared with the results of other 

investigators in existing literature for the fundamental natural frequency and critical 

buckling load. The effects of subtended angle, variations of cross-section and 

dynamic load parameter on the stability regions are shown in graphics. 

 

Chapter 2 deals with the theories used to analyze the dynamic stability of elastic 

systems.  

 

Chapter 3 deals with the theories used to analyze the finite element method 

 

Chapter 4 contains the finite element model of a curved beam with and without 

internal node. The beam is assumed to have a rectangular cross section. It is also 

assumed that curved beams are having with small width/thickness ratio. As a result 

thin beam theory is applied by neglecting shear deformation and rotary inertia 

effects. The geometric stiffness, elastic stiffness and mass matrices of curved beams, 

representing stability and vibrations out-of-plane direction, are obtained by using the 

energy equations. 

 

Chapter 5 covers the effects of the opening angle and curved beam dimensions on 

the vibration and, static (buckling analysis) and dynamic stability. All results are 

presented in tabular and/or graphical forms. The obtained results are discussed 

 

     Finally in chapter 6, conclusions drawn from the study are presented. 



 

CHAPTER TWO 

THEORY OF STABILITY ANALYSIS 

      

2.1   Static stability    

 

The modern use of steel and high-strength alloys in engineering structures, 

especially in bridges, ships and aircraft, has made elastic instability a problem of 

great importance. Urgent practical requirements have given rise in recent years to 

extensive theoretical investigations of the conditions governing the stability of 

beams, plates and shells.  

 

The first problems of elastic instability, concerning lateral buckling of compressed 

members, were solved about 200 years ago by L. Euler. At that time the relatively 

low strength of materials necessitated stout structural members for which the 

question of elastic stability is not of primary importance. Thus Euler’s theoretical 

solution, developed for slender bars, remained for a long time without a practical 

application. Only with the beginning of extensive steel constructions did the question 

of buckling of compression members become of practical importance. The use of 

steel led naturally to types of structures embodying  slender compression members,  

thin plates and thin shells. 

 

Stability problems can be treated in a  general manner using the energy methods. 

As an introduction to such methods, the basic criteria for determining the stability of 

equilibrium is derived in this study for, conservative linearly elastic systems. 

 

To establish the stability criteria, a function Π , called the potential of the system 

must be formulated. This function is expressed as the sum of the internal potential 

energy U (strain energy) and the potential energy Λ  of the external forces that act on  

a system, i.e., 

 

Λ+=Π U                           (2.1) 
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Disregarding a possible additive constant, eW−=Λ ,  i.e., the loss of potential 

energy during the application of forces is equal to the work done on the system by 

external forces. Hence, equation (2.1) can be rewritten as 

 

eWU −=Π                (2.2) 

 

As is known from classical mechanics, for equilibrium the total potential  must 

be stationary, therefore its variation 

Π

Πδ  must equal zero, 

 

eU W 0δΠ = δ − δ =                (2.3) 

 

For conservative, elastic systems this relation agrees with  δWe = δWei  equation 

(δWei : the external work on the internal elements of a body,  δWe : the total work), 

which states the virtual work principle. This condition can be used to determine the 

position of equilibrium. However, equation (2.3) cannot discern the type of 

equilibrium and there by establish the condition for the stability of equilibrium. Only 

by examining the higher order terms in the expression for increment in Π as given by 

Taylor’s expansion must be examined. Such an expression is 

 

....
!3

1
!2

1 32 +Πδ+Πδ+Πδ=∆Π                         (2.4) 

 

Since for any type of equilibrium δΠ = 0, it is the first nonvanishing term of this 

expansion that determines the types of equilibrium. For linear elastic systems the 

second term suffices. Thus, from equation (2.4), the stability criteria are 

 

δ2Π > 0     for stable equilibrium 

δ2Π < 0     for unstable equilibrium 

δ2Π = 0     for neutral equilibrium associated with the critical load 
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The meaning of these expressions may be clarified by examining the simple 

example shown in figure 2.1, where the shaded surfaces represent three different 

types of Π functions. It can be concluded at once that the ball on the concave 

spherical surface (a) is in stable equilibrium, while the ball on the convex spherical 

surface (b) is in unstable equilibrium. The ball on the horizontal plane (c) is said to 

be in different or neutral equilibrium. The type of equilibrium can be ascertained by 

considering the energy of the system. In the first case (figure 2.1(a))  any 

displacement of the ball from its position of equilibrium will raise the center of 

gravity. A certain amount of work is required to produce such a displacement; thus 

the potential energy of the system increases for any small displacement from the 

position of equilibrium. In the second case (figure 2.1 (b)), any displacement from 

the position of equilibrium will decrease the potential energy of the system. Thus in 

the case of stable equilibrium the energy of the system is a minimum and in the case 

of unstable equilibrium it is a maximum. If the equilibrium is indifferent (figure 2.1 

(c)), there is no change in energy during a displacement. 

 

 

(c) (b) ) 

 

 

 

 

 

 

Figure 2

 
 

For each of

the supporting

compressed c

unstable, depe

   

 

(a
 

.1 Three cases of equilibrium 

 the systems shown in figure 2.1 stability depends only on the shape of 

 surface and does not depend on the weight of the ball. In the case of a 

olumn or plate it is found that the column or plate may be stable or 

nding on the magnitude of the axial load. 
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     2.1.1 The formulation of static stability 

 

If the displacements are large, then the deformed geometry will obviously  differ 

significantly  from the undeformed geometry. This results in a nonlinear strain-

displacement relationship. Large displacement problems of this type  are said to be 

“geometrically nonlinear” which is a feature of elastic instability problems. From the 

design  point of  view calculation of the critical loads of structures is of considerable 

importance. In general case the strain energy of  a system, 

 

{ } [ ]{ }T
e

1U q K
2

= q                                              (2.5) 

 

The additional strain energy  which is function of  applied external load 

 

{ } { }T
g g

1U q K
2

⎡ ⎤= ⎣ ⎦ q                                                (2.6) 

 

In which [ ]eK and K⎡⎣ g ⎤⎦    are  elastic stiffness and geometric stiffness matrices.  

 

The total potential energy of a system in  equilibrium is constant when small 

displacements  are given to the system. So 

 

g(U U ) 0δ + =                                                    (2.7) 

 

g(U U )+  and   define the total potential energy and the change of the virtual 

displacements. Applying the  above  formulation to equations (2.5) and (2.6) 

δ

 

[ ] { }e gK P K q⎡ ⎤⎡ ⎤ 0− =⎣ ⎦⎣ ⎦                               (2.8) 

 

The roots of the eigenvalue equation (2.8) gives the buckling loads and the 

eigenvectors of this equation  are the  buckling mode shapes. 
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2.2 Dynamic stability 

 

If the loading is nonconservative the loss of stability may not show up by the 

system going into another equilibrium state but by going into unbounded motion. To 

encompass this possibility we must consider the dynamic behavior of the system 

because stability is essentially a dynamic concept.   

 

Whenever static loading of a particular kind  causes  a loss of static stability, 

vibrational loading  of the same kind will cause  a loss of dynamic stability.  Such a 

loading  is characterized by  the fact that it is contained as a parameter  on the left 

hand side of the equations  of perturbed equilibrium (or motion). We will call such 

loading parametric; this term is more appropriate because it indicates the relation to 

the phenomenon of parametric resonance. 

  

In the mechanical systems, parametric excitation occurs due to the following 

reasons; 

 

a)  periodic change in rigidity  

b)  periodic change in inertia   

c)  periodic change in the loading of the system. 

 

In this section firstly the differential equation related with dynamic stability  is 

introduced  and then, the determination of boundaries  of the regions of  instability 

and  the amplitudes  of parametrically  excited vibrations for multi-degrees of 

freedom systems is presented. 

 

An important special case of linear variational equations with variable coefficients 

occurs  when the coefficient functions are periodic. Owing to their great practical 

importance in the theory of vibrations, a special  theory has even been developed for 

the systems of differential equations with periodic coefficients are known as 

Mathieu-Hill  differential equation.  The Hill differential equation is in the following 

form, 
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[ ]
''
y a b f (t) y 0+ − =                                            (2.9) 

 

in which  a and b are constant parameters, and f(t) is a function having the period T. 

The prime denotes differentiation   with respect to time. If  f (  substituted 

into the Hill differential equation, the Mathieu differential equation which may be 

described a system that is subjected to parametric excitation is obtained in the  

standard form as   

t) 2cos 2t=

[ ]
''
y a 2bcos 2t y 0+ − =                                          (2.10) 

 

The results of solving Mathieu’s equation (2.10) for two different combinations of 

a and b are shown in figure 2.2. Although the parameter b of the system is the same 

in both cases (b=0,1), the vibrations are greatly different because of the difference 

between the values of the parameter a (a=1;  a=1,2). In the first case, they increase, 

i.e., the system is dynamically unstable, while in the second case they remain 

bounded, i.e., the system is dynamically stable. 

 

 

 

 

 

 

 

 

2 

1 

Stable 

Unstable 
a=1 

b=0,1 

a=1,2 

b=0,1 

Figure 2.2 Two solutions of Mathieu’s equation 
 

 
The greatest importance, for practical purpose, is attached to the boundaries 

between the regions of stable and unstable solutions. This problem has been well 

studied, and the final results have been presented in the form of a diagram plotted in 

the plane of the parameters a and b. It is called the Haines-Strett diagram. Figure 2.3 

shows part of a Haines-Strett diagram for small values of the parameter b. Any given 

system having the parameters a and b corresponds to the point with the co-ordinates 
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a and b on the Haines-Strett diagram. If the representative point is in the shaded parts 

of the diagram, the system is dynamically unstable, while stable systems correspond 

to representative points in the unshaded parts. The shaded regions are called the 

regions of dynamic instability. 

 

 

21 b ba
4 2 8

= + −  
21a b

2
= −  

1/2 

25a 1 b
12

= +  
1/2 

1 

0 
1/4 

1 

2

a 

b 21 b ba
4 2 8

= − −  21a 1 b
12

= −  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 Part of Haines-Strett diagram the points    1  and   2  correspond to   

the solutions 1 and 2 in figure 2.2 

 

 

As an example, the diagram in figure 2.3 shows the points 1 and 2 corresponding 

to the parameter a1=1 and b1=0,1, and a2=1,2 and b2=0,1. The point 1 is in the region 

of dynamic instability and the vibration occurs with increasing amplitude as shown 

in figure 2.2. The point 2 is in the stable region and it corresponds to motion with a 

limited amplitude. 
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2.2.1 The formulation of   dynamic stability  

 

The matrix equation for the free vibration of an axially loaded system can be 

written as: 

[ ]{ } [ ]{ } { }e gM q K q K q 0⎡ ⎤+ − ⎣ ⎦ =                       (2.11) 

 

where 

{ }q      is the generalized coordinates 

[M]     is the inertia matrix 

[ ]eK    is the elastic stiffness matrix 

gK⎡⎣ ⎤⎦  is the geometric stiffness matrix, which is a function of the compressive axial 

load P(t). 

 

For a system subjected to a periodic force 

 

o tP(t) P P f (t)= +                                          (2.12) 

 

The static and time dependent components of the load can be represented as a 

fraction of the fundamental static buckling load P*, in which ,   . 

By writing P P

oP P= α * *

)

tP P= β

* P * f (t= α +β  then the matrix  equation   becomes gK

 

g gsK P* K P * Kgt⎡ ⎤ ⎡= α +β ⎤⎣ ⎦ ⎣ ⎦

⎤⎦

            (2.13) 

 

where the matrices and gsK⎡⎣ gtK⎡ ⎤⎣ ⎦  reflect the influence of Po and Pt respectively. 

Substituting equation (2.13) into equation   (2.11), the following system of n second 

order differential equations with a periodic coefficient of the known Mathieu-Hill 

type is obtained; 

 

[ ]{ } [ ] { }e gs gtM q K P * K P *f (t) K q 0⎡ ⎤⎡ ⎤ ⎡ ⎤+ −α −β⎣ ⎦ ⎣ ⎦⎣ ⎦ =           (2.14) 
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f(t) is a periodic  function with period T. Therefore 

 

    f (t T) f (t)+ =                                                         (2.15) 

 

Equation (2.14) is a system of n second order differential equations which may be 

written as 

 

{ } [ ]{ }q(t) Z q(t) 0+ =                                               (2.16) 

 

where 

 

[ ] [ ] [ ]1
e gsZ M K P* K P* K−

gt⎡ ⎤⎡ ⎤ ⎡= −α −β ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦               (2.17) 

 

It is convenient to replace the n second order equations with 2n first order 

equations by introducing 

 

{ }
q

h
q
⎧ ⎫

=⎨ ⎬
⎩ ⎭

                                                         (2.18) 

 

and 

[ ] [ ]
[ ]
0 I
Z 0

⎡ ⎤−
φ = ⎢ ⎥

⎣ ⎦
             (2.19) 

 

then, equation (2.16) becomes 

 

{ } [ ]{ } [ ]
[ ]
0 Iq q

h(t) (t) h(t) 0
Z 0q q

⎡ ⎤−⎧ ⎫ ⎧ ⎫
+ φ = +⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦
=           (2.20) 

 

Equation (2.19) needs not be solved completely in order to determine the stability 

of the system. It is merely necessary to determine whether the solution is bounded or 

unbounded. 
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It is assumed that the 2n linearly independent solutions of equation (2.20) are 

known over the interval t = 0 to t = T. Then they may be represented in matrix form 

as 

( )

1,1 1,2n

2n,1 2n,2n

h . . . h
. . . . .
. . . . .H t
. . . . .

h . . . h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

            (2.21) 

 

Since f(t), and therefore (t)⎡ ⎤φ⎣ ⎦  is periodic with period T, then the substitution       

t = t + T will not alter the form of the equations, and the matrix solutions, at time       

t + T, may be obtained from H(t T)⎡ +⎣ ⎤⎦ H(t)⎡ ⎤⎣ ⎦ by a linear transformation 

 

H(t T)⎡ ⎤+⎣ ⎦ = R H(t)⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦             (2.22) 

 

where  is the transformation matrix and is composed only of constant 

coefficients. 

R⎡ ⎤⎣ ⎦

 

It is desirable to find a set of solutions for which the matrix can be 

diagonalized. Hence the i

R⎡ ⎤⎣ ⎦

th solution vector after period T, { }
i

h(t T)+  may be 

determined from { }
i

h(t)  using the simple expression 

 

{ } { }ii i
h(t T) h(t)+ =ρ             (2.23) 

 

The behavior of the solution is determined by ρi . 

 

If ρi>1, then the amplitude of vibration will increase with time. If ρi<1, then the 

amplitude will decrease. For ρi=1, the amplitude will remain unchanged, and this 

represents the stable boundary. 
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In order to diagonalize the matrix R⎡ ⎤⎣ ⎦ , the characteristic equation 

 

[ ] [ ]R I 0−ρ =             (2.24) 

 

must be solved for its 2n roots, where I⎡ ⎤⎣ ⎦ is the identity matrix. The roots of the 

equations, ρi , are eigenvalues, each having a corresponding eigenvector.  

 

The 2n resulting eigenvectors are chosen as the 2n solutions to equation (2.20). 

They can be placed in a matrix, H(t)⎡ ⎤⎣ ⎦ , which will then satisfy the expression 

 

H(t) R H(t T)⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦             (2.25) 

 

where 

 

      

1

2

2n

0 . . 0
0 . . 0

R . . . . .
. . . . .
0 . . 0

ρ⎡ ⎤
⎢ ⎥ρ⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥ρ⎣ ⎦

            (2.26) 

 

R⎡ ⎤⎣ ⎦  is the diagonalized matrix of [ ]R  composed of the 2n eigenvalues of 

equation (2.24). 

 

The periodic vector, { }i
Z(t) , with period T is introduced so that  

 

{ } { }ii

(t /T)ln ih(t) Z(t) e
ρ

=             (2.27) 

 

For an even function of time  like [ ](t)φ , it is true that 
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[ ] [ ](t) ( t)φ = φ −                        (2.28) 

 

Hence equation (2.27) can be written as 

 

{ } { }ii

(t /T)ln ih ( t) Z( t) e
− ρ

− = −            (2.29) 

 

then 

{ } { }ii

(t /T)ln(1/ )ih ( t) Z( t) e
ρ

− = −            (2.30) 

 

It is clear from (2.30) that 1/ρi is also an eigenvalue. This property is not restricted 

to even functions, but is also preserved in the case of arbitrary periodic functions as 

shown by  Bolotin, (1964). 

  

In general, the eigenvalues ρi are complex numbers of the form 

 

           i ia jbiρ = +                        (2.31) 

 

and the natural logarithm of a complex number is given by 

 

i iln ln jρ = ρ + (argument ρ)           (2.32) 

 

or in this case 

 

2 2 1
i i i iln ln a b jtan (b / a )−ρ = + + i            (2.33) 

 

where  j 1= −  

 

From equation (2.27), it is clear that if the real part of ilog ρ  is positive for any of 

the solutions, then that solution will be unbounded with time. A negative real part 
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means that the corresponding solution will damp out with time. It therefore follows 

that the boundary case for a given solution is that for which the characteristic 

exponent has a zero real part. This is identical to saying that absolute value of ρi is 

unity. For the system to remain stable, every one of the solutions must remain 

bounded. If even one of the solutions has a characteristic exponent which is positive, 

then the corresponding solution is unbounded and therefore the system is unstable. 

 

It has been shown that if ρi is a solution, then 1/ρi is also a solution. These two 

solutions can be written as 

 

i ia jbiρ = +               (2.34) 

 
2 2

i n i i i i(a jb ) /(a b )+ρ = − +             (2.35) 

 

Another restriction on the solutions of the characteristic equation is that the 

complex eigenvalues must occur in complex conjugate pairs. Hence it follows that 

ρi+1 and ρi+n+1 are also solutions where 

 

i 1 i ia jb+ρ = −              (2.36) 

 
2 2

i n 1 i i i i(a jb ) /(a b )+ +ρ = + +             (2.37) 

 

These solutions are presented in figure 2.4 which shows a unit circle in the 

complex plane. The area inside the unit circle represents stable or bounded solutions, 

while the area outside the unit circle represents unstable or unbounded solutions. For 

each stable solution which lies inside the circle, there corresponds an unstable 

solution outside the circle due to the reciprocity constraint. Therefore the only 

possible stable solutions must lie on the unit circle. 

 

Points on this unit circle may be represented in polar co-ordinates by r = 1 and     

θ = tan-1b/a where -π ≤ θ ≤ π. For each root on the upper semicircle, there is a 
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corresponding root on the lower semicircle due to the fact that the roots occur in 

complex conjugate pairs. The logarithm of ρi , when ρi lies on the unit circle will be 

 

iln jρ = θ              (2.38) 

 

and equation (2.27) becomes 

 

{ } { }
tj

T
ii

h(t) Z(t) e
θ⎛ ⎞

⎜ ⎟
⎝ ⎠=                            (2.39) 

 

 

 bi

Real axis 

2 2
i n 1 i i i ia jb / a b+ +ρ = + +  

Imaginary axis 

1

-1

1 -1 ai

i 1 i ia jb+ρ = −  

2 2
i n i i i ia jb / a b+ρ = − +  

1
i itan b / a−  

i ia jbiρ = +  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.4 Unit circle in the complex plane 

 

Since the eigenvalues occur in complex conjugate pairs, the limiting values of θ 

are zero and π. 
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When θ = 0, equation (2.39) becomes 

  { } { }ii
h(t) Z(t)=                       (2.40) 

 

and, therefore, the solution { }h(t) is periodic with period T when θ = π, equation 

(2.39) becomes 

 

        { } { }
tj

T
ii

h(t) Z(t) e
π⎛ ⎞

⎜ ⎟
⎝ ⎠=             (2.41) 

 

                { } { } { }
( t 2T)j

T
ii i

h(t 2T) Z(t 2T) e h(t)
π +⎛ ⎞

⎜ ⎟
⎝ ⎠+ = + =           (2.42) 

 

It is clear from equation (2.42) that the solution { }h(t)  is also periodic with a 

period 2T. 

 

It can be concluded that equation (2.11) has periodic solutions of period T and 2T. 

Also the boundaries between stable and unstable regions are formed by periodic 

solutions of period T and 2T. 

 

For a system subjected to the periodic force 

 

0 tP P P cos t= + ω               (2.43) 

 

Where ω is the disturbing frequency, equation (2.11) becomes 

 

[ ]{ } [ ] { }e gs gtM q K P* K P*cos t K q 0⎡ ⎤⎡ ⎤ ⎡ ⎤+ −α −β ω =⎣ ⎦ ⎣ ⎦⎣ ⎦           (2.44) 

 

Now we seek periodic solutions of period T and 2T of equation (2.44) where             

T = 2π/ω. 
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When a solution of period 2T exists, it may be represented by the Fourier series 

 

{ } { } { }k k
k 1,3,5

k t k tq a sin b cos
2 2

∞

=

ω ω⎡ ⎤= +⎢ ⎥⎣ ⎦
∑            (2.45) 

 

Where { }k
a  and { }k

b  are time-independent vectors. Differentiating equation 

(2.45) twice with respect to time yields 

 

  { } { } { }
2

k k
k 1,3,5

k k tq a sin b
2 2

∞

=

k tcos
2

ω ω⎛ ⎞ ⎡= − +⎜ ⎟
ω ⎤

⎢ ⎥⎝ ⎠ ⎣
∑

⎦
           (2.46) 

 

Substituting equations (2.45) and (2.46) into equation (2.44) and using the 

trigonometric relations 

 
A+B A-Bsin A+sin B = 2 sin  cos   

2 2
A+B A-Bsin A-sin B = 2 cos  sin   

2 2
A+B A-Bcos A+cos B = 2 cos  cos   

2 2
A+B A-Bcos A-cos B = 2 sin  sin  

2 2

           (2.47) 

 

and comparing the coefficients of sin k t
2
ω  and  cos k t

2
ω  lead to the following matrix 

equations relating the vectors { }k
a  and { }k

b . 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }
{ }
{ }

2
* * *

e gs gt gt

12
* * *

gt e gs gt 3

2 5
* *

gt e gs

1 1K P K P K M P K 0 .
2 4 2 a

1 9 1 aP K K P K M P K . 02 4 2 a
1 250 P K K P K M .2 4

. . .

⎡ ⎤ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤−α + β − − β⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎧ ⎫⎢ ⎥

ω ⎪ ⎪⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − − β ⎪ ⎪⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

.

=⎨ ⎬⎢ ⎥ ⎪ ⎪ω⎢ ⎥ ⎪ ⎪⎡ ⎤ ⎡ ⎤− β −α − ⎩ ⎭⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦
 
                   (2.48) 
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and 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }
{ }
{ }

2
* * *

e gs gt gt

12
* * *

gt e gs gt 3

2 5
* *

gt e gs

1 1K P K P K M P K 0 .
2 4 2 b

1 9 1 bP K K P K M P K . 02 4 2 b
1 250 P K K P K M .2 4

. . .

⎡ ⎤ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤−α − β − − β⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎧ ⎫⎢ ⎥

ω ⎪ ⎪⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − − β ⎪ ⎪⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

.

=⎨ ⎬⎢ ⎥ ⎪ ⎪ω⎢ ⎥ ⎪ ⎪⎡ ⎤ ⎡ ⎤− β −α − ⎩ ⎭⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦
 
                   (2.49) 

 

The orders of matrices in equations (2.48) and (2.49) are infinite. If solutions of 

period 2T exist, then the determinants of these matrices must zero. Combining these 

two determinants, the condition may be written as  

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

2
* * *

e gs gt gt

2
* * *

gt e gs gt

2
* *

gt e gs

1 1K P K P K M P K 0 .
2 4 2

1 9 1P K K P K M P K . 02 4 2
1 20 P K K P K
2 4

. . .

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤−α ± β − − β⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − − β⎣ ⎦ ⎣ ⎦ ⎣ ⎦

5 M .

.

=

ω⎡ ⎤ ⎡ ⎤− β −α −⎣ ⎦ ⎣ ⎦

 
                   (2.50) 

 

If a solution to equation (2.44) exists with a period T=2π/ω then it may be 

expressed as  Fourier series 

 

{ } { } { }0 k k
k 2,4,6

1 k tq b a sin b sin
2 2

k t
2

∞

=

ω ω⎡ ⎤= + +⎢ ⎥⎣ ⎦
∑               (2.51) 

 

Differentiating equation (2.51) twice with respect to time yields 

 

    { } { } { }
2

k k
k 2,4,6

k k tq a sin b cos
2 2

∞

=

k t
2

ω ω⎛ ⎞ ⎡= − +⎜ ⎟
ω ⎤

⎢ ⎥⎝ ⎠ ⎣
∑

⎦
          (2.52) 
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Substituting equations (2.51) and  (2.52) into equation (2.44), the following 

condition for the existence of solution with period T is obtained; 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }
{ }
{ }

* 2 *
e gs gt

2
* * 2 *

gt e gs gt 4

6* * 2
gt e gs

1K P K M P K 0 .
2 a

1 1 aP K K P K 4 M P K .
02 2

a10 P K K P K 9 M . .2
. . . .

⎡ ⎤⎡ ⎤ ⎡ ⎤−α −ω − β⎣ ⎦ ⎣ ⎦⎢ ⎥
⎧ ⎫⎢ ⎥
⎪ ⎪⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − ω − β ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ =⎨ ⎬

⎢ ⎥ ⎪ ⎪
⎢ ⎥⎡ ⎤ ⎡ ⎤− β −α − ω ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎢ ⎥
⎢ ⎥⎣ ⎦

                              (2.53) 

and  

 

[ ]{ }
[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }
{ }
{ }
{ }

e gs gt
0

2
2gt e gs gt

4
2

gt e gs gt
6

2
gt e gs

1 1K P* K P* K 0 0 . b2 2
1 1 bP* K K P* K M P* K 0 .
2 2 b

1 10 P* K K P* K 4 M P* K . b2 2
1 .0 P* K K P* K 9 M .
2 .

0 . . . .

⎡ ⎤⎡ ⎤ ⎡ ⎤−α − β⎣ ⎦ ⎣ ⎦⎢ ⎥⎧
⎢ ⎥⎪
⎢ ⎥⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α −ω − β⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥

⎨⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − ω − β⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡ ⎤− β −α − ω⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

0

⎫
⎪
⎪

⎪ ⎪
⎪ ⎪=⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

                   (2.54) 

 

It has been shown by  Bolotin (1964), that solutions with period 2T are the ones of 

the greatest practical importance and that as a first approximation the boundaries of 

the principal regions of dynamic instability can be determined from the equation 

 

[ ] [ ] { }
2

e gs gt
1K P* K P* K M q
2 4

⎡ ⎤ω⎡ ⎤ ⎡ ⎤−α ± β − =⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦

0

⎤⎦

           (2.55) 

 

The two matrices  and gsK⎡⎣ gtK⎡ ⎤⎣ ⎦  will be identical if the static and time 

dependent components of the loads are applied in the same manner. If 

, then equation (2.56) becomes gs gt gK K K⎡ ⎤ ⎡ ⎤ ⎡≡ ≡⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦
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     [ ] [ ] { }
2

e g
1K ( ) P* K M q
2 4

⎡ ⎤ω⎡ ⎤− α± β − =⎢ ⎥⎣ ⎦
⎣ ⎦

0            (2.56) 

 

Equation (2.56) represents solutions to three related problems  

 

(i) Free vibration with α = 0, β = 0  and  p = ω/2 the natural frequency 

 

 [ ] [ ] { }2
eK p M q⎡ ⎤ 0− =⎣ ⎦                         (2.57) 

 

(ii) Static stability with α = 1, β = 0 and ω = 0 

 

[ ] { }e gK P* K q⎡ ⎤⎡ ⎤ 0− =⎣ ⎦⎣ ⎦              (2.58) 

 

(iii) Dynamic stability when all terms are present 

 

      [ ] [ ] { }
2

e g
1K ( ) P* K M q
2 4

⎡ ⎤ω⎡ ⎤− α± β − =⎢ ⎥⎣ ⎦
⎣ ⎦

0              (2.59) 

 



  

CHAPTER THREE 

NUMERICAL METHOD 

 

3.1 The Finite Element Method 

 

3.1.1 What is the Finite Element Method? 

 

The finite element method is a numerical analysis technique for obtaining 

approximate solutions to a wide variety of engineering problems. Although originally 

developed to study the stresses in complex airframe structures, it has since been 

extended and applied to the broad field of continuum mechanics. Because of its 

diversity and flexibility as an analysis tool, it is receiving much attention in 

engineering schools and in industry. 

 

In more and more engineering situations today, we find that it is necessary to 

obtain approximate numerical solutions to problems rather than exact closed-form 

solutions. For example, we may want to find the load capacity of a plate that has 

several stiffeners and odd-shaped holes, the concentration of pollutants during non-

uniform atmospheric conditions or the rate of fluid flow through a passage of 

arbitrary shape. Without too much effort, we can write down the governing equations 

and boundary conditions for these problems, but we see immediately that no simple 

analytical solution can be found. The difficulty in these three examples lies in the 

fact that either the geometry or some other feature of the problem is irregular or 

"arbitrary." Analytical solutions to problems of this type seldom exist; yet these are 

the kinds of problems that engineers and scientists are called upon to solve. 

The resourcefulness of the analyst usually comes to the rescue and provides 

several alternatives to overcome this dilemma. One possibility is to make simplifying 

assumptions-to ignore the difficulties and reduce the problem to one that can be 

handled. Sometimes this procedure works; but, more often than not, it leads to 

serious inaccuracies or wrong answers. Now that large-scale digital computers are  

 26  
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Several approximate numerical analysis methods have evolved over the years-the 

most commonly used method is the general finite difference scheme. The familiar 

finite difference model of a problem gives a pointwise approximation to the 

governing equations. This model (formed by writing difference equations for an 

array of grid points) is improved as more points are used. With finite difference 

techniques we can treat some fairly difficult problems; but, for example, when we 

encounter irregular geometries or an unusual specification of boundary conditions, 

we find that finite difference techniques become hard to use. 

 

In addition to the finite difference method, another, more recent numerical method 

(known as the "finite element method") has emerged. Unlike the finite difference 

method, which envisions the solution region as an array of grid points, the finite 

element method envisions the solution region as built up of many small, 

interconnected sub-regions or elements. A finite element model of a problem gives a 

piece-wise approximation to the governing equations. The basic premise of the finite 

element method is that a solution region can be analytically modeled or 

approximated by replacing it with an assemblage of discrete elements. Since these 

elements can be put together in a variety of ways, they can be used to represent 

exceedingly complex shapes. 

 

As an example of how a finite difference model and a finite element model might 

be used to represent a complex geometrical shape, consider the turbine blade cross 

section in Figure 3.1. For this device we may want to find the distribution of 

displacements and stresses for a given force loading or the distribution of 

temperature for a given thermal loading. The interior coolant passage of the blade, 

along with its exterior shape, gives it a non-simple geometry. 
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(a) (b) 

 
Figure 3.1 Finite difference and finite element discretizations of a turbine blade profile. (a) Typical 

finite difference model. (b) Typical finite element model. 

 

A uniform finite difference mesh would reasonably cover the blade (the solution 

region), but the boundaries must be approximated by a series of horizontal and 

vertical lines (or "stair steps"). On the other hand, the finite element model (using the 

simplest two-dimensional element- the triangle) gives a better approximation to the 

region and requires fewer nodes. Also, a better approximation to the boundary shape 

results because the curved boundary is represented by a series of straight lines. This 

example is not intended to suggest that finite element models are decidedly better 

than finite difference models for all problems. The only purpose of the example is to 

demonstrate that the finite element method is particularly well suited for problems 

with complex geometries. 

 

3.1.2 How the Method Works 

 

We have been alluding to the essence of the finite element method, but now we 

shall discuss it in greater detail. In a continuum problem of any dimension the field 

variable (whether it is pressure, temperature, displacement, stress or some other 

quantity) possesses infinitely many values because it is a function of each generic 

point in the body or solution region. Consequently, the problem is one with an 

infinite number of unknowns. The finite element discretization procedures reduce the 

problem to one of a finite number of unknowns by dividing the solution region into 
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elements and by expressing the unknown field variable in terms of assumed 

approximating functions within each element. The approximating functions 

(sometimes called interpolation line functions) are defined in terms of the values of 

the field variables at specified points called nodes or nodal points. Nodes usually lie 

on the element boundaries where adjacent elements are considered to be connected. 

In addition to boundary nodes, an element may also have a few interior nodes. The 

nodal values of the field variable and the interpolation functions for the elements 

completely define the behavior of the field variable within the elements. For the 

finite element representation of a problem the nodal values of the field variable 

become the new unknowns. Once these unknowns are found, the interpolation 

functions define the field variable throughout the assemblage of elements. 

 

Clearly, the nature of the solution and the degree of approximation depend not 

only on the size and number of the elements used, but also on the interpolation 

functions selected. As one would expect, we cannot choose functions arbitrarily, 

because certain compatability conditions should be satisfied. Often functions are 

chosen so that the field variable or its derivatives are continuous across adjoining 

element boundaries. 

 

Thus far we have briefly discussed the concept of modeling an arbitrarily shaped 

solution region with an assemblage of discrete elements and we have pointed out that 

interpolation functions must be defined for each element. We have not yet 

mentioned, however, an important feature of the finite element method that sets it 

apart from other approximate numerical methods. This feature is the ability to 

formulate solutions for individual elements before putting them together to represent 

the entire problem. This means, for example, that if we are treating a problem in 

stress analysis, we can find the force-displacement or stiffness characteristics of each 

individual element and then assemble the elements to find the stiffness of the whole 

structure. In essence, a complex problem reduces to considering a series of greatly 

simplified problems. 
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Another advantage of the finite element method is the variety of ways in which 

one can formulate the properties of individual elements. There are basically four 

different approaches. The first approach to obtaining element properties is called the 

direct approach because its origin is traceable to the direct stiffness method of 

structural analysis. The direct approach also suggests the need for matrix algebra in 

dealing with the finite element equations. 

 

Element properties obtained by the direct approach can also be determined by the 

more versatile and more advanced variational approach. The variational approach 

relies on the calculus of variations and involves extremizing a functional. For 

problems in solid mechanics the functional turns out to be the potential energy, the 

complementary potential energy or some derivative of these, such as the Reissner 

variational principle. Knowledge of the variational approach is necessary to work 

beyond the introductory level and to extend the finite element method to a wide 

variety of engineering problems. Whereas the direct approach can be used to 

formulate element properties for only the simplest element shapes, the variational 

approach can be employed for both simple and sophisticated element shapes. 

 

A third and even more versatile approach to deriving element properties has its 

basis entirely in mathematics and is known as the weighted residuals approach. The 

weighted residuals approach begins with the governing equations of the problem and 

proceeds without relying on a functional or a variational statement. This approach is 

advantageous because it thereby becomes possible to extend the finite element 

method to problems where no functional is available. For some problems we do not 

have a functional-either because one may not have been discovered or because one 

does not exist. 

 

A fourth approach relies on the balance of thermal and/or mechanical energy of a 

system. The energy balance approach (like the weighted residuals approach) requires 

no variational statement and hence broadens considerably the range of possible 

applications of the finite element method. 
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Regardless of the approach used to find the element properties, the solution of a 

continuum problem by the finite clement method always follows an orderly step-by-

step process.  

 

1. Discretize the Continuum. The first step is to divide the continuum or solution 

region into elements.  In the example of Figure 3.1 the turbine blade has been divided 

into triangular elements that might be used to find the temperature distribution or 

stress distribution in the blade. A variety of element shapes may be used and with 

care, different element shapes may be employed in the same solution region. Indeed, 

when analyzing an elastic structure that has different types of components such as 

plates and beams, it is not only desirable but also necessary to use different types of 

elements in the same solution. Although the number and the type of elements to be 

used in a given problem are matters of engineering judgment, the analyst can rely on 

the experience of others for guidelines. 

 

2. Select interpolation functions. The next step is to assign nodes to each element 

and then choose the type of interpolation function to represent the variation of the 

field variable over the element. The field variable may be a scalar, a vector or a 

higher-order tensor. Often, although not always, polynomials are selected as 

interpolation functions for the field variable because they are easy to integrate and 

differentiate. The degree of the polynomial chosen depends on the number of nodes 

assigned to the element, the nature and number of unknowns at each node and certain 

continuity requirements imposed at the nodes and along the element boundaries. The 

magnitude of the field variable as well as the magnitude of its derivatives may be the 

unknowns at the nodes. 

 

3. Find the element properties.  Once the finite element model has been 

established (that is, once the elements and their interpolation functions have been 

selected), we are ready to determine the matrix equations expressing the properties of 

the individual elements. For this task we may use one of the four approaches just 

mentioned: the direct approach, the variational approach, the weighted residual 

approach or the energy balance approach. The variational approach is often the most 
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convenient, but for any application the approach used depends entirely on the nature 

of the problem. 

 

4. Assemble the element properties to obtain the system equations. To find the 

properties of the overall system modeled by the network of elements we must 

“assemble” all the element properties. In other words, we must combine the matrix 

equations expressing the behavior of the elements and form the matrix equations 

expressing the behavior of the entire solution region or system. The matrix equations 

for the system have the same form as the equations for an individual element except 

that they contain many more terms because they include all nodes. 

 

The basis for the assembly procedure stems from the fact that at a node, where 

elements are interconnected, the value of the field variable is the same for each 

element sharing that node. Assembly of the element equations is a routine matter in 

the finite element analysis and is usually done by a digital computer. 

 

Before the system equations are ready for solution they must be modified to 

account for the boundary conditions of the problem. 

5. Solve the system equations.  The assembly process of the preceding step gives a 

set of simultaneous equations that we can solve to obtain the unknown nodal values 

of the field variable.  

 

6. Make additional computations if desired. Sometimes we may want to use the 

solution of the system equations to calculate other important parameters. For 

example, in a fluid mechanics problem such as the lubrication problem, the solution 

of the system equations gives the pressure distribution within the system. From the 

nodal values of the pressure we may then calculate velocity distributions and flows 

or perhaps shear stresses if these are desired. 

 

 

 

 

  



 33

3.1.3 Range of Applications 

 

Applications of the finite element method can be divided into three categories, 

depending on the nature of the problem to be solved. In the first category are all the 

problems known as equilibrium problems or time-independent problems. The 

majority of applications of the finite element method fall into this category. For the 

solution of equilibrium problems in the solid mechanics area we need to find the 

displacement distribution or the stress distribution or perhaps the temperature 

distribution for a given mechanical or thermal loading. Similarly, for the solution of 

equilibrium problems in fluid mechanics, we need to find pressure, velocity, 

temperature and sometimes concentration distributions under steady-state conditions. 

 

In the second category are the so-called eigenvalue problems of solid and fluid 

mechanics. These are steady-state problems whose solution often requires the 

determination of natural frequencies and modes of vibration of solids and fluid. 

Examples of eigenvalue problems involving both solid and fluid mechanics appear in 

civil engineering when the interaction of lakes and dams is considered and in 

aerospace engineering when the surge of liquid fuels in flexible tanks is involved. 

Another class of eigenvalue problems includes the stability of structures and the 

stability of laminar flows. 

 

In the third category is the multitude of time-dependent or propagation problems 

of continuum mechanics. This category is composed of the problems that result when 

the time dimension is added to the problems of the first two categories. 

 

Just about every branch of engineering is a potential user of the finite element 

method. But the mere fact that this method can be used to solve a particular problem 

does not mean that it is the most practical solution technique. Often several attractive 

techniques are available to solve a given problem. Each technique has its relative 

merits and no technique enjoys the lofty distinction of being  “the best” for all 

problems. Consequently, when a designer or analyst has a continuum problem to 

solve, his first major step is to decide which method to use. This involves a study of 
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the alternative methods of solution, the availability of computer facilities and 

computer packages and most important of all, the amount of time and money that can 

be spent to obtain a solution. 

  

The range of possible applications of the finite element method extends to all 

engineering disciplines, but civil and aerospace engineers concerned with stress 

analysis are the most frequent users of the method. Major aircraft companies and 

other organizations involved in the design of structures have developed elaborate 

finite element computer programs.  

 

  



CHAPTER FOUR  

THEORETICAL ANALYSIS 

 

The vibration problem of curved beams has been the subject of interest of several 

investigators due to its importance in many practical applications.   

 

4.1 The Finite Element Model of a Curved Beam without Internal Node 

 

4.1.1 Mathematical Model 

 
 

 

  

      Figure 4.1 Coordinate system and displacements of the curved beam finite element 

 

The out- of –plane vibration for horizontally curved beam shown in figure 3.1 is 

considered. As it may be seen, R denotes the radius of curvature at the centroid, b 

and t are the width and height of the section and β is the angle between outer 

supports. Also, it may be seen in figure 4.1 that a right – hand co-ordinate system is 

used. Axes x and z principal centiroid axes of the beam cross-section and y is the 

tangent to the curved axis of this member. 
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4.1.2 Theoretical Consideration  

 
The out-of-plane curved beam element used in this analysis is given by Belek, 

(1977) and is based on strain functions. The strain displacement equations are 

integrated by making an assumption of uniform torsional strain and linear increase in 

curvature. 

 

Deflection functions used in the analysis are given by  Belek, (1977)   as 

 

1 2 3 4u a R cos a R sin a R a R a R= φ+ φ+ − φ− 6 φ

6

 

1 2 5a cos a sin a aθ = φ+ φ− − φ ,         R
y=φ                                (4. 1) 

 

4.1.3 Strain energy of out-of-plane vibration of a curved beam  

      

The strain energy of a curved beam under coupled bending and torsional 

displacements is in given by Belek, (1977) as,  

 

   
sh

2 2'l '' '

o s yys s xxs
0

uV E I u G J
R R

⎡ ⎤⎛ ⎞ ⎛ ⎞θ⎢ ⎥⎜ ⎟ ⎜ ⎟= + + θ−⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ dy             (4.2) 

 

By substituting equation 4.1 in to equation 4.2 if becomes, 

 

{ } [ ] [ ] { }
sh

'' ''
l

T 1T s yys
0 0 0 0 0' ' ' '

s xxs0

E I 0/ R u / R u1V q C dy C q
0 G J2 u/ R u/ R

− −
⎧ ⎫⎡ ⎤ ⎡ ⎤θ + θ +⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪θ− θ−⎣ ⎦ ⎣ ⎦⎩ ⎭
∫   (4.3) 

 

      { } [ ] [ ][ ] { }T 1T
o o o o o

1V q C k C q
2

− −= o              (4. 4) 

                 

Where{ , ,[}T
0q [ ] 1

0C − ]ok  are given explicitly in equation (4.5), (4.6) and (4.7) 

respectively. 
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    { }         [ ]T
o i i i i+1 i+1 iq  u   j       u   j= θ θ +1 y

uj
∂
∂

−=             (4. 5) 

 

the stiffness matrix [k0] is given by 

 

[ ] s yys
o

2
2

3

0 0 0 0 0 0
0 0 0 0 0

E I 0 0 0 0
k

C 0 0R
/ 2
/ 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥β⎢ ⎥
⎢ ⎥β β
⎢ ⎥

β⎣ ⎦

              (4. 6) 

 

s xxs
2

s yys

G JC
E I

=  

 

and the transformation  matrix [Co]-1 is given by 

 

[ ]

o1 o2 o1 o3

o5 o4 o5 o1

1 o4 o2 o1 o3
o

o1 o2 o1 o3

o1 o1 o1 o1

0 B / R  B 0 B / R  B
0 B / R B 0 B / R B
0 B / R  B 0 B / R  B

C
1/ 1/(R ) 0 1/ 1/ (R ) 0

1 B / R  B 0 B / R  B
1/ 2B /(R ) B 1/ 2B /(R ) B

−

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥− β β β − β⎢ ⎥
⎢ ⎥− −
⎢ ⎥

β β − − β − β −⎢ ⎥⎣ ⎦

−
           (4. 7) 

 

oD 2 2cos sin= − β−β β  

( )o1 oB cos 1 / D= β−  

o2 oB sin / D= β  

( )o3 oB sin / D= β−β  

( )o4 oB 1 cos sin / D= − β−β β  

o5 oB sin / D= β  
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4.1.4 External work done in the out-of-plane direction of a curved beam due to 

uniform in-plane compression forces  

 

External work will be done in the out of plane direction when the shroud is 

subjected to uniform compression force P(t).The additional  energy  due to 

periodic force (Papangelis & Trahair, 1987)   

gcV

   

 

 

 

 
 
 
 
 
 

R

P(t) 

θ 
β 

 
Figure 4.2 Curved beam subjected to uniform compression force 

 

   
sh

'l 2 2' ' '
2 2 2

go x y
0

uV P(t)R u r r ( ) d
R

y
⎡ ⎤
⎢ ⎥= + θ + θ−
⎢ ⎥
⎣ ⎦

∫             (4. 8) 

where, 

 

            yys2 2xxs
x y

s s

IIr ,        r
A A

= =                          (4. 9) 

 

       By substituting equation 4.1 in to equation 4.8   

 

   { } [ ] [ ] { }T 1T
go o o go o o

1V q C k C q
2

− −⎡ ⎤= ⎣ ⎦           (4. 10) 
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2

2

1

sin sin cos 0 sin 0 sin
cos 0 cos 0 cos

0 0 0 0
g

1 0 1
0 0

1

⎡ ⎤θ − θ θ θ θ
⎢ ⎥θ − θ −⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

θ

         (4.11.a) 

 
2

2

2

sin sin cos 0 0 0 sin
cos 0 0 0 cos

0 0 0 0
g

0 0 0
0 0

1

⎡ ⎤θ − θ θ θ
⎢ ⎥θ −⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

θ

          (4.11.b) 

 
2

2

3

sin sin cos 0 sin 0 sin
sin cos cos 0 cos 0 cos

0 0 0 0 0 0
g

0 0 0 0 0 0
0 0 0 0 0 0

sin cos 0 1 0 1

⎡ ⎤− θ θ θ − θ − θ
⎢ ⎥θ θ − θ θ θ⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− θ θ − −⎢ ⎥⎣ ⎦

         (4.11.c) 

 
2

2

4

sin sin cos 0 0 0 sin
sin cos cos 0 0 0 cos

0 0 0 0 0 0
g

sin cos 0 0 0 1
0 0 0 0 0 0

sin cos 0 0 0 1

⎡ ⎤− θ θ θ − θ
⎢ ⎥θ θ − θ θ⎢ ⎥
⎢ ⎥

= ⎢ ⎥
− θ θ −⎢ ⎥

⎢ ⎥
⎢ ⎥

− θ θ −⎢ ⎥⎣ ⎦

         (4.11.d) 

 

Using the above matrices the matrix gok⎡ ⎤⎣ ⎦  is obtained  

 

[ ] 2 2 2
1 x 2 y 1 2 3 4KG R g r g r (g g g g )⎡ ⎤= + + + + +⎣ ⎦            (4.12) 
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[ ]go
0

k KG
β

⎡ ⎤ d= θ⎣ ⎦ ∫               (4.13) 

 

4.1.5 Kinetic energy of out-of-plane vibration of a curved beam  

 

The kinetic energy expression of a curved beam under combined bending-

torsional displacements is given by Belek, (1977)   as,  

 

( ) ( )
shl

22
o s s s p

0

T A u I d y⎡ ⎤= ρ + ρ θ⎢ ⎥⎣ ⎦∫            (4.14) 

 

{ } [ ] [ ] { }
sh

' '
l

T 1T s s
0 0 0' '

p s0

A 0u u1T q C dy C q
0 I2 R R

− −
⎧ ⎫⎡ ⎤ ⎡ ⎤ρ⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥ρ⎣ ⎦⎪ ⎪θ θ⎣ ⎦ ⎣ ⎦⎩ ⎭
∫ 0           (4.15) 

 

By substituting equation 4.1 in to equation 4.15 if becomes,   

 

{ } [ ] [ ][ ] { }T 1T
o o o o o

1T q C m C q
2

− −= o            (4.16) 

 

Where the corresponding degrees of freedom {  and the transformation matrix }T
oq

[ ] 1
oC −  have been given in equations (4.5) and (4.6) respectively and the mass matrix 

[ ]om  is 

 

[ ]

4 1 4 2 3 3 4 3

4 4 5 6 3 5 4 6
2 2

3
o s s 3

2
3 3

3
4

C M C M sin M C sin C M
C M M M C M C M

/ 2 0 / 2
m A R

/ 3 0 / 3
C C /

C / 3

β − β⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥β −β −β

= ρ ⎢ ⎥β⎢ ⎥
⎢ ⎥β β
⎢ ⎥

β⎢ ⎥⎣ ⎦

3

2
β

          (4.17) 
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1M / 2 sin 2 /= β + β 4

2

4

 

2
2M sin /= β  

3M 1 cos sin= − β−β β  

4M / 2 sin 2 /= β − β  

5M 1 cos= − β  

p
3 2

s

I
C

(A R )
=  

4 3C 1 C= +  

 

4.2 The Finite Element Model of a Curved Beam with Internal Node 

 
Deflection functions for the out-of-plane direction of a curved beam element with 

an internal node used in this analysis are given by Sabuncu (1978).  

( ) (
2

2 3
1 2 3 4 5 7 8 9u a R cos a R sin a R a R a R(1 ) a R a R 2 a R 6

2
φ

= φ+ φ+ − φ− − − φ+ −φ + φ−φ )

( ) ( )2 3
1 2 5 6 7 8 9a cos a sin a a a a 2 a 6θ = φ+ φ+ − − φ+ −φ + φ−φ

,          R
y=φ

       

                      (4.18) 

 

4.2.1 Stiffness matrix of out-of-plane vibration of a curved beam   

 
If equation 4.18 is substituted into the strain energy equations 4.2, 4.3 and 4.4, the 

stiffness matrix is obtained as,   
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[ ]

2

3

0 2 3

3 4

5 6

7

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
1F1 F1 0 0 0 0
2
1 F1 0 0 0 0
3

k 1 1 1F2 F2 F2 F2
2 3 4
1 1 1F2 F2 F2
3 4 5

1 1F2 F2
5 6

1 F2
7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥β β
⎢ ⎥
⎢ ⎥
⎢ ⎥β
⎢ ⎥

= ⎢ ⎥
4

5

β β β⎢ ⎥
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⎢ ⎥

β

β β β⎢ ⎥
⎢ ⎥
⎢ ⎥β β⎢ ⎥
⎢ ⎥
⎢ ⎥β
⎢ ⎥⎣ ⎦

          (4.19) 

 

where 

 
s xxsG JF1
R

=  

 
s yysE I

F2
R

=  

 

{ } [ ]T
o i i i id id id i+1 i+1 i+1q  u   j   u   j      u   j= θ θ θ         

y
uj
∂
∂

−=

3

   (4.20)  
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2 2

2

2 3

2

R 0 R 0 R 0 0 2R 0
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−
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= β − β β β − − β

β β − −β −β β−β
β β − β −β − β 2 3

2

2 3

R(2 ) R(6 )
sin( ) cos( ) 0 1 0 1 2 (6 3 )
cos( ) sin( ) 0 0 1 1 (2 ) (6 )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−β β−β⎢ ⎥

β − β β β − − β⎢ ⎥
⎢ ⎥β β − −β −β β−β⎣ ⎦

 

 
           (4.21) 
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4.2.2 Geometric stiffness matrix of out-of-plane vibration of a curved beam 

   

When equation 4.18 is substituted into the strain energy equation 4.13, the 

geometric stiffness matrix is obtained as,   
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[ ]

2 2 2 2 2 2 2

S S S S S

2 2 2 2 2 2

S S S S
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0 0 0 0 0 0 0
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=
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⎢ ⎥
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If equation 4.18 is substituted into the strain energy equations 4.14, 4.15 and 4.16, 

the mass matrix is obtained as,   

1BG1 ( sin cos )
2

= − β β+β

BG2 sin cos= β−β β
2BG3 4cos cos 2sin 4= − β+β β− β+

BG5 cos sin 1= − β − β+
2BG5 4sin sin 2 sin= − β+β β− β β

21B1 (cos 1)
2

= β−

B2 cos 1= β +

4.2.3 Mass matrix of out-of-plane vibration of a curved beam   
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[ ]

2 3 2 3 4
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⎢
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⎢
⎢
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⎣ ⎦
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⎥

                   

(4.23)
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where, 

sin(2 )CSQ ( ) / 2
2
β

= β+   

sin(2 )SSQ ( ) / 2
2
β

= β−    

C sin( )= β  

S cos( )= − β +1 

C1 cos( ) 1 sin( )= β − +β β   
2C2 2 cos( ) ( 2)sin( )= β β + β − β  

2 3C3 3 cos( ) 6(cos( ) 6(cos( ) 1) ( 6 )sin( )= β β + β − β − + β − β β  

S1 sin( ) cos( )= β +β β  
2S2 2 sin( ) 2(cos( ) 1) cos= β β + β − −β β   

2 3S3 (3 6)sin( ) (6 )cos( )= β − β + β−β β      

P
2

S

IA
A R

=    

AA 1 A= +   

  



 

CHAPTER FIVE  

DISCUSSIONS OF RESULTS 

 

In this chapter, some of the results obtained for the frequencies and buckling loads 

of curved beams in out-of-plane directions is shown and compared with some other 

researchers’ results in order to indicate the degree of accuracy and adaptability that 

can be expected in the application of the finite element method. Moreover, the effects 

of opening angle, variations of cross-section, static and dynamic load parameters on 

the stability regions are shown in graphics. 

  

The model shown in Figure 5.1 is used for the Finite Element analysis of the 

curved beam. In this study, C1, C2, C3, C4 and C5, represent different type cross-

section curved beams. The explanation of these cross-sections is as follows: 

 

C1: Uniform ( tR = tt, bR = bt Fig. 5.1a ), 

C2: Unsymmetric tapered with constant width  ( tR ≠tt, bR = bt Fig 5.1b.), 

C3: Double unsymmetric tapered ( tR ≠tt, bR ≠ bt Fig 5.1c.), 

C4: Symmetric tapered with constant width ( tR ≠tt, bR = bt Fig 5.1d.),  

C5: Double symmetric tapered ( tR ≠tt, bR ≠ bt Fig 5.1e.). 

 

The first four natural frequencies obtained with the present element were 

compared with the analytical results of Ojalvo and Newman (1964) and given in 

Table 5.1. In addition, the critical buckling load for various opening angles the 

uniform cross-section beam were compared with the results of Timoshenko (1961) 

and given in Table 5.2. 

  

As seen from the Tables (5.1 and 5.2,) agreement between the results obtained by 

in both tables is very good. 
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In Table 5.3 the natural frequencies of curved beams with fixed- fixed end 

conditions and three different opening angles are compared with Sabuncu’ s(1978) 

and Rao’s (1970) results. As shown from the table 5.3 torsional frequencies (T1 and 

T2) are obtained, when the internal node is used. 

 

In table 5.4 and 5.5 for different opening angels the frequencies and critical 

buckling loading of curved beams with different opening angles and cross-sections 

are given for the first five modes. It can be seen that the results with and without 

internal nodes are similar.  

 

In table 5.6 and table 5.7 the dynamic unstable regions of curved beams which 

have different cross-section without and with internal nodes are given inceptively. It 

can be seen that the result obtained from two different finite element models are 

good.  

 

Figure 5.2 shows that the effect of variation of opening angle of an arch on the 

fundamental frequency parameter for various cross-sections. It can be noticed from 

the figure that when the opening angle of an arch increases, the fundamental 

frequency parameter decreases for all the cross-sections as expected. It can also be 

noticed that the frequency parameters of C1, C2, C5 cross-sectioned curved beams 

are fairly close. Between 300 and 600 opening angles, the fundamental frequencies of 

C3 and C4 cross-sectioned curved beams are more apart than the fundamental 

frequencies of other type cross-sectioned curved beams. 

 

When the opening angle of an arch increases, the fundamental frequency 

parameters of curved beams having the same length but five different cross-sections 

come closer. This phenomenon can be explained as follows: when the opening angle 

of an arch increases, the length of curved beams also increases, consequently beams 

become very flexible. The length variation effect on the flexibility is more dominant 

than the effect of variation of cross-section. 
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As shown in Figure 5.3, if the variation of the cross-section diminishes and 

approaches the uniform cross-section, the fundamental frequencies of C2 and C5 

cross-sectioned curved beams increase and approach the frequency parameter of C1 

cross-sectioned curved beam. On the other hand, the fundamental frequencies of C3 

and C4 cross-sectioned curved beams decrease and approach the fundamental 

frequency of the C1 cross-sectioned curved beam.  

 

Effect of opening angle of curvature on the critical buckling load is shown in 

Figure 5.4. When the opening angle of an arch increases, as a result the curved beam 

becomes more flexible. Thus, as shown in the figure, the critical buckling load 

decreases.  It can be noticed from the figure that critical buckling load values of 

beams having C2 and C4 type cross-sections are close to each other. There is a 

similar phenomenon between C3 and C5 type cross-sectioned curved beams. Critical 

buckling loads of single tapered curved beams (C2 and C4) are higher than the 

double tapered curved beams (C3 and C5), respectively, as expected. It can also be 

noticed that even though the thickness of C4 tapers twice as much as C2 and the 

thickness and width of C5 tapers twice as much as C3 type beams. It seems that 

symmetric tapered beams are more stable than expected. 

 

Figure 5.5 shows that the effects of thickness variation of a curved beam on the 

critical buckling load for various cross-sections. It is seen that when the variation of 

cross-section diminishes and approaches the uniform cross-section, the curved beam 

becomes stiffer; as a result, the critical buckling load increases and takes the value of 

the uniform cross-sectioned curved beam. From this figure, it can be said that static 

stability values of curved beams having C3, C5, C2 and C4 type cross-sections 

increase, respectively. This increase decreases as the cross-section variation 

diminishes. 

 

From figure 5.6, it can be noticed that the first dynamic instability region widens 

because of the increase in the opening angle of the arch. C4 cross-sectioned curved 

beam is less stable compared to other cross-sections. In addition, when the dynamic 

load parameter increases, the unstable region widens.  



 51

As shown in figure 5.7, when the compared with figure 5.6, if the static load 

parameter increases, the increases, the initial ratio of the disturbing frequency to the 

fundamental frequency moves towards origin. It can be seen from the figures that the 

curved beam under periodic loading becomes unstable at a small disturbing 

frequency and small dynamic load parameter.  

 

Figure. 5.8 and figure 5.9 show that when bt/br and tt/tr ratios approach unity for 

α=0 and α=0.2, the first unstable region approaches the region C1 cross-sectioned 

curved beam. In both figures, the order of the unstable regions of all cross-sections 

does not change from the stability point of view. 

 

 
 

Figure 5.1Cross-sections of curved beams (a) uniform (C1, tR = tt, bR = bt ); unsymmetric tapered with 

constant width  ( C2, tR ≠tt, bR = bt ); (c) double unsymmetric tapered ( C3, tR ≠tt, bR ≠ bt.);(d) 

symmetric tapered with constant width( C4, tR ≠tt, bR = bt ); (e) double symmetric tapered  ( C5, tR ≠tt, 

bR ≠ bt ). 
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Table 5.1 Comparison of out-of plane frequencies of a cantilever curved beam obtained by using the 
present finite element method and the results of other study, t=0.0127 m, b=0.0127 m,  R=0.0254 m,  
ρ=2770 kg/m3, E=6.89e10 N/m2, β=270o

 

 

 
 
 
 
 
 
 
 
 
 

Natural Frequency (Hz) 

Mode FEM without 
Internal Node 
(12 element) 

FEM with 
Internal Node 

(3 element) 

Ojalvo & Newman  
(1961) 

1 9.7 10.00 8.48 
2 23.19 23.40 22.26 
3 70.48 71.8 72.56 
4 176.46 178.50 171.5 

 
 

Table 5.2 Comparison of the critical buckling load obtained for various opening angles of a fixed-fixed 
boundary conditioned beam. (t=0.001587 m, b=0.02753 m, R=0.3556 m) 

 

Critical Buckling Load(  Pcr)(kN/m) 

 
 

Opening Angle 
FEM without 
Internal Node 
(12 element) 

FEM with 
Internal Node 

(3 element) 

Timoshenko 
(1964) 

30 1815.79 1802.00 1814.8 

45 777.73 774.80 775.40 

60 418.70 417.20 413.01 

90 167.71 166.80 164.1 
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Table 5.3 Comparison of out-of plane frequencies ratio of a fixed-fixed curved beam obtained by 

using the present finite element method and the results of other studies, t=0.0127 m, b=0.0127 m,  

R=0.0254 m,  ρ=2770 kg/m3, E=6.89e10 N/m2, β=270o 

 

 4
s s yysp A R / E Iλ = ρ  

Subtended 
Angle Mode 

Rao Classical 
Theory 
(1970) 

M.Sabuncu 
(1978) 

Present 
With  

Internal 
Node 

1 1.839 1.800 1.800 

2 5.305 5.047 5.048 

T1 - 7.073 7.077 

3 11.108 10.165 10.169 

T2 - 11646 11.656 

1800

4 19.006   17.132 

1 0.758 0.754 0.755 

2 2.000 1.969 1.970 

3 4.406 4.243 4.235 

T1 - 5.956 5.939 

2700

4 7.822 7.446 7.448 

1 0.438 0.435 0.435 

2 0.952 0.957 0.957 

3 2.137 2.119 2.119 
3600

4 3.965 3.916 3.916 
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Table 5.4 Comparison of out-of plane frequencies of a fixed-fixed curved beam obtained by using the with and without internal nodes the finite elements,  

t=0.04 m, b=0.002m,  R=0.254 m,  ρ=2770 kg/m3, E=6.89e10 N/m2. 

 

Natural Frequency (Hz) 
C1     C2 C3 C4 C5

Subtended 
Angle 

(Degrees) 
Mode FEM 

Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

1           120.30 121.00 120.00 121.00 90.30 91.00 138.00 133.51 121.60 119.56

2           344.00 344.00 342.10 343.00 252.40 246.40 358.50 350.27 344.80 261.22

3           683.80 684.00 681.70 685.00 500.10 513.60 698.40 683.52 685.00 494.69

4           1137.60 1140.00 1135.50 1140.00 830.90 831.30 1150.40 1138.71 1142.20 857.51

90 

5           1705.40 1732.00 1703.30 1703.00 1244.70 1245.60 1719.20 1710.23 1283.20 1283.78

1           65.50 65.40 64.70 65.10 49.20 49.70 75.50 72,80 72.80 66.65

2           188.80 188.80 187.60 188.00 138.70 135.50 197.10 192.56 160.90 144.88

3           379.40 379.40 378.00 379.90 277.50 285.00 387.50 378.55 300.60 274.89

4           634.40 636.00 633.00 635.80 463.30 463.60 641.40 634.75 485.50 478.31

120 

5           953.60 968.40 952.20 967.00 696.00 696.90 961.20 955.53 718.00 718.01

1           40.10 40.10 39.70 39.90 30.60 30.90 47.00 45.17 46.60 42.37

2           117.10 117.10 116.20 116.60 86.20 84.30 122.50 119.70 101.20 91.13

3           238.50 238.60 237.50 238.80 174.50 179.20 243.70 237.92 189.80 173.20

4           401.50 402.60 406.50 402.30 293.20 293.50 405.80 401.50 307.80 302.82

150 

5           605.60 615.10 849.70 841.20 442.00 442.70 610.30 606.79 456.40 456.09
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C1     C2 C3 C4 C5

Subtended 
Angle 

(Degrees) 
Mode 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

1           26.90 26.90 26.60 26.70 20.80 21.10 32.00 30.66 32.60 29.40

2           78.30 78.30 77.60 77.90 57.70 56.50 82.20 80.27 68.90 62.04

3           162.10 162.10 161.20 162.20 118.60 121.80 165.60 161.58 129.80 118.00

4           275.00 275.80 274.10 275.50 200.90 201.10 277.90 274.83 211.40 207.50

180 

5           416.60 423.30 415.70 422.50 304.00 304.60 419.70 417.35 314.30 313.81

1           12.73 12.70 12.39 12.50 10.20 10.30 15.16 14.50 15.74 13.99

2           29.98 30.00 26.63 29.90 22.43 22.10 32.12 31.33 28.70 25.90

3           65.78 65.90 65.27 65.80 48.29 49.60 67.39 65.54 54.14 48.57

4           115.35 115.80 114.76 115.60 84.32 84.50 116.51 115.05 89.56 87.28

270 

5           177.97 181.00 177.33 180.60 129.92 130.20 179.18 178.20 134.97 134.26
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Table5.5 Comparison of out-of plane static stability (buckling loading) of a fixed-fixed curved beam obtained by using the finite elements with and without 

 internal nodes results, t=0.04 m, b=0.002m,  R=0.254 m,  ρ=2770 kg/m3, E=6.89e10 N/m2. 

 

Critical Buckling Load(  Pcr)(N/m) 
C1     C2 C3 C4 C5

Subtended 
Angle 

(Degrees) 
Mode FEM 

Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

1           6330.00 6330.00 4585.00 4660.00 1635.00 1750.00 4758.00 4832.91 1945.00 2207.29

2           13757.00 13770.00 10004.00 9900.00 3466.00 3320.00 10079.00 9662.72 3538.00 3320.20

3         27771.00 27860.00 20199.00 20500.00 6949.00 7310.00 20203.00 20138.57 7179.00 6826.18

4           42436.00 42920.00 30901.00 31700.00 10613.00 11410.00 30913.00 31708.53 10620.00 10685.73

90 

5           63626.00 67750.00 46329.00 48720.00 15913.00 18150.00 46360.00 47597.74 16174,00 17926.37

1           3266.00 3270.00 2362.00 2400.00 864.50 930.00 2520.00 2543.59 1089.50 1210.77

2           7360.00 7370.00 5342.00 5300.00 1865.40 1780.00 5411.00 5187.57 1940.20 1818.86

3         15240.00 15300.00 11047.00 11250.00 3815.00 4030.00 11077.00 11055.20 3975.20 3791.14

4         23470.00 23750.00 17078.00 17530.00 5866.40 6300.00 17091.00 17523.70 5891.00 5931.10

120 

5         35392.00 37700.00 25758.00 27100.00 8844.60 10070.00 25784.00 26444.78 9008.10 9973.92

1           1904.00 1910.00 1377.00 1400.00 519.60 564.00 1516.00 1519.83 697.60 756.08

2           4416.00 4430.00 3199.00 3180.00 1129.20 1075.00 3263.00 3128.34 1202.90 1126.59

3           9455.00 9490.00 6826.00 6970.00 236.90 2515.00 6866.00 6861.69 2488.30 2390.43

4         14698.00 14880.00 10685.00 10970.00 3672.40 3931.00 10698.00 10963.37 3704.00 3731.31

150 

5         22330.00 23800.00 16242.00 17100.00 5567.00 6338.00 16266.00 16660.97 5694.30 6294.43
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C1     C2 C3 C4 C5

Subtended 
Angle 

(Degrees) 
Mode 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

FEM 
Without 
Internal 

Node 

FEM 
 With 

Internal 
Node 

1          1219.00 1220.00 881.00 897.00 344.00 376.00 1002.00 9979.21 488.90 515.43

2         2835.00 2840.00 2049.00 2043.00 734.10 699.00 2109.00 2022.28 804.80 753.33

3           6329.00 6360.00 4588.00 4667.00 1590.70 1697.00 4592.00 4595.31 1685.20 1634.23

4           9938.00 10070.00 7217.00 7414.00 2483.40 2650.00 7231.00 7040.52 2157.90 2537.40

180 

5      15242.00 16250.00 11078.00 116580.00 3803.80 4311.00 11101.00 11353.42 3897.20 4297.24

1           571.40 572.00 400.00 407.00 165.00 181.00 475.30 468.76 241.60 234..34

2           923.80 928.00 665.70 670.00 262.30 254.00 715.50 685.49 314.20 296.04

3         2475.10 2491.00 1784.20 1820.00 637.80 691.00 1790.30 1798.19 695.50 708.87

4           3960.80 4021.00 2865.70 2952.00 995.70 1049.00 2879.40 2940.02 1029.60 1035.70

270 

5           6329.40 6765.00 4586.90 4852.00 1581.80 1767.00 4610.90 4685.63 1643.50 1784.24
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Table 5.6 The effect of dynamic load parameter on the first dynamic stability region of curved beams for various cross-sections The Finite Element  

Model has no internal node, bR/bt = tR/tt=1( C1), bR/bt = 1 and tR/tt=0.5 (C2 and C4),bR/bt = tR/tt=0.5 (C3 and C5), α=0,   β= 1200, t=0.04 m,  

b=0.002m,  R=0.254 m,  ρ=2770 kg/m3, E=6.89e10 N/m2. 

 

Dynamic First Unstable Region Without Internal Node (Hz) 
C1   C2  C3 C4 C5βd

uniform non-uniform wcw double non-uniform centrally symmetric centrally symmetric 
0      130,943 130,943 129,469 129,469 98,433 98,433 150,904 150,904 145,513 145,513

0,5           113,796 145,935 112,572 144,226 86,049 109,146 131,46 167,812 128,022 160,436
1           93,269 159,387 92,32 157,465 71,022 118,686 108,039 182,927 106,431 173,579

1,5           66,228 171,686 65,601 169,559 50,859 127,35 76,95 196,693 76,841 185,4
2      0 183,073 0 180,751  0 135,328 0 209,398 0 196,219

 
 

Table 5.7 The effect of dynamic load parameter on the first dynamic stability region of curved beams for various cross-sections have used to The  

Finite Element Model has internal node, bR/bt = tR/tt=1(C1), bR/bt = 1 and tR/tt=0.5 (C2 and C4), bR/bt = tR/tt=0.5 (C3 and  C5), α=0 β= 1200

 t=0.04 m, b=0.002m,  R=0.254 m,  ρ=2770 kg/m3, E=6.89e10 N/m2. 

 

Dynamic First Unstable Region With Internal Node (Hz) 
C1   C2  C3 C4 C5βd

uniform non-uniform  double non-uniform centrally symmetric  centrally symmetric 
0      130,841 130,841 129,461 129,461 98,586 98,586 150,805 150,805 145,498 145,498

0,5           113,707 145,817 112,565 144,215 86,185 109,313 131,27 167,795 127,96 160,322
1           93,196 159,263 92,315 157,453 71,135 118,865 108,32 182,916 106,354 173,47

1,5           66,176 171,552 65,598 169,545 50,941 127,539 76,203 196,58 76,56 185,323
2         0 182,93 0 180,735 0 135,526 0 209,29 0 196,192



 59 

 

0

50

100

150

200

250

30 60 90 120

β

f 1
(H

z)

C1

C2

C3

C4

C5

 Figure.5.2 The effect of variation of opening angle of an arch on the fundamental frequency for 

various cross-sections, bR/bt = tR/tt=1( C1), bR/bt = 1 and tR/tt=0.5 (O C2 and * C4), bR/bt = 

tR/tt=0.5 (∆ C3 and◊ C5). 
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Figure 5.3 The variation of the free vibration frequency with various ratio of cross-section. β = 600,bR=bt,  

    tR=tt (  C1), bR=bt and tR≠tt (O C2 and * C4), bR/bt = tR/tt=0.5 (∆ C3 and ◊ C5), 
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 Figure. 5.4 The variation of the critical buckling load with various cross-section and curve radius,         

bR/bt= tR/tt=1( C1), bR/bt = 1 and tR/tt=0.5 (O C2 and * C4), bR/bt = tR/tt=0.5  (∆ C3 and◊ C5). 
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Figure 5.5 The variation of the critical buckling load with various ratio of cross-section, β = 600, bR=bt,  

    tR=tt (    C1), bR=bt and tR≠tt (O C2 and * C4), bR/bt = tR/tt=0.5 (∆ C3 and ◊ C5), 
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        Figure 5.6 The effect of dynamic load parameter on the first dynamic stability region of curved 

beams for various cross-sections and two different opening angels. . α= 0 . bR/bt = tR/tt=1( 

C1), bR/bt = 1 and tR/tt=0.5    (O C2 and * C4), bR/bt = tR/tt=0.5 (∆ C3 and ◊ C5),  …… 

        β= 900, _____  β= 300 

 

 

 

 



 62 

α=0.2

0

100

200

300

400

500

600

700

0 0,4 0,8 1,2 1,6
βd

ω
1

C1
C2
C3
C4
C5

20

30

40

50

60

70

0 0,1 0,2 0,3 0,4

 
        Figure 5.7  The effect of dynamic load parameter on the first dynamic stability region of curved 

beams for various cross-sections and two different   opening angels.   α= 0.2 . bR/bt = tR/tt=1 

      (  C1), bR/bt = 1 and tR/tt=0.5    (O C2 and * C4), bR/bt = tR/tt=0.5 (∆ C3 and ◊ C5), …  

β= 900, _____  β= 300
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Figure 5.8 The effect of dynamic load parameter on the first dynamic stability region of curved 

beams for various cross-sections and two different opening angels. α= 0, β= 300 , bR=bt, tR=tt -----

-- bR/bt = tR/tt=1( C1),   ____bR/bt = 1 and tR/tt=0.5 (O C2 and * C4), bR/bt = tR/tt=0.5  (∆ C3 and 

◊ C5) , ……. bR/bt = tR/tt=1( C1),   bR/bt = 1 and tR/tt=0.8 (O C2 and * C4), bR/bt = tR/tt=0.8   (∆ 

C3 and ◊ C5)) 
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Figure 5.9  The effect of dynamic load parameter on the first dynamic stability region of curved 

beams for various cross-sections and two different opening angels. α= 0.2, β= 300 , bR=bt, tR=tt ---

---- bR/bt = tR/tt=1( C1),   ____bR/bt = 1 and tR/tt=0.5 (O C2 and * C4), bR/bt = tR/tt=0.5  (∆ C3 

and ◊ C5) , ……. bR/bt = tR/tt=1( C1),   bR/bt = 1 and tR/tt=0.8 (O C2 and * C4), bR/bt = tR/tt=0.8   

(∆ C3 and ◊ C5)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER SIX 

CONCLUSIONS 

 

In this thesis out of plane free vibration, static and dynamic stability analysis of 

curved beam for various cross-sections and opening angles are studied and the 

following conclusions are drawn. 

 

The finite element method used in this investigation is ideal for the vibration, 

static and dynamic stability analysis of curved beam. The results show the finite 

element method give very good accuracy, when the compare with the results of other 

investigators. 

 

The results obtained for vibration, static and dynamic stabilities, using the FEM 

with and without internal node are very close. In addition the finite element model 

with internal node has the advantage of using less number of elements in the analysis 

than without internal model. 

 

When the subtended angle increases, the static stability (buckling load) and the 

firs fundamental frequency of curved beam decreases, this phenomenon can also be 

explained as follows; when the subtended angle of a curved beam increases, the 

length of curved beams also increases, consequently beam becomes very flexible. 

 

The effect of variation of tt/tr and bt/br  ratio on the static stability (buckling load) 

of a curved beam, when the tt/tr and bt/br  ratio increases the static stability (buckling 

load) of a curved beam also increases. If the variation of the cross-section diminishes 

and approaches the uniform cross-section, the fundamental frequencies of C2 and C5 

cross-sectioned curved beams increase and approach the frequency parameter of C1 

cross-sectioned curved beam. On the other hand, the fundamental frequencies of C3 

and C4 cross-sectioned curved beams decrease and approach the fundamental 

frequency of the C1 cross-sectioned curved beam.  
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When the subtended angle of a curved beam increases, the first dynamic 

instability regions widen. 

If the static load parameter increases, the initial ratio of natural frequency to the 

fundamental frequency moves towards origin. 

 

When the tt/tr and bt/br ratios approach unity, the unstable region approaches the 

region of C1 cross-sectioned curved beam as expected in figure 5.8 and figure 5.9 

 

If the static load parameter is equal to 0.2, in the initial disturbing frequency 

moves towards origin. The dynamic load parameter is bounded between the values of 

zero and 1.6. 

 

Finally, by changing the static and dynamic load parameters, type of the cross-

section of a curved beam, (the ratios of dimensions of thickness and width at the tip 

cross-section to the ones at the root cross-section of the curved beam), dynamic 

stability of curved beam may be conserved. 
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LIST OF SYMBOLS 

  

As     Area of  curved beam cross section 

Gs    Shear modulus of curved beam 

Es     Modulus of elasticity of curved beam 

f     Natural frequency 

ρ     Density of curved beam  

Ixxs    Second moment of area of cross section about axis X 

Iyys     Second moment of area of cross section about axis Y 

l     length of beam element 

β      opening angle 

βd    Dynamic component of load 

α   Static component of load 

R    Radius of curved beam 

[M]   Global mass (inertia) matrix 

[K]   Global stiffness matrix 

[Kgo]   Global geometric stiffness matrix 

b1    Width at the root of the curved beam  

b2    Width at the top of the curved beam 

t1    Thickness at the root of the curved beam  

t2    Thickness at the top of the curved beam 

[ ]T               Denotes  transpose of a matrix  

[ ]-1               Denotes  inverse of a matrix  

{ }               Denotes  column matrix 

 


