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ON THE SOLUTIONS OF NON-LINEAR BOUNDARY VALUE PROBLEMS 

 

ABSTRACT 

 

In this thesis, we present the differential transformation method for the solution of 

non-linear two point boundary value problems. The  method  has  been   discussed  

with  some  examples which  are  presented  to  show  the  ability  of  the  method  

for  linear  and non-linear  equations. The  results obtained  are  in  good  agreement  

with  the  exact  solution , Belmann and Kalaba  approaches. This result show that 

the technique introduced here is accurate and easy to apply. 

 

Keywords: Nonlinear Boundary Value Problems, Differential Transform Method 
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DOĞRUSAL OLMAYAN SINIR DEĞER PROBLEMLERİNİN 

ÇÖZÜMLERİ ÜZERİNE 

 

ÖZ 

 

Bu tezde, doğrusal olmayan iki nokta sınır değer problemlerinin yaklaşık 

çözümünü diferansiyel dönüşüm yöntemi ile verdik. Bu yöntemin lineer ve lineer 

olmayan denklemlerin çözümüne uygulanabilirliğini bazı örneklerle tartıştık. Elde 

edilen sonuçlar tam çözüme, Belmann ve Kalaba yaklaşımına iyi bir uyum 

göstermiştir. Bu sonuçlar verilen tekniğin doğruluğunu ve uygulaması kolay bir 

yöntem olduğunu ortaya koymuştur.  

 

Anahtar Sözcükler: Doğrusal Olmayan Sınır Değer Problemleri, Diferansiyel 

Dönüşüm Yöntemi. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Previous Studies 

 

In this study we introduce two point boundary value problem formulated by the 

second order non-linear ordinary differential equations with boundary conditions as 

follow; 

��� � ���, �, ���   ,          
 � � � �   , 
��
� � 
  , 
���� � � . 

 

Two point boundary value problems (TPBVPs) arise quite frequently in 

engineering and scientific applications, in particular, they occur in the process of 

solving differential equation. Solution to TPBVPs have to satisfy both the initial the 

final boundary conditions and in many cases this can be a difficult task. There are 

many computational methods that have been developed for solving TPBVP which 

have been proven to be of considerable effectiveness, such as the shooting method, 

the finite-element method, the method of weighted residuals. 

In these problems, a new technique called differential transformation method is 

applied to solve TPBVPs. The concept of differential transformation was first 

proposed by Zhou in 1986 and was applied to solve linear and non-linear initial value 

problems in electric circuit analysis. West and Mafi have obtained the eigenvalues 

for free vibration of column-beam systems on elastic soil using an initial-value 

numerical method (West and Mafi, 1984). Chen and Ho have proposed a method to 

solve eigenvalue problems for the free and transverse vibration problems of a 

rotating twisted Timeshenko beam under axial loading by using differential 

transform technique (Chen and Ho, 1996). Differential transform has the inherent 

ability to deal with non-linear problems, and consequently Chiou applied the Taylor 

transform to solve non-linear vibration problems (Chiou, 1996). Lien-Tsai Yu, and 

Cha’o-Kuang Chen, applied the differential Taylor transformation to optimize 



 

2 

 

 

 

rectangular fins1 with variable thermal parameters (Yu, L-T, 1998 and Chen, C-K, 

1996). DTM has been applied to solve a second-order non-linear differential 

equation that describes the under damped and over damped motion of a system 

subject to external excitations by Jang and Chen (Jang and Chen, 1997). Chen and 

Liu have considered first order both linear and non-linear two point boundary value 

problems using the differential transformation method (Chen and Liu, 1998). 

Furthermore, the method maybe employed for the solution of both ordinary and 

partial differential equations Jang et al, applied the two-dimensional differential 

transform method to the solution of partial differential equations (Jang et al, 2001). 

Çatal, has obtained the free vibration circular frequencies of the piles partially 

embedded in the soil due to supporting conditions of top and bottom ends of the pile 

using separation of variables (Çatal, 2002). DTM has applied to eigenvalue problems 

and Sturm-Liouville eigenvalue problems by Hassan (Hassan, 2002). Köksal and 

Herdem have investigated the first-order non-linear electrical circuits by using 

differential Taylor Transformation (Köksal and Herdem, 2002). Abbasov et-al used 

the method of differential transform to obtain approximate solutions of the linear and 

non-linear equations related to engineering problems and observed that the numerical 

results are in good agreement with the analytical solutions (Abbasov, 2005). The 

differential transform method (DTM) has been used to find the non-dimensional 

natural frequencies of the tapered cantilever Bernoulli-Euler beam by Özdemir and 

Kaya (Ozdemir and Kaya, 2006).   

This approach can be considered as an extended Taylor Series Method of order k. 

Using the proposed approach an mth order Taylor Series expansion of the analytic of 

the TPBVP can be obtained throughout the prescribed range. Numerical examples 

are used to illustrate the effectiveness of the proposed approach. 

 

1.2 Existence and Uniqueness Theorem 

 

The existence, uniqueness theory for boundary value problems is considerably 

more complicated and less developed than   that for initial-value problems. When the 

boundary conditions are imposed at only two points, which is usual case in 

                                                             
1
 Fin: Maximum heat dissipation for a fixed profile area at a given volume. 
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applications, a simple theory can be developed for many special cases of equations 

and systems of equations. This existence and uniqueness theory plays a role in 

devising and analyzing numerical methods for solving boundary-value problems. 

 

Let us consider first and important class of boundary-value problems in which the 

solution,����, of a second-order equation 

 

  ��� � ���, �, ���       (1.2.1.a) 

 

is required to satisfy at two distinct points relations of the form 

 

  
���
� � 
����
� � 
,  |
�| � |
�| � 0; 
(1.2.1.b) 

  ������ � ������� � �,  |��| � |��| � 0. 
 

The solution is sought on the interval�
, �� � ��|
 � � � ��. 
  

A formal approach to the solution of this problem is obtained by considering a 

related initial-value problem, say 

 

    ��� � ���, �, ���,    (1.2.2.a) 

 

 
���
� � 
����
� � 
,  ����
� � �����
� �  ,  (1.2.2.b) 

 

The second initial condition is to be independent of the first. This is assured if 


��� � 
��� � 0. Without loss in generality we require that �� and �� be chosen such 

that 

   
��� � 
��� � 1    (1.2.3) 

 

With �� and �� fixed in this manner, we denote the solution of (1.2.2) and (1.2.3) 

by  

 

� � ���;  � 
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to focus attention on its dependence on  . Evaluating the solution at � � �, we seek a 

value of   for which 

 

"� � � �����;  � � ������;  � � � � 0.   (1.2.4) 

 

If  �  # is a root of this equation, we than expect the function 

 

���� � ���;  #� 
 

to be solution of the boundary-value problem (1.2.1). This value is true in many 

cases, and in fact all solutions (1.2.1) can frequently be determined in this way. To be 

precise, we have the following. (Keller, H.B., 1968) 

 

Theorem 1.2.1.  Let the function ���, ��, �$� be continuous on 

 

   %: 
 � � � �,��$ � �$$ � ∞, 

 

and satisfy there a uniform Lipschitz condition in �� and �$. Then the boundary-

value problem (1.2.1) has as many solutions as there are distinct roots,  �  �(�, of 

Equation (1.2.1). The solutions of (1.2.1) are 

 

   ���� � ��(���� � ���;  (�; 
 

that is, the solutions of the initial-value problem (1.2.2) with the initial data  �  �(�. 
 

    Proof. Introducing the new dependent variables ����� � ���� and �$��� � �����, 
the initial-value problem (1.2.1) can be written as 

 

  ��� � �$,    ���
� � 
� � ��
, 
(1.2.5) 

  �$� ��� � ���, ��, �$�,   �$�
� � 
� � ��
. 
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Now with the notation 

 

� � )���$* , ���; �� � ) �$���, ��, �$* , 
 )
� � ��

� � ��
*, 
 

we can apply Theorem1.3, since each component of f, and hence f itself, is Lipschitz-

continuous on R. Thus the initial-value problem (1.2.2), has a unique solution, 

��� � ���;  �, which exists on 
 � � � �. 

But clearly, if "� � � 0 for some  , then this solution is also a solution of the 

boundary-value problem (1.2.1). If  �+�and  �,� are distinct roots of Equation (1.2.4) 

then ���;  �+�� � ���;  �,��, by the uniqueness, so that each distinct root of Equation 

(1.2.4) yields a distinct solution of (1.2.1). 

  

Now suppose ���� is a solution of (1.2.1). Then it is also a solution of the initial-

value problem (1.2.1) with the parameter value  � ����
� � �����
�. But this value 

of s must be satisfying Equation (1.2.4). Thus every solution of the boundary-value 

problem yields a root of Equation (1.2.4). 

 

By means of this theorem the problem of solving a boundary-value problem is 

“reduced” to that of finding the root, or roots, of an equation. 

There is an important class of problems for which we can be assured that Equation 

(1.2.4) has a unique root. The existence and uniqueness theory for the corresponding 

boundary-value problem is then settled. 

 

Theorem 1.2.2. Let the function ���; �� be continuous on the infinite strip  

 

                                              %: 
 � � � �,       |�| � ∞ 

 

and satisfy there a Lipschitz condition in u with constant K, uniformly in x; 

that is, 

                 |���; �� � ���; -�| � .|� � -| for all (�; �� 
/0 ��; -� 1 %. 
Then 
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(1) the initial-value problem 

                                          �� � ���; ��,     ��
� � 
                            (1.2.6) 

has a unique solution � � ���; 
� defined on the interval 

 

                                           �
, �� � ��|
 � � � ��; 
 

(2) this solution is Lipschitz-continuous in 
 ,uniformly in � ; in fact we have 

   |���; 
� � ���; ��| � 23�456�|
 � �| for all ��; 
� 
/0 ��; �� 1 %. 
(Keller, H.B., 1968) 

       

Theorem 1.2.3. Let the function ���, ��, �$� in (1.2.2) satisfy the hypothesis of 

Theorem1.2.1 and have continuous derivatives on R which satisfy, for some positive 

constant M, 

7�7�� 8 0,        9 7�7��9 � :. 
Let the coefficients in (1.2.1.b) satisfy 

   
�
� ; 0, ���� ; 0. |
�| � |��| � 0. 

 

Then the boundary-value problem (1.2.1) has a unique solution 

 

Proof. Since Theorem1.2.1 is applicable, we need only show that Equation (1.2.4) 

has a unique root. By the assumed continuity of the derivatives of f it easily follows, 

from the formulation (1.2.5), that Theorem1.2.4 is also applicable. Thus let ���;  � 
be the solution of the initial-value problem (1.2.2) and (1.2.3) and define                    

< � 7���;  �/7 . Then <� � is the solution, on�
, ��, of the variational equation  

 

    <�� � >���<� � ?���<, 

subject to the initial conditions 

    <�
� � 
� <��
� � 
�, 

Here we have introduced 

?��� � 7�@�, ���;  �, ����;  �A7�� ,              >��� � 7�@�, ���;  �, ����;  �A7�$ . 
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The solution <��� of the above variational problem has a continuous second 

derivative and is nonzero in some arbitrarily small interval 
 � � � 
 � B, by virtue 

of the initial conditions. We shall show that <��� is also non zero in 
 � � � �. With 

no loss in generality, we may assume that 
�
� ; 0 and the variational problem is 

linear. Then we will show that <��� is positive in 
 � � � �. If this is not true, say 

<��� � 0 for some �# in 
 � � � �, then <��� must have a positive maximum at 

some point �� in 
 � �� � �#. However, the maximum cannot be at �� � 
 if 


� � 0, since then <���� 8 0. For 
� � 0, the variational equation and <�
� � 
� 

imply <���
� � ?�
�
� 8 0 and so the maximum is not at �� � 
 in the case either. 

Hence we have 
 � �� � �# and at such an interior maximum by the continuity 

properties of <���. 
   <���� 8 0, <����� � 0, <������ � 0. 

 

But the variational equation at this point yields, since ? 8 0, 

 

    <������ � ?����<���� 8 0. 

 

The contradiction implies that <���� 8 0 on 
 � � � �.  

 

From this result it follows that ?���<���� 8 0 on 
 � � � �, and the variational 

equation yields the differential inequality 

 

   <����� 8 >���<����,  
 � � � �. 

 

We may “solve” this inequality by the same procedure used in the proof of 

Theorem1.2.2. Thus we multiply through by integrating factor 

     

2�> C�D >�E�0E4
6 F 

 

(which, since |>| � :, must be positive), to get 
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G2�> C�D >�E�0E4
6 F <����H� 8 0. 

Now integrating the above inequality over �
, �� we get,on recalling that <��
� � 
�. 
 

<���� 8 
�2�> CD >�E�0E4
6 F. 

Another integration and application of <�
� � 
� gives  

 

<��� 8 
� � 
� D 2�> CD >�E��0E�I
6 F 0E.4

6               
 � J � �. 
 

But, since > ; �:, it follows that 

 

2�> CD >�E��0E�I
6 F 8 25K�I56� 

 

and, using this, we obtain finally 

 

<���� � 7����;  �7 8 
�25K�456� ; 0,                                          
 

<�x� � ∂u�x; s�∂s 8 a� � a� Q1 � e5M�T5U�
: V 8 0             
 � � � �.                  �1.2.7� 

 

With no difficulty it can be seen that for the case in which 
� � 0 and 
� � 0, the 

inequality signs in Equation(1.2.7) need only be reversed. 

 

In particular, then, setting � � �, the function ���;  � is a monotone function of s 

with derivative bounded away from zero for any value of 
�. 

 

The same is true of ����;  � if 
� � 0; if 
� � 0, it is not bounded away from zero. 

But since �� and �� do not both vanish or have opposite signs, and �� � 0 if 
� � 0, 

the function "� � in Equation (1.2.4) must have a derivative of one sing which is 
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bounded away from zero for all 
�. Such a function takes on each real value once, 

and hence "� � � 0 has a unique root. 

 

Theorem 1.2.4.  In addition to the hypotheses of  Theorem 1.2.2 let the Jacobian 

of f with respect to u have continuous elements on R; that is, the nth-order matrix 

 

Y��; �� � 7���; ��7� � Q7�+��; ��7�, V , 
is continuous on R. Then for any 
 the solution ���; 
� of (1.2.6) is continuously 

differentiable with respect to 
Z , [ � 1,2, … , /.  In fact, the derivative         

7���; 
�/7
Z � <�Z���� is the solution, on [a,b], of the linear system 

                                         00� <��� � Y@�; ��; 
�A<���,                                            �1.2.8. 
� 
                                                              <�
� � 2�Z�.                                                     �1.2.8. �� 
 

(Here 2�Z� � �0,… ,0,1,0,… ,0�^ is the kth unit vector in n-space.) (Keller,H.B.,1968) 

 

Example: ��� � E
/_� � �` ���� 
                   

                  ��0� � ���0� � 1                                         |1| � |�1| � 0 

                   ��1� � ���1� � 0                                        |1| � |1| � 0 

 

�@�, ��,�$A � E
/_�� � �` �$ 

 

�a� 7�7�� �  2�_$�� 8 0 

�aa�  7�7�$ � �sin��$� 
 

9 7�7�$9 � |� sin��$�| � 1 

 

: � 1     is a constant.
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CHAPTER TWO 

 

DESCRIPTION OF DIFFERENTIAL TRANSFORMATION METHOD 

 

2.1. Description of Differential Transformation Method 

 

The basic definitions and fundamental Theorems 2.1.1 – 2.1.14 of one 

dimensional differential transform are defined and will be stated in brief in this 

section. (Chang, S-H. and Chang, I-L., 2008). 

Differential transform of function y(x) is defined as follows: 

 

( )
( )

,
!

1

0=









=

x

k

k

dx

xyd

k
kY    (2.1.1) 

 

where y(x) is the original function and Y(k) is the transformed function, which is 

also called the T-function. Differential inverse transform of Y(k) is defined as: 

 

( ) ( )∑
∞

=

=
0k

k kYxxy     (2.1.2) 

 

Combining equations (2.1.1) and (2.1.2), we obtain: 

 

( )
( )

∑
∞

= =









=

0 0
!k x

k

kk

dx

xyd

k

x
xy     (2.1.3) 

 

Equation (2.1.3) implies that the concept of differential transform is derived from 

Taylor series expansion, but the method does not evaluate the derivatives 

symbolically. 

However, relative derivatives are calculated by an iterative ways which are 

described by the transformed equations of the original functions. In this study, we 

use the lower case letter to represent the original function and upper case letter 

represent the transformed function. 
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From the definitions of equations (2.1.1) and (2.1.2), it is easily proven that the 

transformed functions comply with the basic mathematics operations shown in 

theorems.  

 

In actual applications, the function y(x) is expressed by a finite series and 

equation (2.1.2) can be written as 

( ) ( )∑
∞

=

=
0k

k kYxxy     (2.1.4) 

Equation (2.1.3) implies that 
( )∑

∞

+= 1mk

k kYx

 is negligibly small. In fact, m is decided 

by the convergence of natural frequency in this study. 

 

The fundamental theorems of the one- dimensional differential transform are: 

 

 

Theorem 2.1.1. If  ( ) ( ) )()(),()( kZkYkWthenxzxyxw mm ==  

 

Proof: By using the definition of the transform: 

 

( )

( )
∑

∑
∞

=

∞

=

==

==

0

0

)()(,
!

1
)(

)()(,
)(

!

1

k

k

k

k

k

k

k

k

kZxxz
dx

xzd

k
kZ

kYxxy
dx

xyd

k
kY

 

 

k

k

k

k

dx

xzd

kdx

xyd

k
kZkY

)(

!

1)(

!

1
)()( mm =

 

 

[ ])()(
!

1
)()( xzxy

dx

d

k
kZkY

k

k

mm =   by the hypothesis. 

 

)()()( xwxzxy =m  

So, 
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( )∑

∑ ∑

∞

=

∞

=

∞

=

=

=

==

0

0 0

)()(

)()()(

)5.1.2()(
)(

!

1
)()(

k

k

k k

kk

k

k

kZkYx

kZxkYxxW

kW
dx

xwd

k
kZkY

m

m

m

 

 

by using the definition (2.1.5) 

∑
∞

=

=
0

)()(
k

k kWxxW  □ 

 

 

Theorem 2.1.2. If  w(x) = cy(x), then W(k) = cY(k) 

 

Proof: By using definition of the differential transform 

 

[ ],)(
!

1
)( xcy

dx

d

k
kW

k

k

=  

 

where c is constant. Thus, we have 

 

)(
)(

!

1
)( kcY

dx

xyd

k
ckW

k

k

=







=  

 

)()( kcYkW =  □ 
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Theorem 2.1.3. If  )1()1()(,
)(

)( ++== kYkkWthen
dx

xdy
xw  

 

Proof: By utilizing the definition of transform: 

)6.1.2(...)3()2()1()0()(

)()(

32

0

++++=

=∑
∞

=

YxYxxYYxy

kYxxy
k

k

 

 

by taking the derivative of (2.1.6) 

∑
∞

=

−=

+++=

0

1

2

)(

...)3(3)2(2)1(
)(

k

k kYx
dx

dy

YxxYY
dx

xdy

 

by starting the index from k = 0 instead of k = 1 we can obtain 
gh
gT as follows: 

 

∑
∞

=

++==
0

)1()1(
)(

)(
k

k kYkx
dx

xdy
xw

 

Consequently we obtain 

 

)1()1()( ++= kYkkW  □ 

 

Theorem 2.1.4. If  )(
!

)!(
)(,

)(
)( nkY

k

nk
kWthen

dx

xyd
xw

n

n

+
+

==  

 

Proof: By using the definition of the transform 

 

)7.1.2(...)3()2()1()0()(

)()(

32

0

++++=

=∑
∞

=

YxYxxYYxy

kYxxy
k

k
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step by step if we take the derivative of (2.1.7) 

∑

∑

∑

∞

=

∞

=

∞

=

++++==

+++=

++=

++=

+++=

0

0
2

2

2

2

0

2

).())....(2)(1(
)(

)(

.

.

.

)2()2)(1(
)(

...)3(6)2(2
)(

)1()1(
)(

...)3(3)2(2)1(
)(

k

k

n

n

k

k

k

k

nkYnkkkx
dx

xyd
xw

kYkkx
dx

xyd

xYY
dx

xyd

kYkx
dx

xdy

YxxYY
dx

xdy

 

We have 

)(
!

)!(
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This can be proved by mathematical induction. □ 

Theorem 2.1.5. If )()()( xzxyxw = , then ∑
=

−=
k

m

mkZmYkW
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)()()(  

 

Proof: By the definition of transform, 
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∑
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m
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0

)()()(
 □ 
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(A. Arikoglu, and I. Ozkol, 2005) 

 

Proof: By using the definition of the transform 

 

[ ]

[ ]

)1()0()......0()0()0()1().....0()0(

)0()0()......1()0()0()0().......0()1()1(

)()()....()()()().....()(

)()().....()()()()....()(

)()()......()(
!1

1
)1(

,)0()0()....0()0()()().....()(
!0

1
)0(

121121

121121

|
121

|
121

1
|
2112

|

121

121121

0

1

0

0

nnnn

nnnn

xxnnnn

nnnn

xxnn

nnxxnn

YYYYYYYY

YYYYYYYYW

xyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxy

xyxyxyxy
dx

d
W

YYYYxyxyxyxyW

−−

−−

=−−

−−

=−

−=−

++

+=













++

+

=

==

444444 3444444 21

 

 

)2()......0()0()0(.......

)0()....0()0()2(.......)1()1().....0()0(

....)0().....1()1()0()1()....0()0()1(

.....)0()....1()0()1()0().....0()1()1()2(

321

321121

321321

321321

n

nnn

nn

nn

YYYY

YYYYYYYY

YYYYYYYY

YYYYYYYYW

++

+++

+++

++=

−

 

 

In general we have 
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Theorem 2.1.7. If w(x) = c, then )()( kckW δ=  

 

Proof: By using the definition of the differential transform 
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0
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=
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where w(x) = c. Thus, we get 
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From the definition of the polynomials 
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Theorem 2.1.8. If w(x) = x, then )1()( −= kkW δ  

 

Proof: By using the definition of the transform 
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where w(x) = x 
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From the definition of the polynomials 
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Finally, we obtain 
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Proof: By using the definition of the differential transform 
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Thus we get  
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Theorem 2.1.10. If  
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Proof: By using the definition of the transform 
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Proof: By using the definition of the differential transform 
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Proof: By using the definition of the transform 

 

∑
∞

=

=
0

)()(
k

k
kWxxw

 

We use 

 

( ) ( ) ( )

)!12(
)1()12(...

!5
)5(

!3
)3()1(

0)2(...0)4(0)2(0)0(

...)3()2()1()0(...
!7!5!3

1253

32
753

+
−=+=−==

====

++++=+−+−

+

k

z
kW

z
W

z
WzW

kWWWW

WxWxxWW
zxzxzx

zx

k
k

 

 

Thus we get 









=

2
sin

!
)(

k

k

z
kW

k π

 □ 



 

20 

 

 

 

Theorem 2.1.13. If 
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Proof: By using the definition of the transform 
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Theorem 2.1.14. If  1,
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(A. Arikoglu, and I. Ozkol, 2005) 

 

Proof: By using equation (2.1.2) the transform of an integral can be found as 

follows: 

 

∑

∑

∑∫

∫∑∫

∞

=

+

∞

=

+

∞

=

∞

=

+
=















+
=

=

==

0

1

0 0

1

0

0 00

)1(

)(

1
)(

)(

)()()()(

0

k

k

k

x
k

k

x

x

k

x

k

k

x

x
k

kY

k

t
kY

dttkY

dttkYxwthendttyxw

 

 

by starting the index from k = 1 instead of k = 0 we can obtain w(x) as follows: 
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by using the equations (2.1.1) and (2.1.2) we get: 

 

0)0(1,
)1(

)( =≥
−

= Wandkwhere
k

kY
kW

 □



 

 

 

22 

 

CHAPTER THREE 

 

APPLICATIONS 

 

3.1 Applications 

 

In this chapter we solve some second order two points Boundary Value Problems 

by the differential transformation method and compare the results with either exact 

or other numerical solutions. 

 

 

Example 3.1.1: ���� � 1 � 
$��l �$                
$ � 0.49   (3.1.1) 

     ��0� � 0       (3.1.2) 

       ��1� � 0 

 

Applying the differential transformation of Eq. (3.1.1), it can be obtained that  

 

                                                          

��[ � 1��[ � 2�o�[ � 2� � 1 � 
$ pq�r � 1�o�r � 1��[ � r � 1�o�[ � r � 1�Z

st�
u 

 

o�[ � 2� � j�[� � 
$v∑ �r � 1�o�r � 1��[ � r � 1�o�[ � r � 1�Zst� x��[ � 1��[ � 2�             �3.1.3� 
 

 Use the initial condition  

 

��0� � 0                ���0� � z    

to obtain: 

���� � q�Z
{

Zt�
o�[� 

 

� o�0� � �o�1� � �$o�2� � �|o�3� � } 
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��0� � 0                 o�0� � 0       (3.1.4) 

and 

                                                      qo�[� � 0~

Zt�
                                                             �3.1.5�  

Let 

����� � o�1� � 2�o�2� � 3�$o�3� � } 

 

���0� � z � o�1� � 2o�2�0 � 3o�3�0 � } 

 

    o�1� � z     (3.1.6) 

 

For each k, substituting Eq. (3.1.4) and (3.1.6) into (3.1.3), and by recursive 

method, 

Y`�   [ � 0                      o�2� � �1 � 
$�o�1��$2                     
$ � 0.49 

 

o�2� � �1 � 
$z$
2  

    Y`�   [ � 1  

o�3� � 
$z�1 � 
$z|�3  

 Y`�  [ � 2  

o�4� � 
$�2z$ � 4z$
$ � 
$z� � 4z�
���24  

. 

. 

. 

���� � q�Z
{

Zt�
o�[� 

 

���� � o�0� � �o�1� � �$o�2� �} 

 

� o�1� � o�2� �}� o��� �} � 0 
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We use first three result (o�1�, o�2�, o�3�) for approximate solution. 

 

o�1� � o�2� � o�3� � 0 

z � 0.4736 

 

         Then we obtain: 

 

o�1� � z                                                                                     o�1� � 0.4736 

 

o�2� � �1 � 
$z$
2                                                                  o�2� � �0.5550 

 

o�3� � 
$z�1 � 
$z|�3                                                           o�3� � 0.0814 

                                                      

o�4� � 
$�2z$ � 4z$
$ � 
$z� � 4z�
��    �24                  o�4� � �0.0191 

. 

. 

. 

 

���� � o�0� � �o�1� � �$o�2� � �|o�3� � ��o�4� � ����� 
 

��0.3� � o�0� � 0.3o�1� � 0.3$o�2� � 0.3|o�3� � 0.3�o�4� 
 

��0.3� � 0.0940 

 

��0.8� �  o�0� � 0.8o�1� � 0.8$o�2� � 0.8|o�3� � 0.8�o�4� 
 

��0.8� � 0.0471 

. 

. 

. 
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Table 3.1 Numerical Results 

xi y(DTM) 
y(Belmann and 

Kalaba approach) 

y(Quasilinearization, 

Arsoy, A.) 
 

0.0 0.0 0.0 0.0  

0.1 0.0419 0.046571 0.018533  

0.2 0.0731 0.082304 0.032400  

0.3 0.0940 0.107573 0.0411824  

0.4 0.1048 0.122635 0.047016  

0.5 0.1055 0.127639 0.048180  

0.6 0.0962 0.122635 0.045508  

0.7 0.0768 0.107573 0.039184  

0.8 0.0471 0.082304 0.029381  

0.9 0.0067 0.046571 0.016267  

1.0 -0.0447 0.0 0.0  
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Example 3.1.2: 

                       ������ � 12�|���                 1 � � � 3                                                   �3.1.7� 
                       ��1� � 23                                   ��3� � 25                                                 �3.1.8� 

 

Exact solution is given as 

���� � 2� � 2 

 

Applying the differential transformation of Eq. (3.1.7), it can be obtained that 

�[ � 1��[ � 2�o�[ � 2� � 12qqo�a�o�r � a�o�[ � r�s

+t�

Z

st�
 

 

                                 o�[ � 2� � ∑ ∑ o�a�o�r � a�o�[ � r�s+t�Zst� 2�[ � 1��[ � 2�                            �3.1.9� 
 

      where 
3

2
)0( =Y    (Taylor series is opened at x=1)                                      (3.1.10) 

o�1� � z    (3.1.11) 

For each k, substituting Eqn. (3.1.10) and (3.1.11) into (3.1.9), and by recursive 

method, 

For [ � 0 

o�2� � o�0�o�0�o�0�4  

o�2� � 227 

For [ � 1 

o�3� � o�0�o�0�o�1� � o�0�o�1�o�0� � o�1�o�0�o�0�2.6  

o�3� � z3$ 

For [ � 2 

o�4� � o�0�o�0�o�2� � o�0�o�1�o�1� � o�1�o�0�o�1� � o�0�o�2�o�0� � o�1�o�1�o�0� � o�2�o�0�o�0�2.12  
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o�4� � 12 )49 227 � 23z$ � 23z$ � 49 227 � }* 

We can write our function as: 

 

���� � qo�[��� � 1�Z � q� 12�[ � 1��[ � 2�qqo�a�o�r � a�
s

+t�

Z

st�

{

Zt�

{

Zt�
o�[ � r��� � 1�Z 

  

Let �~ be the sum of first n-term.Then
5

2
)3( =

m
y .That is  

q� 12�[ � 1��[ � 2�qqo�a�o�r � a�o�[ � r��2Z � 25
s

+t�

Z

st�

~

Zt�
 

 

���� � qo�[��� � 1�Z � o�0� � �� � 1�o�1� �
{

Zt�
�� � 1�$o�2� � �� � 1�|o�3� �} 

We use four results to find A: 

 

23 � 2z � 4 227 � 8z9 � 25 

 

z � �0.1949 

 

o�0� � 23 

 

o�1� � �0.1949 

 

o�2� � 227 

 

o�3� � �0.19499  

. 

. 

. 



 

28 

 

 

 

���� � o�0� � �� � 1�o�1� � �� � 1�$o�2� � �� � 1�|o�3� � ���� � 1��� 
 

��2� � o�0� � �2 � 1�o�1� � �2 � 1�$o�2� � �2 � 1�|o�3� 
 

��2� � 0.5242 

 

��2.7� � o�0� � �2.7 � 1�o�1� � �2.7 � 1�$o�2� � �2.7 � 1�|o�3� 
 

��2.7� � 0.4430 

. 

. 

. 
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Table 3.2 Numerical Results 

xi y(DTM) y(exact solution) Error 

1.0 0.6667 0.6667 0 

1.1 0.6479 0.6452 -0.0027 

1.2 0.6305 0.6250 -0.0055 

1.3 0.6143 0.6061 -0.0082 

1.4 0.5992 0.5882 -0.0109 

1.5 0.5850 0.5714 -0.0136 

1.6 0.5717 0.5556 -0.0162 

1.7 0.5591 0.5405 -0.0186 

1.8 0.5471 0.5263 -0.0208 

1.9 0.5355 0.5128 -0.0226 

2.0 0.5242 0.5000 -0.0242 

2.1 0.5131 0.4878 -0.0253 

2.2 0.5020 0.4762 -0.0258 

2.3 0.4909 0.4651 -0.0258 

2.4 0.4796 0.4545 -0.0250 

2.5 0.4679 0.4444 -0.0235 

2.6 0.4558 0.4348 -0.0210 

2.7 0.4430 0.4255 -0.0175 

2.8 0.4296 0.4167 -0.0129 

2.9 0.4152 0.4082 -0.0071 

3.0 0.3999 0.4000 0.0001 
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CHAPTER FOUR 

 

CONCLUSION 

 

This thesis  shows  that  the  differential  transformation  technique  can  be  

applied  to  solve  the two  point  non-linear  boundary  value  problems  ,  which  

gives  the  solution  in  the  form  of  a  finite - term  Taylor  series . We first gave 

their proofs and then applied to TPBVPs. The  method  is  a  powerful  tool  which  

enables  to  find  analytical  solution  in case  of  non-linear  differential  equations . 

This method  is  better  than  numerical  methods , since  it  is  free  from  rounding  

off  error , yields  a  series  solution  which  converges  faster  than  the  series  

obtained  by  another  methods . The numerical  results  obtained  by  present  

method  are  compared  with  the  analytical  solutions . It  is  shown  that  the  

differential  transform  method  can achieve good  results  in  predicting  the  solution  

of such  problems. 
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